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Power and sample-size analysis for 
hypothesis testing

Suppose we want to test whether students who take 
an SAT coaching program improve their SAT scores 
by 50 points, on average.

• How many students would we need to recruit to detect a 
50-point difference in average SAT scores? 

• What is the estimated power of the study if we can only 
recruit 60 students?
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Precision and sample-size analysis for 
confidence intervals 

Suppose we want to construct a confidence interval 
for the average change in SAT scores for students 
taking an SAT coaching program.

• If we only have enough resources to include 60 students in 
our study, what kind of precision would we expect our 
confidence interval to have?

• How would this precision change as we increase our sample 
size to 70, 80, or 90?
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Overview

• Introduction to power, precision, and sample-size analysis

• Power and sample-size analysis for hypothesis testing

• Precision and sample-size analysis for confidence intervals

• Summary
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Introduction to power, precision, 
and sample-size analysis
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Power and sample-size analysis

•Hypothesis tests for inference        

• Test that a population parameter of interest is equal, or 
smaller, or larger than a specified value.

•Typically, we take the following steps

1. Obtain a random sample and compute an estimate of 
the parameter of interest

2. Calculate a test statistic 

3. Reject the null hypothesis or fail to reject it 
6



Power and sample-size analysis

•Power is the probability of correctly rejecting the 
null hypothesis when it is false.

•Power analysis estimates the required sample size 
for a future study to ensure that the test will have 
high power (chance) to detect when the parameter 
estimate is different from the specified value.
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Precision and sample-size analysis

•Confidence intervals for inference 
• Estimate a plausible range of values for the population 

parameter

• Like hypothesis tests, confidence intervals are data 
dependent and so their precision will vary across 
samples.

•Use precision and sample-size analysis to account 
for the variability, and plan a study with the 
desired precision.
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Precision and sample-size analysis

•Precision analysis estimates the required sample 
size for a future study to ensure that the estimated 
interval will have the desired precision, so that it is 
not too wide

•Precision and sample-size analysis for confidence 
intervals is analogous to power and sample-size 
analysis for hypothesis tests
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Power and sample-size analysis
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Components of power and sample-size analysis

Study design

•One sample

•Two independent samples

•Paired samples

•Possibly matched on selected characteristics
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Components of power and sample-size analysis

Statistical method

•One-sample t test

•Two-sample t test

•Paired t test 

• Log-rank test

•And more
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Components of power and sample-size analysis

Significance level

•Typically denoted α

•Upper bound for the probability of incorrectly 
rejecting the null hypothesis.

Power

•Typically denoted 1 - β

•Probability of correctly rejecting the null 
hypothesis when the null hypothesis is false.
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Components of power and sample-size analysis 

Effect size

•Magnitude of the effect of interest 

•Examples 

•Difference in proportions

•Odds ratio

• Log hazard-ratio
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Components of power and sample-size analysis 

Sample size

• Simple random sample: N = number of observations

•CRD:  N = number of clusters and cluster size

• Survival-time data: N = number of events
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Power and sample-size analysis

One sample

• Given a power of 90%, what is the smallest detectable difference 
in average SAT scores if we only recruit 60 students?
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Power and sample-size analysis

One sample

• Given a power of 90%, what is the smallest detectable difference 
in average SAT scores if we only recruit 60 students?

Survival data

• How many subjects would we need to ensure that a hazard ratio 
of 0.5 can be detected with a power of 90% with a two-sided,  
5%-level test?
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Power and sample-size analysis

One sample

• Given a power of 90%, what is the smallest detectable difference 
in average SAT scores if we only recruit 60 students?

Survival data

• How many subjects would we need to ensure that a hazard ratio 
of 0.5 can be detected with a power of 90% with a two-sided,  
5%-level test?

Matched case-control data

• What is the estimated power of detecting an odds ratio of 1.7 
with a 5%-level two-sided test, if we have 80 case-control pairs?

The power command will help you answer these questions and more.
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A first example
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Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

• On average, students who don’t take any coaching programs 
improve their SAT scores by 15 points when retaking the SAT, 
with a standard deviation of 40 points.
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Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

• On average, students who don’t take any coaching programs 
improve their SAT scores by 15 points when retaking the SAT, 
with a standard deviation of 40 points.

• Suppose a coaching program claims to improve SAT scores by 
40 points.
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Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

• On average, students who don’t take any coaching programs 
improve their SAT scores by 15 points when retaking the SAT, 
with a standard deviation of 40 points.

• Suppose a coaching program claims to improve SAT scores by 
40 points.

• How many students do we need to recruit to detect an 
average change in SAT scores of 40 points with 80% power  
using a 5%-level two-sided test?
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Computing sample size
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Computing power

Assuming our budget allows us to 
recruit 30 students, what is the power 
of our study?
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Computing power
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Computing results for a range of parameters
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Power curve
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See [PSS-2] power, graph to learn more about graphing the results from power. 

http://www.stata.com/manuals/pss-2powergraph.pdf


Computing target mean 

Assuming we can recruit 30 students, 
what is the smallest mean change in 
SAT scores that can be detected with a 
power of 80%?
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Computing target mean 
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Computing target mean 

34
Estimated effect size for a one-sample 
mean test = Τ(𝐦𝐚 − m0 ) 𝐬𝐝



Syntax overview for a population mean

• Compute sample size (assuming default 80% power)
• power onemean 15 40, sd(40)

• Compute power
• power onemean 15 40, sd(40) n(30)

• Compute effect size and target mean
• power onemean 15,    sd(40) n(30) power(0.8)

Also see documentation entry [PSS-2] power onemean for details.
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General syntax for power

• Compute sample size
• power method … [, power(numlist) power_options]

• Compute power
• power method …, n(numlist) [power_options]

• Compute effect size and target parameter
• power method …, n(numlist) power(numlist) [power_options]

power_options:

table

graph

direction(upper|lower)

…

See [PSS-2] power for an overview of power and sample-size analysis in Stata.
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Methods implemented with power

One sample

onemean

oneproportion

onecorrelation

onevariance

Two independent samples

twomeans

twoproportions

twocorrelations

twovariances

Two paired samples

pairedmeans

pairedproportions

37

Analysis of variance

oneway

twoway

repeated

Linear regression

oneslope

rsquared

pcorr

Contingency tables

cmh

mcc

trend

Survival analysis

cox

exponential

logrank

Cluster randomized design (CRD)

onemean, cluster

oneproportion, cluster

twomeans, cluster

twoproportions, cluster

logrank, cluster

User-defined methods

usermethod



Power and sample-size 
analysis with data from a 
cluster randomized design 

(CRD)
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Data from a simple random sample

•A coaching program claimed to improve SAT scores 
by 40 points. 

•We estimated the sample size required to detect an 
average change in SAT scores of 40 points with 80% 
power.

•Now we’ll be sampling classes and students within 
classes, and test scores of students from the same 
class will be correlated.
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Data from a cluster randomized design (CRD)

• In a CRD, the number of clusters and the cluster 
size play the role of a sample size. We can 
compute the number of clusters given  the 
cluster size or vice versa.

•We plan on sampling 10 students from each 
class, and we assume the intraclass correlation is 
0.3.

•How many classes do we need to sample from to 
detect a 25 point difference in the mean change 
in SAT scores, considering the cluster randomized 
design? 
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Computing the number of clusters
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Computing cluster size

• What if we instead had a number of classes in mind, and wanted to 
know how many students we should sample from each class 
(cluster)?

• Suppose we plan on sampling 12 classes.

• How many students would we need to sample from each class to 
detect a 25 point difference in the average change in SAT scores?
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Computing cluster size
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Computing power

• We previously computed the number of clusters required to detect a 
25 point difference in the average change in SAT scores with 80% 
power, assuming that we would be sampling 10 students from each 
class, m(10).

• We also computed the cluster size assuming that we would sample 
from 12 classes, k(12).

• Now let’s compute power assuming that we’ll sample 10 students 
per class from 12 classes, k(12) and m(10).
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Computing power

45



Other hypothesis tests with data from a CRD

• We performed power and sample-size analysis for a population mean 
with data from a CRD. power also supports CRDs for a

• one-sample proportion test  ([PSS-2] power oneproportion, cluster)

• two-sample means test          ([PSS-2] power twomeans, cluster)

• two-sample proportions test ([PSS-2] power twoproportions, cluster)

• log-rank test                                  ([PSS-2] power logrank, cluster)

• Additionally, you can compute both cluster size and the number of 
clusters by specifying the total sample size, and you can have varying 
cluster sizes if you specify the coefficient of variation.
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http://www.stata.com/manuals/pss-2poweroneproportioncluster.pdf
http://www.stata.com/manuals/pss-2powertwomeanscluster.pdf
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Power and sample-size analysis 
for matched case-control 

studies

47



Matched case-control studies

• The goal is to examine the relationship between 
disease and exposure, controlling for the effect of 
confounding variables.
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Matched case-control studies

• The goal is to examine the relationship between 
disease and exposure, controlling for the effect of 
confounding variables.

• Cases are observations that have the outcome of 
interest, controls are observations that do not.
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Matched case-control studies

• The goal is to examine the relationship between 
disease and exposure, controlling for the effect of 
confounding variables.

• Cases are observations that have the outcome of 
interest, controls are observations that do not.

• Cases are matched to controls based on similar values 
of the confounding variables. 
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Matched case-control studies

• The goal is to examine the relationship between 
disease and exposure, controlling for the effect of 
confounding variables.

• Cases are observations that have the outcome of 
interest, controls are observations that do not.

• Cases are matched to controls based on similar values 
of the confounding variables. 

• A study may have a 1:1 or 1:M matched design.
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Matched case-control studies

• The goal is to examine the relationship between 
disease and exposure, controlling for the effect of 
confounding variables.

• Cases are observations that have the outcome of 
interest, controls are observations that do not.

• Cases are matched to controls based on similar values 
of the confounding variables. 

• A study may have a 1:1 or 1:M matched design.

• Interest lies in the odds ratio of developing the disease 
in exposed and unexposed subjects who have equal 
values of matching variables.
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PSS for a matched case-control study

• Consider a study comparing the proportion of smokers 
and nonsmokers that develop lung cancer.

• We’ll take a look at the proportions that previous studies 
found when matching smokers and nonsmokers on the 
basis of age, gender, race, and alcohol consumption.
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Power analysis for a 1:1 matched case-control study
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Power analysis for a 1:1 matched case-control study

55

Probability 
of smoking 
among 
cases, 𝑝1

Probability of 
smoking 
among 
controls, 𝑝0

Probability of not 
smoking among 
controls, 𝑞0

Probability of 
not smoking 
among cases, 𝑞1



Power analysis for a 1:1 matched case-control study

56

Assuming there is no correlation of exposure in matched pairs, the 
odds ratio is calculated as:

𝜃 = Τ𝑝1𝑞𝑜 𝑝0𝑞1 = Τ(0.324 × 0.78) 0.22 × 0.676 = 1.7

Probability 
of smoking 
among 
cases, 𝑝1

Probability of 
smoking 
among 
controls, 𝑝0

Probability of not 
smoking among 
controls, 𝑞0

Probability of 
not smoking 
among cases, 𝑞1



Power analysis for a 1:1 matched case-control study

• We want to design a study in which we’ll match one case to one 
control. Our goal is to determine the number of case-control pairs 
required to achieve 80% power to detect an odds ratio of 1.7 with a 
5%-level, two-sided test.

• We’re assuming that the proportions from the previous table are 
representative of the population probabilities, and thus the 
probability that the sampled control patient is a smoker is 0.22. We’ll 
specify this probability along with the odds ratio, 1.7.
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Computing sample size for a 1:1 matched case-control 
study
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Computing power for a one-sided test

• The two-sided test allowed for the odds ratio to be 
greater than or less than one. 
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Computing power for a one-sided test

• The two-sided test allowed for the odds ratio to be 
greater than or less than one. 

•We expect the odds of developing lung cancer would 
be higher for smokers than nonsmokers.

60



Computing power for a one-sided test

• The two-sided test allowed for the odds ratio to be 
greater than or less than one. 

•We expect the odds of developing lung cancer would 
be higher for smokers than nonsmokers.

• Say we instead want to test whether the odds ratio is 
greater than1.
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Computing power for a one-sided test

• The two-sided test allowed for the odds ratio to be 
greater than or less than one. 

•We expect the odds of developing lung cancer would 
be higher for smokers than nonsmokers.

• Say we instead want to test whether the odds ratio is 
greater than1.

• Also, suppose our budget will allow us to recruit 300 
subjects.
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Computing power for a one-sided test

• The two-sided test allowed for the odds ratio to be 
greater than or less than one. 

•We expect the odds of developing lung cancer would 
be higher for smokers than nonsmokers.

• Say we instead want to test whether the odds ratio is 
greater than1.

• Also, suppose our budget will allow us to recruit 300 
subjects.

•What is the estimated power for this 5% level, one-
sided test?
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Computing power for a one-sided test
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Computing sample size with correlated exposures

• Previously, we assumed that there was no correlation 
of exposure in matched pairs.

•Matching based on confounding variables will 
generally lead to correlation of the exposure 
between cases and controls. 

• In our case, alcohol consumption is correlated with 
whether an individual smokes. 

• If we ignore this correlation, we can underestimate 
the required sample size, or overestimate power. 65



Computing sample size with correlated exposures

Below, we use the values from the contingency table to 
compute the correlation of exposure:

𝜌 = Τ(0.180 × 0.636 − 0.144 × 0.04) 0.324 × 0.676 × 0.2 × 0.78 = 0.56
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Computing sample size with correlated exposures
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Sample size for a range of correlated exposures
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Sensitivity analysis graph

69

. power mcc .22, oratio(1.7) corr(.4(.05).6) graph



Power analysis for contingency tables

We performed power and sample-size analysis for a 1:1 
matched case-control study. 

• See [PSS-2] power mcc for an example of power analysis 
for a 1:M matched case-control study.

We simply had the binary exposure variable (smoker 
status) and the outcome (lung cancer).

• If you have data in which a third variable confounds this 
relationship, take a look at [PSS-2] power cmh. 

• If your exposure variable is ordinal, and you want to test 
whether there is a linear trend in exposure and a binary 
outcome, take a look at [PSS-2] power trend.
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http://www.stata.com/manuals/pss-2powermcc.pdf
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Power and sample-size analysis 
for survival-time data
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Power analysis for survival-time data

• Survival-time data record the time from an origin to the 
time an event occurs, typically referred to as a failure. 

• Some examples include the time elapsed from a medical 
diagnosis to death,  and the time from which treatment 
started to the time the patient was fully recovered. 

• The sample size in survival analysis is determined by the 
number of events (or failures).
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Power analysis for survival-time data

One model that can be used with this type of data is the 
Cox proportional hazards model:

ℎ 𝑡 = ℎ0 𝑡 exp 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑝 𝑥𝑝

where ℎ0 𝑡 is the baseline hazard

• 𝛽1 is the log hazard-ratio associated with a one-unit 
increase in 𝑥1. 

• Does x1 have an effect on the time to failure, all else held 
constant?
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Power analysis for survival-time data

•Several factors play a role in the power and sample 
size requirements for the Cox proportional hazards 
model.

• Censoring – Failure may not be observed in every subject.

• Withdrawal – Subjects may withdraw from the study 
before it terminates.

• Dependence between covariates in the model.
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Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated 
with alkylating agents (Krall, Uthoff, and Harley 1975).

• 17 out of 65 patients survived until the end of the study. 
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Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated 
with alkylating agents (Krall, Uthoff, and Harley 1975).

• 17 out of 65 patients survived until the end of the study. 

• The variable BUN measures the log of the amount of blood 
urea nitrogen measured in a patient, and its standard deviation 
is reported to be 0.3126.
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Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated 
with alkylating agents (Krall, Uthoff, and Harley 1975).

• 17 out of 65 patients survived until the end of the study. 

• The variable BUN measures the log of the amount of blood 
urea nitrogen measured in a patient, and its standard deviation 
is reported to be 0.3126.

We want to compute the sample size required for a one-
sided, 5%-level test to detect a log hazard-ratio (𝛽1) of 1 for 
a unit increase in BUN with a power of 80%. 
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Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated 
with alkylating agents (Krall, Uthoff, and Harley 1975).

• 17 out of 65 patients survived until the end of the study. 

• The variable BUN measures the log of the amount of blood 
urea nitrogen measured in a patient, and its standard deviation 
is reported to be 0.3126.

We want to compute the sample size required for a one-
sided, 5%-level test to detect a log hazard-ratio (𝛽1) of 1 for 
a unit increase in BUN with a power of 80%. 

• The probability of an event occurring, death, is 48/65=0.738. 78



Compute sample size for a Cox PH model
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Compute sample size in the presence of correlation 
between covariates

• Now suppose that we want to adjust the effect of the 
covariate BUN for eight other covariates in the model. A 
previous study (Hsieh and Lavori 2000) found the R2 to be 
0.1837, when regressing the log of BUN on eight other 
covariates.
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Compute sample size in the presence of correlation 
between covariates
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Compute power in the presence of correlation 
between covariates

Suppose that our budget will only allow us to recruit 65 
subjects. How will this smaller sample size affect the power 
of the test to detect the alternative?
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Compute power in the presence of correlation 
between covariates
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Compute effect size in the presence of correlation 
between covariates

•Now we’re interested in determining the smallest value 
of the log hazard-ratio (effect size) that can be detected 
with 80% power. 

• The default is to compute a lower one-sided test, in 
which the alternative hypothesis is that the log hazard-
ratio is less than zero. 

•We’ll specify direction(upper)for an alternative 
value of the log-hazard ratio greater than zero.
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Compute effect size in the presence of correlation 
between covariates
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Power analysis for survival-time data

• For more examples of performing power analysis for the Cox 
proportional hazards model, see [PSS-2] power cox.

• You can also use [PSS-2] power logrank for power and 
sample-size computations for survival analysis comparing 
survivor functions in two groups by using the log-rank test.

• See [PSS-2] power exponential for sample size and power 
computations for survival analysis comparing two exponential 
surivivor functions by using parametric tests for the difference 
between hazards or log hazards. 

• Accommodates flexible accrual of subjects into the study and 
group-specific losses to follow-up.
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What else is available with power?
• We can also perform power and sample-size analyses for

• One-sample proportion test -- power oneproportion

• One-sample correlation test -- power onecorrelation

• One-sample variance test -- power onevariance

• Two-sample means tests -- power twomeans

• Two-sample proportions test -- power twoproportions

• Two-sample correlations test -- power twocorrelations

• Two-sample variances test -- power twovariances

• Paired-means test -- power pairedmeans

• Paired-proportions test -- power pairedproportions

• One-way ANOVA -- power oneway

• Two-way ANOVA -- power twoway

• Repeated-measures ANOVA  -- power repeated

• Slope test in a simple linear regression -- power oneslope

• R2 test in a multiple linear regression -- power rsquared

• Partial-correlation test in a multiple linear regression -- power pcorr

• And you can add your own methods to power. See [PSS-2] power for details 
and more examples. 
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Adding your own methods to 
power

88



Adding your own method to power

Adding your own methods to power is easy. Suppose you 
want to add a method called mymethod to power. Simply

1. write an r-class program called power_cmd_mymethod that 
computes power, sample size, or effect size and follows power’s 
convention for naming common options and storing results; and

2. place the program where Stata can find it.

You are done. You can now use mymethod within power
like any other official power method.
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Program for computing power for a one-sample z test

program power_cmd_myztest, rclass

version 16.1
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Program for computing power for a one-sample z test

program power_cmd_myztest, rclass

version 16.1

syntax, n(integer) STDDiff(real) Alpha(string)
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Program for computing power for a one-sample z test

program power_cmd_myztest, rclass

version 16.1

syntax, n(integer) STDDiff(real) Alpha(string)

tempname power

scalar `power' = normal(`stddiff’*sqrt(`n’)-invnormal(1-`alpha’/2))
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Program for computing power for a one-sample z test

program power_cmd_myztest, rclass

version 16.1

syntax, n(integer) STDDiff(real) Alpha(string)

tempname power

scalar `power' = normal(`stddiff’*sqrt(`n’)-invnormal(1-`alpha’/2))

return scalar power   = `power'

return scalar N = `n'

return scalar alpha   = `alpha'

return scalar stddiff = `stddiff'

end
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Program for computing power for a one-sample z test

94



power myztest : Compute power
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power myztest : Specifying multiple values
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power myztest : Automatic graphs

97

. power myztest, alpha(0.01 0.05) n(10(10)100) stddiff(0.25) graph



Customizing your power command

• Add method-specific options and set them up to allow 
multiple values

• Tables

• Change column labels, formats, and widths to modify the 
look and contents for the table created by default

• Graphs

• Change the default column labels 

• Use different symbols to label the results

• See [PSS-2] power usermethod for more examples. 98
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Precision and sample-size 
analysis

99



Motivating questions

Suppose you want to construct an interval for the 
average weight loss for a new exercise program.

• How many subjects would be required to ensure that the 
confidence interval for the mean is no wider than 2?

• If we only have enough resources to include 40 subjects in 
our study, what kind of precision would we expect our 
confidence interval to have?

• How would this precision change as we increase our sample 
size to 50, 60, and 70?

The ciwidth command will help you answer these questions 
and more.

100



Overview of ciwidth examples

• Perform precision and sample-size analysis for confidence intervals

• Population mean

• Comparison of means from independent samples

• Comparison of means from paired samples

• Compute

• Sample size

• CI precision

• Probability of CI precision

• Perform sensitivity analysis

• Present results graphically or in a table

• Customize graphs and tables 101



Computation of a 
confidence interval
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Confidence intervals

•Computation

• Confidence level 

• 95%, 97%, other

• Sample size

• How many participants can you afford to have in your study?

• Standard deviation

• How did weight loss vary in the sample?

•Precision

• Measured by the CI width

• Ensured by the probability of CI width 103



Confidence interval for a population mean

A 100×(1- α)% CI:

[ ҧ𝑥 - 𝑡n-1,1-α∕2(
𝑠

𝑛
) , ҧ𝑥 + 𝑡n-1,1-α∕2(

𝑠

𝑛
) ]

α = significance level

s = sample standard deviation

n = sample size

Τ1 2 width Τ1 2 width
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Confidence interval for a population mean

[ ҧ𝑥 - 𝑡n-1,1-α∕2(
𝑠

𝑛
) , ҧ𝑥 + 𝑡n-1,1-α∕2(

𝑠

𝑛
) ]

Sample mean Width Sample mean ±
half-width

95% Confidence interval

5 10 5-5, 5+5

5 8 5-4,5+4

5 4 5-2, 5+2

0 10

3 7

1 9
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Confidence interval for a population mean

[ ҧ𝑥 - 𝑡n-1,1-α∕2(
𝑠

𝑛
) , ҧ𝑥 + 𝑡n-1,1-α∕2(

𝑠

𝑛
) ]

Choose the values of the confidence 
level (100×(1-𝛼)), sample standard 
deviation, and sample size that will 
provide the desired level of precision, 
given the resources you have 106



A first example
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Precision analysis for a population mean

•How long do plug-in air fresheners last?

•How many air fresheners would we need to 
test to obtain a two-sided 95% CI for the 
mean scent duration with a width no larger 
than 4 days?
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Computing sample size for a population 
mean
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Computing CI width for a population mean

How big of an interval width would we 
expect if we could only afford to 
sample 30 air fresheners?
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Computing CI width for a population mean

111



Computing probability of CI width for a 
population mean

What’s the probability that we’ll obtain 
a desired CI width of 4, if we only 
sample 30 air fresheners?
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Computing probability of CI width for a 
population mean
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Syntax overview for a one-mean CI

• Estimate sample size

• ciwidth onemean, sd(6) probwidth(0.96) width(4)

• Estimate CI width

• ciwidth onemean, sd(6) probwidth(0.96) n(30)

• Estimate probability of CI width

• ciwidth onemean, sd(6) width(4) n(30)

• Also see documentation entry [PSS-2] ciwidth onemean for details.
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General syntax for ciwidth

• Estimate sample size

• ciwidth method …,  probwidth() width() …

• Estimate CI width

• ciwidth method …, probwidth() n()…

• Estimate probability of CI width

• ciwidth method …, width() n()…

method:

onemean

onevariance

twomeans

pairedmeans

usermethod
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General syntax for ciwidth

• Estimate sample size
• ciwidth method …, probwidth(numlist) width(numlist) [options]

• Estimate CI width
• ciwidth method …, probwidth(numlist) n(numlist) [options]

• Estimate probability of CI width
• ciwidth method …, width(numlist) n(numlist) [options]

method: options:

onemean table

onevariance graph

twomeans lower

pairedmeans upper

usermethod …

• See [PSS-3] ciwidth for an overview of precision and sample-size analysis in Stata.

116

http://www.stata.com/manuals/pss-3ciwidth.pdf


One-sided confidence intervals
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One-sided confidence intervals

• You may want one-sided confidence intervals if

• You are certain of the direction of an effect. 
• Examples include toxicity studies and analysis of occurences of adverse drug 

reaction data(Chow, Shao, Wang, & Lokhnygina, 2017).

• You are mainly interested in either the lower or upper limit.
• An example would be product quality and reliability (Meeker, Hahn, & Escobar, 

2017 ).

• In general, use caution with one-sided confidence intervals. 

• There have been cases where the placebo effect is superior to the 
actual drug effect (Meeker, Hahn, & Escobar, 2017).
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Lower 95% confidence interval
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Sensitivity analysis
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Sensitivity analysis

• Precision and sample-size analysis is centered on a 
prospective study, and we are obtaining estimates based 
on values that are truly unknown.

• Estimates may come from historical data or pilot studies

• Sensitivity analysis is used to investigate the effect of 
varying study parameters on CI precision, probability of CI 
width, sample size, and other components of a study.

• In Stata, you can perform sensitivity analysis with tables and 
graphs.
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Computing probability of CI width for a 
population mean
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Probability of CI width for a range of 
standard deviations
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Probability of CI width for ranges of multiple 
parameters
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Tables for sensitivity analysis
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Reordering table columns
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See [PSS-3] ciwidth, table to learn more about producing tables with results from ciwidth.

http://www.stata.com/manuals/pss-3ciwidthtable.pdf


Paired samples
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Paired-means for bad (LDL) cholesterol levels

CholesterolBefore 

(mg/dL)
CholesterolAfter 

(mg/dL)
Difference

167 140 -27

149 138 -11

192 194 2

200 180 -20

162 162 0

52 41 67.25

… … …

Mean 129.58 111.96 -17.62

S.D. 52.27 42.15 6.47
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CI for a paired-means difference
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CI for a paired-means difference
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Sample-size determination using the correlation
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See [PSS-3] ciwidth pairedmeans to learn more about precision and sample-size 
analysis for a paired-means-difference confidence interval.

http://www.stata.com/manuals/pss-3ciwidthpairedmeans.pdf


CI for a difference of two means

• Let’s consider the cholesterol example, but 
instead randomly sample individuals who take 
cholesterol medication and individuals who don’t

• Two independent samples

•Group sizes may differ
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CI for a difference of two means
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Graphs for sensitivity analysis
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Define the x axis
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Label distinct values on the y axis
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Specifying multiple values for multiple parameters
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Create subgraphs for values of width
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Where to learn more

• See [PSS-3] ciwidth twomeans to learn more about precision 
and sample-size analysis for a confidence interval for a 
difference between two means from independent samples.

• See [PSS-3] ciwidth, graph to learn more about graphing 
results from the ciwidth command.
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Unbalanced sample sizes 

Control group
(No medication)

Experimental group
(Medication) 
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Specifying the sample-size ratio
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Compute one sample size given another
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Known standard deviations
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More on unbalanced designs

• The power and ciwidth suites support unbalanced 
designs for two-sample studies.

• Compute the total sample size given the allocation ratio

• Compute one group size given the other

• Specify the total sample size and the allocation ratio

• Specify one group size and the allocation ratio

• …

• The syntax is consistent across power and ciwidth
commands.

• See [PSS-4] unbalanced designs to learn more.
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Do you have another method in mind?

computations in the same way you would with other ciwidth commands, 

and create tables and graphs
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Adding your own method to ciwidth

Similar to power, you can add your own method to 
ciwidth by following the same steps.

Simply write an r-class program to perform the 
computations, making sure to follow ciwidth’s 
convention for naming common options and storing 
results, and place the program where Stata can find it.

You can then create tables and graphs as you would with 
any official ciwidth method.

To learn more, see [PSS-3] ciwidth usermethod. 146
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Summary

• We performed power and sample-size analysis for 
• A population mean

• A population mean, when using a sample from a cluster randomized design

• An odds ratio for matched case-control data

• A log hazard-ratio from a Cox proportional hazards model

• We performed precision and sample-size analysis for
• A population mean

• A difference between two independent means

• A difference between paired means

• We were able to perform sensitivity analysis graphically and with a table.

• We implemented our own method, and easily created graphs and tables 
as if we were using an official power command.

• See the Stata Power, Precision, and Sample-Size Reference Manual  
([PSS]) for more examples.

• See stata.com/features/power-precision-and-sample-size for a full list of 
features and overview examples. 
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Thank you !!
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