How can I use Stata to solve a system of nonlinear equations?
| Title |
|
Using Stata to solve a system of nonlinear equations |
| Authors |
Alan H. Feiveson, NASA
Kerry Kammire, StataCorp
Isabel Cañette, StataCorp
|
| Date |
June 2001; updated July 2009 |
We will show you two ways of solving a system of nonlinear equations in Stata.
First, we will provide a detailed explanation using
nl. Then we will
show you the equivalent in Mata.
Suppose you want to solve
f1(a1,...,an) = 0
f2(a1,...,an) = 0
.
.
.
fn(a1,...,an) = 0
(n nonlinear equations in n unknowns a1,..,an).
First, rewrite the first equation so that its right-hand side is 1:
f1(a1,...,an) + 1 = 1
f2(a1,...,an) = 0
.
.
.
fn(a1,...,an) = 0
Then set up a fake dataset with n observations as follows:
- The dependent variable y takes on the value 1 for the first observation
and 0 for all the others. Stata’s nl
estimation will not work if y is a constant, so you need to write the
first equation so that the "right-hand sides" are not all the same;
that is why I reformulated the problem above. In this example, I used
one for the first observation and zero for the others.
- Write an nl program that fills in the dependent variable
passed to it with the values of the functions. Suppose n=3. Then your
program should look something like this:
program nlfaq
syntax varlist (min=1 max=1) [if], at(name)
tempname a1 a2 a3
scalar `a1' = `at'[1, 1]
scalar `a2' = `at'[1, 2]
scalar `a3' = `at'[1, 3]
tempvar yh
generate double `yh' = f1(`a1', `a2', `a3') + 1 in 1
replace `yh' = f2(`a1', `a2', `a3') in 2
replace `yh' = f3(`a1', `a2', `a3') in 3
replace `varlist' = `yh'
end
-
nl requires that our program accept an if clause, though
we can ignore it in our program because we do not have missing data and
will not be restricting the estimation sample when calling nl.
-
Call nl with y as the dependent variable, specifying initial
values for a1, a2, ..., and at which the functions can be evaluated.
Here is an example. Suppose I want to solve the following system for
A, B, and C:
exp(A) + B*C = 3
A/B + C^2 = log(B)
A/(A+B+C) = sin(C)
Here is my nl program:
program nlfaq
syntax varlist(min=1 max=1) [if], at(name)
tempname A B C
scalar `A' = `at'[1, 1]
scalar `B' = `at'[1, 2]
scalar `C' = `at'[1, 3]
tempvar yh
gen double `yh' = exp(`A') + `B'*`C' - 2 in 1
replace `yh' = `A'/`B' + `C'^2 - log(`B') in 2
replace `yh' = `A'/(`A'+`B'+`C') - sin(`C') in 3
replace `varlist' = `yh'
end
Now I generate the dataset nl requires:
. clear
. set obs 3
obs was 0, now 3
. generate y = 0
. replace y = 1 in 1
(1 real change made)
I estimate using nl:
. nl faq @ y, parameters(A B C) initial(A 1 B 1 C 1)
(obs = 3)
Iteration 0: residual SS = .5792985
Iteration 1: residual SS = .0364809
Iteration 2: residual SS = .0001378
Iteration 3: residual SS = 2.92e-09
Iteration 4: residual SS = 1.43e-18
Iteration 5: residual SS = 2.25e-31
Source | SS df MS
-------------+------------------------------ Number of obs = 3
Model | 1 3 .333333333 R-squared = 1.0000
Residual | 2.2495e-31 0 . Adj R-squared = .
-------------+------------------------------ Root MSE = .
Total | 1 3 .333333333 Res. dev. = -206.4905
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
/A | .8973072 . . . . .
/B | 1.803287 . . . . .
/C | .3033412 . . . . .
------------------------------------------------------------------------------
Finally, I verify the solution:
. scalar A = [A]_b[_cons]
. scalar B = [B]_b[_cons]
. scalar C = [C]_b[_cons]
. di exp(A) + B*C
3
. di A/B + C^2 " " log(B)
.58961117 .58961117
. di A/(A+B+C) " " sin(C)
.29871053 .29871053
Now let’s see how to do this with
optimize():
. clear mata
. mata:
------------------------------------------------- mata (type end to exit) ------
:
: void mysolver(todo, p, lnf, S, H)
> {
> a = p[1]
> b = p[2]
> c = p[3]
> lnf = (exp(a) + b*c - 3 )^2 \
> (a/b + c^2 - log(b))^2 \
> (a/(a+b+c) - sin(c))^2
> }
note: argument todo unused
note: argument S unused
note: argument H unused
: S = optimize_init()
: optimize_init_evaluator(S, &mysolver())
: optimize_init_evaluatortype(S, "v0")
: optimize_init_params(S, (1,1,1))
: optimize_init_which(S, "min" )
: optimize_init_tracelevel(S,"none")
: optimize_init_conv_ptol(S, 1e-16)
: optimize_init_conv_vtol(S, 1e-16)
: p = optimize(S)
: p
1 2 3
+-------------------------------------------+
1 | .8973071614 1.803287112 .3033412094 |
+-------------------------------------------+
: end
--------------------------------------------------------------------------------
Notice that when using optimize, we don’t need to set up an
independent variable y. We just define an evaluator function that, for each
observation, evaluates to the square of one of the three expressions that
need to be equal to zero.
|
FAQs
What's new?
Statistics
Data management
Graphics
Programming Stata
Mata
Resources
Internet capabilities
Stata for Windows
Stata for Unix
Stata for Mac
Technical support
|