[Date Prev][Date Next][Thread Prev][Thread Next][Date index][Thread index]

From |
David Airey <[email protected]> |

To |
"[email protected]" <[email protected]> |

Subject |
Re: st: RE: eivreg, deming, and R^2 |

Date |
Sun, 5 Oct 2008 15:47:43 -0500 |

Sometimes variants of regression models report R squared when it is not a very good statistic. On another statistcs blog (Graphpad Prism), the authors lamented that reporting R squared in Deming regression would not be interpretable. I assumed this problem if true would generalize, so I asked about -eivreg- which reports R squared.

Sent from my iPhone

On Oct 5, 2008, at 12:07 PM, "Nick Cox" <[email protected]> wrote:

Here, as indeed elsewhere, the answer depends on what you mean by R^2 --

in terms of algebraic definition and in terms of statistical

interpretation.

Suppose you have variables y and x. Let corr(,) mean Pearson

correlation. Then one definition of R^2 is the square of corr(y, x) and

this does not depend on any assumptions about whether x or y or both is

measured with error or how that error behaves.

Another definition would be the square of corr(x, predicted x) and

another the square of corr(y, predicted y) where the predictions come

from taking one variable as response and predicting it from the other by

plain flavour linear regression. These definitions have distinct

meanings but in practice give the same numerical result.

Yet other definitions can of course be found. And, more importantly,

once you move away from that plain regression territory the different

definitions typically disagree in terms of numerical result.

In the case of -deming- and -eivreg-, my take is as follows. (Note

incidentally that -deming- is a user-written command: use -findit

deming- to locate it. As a matter of fact, the user concerned is a Stata

developer, but -deming- is not an official command.)

-eivreg- can take multiple predictors, so R^2 in the first sense is not

defined uniquely.

I guess that you are in practice concerned with a single predictor as

well as a single response.

In that situation, you can use any of the definitions above, but it will

be important to say which sense you are using and to realise that R^2

will depend on assumptions insofar as predictions do. R^2 doesn't I

think play any formal part in either analysis; it's just a descriptive

statistic that may seem convenient or attractive.

Nick

[email protected]

David Airey

Is R^2 as interpretable in regression models that account for errors

in both y and x, like -deming- or -eivreg-? Can I interpret R^2 from -

eivreg- just like in -regress-?

*

* For searches and help try:

* http://www.stata.com/help.cgi?search

* http://www.stata.com/support/statalist/faq

* http://www.ats.ucla.edu/stat/stata/

* * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/statalist/faq * http://www.ats.ucla.edu/stat/stata/

**References**:**st: eivreg, deming, and R^2***From:*David Airey <[email protected]>

**st: RE: eivreg, deming, and R^2***From:*"Nick Cox" <[email protected]>

- Prev by Date:
**RE: st: Mediating variables** - Next by Date:
**Re: st: Mediating variables** - Previous by thread:
**st: RE: eivreg, deming, and R^2** - Next by thread:
**st: survival analysis: an elementary question** - Index(es):

© Copyright 1996–2024 StataCorp LLC | Terms of use | Privacy | Contact us | What's new | Site index |