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Why survey data?

e Collecting data can be expensive and time consuming.

e Consider how you would collect the following data:

— Smoking habits of teenagers

— Birthweights for expectant mothers with high blood pressure

e Using stages of clustered sampling can help cut down on expense and time.

1 Types of data

Simple random sample (SRS) data
Observations are independently sampled from a data-generating process.

e Typical assumption: data are independent and identically distributed (iid).
e Make inferences about the data generating process.

e Sample variability is explained by the statistical model attributed to the data generating pro-
cess.

Standard data
We will use this term to distinguish this type of data from survey data.

Correlated data
Individuals are assumed not to be independent.

Causes:

e Observations are taken over time
e Random-effects assumptions

e Cluster sampling
Treatment:

e Time-series models
e Longitudinal/panel data models

® vce(cluster ...) option



Survey data
Individuals are sampled from a fixed population according to a survey design.

Distinguishing characteristics of this type of data include

e the complex nature under which individuals are sampled,
e inferences made about the fixed population, and

e sample variability attributed to the survey design.

2 Survey data characteristics

Standard data
e Estimation commands for standard data include

— proportion, and

— regress.

o We will refer to these as standard estimation commands.

Survey data
e Estimation commands for survey data are governed by the svy prefix, for example

— svy: proportion, and

— SVy: regress.

e svy requires that the data be svyset.

> Example: proportion and svy: proportion

The standard header in the output for a Stata estimation command contains a title and some infor-
mation about the sample.

e proportion reports the sample size.

e svy: proportion also reports the number of strata, the primary sampling units (PSU), the
estimated population size, and the design degrees of freedom.



e svy reports the number of strata and PSUs, even for multistage designs, to show where the
design degrees of freedom come from.

df = NPSU - Nstrata

— Second National Health and Nutrition Examination Survey
webuse nhanes?2
proportion sex

Proportion estimation Number of obs = 10351
Proportion Std. Err. [95% Conf. Interval]

sex
Male .4748333 .0049085 .4652117 .484455
Female .5251667 .0049085 .515545 .5347883

svy: proportion sex
(running proportion on estimation sample)

Survey: Proportion estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513
Design df = 31
Linearized

Proportion Std. Err. [95% Conf. Interval]

sex
Male .4793502 .005734 4676557 .4910447
Female .5206498 .005734 .5089553 .5323443

proportion reports different proportion values than svy: proportion. This is due to the

survey design characteristics that were svyset when the dataset was created. qQ

2.1 Single-stage designs
Single-stage syntax

svyset [psu} [weight] [, strata (varname) fpc (varname) ]

Syntax elements:

Primary sampling units (PSU)

Sampling weights — pweight

Strata

Finite population correction (FPC)



Sampling unit
An individual or collection of individuals from the population that can be selected for observation.

e Sampling groups of individuals is synonymous with cluster sampling.

e Cluster sampling usually results in inflated variance estimates compared to SRS.



> Examples

e High schools for sampling from the population of 12th graders

e Hospitals for sampling from the population of newborn infants

Sampling weight
The reciprocal of the probability that an individual to be sampled.

e Probabilities are derived from the survey design.

— sampling units

— strata

e Typically considered to be the number of individuals in the population that a sampled indi-
vidual represents.

e Reduces bias induced by the sampling design.

> Example

If there are 100 hospitals in our population and we choose 5 of them, the sampling weight is
20 = 100/5. Thus a sampled hospital represents 20 hospitals in the population.
Sampling weights correct for over- and undersampling of sections of the population. Many

times this over- or undersampling is intentional. q

Strata
In stratified designs, the population is partitioned into well-defined groups called strata.

e Sampling units are independently sampled from within each stratum.

e Stratification usually results in smaller variance estimates compared with SRS.

> Examples

e States of the union are typically used as strata in national surveys in the U.S.

e Demographic information such as age group, gender, and ethnicity would yield highly effec-
tive strata.

Although there is potential for improving efficiency by reducing sampling variability, it is usu-

ally not very practical to stratify on demographic information. q



Finite population correction (FPC)
An adjustment applied to the variance due to sampling without replacement.

e Sampling without replacement from a finite population reduces sampling variability.

Q Notes

e We will see that the FPC affects the number of components in the linearized variance esti-
mator for multistage designs.

e We can use svyset to specify an SRS design.

> Examples
The following examples show the use of svyset for single-stage designs:

1. auto - specifying an SRS design.

2. nmihs is the National Maternal and Infant Health Survey (1988) dataset that came from a
stratified design.

3. fpc is a simulated dataset with variables that identify the characteristics from a stratified
and without-replacement clustered design.

— The auto data that ships with Stata
. sysuse auto
(1978 Automobile Data)
svyset _n
pweight: <none>
VCE: linearized
Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>

— National Maternal and Infant Health Survey

webuse nmihs
svyset [pw=finwgt], strata(stratan)
pweight: finwgt
VCE: linearized
Single unit: missing
Strata 1: stratan
SU 1: <observations>
FPC 1: <zero>

— Simulated data
webuse fpc

svyset psuid [pw=weight], strata(stratid) fpc (Nh)

pweight: weight
VCE: linearized
Single unit: missing
Strata 1: stratid
SU 1: psuid
FPC 1: Nh



Below is a visual representation of a hypothetical population. Suppose that each dot represents
an individual.

The following shows a 20% SRS. The solid dots identify sampled individuals. Together with
the open dots, they represent the hypothetical population.
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Here we partition the population into small blocks then sample 20% of the blocks. Not all
blocks contain the same number of individuals, so the sample size is a random quantity.

Cluster sample 20 (208 obs)
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Here we partition the population into four big regions then select a 20% sample within each
region. The sample size is not exactly 20% of the population size because of unbalanced regions
and rounding.

Stratified sample 198
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Here we reestablish the smaller blocks within the four regions then sample 20% of the blocks
within each region.

Stratified-cluster sample 20 (215 obs)

ISR SE R R
f B i ¢

2.2 Multistage designs
Let’s use an example to introduce and motivate multistage designs:
> Example

Purpose
Study the smoking habits of teenagers in the U.S.

Survey design
1. Use state for strata, and counties are the PSUs.
2. The second-stage units are high schools, randomly selected within each sampled county.
3. Stratifying on gender, the final-stage units are high school seniors, randomly selected within

each sampled high school.
N
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Multistage syntax

svyset psu [weight] [, strata (varname) fpc(varname)]
[ || ssu [, strata (varname) fpc (varname) H

[ || ssu [, strata (varname) fpc (varname) H

e Stages are delimited by “| |”.
e SSU stands for secondary or subsequent sampling units.

e FPC is required at stage s for stage s + 1 to play a role in the linearized variance estimator.

Q Note

svyset will note that it is disregarding subsequent stages when an FPC is not specified for a

iven stage.
g g o

Multiple stages of cluster sampling

1. PSUs are independently selected within each stratum.
2. Second-stage units are independently selected within each sampled PSU.

3. Third-stage units are independently selected within each sampled second-stage unit.

e Sampling units are independently selected within each sampled SSU.

e Stratification is also allowed at each sampling stage.

> Example: svyset for a multistage design

High school senior data

1. Counties are randomly selected within each state.
2. High schools are randomly selected within each sampled county.

3. Female and male seniors are randomly selected within each sampled high school.

11



. webuse seniors

svyset county
|| school,
strata (gender)

[l _n,

[pw=sampwgt], strata(state)
fpc (nschools)

fpc(nseniors)

fpc (ncounties)

pweight: sampwgt
VCE: linearized
Single unit: missing
Strata 1: state
SU 1: county
FPC 1: ncounties
Strata 2: <one>
SU 2: school
FPC 2: nschools
Strata 3: gender
SU 3: <observations>
FPC 3: nseniors
FPC variables

e ncounties is the number of counties within each category of state.
e nschools is the number of high schools within state county.

e nseniors is the number of high school seniors within state county school sex.
N

2.3 Poststratification

Poststratification
A method for adjusting sampling weights, usually to account for underrepresented groups in the
population. Poststratification:

e adjusts weights to sum to the poststratum sizes in the population,
e reduces bias due to nonresponse and underrepresented groups, and

e can result in smaller variance estimates.

Syntax

svyset poststrata (varname) postweight (varname)

Q Note

Recall that I said it is usually not very practical to stratify on demographic information such as
age group, gender, and ethnicity. However, we can usually poststratify on these variables using the

frequency distribution information available from census data. a

12



> Example: svyset for poststratification

A veterinarian has 1300 clients—450 cats and 850 dogs. He would like to estimate the average
annual expenses of his clientele, but he only has enough time to gather information on 50 randomly
selected clients. Thus we have an SRS design; the sampling weight is 26 = 1300/50.

The dog clients are (on average) twice as expensive as cat clients. We can use the above

frequency distribution of dogs and cats to poststratify on animal type.

—— Cat and dog data from Levy and Lemeshow (1999)
webuse poststrata
bysort type: sum totexp
-> type = dog
Variable Obs Mean Std. Dev. Min Max
totexp 32 49.85844 8.376695 32.78 66.2
-> type = cat
Variable Obs Mean Std. Dev. Min Max
totexp 18 21.71111 8.660666 7.14 39.88

Here are the mean estimates with poststratification:

svyset [pw=weight], poststrata(type) postweight (postwgt) fpc (fpc)
pweight: weight
VCE: linearized
Poststrata: type
Postweight: postwgt
Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: fpc
sSvy: mean totexp
(running mean on estimation sample)
Survey: Mean estimation
Number of strata = 1 Number of obs = 50
Number of PSUs = 50 Population size = 1300
N. of poststrata = 2 Design df = 49
Linearized
Mean Std. Err. [95% Conf. Intervall]
totexp 40.11513 1.163498 37.77699 42.45327

13



Here are the mean estimates without poststratification:

svyset _n [pw=welght]
pweight: weight
VCE: linearized
Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>

svy: mean totexp
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 50
Number of PSUs = 50 Population size = 1300
Design df = 49

Linearized
Mean Std. Err. [95% Conf. Interval]
totexp 39.7254 2.265746 35.17221 44.27859

2.4 Strata with a single sampling unit

How do we get stuck with strata that have only one sampling unit?

e Missing data can cause entire sampling units to be dropped from the analysis, possibly leav-
ing a single sampling unit in the estimation sample.

e There are certainty units.

e The desing is just bad.

Big problem for variance estimation

e Consider a sample with only one observation.

e svy reports missing standard-error estimates by default.

Finding these lonely sampling units
Use svydescribe

e to describe the strata and sampling units and

e to help find strata with a single sampling unit.

14



> Example: svydescribe

The Second Nation Health and Nutrition Examination Survey (NHANES?2) data have 31 strata,
each stratum contains 2 PSUs.

— Second National Health and Nutrition Examination Survey
webuse nhanes2
svydescribe
Survey: Describing stage 1 sampling units
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

#0bs per Unit

Stratum #Units #0bs min mean max

1 2 380 165 190.0 215
2 2 185 67 92.5 118
3 2 348 149 174.0 199
4 2 460 229 230.0 231
5 2 252 105 126.0 147
6 2 298 131 149.0 167
7 2 476 206 238.0 270
8 2 338 158 169.0 180
9 2 244 100 122.0 144
10 2 262 119 131.0 143
11 2 275 120 137.5 155
12 2 314 144 157.0 170
13 2 342 154 171.0 188
14 2 405 200 202.5 205
15 2 380 189 190.0 191
16 2 336 159 168.0 177
17 2 393 180 196.5 213
18 2 359 144 179.5 215
20 2 285 125 142.5 160
21 2 214 102 107.0 112
22 2 301 128 150.5 173
23 2 341 159 170.5 182
24 2 438 205 219.0 233
25 2 256 116 128.0 140
26 2 261 129 130.5 132
27 2 283 139 141.5 144
28 2 299 136 149.5 163
29 2 503 215 251.5 288
30 2 365 166 182.5 199
31 2 308 143 154.0 165
32 2 450 211 225.0 239
31 62 10351 67 167.0 288

15



Some variables in this dataset have enough missing values to exhibit the lonely PSU problem:

—— Mean high density lipids (mg/dL)

svy: mean hdresult
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 8720
Number of PSUs = 60 Population size = 98725345
Design df = 29
Linearized
Mean Std. Err. [95% Conf. Interval]
hdresult 49.67141

Note: missing standard error because of stratum with single
sampling unit.

Use if e (sample) after estimation commands to restrict svydes’s focus on the estimation sam-
ple. The single option will further restrict output to strata with one sampling unit:

— Restrict to the estimation sample
svydescribe if e(sample), single
Survey: Describing strata with a single sampling unit in stage 1

pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: psu
FPC 1: <zero>
#0bs per Unit

Stratum #Units #Obs min mean max
1 1x 114 114 114.0 114
2 1x 98 98 98.0 98
2

Specifying variable names with svydes will result in more information about missing values:

— Specifying variables for more information
svydescribe hdresult, single
Survey: Describing strata with a single sampling unit in stage 1
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: psu
FPC 1: <zero>

#0bs with #Obs with #0bs per included Unit
#Units #Units complete missing
Stratum included omitted data data min mean max
1 1x 1 114 266 114 114.0 114
2 1% 1 98 87 98 98.0 98

2

16



Handling lonely sampling units

e Drop them from the estimation sample.
e svyset one of the ad hoc adjustments in the singleunit () option.

o Somehow combine them with other strata.

2.5 Certainty units

e Sampling units that are guaranteed to be chosen by the design.

e Certainty units are handled by treating each one as its own stratum with an FPC of 1.

3 Variance estimation

Stata has five variance estimation methods for survey data:
e linearization
e balanced repeated replication (BRR)
e jackknife

e bootstrap

e successive difference replication (SDR)

17



Q Notes

e Linearization

— Stata’s vce (robust) for complex data

— The default variance estimation method for svy.
e Replication methods

— Motivation

* Linearization can have poor performance in datasets with a small number of sam-
pling units.

* Because of privacy concerns, data providers are reluctant to release strata and sam-
pling unit information in public-use data. Thus some datasets now come packaged
with weight variables for use with replication methods.

— Concept

* Think of a replicate as a copy of the point estimates.

* The idea is to resample the data, while computing replicates from each resample,
then to use the replicates to estimate the variance.

a
3.1 Linearization
Linearization
A method for deriving a variance estimator using a first order Taylor approximation of the point

estimator of interest.

e Foundation: Variance of the total estimator

Syntax

svyset ... [vce(linearized)]

o Delta method

e Huber/White/robust/sandwich estimator

18



Total estimator—Stratified two-stage design

® Ypiji 1s the observed value from a sampled individual.
e strata: h=1,...,L

e PSU: 1=1,...,ny

e SSU: g=1,...,mp

e individual: k=1,..., mp;

? = thz’jkyhijk
~ o~ n _
0% Y- f) S D (= )+

(2

h
th Z(l - fhz)m:n}i 1 Z(yhij ~ Uni)”
h 1

i J

~—

e f3, is the sampling fraction for stratum A in the first stage.
e f5; denotes a sampling fraction in the second stage.

e Remember that the design degrees of freedom is

df = NPSU - Nstrata
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> Example: svy: total

Let’s use our (imaginary) survey data on high school seniors to estimate the number of smokers in

the population:

webuse senior
svyset

pweight:
VCE:
Single unit:

Strata

sSU

FPC

Strata

sSU

FPC

Strata

SU

FPC

WWWNhNN P

S

sampwgt
linearized
missing
state
county
ncounties
<one>
school
nschools
gender
<observations>
nseniors

— Estimate number of seniors who have smoked

svy: total smoked
(running total on estimation sample)

Survey: Total estimation
Number of strata = 50 Number of obs 10559
Number of PSUs = 100 Population size = 20992929
Design df = 50
Linearized
Total Std. Err. [95% Conf. Interval]
smoked 8347260 331155.1 7682115 9012404
— Use first stage without FPC
svyset county [pw=sampwgt], strata(state)
pweight: sampwgt
VCE: linearized
Single unit: missing
Strata 1: state
SU 1: county
FPC 1: <zero>
svy: total smoked
(running total on estimation sample)
Survey: Total estimation
Number of strata = 50 Number of obs = 10559
Number of PSUs = 100 Population size = 20992929
Design df = 50
Linearized
Total Std. Err. [95% Conf. Interval]
smoked 8347260 346853.4 7650584 9043935

20



Linearized variance for regression models

e The model is fit using estimating equations.

o G () is a total estimator; use Taylor expansion to get V(B)

a(ﬁ) = ijSij =0

V(B) = DV"HG(B)} 53D’

ML models
e G() is the gradient.
e s, is an equation-level score.

e D is the inverse negative Hessian matrix at the solution.

Least-squares regression
e (() is the normal equations.
e s;is aresidual.

e D is the inverse of the weighted outer product of the predictors including the intercept

D= (X'WX)!

21



> Example: svy: logit
Here is an example of a logistic regression, that models the incidence of high blood pressure as a
function of some demographic variables:

— Second National Health and Nutrition Examination Survey
webuse nhanes2
svyset
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: psu
FPC 1: <zero>

— Model high blood pressure on some demographics

describe highbp height weight age female race

storage display value
variable name type format label variable label
highbp byte %$8.0g 1 if BP > 140/90, 0 otherwise
height float %9.0g height (cm)
weight float %9.0g weight (kg)
age byte %9.0g age in years
female byte %$8.0g l=female, O=male
race byte %$9.0g race l=white, 2=black, 3=other

svy: logit highbp height weight c.age##c.age i.female i.race, baselevel
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513
Design df = 31
F( 7, 25) = 72 .33
Prob > F = 0.0000
Linearized
highbp Coef. Std. Err. t P>t [95% Conf. Interval]
height -.0322128 .0057975 -5.56 0.000 -.0440368 -.0203888
weight .04914¢64 .0031926 15.39 0.000 .042635 .0556578
age .1540661 .0208216 7.40 0.000 .1116003 .196532
c.age#c.age -.0010731 .000201 -5.34 0.000 -.0014829 -.0006632
female
0 0 (base)
1 -.3502998 .0861874 -4.06 0.000 -.5260801 -.1745194
race
1 0 (base)
2 .3461358 .1414863 2.45 0.020 .0575726 .634699
3 .1506854 .4349656 0.35 0.731 -.7364327 1.037804
_cons -4.974867 1.168757 -4.26 0.000 -7.358563 -2.591172
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3.2 Balanced repeated replication (BRR)

Balanced repeated replication
For designs with two PSUs in each of L strata.

e Compute replicates by dropping a PSU from each stratum.
e Find a balanced subset of the 2% replicates. L <r < L +4

e The replicates are used to estimate the variance.

Syntax

svyset ... vce(brr) [mse]

Q Note

e The idea is to resample the data, compute replicates from each resample, and then use the
replicates to estimate the variance.

e Balance here means that stratum specific contributions to the variance cancel out. In other
words, no stratum contributes more to the variance than any other.

e We can find a balanced subset by finding a Hadamard matrix of order 7.

e When the dataset contains replicate weight variables, you do not need to worry about Hadamard
matrices.

Q

For completeness, here is how the sampling weights are adjusted to produce BRR replicate weights.

BRR replicate weights

e wj; is the sampling weight for individual j in the first PSU of stratum /.
e [, is a Hadamard matrix for r replications; H H, = rl.

e Fay’s adjustment is f; f = 0 by default.

The adjusted sampling weight for the +th replicate is

. fw;, if H,[i,h] = -1
YIT @= Hw;, ifFH[L A =41

J
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Q Note

e These replicate weights are used to produce copies of the point estimates; hence replicates
of the point estimates. The replicates are then used to estimate the variance.

e svy brr can employ replicate-weight variables in the dataset if you svyset them. Oth-
erwise, svy brr will automatically adjust the sampling weights to produce the replicates;
however, a Hadamard matrix must be specified.

Q
BRR variance formulas

e 0 denotes the point estimates.
° 5@ denotes the ith replicate of the point estimates.

° 5(.) deontes the average of the replicates.

Default variance formula:

A~ o~

1 s s
V(0) = a7 ;{9(1) — 000w — 0}

Mean squared error (MSE) formula:

r

1 N Y
> Y {6 —0}{6;) — 6}

O) == pp 2

<)

Q Note

e The default variance formula uses deviations of the replicates from their mean.
e The MSE formula uses deviations of the replicates from the point estimates.

e BRR = is clickable; it takes you to a short help file informing you that you used the MSE

formula for BRR variance estimation. .
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> Example: svy brr: logit

Let’s revisit the previous logistic model fit, but use BRR for variance estimation:

— Second National Health and Nutrition Examination Survey

webuse nhanes2brr

svyset [pw=finalwgt], vce(brr) mse brrweight (brr_x)
pweight: finalwgt
VCE: brr
MSE: on
brrweight: brr_1 brr_2 brr_3 brr_4 brr_5 brr_6 brr_7 brr_8 brr_ 9 brr_10

brr_ 11 brr_12 brr_13 brr_14 brr_15 brr_16 brr_17 brr_18 brr_19
brr_ 20 brr_21 brr_22 brr_23 brr_24 brr_25 brr_26 brr_27 brr_28

brr_29 brr_30 brr_ 31 brr_32

Single unit: missing
Strata 1: <one>
SU 1: <observations>
FPC 1: <zero>
svy: logit highbp height weight c.age##c.age i.female i.race

(running logit on estimation sample)
BRR replications (32)

| 1 | 2 i 3 i 4 | 5
Survey: Logistic regression Number of obs = 10351
Population size = 117157513
Replications = 32
Design df = 31
F( 7, 25) = 68.79
Prob > F = 0.0000

BRR *
highbp Coef. Std. Err. t P>t [95% Conf. Interval]
height -.0322128 .0058938 -5.47 0.000 -.0442333 -.0201922
weight .04914¢64 .0032099 15.31 0.000 .0425997 .0556931
age .1540661 .020759 7.42 0.000 .1117279 .1964044
c.agefc.age -.0010731 .0002 -5.37 0.000 -.0014809 -.0006652
1l.female -.3502998 .0876341 -4.00 0.000 -.5290307 -.1715689
race

2 .3461358 .145253 2.38 0.023 .0498903 .6423814
3 .1506854 .5561909 0.27 0.788 -.9836733 1.285044
_cons -4.974867 1.17038 -4.25 0.000 -7.361872 -2.587863
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3.3 Jackknife

The jackknife
A replication method for variance estimation. It is not restricted to a specific survey design.

e Delete-1 jackknife: drop 1 PSU

e Delete-k jackknife: drop £ PSUs within a stratum

Syntax

svyset ... vce(jackknife) [mse}

Q Note

e svy jackknife can employ replicate-weight variables in the dataset if you svyset them.
Otherwise, svy jackknife will automatically adjust the sampling weights to produce the
replicates using the delete-1 jackknife methodology.

e In the delete-1 jackknife, each PSU is represented by a corresponding replicate.

e The delete-k jackknife is only supported if you already have the corresponding replicate-
weight variables for svyset. Q

For completeness, here is how the sampling weights are adjusted to produce the jackknife replicate
weights.

Delete-1 jackknife replicate weights

® wy,; is the sampling weight for individual j in PSU ¢ of stratum h.
e Drop PSU ¢* from stratum h*.

e There are ny,« replicates from stratum h*.

The adjusted sampling weight is

0, ifh=h*andi=1"*

* np . : . . s

Whii = G Whij ifh=~h*andi # 1
Wpij , otherwise
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Delete-£ jackknife replicate weights

® wy;; is the sampling weight for individual j in PSU ¢ of stratum h.
e Drop k£ PSUs from stratum h*.

e There are ¢;,- = (") replicates from stratum /*.

The adjusted sampling weight is

0 , if h=h"andis dropped
Wi = %whij , if h = h* and 7 is not dropped
Wpij , otherwise

Jackknife variance formulas

~

01, is a replicate of the point estimates from stratum /, PSU «.

0), is the average of the replicates from stratum h.

my, = (np — 1)/ny, is the delete-1 multiplier for stratum A.

my, = (ny, — k)/cpk is the delete-k multiplier for stratum .

Default variance formula:

L np
V(O) = Z(l - fh) mp Z{O(h77’) - ah}{e(h,z) — ah}/
h=1 i=1
Mean squared error (MSE) formula:
L np
V(O)=> (1= fu)mn Y {Bni— 0}{0u:) — 6}
h=1 i=1
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Q Notes

e The default variance formula uses deviations of the replicates from their mean.
e The MSE formula uses deviations of the replicates from the point estimates.

e Jknife = is clickable; it takes you to a short help file informing you that you used the MSE
formula for jackknife variance estimation.

e Make sure to specify the correct multiplier when you svyset jackknife replicate weight

variables. .

> Example: svy jackknife: logit

Here we are again with our now familiar logistic model fit, in which we use the delete-1 jackknife
variance estimator:

— Second National Health and Nutrition Examination Survey
webuse nhanes?2
svyset
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata
SU 1: psu
FPC 1: <zero>

svy Jackknife, mse: logit highbp height weight c.age##c.age i.female i.race
(running logit on estimation sample)

Jackknife replications (62)

I 1 I 2 I 3 i 4 i 5
.................................................. 50
Survey: Logistic regression
Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513
Replications = 62
Design df = 31
F( 7, 25) = 72.21
Prob > F = 0.0000
Jknife =
highbp Coef. Std. Err. t P>t [95% Conf. Interval]
height -.0322128 .0058034 -5.55 0.000 -.044049 -.0203766
weight .04914¢64 .0031957 15.38 0.000 .0426286 .0556642
age .1540661 .0208246 7.40 0.000 1115941 .1965382
c.age#c.age -.0010731 .0002007 -5.35 0.000 -.0014823 -.0006638
1l.female -.3502998 .0862108 -4.06 0.000 -.5261279 -.1744716
race

2 .3461358 .1421962 2.43 0.021 .0561247 .636147
3 .1506854 .5415594 0.28 0.783 -.9538323 1.255203
_cons -4.974867 1.171829 -4.25 0.000 -7.364828 -2.584907
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3.4 Bootstrap

The bootstrap
Even less restrictive on the design and parameters than the delete-1 jackknife.

e Resample the observed data by adjusting the sampling weights.

e svy bootstrap: requires replicate-weight variables.

Syntax

svyset ... vce(bootstrap) bsrweight (varlist) [bsn(#) mse]

Bootstrap variance formulas

e 0 denotes point estimates.

~

0; is the ith replicate of the point estimates.

e 0, is the average of the replicates.

b is the number of bootstrap samples used to generate each replicate weight variable, default
iSbsn(1).

Default variance formula:
~ b e~ ~ _ ~ _
V(o) = - > {66 — 0,10 — 0))
i=1
Mean squared error (MSE) formula:

~ - b e ~ ~ o~ ~
V(o) =~ > {66 - 0}{6;) — 6
i=1
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3.5 Successive difference replication

Successive difference replication (SDR)
Replication method designed for systematic samples whose sampling units are ordered.

e Resample the observed data by adjusting the sampling weights.

e svy sdr: requires replicate-weight variables.

Syntax

svyset ... vce(sdr) sdrweight (varlist) [mse]

SDR variance formulas

6 denotes the point estimates.

~

0; is the ith replicate of the point estimates.

e 0, is the average of the replicates.

f is the sampling fraction from the £pc () option.

Default variance formula:
~ 4 <~ _ —~ —
V(O)=(1-1)=> {6s—0,{0: -0}

T4
=1

Mean squared error (MSE) formula:

V@) = (1- ) Y (6o~ 0B, — oY
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3.6 Replicate weights

Replicate weight variable

A variable in the dataset that contains sampling weight values that were adjusted for resampling
the data.

e Typically used to protect the privacy of the survey participants.

e Eliminates the need to svyset the strata and PSU variables.

Syntax

svyset ... brrweight (varlist) [fay(#)}

svyset ... Jjkrweight (varlist [, e multiplier(#)})
svyset ... bsrweight (varlist) [bsn(#)}

svyset ... sdrweight (varlist)

4 Estimation for subpopulations

Focus on a subset of the population

e Subpopulation variance estimation

— assumes the same survey design for subsequent data collection, and
— requires the subpop () option.

e Restricted-sample variance estimation

— assumes the identified subset for subsequent data collection,
— ignores the fact that the sample size is a random quantity, and
— requires using the if or in restrictions.

Q Notes

e AsImentioned earlier, variability is governed by the survey design, so our variance estimates
assume the design is fixed. The subpop () option assumes this, too.

o If we discourage you from using if and in, why does svy allow them?

— You might want to restrict your sample because of known defects in some of the vari-
ables.

— Researchers can use if and in to conduct simulation studies by simulating survey
samples from a population dataset without having to use preserve and restore.

e We can illustrate the difference between these estimators with an SRS design.
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Total from SRS data

e Dataare yy,...,y, and S is the subset of observations.

6;(5) :{

1,ifje€ S8
0, otherwise

e Subpopulation (or restricted-sample) total:
Ys =Y 6;(S)wjy;
j=1

e Sampling weight and subpopulation size:

N . N
w; = —, NS:Z(SJ'(S)UJJ':%TLS
j=1

n

Variance of a subpopulation total
Sample n without replacement from a population comprised of the Ng subpopulation values with
N — Ng additional zeroes.

n

V(Ys) = <1 - %) - - > {5j(5)wjyj - %?5}2

Jj=1

Variance of a restricted-sample total
Sample ng without replacement from the subpopulation of Ng values.

n 2
V(P = (1) s | _1yp
Vi = (1- %) ns_ljZ@(sv{y] s
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> Example: svy, subpop ()

Suppose that we want to estimate the mean birthweight for mothers with high blood pressure. The
highbp variable (in the nmihs data) is an indicator for mothers with high blood pressure.

In the reported results, the subpopulation information is provided in the header. Although the
restricted sample results reproduce the same mean, the standard errors differ.

— National Maternal and Infant Health Survey
webuse nmihs
svyset [pw=finwgt], strata(stratan)

pweight: finwgt
VCE: linearized
Single unit: missing
Strata 1: stratan
SU 1: <observations>
FPC 1: <zero>

— Focus: birthweight, mothers with high blood pressure
describe birthwgt highbp

storage display value
variable name type format label variable label
birthwgt int %$8.0g Birthweight in grams
highbp byte %$8.0g hibp High blood pressure: l=yes, 0=no
label list hibp

hibp:
0 norm BP
1 hi BP

— Subpopulation estimation

svy, subpop (highbp): mean birthwgt
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 6 Number of obs = 9953
Number of PSUs = 9953 Population size = 3898922
Subpop. no. obs = 595
Subpop. size = 186196.7
Design df = 9947
Linearized
Mean Std. Err. [95% Conf. Interval]
birthwgt 3202.483 33.29493 3137.218 3267.748

— Restricted sample estimation

svy: mean birthwgt if highbp
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 6 Number of obs = 595
Number of PSUs = 595 Population size = 186197
Design df = 589

Linearized
Mean Std. Err. [95% Conf. Interval]
birthwgt 3202.483 28.7201 3146.077 3258.89
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5 Postestimation

Working with estimation results
Most standard postestimation commands support svy results:

® estat

® estimates

® lincom, nlcom

® predict, predictnl
® test, testnl

® margins, marginsplot, contrast, pwcompare

Survey-specific features in estat
Archer-Lemeshow goodness—of—fit

® estat gof
Coefficient of variation
® estat cv
Design and misspecification effects
® estat effects
® estat lceffects
Survey design characteristics
® estat svyset
Marginal effects
Predictive margins and marginal effects
® margins
Graph results from margins
® marginsplot
Peform ANOVA-style tests on the effects of factor variables

® contrast
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Perform pairwise comparisons of marginal means and slopes

® pwcompare

> Example: Postestimation

Recall the example in our discussion of variance estimators that we were modeling the incidence
of high blood pressure as a function of some demographic variables.

— Second National Health and Nutrition Examination Survey
webuse nhanes2
svyset
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

— Model high blood pressure on some demographics

describe highbp height weight age female race

storage display value
variable name type format label variable label
highbp byte %$8.0g 1 if BP > 140/90, 0 otherwise
height float %9.0g height (cm)
weight float %9.0g weight (kg)
age byte %$9.0g age in years
female byte %$8.0g l=female, O=male
race byte %9.0g race l=white, 2=black, 3=other

svy: logit highbp height weight c.age##c.age i.female i.race, baselevel
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513
Design df = 31
F( 7, 25) = 72.33
Prob > F = 0.0000
Linearized
highbp Coef. Std. Err. t P>t [95% Conf. Interval]
height -.0322128 .0057975 -5.56 0.000 -.0440368 -.0203888
weight .0491464 .0031926 15.39 0.000 .042635 .0556578
age .1540661 .0208216 7.40 0.000 .1116003 .196532
c.age#c.age -.0010731 .000201 -5.34 0.000 -.0014829 -.0006632
female
0 0 (base)
1 -.3502998 .0861874 -4.06 0.000 -.5260801 -.1745194
race
1 0 (base)
2 .3461358 .1414863 2.45 0.020 .0575726 .634699
3 .1506854 .4349656 0.35 0.731 -.7364327 1.037804
_cons -4.974867 1.168757 -4.26 0.000 -7.358563 -2.591172

From the Archer—Lemeshow goodness-of-fit test, we find no evidence for lack of fit.
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— Archer-Lemeshow goodness-of-fit

estat gof
Logistic model for highbp, goodness—of-fit test
F(9,23) = 1.08
Prob > F = 0.4141

svy: logit reports its coefficients in the log-odds metric; we can use the or reporting option
to get a table of the odds ratios, instead:

— Report the odds ratios
svy: logit, or baselevels
Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513
Design df = 31
F( 7, 25) = 72.33
Prob > F = 0.0000
Linearized
highbp Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
height .9683005 .0056137 -5.56 0.000 .9569187 .9798177
weight 1.050374 .0033535 15.39 0.000 1.043557 1.057236
age 1.166568 .0242898 7.40 0.000 1.118066 1.217174
c.agefc.age .9989275 .0002008 -5.34 0.000 .9985182 .9993371
female
0 1 (base)
1 .7044769 .060717 -4.06 0.000 .5909168 .8398605
race
1 1 (base)
2 1.413595 .2000043 2.45 0.020 1.059262 1.886454
3 1.162631 .5057044 0.35 0.731 .478819 2.82301
_cons .0069094 .0080754 -4.26 0.000 .0006371 .0749322

Of particular interest might be the race variable, which is a factor variable with three coded
levels:

— Value labels of the race variable
describe race

storage display value
variable name type format label variable label
race byte %$9.0g race l=white, 2=black, 3=other
label list race

race:

1 White

2 Black

3 Other

From this output we can see that the odds ratio comparing blacks with whites is clearly large
and statistically significant. We can use margins to look at the predicted probabilities of high
blood pressure to see if this represents a sizable change.

— Predictive margins
margins race, vce (unconditional)
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Predictive margins Number of obs = 10351

Expression : Pr (highbp), predict ()
Linearized
Margin Std. Err. t P>|t| [95% Conf. Interval]
race
1 .1024922 .0068574 14.95 0.000 .0885065 .1164779
2 .1337316 .0143502 9.32 0.000 .1044642 .162999
3 .1152981 .0380074 3.03 0.005 .0377814 .1928148

margins computes all sorts of marginal statistics using predicted values from the currently
fitted model. In this case, margins produces predictive margins for the probabilities of high blood
pressure for each level of race. Computationally, predictive margins are the weighted average of
the predicted values for each observation in the estimation sample. The vce (unconditional)
option specifies that margins produce linearized variance estimates for each predictive margin;
otherwise, the standard errors are computed using the delta method and are effectively conditional
on the observed predictor (independent) variables in the model. Here is a profile plot of the pre-

dictive margins;

Predictive Margins of race with 95% Cls

Pr(Highbp)

T T T
White Black Other
1=white, 2=black, 3=other

It is tempting to look at the overlapping confidence intervals (c1) and conclude that the difference
between marginal probabilities between the first two levels of race is not significant at the 5%
level. The problem with this comparison is that it does not account for the covariance between
these two point estimates. We can use the dydx () option to get margins to compute the marginal

effects of race:

— Marginal effects
. margins, vce (unconditional) dydx(race)
Average marginal effects Number of obs = 10351

Expression : Pr (highbp), predict ()
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dy/dx w.r.t. : 2.race 3.race

Linearized
dy/dx Std. Err. t P>t | [95% Conf. Interval]
race
2 .0312395 .0137273 2.28 0.030 .0032424 .0592366
3 .0128059 .0385697 0.33 0.742 -.0658575 .0914693

Note: dy/dx for factor levels is the discrete change from the base level.

Now we can conclude that there is a significant difference between the two marginal probabilities
at the 5% level. Here is a profile plot of the marginal effects:

Average Marginal Effects with 95% Cls

Effects on Pr(Highbp)
0 .05
1 1

-.05
1

—
'

T T
2.race 3.race
Effects with Respect to

The contrast command and contrast operators are new in Stata 12. Also margins has a
richer set of operators for computing discrete marginal effects. Here we use the reference category
operator r. to get margins to compare the predictive margins at each level of race to the base
level, race =1, (white):

— Marginal effects via contrasts
margins r.race, vce (unconditional)
Contrasts of predictive margins

Number of strata = 31 Design df = 31
Number of PSUs = 62
Expression : Pr(highbp), predict()
df F P>F
race
(2 vs 1) 1 5.18 0.0299
(3 vs 1) 1 0.11 0.7421
Joint 2 2.53 0.0969
Design 31

Note: F statistics are adjusted for the survey
design.
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Linearized
Contrast Std. Err. [95% Conf. Interval]
race
(2 vs 1) .0312395 .0137273 .0032424 .0592366
(3 vs 1) .0128059 .0385697 -.0658575 .0914693

The margins output looks different, but the calculated marginal effects are the same. With
contrast operators, margins adds a Wald table that tests each term in the margins list. The
effects table also indicates which levels of the factor variable are being compared. Here is a profile
plot corresponding to these marginal effects:

Contrasts of Predictive Margins of race with 95% Cls

Contrasts of Pr(Highbp)
0 .05
1 1

-.05
1

T T
(2vs 1) (Bvs1)
1=white, 2=black, 3=other
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6 Summary

1. Use svyset to specify the survey design for your data.

2. Use svydes to find strata with a single PSU.

3. Choose your variance estimation method; you can svyset it.
4. Use the svy prefix with estimation commands.

5. Use subpop () instead of i£ and in.

6. Most standard postestimation commands support svy results.
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