Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Ebru Ozturk <ebru_0512@hotmail.com> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | st: Obtaining marginal effects and their standard errors after estimations with interactions |
Date | Thu, 3 Jan 2013 22:17:06 +0200 |
Dear All, On Stata FAQs' page, there are some given examples for Probit estimation with interaction effects for Stata 10 titled as "I am using a model with interactions. How can I obtain marginal effects and their standard errors?" and the link is: http://www.stata.com/support/faqs/statistics/marginal-effects-after-interactions/ Do you think this way is still applicable to Probit estimation? and Is the below command correct when we have other independent or control variables? local xb _b[weight]*`meanwei' + _b[len]*`meanlen' + _b[wl]*`meanwei'*`meanlen' + _b[C1]*C1+_b[C2]*C2 + _b[_cons] // if more variables // /////// example ///////// sysuse auto, clear generate wl=weight*length probit foreign weight length wl, nolog quietly summarize weight if e(sample) local meanwei = r(mean) quietly summarize length if e(sample) local meanlen = r(mean) local xb _b[weight]*`meanwei' + _b[len]*`meanlen' + _b[wl]*`meanwei'*`meanlen' + _b[_cons] predictnl dydw = normalden(`xb')*(_b[weight]+ _b[wl]*`meanlen') in 1, se(sew) list dydw sew in 1 predictnl dydl = normalden(`xb')*(_b[len]+ _b[wl]*`meanwei') in 1, se(sel) list dydl sel in 1 predictnl dydlw =normalden(`xb')*(-(`xb'))*(_b[weight]+ _b[wl]*`meanlen')*(_b[len]+ _b[wl]*`meanwei') + normalden(`xb')*( _b[wl]) in 1, se(selw) list dydlw selw in 1 Ebru * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/