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Why survey data?

• Collecting data can be expensive and time consuming.

• Consider how you would collect the following data:

– Smoking habits of teenagers

– Birth weights for expectant mothers with high blood pressure

• Using stages of clustered sampling can help cut down on the expense and time.

1 Types of data

Simple random sample (SRS ) data
Observations are "independently" sampled from a data generating process.

• Typical assumption: independent and identically distributed (iid)

• Make inferences about the data generating process

• Sample variability is explained by the statistical model attributed to the data generating pro-
cess

Standard data
We’ll use this term to distinguish this data from survey data.

Correlated data
Individuals are assumed not independent.

Cause:

• Observations are taken over time

• Random effects assumptions

• Cluster sampling

Treatment:

• Time-series models

• Longitudinal/panel data models

• cluster() option
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Survey data
Individuals are sampled from a fixed population according to a survey design.

Distinguishing characteristics:

• Complex nature under which individuals are sampled

• Make inferences about the fixed population

• Sample variability is attributed to the survey design

2 Survey data characteristics

Standard data

• Estimation commands for standard data:

– proportion

– regress

• We’ll refer to these as standard estimation commands.

Survey data

• Survey estimation commands are governed by the svy prefix.

– svy: proportion

– svy: regress

• svy requires that the data is svyset.

Example: proportion and svy: proportion

The standard header for a Stata estimation command contains a title and some information about
the sample.

• proportion reports the sample size.

• svy: proportion also reports the number of strata, primary sampling units (PSU), the
estimated population size, and the design degrees of freedom.

svy reports the number of strata and PSUs, even for multistage designs, to show where the
design degrees of freedom come from.

df = NPSU −Nstrata
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*** Second National Health and Nutrition Examination Survey

. webuse nhanes2

. proportion sex

Proportion estimation Number of obs = 10351

Proportion Std. Err. [95% Conf. Interval]

sex
Male .4748333 .0049085 .4652117 .484455

Female .5251667 .0049085 .515545 .5347883

. svy: proportion sex
(running proportion on estimation sample)

Survey: Proportion estimation

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31

Linearized
Proportion Std. Err. [95% Conf. Interval]

sex
Male .4793502 .005734 .4676557 .4910447

Female .5206498 .005734 .5089553 .5323443

Notice that proportion reports different proportion values than svy: proportion. This is
due to the survey design characteristics that were svyset when the dataset was created.

2.1 Single stage designs

Single-stage syntax

svyset
[
psu

] [
weight

] [
,strata(varname)fpc(varname)

]
• Primary sampling units (PSU)

• Sampling weights – pweight

• Strata

• Finite population correction (FPC)

Sampling unit
An individual or collection of individuals from the population that can be selected for observation.

• Sampling groups of individuals is synonymous with cluster sampling.

• Cluster sampling usually results in inflated variance estimates compared to SRS.

4



Example

• High schools for sampling from the population of 12th graders.

• Hospitals for sampling from the population of newborns.

Sampling weight
The reciprocal of the probability for an individual to be sampled.

• Probabilities are derived from the survey design.

– Sampling units

– Strata

• Typically considered to be the number of individuals in the population that a sampled indi-
vidual represents.

• Reduces bias induced by the sampling design.

Example
If there are 100 hospitals in our population, and we choose 5 of them, the sampling weight is
20 = 100/5. Thus a sampled hospital represents 20 hospitals in the population.

Sampling weights correct for over/under sampling of sections in the population. Many times
this over/under sampling is on purpose.

Strata
In stratified designs, the population is partitioned into well-defined groups, called strata.

• Sampling units are independently sampled from within each stratum.

• Stratification usually results in smaller variance estimates compared to SRS.

Example

• States of the union are typically used as strata in national surveys in the US.

• Demographic information like age group, gender, and ethnicity.

Although there is potential for improving efficiency by reducing sampling variability, it is usu-
ally not very practical to stratify on demographic information.
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Finite population correction (FPC)
An adjustment applied to the variance due to sampling without replacement.

• Sampling without replacement from a finite population reduces sampling variability.

q Note

• We will see that the FPC affects the number of components in the linearized variance esti-
mator for multistage designs.

• We can use svyset to specify an SRS design.

q

Example: svyset for single-stage designs

1. auto – specifying an SRS design

2. nmihs – the National Maternal and Infant Health Survey (1988) dataset came from a strati-
fied design

3. fpc – a simulated dataset with variables that identify the characteristics from a stratified and
without-replacement clustered design

*** The auto data that ships with Stata
. sysuse auto
(1978 Automobile Data)

. svyset _n

pweight: <none>
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

*** National Maternal and Infant Health Survey

. webuse nmihs

. svyset [pw=finwgt], strata(stratan)

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: stratan

SU 1: <observations>
FPC 1: <zero>

*** Simulated data
. webuse fpc

. svyset psuid [pw=weight], strata(stratid) fpc(Nh)

pweight: weight
VCE: linearized

Single unit: missing
Strata 1: stratid

SU 1: psuid
FPC 1: Nh
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Below is a visual representation of a hypothetical population. Suppose each blue dot represents
an individual.

Population 1000

The following shows a 20% simple-random-sample. The solid symbols identify sampled indi-
viduals.

SRS sample 200
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Here we partition the population into small blocks, then sample 20% of the blocks. Not all
blocks contain the same number of individuals, so the sample size is a random quantity.

Cluster sample 20 (208 obs)

Here we partition the population into four big regions, then perform a 20% sample within each
region. The sample size is not exactly 20% of the population size due to unbalanced regions and
rounding.

Stratified sample 198
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Here we re-establish the smaller blocks within the four regions, then sample 20% of the blocks
within each region.

Stratified-cluster sample 20 (215 obs)

2.2 Multistage designs
Let’s use an example to introduce/motivate multistage designs.

Example

Purpose
Study the smoking habits of teenagers in the US.

Survey design

1. Use state for strata, and counties are the PSUs.

2. The second stage units are high schools, randomly selected within each sampled county.

3. Stratifying on gender, the final stage units are high school seniors, randomly selected within
each sampled high school.
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Multistage syntax

svyset psu
[
weight

] [
, strata(varname) fpc(varname)

][
|| ssu

[
, strata(varname) fpc(varname)

] ][
|| ssu

[
, strata(varname) fpc(varname)

] ]
...

• Stages are delimited by “||”

• SSU – secondary/subsequent sampling units

• FPC is required at stage s for stage s+ 1 to play a role in the linearized variance estimator

q Note
svyset will note that it is disregarding subsequent stages when an FPC is not specified for a

given stage.
q

Multiple stages of cluster sampling

1. PSUs are independently selected within each Stratum.

2. SSUs are independently selected within each sampled PSU.

3. . . .

• Sampling units are independently selected within each sampled SSU.

• Stratification is also allowed at each sampling stage.

Example: svyset for a multistage design

High school senior data

1. Counties are randomly selected within each State.

2. High schools are randomly selected within each sampled county.

3. Female and male seniors are randomly selected within each sampled high school.
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. webuse seniors

. svyset county [pw=sampwgt], strata(state) fpc(ncounties)
|| school, fpc(nschools)
|| _n, strata(gender) fpc(nseniors)

pweight: sampwgt
VCE: linearized

Single unit: missing
Strata 1: state

SU 1: county
FPC 1: ncounties

Strata 2: <one>
SU 2: school
FPC 2: nschools

Strata 3: gender
SU 3: <observations>
FPC 3: nseniors

FPC variables

• ncounties – number of counties within each category of state

• nschools – high schools within state county

• nseniors – high school seniors within state county school sex

2.3 Poststratification

Poststratification
A method for adjusting sampling weights, usually to account for underrepresented groups in the
population.

• Adjusts weights to sum to the poststratum sizes in the population

• Reduces bias due to nonresponse and underrepresented groups

• Can result in smaller variance estimates

Syntax

svyset ... poststrata(varname) postweight(varname)

q Note
Recall that I said it is usually not vey practical to stratify on demographic information such as

age group, gender, and ethnicity. However we can usually poststratify on these variables using the
frequency distribution information available from census data.

q
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Example: svyset for poststratification
A veterinarian has 1300 clients, 450 cats and 850 dogs. He would like to estimate the average
annual expenses of his clientele but only has enough time to gather information on 50 randomly
selected clients. Thus we have an SRS design, the sampling weight is 26 = 1300/50.

Notice that the dog clients are (on average) twice as expensive as cat clients. We can use the
above frequency distribution of dogs and cats to poststratify on animal type.

*** Cat and dog data from Levy and Lemeshow (1999)

. webuse poststrata

. bysort type: sum totexp

-> type = dog

Variable Obs Mean Std. Dev. Min Max

totexp 32 49.85844 8.376695 32.78 66.2

-> type = cat

Variable Obs Mean Std. Dev. Min Max

totexp 18 21.71111 8.660666 7.14 39.88

Here are the mean estimates with postratification:

. svyset [pw=weight], poststrata(type) postweight(postwgt) fpc(fpc)

pweight: weight
VCE: linearized

Poststrata: type
Postweight: postwgt
Single unit: missing

Strata 1: <one>
SU 1: <observations>
FPC 1: fpc

. svy: mean totexp
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 50
Number of PSUs = 50 Population size = 1300
N. of poststrata = 2 Design df = 49

Linearized
Mean Std. Err. [95% Conf. Interval]

totexp 40.11513 1.163498 37.77699 42.45327

12



Here are the mean estimates without postratification:

. svyset _n [pw=weight]

pweight: weight
VCE: linearized

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. svy: mean totexp
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 50
Number of PSUs = 50 Population size = 1300

Design df = 49

Linearized
Mean Std. Err. [95% Conf. Interval]

totexp 39.7254 2.265746 35.17221 44.27859

2.4 Strata with a single sampling unit
How do we get stuck with strata that have only one sampling unit?

• Missing data can cause entire sampling units to be dropped from the analysis, possibly leav-
ing a single sampling unit in the estimation sample.

• Certainty units

• Bad design

Big problem for variance estimation

• Consider a sample with only 1 observation

• svy reports missing standard error estimates by default

Finding these lonely sampling units
Use svydes:

• Describes the strata and sampling units

• Helps find strata with a single sampling unit
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Example: svydes
The NHANES2 data has 31 strata, each containing 2 PSUs.

*** Second National Health and Nutrition Examination Survey

. webuse nhanes2

. svydes

Survey: Describing stage 1 sampling units

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

#Obs per Unit

Stratum #Units #Obs min mean max

1 2 380 165 190.0 215
2 2 185 67 92.5 118
3 2 348 149 174.0 199
4 2 460 229 230.0 231
5 2 252 105 126.0 147
6 2 298 131 149.0 167
7 2 476 206 238.0 270
8 2 338 158 169.0 180
9 2 244 100 122.0 144

10 2 262 119 131.0 143
11 2 275 120 137.5 155
12 2 314 144 157.0 170
13 2 342 154 171.0 188
14 2 405 200 202.5 205
15 2 380 189 190.0 191
16 2 336 159 168.0 177
17 2 393 180 196.5 213
18 2 359 144 179.5 215
20 2 285 125 142.5 160
21 2 214 102 107.0 112
22 2 301 128 150.5 173
23 2 341 159 170.5 182
24 2 438 205 219.0 233
25 2 256 116 128.0 140
26 2 261 129 130.5 132
27 2 283 139 141.5 144
28 2 299 136 149.5 163
29 2 503 215 251.5 288
30 2 365 166 182.5 199
31 2 308 143 154.0 165
32 2 450 211 225.0 239

31 62 10351 67 167.0 288
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Some variables in this dataset have enough missing values to cause us the lonely PSU problem.

*** Mean high density lipids (mg/dL)

. svy: mean hdresult
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 8720
Number of PSUs = 60 Population size = 98725345

Design df = 29

Linearized
Mean Std. Err. [95% Conf. Interval]

hdresult 49.67141 . . .

Note: missing standard error because of stratum with single
sampling unit.

Use if e(sample) after estimation commands to restrict svydes’s focus on the estimation sam-
ple. The single option will further restrict output to strata with one sampling unit.

*** Restrict to the estimation sample

. svydes if e(sample), single

Survey: Describing strata with a single sampling unit in stage 1

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

#Obs per Unit

Stratum #Units #Obs min mean max

1 1* 114 114 114.0 114
2 1* 98 98 98.0 98

2

Specifying variable names with svydes will result in more information about missing values.

*** Specifying variables for more information

. svydes hdresult, single

Survey: Describing strata with a single sampling unit in stage 1

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

#Obs with #Obs with #Obs per included Unit
#Units #Units complete missing

Stratum included omitted data data min mean max

1 1* 1 114 266 114 114.0 114
2 1* 1 98 87 98 98.0 98

2
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Handling lonely sampling units

1. Drop them from the estimation sample.

2. svyset one of the ad-hoc adjustments in the singleunit() option.

3. Somehow combine them with other strata.

2.5 Certainty units
• Sampling units that are guaranteed to be chosen by the design.

• Certainty units are handled by treating each one as its own stratum with an FPC of 1.

3 Variance estimation
Stata has three variance estimation methods for survey data:

• Linearization

• Balanced repeated replication

• The jackknife

q Note

• Linearization

– Stata’s robust for complex data

– The default variance estimation method for svy.

• Replication methods

– Motivation

∗ Linearization can have poor performance in datasets with a small number of sam-
pling units.
∗ Due to privacy concerns, data providers are reluctant to release strata and sampling

unit information in public-use data. Thus some datasets now come packaged with
weight variables for use with replication methods.

– Concept

∗ Think of a replicate as a copy of the point estimates.
∗ The idea is to resample the data, computing replicates from each resample, then

using the replicates to estimate the variance.
q

16



3.1 Linearization

Linearization
A method for deriving a variance estimator using a first order Taylor approximation of the point
estimator of interest.

• Foundation: Variance of the total estimator

Syntax

svyset ...
[
vce(linearized)

]
• Delta method

• Huber/White/robust/sandwich estimator

3.1.1 Total estimator

Total estimator – Stratified two-stage design

• yhijk – observed value from a sampled individual

• Strata: h = 1, . . . , L

• PSU: i = 1, . . . , nh

• SSU: j = 1, . . . ,mhi

• Individual: k = 1, . . . ,mhij

Ŷ =
∑

whijkyhijk

V̂ (Ŷ ) =
∑

h

(1− fh)
nh

nh − 1

∑
i

(yhi − yh)
2 +∑

h

fh

∑
i

(1− fhi)
mhi

mhi − 1

∑
j

(yhij − yhi)
2

• fh is the sampling fraction for stratum h in the first stage.

• fhi denotes a sampling fraction in the second stage.

• Remember that the design degrees of freedom is

df = NPSU −Nstrata
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Example: svy: total

Let’s use our (imaginary) survey data on high school seniors to estimate the number of smokers in
the population.

. webuse seniors

. svyset

pweight: sampwgt
VCE: linearized

Single unit: missing
Strata 1: state

SU 1: county
FPC 1: ncounties

Strata 2: <one>
SU 2: school
FPC 2: nschools

Strata 3: gender
SU 3: <observations>
FPC 3: nseniors

*** Estimate number of seniors who have smoked

. svy: total smoked
(running total on estimation sample)

Survey: Total estimation

Number of strata = 50 Number of obs = 10559
Number of PSUs = 100 Population size = 20992929

Design df = 50

Linearized
Total Std. Err. [95% Conf. Interval]

smoked 8347260 331155.1 7682115 9012404

*** Use first stage without FPC

. svyset county [pw=sampwgt], strata(state)

pweight: sampwgt
VCE: linearized

Single unit: missing
Strata 1: state

SU 1: county
FPC 1: <zero>

. svy: total smoked
(running total on estimation sample)

Survey: Total estimation

Number of strata = 50 Number of obs = 10559
Number of PSUs = 100 Population size = 20992929

Design df = 50

Linearized
Total Std. Err. [95% Conf. Interval]

smoked 8347260 346853.4 7650584 9043935

18



3.1.2 Regression models

Linearized variance for regression models

• Model is fit using estimating equations.

• Ĝ() is a total estimator, use Taylor expansion to get V̂ (β̂).

Ĝ(β) =
∑

j

wjsjxj = 0

V̂ (β̂) = DV̂ {Ĝ(β)}|β=bβD′
ML models

• Ĝ() is the gradient

• sj is an equation-level score

• D is the inverse negative Hessian matrix at the solution

Least squares regression

• Ĝ() is the normal equations

• sj is a residual

• D is the inverse of the weighted outer product of the predictors—including the intercept

D = (X′WX)−1
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Example: svy: logit

Here is an example of a logistic regression, modeling the incidence of high blood pressure as a
function of some demographic variables.

*** Second National Health and Nutrition Examination Survey

. webuse nhanes2

. svyset

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

*** Model high blood pressure on some demographics

. describe highbp height weight age female

storage display value
variable name type format label variable label

highbp byte %8.0g 1 if BP > 140/90, 0 otherwise
height float %9.0g height (cm)
weight float %9.0g weight (kg)
age byte %9.0g age in years
female byte %8.0g 1=female, 0=male

. svy: logit highbp height weight age female
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Design df = 31
F( 4, 28) = 178.69
Prob > F = 0.0000

Linearized
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

height -.0316386 .0058648 -5.39 0.000 -.0435999 -.0196772
weight .0511574 .0031191 16.40 0.000 .0447959 .057519

age .0492406 .0023624 20.84 0.000 .0444224 .0540587
female -.3215716 .0884387 -3.64 0.001 -.5019435 -.1411998
_cons -2.858968 1.049395 -2.72 0.010 -4.999224 -.7187117
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3.2 Balanced repeated replication (BRR)

Balanced repeated replication
For designs with two PSUs in each of L strata.

• Compute replicates by dropping a PSU from each stratum.

• Find a balanced subset of the 2L replicates. L ≤ r < L+ 4

• The replicates are used to estimate the variance.

Syntax

svyset ... vce(brr)
[
mse

]
q Note

• The idea is to resample the data, compute replicates from each resample, then use the repli-
cates to estimate the variance.

• Balance here means that stratum specific contributions to the variance cancel out. In other
words, no stratum contributes more to the variance than any other.

• We can find a balanced subset by finding a Hadamard matrix of order r.

• When the dataset contains replicate weight variables, you do not need to worry about Hadamard
matrices.

q

For completeness, here is how the sampling weights are adjusted to produce BRR replicate weights.

BRR replicate weights

• wj – sampling weight for individual j, in the first PSU of stratum h.

• Hr is a Hadamard matrix for r replications; H ′rHr = rI.

• Fay’s adjustment f ; f = 0 by default.

The adjusted sampling weight for the ith replicate is

w∗j =

{
fwj, if Hr[i, h] = −1

(2− f)wj, if Hr[i, h] = +1
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q Note

• These replicate weights are used to produce a copy of the point estimates (replicate). The
replicates are then used to estimate the variance.

• svy brr can employ replicate weight variables in the dataset, if you svyset them. Oth-
erwise, svy brr will automatically adjust the sampling weights to produce the replicates;
however, a Hadamard matrix must be specified.

q

BRR variance formulas

• θ̂ – point estimates

• θ̂(i) – ith replicate of the point estimates

• θ(.) – average of the replicates

Default variance formula:

V̂ (θ̂) =
1

r

r∑
i=1

{θ̂(i) − θ(.)}{θ̂(i) − θ(.)}′

Mean squared error (MSE) formula:

V̂ (θ̂) =
1

r

r∑
i=1

{θ̂(i) − θ̂}{θ̂(i) − θ̂}′

q Note

• The default variance formula uses deviations of the replicates from their mean.

• The MSE formula uses deviations of the replicates from the point estimates.

• BRR * is clickable, taking you to a short help file informing you that you used the MSE
formula for BRR variance estimation.

q
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Example: svy brr: logit

Let’s revisit the previous logistic model fit, but use BRR for variance estimation.

*** Second National Health and Nutrition Examination Survey

. webuse nhanes2brr

. svyset [pw=finalwgt], vce(brr) mse brrweight(brr_*)

pweight: finalwgt
VCE: brr
MSE: on

brrweight: brr_1 brr_2 brr_3 brr_4 brr_5 brr_6 brr_7 brr_8 brr_9 brr_10
brr_11 brr_12 brr_13 brr_14 brr_15 brr_16 brr_17 brr_18 brr_19
brr_20 brr_21 brr_22 brr_23 brr_24 brr_25 brr_26 brr_27 brr_28
brr_29 brr_30 brr_31 brr_32

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. svy: logit highbp height weight age female
(running logit on estimation sample)

BRR replications (32)
1 2 3 4 5

................................

Survey: Logistic regression Number of obs = 10351
Population size = 117157513
Replications = 32
Design df = 31
F( 4, 28) = 173.94
Prob > F = 0.0000

BRR *
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

height -.0316386 .0058774 -5.38 0.000 -.0436255 -.0196516
weight .0511574 .0031267 16.36 0.000 .0447806 .0575343

age .0492406 .0023449 21.00 0.000 .0444581 .054023
female -.3215716 .0897343 -3.58 0.001 -.5045859 -.1385574
_cons -2.858968 1.044318 -2.74 0.010 -4.988868 -.729067
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3.3 Jackknife

The jackknife
A replication method for variance estimation. Not restricted to a specific survey design.

• Delete-1 jackknife: drop 1 PSU

• Delete-k jackknife: drop k PSUs within a stratum

Syntax

svyset ... vce(jackknife)
[
mse

]
q Note

• svy jackknife can employ replicate weight variables in the dataset, if you svyset them.
Otherwise, svy jackknife will automatically adjust the sampling weights to produce the
replicates using the delete-1 jackknife methodology.

• In the delete-1 jackknife, each PSU is represented by a corresponding replicate.

• The delete-k jackknife is only supported if you already have the corresponding replicate
weight variables for svyset.

q

For completeness, here is how the sampling weights are adjusted to produce the jackknife replicate
weights.

Delete-1 jackknife replicate weights

• whij – sampling weight for individual j in PSU i of stratum h.

• Dropping PSU i∗ from stratum h∗.

• nh∗ replicates from stratum h∗.

The adjusted sampling weight is

w∗hij =


0 , if h = h∗ and i = i∗

nh

nh−1
whij , if h = h∗ and i 6= i∗

whij , otherwise
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Delete-k jackknife replicate weights

• whij – sampling weight for individual j in PSU i of stratum h.

• Drop k PSUs from stratum h∗.

• ch∗ =
(

nh∗
k

)
replicates from stratum h∗.

The adjusted sampling weight is

w∗hij =


0 , if h = h∗ and i is dropped

nh

nh−k
whij , if h = h∗ and i is not dropped
whij , otherwise

Jackknife variance formulas

• θ̂(h,i) – replicate of the point estimates from stratum h, PSU i

• θh – average of the replicates from stratum h

• mh = (nh − 1)/nh – delete-1 multiplier for stratum h

• mh = (nh − k)/chk – delete-k

Default variance formula:

V̂ (θ̂) =
L∑

h=1

(1− fh)mh

nh∑
i=1

{θ̂(h,i) − θh}{θ̂(h,i) − θh}′

Mean squared error (MSE) formula:

V̂ (θ̂) =
L∑

h=1

(1− fh)mh

nh∑
i=1

{θ̂(h,i) − θ̂}{θ̂(h,i) − θ̂}′
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q Note

• The default variance formula uses deviations of the replicates from their mean.

• The MSE formula uses deviations of the replicates from the point estimates.

• Jknife * is clickable, taking you to a short help file informing you that you used the MSE
formula for jackknife variance estimation.

• Make sure to specify the correct multiplier when you svyset jackknife replicate weight
variables.

q

Example: svy jackknife: logit #1
Here we are again with our now familiar logistic model fit, using the delete-1 jackknife variance
estimator.

*** Second National Health and Nutrition Examination Survey

. webuse nhanes2

. svyset

pweight: finalwgt
VCE: linearized

Single unit: missing
Strata 1: strata

SU 1: psu
FPC 1: <zero>

. svy jknife, mse: logit highbp height weight age female
(running logit on estimation sample)

Jackknife replications (62)
1 2 3 4 5

.................................................. 50

............

Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Number of PSUs = 62 Population size = 117157513

Replications = 62
Design df = 31
F( 4, 28) = 178.53
Prob > F = 0.0000

Jknife *
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

height -.0316386 .0058674 -5.39 0.000 -.0436052 -.0196719
weight .0511574 .0031203 16.40 0.000 .0447936 .0575213

age .0492406 .0023634 20.83 0.000 .0444204 .0540607
female -.3215716 .088471 -3.63 0.001 -.5020093 -.1411339
_cons -2.858968 1.049924 -2.72 0.011 -5.000302 -.717633
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Replicate weight variable
A variable in the dataset that contains sampling weight values that were adjusted for resampling
the data using BRR or the jackknife.

• Typically used to protect the privacy of the survey participants.

• Eliminate the need to svyset the strata and PSU variables.

Syntax

svyset ... brrweight(varlist)

svyset ... jkrweight(varlist
[
, ... multiplier(#)

]
)

Example: svy jackknife: logit #2
One final look at our logistic model fit, using replicate weight variables. Notice that the stratum
and multiplier information is saved as variable characteristics.

*** Second National Health and Nutrition Examination Survey

. webuse nhanes2jknife

. svyset [pw=finalwgt], vce(jackknife) jkrweight(jkw_*)

pweight: finalwgt
VCE: jackknife
MSE: off

jkrweight: jkw_1 jkw_2 jkw_3 jkw_4 jkw_5 jkw_6 jkw_7 jkw_8 jkw_9 jkw_10
jkw_11 jkw_12 jkw_13 jkw_14 jkw_15 jkw_16 jkw_17 jkw_18 jkw_19
jkw_20 jkw_21 jkw_22 jkw_23 jkw_24 jkw_25 jkw_26 jkw_27 jkw_28
jkw_29 jkw_30 jkw_31 jkw_32 jkw_33 jkw_34 jkw_35 jkw_36 jkw_37
jkw_38 jkw_39 jkw_40 jkw_41 jkw_42 jkw_43 jkw_44 jkw_45 jkw_46
jkw_47 jkw_48 jkw_49 jkw_50 jkw_51 jkw_52 jkw_53 jkw_54 jkw_55
jkw_56 jkw_57 jkw_58 jkw_59 jkw_60 jkw_61 jkw_62

Single unit: missing
Strata 1: <one>

SU 1: <observations>
FPC 1: <zero>

. char list jkw_1[]
jkw_1[jk_multiplier]: .5
jkw_1[jk_stratum]: 1
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The standard error estimates in this example should match those of the previous (we svyset our
data using the correct multipliers and stratum identifiers).

. svy, mse: logit highbp height weight age female
(running logit on estimation sample)

Jackknife replications (62)
1 2 3 4 5

.................................................. 50

............

Survey: Logistic regression

Number of strata = 31 Number of obs = 10351
Population size = 117157513
Replications = 62
Design df = 31
F( 4, 28) = 178.53
Prob > F = 0.0000

Jknife *
highbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

height -.0316386 .0058674 -5.39 0.000 -.0436052 -.0196719
weight .0511574 .0031203 16.40 0.000 .0447936 .0575213

age .0492406 .0023634 20.83 0.000 .0444204 .0540607
female -.3215716 .088471 -3.63 0.001 -.5020093 -.1411339
_cons -2.858968 1.049924 -2.72 0.011 -5.000302 -.717633

4 Estimation for subpopulations

Focus on a subset of the population

• Subpopulation variance estimation:

– Assumes the same survey design for subsequent data collection.

– The subpop() option.

• Restricted-sample variance estimation:

– Assumes the identified subset for subsequent data collection.

– Ignores the fact that the sample size is a random quantity.

– The if and in restrictions.
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q Note

• As I mentioned earlier on, variability is governed by the survey design, so our variance
estimates assume the design is fixed. The subpop() option assumes this too.

• If we discourage you from using if and in, why does svy allow them?

– You might want to restrict your sample because of known defects in some of the vari-
ables.

– Researchers can use if and in to conduct simulation sudies by simulating survey sam-
ples from a population dataset without having to use preserve and restore.

• We can illustrate the difference between these estimators with an SRS design.
q

Total from SRS data

• Data is y1, . . . , yn and S is the subset of observations.

δj(S) =

{
1, if j ∈ S
0, otherwise

• Subpopulation (or restricted-sample) total:

ŶS =
n∑

j=1

δj(S)wjyj

• Sampling weight and subpopulation size:

wj =
N

n
, NS =

n∑
j=1

δj(S)wj =
N

n
nS

Variance of a subpopulation total
Sample n without replacement from a population comprised of the NS subpopulation values with
N −NS additional zeroes.

V̂ (ŶS) =
(
1− n

N

) n

n− 1

n∑
j=1

{
δj(S)yj −

1

n
ŶS

}2

Variance of a restricted-sample total
Sample nS without replacement from the subpopulation of NS values.

Ṽ (ŶS) =

(
1− nS

N̂S

)
nS

nS − 1

n∑
j=1

δj(S)

{
yj −

1

nS

ŶS

}2
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Example: svy, subpop()

Suppose we want to estimate the mean birth weight for mothers with high blood pressure. The
highbp variable (in the nmihs data) is an indicator for mothers with high blood pressure.

In the reported results, the subpopulation information is provided in the header. Notice that
although the restricted sample results reproduce the same mean, the standard errors differ.

*** National Maternal and Infant Health Survey

. webuse nmihs

. svyset [pw=finwgt], strata(stratan)

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: stratan

SU 1: <observations>
FPC 1: <zero>

*** Focus: birthweight, mothers with high blood pressure

. describe birthwgt highbp

storage display value
variable name type format label variable label

birthwgt int %8.0g Birthweight in grams
highbp byte %8.0g hibp High blood pressure: 1=yes,0=no

. label list hibp
hibp:

0 norm BP
1 hi BP

*** Subpopulation estimation

. svy, subpop(highbp): mean birthwgt
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 6 Number of obs = 9953
Number of PSUs = 9953 Population size = 3898922

Subpop. no. obs = 595
Subpop. size = 186196.7
Design df = 9947

Linearized
Mean Std. Err. [95% Conf. Interval]

birthwgt 3202.483 33.29493 3137.218 3267.748

*** Restricted sample estimation

. svy: mean birthwgt if highbp
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 6 Number of obs = 595
Number of PSUs = 595 Population size = 186197

Design df = 589

Linearized
Mean Std. Err. [95% Conf. Interval]

birthwgt 3202.483 28.7201 3146.077 3258.89
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5 Effects of the survey design

Design effects
Compare the sample variability between the survey design and a hypothetical SRS design of the
same sample size.

• V̂db – design based variance estimate

• V̂srs – simple random sample variance estimate

• V̂srswr – simple random sample with replacement

DEFF =
V̂db

V̂srs

, DEFT =

√
V̂db

V̂srswr

Misspecification effects
Compare the design based variance estimate to the variance from a misspecified model fit (no
weighting or other design characteristics).

• V̂db – design based variance estimate

• V̂msp – misspecified variance estimate

MEFF =
V̂db

V̂msp

, MEFT =
√

MEFF
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Example: estat effects

Suppose we want to compare the mean birth weight between mothers with high blood pressure and
mothers with normal blood pressure.

The labels on highbp cannot be used as identifiers, so I’ll just define some labels that will
better serve my purpose.

*** National Maternal and Infant Health Survey

. webuse nmihs

. svyset [pw=finwgt], strata(stratan)

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: stratan

SU 1: <observations>
FPC 1: <zero>

*** Focus: birthweight between mothers with normal and high blood pressure

. describe birthwgt highbp

storage display value
variable name type format label variable label

birthwgt int %8.0g Birthweight in grams
highbp byte %8.0g hibp High blood pressure: 1=yes,0=no

*** Labels that can also be used as Stata names

. label list hibp
hibp:

0 norm BP
1 hi BP

. label define bloodpressure 0 "BPnormal" 1 "BPhigh"

. label values highbp bloodpressure

We’ll use the over() option so that we can estimate the means for both subpopulations simulta-
neously.

*** Focus: birthweight between mothers with normal and high blood pressure

. svy: mean birthwgt, over(highbp)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 6 Number of obs = 9946
Number of PSUs = 9946 Population size = 3895562

Design df = 9940

BPnormal: highbp = BPnormal
BPhigh: highbp = BPhigh

Linearized
Over Mean Std. Err. [95% Conf. Interval]

birthwgt
BPnormal 3363.131 6.605511 3350.183 3376.079

BPhigh 3202.483 33.29483 3137.219 3267.748
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We now have a variance matrix that we can use to perform tests or compute linear combinations,
but first we’ll use estat effects to display design effects for the entire set of point estimates.

*** Design effects

. estat effects

BPnormal: highbp = BPnormal
BPhigh: highbp = BPhigh

Linearized
Over Mean Std. Err. DEFF DEFT

birthwgt
BPnormal 3363.131 6.605511 1.17952 1.08606

BPhigh 3202.483 33.29483 1.14081 1.06809

We can also use the meff and meft options to get the misspecification effects. Note that Stata had
to refit the model to get the misspecified variance. This extra model fit is only required the first
time you specify meff or meft for a given set of estimation results, estat effects posts the
newly acquired information to e() for future reference.

*** Misspecification effects require an extra model fit

. estat effects, meff meft

BPnormal: highbp = BPnormal
BPhigh: highbp = BPhigh

Linearized
Over Mean Std. Err. MEFF MEFT

birthwgt
BPnormal 3363.131 6.605511 .424756 .651733

BPhigh 3202.483 33.29483 .657389 .810796

Recall that we are interested in comparing the mean birth weight between mothers with high and
normal blood pressure. We could use the test command to accomplish this, but we’ll use lincom
to compute the difference of the means and get a 95% CI instead. We follow that up with estat

lceffects to get design and misspecification effects for our linear combination.

*** Focus: birthweight between normal and high blood pressure

*** Linear combinations

. lincom [birthwgt]BPnormal - [birthwgt]BPhigh

( 1) [birthwgt]BPnormal - [birthwgt]BPhigh = 0

Mean Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) 160.6476 34.28316 4.69 0.000 93.44569 227.8496

*** Effects for linear combinations

. estat lceffects [birthwgt]BPnormal - [birthwgt]BPhigh

( 1) [birthwgt]BPnormal - [birthwgt]BPhigh = 0

Mean Coef. Std. Err. DEFF DEFT MEFF MEFT

(1) 160.6476 34.28316 1.16519 1.07944 .656975 .81054
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q Note
Most of the postestimation commands that work after the standard estimation commands also work
after svy. The available options may differ between standard and survey results.

q

6 Summary
1. Use svyset to specify the survey design for your data.

2. Use svydes to find strata with a single PSU.

3. Choose your variance estimation method; you can svyset it.

4. Use the svy prefix with estimation commands.

5. Use subpop() instead of if and in.

6. Use estat to get design effects.
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