Stata: Data Analysis and Statistical Software
   >> Home >> Resources & support >> FAQs >> Explanation of the delta method

What is the delta method and how is it used to estimate the standard error of a transformed parameter?

Title   Explanation of the delta method
Author Alan H. Feiveson, NASA
Date December 1999; minor revisions May 2005

The delta method, in its essence, expands a function of a random variable about its mean, usually with a one-step Taylor approximation, and then takes the variance. For example, if we want to approximate the variance of G(X) where X is a random variable with mean mu and G() is differentiable, we can try

        G(X) = G(mu) + (X-mu)G'(mu)        (approximately)

so that

        Var(G(X)) = Var(X)*[G'(mu)]2      (approximately)

where G'() = dG/dX. This is a good approximation only if X has a high probability of being close enough to its mean (mu) so that the Taylor approximation is still good.

This idea can easily be expanded to vector-valued functions of random vectors,

        Var(G(X)) = G'(mu) Var(X) [G'(mu)]T

and that, in fact, is the basis for deriving the asymptotic variance of maximum-likelihood estimators. In the above, X is a 1 x m column vector; Var(X) is its m x m variance–covariance matrix; G() is a vector function returning a 1 x n column vector; and G'() is its n x m matrix of first derivatives. T is the transpose operator. Var(G(X)) is the resulting n x n variance–covariance matrix of G(X).

Acknowledgments

Nicholas Cox of Durham University and John Gleason of Syracuse University provided the references.

References

Oehlert, G. W. 1992.
A note on the delta method. American Statistician 46: 27–29.
Rice, John. 1994.
Mathematical Statistics and Data Analysis. 2nd ed. Duxbury.
Bookmark and Share 
FAQs
What's new?
Statistics
Data management
Graphics
Programming Stata
Mata
Resources
Internet capabilities
Stata for Windows
Stata for Unix
Stata for Mac
Technical support
Like us on Facebook Follow us on Twitter Follow us on LinkedIn Google+ Watch us on YouTube
Follow us
© Copyright 1996–2013 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   Site index   |   View mobile site