| Title | Saving stats (means, standard deviations, etc.) into a dataset or matrices | |
| Author | Ronna Cong, StataCorp |
collapse converts the data in memory into a dataset of means, medians, etc.
Example using collapse:
. use auto, clear
(1978 Automobile Data)
. by foreign: sum price mpg weight [aweight=rep78]
_______________________________________________________________________________
-> foreign = Domestic
Variable | Obs Weight Mean Std. Dev. Min Max
-------------+-----------------------------------------------------------------
price | 48 145.0000 6162.517 3106.007 3291 15906
mpg | 48 145.0000 19.8 5.205471 12 34
weight | 48 145.0000 3347.862 740.8696 1800 4840
_______________________________________________________________________________
-> foreign = Foreign
Variable | Obs Weight Mean Std. Dev. Min Max
-------------+-----------------------------------------------------------------
price | 21 90.0000 6133.778 2286.096 3748 11995
mpg | 21 90.0000 25.45556 6.719655 17 41
weight | 21 90.0000 2285.778 371.6942 1760 3170
. collapse (mean) price_mean = price (median) mpg_med = mpg (sd) weight_sd =
weight [aweight=rep], by(foreign)
. list
+------------------------------------------+
| foreign price_~n mpg_med weight~d |
|------------------------------------------|
1. | Domestic 6,162.5 19 740.87 |
2. | Foreign 6,133.8 25 371.694 |
+------------------------------------------+
matrix accum, with the means() and deviations options, can be used to obtain means matrices and covariance matrices.
Example using matrix accum:
. use auto, clear
(1978 Automobile Data)
. correlate price mpg weight [aweight=rep78], means cov
(sum of wgt is 2.3500e+02)
(obs=69)
Variable | Mean Std. Dev. Min Max
-------------+----------------------------------------------------
price | 6,151.51 2,801.56 3,291 15,906
mpg | 21.96596 6.402573 12 41
weight | 2,941.11 811.2383 1,760 4,840
| price mpg weight
-------------+---------------------------
price | 7.8e+06
mpg | -8225.94 40.9929
weight | 1.2e+06 -4123.77 658108
. mat accum Cov = price mpg weight [aweight=rep78], noc means(M) deviations
(sum of wgt is 2.3500e+02)
(obs=69)
. mat list M
M[1,3]
price mpg weight
_cons 6151.5106 21.965957 2941.1064
. mat Cov = Cov/(r(N)-1)
. mat list Cov
symmetric Cov[3,3]
price mpg weight
price 7848734.6
mpg -8225.9352 40.992942
weight 1222727.7 -4123.7697 658107.63