Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
st: Test for effect modification/interaction using svy
From
"Schmutz Einat" <[email protected]>
To
"[email protected]" <[email protected]>
Subject
st: Test for effect modification/interaction using svy
Date
Fri, 31 Jan 2014 12:27:07 +0000
Dear all
I am trying to statistically compare two cox regression models (nested) using svy commands to see whether effect modification exists. What I did is I included an interaction term (2 categorical variables) and run the adjusted Wald test (as postestimation commands normally used after stcox, such as lrtest, don't work with svy).
Syntax for the two models I want to compare („i.vdpcat“ is the exposure variable, “var1-4” are confounding variables and “excessVA” is the potential effect modifier):
svyset [w=weightvar], psu(psuvar) strata(straatavar) vce(linearized)
stset timevar, failure (failvar)
svy, subpop(if ...): stcox var1 var2 i.var3 i.var4 i.vdpcat
svy, subpop(if ...): stcox var1 var2 i.var3 i.var4 i.vdpcat#excessVA
testparm i.vdpcat#excessVA
What I get is:
----------------------------------------------------------------------------------
| Linearized
_t | Haz. Ratio Std. Err. t P>|t| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
...
...
vdpcat#exbloodVA |
1 2 | 1.170165 .1309874 1.40 0.167 .9344425 1.465352
2 1 | .9572346 .0975444 -0.43 0.670 .7799799 1.174771
2 2 | .9208137 .1008386 -0.75 0.455 .7389192 1.147484
3 1 | .8220665 .0850683 -1.89 0.064 .6677197 1.012092
3 2 | .9301641 .0882042 -0.76 0.449 .7687764 1.125432
4 1 | .8522502 .0738444 -1.85 0.071 .7160554 1.014349
4 2 | .8321073 .0976341 -1.57 0.124 .6573199 1.053372
----------------------------------------------------------------------------------
. testparm i.vdpcat#exbloodVA
Adjusted Wald test
( 1) 1b.vdpcat#2.exbloodVA = 0
( 2) 2.vdpcat#1b.exbloodVA = 0
( 3) 2.vdpcat#2.exbloodVA = 0
( 4) 3.vdpcat#1b.exbloodVA = 0
( 5) 3.vdpcat#2.exbloodVA = 0
( 6) 4.vdpcat#1b.exbloodVA = 0
( 7) 4.vdpcat#2.exbloodVA = 0
F( 7, 43) = 3.12
Prob > F = 0.0094
What I understand is that there is a statistically significant difference in survival among the 8 groups. Now, can I conclude that, since the Wald test is significant (p≤0.05), there is an interaction between vdpcat and exbloodVA and that the second model (including the interaction variable) is the better/more accurate model in predicting my outcome (survival)?
In addition, what does the following test (using ##) tell me? Is this the accurate way to test a possible interaction between vdpcat and excessVA?
svy, subpop(if ...): stcox var1 var2 i.var3 i.var4 i.vdpcat##excessVA
testparm i.vdpcat#excessVA
----------------------------------------------------------------------------------
| Linearized
_t | Haz. Ratio Std. Err. t P>|t| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
...
...
2.exbloodVA | 1.170165 .1309874 1.40 0.167 .9344425 1.465352
|
vdpcat |
2 | .9572346 .0975444 -0.43 0.670 .7799799 1.174771
3 | .8220665 .0850683 -1.89 0.064 .6677197 1.012092
4 | .8522502 .0738444 -1.85 0.071 .7160554 1.014349
|
exbloodVA#vdpcat |
2 2 | .822065 .1190204 -1.35 0.182 .6145367 1.099675
2 3 | .9669529 .157167 -0.21 0.837 .6975098 1.34048
2 4 | .8343821 .1049943 -1.44 0.157 .6479522 1.074452
----------------------------------------------------------------------------------
. testparm i.vdpcat#exbloodVA
Adjusted Wald test
( 1) 2.exbloodVA#2.vdpcat = 0
( 2) 2.exbloodVA#3.vdpcat = 0
( 3) 2.exbloodVA#4.vdpcat = 0
F( 3, 47) = 1.11
Prob > F = 0.3540
Thanks for your help.
Einat
*
* For searches and help try:
* http://www.stata.com/help.cgi?search
* http://www.stata.com/support/faqs/resources/statalist-faq/
* http://www.ats.ucla.edu/stat/stata/