Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

From |
David Hoaglin <[email protected]> |

To |
[email protected] |

Subject |
Re: st: Interpretation of interaction term in log linear (non linear) model |

Date |
Mon, 10 Jun 2013 11:18:39 -0400 |

Dear Suryadipta, I have little experience with -margins-, but it seems that one has be careful in using it. For example, I would not want it to evaluate the model only at the means of the other predictors unless I had checked that that combination of values was supported by the data. Your model is not a logistic regression, so it does not involve log-odds, and none of the coefficients have an interpretation as log-odds-ratios. What is the basis for your statement that the odds ratio is constant (does not depend on the values of the other predictor variables)? When a logistic regression involves other predictors, each odds ratio is an adjusted odds ratio (i.e., the odds ratio is adjusted for the contributions of the other predictors). To calculate predicted probabilities from such a model, one has to supply values of all the predictors, and each combination of those values should be supported by the data (the idea is to avoid extrapolating outside the region of "predictor space" covered by the data). The adjustment for the contributions of the other predictors (in the data at hand) is part of the interpretation of a regression coefficient in all types of regression models. David Hoaglin On Mon, Jun 10, 2013 at 9:37 AM, Suryadipta Roy <[email protected]> wrote: > Dear David, > Thank you very much for the wonderful suggestions! I would make sure > that the writeup reflects them! In fact, I have used -margins- to > reflect the contribution of x1 in the two groups as well. A related > question was if the coefficient of the interaction term in the > log-linear model can be interpreted as a log-odds ratio, and that an > important property of odds ratios is that it is constant, i.e. does > not matter what values the other independent variables take on. I > believe that your suggestions (and my query here) is relevant for > Poisson/NB models as well. > > Sincerely, > Suryadipta. * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/

**Follow-Ups**:**Re: st: Interpretation of interaction term in log linear (non linear) model***From:*Suryadipta Roy <[email protected]>

**References**:**st: Interpretation of interaction term in log linear (non linear) model***From:*Suryadipta Roy <[email protected]>

**Re: st: Interpretation of interaction term in log linear (non linear) model***From:*David Hoaglin <[email protected]>

**Re: st: Interpretation of interaction term in log linear (non linear) model***From:*Suryadipta Roy <[email protected]>

- Prev by Date:
**st: Esttab matrix formatting** - Next by Date:
**Re: st: post-estimation with MI data** - Previous by thread:
**Re: st: Interpretation of interaction term in log linear (non linear) model** - Next by thread:
**Re: st: Interpretation of interaction term in log linear (non linear) model** - Index(es):