Notice: On March 31, it was **announced** that Statalist is moving from an email list to a **forum**. The old list will shut down on April 23, and its replacement, **statalist.org** is already up and running.

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

From |
Sun Yutao <yutao.sun.statalist@outlook.com> |

To |
<statalist@hsphsun2.harvard.edu> |

Subject |
st: inaccurate hessian from mata: deriv() |

Date |
Thu, 25 Oct 2012 19:24:30 +0200 |

Hello users, I¡¯m having a problem on the function derive(), it looks like it¡¯s giving a very inaccurate hessian. Here the problem goes: I wrote a Stata probit log-like function and enveloped it with a Mata function, which does no more than compute and sum the log-likelihood contributions from the Stata program. ---------------------------------------------------------- function MleLikeMata(input_param,struct mPML_model scalar model,|LogLik) { if (cols(input_param)!=1) { param=input_param' } else { param=input_param } for(i=1;i<=rows(model.equation);i++) { data_range=strtoreal(tokens(model.equation[i,7])) param_range=model.location[i,1]::model.location[i,2] if (model.equation[i,4]=="1") { model.data[.,model.offset+i]=(model.data[.,data_range],J(rows(model.data),1,1))*param[param_range,.] } else { model.data[.,model.offset+i]=model.data[.,data_range]*param[param_range,.] } } stata(model.StataLike+" "+model.XB) LogLik=sum(model.data[.,model.offset]) //LogLik=model.data[.,model.offset] if (args()==2) { return(LogLik) } } ---------------------------------------------------------- Where model is just an extra argument I need Then I use this code to compute the gradients and hessian: ---------------------------------------------------------- D=deriv_init() deriv_init_evaluator(D,&MleLikeMata()) //deriv_init_evaluatortype(D,"v") deriv_init_search(D, "off")deriv_init_params(D, param') deriv_init_argument(D, 1, model) grad=deriv(D, 1)' hess=deriv(D, 2) ---------------------------------------------------------- It looks like it's giving a more or less OK gradient but a VERY inaccurate hessian (I'm comparing this with stata ml command with the same data and same parameter vector, but -ml- works well!) , i.e. I'm 100% sure the Stata probit log-likelihood function is concave and hence the hessian should be negative-definite. however, it gives some hessian like this. +----------------------------------------------------------------------------+ 1 | 238418.5803 2 | -119209.2902 476837.1606 3 | -178813.9352 -327825.5479 417232.5155 4 | -59604.64508 -119209.2902 -208616.2578 357627.8705 5 | 149011.6127 -178813.9352 -59604.64508 29802.32254 0 +----------------------------------------------------------------------------+ The determinant is 2.43788e+27 which means it's certainly not negative-definite (and you even have a 0 in the diagonal) Possible fix I tried: 1. I tried to specify it as a v-type evaluator (one that returns a row vector) 2. I tried to scale sum of the log-likelihood by number of observations 3. change the 2nd argument in -deriv_init_search(D, "off")- to "bracket" or "interpolate" (which gives even worse results) Could anyone kindly explain me what's wrong and what I should do? And infact I think I lost a lot features (fast convergence, etc.) from Newton-Raphson due to the inaccurate hessian. Oh in case you need, the Stata likelihood function is: --------------------------------------------------- program define like, nclass qui { args lnf XB replace `lnf' = ln( 1 - normprob(`XB')) if $ML_y1==0 replace `lnf' = ln( normprob(`XB')) if $ML_y1==1 } End --------------------------------------------------- Which is the common one for probit Best regards, Sun Yutao * * For searches and help try: * http://www.stata.com/help.cgi?search * http://www.stata.com/support/faqs/resources/statalist-faq/ * http://www.ats.ucla.edu/stat/stata/

**Follow-Ups**:**Re: st: inaccurate hessian from mata: deriv()***From:*Maarten Buis <maartenlbuis@gmail.com>

- Prev by Date:
**RE: st: Stripplot: problem with axis for variable with only 2 observations** - Next by Date:
**st: Tabulating and graphing mean income for three groups over several years** - Previous by thread:
**st: xtivreg related IV test statistics** - Next by thread:
**Re: st: inaccurate hessian from mata: deriv()** - Index(es):