Precision and sample-size analysis for confidence intervals

ciwidth

January 23, 2020

Overview

- Introduction
 - Precision and sample-size analysis
 - Overview of ciwidth
 - Inference using confidence intervals
- Examples
 - One population mean
 - One population variance
 - Two paired means
 - Two independent means
 - Sensitivity analysis
 - Custom tables and precision graphs
 - Adding your own methods to ciwidth
- Summary

Introduction to precision and sample-size analysis

- Hypothesis tests for inference
 - Test that a population parameter of interest is equal, or smaller, or larger than a specified value
 - Power analysis estimates the required sample size for a future study to ensure that the test will have higher power (chance) to detect when the parameter estimate is different from the specified value

- Hypothesis tests for inference
 - Test that a population parameter of interest is equal, or smaller, or larger than a specified value
 - Power analysis estimates the required sample size for a future study to ensure that the test will have higher power (chance) to detect when the parameter estimate is different from the specified value
- Confidence intervals for inference
 - Estimate an interval for the population parameter
 - Precision analysis estimates the required sample size for a future study to ensure that the estimated interval will have the desired precision so that it is not too wide

- Hypothesis tests for inference
 - Test that a population parameter of interest is equal, or smaller, or larger than a specified value
 - Power analysis estimates the required sample size for a future study to ensure that the test will have higher power (chance) to detect when the parameter estimate is different from the specified value
- Confidence intervals for inference
 - Estimate an interval for the population parameter
 - Precision analysis estimates the required sample size for a future study to ensure that the estimated interval will have the desired precision so that it is not too wide
- Like hypothesis tests, confidence intervals are data dependent and so their precision will vary across samples
- Use precision and and sample-size analysis to account for the variability, and plan a study with the desired precision
- Precision and sample-size analysis for confidence intervals is analogous to power and sample-size analysis for hypothesis tests

- How many subjects would be required to ensure that the confidence interval for the mean is no wider than 2?
- If we only have enough resources to include 40 subjects in our study, what kind of precision would we expect our confidence interval to have?
- How would this precision change as we increase our sample size to 50, 60, and 70?
- The ciwidth command will help you answer these questions and more

Overview of ciwidth

- Perform precision and sample-size analysis for confidence intervals
 - Population mean
 - Population variance
 - Comparison of means from independent samples
 - Comparison of means from paired samples
- Compute
 - Sample size
 - CI precision
 - Probability of CI precision
- Perform sensitivity analysis
 - Present results graphically or in a table
 - Customize graphs and tables
- Add your own method
 - Easily create tables and graphs as you would with official ciwidth commands

Computation of a confidence interval

Confidence intervals

Computation

- Confidence level
 - 95%, 97%, other
- Sample size
 - How many participants can you afford to have in your study?
- Standard deviation
 - How did weight loss vary in the sample?

Confidence intervals

Computation

- Confidence level
 - 95%, 97%, other
- Sample size
 - How many participants can you afford to have in your study?
- Standard deviation
 - How did weight loss vary in the sample?
- Precision
 - Measured by the CI width
 - Ensured by the probability of CI width

A 100*(1-
$$\alpha$$
)% CI:
[$\bar{x} - t_{n-1,1-\alpha/2}(\frac{s}{\sqrt{n}}), \bar{x} + t_{n-1,1-\alpha/2}(\frac{s}{\sqrt{n}})$]

α = significance level
s = sample standard deviation
n = sample size

A 100*(1-
$$\alpha$$
)% CI:
[$\bar{x} - t_{n-1,1-\alpha/2}(\frac{s}{\sqrt{n}}), \bar{x} + t_{n-1,1-\alpha/2}(\frac{s}{\sqrt{n}})$]

α = significance level
s = sample standard deviation
n = sample size

 $\left[\bar{x} - t_{n-1,1-\alpha/2} \left(\frac{s}{\sqrt{n}} \right), \bar{x} + t_{n-1,1-\alpha/2} \left(\frac{s}{\sqrt{n}} \right) \right]$

Sample mean	Width	Sample mean ± half-width	95% Confidence interval
5	10	5-5, 5+5	0 10
5	8	5-4,5+4	19
5	4	5-2, 5+2	3 7

14

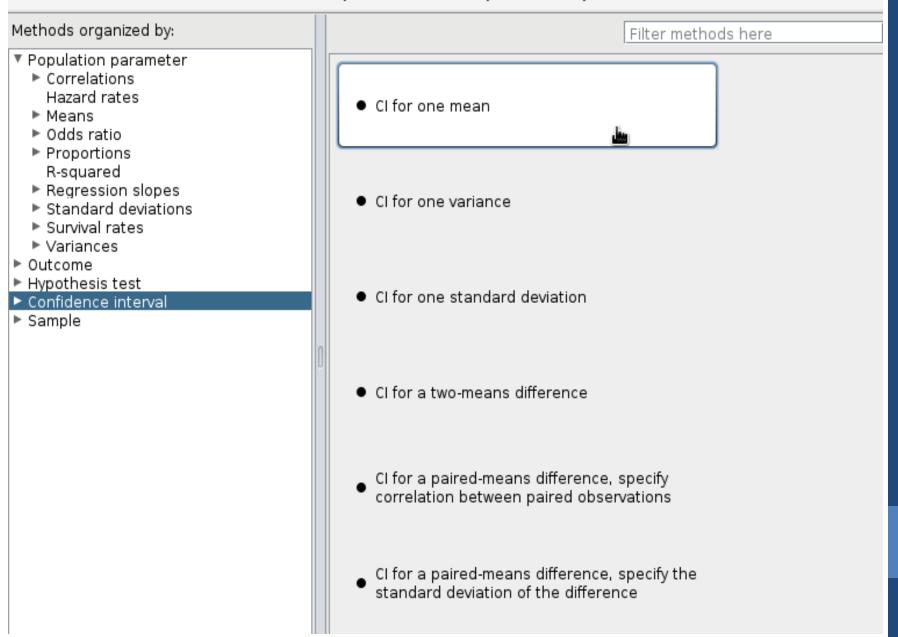
$$\left[\bar{x} - t_{n-1,1-\alpha/2}\left(\frac{s}{\sqrt{n}}\right), \bar{x} + t_{n-1,1-\alpha/2}\left(\frac{s}{\sqrt{n}}\right)\right]$$

- Choose the values of the confidence level $(100^*(1-\alpha))$, sample standard deviation, and sample size
- that will provide the desired level of precision, given the resources you have

A first example

Precision analysis for a population mean

• How long do plug-in air fresheners last?


 How many air fresheners would we need to test to obtain a two-sided 95% CI for the mean scent duration with a width no larger than 4 days?

Stata/MP 16.0

cs Statistics User Window Help		
Summaries, tables, and tests	• - (8
Linear models and related	•	**
Binary outcomes	•	
Ordinal outcomes	•	
Categorical outcomes	•	
Count outcomes	•	
Fractional outcomes	•	
Generalized linear models	•	
Choice models	•	
Time series	•	
Multivariate time series	•	
Spatial autoregressive models		
Longitudinal/panel data	•	
Multilevel mixed-effects models	•	
Survival analysis	•	
Epidemiology and related	•	
Endogenous covariates	•	
Sample-selection models	•	
Treatment effects	•	
SEM (structural equation modeling)	•	
LCA (latent class analysis)	•	
FMM (finite mixture models)	•	
IRT (item response theory)		
Multivariate analysis	•	
Survey data analysis	•	
Lasso	•	
Meta-analysis		
Multiple imputation		
Nonparametric analysis	•	
Exact statistics	•	
Resampling	•	
Power, precision, and sample size		
Bayesian analysis		

Power, precision, and sample-size analysis

Main Table Graph Iteration		
Compute: Sample size	 * Accepts numlist <u>(Example</u>) 	<u>s)</u>
Confidence 95 * Confidence level	Specify probability of achieving target CI width * Probability of CI width	
Sample size Allow fractional sample size		
Precision * CI width	Standard deviation 1 * Standard deviation Assume a known standard deviation	
* Finite population correction:		
Sides: Two-sided Cl		
Treat number lists in starred(*) options as parallel		
? C 🗈	Submit Cancel OK	

Main Table Graph Iteration	
Compute: Sample size	 ★ Accepts numlist (Examples)
Sonfidence * Confidence level *	Specify probability of achieving target CI width 0.96 * Probability of CI width
Sample size Allow fractional sample size	
Precision * CI width	Standard deviation 6 * Standard deviation Assume a known standard deviation
* Finite population correction:	
Sides: Two-sided Cl	
Treat number lists in starred(*) options as parallel	
? C	Submit Cancel OK

×

_

Computing sample size for a population mean

. ciwidth onemean, sd(6) probwidth(0.96) width(4)

```
Performing iteration ...
```

```
Estimated sample size for a one-mean CI
Student's t two-sided CI
```

Study parameters:

	level	=	95.00
Pr	width	=	0.9600
	width	=	4.0000
	sd	=	6.0000

Estimated sample size:

N = 51

Computing CI width for a population mean

How big of an interval width would we expect if we could only afford to sample 30 air fresheners?

Computing CI width for a population mean

. ciwidth onemean, sd(6) probwidth(0.96) n(30)

Estimated width for a one-mean CI Student's t two-sided CI

Study parameters:

level	=	95.00
N	=	30
Pr_width	=	0.9600
sd	=	6.0000

Estimated width:

width = 5.4945

Computing probability of CI width for a population mean

What's the probability that we'll obtain a desired CI width of 4, if we only sample 30 air fresheners?

Computing probability of CI width for a population mean

. ciwidth onemean, sd(6) width(4) n(30)

Estimated probability of width for a one-mean CI Student's t two-sided CI

Study parameters:

level =	95.00
N =	30
width =	4.0000
sd =	6.0000

Estimated probability of width:

Pr width = 0.2285

Syntax overview for a one-mean CI

- Estimate sample size
 - ciwidth onemean, sd(6) probwidth(0.96) width(4)
- Estimate CI width
 - ciwidth onemean, sd(6) probwidth(0.96) n(30)
- Estimate probability of CI width
 - ciwidth onemean, sd(6) width(4) n(30)

General syntax for ciwidth

- Estimate sample size
 - ciwidth method ..., probwidth() width() ...
- Estimate CI width
 - ciwidth method ..., probwidth() n()...
- Estimate probability of CI width
 - ciwidth method ..., width() n()...

method:

onemean

onevariance

twomeans

pairedmeans

usermethod

General syntax for ciwidth

- Estimate sample size
 - ciwidth method ..., probwidth(numlist) width(numlist) [options]
- Estimate CI width
 - ciwidth method ..., probwidth(numlist) n(numlist) [options]
- Estimate probability of CI width
 - ciwidth method ..., width(numlist) n(numlist) [options]

method:	options:
onemean	table
onevariance	graph
twomeans	lower
pairedmeans	upper
usermethod	

Finite populations

Infinite vs. finite population

- We've been performing our analyses for a confidence interval for the mean scent duration of all plug-in air fresheners (infinite population).
- But the parameters you are estimating may be for a fixed population. For example, there are only 500 models of the Bugatti Chiron. (finite population).
 - Apply a finite population correction with the **fpc()** option.

Finite population

- Suppose you work for this car manufacturer and you're designing a study to estimate a confidence interval for the maximum speed of this limited edition model.
- What is the largest estimated width for the maximum speed you'll obtain if you only sample 50 out of the 500 cars that were manufactured, assuming a standard deviation of 16 mph?

Compute CI width using a finite population correction

. ciwidth onemean, sd(16) probwidth(0.90) n(50) fpc(500)

Estimated width for a one-mean CI Student's t two-sided CI

Study parameters:

level	=	95.00
N	=	50
Pr_width	=	0.9000
sd	=	16.0000
fpc	=	500.0000

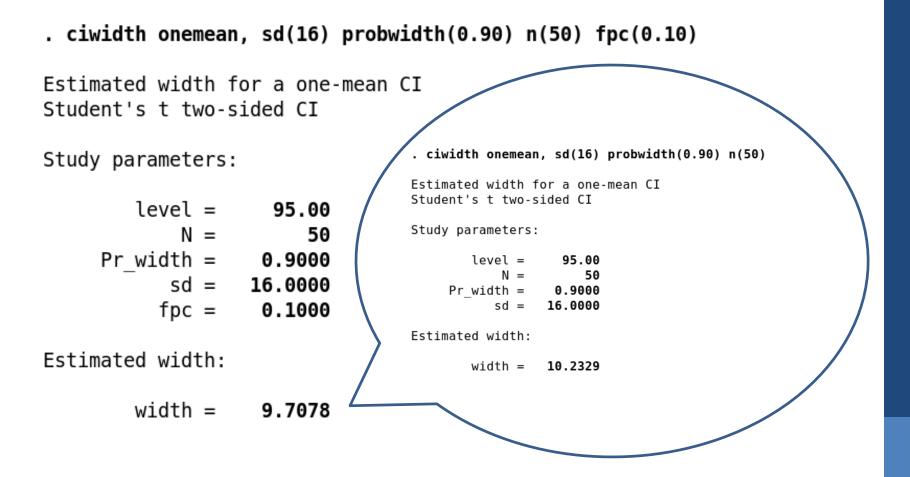
Estimated width:

width = 9.7078

Alternative specification for a finite population correction

. ciwidth onemean, sd(16) probwidth(0.90) n(50) fpc(0.10)

Estimated width for a one-mean CI Student's t two-sided CI


Study parameters:

level	=	95.00
N	=	50
Pr_width	=	0.9000
sd	=	16.0000
fpc	=	0.1000

Estimated width:

width = 9.7078

Finite population correction

Back to infinite populations of air fresheners, and on to one-sided confidence intervals

One-sided confidence intervals

- You may want one-sided confidence intervals if
 - You are certain of the direction of an effect.
 - Examples include toxicity studies and analysis of occurences of adverse drug reaction data(Chow, Shao, Wang, & Lokhnygina, 2017).
 - You are mainly interested in either the lower or upper limit.
 - An example would be product quality and reliability (Meeker, Hahn, & Escobar, 2017).
- In general, use caution with one-sided confidence intervals.
 - There have been cases where the placebo effect is superior to the actual drug effect (Meeker, Hahn, & Escobar, 2017).

Lower 95% confidence interval

. ciwidth onemean, sd(6) probwidth(0.96) n(30) lower

Estimated width for a one-mean CI Student's t lower CI

Study parameters:

level	=	95.00
N	=	30
Pr_width	=	0.9600
sd	=	6.0000

Estimated width:

width = 2.2823

Two-sided 90% confidence level

. ciwidth onemean, sd(6) probwidth(0.96) n(30) level(90)

Estimated width for a one-mean CI Student's t two-sided CI

Study parameters:

level =	90.00
N =	30
Pr_width =	0.9600
sd =	6.0000

Estimated width:

width = 4.5647

Sensitivity analysis

- Precision and sample-size analysis is centered on a prospective study, and we are obtaining estimates based on values that are truly unknown
 - Estimates may come from historical data or pilot studies
- Sensitivity analysis is used to investigate the effect of varying study parameters on CI precision, probability of CI width, sample size, and other components of a study.
 - In Stata, you can perform sensitivity analysis with tables and graphs.

Computing probability of CI width for a population mean

. ciwidth onemean, sd(6) width(4) n(30)

Estimated probability of width for a one-mean CI Student's t two-sided CI

Study parameters:

level =	95.00
N =	30
width =	4.0000
sd =	6.0000

Estimated probability of width:

Pr width = 0.2285

Probability of CI width for a range of standard deviations

. ciwidth onemean, sd(6 7 8 9) width(4) n(45)

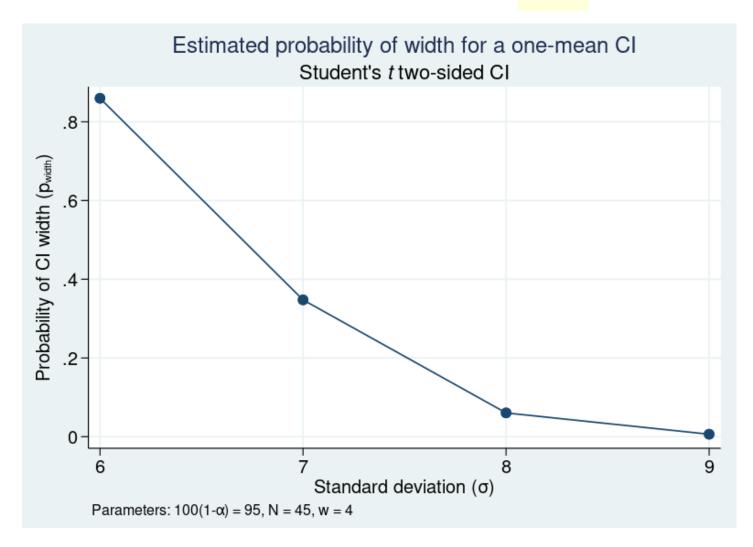

level	N F	Pr_width	width	sd
95 95	45 45	.8599 .3476	4 4	6 7
95	45	.06042	4	8
95	45	.00627	4	9

Table and graph for sensitivity analysis

. ciwidth onemean, sd(6 7 8 9) width(4) n(45) table graph
 <output omitted>

Sensitivity analysis graph

. ciwidth onemean, sd(6 7 8 9) width(4) n(45) graph

Probability of CI width for ranges of multiple parameters

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65)

level	N F	Pr_width	width	sd
95	45	.8599	4	6
95	45	.3476	4	7
95	45	.06042	4	8
95	45	.00627	4	9
95	55	.9918	4	6
95	55	.7419	4	7
95	55	.2336	4	8
95	55	.03245	4	9
95	65	.9999	4	6
95	65	.9599	4	7
95	65	.5635	4	8
95	65	. 1295	4	9

Tables for sensitivity analysis

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65) table(, separator(4))

level	Ν	Pr_width	width	sd
95	45	. 8599	4	6
95	45	.3476	4	7
95	45	.06042	4	8
95	45	.00627	4	9
95	55	.9918	4	6
95	55	.7419	4	7
95	55	.2336	4	8
95	55	.03245	4	9
95	65	. 9999	4	6
95	65	.9599	4	7
95	65	.5635	4	8
95	65	. 1295	4	9

Reordering table columns

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65) table(N sd Pr_width width, separator(4))

N	sd F	r_width	width
45	6	.8599	4
45	7	.3476	4
45	8	.06042	4
45	9	.00627	4
55	6	.9918	4
55	7	.7419	4
55	8	.2336	4
55	9	.03245	4
65	6	.9999	4
65	7	.9599	4
65	8	.5635	4
65	9	.1295	4

Modifying column labels and widths

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65) table(N sd:"S.D." Pr_width:"Pr(CI width)"
> width:"CI width", widths(. 14 16 12) separator(4))

N	S.D.	Pr(CI width)	CI width
45	6	.8599	4
45	7	.3476	4
45	8	.06042	4
45	9	.00627	4
55	6	.9918	4
55	7	.7419	4
55	8	.2336	4
55	9	.03245	4
65	6	. 9999	4
65	7	.9599	4
65	8	.5635	4
65	9	. 1295	4

ciwidth

- We computed the following for the CI for a population mean
 - Sample size
 - Confidence-interval width
 - Probability of confidence-interval width
- We created a graph and tables for sensitivity analysis
- We can perform precision and sample-size analysis for CIs for any of the following
 - A population mean
 - A population variance
 - A difference between two independent means
 - A difference between paired means

Precision analysis for a population variance

Computing probability of CI width for a population variance

. ciwidth onevariance 9, width(6) n(100)

Computing probability of CI width for a population variance

. ciwidth onevariance 9, width(6) n(100)

Estimated probability of width for a one-variance CI Chi-squared two-sided CI

Study parameters:

level =	95.00
N =	100
width =	6.0000
v =	9.0000

Estimated probability of width:

Pr_width = 0.8572

Computing sample size for a population standard deviation

. ciwidth onevariance 3, probwidth(0.96) width(2) sd

Performing iteration ...

Estimated sample size for a one-standard-deviation CI Chi-squared two-sided CI

Study parameters:

	level	=	95.00
Pr	width	=	0.9600
	width	=	2.0000
	S	=	3.0000

Estimated sample size:

N = 31

Sensitivity analysis for a population standard deviation

. ciwidth onevariance (3 4 5 6), probwidth(0.96) width(2) sd

Performing iteration ...

Estimated sample size for a one-standard-deviation CI Chi-squared two-sided CI

level	N Pr	_width	width	S
95 95	31 48	.96 .96	2 2	3 4
95	68	.96	2	5
95	93	.96	2	6

Paired samples

Paired-means for bad (LDL) cholesterol levels

Cholesterol _{Before} (mg/dL)	Cholesterol _{After} (mg/dL)	Difference
167	140	-27
149	138	-11
192	194	2
200	180	-20
162	162	0
52	41	67.25

Mean	129.58	111.96	-17.62
S.D.	52.27	42.15	6.47

56

CI for a paired-means difference

. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(18)

CI for a paired-means difference

. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(18)

Performing iteration ...

```
Estimated sample size for a paired-means-difference CI
Student's t two-sided CI
```

Study parameters:

level =	95.0000
Pr_width =	0.9800
width =	6.0000
sd_d =	18.0000

Estimated sample size:

N = 174

Fractional sample sizes

. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(18) nfractional

```
Performing iteration ...
```

```
Estimated sample size for a paired-means-difference CI
Student's t two-sided CI
```

Study parameters:

level =	95.0000
Pr_width =	0.9800
width =	6.0000
sd d =	18.0000

Estimated sample size:

N = 173.0371

Sample-size determination using the correlation

. ciwidth pairedmeans, width(6) probwidth(0.98) sd1(16) sd2(23) corr(0.78)

Performing iteration ...

Estimated sample size for a paired-means-difference CI Student's t two-sided CI

Study parameters:

level =	95.0000	sd1 =	16.0000
Pr_width =	0.9800	sd2 =	23.0000
width =	6.0000	corr =	0.7800
sd d =	14.5231		

Estimated sample size:

N = 119

CI for a difference of two means

- Let's consider the cholesterol example, but instead randomly sample individuals who take cholesterol medication and individuals who don't
 - Two independent samples
- Group sizes may differ

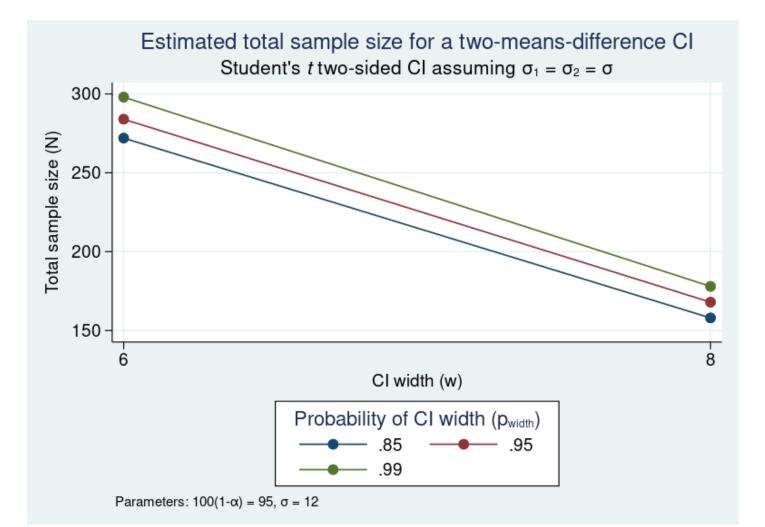
CI for a difference of two means

. ciwidth twomeans, width(6) probwidth(0.99) sd(12)

Performing iteration ...

```
Estimated sample sizes for a two-means-difference CI
Student's t two-sided CI assuming sd1 = sd2 = sd
```

Study parameters:

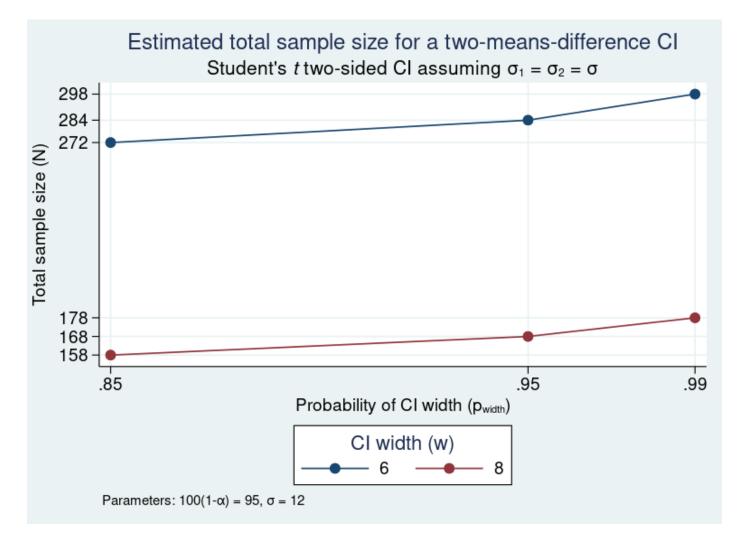

95.00	_ =	level
0.9900	ι =	Pr_width
6.0000	ι =	width
12.0000	=	sd

Estimated sample sizes:

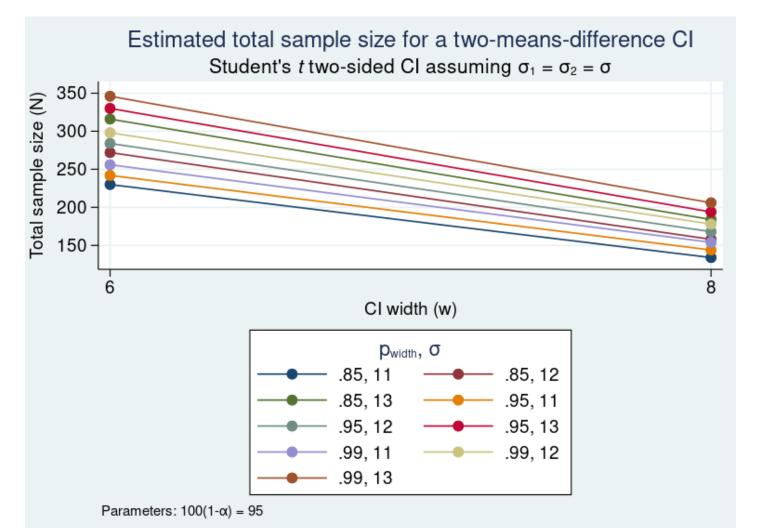
		Ν	=	298
Ν	per	group	=	149


Graphs for sensitivity analysis

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12) graph

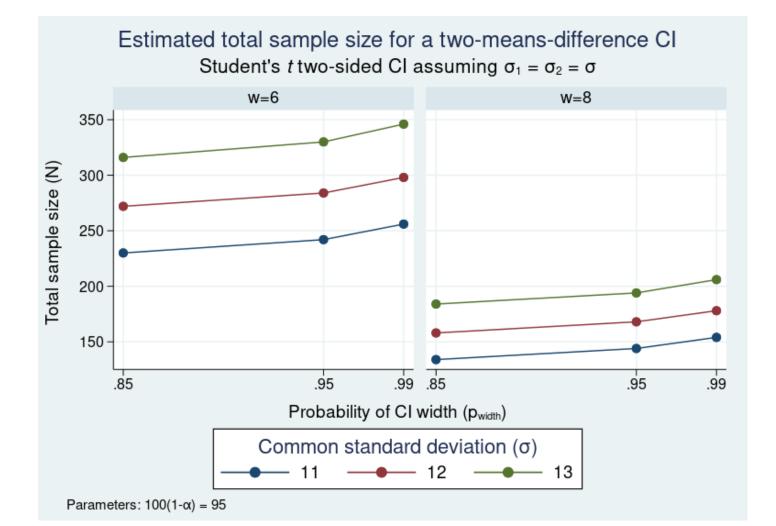

Define the x axis

- . ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12)
- > graph(xdimension(Pr_width))


Label distinct values on the y axis

- . ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12)
- > graph(xdimension(Pr_width) yvalues)

Specifying multiple values for multiple parameters


- . ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99)
- > sd(11 12 13) graph

66

Create subgraphs for values of width

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99)
> sd(11 12 13) graph(bydimension(width) legend(rows(1)))

Experimental group (Medication)

Control group (No medication)

. ciwidth twomeans, width(6) sd(12) nratio(0.5) probwidth(0.99)

Performing iteration ...

Estimated sample sizes for a two-means-difference CI Student's t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level =	95.00
Pr_width =	0.9900
width =	6.0000
sd =	12.0000
N2/N1 =	0.5000

Estimated sample sizes:

Ν	=	333
Ν1	=	222
Ν2	=	111

. ciwidth twomeans, width(6) sd(12) nratio(0.5) probwidth(0.98)

Performing iteration ...

Estimated sample sizes for a two-means-difference CI Student's t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level =	95.00
Pr_width =	0.9800
width =	6.0000
sd =	12.0000
N2/N1 =	0.5000

Estimated sample sizes:

N =	326
N1 =	217
N2 =	109
N2/N1 =	0.5023

. ciwidth twomeans, width(6) sd(12) n1(218) n2(109)

Estimated probability of width for a two-means-difference CI Student's t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level	=	95.00
N	=	327
N1	=	218
N2	=	109
N2/N1	=	0.5000
width	=	6.0000
sd	=	12.0000

Estimated probability of width:

Pr_width = 0.9830

. ciwidth twomeans, width(6) sd(12) n1(217) n2(108)

Estimated probability of width for a two-means-difference CI Student's t two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level	=	95.00
Ν	=	325
N1	=	217
N2	=	108
N2/N1	=	0.4977
width	=	6.0000
sd	=	12.0000

Estimated probability of width:

Pr width = 0.9778

Compute one sample size given another

. ciwidth twomeans, width(10) sd(12) n2(60) compute(n1) probwidth(0.98)

Compute one sample size given another

. ciwidth twomeans, width(10) sd(12) n2(60) compute(n1) probwidth(0.98)

Performing iteration ...

```
Estimated sample sizes for a two-means-difference CI
Student's t two-sided CI assuming sd1 = sd2 = sd
```

Study parameters:

level =	95.00
Pr_width =	0.9800
width =	10.0000
sd =	12.0000
N2 =	60

Estimated sample sizes:

Ν	=	117
Ν1	=	57

Known standard deviations

. ciwidth twomeans, width(10) sd(12) n2(60) compute(n1) knownsds

Estimated sample sizes for a two-means-difference CI Normal two-sided CI assuming sd1 = sd2 = sd

Study parameters:

level =	95.00
width =	10.0000
sd =	12.0000
N2 =	60

Estimated sample sizes:

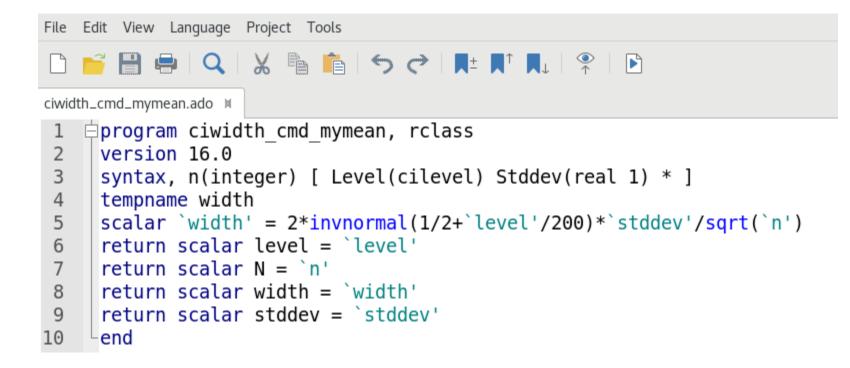
Ν	=	96
Ν1	=	36

Do you have another method in mind?

Adding your own method to ciwidth

Adding your own methods to **ciwidth** is easy. Suppose you want to add a method called **mymethod** to **ciwidth**. Simply

- write an r-class program called ciwidth_cmd_mymethod that computes sample size, probability of CI width, or CI width and follows ciwidth's convention for naming common options and storing results; and
- 2. place the program where Stata can find it.


You are done. You can now use **mymethod** within **ciwidth** like any other official **ciwidth** method.

program ciwidth_cmd_mymean, rclass
version 16.0

program ciwidth_cmd_mymean, rclass
version 16.0
syntax, n(integer) [Level(cilevel) Stddev(real 1) *]

program ciwidth_cmd_mymean, rclass version 16.0 syntax, n(integer) [Level(cilevel) Stddev(real 1) *] tempname width scalar `width' = 2*invnormal(1/2+`level'/200)*`stddev'/sqrt(`n')

```
program ciwidth_cmd_mymean, rclass
version 16.0
syntax, n(integer) [ Level(cilevel) Stddev(real 1) * ]
tempname width
scalar `width' = 2*invnormal(1/2+`level'/200)*`stddev'/sqrt(`n')
return scalar level = `level'
return scalar N = `n'
return scalar N = `n'
return scalar width = `width'
return scalar stddev = `stddev'
end
```


ciwidth mymean : compute CI width

. ciwidth mymean, level(95) n(10) stddev(0.25)

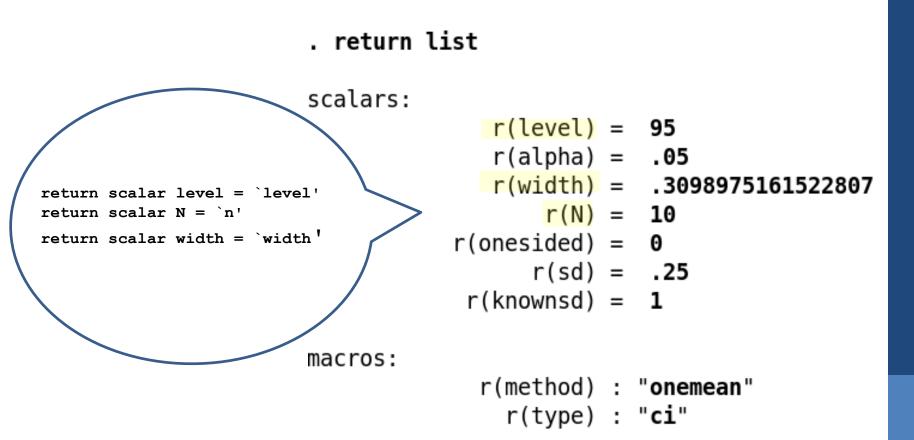
Estimated width Two-sided CI

level	Ν	width
95	10	.3099

ciwidth onemean : compute CI width

. ciwidth onemean, level(95) n(10) sd(0.25) knownsd

Estimated width for a one-mean CI Normal two-sided CI


Study parameters:

level	=	95.00
Ν	=	10
sd	=	0.2500

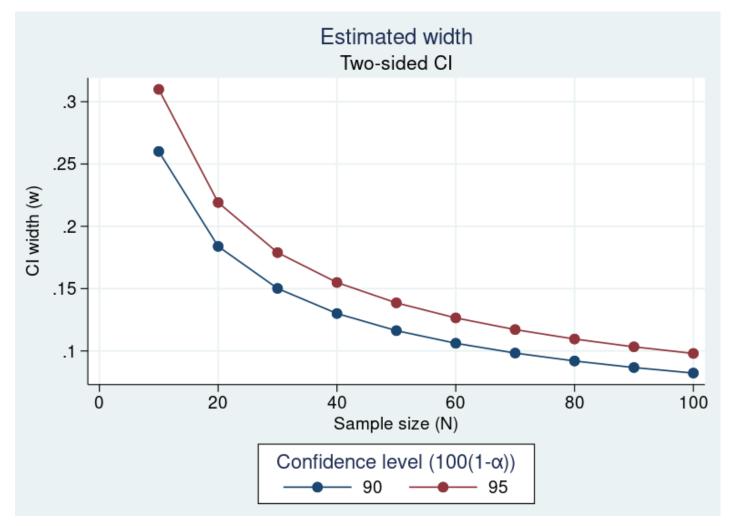
Estimated width:

width = 0.3099

Naming conventions for stored results

ciwidth mymean : Specifying multiple values

We can also compute results for multiple sample sizes and confidence levels without any additional effort on our part:


. ciwidth mymean, level(90 95) n(10 20) stddev(0.25) table(,separator(2))

Estimated width Two-sided CI

level	Ν	width
90	10	.2601
90	20	.1839
95	10	.3099
95	20	.2191

ciwidth mymean : Automatic graphs

. ciwidth mymean, level(90 95) n(10(10)100) stddev(0.25) graph

87

Customizing your ciwidth command

- Add method-specific options and set them up to allow multiple values
- Tables
 - Change column labels, formats, and widths to modify the look and contents for the table created by default

Graphs

- Change the default column labels
- Use different symbols to label the results

Summary

- Perform precision and sample-size analysis for CIs for
 - A population mean
 - A population variance
 - A difference between two independent means
 - A difference between paired means
- Compute
 - Sample size, CI width, and probability of CI width
- Perform sensitivity analysis graphically and with a table
- Implement your own method, and easily create tables and graphs as if it were an official ciwidth command

References

- Dixon, W. J., and F. J. Massey, Jr. 1983. *Introduction to Statistical Analysis*. 4th ed. New York: McGraw–Hill.
- Chow, Shein-Chung, J. Shao, H. Wang, and Y. Lokhnygina. 2017. Sample Size Calculations in Clinical Research. 3rd ed. Boca Raton: Taylor & Francis.
- Meeker, W. Q., G. J. Hahn, and L. A. Escobar. 2017. Statistical Intervals: A Guide for Practitioners and Researchers. 2nd ed. Hoboken, NJ: Wiley.

Thank you !!