Stata: Data Analysis and Statistical Software
   >> Home >> Resources & support >> FAQs >> Pseudo-R2 for tobit

Why is the pseudo-R2 for tobit negative or greater than one?

Title   Pseudo-R2 for tobit
Author William Sribney, StataCorp
Date June 1997

Concerning the pseudo-R2, we use the formula

        pseudo-R2 = 1 − L1/L0 

where L0 and L1 are the constant-only and full model log-likelihoods, respectively.

For discrete distributions, the log likelihood is the log of a probability, so it is always negative (or zero). Thus 0 ≥ L1L0, and so 0 ≤ L1/L0 ≤ 1, and so 0 ≤ pseudo-R2 ≤1 for DISCRETE distributions.

For continuous distributions, the log likelihood is the log of a density. Since density functions can be greater than 1 (cf. the normal density at 0), the log likelihood can be positive or negative. Similarly, mixed continuous/discrete likelihoods like tobit can also have a positive log likelihood.

If L1 > 0 and L0 < 0, then L1/L0 < 0, and 1 − L1/L0 > 1.

If L1 > L0 > 0 and then L1/L0 > 1, and 1 − L1/L0 < 0.

Hence, this formula for pseudo-R2 can give answers > 1 or < 0 for continuous or mixed continuous/discrete likelihoods like tobit. So, it makes no sense.

For many models, including tobit, the pseudo-R2 has no real meaning.

This formula for pseudo-R2 is nothing more than a reworking of the model chi-squared, which is 2(L1L0). Thus even for discrete distributions where 0 ≤ pseudo R2 ≤ 1, it is still better to report the model chi-squared and its p-value—not the pseudo-R2.

Bookmark and Share 
FAQs
What's new?
Statistics
Data management
Graphics
Programming Stata
Mata
Resources
Internet capabilities
Stata for Windows
Stata for Unix
Stata for Mac
Technical support
Like us on Facebook Follow us on Twitter Follow us on LinkedIn Google+ Watch us on YouTube
Follow us
© Copyright 1996–2013 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   Site index   |   View mobile site