Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | andylaustata <andylaustata@126.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | st: maximum likelihood no observations error |
Date | Tue, 12 Mar 2013 16:41:16 +0800 (CST) |
Dear Statalist, Learning from Poi (2002)'s QUAIDS ml evaluator, I come up with my own ml evaluator for a new demand system that I'm currently working on. But, while I do the ml check, it always gets stuck at Test 7 and reports no observations error (i.e. error 2000). I'm copying the code here. If anyone could give me some help, I would appreciate it very much. By the way, if you need some data to try this ml evaluator, the food data used in Poi (2002) might be a good choice, so basically, you just type "use food, clear". Cheers, Ou program define RDS1 version 11.1 args todo b lnf //wi: shares; pi: prices; expfd: total expenditure quietly{ tempname gammasum tausum etasum alpha_v beta_v theta_v gamma_v tau_v eta_v alpha beta theta gamma tau eta tempvar P1 P2 P3 R1 R2 R3 local nm = $NEQN-1 scalar `alpha_v' = `b'[1,1] scalar `beta_v' = `b'[1,2] scalar `theta_v' = `b'[1,3] matrix `gamma_v' = `b'[1,(3+1)..(3+`nm')] matrix `tau_v' = `b'[1,(3+`nm'+1)..(3+2*`nm')] matrix `eta_v' = `b'[1,(3+2*`nm'+1)..(3+3*`nm')] scalar `alpha' = exp(`alpha_v') scalar `beta' = invlogit(`beta_v') scalar `theta' = invlogit(`theta_v') matrix `gamma' = J(1,$NEQN,1) matrix `tau' = J(1,$NEQN,1) matrix `eta' = J(1,$NEQN,1) scalar `gammasum' = 0 //the sum in the reparameterization of gamma forvalues i = 1/`nm' { scalar `gammasum' = `gammasum' + exp(`gamma_v'[1,`i']) } matrix `gamma'[1,1] = 1/(1+`gammasum') forvalues i = 2/$NEQN { matrix `gamma'[1,`i'] = exp(`gamma_v'[1,(`i'-1)])/(1+`gammasum') } scalar `tausum' = 0 //the sum in the reparameterization of tau forvalues i = 1/`nm' { scalar `tausum' = `tausum' + exp(`tau_v'[1,`i']) } matrix `tau'[1,1] = 1/(1+`tausum') forvalues i = 2/$NEQN { matrix `tau'[1,`i'] = exp(`tau_v'[1,(`i'-1)])/(1+`tausum') } scalar `etasum' = 0 //the sum in the reparameterization of eta forvalues i = 1/`nm' { scalar `etasum' = `etasum' + exp(`eta_v'[1,`i']) } matrix `eta'[1,1] = 1/(1+`etasum') forvalues i = 2/$NEQN { matrix `eta'[1,`i'] = exp(`eta_v'[1,(`i'-1)])/(1+`etasum') } /* Form the price index variable P1.*/ gen double `P1' = p1^`gamma'[1,1] forvalues i = 2/$NEQN{ replace `P1' = `P1'*(p`i'^`gamma'[1,`i']) } /* Form the price index variable P2.*/ gen double `P2' = p1^`tau'[1,1] forvalues i = 2/$NEQN{ replace `P2' = `P2'*(p`i'^`tau'[1,`i']) } /* Form the price index variable P3.*/ gen double `P3' = p1*`eta'[1,1] forvalues i = 2/$NEQN{ replace `P3' = `P3'+(p`i'*`eta'[1,`i']) } /*gen R1*/ gen double `R1' = `alpha'*expfd^`alpha'*`P1'^(-`alpha'-1) /*gen R2*/ gen double `R2' = `beta'*expfd^(-`beta')*`P2'^(`beta'-1) /*gen R3*/ gen double `R3' = `theta'*expfd^(-`theta')*`P3'^(`theta'-1) /*Now generate the error terms.*/ forvalues i = 1/`nm' { tempvar lnl_eps`i' gen double `lnl_eps`i'' = w`i' - (`gamma'[1,`i']*`R1'*`P1'+`tau'[1,`i']*`R2'*`P2'+`eta'[1,`i']*`R3'*p`i')/(`R1'*`P1'+`R2'*`P2'+`R3'*`P3') } local allofem "" forvalues i = 1/`nm' { local allofem "`allofem' `lnl_eps`i''" } /*Form sigma.*/ matrix accum sigma = `allofem', noconstant local nobs = r(N) matrix sigma = sigma/`nobs' /* Finally, compute the likelihood function. */ scalar `lnf' = -1*`nobs'/2*(`nm'*(1+ln(2*_pi)) + ln(det(sigma))) } end * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/