I do have the same version as you.
One of the reasons I am using margeff rather than mfx is
that I want average marginal effects rather than marginal effects at the mean.
Below is a simple model, where jlpyrs is the number of
years in a jobless household (ranging from 0 to 7).
You will see that the marginal effects obtained with
margeff (for gender) are much smaller than the ones computed ‘manually’
(variables t0 to 7 below).
 
I did the same experiment with mlogit, probit and
xtprobit and I did get for these models the same values for both marginal
effects. That’s why I am wondering whether there is a bug in margeff after
oprobit.
 
. oprobit jlpyrs1 gender age
 
Iteration 0:   log likelihood = -4482.9115
Iteration 1:   log likelihood = -4426.1931
Iteration 2:   log likelihood = -4426.0798
Iteration 3:   log likelihood = -4426.0798
 
Ordered probit
regression                        
Number of obs   =       5063
                              
                   LR
chi2(2)      =     113.66
                                                 
Prob > chi2     =     0.0000
Log likelihood =
-4426.0798                      
Pseudo R2       =     0.0127
 
------------------------------------------------------------------------------
     jlpyrs1
|      Coef.   Std.
Err.      z   
P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      gender |  -.2000074  
.0388654    -5.15   0.000   
-.2761821   -.1238327
         age
|   .0184501    .001925    
9.58   0.000     .0146772    
.022223
-------------+----------------------------------------------------------------
       /cut1
|   1.447378   .0794277                      1.291703   
1.603053
       /cut2
|   1.698119  
.0802337                     
1.540864    1.855374
       /cut3
|   1.856428  
.0810219                     
1.697628    2.015228
       /cut4
|   1.988807  
.0818218                    
 1.828439    2.149174
       /cut5
|   2.107942  
.0826557                      
1.94594    2.269944
       /cut6
|   2.220859  
.0835591                     
2.057086    2.384632
       /cut7
|   2.449037  
.0858606                     
2.280753     2.61732
------------------------------------------------------------------------------
 
. margeff compute, dummies(gender) count
 
Average partial effects after oprobit
      y  = Pr(jlpyrs1) 
 
------------------------------------------------------------------------------
    variable
|      Coef.   Std.
Err.      z   
P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
0           
|
      gender |  
.0101312   .0024466     4.14  
0.000      .005336    .0149264
         age
|  -.0009372   .0001174    -7.99  
0.000    -.0011672   -.0007072
-------------+----------------------------------------------------------------
1           
|
      gender | 
-.0041591   .0009832    -4.23  
0.000    -.0060862    -.002232
         age
|   .0003835   .0000484    
7.92   0.000     .0002887   
.0004784
-------------+----------------------------------------------------------------
2           
|
      gender | 
-.0018261   .0004549    -4.01  
0.000    -.0027178   -.0009344
         age
|   .0001687   .0000238    
7.07   0.000      .000122   
.0002154
-------------+----------------------------------------------------------------
3           
|
      gender | 
-.0011467   .0002968    -3.86  
0.000    -.0017284    -.000565
         age
|   .0001061   .0000163    
6.51   0.000     .0000741    
.000138
-------------+----------------------------------------------------------------
4           
|
      gender | 
-.0007903   .0002117    -3.73  
0.000    -.0012052   -.0003755
         age
|   .0000732   .0000121    
6.05   0.000     .0000495   
.0000969
-------------+----------------------------------------------------------------
5           
|
      gender | 
-.0005767   .0001596    -3.61  
0.000    -.0008894   -.0002639
         age
|   .0000535   9.46e-06    
5.66   0.000     
.000035     .000072
-------------+----------------------------------------------------------------
6           
|
      gender | 
-.0007793   .0002127    -3.66  
0.000    -.0011963   -.0003623
         age
|   .0000724   .0000121    
5.99   0.000     .0000487   
.0000961
-------------+----------------------------------------------------------------
7           
|
      gender | 
-.0008529   .0002425    -3.52  
0.000    -.0013281   -.0003777
         age
|   .0000797    .000014    
5.70   0.000     .0000523   
.0001072
------------------------------------------------------------------------------
 
. predict p0-p7
(option pr assumed; predicted probabilities)
 
. replace gender = 0
(2470 real changes made)
 
. predict a0-a7
(option pr assumed; predicted probabilities)
 
. replace gender = 1
(5063 real changes made)
 
. predict b0-b7
(option pr assumed; predicted probabilities)
 
. forval i = 0/7{
  2. gen t`i' = b`i' -
a`i'
  3. }
 
. sum t?
 
    Variable
|      
Obs        Mean    Std.
Dev.       Min       
Max
-------------+--------------------------------------------------------
         
t0 |      5063   
.0559895    .0083395   .0390145   .0704771
         
t1 |      5063   -.0116048   
.0004624  -.0120314  -.0101325
         
t2 |      5063   -.0072334   
.0004286  -.0076197  -.0060018
         
t3 |      5063   -.0057244   
.0005597  -.0063758  -.0043622
         
t4 |      5063  
-.0047819     .000624  -.0056904  -.0033971
-------------+--------------------------------------------------------
         
t5 |      5063  
-.0041453     .000661  -.0052198  -.0027662
         
t6 |      5063   -.0071023   
.0014138  -.0096342  -.0043449
         
t7 |      5063  
-.0153973     .004964    -.02606 
-.0071643