# Re: st: outreg and multinomial logit

 From "Clive Nicholas" <[email protected]> To [email protected] Subject Re: st: outreg and multinomial logit Date Mon, 14 Mar 2005 02:26:01 -0000 (GMT)

```Alexander Nervedi wrote:

> I have been trying to get outreg to work after a multi-nomial logit
> estimation and outreg keeps balking.
> So the ordered outcome variable has three scales .. None(0), Any(1), and
> All(2); the base level is None. outreg keep complaing that "equation any
> not
> found"
>
> The comand I am using is :
>
> .mlogit y \$x1 \$x2, basecategory (0)
> .outreg using mnl-model, 3aster bracket coefastr se replace  comma
>
> My suspicion is that outred is looking to associate  values (SD, Z value,
> P
> value, CI)  with Any when it appears in the table as a normal output of
> the
> mlogit command, and is protesting becuase there isnt any such values.
>
> A suggestion for a workaround would be really helpful.

There are two solutions to this problem.

. outreg using "C:\DATA\mlogit.out", eform bdec(3) rdec(3) sigsymb(*,**)
coefastr se addstat(Model chi-square, e(chi2), df, e(df_m), Log
likelihood, e(ll), Pseudo R2, e(r2_p), N of observations, e(N))

However, why not use Ben Jann's -estout-, downloadable from SSC, which, in
the view of a growing number of Stata users (including myself) is
superior. An example:

. use http://www.stata-press.com/data/r8/sysdsn3.dta
(Health insurance data)

. mlogit insure age male nonwhite, basecat(1)

Iteration 0:   log likelihood = -555.85446
Iteration 1:   log likelihood = -545.60089
Iteration 2:   log likelihood = -545.58328
Iteration 3:   log likelihood = -545.58328

Multinomial logistic regression                 Number of obs   =        615
LR chi2(6)      =      20.54
Prob > chi2     =     0.0022
Log likelihood = -545.58328                     Pseudo R2       =     0.0185
----------------------------------------------------------------------------
insure |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-----------+----------------------------------------------------------------
Prepaid    |
age |  -.0111915   .0060915    -1.84   0.066    -.0231305    .0007475
male |   .5739825   .2005221     2.86   0.004     .1809665    .9669985
nonwhite |   .7312659    .218978     3.34   0.001      .302077    1.160455
_cons |   .1567003   .2828509     0.55   0.580    -.3976773    .7110778
-----------+----------------------------------------------------------------
Uninsure   |
age |  -.0058414   .0114114    -0.51   0.609    -.0282073    .0165245
male |   .5102237   .3639793     1.40   0.161    -.2031626     1.22361
nonwhite |    .433314   .4106255     1.06   0.291    -.3714972    1.238125
_cons |  -1.811165   .5348606    -3.39   0.001    -2.859473   -.7628577
----------------------------------------------------------------------------
(Outcome insure==Indemnity is the comparison group)

. tab insure

insure |      Freq.     Percent        Cum.
------------+-----------------------------------
Indemnity |        294       47.73       47.73
Prepaid |        277       44.97       92.69
Uninsure |         45        7.31      100.00
------------+-----------------------------------
Total |        616      100.00

. ereturn list

scalars:
e(N) =  615
e(ll_0) =  -555.8544590054535
e(ll) =  -545.5832760024657
e(df_m) =  6
e(chi2) =  20.54236600597551
e(r2_p) =  .0184781876561091
e(basecat) =  1
e(ibasecat) =  1
e(k_cat) =  3

macros:
e(depvar) : "insure"
e(cmd) : "mlogit"
e(crittype) : "log likelihood"
e(predict) : "mlogit_p"
e(eqnames) : "`"Prepaid"' `"Uninsure"'"
e(chi2type) : "LR"

matrices:
e(b) :  1 x 8
e(V) :  8 x 8
e(cat) :  1 x 3

functions:
e(sample)

. est store model

. estout model, stats(r2_p chi2 N, labels("Pseudo R-squared" "Model
chi-square" "N")) cells(b(star fmt(%9.2
> f)) t(par)) varwidth(30) modelwidth(10) label unstack

model
Prepaid        Uninsure
b/t             b/t
NEMC (ISCNRD-IBIRTHD)/365.25         -0.01           -0.01
(-1.84)         (-0.51)
NEMC PATIENT MALE                     0.57**          0.51
(2.86)          (1.40)
nonwhite                              0.73***         0.43
(3.34)          (1.06)
_cons                                 0.16           -1.81***
(0.55)         (-3.39)
Pseudo R-squared                      0.02
Model chi-square                     20.54
N                                   615.00

I hope that helps.

CLIVE NICHOLAS        |t: 0(044)7903 397793
Politics              |e: [email protected]
Newcastle University  |http://www.ncl.ac.uk/geps

*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/
```