Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Joseph Trubisz <jtrubisz@mac.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: Odd SEM Results |
Date | Sat, 03 Aug 2013 12:38:54 -0400 |
Greetings... I probably am just missing something, but I don't know what. I'm attempting to use sembuilder to create the diagram from Acock's SEM book, specifically the example as shown on p.188. If I use sembuilder, it generates the following output: . sem (Intercept@1 -> bmi01) (Intercept@1 -> bmi02) (Intercept@1 -> bmi03) (Intercept@1 -> bmi05) (Interc > ept@1 -> bmi06) (Intercept@1 -> bmi07) (Intercept@1 -> bmi08) (Intercept@1 -> bmi09) (Slope@0 -> bmi01) > (Slope@1 -> bmi02) (Slope@2 -> bmi03) (Slope@4 -> bmi05) (Slope@5 -> bmi06) (Slope@6 -> bmi07) (Slope@ > 7 -> bmi08) (Slope@8 -> bmi09) (_cons -> Intercept) (_cons -> Slope) (male -> Intercept) (male -> Slope > ) (wgtc -> Intercept) (wgtc -> Slope) if bmi01!=.|bmi02!=.|bmi03!=.|bmi05!=.|bmi06!=.|bmi07!=.|bmi08!=. > |bmi09!=., method(mlmv) latent(Intercept Slope ) var( e.Intercept*e.Slope) nocapslatent noconstant note: Missing values found in observed exogenous variables. Using the noxconditional behavior. Specify the forcexconditional option to override this behavior. Endogenous variables Measurement: bmi01 bmi02 bmi03 bmi05 bmi06 bmi07 bmi08 bmi09 Latent: Intercept Slope Exogenous variables Observed: male wgtc Fitting saturated model: Iteration 0: log likelihood = -30162.223 Iteration 1: log likelihood = -29297.714 Iteration 2: log likelihood = -28707.587 Iteration 3: log likelihood = -28564.929 Iteration 4: log likelihood = -28557.353 Iteration 5: log likelihood = -28557.204 Iteration 6: log likelihood = -28557.204 Fitting baseline model: Iteration 0: log likelihood = -36523.419 Iteration 1: log likelihood = -36520.845 Iteration 2: log likelihood = -36520.836 Iteration 3: log likelihood = -36520.836 Fitting target model: Iteration 0: log likelihood = -52919.48 (not concave) Iteration 1: log likelihood = -52675.161 (not concave) Iteration 2: log likelihood = -52171.219 (not concave) Iteration 3: log likelihood = -49397.835 (not concave) Iteration 4: log likelihood = -42220.623 (not concave) Iteration 5: log likelihood = -39274.796 Iteration 6: log likelihood = -38652.54 Iteration 7: log likelihood = -34772.666 Iteration 8: log likelihood = -32169.128 Iteration 9: log likelihood = -31367.639 Iteration 10: log likelihood = -30934.922 Iteration 11: log likelihood = -30910.018 Iteration 12: log likelihood = -30909.236 Iteration 13: log likelihood = -30909.234 Structural equation model Number of obs = 1581 Estimation method = mlmv Log likelihood = -30909.234 ( 1) [bmi01]Intercept = 1 ( 2) [bmi02]Intercept = 1 ( 3) [bmi02]Slope = 1 ( 4) [bmi03]Intercept = 1 ( 5) [bmi03]Slope = 2 ( 6) [bmi05]Intercept = 1 ( 7) [bmi05]Slope = 4 ( 8) [bmi06]Intercept = 1 ( 9) [bmi06]Slope = 5 (10) [bmi07]Intercept = 1 (11) [bmi07]Slope = 6 (12) [bmi08]Intercept = 1 (13) [bmi08]Slope = 7 (14) [bmi09]Intercept = 1 (15) [bmi09]Slope = 8 (16) [bmi01]_cons = 0 (17) [bmi02]_cons = 0 (18) [bmi03]_cons = 0 (19) [bmi05]_cons = 0 (20) [bmi06]_cons = 0 (21) [bmi07]_cons = 0 (22) [bmi08]_cons = 0 (23) [bmi09]_cons = 0 -------------------------------------------------------------------------------- | OIM | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- Structural | Intercept <- | male | 26.90551 .6496371 41.42 0.000 25.63225 28.17878 wgtc | 6.996785 .6003745 11.65 0.000 5.820072 8.173497 -------------+---------------------------------------------------------------- Slope <- | male | .3657208 .02104 17.38 0.000 .3244831 .4069584 wgtc | .0889063 .0194718 4.57 0.000 .0507423 .1270703 ---------------+---------------------------------------------------------------- Measurement | bmi01 <- | Intercept | 1 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi02 <- | Intercept | 1 (constrained) Slope | 1 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi03 <- | Intercept | 1 (constrained) Slope | 2 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi05 <- | Intercept | 1 (constrained) Slope | 4 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi06 <- | Intercept | 1 (constrained) Slope | 5 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi07 <- | Intercept | 1 (constrained) Slope | 6 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi08 <- | Intercept | 1 (constrained) Slope | 7 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi09 <- | Intercept | 1 (constrained) Slope | 8 (constrained) _cons | 0 (constrained) ---------------+---------------------------------------------------------------- Mean | male | .4990512 .0125749 39.69 0.000 .474405 .5236975 wgtc | -.0001655 .0192488 -0.01 0.993 -.0378925 .0375614 ---------------+---------------------------------------------------------------- Variance | e.bmi01 | 2.618815 .2046736 2.246876 3.052323 e.bmi02 | 4.086149 .2175673 3.681222 4.535619 e.bmi03 | 4.674361 .2320231 4.241024 5.151974 e.bmi05 | 5.778033 .2604252 5.289505 6.311681 e.bmi06 | 8.181968 .3511234 7.521926 8.899928 e.bmi07 | 3.794672 .1906747 3.438769 4.187409 e.bmi08 | 2.92201 .1689406 2.608965 3.272618 e.bmi09 | 3.308288 .2088301 2.923295 3.743984 e.Intercept | 324.2532 11.61219 302.2741 347.8304 e.Slope | .2448578 .0117764 .2228311 .269062 male | .2499991 .0088918 .2331651 .2680484 wgtc | .5851282 .0208269 .5456996 .6274057 ---------------+---------------------------------------------------------------- Covariance | e.Intercept | e.Slope | 4.109434 .280162 14.67 0.000 3.560327 4.658542 -------------+---------------------------------------------------------------- male | wgtc | -.0751429 .0098082 -7.66 0.000 -.0943666 -.0559193 -------------------------------------------------------------------------------- LR test of model vs. saturated: chi2(45) = 4704.06, Prob > chi2 = 0.0000 However, the output is nothing like what's in the book. However, if I type in exactly what's in the book (p.188), I get the correct results as shown below: . sem (Intercept@1 Slope@0->bmi01) (Intercept@1 Slope@1->bmi02) (Intercept@1 Slope@2->bmi03) (Intercept@1 > Slope@4->bmi05)(Intercept@1 Slope@5->bmi06)(Intercept@1 Slope@6->bmi07)(Intercept@1 Slope@7->bmi08)(In > tercept@1 Slope@8->bmi09) (Intercept Slope<-male wgtc _cons) if bmi01!=.|bmi02!=.|bmi03!=.|bmi05!=.|bmi > 06!=.|bmi07!=.|bmi08!=.|bmi09!=.,var(e.Intercept*e.Slope) method(mlmv) noconstant note: Missing values found in observed exogenous variables. Using the noxconditional behavior. Specify the forcexconditional option to override this behavior. Endogenous variables Measurement: bmi01 bmi02 bmi03 bmi05 bmi06 bmi07 bmi08 bmi09 Latent: Intercept Slope Exogenous variables Observed: male wgtc Fitting saturated model: Iteration 0: log likelihood = -30162.223 Iteration 1: log likelihood = -29297.714 Iteration 2: log likelihood = -28707.587 Iteration 3: log likelihood = -28564.929 Iteration 4: log likelihood = -28557.353 Iteration 5: log likelihood = -28557.204 Iteration 6: log likelihood = -28557.204 Fitting baseline model: Iteration 0: log likelihood = -36523.419 Iteration 1: log likelihood = -36520.845 Iteration 2: log likelihood = -36520.836 Iteration 3: log likelihood = -36520.836 Fitting target model: Iteration 0: log likelihood = -52919.48 (not concave) Iteration 1: log likelihood = -52663.873 (not concave) Iteration 2: log likelihood = -52499.164 (not concave) Iteration 3: log likelihood = -52371.927 (not concave) Iteration 4: log likelihood = -46362.021 (not concave) Iteration 5: log likelihood = -34630.285 (not concave) Iteration 6: log likelihood = -34303.836 (not concave) Iteration 7: log likelihood = -29724.362 Iteration 8: log likelihood = -29095.8 Iteration 9: log likelihood = -28787.969 Iteration 10: log likelihood = -28750.647 Iteration 11: log likelihood = -28750.02 Iteration 12: log likelihood = -28750.019 Structural equation model Number of obs = 1581 Estimation method = mlmv Log likelihood = -28750.019 ( 1) [bmi01]Intercept = 1 ( 2) [bmi02]Intercept = 1 ( 3) [bmi02]Slope = 1 ( 4) [bmi03]Intercept = 1 ( 5) [bmi03]Slope = 2 ( 6) [bmi05]Intercept = 1 ( 7) [bmi05]Slope = 4 ( 8) [bmi06]Intercept = 1 ( 9) [bmi06]Slope = 5 (10) [bmi07]Intercept = 1 (11) [bmi07]Slope = 6 (12) [bmi08]Intercept = 1 (13) [bmi08]Slope = 7 (14) [bmi09]Intercept = 1 (15) [bmi09]Slope = 8 (16) [bmi01]_cons = 0 (17) [bmi02]_cons = 0 (18) [bmi03]_cons = 0 (19) [bmi05]_cons = 0 (20) [bmi06]_cons = 0 (21) [bmi07]_cons = 0 (22) [bmi08]_cons = 0 (23) [bmi09]_cons = 0 -------------------------------------------------------------------------------- | OIM | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- Structural | Intercept <- | male | 1.555545 .2436739 6.38 0.000 1.077953 2.033137 wgtc | 3.759441 .160021 23.49 0.000 3.445806 4.073077 _cons | 24.85781 .170538 145.76 0.000 24.52356 25.19206 -------------+---------------------------------------------------------------- Slope <- | male | .0173321 .0271012 0.64 0.522 -.0357853 .0704495 wgtc | .0459197 .0178505 2.57 0.010 .0109333 .0809062 _cons | .3430045 .0189564 18.09 0.000 .3058506 .3801584 ---------------+---------------------------------------------------------------- Measurement | bmi01 <- | Intercept | 1 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi02 <- | Intercept | 1 (constrained) Slope | 1 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi03 <- | Intercept | 1 (constrained) Slope | 2 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi05 <- | Intercept | 1 (constrained) Slope | 4 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi06 <- | Intercept | 1 (constrained) Slope | 5 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi07 <- | Intercept | 1 (constrained) Slope | 6 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi08 <- | Intercept | 1 (constrained) Slope | 7 (constrained) _cons | 0 (constrained) -------------+---------------------------------------------------------------- bmi09 <- | Intercept | 1 (constrained) Slope | 8 (constrained) _cons | 0 (constrained) ---------------+---------------------------------------------------------------- Mean | male | .4990512 .0125749 39.69 0.000 .474405 .5236975 wgtc | -.0009276 .0192434 -0.05 0.962 -.0386439 .0367888 ---------------+---------------------------------------------------------------- Variance | e.bmi01 | 2.443884 .191981 2.095144 2.850673 e.bmi02 | 4.1472 .2157233 3.745229 4.592315 e.bmi03 | 4.772852 .2325326 4.33818 5.251077 e.bmi05 | 5.789807 .2596509 5.302625 6.321749 e.bmi06 | 8.228898 .3520222 7.56708 8.948599 e.bmi07 | 3.810727 .1909167 3.454322 4.203904 e.bmi08 | 2.922193 .1687984 2.609396 3.272487 e.bmi09 | 3.298484 .2089123 2.913418 3.734444 e.Intercept | 20.5145 .8043478 18.99706 22.15315 e.Slope | .189059 .0097265 .170925 .2091168 male | .2499991 .0088918 .2331651 .2680484 wgtc | .5849257 .0208131 .5455228 .6271748 ---------------+---------------------------------------------------------------- Covariance | e.Intercept | e.Slope | -.0272943 .0635517 -0.43 0.668 -.1518533 .0972647 -------------+---------------------------------------------------------------- male | wgtc | -.0747626 .0098037 -7.63 0.000 -.0939775 -.0555478 -------------------------------------------------------------------------------- LR test of model vs. saturated: chi2(43) = 385.63, Prob > chi2 = 0.0000 Problem: I look at the command not working and comparing it to the command that does work and I don't see the difference. Can anyone point out to me where I might be going wrong? TIA, Joe * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/