Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | Lopa Chakraborti <lchakraborti@arec.umd.edu> |
To | "statalist@hsphsun2.harvard.edu" <statalist@hsphsun2.harvard.edu> |
Subject | st: FW: comparing xtregar coefficients across models |
Date | Fri, 25 Feb 2011 14:25:26 -0500 |
The problem was that I was trying to test the equality of the two t-stats. Instead, I needed to use the coefficients generated by the two models for the test command. Run model 1. Save the beta in a scalar as: . scalar b_lagseaavgwqfoia04avg3=_b[lagseaavgwqfoia04avg3] Run model 2. Run test as: . test _b[pastyearseaavgwq]=b_lagseaavgwqfoia04avg3 ________________________________________ From: Lopa Chakraborti Sent: Friday, February 25, 2011 2:02 PM To: statalist@hsphsun2.harvard.edu Subject: FW: comparing xtregar coefficients across models Not sure how to let statalist know that this error has been resolved. sincerely Lopa ________________________________________ From: Lopa Chakraborti Sent: Friday, February 25, 2011 10:44 AM To: statalist@hsphsun2.harvard.edu Subject: comparing xtregar coefficients across models I need some help on how to compare regression coefficients between models using xtregar. In the results below, I am trying to compare the coefficient on lagseaavgwqfoia04avg3 (first model below) with that of pastyearseaavgwq (second model, further below) by calculating the t statistics. The test seems to fail and gives error message "Constraint 1 dropped". any advice would be appreciated model 1: . xtregar lseaavglcavfoia04avg2 lagseaavgwqfoia04avg3 lagseaavgflowfoia04avg3 elec food mill paper chem petro rubber leather metal transp secu just rnwhite mhhi carpl manuf popt popu MD PA RE GLS regression with AR(1) disturbances Number of obs = 352 Group variable (i): npid Number of groups = 81 R-sq: within = 0.0679 Obs per group: min = 2 between = 0.3513 avg = 4.3 overall = 0.2204 max = 10 Wald chi2(23) = 63.36 corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000 ------------------- theta -------------------- min 5% median 95% max 0.5865 0.5865 0.6942 0.7785 0.8009 ------------------------------------------------------------------------------ lseaavglca~2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- lagseaavgw~3 | .0243223 .0049348 4.93 0.000 .0146504 .0339943 lagseaavgf~3 | .0000264 .0002437 0.11 0.914 -.0004511 .000504 elec | .0167549 .2884746 0.06 0.954 -.548645 .5821547 food | .4841683 .4780733 1.01 0.311 -.4528381 1.421175 mill | -.2253284 .3069892 -0.73 0.463 -.8270161 .3763594 paper | .2761943 .2659313 1.04 0.299 -.2450215 .7974102 chem | .416034 .2515593 1.65 0.098 -.0770132 .9090812 petro | .777429 .3445641 2.26 0.024 .1020958 1.452762 rubber | .2154333 .4328246 0.50 0.619 -.6328873 1.063754 leather | 1.157704 .3244032 3.57 0.000 .5218859 1.793523 metal | -.0522007 .4622447 -0.11 0.910 -.9581837 .8537823 transp | .5580452 .4799053 1.16 0.245 -.382552 1.498642 secu | -.3943754 .3002096 -1.31 0.189 -.9827755 .1940247 just | .2919446 .431559 0.68 0.499 -.5538955 1.137785 rnwhite | .0041641 .003601 1.16 0.248 -.0028936 .0112218 mhhi | -.007618 .0064241 -1.19 0.236 -.0202091 .0049731 carpl | .0046771 .0116036 0.40 0.687 -.0180656 .0274198 manuf | .0023217 .005092 0.46 0.648 -.0076585 .0123019 popt | -.0057607 .0042432 -1.36 0.175 -.0140771 .0025557 popu | -.0009174 .0015892 -0.58 0.564 -.0040323 .0021974 MD | .294147 .1364115 2.16 0.031 .0267853 .5615087 PA | .0404563 .2087747 0.19 0.846 -.3687346 .4496472 _cons | 2.964972 .3077018 9.64 0.000 2.361888 3.568056 -------------+---------------------------------------------------------------- rho_ar | .426524 (estimated autocorrelation coefficient) sigma_u | .37549867 sigma_e | .18262772 rho_fov | .80870389 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . scalar t_lagseaavgwqfoia04avg3=_b[lagseaavgwqfoia04avg3]/_se[lagseaavgwqfoia04avg3] model 2: . xtregar lseaavglcavfoia04avg2 pastyearseaavgwq lagseaavgflowfoia04avg3 elec food mill paper chem petro rubber leather metal transp secu just rnwhite mhhi carpl manuf popt popu MD PA RE GLS regression with AR(1) disturbances Number of obs = 346 Group variable (i): npid Number of groups = 80 R-sq: within = 0.0892 Obs per group: min = 2 between = 0.3846 avg = 4.3 overall = 0.2400 max = 8 Wald chi2(23) = 73.20 corr(u_i, Xb) = 0 (assumed) Prob > chi2 = 0.0000 ------------------- theta -------------------- min 5% median 95% max 0.5795 0.5795 0.6885 0.7742 0.7742 ------------------------------------------------------------------------------ lseaavglca~2 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- pastyearse~q | .0262475 .0048356 5.43 0.000 .0167699 .035725 lagseaavgf~3 | .0000391 .0002365 0.17 0.869 -.0004244 .0005026 elec | -.0045798 .2800818 -0.02 0.987 -.5535301 .5443705 food | .2973297 .4741468 0.63 0.531 -.6319809 1.22664 mill | -.2210648 .2980757 -0.74 0.458 -.8052824 .3631529 paper | .5726535 .2985217 1.92 0.055 -.0124382 1.157745 chem | .2940331 .2513263 1.17 0.242 -.1985574 .7866236 petro | .6126716 .3433223 1.78 0.074 -.0602278 1.285571 rubber | .246944 .4207964 0.59 0.557 -.5778019 1.07169 leather | 1.055009 .3183348 3.31 0.001 .4310839 1.678933 metal | .0795689 .4540158 0.18 0.861 -.8102857 .9694236 transp | .3573744 .4766374 0.75 0.453 -.5768177 1.291567 secu | -.3947636 .2912529 -1.36 0.175 -.9656088 .1760816 just | .2870395 .4187941 0.69 0.493 -.5337818 1.107861 rnwhite | .0040544 .0035024 1.16 0.247 -.0028101 .010919 mhhi | -.0049846 .0063327 -0.79 0.431 -.0173965 .0074272 carpl | .0006704 .0114049 0.06 0.953 -.0216828 .0230235 manuf | .0034781 .0049695 0.70 0.484 -.006262 .0132181 popt | -.0047142 .0041523 -1.14 0.256 -.0128526 .0034242 popu | -.0016382 .0015744 -1.04 0.298 -.0047241 .0014476 MD | .3072598 .1324144 2.32 0.020 .0477324 .5667872 PA | .2284754 .2213065 1.03 0.302 -.2052773 .6622282 _cons | 2.910289 .2990276 9.73 0.000 2.324206 3.496372 -------------+---------------------------------------------------------------- rho_ar | .41767391 (estimated autocorrelation coefficient) sigma_u | .36306501 sigma_e | .18159331 rho_fov | .79989281 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . scalar t_pastyearseaavgwq=_b[pastyearseaavgwq]/_se[pastyearseaavgwq] . test t_lagseaavgwqfoia04avg3=t_pastyearseaavgwq ( 1) = .4992289 Constraint 1 dropped chi2( 0) = . Prob > chi2 = . * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/