--- In statalist, Andreas Stiehler wrote:
> do you know a way to save Std.Error and Conf.interval of a "svymean"  
> operation (see below) as matrices or scalars?
-svymean- is an estimation command, so it leaves a bunch of stuff in
the -ereturn- values. This is my weird example with auto data (I was
asking for a "standard" toy data set with complex enough sampling
design, but don't remember if any such data set in public use actually
arose then):
. sysuse auto
(1978 Automobile Data)
. svyset [pw=turn] , psu(rep)
pweight is turn
psu is rep78
. svymean pri
Survey mean estimation
pweight:  turn                                    Number of obs    =        69
Strata:   <one>                                   Number of strata =         1
PSU:      rep78                                   Number of PSUs   =         5
                                                  Population size  =      2746
------------------------------------------------------------------------------
    Mean |   Estimate    Std. Err.   [95% Conf. Interval]        Deff
---------+--------------------------------------------------------------------
   price |   6251.806    204.7158    5683.423    6820.188    .3211447
------------------------------------------------------------------------------
. eret li
scalars:
              e(df_r) =  4
                 e(N) =  69
          e(N_strata) =  1
             e(N_psu) =  5
             e(N_pop) =  2746
macros:
               e(cmd) : "svymean"
           e(predict) : "svy_x_p"
           e(varlist) : "price"
          e(complete) : "complete"
            e(depvar) : "Mean"
               e(psu) : "rep78"
              e(wexp) : "= turn"
             e(wtype) : "pweight"
matrices:
                 e(b) :  1 x 1
                 e(V) :  1 x 1
              e(V_db) :  1 x 1
               e(est) :  1 x 1
             e(error) :  1 x 1
                e(_N) :  1 x 1
           e(_N_subp) :  1 x 1
             e(V_msp) :  1 x 1
             e(V_srs) :  1 x 1
              e(meft) :  1 x 1
              e(deft) :  1 x 1
              e(deff) :  1 x 1
functions:
            e(sample)   
. di _b[price]
6251.8055
. di _se[price]
204.71576
. mat li e(b)
symmetric e(b)[1,1]
        price
y1  6251.8055
. mat li e(V)
symmetric e(V)[1,1]
           price
price  41908.543
. mat li e(deff)
symmetric e(deff)[1,1]
        price
r1  .32114473
So you can save them for later use as
scalar mean = _b[price]
scalar semean = _se[price]
etc. More advanced methods of dealing with estimation results are due
to Roger Newson and his idea of estimation sets. -findit parmest- to
find more.
-- 
Stas Kolenikov
http://stas.kolenikov.name
*
*   For searches and help try:
*   http://www.stata.com/support/faqs/res/findit.html
*   http://www.stata.com/support/statalist/faq
*   http://www.ats.ucla.edu/stat/stata/