Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | "Amparo Nagore Garcia" <amparo.nagore@uv.es> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: Problems with ml max Survival analysis |
Date | Thu, 07 Nov 2013 11:43:27 +0100 |
Dear all, I am trying to maximize my own likelihood function and I get the coefficients but I do not get any other output(Std. Err, z, P>Z.....) Please, could you help me with this? Is something wrong in my program???. Just below you could find my ml model, my program and the results that I get. Thank you in advance. Amparo The objective function is the L= π h(ti|xi)^di S(ti|xi) ******************** my ml model ******************* ml model d1 CR_stable (cr_05_stable: t0_s t_s d_s= tp* $personal $labour ,nocons), cluster(`ID') ml max, difficult where: global personal "u_rate male h_skill m_skill non_manual municipio spanish_speakers no_spanish_speaker Aged_16_19 Aged_20_24 Aged_25_29 Aged_30_34 Aged_35_39 Aged_40_44 Aged_45_51 older61 responsabilities" global labour "construction industry size_0 size_10_19 size_20_49 size_50_249 size_250 discontinuous fix_term on_call duration_1 coefte_num_1 prest_emp" global ID "id_bis" ************************************** The program is the following: ************************************** capture program drop CR_stable ****Competing risk without uh program CR_stable version 11.2 args todo b lnf g ***Declare and define the arguments of the LL tempvar beta1 mleval `beta1'=`b', eq(1) local dt0_1="$ML_y1" local dt1_1="$ML_y2" local d1="$ML_y3" tempvar inthaz1 last p1 *tempname p1 tempvar sumb1 sort contadorbis by contadorbis: gen double `sumb1'=sum(`d1'*`beta1') if $ML_samp tempvar haz1 by contadorbis: gen double `haz1'=exp(`sumb1'[_N]) if $ML_samp by contadorbis: gen double `inthaz1'=sum(exp(`beta1'*(`dt1_1'-`dt0_1'))) if $ML_samp by contadorbis: gen double `p1'= `haz1'*exp(-`inthaz1'[_N]) if $ML_samp by contadorbis: gen byte `last'=(_n==_N) mlsum `lnf'= ln(`p1') if `last'==1 *Calculate the gradient,I have to supply dlnl/dtheta and mlvecsum returns dlnL/dbetai=sum dlnl/dtheta*Xij if(`todo'==0 | `lnf'>=.) exit mlvecsum `lnf' `g' = `d1'-(`dt1_1'-`dt0_1'), eq(1) end ********** the results ********** . ml max, difficult initial: log likelihood = -204354.53 rescaling entire vector +++. rescale: log likelihood = -42637.678 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -42637.678 Gradient length = 9.21e+09 Step length = 0 Parameters + step -> new parameters log likelihood = -42637.678 (initial step good) (1) Stepping forward, step length = 0 log likelihood = -42637.678 (ignoring last step) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Iteration 1: log likelihood = -42637.678 g inv(H) g' = 0 Gradient length = 9.21e+09 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Number of obs = 658755 Wald chi2(0) = . Log likelihood = -42637.678 Prob > chi2 = . ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- tp1 | -.81 . . . . . tp2 | -.79875 . . . . . tp3 | -.79125 . . . . . tp4 | -.81125 . . . . . tp5 | -.81375 . . . . . tp6 | -.82125 . . . . . tp7 | -.8125 . . . . . tp8 | -.86125 . . . . . tp9 | -.85625 . . . . . tp10 | -.87375 . . . . . tp11 | -.8875 . . . . . tp12 | -.88 . . . . . tp13 | -.8825 . . . . . tp14 | -.89625 . . . . . tp15 | -.9025 . . . . . tp16 | -.89875 . . . . . tp17 | -.915 . . . . . tp18 | -.93 . . . . . tp19 | -.92625 . . . . . tp20 | -.93625 . . . . . tp21 | -.96375 . . . . . tp22 | -.92625 . . . . . tp23 | -.925 . . . . . tp24 | -.9475 . . . . . tp25 | -.82375 . . . . . tp26 | -1.12 . . . . . tp27 | -1.00875 . . . . . tp28 | -1.15375 . . . . . u_rate | -.469875 . . . . . male | .014625 . . . . . h_skill | .01775 . . . . . m_skill | .000375 . . . . . non_manual | .0035 . . . . . municipio | .00075 . . . . . spanish_sp~s | -.01375 . . . . . no_spanish~r | -.03125 . . . . . Aged_16_19 | -.00875 . . . . . Aged_20_24 | .026 . . . . . Aged_25_29 | .04 . . . . . Aged_30_34 | .041 . . . . . Aged_35_39 | .04325 . . . . . Aged_40_44 | .045 . . . . . Aged_45_51 | .042875 . . . . . older61 | -.0725 . . . . . responsabi~s | .015625 . . . . . construction | .02325 . . . . . industry | .006 . . . . . size_0 | -.00375 . . . . . size_10_19 | .012125 . . . . . size_20_49 | .0215 . . . . . size_50_249 | .029 . . . . . size_250 | .02475 . . . . . discontinu~s | .223 . . . . . fix_term | .062625 . . . . . on_call | .115625 . . . . . duration_1 | -3.88e-06 . . . . . coefte_num_1 | .002375 . . . . . prest_emp | -.08625 . . . . . ------------------------------------------------------------------------------ . end of do-file * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/