Bookmark and Share

Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.


[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: st: RE: Treatreg with Bootstrap SEs - first stage


From   Guy Grossman <[email protected]>
To   [email protected]
Subject   Re: st: RE: Treatreg with Bootstrap SEs - first stage
Date   Wed, 9 Mar 2011 12:46:36 -0500

Thanks Jeff - see below results from the first stage.


Probit regression                                 Number of obs   =         44
                                                  LR chi2(1)      =      26.17
                                                  Prob > chi2     =     0.0000
Log likelihood = -17.005048                       Pseudo R2       =     0.4348

------------------------------------------------------------------------------
       vrule |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
           z |   2.445756   .5688183     4.30   0.000     1.330892    3.560619
       _cons |  -.9446696   .2747046    -3.44   0.001    -1.483081   -.4062585
------------------------------------------------------------------------------


On Wed, Mar 9, 2011 at 12:17 PM, Wooldridge, Jeffrey <[email protected]> wrote:
> A few observations.
>
> 1. I don't see how the bootstrapped standard errors are robust to clustering. Where have you specified that the bootstrap should be done by resampling the clusters?
> 2. More importantly, I think you should not be trying to cluster with 44 observations and five clusters. Cluster-robust inference is not justified with such a small number of clusters. Heck, you have more observations per cluster than number of clusters! You really need lots of clusters that aren't very large. I believe you can get spurious rejections when you cluster with such a small number of clusters. From Stata's perspective, you have five observations when you cluster.
> 3. N = 44 is small to be using any kind of IV procedure, especially a nonlinear one. But if you must, you should not be clustering.
> 4. If you estimate the first-stage probit for vrule without clustering or bootstrapping, what is the t statistic on z?
>
> Jeff
>
>
> -----Original Message-----
> From: [email protected] [mailto:[email protected]] On Behalf Of Guy Grossman
> Sent: Wednesday, March 09, 2011 11:53 AM
> To: [email protected]
> Subject: st: Treatreg with Bootstrap SEs - first stage
>
> Dear friends,
>
> I run the fit the following IV model, where stranger is a continuous
> dependent variable, and vrule is an endogenous binary predictor,
> instrumented by z (also binary). The associastion between the
> instrument z and the endogenous predictor (vrule) is strong.
>
> (1) stranger = npos_before + agedc + vrule + u
> (2) vrule = z + e
>
> I first fit a model with clustered SEs. I then  fit a second model
> with bootstrapped SEs. What I find strange is the differences in the
> SEs of the instrument in the bootstrap model. When standard errors
> were clustered, the standard error of z is equal to .478 and is highly
> significant, but in the bootstrap model the standard error of z is
> equal to 6.58 (13 times larger).
>
> My question is what can explain such difference in results, given that
> I know the association between the binary endogenous predictor and the
> instrument is strong.
>
> Thanks!
> Guy
>
>
> eststo: treatreg stranger npos_before agedc, treat(vrule =z)
> cluster(strata) nolog
> Treatment-effects model -- MLE                    Number of obs   =         44
>                                                   Wald chi2(0)    =          .
> Log pseudolikelihood = -293.30954                 Prob > chi2     =          .
>                                  (Std. Err. adjusted for 5 clusters in strata)
> ------------------------------------------------------------------------------
>              |               Robust
>              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
> -------------+----------------------------------------------------------------
> stranger     |
>  npos_before |  -4.003312   2.181331    -1.84   0.066    -8.278642    .2720188
>        agedc |    19.2581   11.40533     1.69   0.091    -3.095944    41.61213
>        vrule |  -36.13351   19.98177    -1.81   0.071    -75.29706    3.030042
>        _cons |   233.3789     33.044     7.06   0.000     168.6139     298.144
> -------------+----------------------------------------------------------------
> vrule        |
>            z |   2.478021   .4780614     5.18   0.000     1.541038    3.415005
>        _cons |  -.9345324   .1497078    -6.24   0.000    -1.227954   -.6411105
> -------------+----------------------------------------------------------------
>      /athrho |  -.1668083   .3755606    -0.44   0.657    -.9028935     .569277
>     /lnsigma |   4.866947   .1144261    42.53   0.000     4.642676    5.091218
> -------------+----------------------------------------------------------------
>          rho |  -.1652782   .3653015                     -.7177039    .5148281
>        sigma |   129.9237   14.86666                      103.8218    162.5878
>       lambda |  -21.47355   47.79572                     -115.1514    72.20435
> ------------------------------------------------------------------------------
> Wald test of indep. eqns. (rho = 0): chi2(1) =     0.20   Prob > chi2 = 0.6569
> ------------------------------------------------------------------------------
>
> eststo: treatreg stranger npos_before agedc, treat(vrule =z)
> vce(bootstrap, reps(1000)) first
> Treatment-effects model -- MLE                  Number of obs      =        44
>                                                 Replications       =       954
>                                                 Wald chi2(3)       =      3.76
> Log likelihood = -293.30954                     Prob > chi2        =    0.2892
> ------------------------------------------------------------------------------
>              |   Observed   Bootstrap                         Normal-based
>              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
> -------------+----------------------------------------------------------------
> stranger     |
>  npos_before |  -4.003312   3.781918    -1.06   0.290    -11.41573    3.409111
>        agedc |    19.2581   20.01746     0.96   0.336     -19.9754    58.49159
>        vrule |  -36.13351   50.30376    -0.72   0.473    -134.7271    62.46005
>        _cons |   233.3789   86.26582     2.71   0.007     64.30102    402.4568
> -------------+----------------------------------------------------------------
> vrule        |
>            z |   2.478021   6.583954     0.38   0.707    -10.42629    15.38233
>        _cons |  -.9345324   .2802209    -3.33   0.001    -1.483755   -.3853095
> -------------+----------------------------------------------------------------
>      /athrho |  -.1668083   .4793972    -0.35   0.728     -1.10641     .772793
>     /lnsigma |   4.866947   .1126358    43.21   0.000     4.646185    5.087709
> -------------+----------------------------------------------------------------
>          rho |  -.1652782   .4663016                     -.8027896    .6485506
>        sigma |   129.9237   14.63405                      104.1868    162.0183
>       lambda |  -21.47355   60.81632                     -140.6713    97.72425
> ------------------------------------------------------------------------------
>
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/
>
> *
> *   For searches and help try:
> *   http://www.stata.com/help.cgi?search
> *   http://www.stata.com/support/statalist/faq
> *   http://www.ats.ucla.edu/stat/stata/
>

*
*   For searches and help try:
*   http://www.stata.com/help.cgi?search
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/


© Copyright 1996–2018 StataCorp LLC   |   Terms of use   |   Privacy   |   Contact us   |   Site index