Notice: On April 23, 2014, Statalist moved from an email list to a forum, based at statalist.org.
From | "Nella Vidal" <nvidal@sbs.gob.pe> |
To | <statalist@hsphsun2.harvard.edu> |
Subject | st: stata ado with odbc connection |
Date | Tue, 16 Nov 2010 18:34:53 -0500 |
Hi everyone: This is my first time programming in STATA. I have been trying to program an ado to connect an oracle database (odbc load, exec command) but I cant make of it. I would appreciate If someone can send me a simple example of an ado to load and execute an sql command from an oracle database (DATAMART). Greetings to all! -----Mensaje original----- De: owner-statalist@hsphsun2.harvard.edu [mailto:owner-statalist@hsphsun2.harvard.edu] En nombre de Trey Causey Enviado el: Martes, 16 de Noviembre de 2010 05:27 p.m. Para: statalist@hsphsun2.harvard.edu Asunto: st: gllamm, xtmixed, and level-2 standard errors Greetings all. I am estimating a two-level, random-effects linear model. I know that gllamm is not the most computationally efficient option for this, but I am running into some very weird problems. I have ~21,000 individuals nested in 16 countries. I have 9 individual-level predictors (listed as ind1-9) and 2 country-level predictors (listed as c1 and c2). When I estimate the model using gllamm, here are my results: . gllamm DV ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 c1 c2,i(id) adapt nip(16) Running adaptive quadrature Iteration 0: log likelihood = -22865.024 Iteration 1: log likelihood = -22841.735 Iteration 2: log likelihood = -22807.82 Iteration 3: log likelihood = -22797.118 Iteration 4: log likelihood = -22794.274 Iteration 5: log likelihood = -22792.672 Iteration 6: log likelihood = -22791.582 Iteration 7: log likelihood = -22791.557 Iteration 8: log likelihood = -22791.428 Iteration 9: log likelihood = -22791.426 Adaptive quadrature has converged, running Newton-Raphson Iteration 0: log likelihood = -22791.426 (not concave) Iteration 1: log likelihood = -22791.426 (not concave) Iteration 2: log likelihood = -22789.86 Iteration 3: log likelihood = -22789.371 Iteration 4: log likelihood = -22788.767 Iteration 5: log likelihood = -22788.613 Iteration 6: log likelihood = -22788.604 Iteration 7: log likelihood = -22788.604 number of level 1 units = 21360 number of level 2 units = 16 Condition Number = 433.81863 gllamm model log likelihood = -22788.604 ------------------------------------------------------------------------------ DV | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ind1 | -.0020515 .000392 -5.23 0.000 -.0028198 -.0012833 ind2 | -.3839988 .010841 -35.42 0.000 -.4052468 -.3627508 ind3 | -.079134 .0113476 -6.97 0.000 -.1013749 -.0568931 ind4 | .0800358 .0109386 7.32 0.000 .0585966 .101475 ind5 | .0468417 .0048978 9.56 0.000 .0372423 .0564411 ind6 | .1685022 .0149735 11.25 0.000 .1391546 .1978497 ind7 | -.2057474 .0171485 -12.00 0.000 -.2393579 -.1721368 ind8 | -.093775 .0094251 -9.95 0.000 -.1122479 -.0753021 ind9 | -.0080367 .0021554 -3.73 0.000 -.0122613 -.0038122 c1 | .762577 .0802034 9.51 0.000 .6053813 .9197727 c2 | .1763846 .0664327 2.66 0.008 .0461789 .3065903 _cons | 1.265279 .1023452 12.36 0.000 1.064686 1.465872 ------------------------------------------------------------------------------ Variance at level 1 ------------------------------------------------------------------------------ .49269203 (.00476915) Variances and covariances of random effects ------------------------------------------------------------------------------ ***level 2 (id) var(1): .09866295 (.01101541) ------------------------------------------------------------------------------ When I estimate the model using xtmixed or xtreg, the output is essentially the same until I get to the country-level predictors; the coefficients are slightly different and the standard errors are approximately *ten* times smaller: . xtmixed DV ind1 ind2 ind3 ind4 ind5 ind6 ind7 ind8 ind9 c1 c2 || id:,mle Performing EM optimization: Performing gradient-based optimization: Iteration 0: log likelihood = -22785.965 Iteration 1: log likelihood = -22785.965 Computing standard errors: Mixed-effects ML regression Number of obs = 21360 Group variable: id Number of groups = 16 Obs per group: min = 730 avg = 1335.0 max = 2875 Wald chi2(11) = 2296.06 Log likelihood = -22785.965 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ DV | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ind1 | -.0020472 .0003917 -5.23 0.000 -.002815 -.0012794 ind2 | -.3840113 .0108422 -35.42 0.000 -.4052615 -.362761 ind3 | -.0790874 .0113578 -6.96 0.000 -.1013483 -.0568264 ind4 | .0799408 .0109411 7.31 0.000 .0584966 .101385 ind5 | .0468955 .0048961 9.58 0.000 .0372994 .0564916 ind6 | .1686695 .0149734 11.26 0.000 .1393222 .1980167 ind7 | -.2054921 .0172501 -11.91 0.000 -.2393018 -.1716824 ind8 | -.0941011 .0093698 -10.04 0.000 -.1124655 -.0757367 ind9 | -.0079976 .0021584 -3.71 0.000 -.0122279 -.0037672 c1 | .6718781 .2659761 2.53 0.012 .1505744 1.193182 c2 | .1812668 .1083347 1.67 0.094 -.0310652 .3935988 _cons | 1.306302 .2079643 6.28 0.000 .8986998 1.713905 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ id: Identity | sd(_cons) | .2033876 .0363049 .1433454 .2885792 -----------------------------+------------------------------------------------ sd(Residual) | .7019342 .0033974 .695307 .7086246 ------------------------------------------------------------------------------ LR test vs. linear regression: chibar2(01) = 1684.50 Prob >= chibar2 = 0.0000 This is obviously a big problem for establishing significance. I have read previous threads about this problem with xtlogit but have not seen it mentioned for linear models nor I have a seen a solution. It is not immediately clear to me why the estimates or standard errors should differ at all -- as Rabe-Hesketh and Skrondal say in their book, gllamm is not as computationally efficient for linear models but the results should be essentially the same. I have replicated this in Stata 10 and Stata 11. Thank you very much. Trey ----- Trey Causey Department of Sociology University of Washington * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/ Aviso Legal. Este correo electronico y cualquier archivo adjunto al mismo son confidenciales y de uso exclusivo del individuo o empresa al cual han sido dirigidos. Si usted no es el destinatario, no debe difundir, distribuir o copiar este correo electronico. En caso de que haya recibido este correo electronico por error, sirvase notificar inmediatamente al remitente y elimine el mensaje de su sistema. Por favor, tenga en cuenta que cualquier opinion emitida en este correo electronico es propia del autor o remitente y no representa necesariamente la opinion de la SBS. Finalmente, a pesar de sus esfuerzos razonables en el control de virus y programas maliciosos, la SBS no puede asegurar que estos no se encuentren en este correo electronico por causas ajenas a su control, por lo que usted debe analizar este correo electronico y sus archivos adjuntos antes de abrirlos. Superintendencia de Banca, Seguros y AFPs. Lima, Peru. http://www.sbs.gob.pe Disclaimer. This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent the opinion of the SBS. Finally, even though reasonable efforts have been deployed regarding virus and malware control, the SBS cannot assure that this email is free of those, so the recipient should check first this email and its attachments before opening. Superintendencia de Banca, Seguros y AFPs. Lima, Peru. http://www.sbs.gob.pe * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/