Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | "Schaffer, Mark E" <M.E.Schaffer@hw.ac.uk> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | RE: st: SUREG with if command. |
Date | Tue, 25 Sep 2012 18:23:24 +0100 |
It is indeed possible in principle to use the additional obs. -sureg- and -reg3- are estimating the error components for a 2-eqn model, so the estimated covariance matrix is 2x2: . qui reg3 (mpg rep78) (trunk turn), ols . mat list e(Sigma) symmetric e(Sigma)[2,2] mpg trunk mpg 29.274269 trunk -5.0326348 12.233795 The above uses OLS appled to 69 obs for both equations. If we use -regress- to estimate the mpg eqn, where only 69 obs are available, we get the same error variance: . qui reg mpg rep78 . di e(rmse)^2 29.274269 But -regress- applied to the trunk equation on its own uses all 74 obs, and so the error variance is different (and, since it uses more obs, preferable): . qui reg trunk turn . di e(rmse)^2 11.848587 In principle -sureg-/-reg3- should use the additional 5 obs when estimating the trunk equation. Not to do so is throwing away information. --Mark > -----Original Message----- > From: owner-statalist@hsphsun2.harvard.edu [mailto:owner- > statalist@hsphsun2.harvard.edu] On Behalf Of Nick Cox > Sent: 25 September 2012 17:57 > To: statalist@hsphsun2.harvard.edu > Subject: Re: st: SUREG with if command. > > I just note that the reason 69 are being used is because -rep78- has 5 missing > observations. If it's OK in principle for -sureg- to use different subsets of the > data then your comment has force. > > Nick > > On Tue, Sep 25, 2012 at 5:44 PM, Schaffer, Mark E <M.E.Schaffer@hw.ac.uk> > wrote: > > Nick, > > > > I think David is right, and in this case -sureg- is not doing the best > > it can. > > > > Here's an example with the toy auto dataset. There are 69 obs for > > rep78 and 74 obs for everything else. In the following example, > > > > . sureg (mpg rep78) (trunk turn) > > > > Seemingly unrelated regression > > ---------------------------------------------------------------------- > > Equation Obs Parms RMSE "R-sq" chi2 P > > ---------------------------------------------------------------------- > > mpg 69 1 5.333491 0.1613 15.86 0.0001 > > trunk 69 1 3.48627 0.3462 26.22 0.0000 > > ---------------------------------------------------------------------- > > > > -sureg- could be using all 74 observations for the trunk equation, but > > it's using only 69. > > > > It's even clearer with -reg3- (IIRC, -sureg- is implemented using > > -reg3-). If you use -reg3- with the ols option, > > > > . reg3 (mpg rep78) (trunk turn), ols > > > > Multivariate regression > > ---------------------------------------------------------------------- > > Equation Obs Parms RMSE "R-sq" F-Stat P > > ---------------------------------------------------------------------- > > mpg 69 1 5.41057 0.1619 12.94 0.0005 > > trunk 69 1 3.497684 0.3610 37.84 0.0000 > > ---------------------------------------------------------------------- > > > > -reg3- again uses only 69 obs for the trunk equation even though there > > are 74 available and it's being asked to do OLS only. > > > > --Mark > > > >> -----Original Message----- > >> From: owner-statalist@hsphsun2.harvard.edu [mailto:owner- > >> statalist@hsphsun2.harvard.edu] On Behalf Of Nick Cox > >> Sent: 25 September 2012 17:32 > >> To: statalist@hsphsun2.harvard.edu > >> Subject: Re: st: SUREG with if command. > >> > >> -sureg- will always do the best it can, and there is no extra > >> trickery > > except by > >> imputing missing values. > >> > >> For clarity, don't think or write in terms of missing observations. > >> It's values that are missing, not observations. Remember, for Stata > >> an observation is a complete row, record, or case in other terminology. > >> > >> Nick > >> > >> On Tue, Sep 25, 2012 at 5:21 PM, David Ashcraft > >> <ashcraftd@rocketmail.com> wrote: > >> > Thanks Nick, by saving number of observations, I meant e.g. for > >> > rp1, > > I have > >> 120 observations so I want -sureg- to utilize 120 observations not 60 > >> observations. Is there a way, I could utilize all non-missing > > observations for > >> each equation in -sureg- model? > >> > > >> > edit rp? if dummy==1: two variable rp8 and rp9 have all > >> > observations > > as > >> missing. I dropped these two equations from the model for dummy==1. I > >> have got some results and these are inline with my expectations. I > > also have > >> checked for observation where dummy==0 and have found several > > instances > >> of missing observations. > >> > Regards > >> > > >> > David > >> > > >> > ----- Original Message ----- > >> > From: Nick Cox <njcoxstata@gmail.com> > >> > To: statalist@hsphsun2.harvard.edu > >> > Cc: > >> > Sent: Tuesday, September 25, 2012 6:34:03 PM > >> > Subject: Re: st: SUREG with if command. > >> > > >> > I've never used -sureg-. It seems to me that it uses or knows > > nothing > >> > about panel structure, so I surmise that it is indifferent to > >> > unbalanced panels as such. But it seems that you do have missing > >> > values in different observations and will have problems because > >> > -sureg- can only function with non-missing values on all variables > >> > named. > >> > > >> > Look at > >> > > >> > edit rp? if dummy == 1 > >> > > >> > I don't know what you mean by "save the number of observation[s]". > >> > > >> > Nick > >> > > >> > On Tue, Sep 25, 2012 at 4:21 PM, David Ashcraft > >> > <ashcraftd@rocketmail.com> wrote: > >> >> Hello Nick, > >> >> > >> >> I think problem is not with the dummy variable. This may be > >> >> related > > - > >> sureg- model. It seems to me -sureg- needs a balanced panel resulting > > in > >> drop of number of observations considerably while implementing > > -sureg-. > >> >> > >> >> Is there any other way where I can save the number of observation > > and > >> still use seemingly unrelated regression model? > >> >> > >> >> Below is some descriptive stats for your review. > >> >> > >> >> > >> >> gen dummy=0 > >> >> . replace dummy = 1 if date2>17532 > >> >> > >> >> (53 real changes made) > >> >> . tabulate dummy > >> >> > >> >> > >> >> > >> >> dummy | Freq. Percent Cum. > >> >> ------------+----------------------------------- > >> >> 0 | 96 64.43 64.43 > >> >> 1 | 53 35.57 100.00 > >> >> ------------+----------------------------------- > >> >> Total | 149 100.00 > >> >> > >> >> . su rp1 rp2 rp3 rp4 rp6 rp7 rp8 rp9 > >> >> > >> >> Variable | Obs Mean Std. Dev. Min > > Max > >> >> > > -------------+------------------------------------------------------- > >> >> -------------+- > >> >> rp1 | 120 .001517 .0469446 -.1935012 > > .1102614 > >> >> rp2 | 120 .0008538 .0545707 -.212302 > > .1238899 > >> >> rp3 | 120 .0016796 .0565703 -.2283529 > > .1202257 > >> >> rp4 | 120 .0016847 .0588602 -.2037239 > > .1229283 > >> >> rp6 | 120 .0015542 .056026 -.2226954 > > .1190248 > >> >> > > -------------+------------------------------------------------------- > >> >> -------------+- > >> >> rp7 | 120 .0016078 .0503465 -.2033414 > > .1073936 > >> >> rp8 | 88 .0023456 .0709356 -.2216449 > > .1371796 > >> >> rp9 | 88 .0033193 .0779086 -.2401649 > > .1579783 > >> >> > >> >> > >> >> > >> >> > >> >> > >> >> ----- Original Message ----- > >> >> From: Nick Cox <njcoxstata@gmail.com> > >> >> To: statalist@hsphsun2.harvard.edu > >> >> Cc: > >> >> Sent: Tuesday, September 25, 2012 2:54:44 PM > >> >> Subject: Re: st: SUREG with if command. > >> >> > >> >> Your results show 60 observations with non-missing values; dummy > >> >> is > > 0 > >> >> on 60 of them (all) and so necessarily 1 on 0 (none) of them. > > Stata's > >> >> response is reasonable; there are _no_ observations to do your > >> >> last command. > >> >> > >> >> You should perhaps revisit your definition of -dummy-, which > > doesn't > >> >> divide the dataset. > >> >> > >> >> Nick > >> >> > >> >> On Tue, Sep 25, 2012 at 12:42 PM, David Ashcraft > >> >> <ashcraftd@rocketmail.com> wrote: > >> >>> Hi Statalist, > >> >>> > >> >>> I am trying to run -sureg- with multiple equation as per below. > > Now I > >> have divided my data based on dummy variable and I want to see if the > >> results are any different based on the dummy variable. Based on my > > data, I > >> should get three different results i.e. one for the whole sample and > > two > >> based on the dummy variable. I am getting the same result for the > > overall > >> sample and where dummy==0 and getting no result for dummy==1. > >> >>> > >> >>> I don't understand why I am getting this result. Can anyone help > > me > >> direct to the solution of this problem. I have looked at some older > > posts but > >> there is no answer. > >> >>> Regards > >> >>> > >> >>> David > >> >>> > >> >>> > >> >>> > >> >>> sureg (rp1 rm1)(rp2 rm2)(rp3 rm3)(rp4 rm4)(rp6 rm6)(rp7 rm7)(rp8 > >> >>> rm8)(rp9 rm9), corr > >> >>> > >> >>> Seemingly unrelated regression > >> >>> > > ---------------------------------------------------------------------- > >> >>> Equation Obs Parms RMSE "R-sq" chi2 > > P > >> >>> > > ---------------------------------------------------------------------- > >> >>> rp1 60 1 .0071761 0.9616 3298.70 > > 0.0000 > >> >>> rp2 60 1 .0092113 0.9465 2534.55 > > 0.0000 > >> >>> rp3 60 1 .0082266 0.9544 2847.07 > > 0.0000 > >> >>> rp4 60 1 .0091633 0.9491 2198.62 > > 0.0000 > >> >>> rp6 60 1 .0084368 0.9515 2677.13 > > 0.0000 > >> >>> rp7 60 1 .0060539 0.9711 3703.34 > > 0.0000 > >> >>> rp8 60 1 .009352 0.9866 5504.52 > > 0.0000 > >> >>> rp9 60 1 .0115533 0.9832 4137.04 > > 0.0000 > >> >>> > > -------------------------------------------------------------------- > >> >>> -- > >> >>> > >> >>> > > ---------------------------------------------------------------------- > > -- > > ------ > >> >>> | Coef. Std. Err. z P>|z| [95% > > Conf. Interval] > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp1 | > >> >>> rm1 | .9992066 .0173974 57.43 0.000 .9651084 > > 1.033305 > >> >>> _cons | -.0000674 .0009287 -0.07 0.942 -.0018876 > > .0017527 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp2 | > >> >>> rm2 | .9733916 .0193347 50.34 0.000 .9354963 > > 1.011287 > >> >>> _cons | -.0013549 .001196 -1.13 0.257 -.003699 > > .0009892 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp3 | > >> >>> rm3 | .9942406 .0186334 53.36 0.000 .9577198 > > 1.030761 > >> >>> _cons | -.0008887 .0010727 -0.83 0.407 -.0029911 > > .0012136 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp4 | > >> >>> rm4 | .9618481 .0205131 46.89 0.000 .9216431 > > 1.002053 > >> >>> _cons | .0010966 .0011632 0.94 0.346 -.0011832 > > .0033765 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp6 | > >> >>> rm6 | .9920405 .0191732 51.74 0.000 .9544617 > > 1.029619 > >> >>> _cons | -.0008398 .001099 -0.76 0.445 -.0029937 > > .0013142 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp7 | > >> >>> rm7 | .9873097 .016224 60.86 0.000 .9555113 > > 1.019108 > >> >>> _cons | .0001045 .0007886 0.13 0.895 -.0014411 > > .0016502 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp8 | > >> >>> rm8 | .9554066 .0128774 74.19 0.000 .9301673 > > .9806458 > >> >>> _cons | .0009302 .0012033 0.77 0.439 -.0014282 > > .0032887 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp9 | > >> >>> rm9 | .9889603 .0153757 64.32 0.000 .9588245 > > 1.019096 > >> >>> _cons | -.0001408 .0014852 -0.09 0.924 -.0030518 > > .0027703 > >> >>> > > -------------------------------------------------------------------- > >> >>> ---------- > >> >>> > >> >>> Correlation matrix of residuals: > >> >>> > >> >>> rp1 rp2 rp3 rp4 rp6 rp7 rp8 > > rp9 > >> >>> rp1 1.0000 > >> >>> rp2 0.1214 1.0000 > >> >>> rp3 0.2210 0.9609 1.0000 > >> >>> rp4 0.4345 -0.0342 0.0495 1.0000 > >> >>> rp6 0.2268 0.9595 0.9982 0.0447 1.0000 > >> >>> rp7 0.9088 0.2710 0.3749 0.7114 0.3763 1.0000 > >> >>> rp8 0.2240 0.0839 0.0896 -0.0739 0.0987 0.1232 1.0000 > >> >>> rp9 0.2100 0.1163 0.1462 -0.0321 0.1497 0.1600 0.7653 > > 1.0000 > >> >>> > >> >>> Breusch-Pagan test of independence: chi2(28) = 338.778, Pr = > > 0.0000 > >> >>> > >> >>> . sureg (rp1 rm1)(rp2 rm2)(rp3 rm3)(rp4 rm4)(rp6 rm6)(rp7 > >> >>> rm7)(rp8 > >> >>> rm8)(rp9 rm9)if dummy==0, corr > >> >>> > >> >>> Seemingly unrelated regression > >> >>> > > ---------------------------------------------------------------------- > >> >>> Equation Obs Parms RMSE "R-sq" chi2 > > P > >> >>> > > ---------------------------------------------------------------------- > >> >>> rp1 60 1 .0071761 0.9616 3298.70 > > 0.0000 > >> >>> rp2 60 1 .0092113 0.9465 2534.55 > > 0.0000 > >> >>> rp3 60 1 .0082266 0.9544 2847.07 > > 0.0000 > >> >>> rp4 60 1 .0091633 0.9491 2198.62 > > 0.0000 > >> >>> rp6 60 1 .0084368 0.9515 2677.13 > > 0.0000 > >> >>> rp7 60 1 .0060539 0.9711 3703.34 > > 0.0000 > >> >>> rp8 60 1 .009352 0.9866 5504.52 > > 0.0000 > >> >>> rp9 60 1 .0115533 0.9832 4137.04 > > 0.0000 > >> >>> > > -------------------------------------------------------------------- > >> >>> -- > >> >>> > >> >>> > > ---------------------------------------------------------------------- > > -- > > ------ > >> >>> | Coef. Std. Err. z P>|z| [95% > > Conf. Interval] > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp1 | > >> >>> rm1 | .9992066 .0173974 57.43 0.000 .9651084 > > 1.033305 > >> >>> _cons | -.0000674 .0009287 -0.07 0.942 -.0018876 > > .0017527 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp2 | > >> >>> rm2 | .9733916 .0193347 50.34 0.000 .9354963 > > 1.011287 > >> >>> _cons | -.0013549 .001196 -1.13 0.257 -.003699 > > .0009892 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp3 | > >> >>> rm3 | .9942406 .0186334 53.36 0.000 .9577198 > > 1.030761 > >> >>> _cons | -.0008887 .0010727 -0.83 0.407 -.0029911 > > .0012136 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp4 | > >> >>> rm4 | .9618481 .0205131 46.89 0.000 .9216431 > > 1.002053 > >> >>> _cons | .0010966 .0011632 0.94 0.346 -.0011832 > > .0033765 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp6 | > >> >>> rm6 | .9920405 .0191732 51.74 0.000 .9544617 > > 1.029619 > >> >>> _cons | -.0008398 .001099 -0.76 0.445 -.0029937 > > .0013142 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp7 | > >> >>> rm7 | .9873097 .016224 60.86 0.000 .9555113 > > 1.019108 > >> >>> _cons | .0001045 .0007886 0.13 0.895 -.0014411 > > .0016502 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp8 | > >> >>> rm8 | .9554066 .0128774 74.19 0.000 .9301673 > > .9806458 > >> >>> _cons | .0009302 .0012033 0.77 0.439 -.0014282 > > .0032887 > >> >>> > > -------------+------------------------------------------------------ > >> >>> -------------+---------- > >> >>> rp9 | > >> >>> rm9 | .9889603 .0153757 64.32 0.000 .9588245 > > 1.019096 > >> >>> _cons | -.0001408 .0014852 -0.09 0.924 -.0030518 > > .0027703 > >> >>> > > -------------------------------------------------------------------- > >> >>> ---------- > >> >>> > >> >>> Correlation matrix of residuals: > >> >>> > >> >>> rp1 rp2 rp3 rp4 rp6 rp7 rp8 > > rp9 > >> >>> rp1 1.0000 > >> >>> rp2 0.1214 1.0000 > >> >>> rp3 0.2210 0.9609 1.0000 > >> >>> rp4 0.4345 -0.0342 0.0495 1.0000 > >> >>> rp6 0.2268 0.9595 0.9982 0.0447 1.0000 > >> >>> rp7 0.9088 0.2710 0.3749 0.7114 0.3763 1.0000 > >> >>> rp8 0.2240 0.0839 0.0896 -0.0739 0.0987 0.1232 1.0000 > >> >>> rp9 0.2100 0.1163 0.1462 -0.0321 0.1497 0.1600 0.7653 > > 1.0000 > >> >>> > >> >>> Breusch-Pagan test of independence: chi2(28) = 338.778, Pr = > > 0.0000 > >> >>> > >> >>> . sureg (rp1 rm1)(rp2 rm2)(rp3 rm3)(rp4 rm4)(rp6 rm6)(rp7 > >> >>> rm7)(rp8 > >> >>> rm8)(rp9 rm9)if dummy==1, corr insufficient observations r(2001); > >> > > >> > * > >> > * For searches and help try: > >> > * http://www.stata.com/help.cgi?search > >> > * http://www.stata.com/support/statalist/faq > >> > * http://www.ats.ucla.edu/stat/stata/ > >> > > >> > > >> > * > >> > * For searches and help try: > >> > * http://www.stata.com/help.cgi?search > >> > * http://www.stata.com/support/statalist/faq > >> > * http://www.ats.ucla.edu/stat/stata/ > >> > >> * > >> * For searches and help try: > >> * http://www.stata.com/help.cgi?search > >> * http://www.stata.com/support/statalist/faq > >> * http://www.ats.ucla.edu/stat/stata/ > > > > > > -- > > Heriot-Watt University is the Sunday Times Scottish University of the > > Year 2011-2012 > > > > We invite research leaders and ambitious early career researchers to > > join us in leading and driving research in key inter-disciplinary themes. > > Please see www.hw.ac.uk/researchleaders for further information and > > how to apply. > > > > Heriot-Watt University is a Scottish charity registered under charity > > number SC000278. > > > > > > * > > * For searches and help try: > > * http://www.stata.com/help.cgi?search > > * http://www.stata.com/support/statalist/faq > > * http://www.ats.ucla.edu/stat/stata/ > * > * For searches and help try: > * http://www.stata.com/help.cgi?search > * http://www.stata.com/support/statalist/faq > * http://www.ats.ucla.edu/stat/stata/ -- Heriot-Watt University is the Sunday Times Scottish University of the Year 2011-2012 We invite research leaders and ambitious early career researchers to join us in leading and driving research in key inter-disciplinary themes. Please see www.hw.ac.uk/researchleaders for further information and how to apply. Heriot-Watt University is a Scottish charity registered under charity number SC000278. * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/