»  Home »  Resources & support »  Training »  Webinars »  Extended regression models

Webinar: Causal inference for complex observational data


Duration: 1 hour
Where: Join us from anywhere!
Cost: Free—but registrations are limited

Observational data often come with challenges that the data analyst needs to address. Treatment status or the exposure of interest may not be assigned randomly. Data are sometimes missing not at random (MNAR), which can lead to sample-selection bias. And statistical models for these data often need to account for unobserved confounding.

Join Chuck Huber, Associate Director of Statistical Outreach, as he shows you how you can use standard maximum-likelihood estimation to fit extended regression models (ERMs) that deal with all of these common issues. He will work examples that demonstrate how to account for these observational data problems when they arise individually and when they occur simultaneously.

How to join

The webinar is free, but you must register to attend. Registrations are limited, so register soon.

We will send you an email prior to the start of the course with instructions on how to access the webinar.

Presenter: Chuck Huber

Chuck Huber portrait

Chuck Huber is the Associate Director of Statistical Outreach at StataCorp and an adjunct associate professor of biostatistics at the Texas A&M School of Public Health. In addition to working with Stata's team of software developers, he produces instructional videos for the Stata YouTube channel, writes blog entries, develops online NetCourses, and gives talks about Stata at conferences and universities. Most of his current work is focused on statistical methods used by psychologists and other behavioral scientists. He has published in the areas of neurology, human and animal genetics, alcohol and drug abuse prevention, nutrition, and birth defects.


Registration is now closed.

To be notified of future course offerings, sign up for an email alert.





The Stata Blog: Not Elsewhere Classified Find us on Facebook Follow us on Twitter LinkedIn YouTube Instagram
© Copyright 1996–2020 StataCorp LLC   •   Terms of use   •   Privacy   •   Contact us