Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | lan zhang <cat1984@126.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | Re: st: gologit2 interaction |
Date | Sun, 1 Sep 2013 15:59:03 -0400 |
the raw model: gologit2 ma2 z2targetcrossus z2usinl z2chcross z2chdo woe jv rd network repoffice z2age unique z2location z2chsenior z2reve > nue z2mconcentration z2var65 Generalized Ordered Logit Estimates Number of obs = 230 LR chi2(48) = 131.44 Prob > chi2 = 0.0000 Log likelihood = -190.91867 Pseudo R2 = 0.2561 ---------------------------------------------------------------------------------- ma2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- 0 | z2targetcrossus | -.0173887 .1668386 -0.10 0.917 -.3443863 .3096089 z2usinl | -.2492047 .1905918 -1.31 0.191 -.6227578 .1243484 z2chcross | .103573 .1520177 0.68 0.496 -.1943763 .4015223 z2chdo | -.0393117 .1750591 -0.22 0.822 -.3824213 .3037979 woe | -.4751755 .6626994 -0.72 0.473 -1.774043 .8236915 jv | -1.083191 .7963511 -1.36 0.174 -2.644011 .4776286 rd | .9039168 .4271417 2.12 0.034 .0667344 1.741099 network | 1.410567 .9212801 1.53 0.126 -.3951092 3.216242 repoffice | -1.001058 .4313348 -2.32 0.020 -1.846458 -.1556568 z2age | .1168134 .1774538 0.66 0.510 -.2309898 .4646165 unique | .6194533 .3772757 1.64 0.101 -.1199934 1.3589 z2location | .1114399 .1717018 0.65 0.516 -.2250895 .4479693 z2chsenior | .0730508 .1674231 0.44 0.663 -.2550924 .401194 z2revenue | -.014403 .165149 -0.09 0.931 -.3380891 .3092831 z2mconcentration | -.2459377 .1718248 -1.43 0.152 -.5827081 .0908327 z2var65 | .2098376 .1512144 1.39 0.165 -.0865371 .5062123 _cons | -.4365704 .6758439 -0.65 0.518 -1.7612 .8880593 -----------------+---------------------------------------------------------------- 1 | z2targetcrossus | .5896636 .3993497 1.48 0.140 -.1930474 1.372375 z2usinl | -5.757507 3.010157 -1.91 0.056 -11.65731 .1422915 z2chcross | .3443698 .8501671 0.41 0.685 -1.321927 2.010667 z2chdo | .0274867 .3531697 0.08 0.938 -.6647132 .7196866 woe | -.1374271 .8539173 -0.16 0.872 -1.811074 1.53622 jv | -1.625354 1.073093 -1.51 0.130 -3.728578 .47787 rd | .2289301 .5789769 0.40 0.693 -.9058436 1.363704 network | .9461952 1.146079 0.83 0.409 -1.300079 3.192469 repoffice | .1904672 .6567114 0.29 0.772 -1.096663 1.477598 z2age | .3646071 .2886476 1.26 0.207 -.2011317 .930346 unique | .1462646 .6053367 0.24 0.809 -1.040174 1.332703 z2location | .3362546 .2857039 1.18 0.239 -.2237147 .896224 z2chsenior | -.6377379 .2899929 -2.20 0.028 -1.206114 -.0693622 z2revenue | .4384878 .2596045 1.69 0.091 -.0703277 .9473032 z2mconcentration | -.3356207 .3044584 -1.10 0.270 -.9323481 .2611067 z2var65 | .680389 .2555405 2.66 0.008 .1795389 1.181239 _cons | -3.852209 1.534456 -2.51 0.012 -6.859688 -.8447304 -----------------+---------------------------------------------------------------- 2 | z2targetcrossus | -1.859479 .9033436 -2.06 0.040 -3.63 -.0889579 z2usinl | 29.60616 10.01538 2.96 0.003 9.97637 49.23595 z2chcross | -6.148175 2.31656 -2.65 0.008 -10.68855 -1.607802 z2chdo | -2.199313 .9065691 -2.43 0.015 -3.976156 -.4224705 woe | 4.507415 2.227588 2.02 0.043 .1414227 8.873408 jv | 20.13766 566.9975 0.04 0.972 -1091.157 1131.432 rd | -3.677817 1.353729 -2.72 0.007 -6.331076 -1.024557 network | -20.33935 566.9957 -0.04 0.971 -1131.631 1090.952 repoffice | 5.012434 2.120188 2.36 0.018 .8569423 9.167927 z2age | .5531285 .5823306 0.95 0.342 -.5882184 1.694475 unique | -7.34904 2.068999 -3.55 0.000 -11.4042 -3.293877 z2location | 3.362253 .9824052 3.42 0.001 1.436774 5.287732 z2chsenior | .4177627 .4609106 0.91 0.365 -.4856056 1.321131 z2revenue | .8860638 .4915586 1.80 0.071 -.0773735 1.849501 z2mconcentration | 1.555764 .692565 2.25 0.025 .1983613 2.913166 z2var65 | -.5325391 .556961 -0.96 0.339 -1.624163 .5590843 _cons | 8.84202 3.903878 2.26 0.024 1.19056 16.49348 ---------------------------------------------------------------------------------- model with interaction: . gologit2 ma2 z2targetcrossus z2usinl z2chcross z2chdo woe jv rd network repoffice z2age unique z2location z2chsenior z2reve > nue z2mconcentration z2var65 z2targetrd Generalized Ordered Logit Estimates Number of obs = 230 LR chi2(51) = 148.17 Prob > chi2 = 0.0000 Log likelihood = -182.55401 Pseudo R2 = 0.2887 ---------------------------------------------------------------------------------- ma2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -----------------+---------------------------------------------------------------- 0 | z2targetcrossus | -.1086327 .1786952 -0.61 0.543 -.4588687 .2416034 z2usinl | -.224747 .1906251 -1.18 0.238 -.5983653 .1488713 z2chcross | .1182669 .153385 0.77 0.441 -.1823621 .418896 z2chdo | -.1046159 .1873578 -0.56 0.577 -.4718305 .2625987 woe | -.531372 .6963073 -0.76 0.445 -1.896109 .8333653 jv | -1.16429 .8444907 -1.38 0.168 -2.819462 .490881 rd | -.2352473 .6686808 -0.35 0.725 -1.545838 1.075343 network | 1.654026 .9829236 1.68 0.092 -.2724686 3.580521 repoffice | -1.165368 .4452497 -2.62 0.009 -2.038042 -.2926951 z2age | .0913011 .1810404 0.50 0.614 -.2635316 .4461339 unique | .6011205 .3888613 1.55 0.122 -.1610336 1.363275 z2location | .1073559 .1764745 0.61 0.543 -.2385278 .4532396 z2chsenior | .111229 .1726965 0.64 0.520 -.2272498 .4497079 z2revenue | -.0261089 .1675079 -0.16 0.876 -.3544183 .3022005 z2mconcentration | -.2419455 .176234 -1.37 0.170 -.5873579 .1034668 z2var65 | .2004429 .1538167 1.30 0.193 -.1010322 .5019181 z2targetrd | .5360898 .2728751 1.96 0.049 .0012645 1.070915 _cons | -.1930397 .7108041 -0.27 0.786 -1.58619 1.200111 -----------------+---------------------------------------------------------------- 1 | z2targetcrossus | .9581676 .4375794 2.19 0.029 .1005277 1.815808 z2usinl | -7.478695 3.056712 -2.45 0.014 -13.46974 -1.48765 z2chcross | .183797 1.136537 0.16 0.872 -2.043775 2.411369 z2chdo | .0680997 .3728366 0.18 0.855 -.6626467 .7988461 woe | -.0332427 .8441079 -0.04 0.969 -1.687664 1.621178 jv | -2.196873 1.394514 -1.58 0.115 -4.930071 .5363247 rd | 2.356204 1.012723 2.33 0.020 .3713034 4.341105 network | .5403172 1.4498 0.37 0.709 -2.301238 3.381872 repoffice | 1.179 .7543806 1.56 0.118 -.2995585 2.657559 z2age | .3700746 .3043611 1.22 0.224 -.2264622 .9666115 unique | .0186732 .6888141 0.03 0.978 -1.331378 1.368724 z2location | .4302243 .3273268 1.31 0.189 -.2113244 1.071773 z2chsenior | -.9859917 .3561425 -2.77 0.006 -1.684018 -.2879651 z2revenue | .5751533 .2707602 2.12 0.034 .0444731 1.105833 z2mconcentration | -.287354 .334713 -0.86 0.391 -.9433795 .3686715 z2var65 | .7992744 .2936887 2.72 0.006 .2236551 1.374894 z2targetrd | -.7707145 .3850767 -2.00 0.045 -1.525451 -.0159781 _cons | -4.906128 1.712643 -2.86 0.004 -8.262847 -1.54941 -----------------+---------------------------------------------------------------- 2 | z2targetcrossus | -1.40224 .940126 -1.49 0.136 -3.244853 .440373 z2usinl | 27.85302 9.856849 2.83 0.005 8.533951 47.17209 z2chcross | -5.887844 2.251756 -2.61 0.009 -10.3012 -1.474484 z2chdo | -2.131811 .9187053 -2.32 0.020 -3.93244 -.3311814 woe | 4.412064 2.322375 1.90 0.057 -.1397075 8.963836 jv | 19.98229 628.5635 0.03 0.975 -1211.98 1251.944 rd | -2.206978 1.697812 -1.30 0.194 -5.534629 1.120673 network | -20.38483 628.5619 -0.03 0.974 -1252.343 1211.574 repoffice | 5.196042 2.137634 2.43 0.015 1.006356 9.385727 z2age | .7685141 .6105997 1.26 0.208 -.4282392 1.965267 unique | -8.068043 2.163387 -3.73 0.000 -12.3082 -3.827882 z2location | 3.371957 1.005542 3.35 0.001 1.401131 5.342782 z2chsenior | .3486575 .5132131 0.68 0.497 -.6572217 1.354537 z2revenue | .9434554 .5230482 1.80 0.071 -.0817001 1.968611 z2mconcentration | 1.711886 .6913372 2.48 0.013 .3568901 3.066882 z2var65 | -.4395993 .5783425 -0.76 0.447 -1.57313 .6939311 z2targetrd | -.6754823 .5818942 -1.16 0.246 -1.815974 .4650093 _cons | 8.627572 3.824513 2.26 0.024 1.131665 16.12348 ---------------------------------------------------------------------------------- my question is: variable like z2targetcrossus is not significant in the raw model, but the interaction z2targetrd=z2targetcrossus*rd is significant. How could this happen? can i still use this result in my study? * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/