Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: ELIXHAUSER Comorbidity: choosing covariates, colinearity, elix_cnt
From 
 
Mike Butterfield <[email protected]> 
To 
 
[email protected] 
Subject 
 
st: ELIXHAUSER Comorbidity: choosing covariates, colinearity, elix_cnt 
Date 
 
Wed, 17 Apr 2013 00:25:33 -0700 
Hi Statalisters, I have figured out how to add Elixhauser comorbidity
variables to my dataset [ -findit elixhaus-] and used them in my
logistic model for predicting death given infection (“infx”).  Output
is below.
I had questions about three things:
1. Elixhauser acknowledges that the coding of the primary diagnosis
for a hospital admission might be somewhat arbitrary (Elixhauser, A.,
Steiner, C., Harris, D. R. & Coffey, R. M. Comorbidity measures for
use with administrative data. Med. Care 36, 8–27 (1998)—that is to
say, if the primary reason for admission is incorrectly coded, then a
complication of the disease may incorrectly be counted as a
comorbidity, since the latter should be “conditions present on
admission that are not related directly to the main reason for
hospitalization.” To be conservative, then, if my infection is
liver-related, should I exclude comorbidity variable 14 (liver
disease) from my elixhauser-adjusted analysis?
2. Comorbidity 6 refers to hypertension, complicated or not.
Comorbidity 6A refers to uncomplicated hypertension, 6B to complicated
hypertension.   Is there any reason that in my analyses (below)
comorbidities 6B should have problems with collinearity?  Is this a
dataset-specific problem? There isn’t this problem with colinearity
with diabetes and complicated diabetes (Comorbidities 10+11) for
example.
Here’s an excerpt of the ado file which can be found here:
http://fmwww.bc.edu/repec/bocode/e/elixhaus.ado
      /* Set uncomplicated hypertension to FALSE if complicated
hypertension is TRUE. */        replace elix6A = 0 if elix6B == 1
3. There is a variable called elix_cnt, which counts the total number
of elixhauser comorbidities. The code is
(http://fmwww.bc.edu/repec/bocode/e/elixhaus.ado):
replace elix_cnt = elix1 + elix3 + elix4 + elix5 + elix6 + elix7 +
elix8 + elix9 + elix10 +/*       */ elix11 + elix12 + elix13 + elix14
+ elix15 + elix16 + elix17 + elix18 + elix19 + elix20 + elix21 +
elix22 +/*       */ elix23 + elix24 + elix25 + elix26 + elix27 +
elix28 + elix29 + elix30
I don’t know how this variable could be used.  Would you make a
categorical variable, for example, (0-5 comorbidities, 6-10, etc), to
analyze how your predictor(s)-outcome relationship is affected by
different numbers of comorbidities?
OUTPUT
1. Unadjusted logistic regression:
. logistic died infx
Logistic regression                               Number of obs   =     253010
                                                  LR chi2(1)      =     441.55
                                                  Prob > chi2     =     0.0000
Log likelihood = -62605.076                       Pseudo R2       =     0.0035
------------------------------------------------------------------------------
        died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        infx |   3.269661   .1630761    23.75   0.000     2.965163    3.605428
       _cons |   .0714099   .0005723  -329.35   0.000     .0702971    .0725404
------------------------------------------------------------------------------
2. Adjusted logistic regression (all variables)
logistic died infx elix1 elix10 elix11 elix12 elix13 elix14 elix15
elix16 elix17 elix18 elix19 elix20 elix21 elix22 elix
> 23 elix24 elix25 elix26 elix27 elix28 elix29 elix3 elix30 elix4 elix5 elix6 elix6A elix6B elix7 elix8 elix9
note: elix6B omitted because of collinearity
Logistic regression                               Number of obs   =     253010
                                                  LR chi2(31)     =   15927.65
                                                  Prob > chi2     =     0.0000
Log likelihood = -54862.026                       Pseudo R2       =     0.1268
------------------------------------------------------------------------------
        died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        infx |   2.327502   .1247853    15.76   0.000     2.095339    2.585389
       elix1 |   1.752128   .0466361    21.07   0.000     1.663066    1.845959
      elix10 |   .7261666   .0174254   -13.33   0.000     .6928041    .7611357
      elix11 |   .5437848   .0314756   -10.52   0.000     .4854645    .6091113
      elix12 |   .6945754   .0258834    -9.78   0.000     .6456531    .7472045
      elix13 |   1.653751   .0539559    15.42   0.000     1.551309    1.762957
      elix14 |   .5573842   .0095212   -34.22   0.000     .5390319    .5763612
      elix15 |   .7121403   .2504525    -0.97   0.334     .3574429    1.418811
      elix16 |   .6592312   .0613643    -4.48   0.000     .5492929     .791173
      elix17 |   1.734889   .1220954     7.83   0.000     1.511357    1.991481
      elix18 |   2.676777   .0939822    28.04   0.000      2.49877    2.867464
      elix19 |   1.399867   .0555123     8.48   0.000     1.295185    1.513009
      elix20 |   .8096719   .0571044    -2.99   0.003     .7051404    .9296993
      elix21 |   2.027206   .0376051    38.09   0.000     1.954826    2.102267
      elix22 |   .6329491   .0275517   -10.51   0.000     .5811882    .6893199
      elix23 |   1.597156   .0396977    18.84   0.000     1.521214    1.676888
      elix24 |   2.712489   .0459804    58.87   0.000      2.62385    2.804123
      elix25 |   .5913501   .0371296    -8.37   0.000      .522877    .6687902
      elix26 |   .5529848    .012882   -25.43   0.000     .5283043    .5788183
      elix27 |   .6438405   .0144374   -19.64   0.000     .6161565    .6727683
      elix28 |   .5353797   .0239031   -13.99   0.000     .4905217    .5843398
      elix29 |   .4455346   .0249444   -14.44   0.000     .3992315    .4972081
       elix3 |   .7877983   .0413448    -4.54   0.000     .7107924    .8731468
      elix30 |   .4118454   .0172667   -21.16   0.000     .3793564    .4471167
       elix4 |   1.345587   .0667588     5.98   0.000     1.220903    1.483005
       elix5 |   1.634475   .0644454    12.46   0.000     1.512922    1.765794
       elix6 |   .7575117   .0286522    -7.34   0.000     .7033854     .815803
      elix6A |   .7157584    .030474    -7.85   0.000     .6584546    .7780493
      elix6B |          1  (omitted)
       elix7 |   1.382628   .0815414     5.49   0.000     1.231701    1.552049
       elix8 |   .9966491    .035557    -0.09   0.925     .9293393    1.068834
       elix9 |   .9835117   .0232028    -0.70   0.481     .9390704    1.030056
       _cons |   .0739074   .0013526  -142.34   0.000     .0713033    .0766065
3. Adjusted logistic regression (excluding liver-related comorbidity code)
logistic died infx elix1 elix10 elix11 elix12 elix13 elix15 elix16
elix17 elix18 elix19 elix20 elix21 elix22 elix23 elix24 elix25 elix26
elix27 elix28 elix29 elix3 elix30 elix4 elix5 elix6 elix6A elix6B
elix7 elix8 elix9
note: elix6B omitted because of collinearity
Logistic regression                               Number of obs   =     253010
                                                  LR chi2(30)     =   14726.61
                                                  Prob > chi2     =     0.0000
Log likelihood = -55462.545                       Pseudo R2       =     0.1172
------------------------------------------------------------------------------
        died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        infx |   2.089176   .1114439    13.81   0.000     1.881781    2.319429
       elix1 |   1.758834   .0465648    21.33   0.000     1.669896    1.852508
      elix10 |   .7034331   .0168009   -14.73   0.000     .6712628    .7371452
      elix11 |   .5094977   .0293895   -11.69   0.000     .4550321    .5704826
      elix12 |   .6857739    .025488   -10.15   0.000     .6375944    .7375939
      elix13 |   1.611201   .0523636    14.68   0.000     1.511771    1.717171
      elix15 |   .7448917   .2608519    -0.84   0.400      .374984    1.479699
      elix16 |   .6179654   .0573438    -5.19   0.000     .5152017    .7412266
      elix17 |   1.719985   .1202377     7.76   0.000     1.499755    1.972554
      elix18 |   2.818681   .0985196    29.65   0.000     2.632052    3.018543
      elix19 |   1.463343   .0578473     9.63   0.000     1.354245    1.581229
      elix20 |    .776072   .0545794    -3.60   0.000     .6761436     .890769
      elix21 |   2.012992   .0371307    37.93   0.000     1.941517    2.087098
      elix22 |   .5976372   .0259134   -11.87   0.000     .5489461    .6506471
      elix23 |   1.633748   .0404475    19.83   0.000     1.556365    1.714978
      elix24 |   2.826368   .0476871    61.58   0.000     2.734432    2.921396
      elix25 |   .5671278   .0355622    -9.04   0.000     .5015402    .6412925
      elix26 |   .5518668   .0128213   -25.59   0.000      .527301     .577577
      elix27 |   .6337118   .0141403   -20.44   0.000     .6065946    .6620412
      elix28 |   .5047475   .0224505   -15.37   0.000     .4626088    .5507247
      elix29 |   .4325598   .0241672   -15.00   0.000     .3876941    .4826174
       elix3 |    .780964     .04086    -4.73   0.000     .7048491    .8652983
      elix30 |   .4006842   .0167638   -21.86   0.000     .3691388    .4349253
       elix4 |   1.337082   .0660036     5.88   0.000     1.213779    1.472912
       elix5 |   1.642004   .0643415    12.66   0.000     1.520617     1.77308
       elix6 |   .7599071   .0286418    -7.28   0.000     .7057937    .8181694
      elix6A |   .7023825   .0298091    -8.32   0.000     .6463217    .7633059
      elix6B |          1  (omitted)
       elix7 |   1.373044   .0804276     5.41   0.000     1.224121    1.540084
       elix8 |   .9909208   .0352274    -0.26   0.798     .9242268    1.062428
       elix9 |   .9434958   .0221438    -2.48   0.013     .9010779    .9879106
       _cons |   .0572066   .0009789  -167.20   0.000     .0553198    .0591578
------------------------------------------------------------------------------
Best,
-Mike b.
*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/faqs/resources/statalist-faq/
*   http://www.ats.ucla.edu/stat/stata/