Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Martyn Sherriff <statams48@gmail.com> |
To | statalist@hsphsun2.harvard.edu |
Subject | Re: st: RE: RE: Re: Loglinear quasi-symmetric agreement |
Date | Thu, 7 Jun 2012 22:21:41 +0100 |
I am now more confused than normal. Basically can I use 'factor notation' with glm? Usin the ATS dataset I get: . xi:glm count i.px i.py i.symm, fam(poi) nolog i.px _Ipx_1-4 (naturally coded; _Ipx_1 omitted) i.py _Ipy_1-4 (naturally coded; _Ipy_1 omitted) i.symm _Isymm_1-10 (naturally coded; _Isymm_1 omitted) note: _Isymm_5 dropped because of collinearity note: _Isymm_8 dropped because of collinearity note: _Isymm_10 dropped because of collinearity Generalized linear models No. of obs = 16 Optimization : ML Residual df = 3 Scale parameter = 1 Deviance = .978304658 (1/df) Deviance = .3261016 Pearson = .621982784 (1/df) Pearson = .2073276 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] AIC = 4.237311 Log likelihood = -20.89849023 BIC = -7.339462 ------------------------------------------------------------------------------ | OIM count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _Ipx_2 | -.2360635 .430017 -0.55 0.583 -1.078881 .6067543 _Ipx_3 | -.5038594 .5050534 -1.00 0.318 -1.493746 .486027 _Ipx_4 | 8.229144 1131.109 0.01 0.994 -2208.703 2225.161 _Ipy_2 | -.9090505 .430017 -2.11 0.035 -1.751868 -.0662327 _Ipy_3 | .9963219 .5050534 1.97 0.049 .0064355 1.986208 _Ipy_4 | -9.017585 1131.109 -0.01 0.994 -2225.95 2207.915 _Isymm_2 | -1.321299 .4521483 -2.92 0.003 -2.207493 -.4351046 _Isymm_3 | -3.595678 .783512 -4.59 0.000 -5.131334 -2.060023 _Isymm_4 | -27.11437 2775.396 -0.01 0.992 -5466.791 5412.562 _Isymm_6 | -1.186505 .4441345 -2.67 0.008 -2.056992 -.3160173 _Isymm_7 | -10.41121 1131.109 -0.01 0.993 -2227.344 2206.522 _Isymm_9 | -9.48327 1131.109 -0.01 0.993 -2226.415 2207.449 _cons | 3.091024 .2132027 14.50 0.000 2.673155 3.508894 ------------------------------------------------------------------------------ Which seems to me to be reasonable. But if I omit the xi (which I thought I could do in Stata 12) I get: . glm count i.px i.py i.symm, fam(poi) nolog note: 7.symm omitted because of collinearity note: 9.symm omitted because of collinearity note: 10.symm omitted because of collinearity Generalized linear models No. of obs = 16 Optimization : ML Residual df = 3 Scale parameter = 1 Deviance = .978304658 (1/df) Deviance = .3261016 Pearson = .621982784 (1/df) Pearson = .2073276 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] AIC = 4.237311 Log likelihood = -20.89849023 BIC = -7.339462 ------------------------------------------------------------------------------ | OIM count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- px | 2 | -10.64727 1131.109 -0.01 0.992 -2227.58 2206.286 3 | -9.987129 1131.109 -0.01 0.993 -2226.92 2206.945 4 | 8.229144 1131.109 0.01 0.994 -2208.703 2225.161 | py | 2 | -11.32026 1131.109 -0.01 0.992 -2228.253 2205.613 3 | -8.486948 1131.109 -0.01 0.994 -2225.419 2208.445 4 | -9.017585 1131.109 -0.01 0.994 -2225.95 2207.915 | symm | 2 | 9.089909 1131.109 0.01 0.994 -2207.843 2226.023 3 | 5.887591 1131.109 0.01 0.996 -2211.045 2222.82 4 | -27.11437 2775.396 -0.01 0.992 -5466.791 5412.562 5 | 20.82242 2262.218 0.01 0.993 -4413.043 4454.688 6 | 18.70797 2262.217 0.01 0.993 -4415.157 4452.573 7 | 0 (omitted) 8 | 18.96654 2262.217 0.01 0.993 -4414.898 4452.831 9 | 0 (omitted) 10 | 0 (omitted) | _cons | 3.091024 .2132027 14.50 0.000 2.673155 3.508894 ------------------------------------------------------------------------------ I have probably missed it, but I cannot find anything in the documentation related to factor that says that I cannot use it with glm, or does it produce a different parametrisation, or am I missing something that is obvious? My Stata update is Update status Last check for updates: 07 Jun 2012 New update available: none (as of 07 Jun 2012) Current update level: 23 May 2012 (what's new) Thanks, Martyn On 7 June 2012 20:52, Martyn Sherriff <statams48@gmail.com> wrote: > Shaun, thank you for the link. I will follow it up and see whatI can find. > Cheers, > Martyn > > On 7 June 2012 18:19, Scholes, Shaun <s.scholes@ucl.ac.uk> wrote: >> Actually, this appears to give different results: >> >> version 9 >> use http://www.ats.ucla.edu/stat/stata/examples/icda/carcinoma, clear >> xi: glm count i.px i.py i.symm, fam(poi) nolog >> >> hope this helps >> best wishes >> Shaun >> >> >> >> >> >> >> >> -----Original Message----- >> From: owner-statalist@hsphsun2.harvard.edu [mailto:owner-statalist@hsphsun2.harvard.edu] On Behalf Of Scholes, Shaun >> Sent: 07 June 2012 18:07 >> To: statalist@hsphsun2.harvard.edu >> Subject: st: RE: Re: Loglinear quasi-symmetric agreement >> >> Martyn, I can't help you with your question but it may be worth taking a close look at: >> >> http://www.ats.ucla.edu/stat/stata/examples/icda/icdast9.htm >> >> Best wishes >> Shaun >> >> >> >> -----Original Message----- >> From: owner-statalist@hsphsun2.harvard.edu [mailto:owner-statalist@hsphsun2.harvard.edu] On Behalf Of Martyn Sherriff >> Sent: 07 June 2012 16:24 >> To: statalist@hsphsun2.harvard.edu >> Subject: st: Re: Loglinear quasi-symmetric agreement >> >> I am trying to use loglinear models to assess agreement using the quasi-symmetry model and have used the data from Agresti (An Introduction to Categorical Analysis, p 245) to check my method. >> >> +-------------------------+ >> | px py count qasym | >> |-------------------------| >> 1. | 1 1 22 1 | >> 2. | 1 2 2 2 | >> 3. | 1 3 2 3 | >> 4. | 1 4 0 4 | >> 5. | 2 1 5 2 | >> |-------------------------| >> 6. | 2 2 7 5 | >> 7. | 2 3 14 6 | >> 8. | 2 4 0 7 | >> 9. | 3 1 0 3 | >> 10. | 3 2 2 6 | >> |-------------------------| >> 11. | 3 3 36 8 | >> 12. | 3 4 0 9 | >> 13. | 4 1 0 4 | >> 14. | 4 2 1 7 | >> 15. | 4 3 17 9 | >> |-------------------------| >> 16. | 4 4 10 10 | >> +-------------------------+ >> >> The simple symmetry model is satisfactory: >> glm count i.px i.py, fam(poi) nolog >> >> Generalized linear models No. of obs = 16 >> Optimization : ML Residual df = 9 >> Scale parameter = 1 >> Deviance = 117.9568605 (1/df) Deviance = 13.10632 >> Pearson = 120.2634516 (1/df) Pearson = 13.36261 >> >> Variance function: V(u) = u [Poisson] >> Link function : g(u) = ln(u) [Log] >> >> AIC = 10.79847 >> Log likelihood = -79.38776817 BIC = 93.00356 >> >> ------------------------------------------------------------------------------ >> | OIM >> count | Coef. Std. Err. z P>|z| [95% Conf. Interval] >> -------------+---------------------------------------------------------- >> -------------+------ >> px | >> 2 | -4.07e-08 .2773501 -0.00 1.000 -.5435962 .5435962 >> 3 | .3794896 .2545139 1.49 0.136 -.1193485 .8783277 >> 4 | .0741079 .2723524 0.27 0.786 -.4596929 .6079088 >> | >> py | >> 2 | -.8109302 .3469443 -2.34 0.019 -1.490929 -.1309318 >> 3 | .9382696 .2270017 4.13 0.000 .4933544 1.383185 >> 4 | -.9932518 .3701851 -2.68 0.007 -1.718801 -.2677022 >> | >> _cons | 1.783249 .2588899 6.89 0.000 1.275834 2.290664 >> ------------------------------------------------------------------------------ >> >> However when I attempt the quasi-symmetric model I get very large and equal standard errors which do not make sense to me: >> >> . glm count i.px i.py i.qasym, fam(poi) nolog >> note: 7.qasym omitted because of collinearity >> note: 9.qasym omitted because of collinearity >> note: 10.qasym omitted because of collinearity >> >> Generalized linear models No. of obs = 16 >> Optimization : ML Residual df >> = 3 >> Scale >> parameter = 1 >> Deviance = .978304658 (1/df) Deviance = .3261016 >> Pearson = .621982784 (1/df) Pearson = .2073276 >> >> Variance function: V(u) = u [Poisson] >> Link function : g(u) = ln(u) [Log] >> >> AIC >> = 4.237311 >> Log likelihood = -20.89849023 BIC = -7.339462 >> >> ------------------------------------------------------------------------------ >> | OIM >> count | Coef. Std. Err. z P>|z| [95% Conf. Interval] >> -------------+---------------------------------------------------------- >> -------------+------ >> px | >> 2 | -10.64727 1131.109 -0.01 0.992 -2227.58 2206.286 >> 3 | -9.987129 1131.109 -0.01 0.993 -2226.92 2206.945 >> 4 | 8.229144 1131.109 0.01 0.994 -2208.703 2225.161 >> | >> py | >> 2 | -11.32026 1131.109 -0.01 0.992 -2228.253 2205.613 >> 3 | -8.486948 1131.109 -0.01 0.994 -2225.419 2208.445 >> 4 | -9.017585 1131.109 -0.01 0.994 -2225.95 2207.915 >> | >> qasym | >> 2 | 9.089909 1131.109 0.01 0.994 -2207.843 2226.023 >> 3 | 5.887591 1131.109 0.01 0.996 -2211.045 2222.82 >> 4 | -27.11437 2775.396 -0.01 0.992 -5466.791 5412.562 >> 5 | 20.82242 2262.218 0.01 0.993 -4413.043 4454.688 >> 6 | 18.70797 2262.217 0.01 0.993 -4415.157 4452.573 >> 7 | 0 (omitted) >> 8 | 18.96654 2262.217 0.01 0.993 -4414.898 4452.831 >> 9 | 0 (omitted) >> 10 | 0 (omitted) >> | >> _cons | 3.091024 .2132027 14.50 0.000 2.673155 3.508894 >> ------------------------------------------------------------------------------ >> >> I would be grateful for any advice on what I am doing wrong. I am using Stata 12. >> >> Thank you, >> Martyn >> * >> * For searches and help try: >> * http://www.stata.com/help.cgi?search >> * http://www.stata.com/support/statalist/faq >> * http://www.ats.ucla.edu/stat/stata/ >> >> >> >> * >> * For searches and help try: >> * http://www.stata.com/help.cgi?search >> * http://www.stata.com/support/statalist/faq >> * http://www.ats.ucla.edu/stat/stata/ >> >> >> >> * >> * For searches and help try: >> * http://www.stata.com/help.cgi?search >> * http://www.stata.com/support/statalist/faq >> * http://www.ats.ucla.edu/stat/stata/ * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/