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Power and sample-size analysis for
hypothesis testing

Suppose we want to test whether students who take
an SAT coaching program improve their SAT scores
by 50 points, on average.

* How many students would we need to recruit to detect a
50-point difference in average SAT scores?

* What is the estimated power of the study if we can only
recruit 60 students?




Precision and sample-size analysis for
confidence intervals

Suppose we want to construct a confidence interval
for the average change in SAT scores for students
taking an SAT coaching program.

* If we only have enough resources to include 60 students in
our study, what kind of precision would we expect our
confidence interval to have?

* How would this precision change as we increase our sample
size to 70, 80, or 907




Overview

* Introduction to power, precision, and sample-size analysis

* Power and sample-size analysis for hypothesis testing

* Precision and sample-size analysis for confidence intervals

* Summary




Introduction to power, precision,
and sample-size analysis




Power and sample-size analysis

* Hypothesis tests for inference

* Test that a population parameter of interest is equal, or
smaller, or larger than a specified value.

* Typically, we take the following steps

1. Obtain a random sample and compute an estimate of
the parameter of interest

Calculate a test statistic
Reject the null hypothesis or fail to reject it




Power and sample-size analysis

* Power is the probability of correctly rejecting the
null hypothesis when it is false.

* Power analysis estimates the required sample size
for a future study to ensure that the test will have
high power (chance) to detect when the parameter
estimate is different from the specified value.




Precision and sample-size analysis

* Confidence intervals for inference

* Estimate a plausible range of values for the population
parameter

* Like hypothesis tests, confidence intervals are data
dependent and so their precision will vary across
samples.

* Use precision and sample-size analysis to account
for the variability, and plan a study with the
desired precision.




Precision and sample-size analysis

* Precision analysis estimates the required sample
size for a future study to ensure that the estimated
interval will have the desired precision, so that it is
not too wide

* Precision and sample-size analysis for confidence
intervals is analogous to power and sample-size
analysis for hypothesis tests




Power and sample-size analysis




Components of power and sample-size analysis

Study design
*One sample
* Two independent samples

* Paired samples

* Possibly matched on selected characteristics




Components of power and sample-size analysis

Statistical method

*One-sample t test
* Two-sample t test
* Paired t test

* Log-rank test

* And more




Components of power and sample-size analysis

Significance level
* Typically denoted a

* Upper bound for the probability of incorrectly
rejecting the null hypothesis.

Power
* Typically denoted 1 -

* Probability of correctly rejecting the null
hypothesis when the null hypothesis is false.




Components of power and sample-size analysis

Effect size
* Magnitude of the effect of interest

* Examples

Difference in proportions
Odds ratio

Log hazard-ratio




Components of power and sample-size analysis

Sample size
* Simple random sample: N = number of observations
* CRD: N = number of clusters and cluster size

e Survival-time data: N = number of events




Power and sample-size analysis

One sample

* Given a power of 90%, what is the smallest detectable difference
in average SAT scores if we only recruit 60 students?
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* Given a power of 90%, what is the smallest detectable difference
in average SAT scores if we only recruit 60 students?

Survival data

* How many subjects would we need to ensure that a hazard ratio
of 0.5 can be detected with a power of 90% with a two-sided,
5%-level test?




Power and sample-size analysis

One sample

* Given a power of 90%, what is the smallest detectable difference
in average SAT scores if we only recruit 60 students?

Survival data

* How many subjects would we need to ensure that a hazard ratio
of 0.5 can be detected with a power of 90% with a two-sided,
5%-level test?

Matched case-control data

* What is the estimated power of detecting an odds ratio of 1.7
with a 5%-level two-sided test, if we have 80 case-control pairs?

The power command will help you answer these questions and more.




A first example




Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

* On average, students who don’t take any coaching programs
improve their SAT scores by 15 points when retaking the SAT,
with a standard deviation of 40 points.




Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

* On average, students who don’t take any coaching programs
improve their SAT scores by 15 points when retaking the SAT,
with a standard deviation of 40 points.

* Suppose a coaching program claims to improve SAT scores by
40 points.




Power analysis for a population mean

Consider an example from Tamhane and Dunlop (2000,209).

* On average, students who don’t take any coaching programs
improve their SAT scores by 15 points when retaking the SAT,
with a standard deviation of 40 points.

* Suppose a coaching program claims to improve SAT scores by
40 points.

* How many students do we need to recruit to detect an
average change in SAT scores of 40 points with 80% power
using a 5%-level two-sided test?
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Power, precision, and sample-size analysis

Methods organized by:

¥ Population parameter
= Correlations
Hazard rates

¥ Means
B AMCWVA (multiple means)

One sample
Two independent samplas
Two paired samples
= Odds ratio
* Proportions
R-squared
= Regression slopes
= Standard deviations
* Survival rates
* Yariances
Qutcome
Hypothesis test
Confidence interval
Sample

L B A

| Filter methods here

Test comparing one mean to a reference
value

Test comparing one mean to a reference
value in a cluster randomized design

® C| for one mean




power onemean - Power analysis for a one-sample mean test =

Main | Table | Graph  Iteration

Compute: * Accepts numlist (Examples)

Sample size

Error probabilities
0.05 * Significance level 0.8 * Power -

Sample size
[_| Allow fractional sample size

Effect size
Standard deviation

* Mull 1 * Standard deviation

Means

* | Alternative = w || Assume a known standard deviation

* Finite population correction:

None -

Sides:
Two-sided test | =

Treat number lists in starred(*) options as parallel

?|C| | Submit Cancel 0K




power onemean - Power analysis for a one-sample mean test =

Main | Table  Graph | Iteration

Compute: * Accepts numlist (Examples)

Sample size -
Error probabilities

0.05 * Significance level 0.8 * Power -

Sample size
[_| Allow fractional sample size

Effect size
Means Standard deviation
15 * Mull 40 * Standard deviation
I 40 ' | * | Alternative | = [_| Assume a known standard deviation

* Finite population correction:

Mone -

Sides:
Two-sided test | =

Treat number lists in starred(*) options as parallel

?71C |y Submit Cancel OK




Computing sample size

. power onemean 15 40, sd(40)

Performing iteration

Estimated sample size for a one-sample mean test
t test

Ho: m = m@ wversus Ha: m '= mb

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.6250
me = 15.0000
ma = 40.0000
sd = 40.0000

Estimated sample size:

N = 23




Computing power

Assuming our budget allows us to
recruit 30 students, what is the power
of our study?




Computing power

. power onemean 15 40, sd(40) n(30)
Estimated power for a one-sample mean test
t test

Ho: m = m@ versus Ha: m !'= m@

Study parameters:

alpha = 0.0500
N = 30
delta = 0.6250
me = 15.0000
ma = 40.0000
sd = 40.0000

Estimated power:

power = 0.9112




Computing results for a range of parameters

. power onemean 15 40, sd(40) n(20(2)40) table graph

Estimated power for a one-sample mean test

t test
Ho: m = m0 wversus Ha: m != m0O
alpha power N delta mo ma sd
.05 . 7554 20 .625 15 40 40
.05 . 7982 22 .625 15 40 40
.05 .8344 24 .625 15 40 40
.05 .8648 26 .625 15 40 40
.05 .8902 28 .625 15 40 40
.05 .9112 30 .625 15 40 40
.05 .9284 32 . 025 15 40 40
.05 .9425 34 . 025 15 40 40
.05 . 954 36 . 025 15 40 40
.05 .9634 38 .625 15 40 40
.05 .9709 40 .625 15 40 40




Power curve

Estimated power for a one-sample mean test

t test
Ho: B = po versus Ha: p = [o

.95 1

.85 1

Power (1-B)

79

20 25 30 35 40
Sample size (N)
Parameters: a = .05, 0 = .63, Yo = 15, p. = 40, 0 = 40

See [PSS-2] power, graph to learn more about graphing the results from power.



http://www.stata.com/manuals/pss-2powergraph.pdf

Computing target mean

Assuming we can recruit 30 students,
what is the smallest mean change in
SAT scores that can be detected with a
power of 80%?




Computing target mean

. power onemean 15, sd(40) n(30) power(0.8)
Performing iteration

Estimated target mean for a one-sample mean test
t test

Ho: m = m@ wversus Ha: m '= m@; ma > mb

Study parameters:

alpha = 0.0500
power = 0.8000
N = 30
me = 15.0000
sd = 40.0000

Estimated effect size and target mean:

delta = B.5292
ma = 36.1694




Computing target mean

. power onemean 15, sd(40) n(30) power(0.8)
Performing iteration

Estimated target mean for a one-sample mean test
t test

Ho: m = m@ wversus Ha: m '= m@; ma > mb

Study parameters:

alpha = 0.0500
power = 0.8000
N = 30
me = 15.0000
sd = 40.0000

Estimated effect size and target mean:

delta = 0.5292 —_ | Estimated effect size for a one-sample
ma =  36.1694 mean test = (ma — m0 )/sd




Syntax overview for a population mean

* Compute sample size (assuming default 80% power)
°* power onemean 15 40, sd(40)

* Compute power
°* power onemean 15 40, sd(40) n(30)

* Compute effect size and target mean
°* power onemean 15, sd (40) n(30) power (0.8)

Also see documentation entry [PSS-2] power onemean for details.



http://www.stata.com/manuals/pss-2poweronemean.pdf

General syntax for power

* Compute sample size

* power method .. [, power (numlist) power options]

* Compute power

* power method .., n(numlist) [power options]

* Compute effect size and target parameter

* power method .., n(numlist) power (numlist) [power options]

power options:
table
graph
direction (upper | lower)

See [PSS-2] power for an overview of power and sample-size analysis in Stata.



http://www.stata.com/manuals/pss-2power.pdf

Methods implemented with power

One sample Analysis of variance Survival analysis
onemean oneway COoX
oneproportion twoway exponential
. logrank
onecorrelation repeated g
onevariance
Two independent samples
oneslope onemean, cluster
twomeans .
rsquared oneproportion, cluster
twoproportions
pcorr twomeans, cluster
twocorrelations twoproportions, cluster
twovariances :
Contingency tables logrank, cluster
Two paired samples cmh
pairedmeans mcc User-defined methods

pairedproportions trend usermethod




Power and sample-size

analysis with data from a

cluster randomized design
(CRD)




Data from a simple random sample

* A coaching program claimed to improve SAT scores
by 40 points.

*We estimated the sample size required to detect an
average change in SAT scores of 40 points with 80%
power.

*Now we’ll be sampling classes and students within
classes, and test scores of students from the same
class will be correlated.




Data from a cluster randomized design (CRD)

°In a CRD, the number of clusters and the cluster
size play the role of a sample size. We can
compute the number of clusters given the
cluster size or vice versa.

*We plan on sampling 10 students from each
class, and we assume the intraclass correlation is
0.3.

*How many classes do we need to sample from to
detect a 25 point difference in the mean change
in SAT scores, considering the cluster randomized
design?




Computing the number of clusters

. power onemean 15 40, sd(40) rho(0.3) m(10)

Performing iteration

Estimated number of clusters for a one-sample mean test
Cluster randomized design, z test

Ho: m = m@ wversus Ha: m !'= m0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 0.3249
mo = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

M = 10
rho = 0.3000

Estimated number of clusters and sample size:

K = 8
N = 80




Computing cluster size

* What if we instead had a number of classes in mind, and wanted to
know how many students we should sample from each class
(cluster)?

* Suppose we plan on sampling 12 classes.

* How many students would we need to sample from each class to
detect a 25 point difference in the average change in SAT scores?




Computing cluster size

. power onemean 15 40, sd(40) rho(0.3) k(1l2)
Performing iteration

Estimated cluster size for a one-sample mean test
Cluster randomized design, z test

Ho: m = m@ versus Ha: m '= m0

Study parameters:

alpha = 0.0500

power = 0.8000

delta = 0.4941

m@ = 15.0000

ma = 40.0000

sd = 40.0000

Cluster design:

K = 12

rho = 0.3000

Estimated cluster size and sample size:

= 3

M
N = 36




Computing power

* We previously computed the number of clusters required to detect a
25 point difference in the average change in SAT scores with 80%
power, assuming that we would be sampling 10 students from each
class, m(10).

* We also computed the cluster size assuming that we would sample
from 12 classes, k (12).

* Now let’s compute power assuming that we’ll sample 10 students
per class from 12 classes, k (12) and m(10).




Computing power

. power onemean 15 40, sd(40) rho(0.3) k(12) m(1l0)
Estimated power for a one-sample mean test

Cluster randomized design, z test

Ho: m = m@ versus Ha: m !'= m@

Study parameters:

alpha = 0.0500
delta = 0.3249
mo = 15.0000
ma = 40.0000
sd = 40.0000

Cluster design:

K = 12
M = 10
N = 120
rho = 6.3000

Estimated power:

power = 0.9451




Other hypothesis tests with data from a CRD

* We performed power and sample-size analysis for a population mean
with data from a CRD. power also supports CRDs for a

* one-sample proportion test ([PSS-2] power oneproportion, cluster)

* two-sample means test ([PSS-2] power twomeans, cluster)

* two-sample proportions test ([PSS-2] power twoproportions, cluster)

* log-rank test ([PSS-2] power logrank, cluster)

» Additionally, you can compute both cluster size and the number of
clusters by specifying the total sample size, and you can have varying
cluster sizes if you specify the coefficient of variation.



http://www.stata.com/manuals/pss-2poweroneproportioncluster.pdf
http://www.stata.com/manuals/pss-2powertwomeanscluster.pdf
http://www.stata.com/manuals/pss-2powertwoproportionscluster.pdf
http://www.stata.com/manuals/pss-2powerlogrankcluster.pdf

Power and sample-size analysis
for matched case-control
studies




Matched case-control studies

* The goal is to examine the relationship between
disease and exposure, controlling for the effect of
confounding variables.
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Matched case-control studies

* The goal is to examine the relationship between
disease and exposure, controlling for the effect of
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Matched case-control studies

* The goal is to examine the relationship between
disease and exposure, controlling for the effect of
confounding variables.

* Cases are observations that have the outcome of
interest, controls are observations that do not.

* Cases are matched to controls based on similar values
of the confounding variables.

* A study may have a 1:1 or 1:M matched design.

* Interest lies in the odds ratio of developing the disease
in exposed and unexposed subjects who have equal
values of matching variables.




PSS for a matched case-control study

* Consider a study comparing the proportion of smokers
and nonsmokers that develop lung cancer.

* We’ll take a look at the proportions that previous studies
found when matching smokers and nonsmokers on the
basis of age, gender, race, and alcohol consumption.




Power analysis for a 1:1 matched case-control study

No Lung Cancer (Control)

Lung Cancer (Case) Smoker Nonsmoker Total
Smoker 0180 0.144 0.324
Nonsmoker 0.040 (L.636 0.676

Total 0.220 0.780 1




Power analysis for a 1:1 matched case-control study

Probability
of smoking
among

cases, p;

No Lung Cancer (Control)
Lung Cancer (Case) Smoker Nonsmoker Total

Smoker 0.180 0. 144 0.324
Nonsmoker 0,040 (0.636 0.676
Total 0.220 (0. 780

Probability of
smoking
among
controls, py

Probability of
not smoking
among cases, q;

Probability of not
smoking among
controls, q,




Power analysis for a 1:1 matched case-control study

No Lung Cancer (Control)

Probability
of smoking
among

Lung Cancer (Case) Smoker Nonsmoker Total cases, p;
Smoker 0180 0.144 0.324

Nonsmoker 0.040 (L.636 0.676

Total 0.220 (0.780

Probability of
smoking
among
controls, pg

Probability of not
smoking among
controls, q,

Probability of
not smoking
among cases, q;

Assuming there is no correlation of exposure in matched pairs, the

odds ratio is calculated as:

0 = p,q,/P0q, = (0.324 % 0.78)/(0.22 X 0.676) = 1.7




Power analysis for a 1:1 matched case-control study

* We want to design a study in which we’ll match one case to one
control. Our goal is to determine the number of case-control pairs
required to achieve 80% power to detect an odds ratio of 1.7 with a
5%-level, two-sided test.

* We’re assuming that the proportions from the previous table are
representative of the population probabilities, and thus the
probability that the sampled control patient is a smoker is 0.22. We'll
specify this probability along with the odds ratio, 1.7.




Computing sample size for a 1:1 matched case-control
study

. power mcc .22, oratio(l.7)

Performing iteration

Estimated sample size for a matched case-control study
Asymptotic z test, 1:1 matched design

Ho: OR =1 wversus Ha: OR '=1

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.7000
pe = 0.2200
oratio = 1.7000
corr = 0.0000

M = 1

Estimated sample size:

N cases = 285




Computing power for a one-sided test

* The two-sided test allowed for the odds ratio to be
greater than or less than one.
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Computing power for a one-sided test

* The two-sided test allowed for the odds ratio to be
greater than or less than one.

* We expect the odds of developing lung cancer would
be higher for smokers than nonsmokers.

* Say we instead want to test whether the odds ratio is
greater thanl.

* Also, suppose our budget will allow us to recruit 300
subjects.




Computing power for a one-sided test

* The two-sided test allowed for the odds ratio to be
greater than or less than one.

* We expect the odds of developing lung cancer would
be higher for smokers than nonsmokers.

* Say we instead want to test whether the odds ratio is
greater thanl.

* Also, suppose our budget will allow us to recruit 300
subjects.

* What is the estimated power for this 5% level, one-
sided test?




Computing power for a one-sided test

. power mcc .22, oratio(l.7) n(300) onesided
Estimated power for a matched case-control study
Asymptotic z test, 1:1 matched design

Ho: OR =1 wversus Ha: OR > 1

Study parameters:

alpha = 0.0500

N cases = 300
delta = 1.7000
po = 0.2200
oratio = 1.7000
corr = 0.0000

M = 1

Estimated power:

power = 0.8931




Computing sample size with correlated exposures

* Previously, we assumed that there was no correlation
of exposure in matched pairs.

* Matching based on confounding variables will
generally lead to correlation of the exposure
between cases and controls.

* In our case, alcohol consumption is correlated with
whether an individual smokes.

* If we ignore this correlation, we can underestimate
the required sample size, or overestimate power.




Computing sample size with correlated exposures

Below, we use the values from the contingency table to
compute the correlation of exposure:

No Lung Cancer (Control)

Lung Cancer (Case) Smoker Nonsmoker Total
Smoker 0180 0.144 0.324
Nonsmoker 0.040 (L.636 0.676
Total 0.220 (0.780 1

p = (0.180 X 0.636 — 0.144 x 0.04)/v0.324 X 0.676 x 0.2 x 0.78 = 0.56




Computing sample size with correlated exposures

. power mcc .22, oratio(l.7) corr(.56)

Performing iteration

Estimated sample size for a matched case-control study
Asymptotic z test, 1:1 matched design

Ho: OR =1 wversus Ha: OR !'=1

Study parameters:

alpha = 0.06500
power = 0.8000
delta = 1.7000
po = 0.2200
oratio = 1.7000
corr = 0.5600

M = 1

Estimated sample size:

N cases = 703




Sample size for a range of correlated exposures

. power mcc .22, oratio(l.7) corr(.4(.05).6)
Performing iteration
Estimated sample size for a matched case-control study

Asymptotic z test, 1:1 matched design
Ho: OR =1 wversus Ha: OR '=1

alpha power N delta M p@ oratio corr
.05 .8 503 1.7 1 .22 1.7 .4
.05 .8 553 1.7 1 22 1.7 .45
.05 .8 613 1.7 1 22 1.7 .5
.05 .8 687 1.7 1 .22 1.7 .55
.05 .8 779 1.7 1 22 1.7 .6




Sensitivity analysis graph
. power mcc .22, oratio(l.7) corr(.4(.05).6) graph

Estimated sample size for a matched case-control study

Asymptotic z test, 1:1 matched design
Ho: 8 =1 versus H.: 0 # 1

800 -

-]

o

o
]

600

Number of cases (N)

500 -

4 45 D .05 .6
Exposure correlation (p)
Parameters: o= .05, 1-p=.8,0=17, M=1,p,=.22,8=1.7




Power analysis for contingency tables

We performed power and sample-size analysis for a 1:1
matched case-control study.

* See [PSS-2] power mcc for an example of power analysis
for a 1:M matched case-control study.

We simply had the binary exposure variable (smoker
status) and the outcome (lung cancer).

* |If you have data in which a third variable confounds this
relationship, take a look at [PSS-2] power cmh.

* |If your exposure variable is ordinal, and you want to test
whether there is a linear trend in exposure and a binary
outcome, take a look at [PSS-2] power trend.



http://www.stata.com/manuals/pss-2powermcc.pdf
http://www.stata.com/manuals/pss-2powercmh.pdf
http://www.stata.com/manuals/pss-2powertrend.pdf

Power and sample-size analysis
for survival-time data




Power analysis for survival-time data

* Survival-time data record the time from an origin to the
time an event occurs, typically referred to as a failure.

* Some examples include the time elapsed from a medical
diagnosis to death, and the time from which treatment
started to the time the patient was fully recovered.

* The sample size in survival analysis is determined by the
number of events (or failures).




Power analysis for survival-time data

One model that can be used with this type of data is the
Cox proportional hazards model:

h(t) = ho(t) exp(Bixs + Boxz + =+ By xp)
where h,(t) is the baseline hazard

* B; is the log hazard-ratio associated with a one-unit
Increase in x;.

* Does x, have an effect on the time to failure, all else held
constant?




Power analysis for survival-time data

*Several factors play a role in the power and sample
size requirements for the Cox proportional hazards
model.

* Censoring — Failure may not be observed in every subject.

* Withdrawal — Subjects may withdraw from the study
before it terminates.

* Dependence between covariates in the model.




Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated
with alkylating agents (Krall, Uthoff, and Harley 1975).

* 17 out of 65 patients survived until the end of the study.
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* The variable BUN measures the log of the amount of blood
urea nitrogen measured in a patient, and its standard deviation
is reported to be 0.3126.

We want to compute the sample size required for a one-
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Power analysis for survival-time data

Consider a study of multiple-myeloma patients treated
with alkylating agents (Krall, Uthoff, and Harley 1975).

* 17 out of 65 patients survived until the end of the study.

* The variable BUN measures the log of the amount of blood
urea nitrogen measured in a patient, and its standard deviation
is reported to be 0.3126.

We want to compute the sample size required for a one-
sided, 5%-level test to detect a log hazard-ratio () of 1 for
a unitincrease in BUN with a power of 80%.

* The probability of an event occurring, death, is 48/65=0.738.




Compute sample size for a Cox PH model

. power cox 1, sd(0.3126) onesided eventprob(0.738)
Estimated sample size for Cox PH regression

Wald test

Ho: betal = 8 wversus Ha: betal = 0

Study parameters:

alpha = 0.0500
power = 0.8000
delta = 1.0000 (coefficient)
bl = 1.0000
sd = 0.3126
Censoring:
Pr E = 0.7380

Estimated number of events and sample size:

64
= 86

E
N




Compute sample size in the presence of correlation
between covariates

* Now suppose that we want to adjust the effect of the
covariate BUN for eight other covariates in the model. A
previous study (Hsieh and Lavori 2000) found the R? to be
0.1837, when regressing the log of BUN on eight other
covariates.




Compute sample size in the presence of correlation
between covariates

. power cox 1, sd(0.3126) onesided eventprob(0.738) r2(0.1837)
Estimated sample size for Cox PH regression

Wald test

Ho: betal = 0 versus Ha: betal > 0

Study parameters:

alpha = 0.0500

power = 0.8000

delta = 1.0000 (coefficient)
bl = 1.0000
sd = 0.3126
R2 = 0.1837

Censoring:
Pr E = 0.7380

Estimated number of events and sample size:

78

E
N 106




Compute power in the presence of correlation
between covariates

Suppose that our budget will only allow us to recruit 65
subjects. How will this smaller sample size affect the power
of the test to detect the alternative?




Compute power in the presence of correlation
between covariates

. power cox 1, sd(0.3126) onesided eventprob(0.738) r2(0.1837) n(65)
Estimated power for Cox PH regression

Wald test

Ho: betal = @ versus Ha: betal = 0

Study parameters:

alpha = 0.0500
N = 65
delta = 1.0000 (coefficient)
bl = 1.0000
sd = 0.3126
R2 = 0.1837

Number of events and censoring:

= 48

E
Pr E = 0.7380

Estimated power:

power = 0.6222




Compute effect size in the presence of correlation
between covariates

* Now we’re interested in determining the smallest value
of the log hazard-ratio (effect size) that can be detected
with 80% power.

* The default is to compute a lower one-sided test, in
which the alternative hypothesis is that the log hazard-
ratio is less than zero.

* We'll specify direction (upper) for an alternative
value of the log-hazard ratio greater than zero.




Compute effect size in the presence of correlation
between covariates

. power cox, sd(0.3126) onesided eventprob(0.738) r2(0.1837) n(65) ///
> power(0.8) direction(upper)

Estimated target coefficient for Cox PH regression
Wald test
Ho: betal = @ wversus Ha: betal > 0

Study parameters:

alpha = 0.0500
power = 0.8000
N = 65
sd = 0.3126
R2 = 0.1837

Number of events and censoring:

E 48
Pr E = 0.7380

Estimated effect size and target coefficient:

delta
bl

1.2711 (coefficient)
1.2711




Power analysis for survival-time data

* For more examples of performing power analysis for the Cox
proportional hazards model, see [PSS-2] power cox.

* You can also use [PSS-2] power logrank for power and
sample-size computations for survival analysis comparing
survivor functions in two groups by using the log-rank test.

* See [PSS-2] power exponential for sample size and power
computations for survival analysis comparing two exponential
surivivor functions by using parametric tests for the difference
between hazards or log hazards.

* Accommodates flexible accrual of subjects into the study and
group-specific losses to follow-up.



http://www.stata.com/manuals/pss-2powercox.pdf
http://www.stata.com/manuals/pss-2powerlogrank.pdf
http://www.stata.com/manuals/pss-2powerexponential.pdf

What else is available with power?

* We can also perform power and sample-size analyses for

* One-sample proportion test -- power oneproportion
* One-sample correlation test -- power onecorrelation
* One-sample variance test -- power onevariance

* Two-sample means tests -- power twomeans
* Two-sample proportions test -- power twoproportions
* Two-sample correlations test-- power twocorrelations

* Two-sample variances test -- power twovariances

* Paired-means test -- power pairedmeans

* Paired-proportions test -- power pairedproportions
* One-way ANOVA -- power oneway

* Two-way ANOVA -- power twoway

* Repeated-measures ANOVA -- power repeated

* Slope test in a simple linear regression -- power oneslope
* R? test in a multiple linear regression -- power rsquared
* Partial-correlation test in a multiple linear regression -- power pcorr

* And you can add your own methods to power. See [PSS-2] power for details
and more examples.



http://www.stata.com/manuals/pss-2power.pdf

Adding your own methods to
power




Adding your own method to power

Adding your own methods to power is easy. Suppose you
want to add a method called mymethod to power. Simply

1. write an r-class program called power cmd mymethod that
computes power, sample size, or effect size and follows power’s
convention for naming common options and storing results; and

2. place the program where Stata can find it.

You are done. You can now use mymethod within power
like any other official power method.




Program for computing power for a one-sample z test

program power cmd myztest, rclass
version 16.1




Program for computing power for a one-sample z test

program power cmd myztest, rclass
version 16.1

syntax, n(integer) STDDiff (real) Alpha(string)




Program for computing power for a one-sample z test

program power cmd myztest, rclass

version 16.1

syntax, n(integer) STDDiff (real) Alpha(string)
tempname power

scalar ‘power' = normal( stddiff’*sqrt( n’)-invnormal (1-"alpha’/2))




Program for computing power for a one-sample z test

program power cmd myztest, rclass
version 16.1
syntax, n(integer) STDDiff (real) Alpha(string)

tempname power

scalar "power' = normal ( stddiff’*sgrt( n’)-invnormal (1- alpha’/2))
return scalar power = “power'

return scalar N = 'n'

return scalar alpha = "alpha'

return scalar stddiff = “stddiff’
end




Program for computing power for a one-sample z test

File Edit View Language Project Tools

il

power_cmd_myztest.ado X

Flprogram power cmd myztest, rclass

version 16.1

syntax, n(integer) STDDiff(real) Alpha(string)

tempname power

scalar power' = normal( stddiff'*sqrt( n')-invnormal(l- alpha'/2))

T M

return scalar power = power'
return scalar N = n'

= alpha’
return scalar stddiff = stddiff’

1

2

3

4

5

6

7

8 return scalar alpha
9

10 ‘“end
11

12




power myztest :Compute power

. power myztest, alpha(©0.65) n(10) stddiff(0.25)

Estimated power
Two-sided test

alpha power N

.05 .1211 10




power myztest :Specifying multiple values

. power myztest, alpha(0.61 0.65) n(10(10)100) stddiff(0.25)

Estimated power
Two-sided test

alpha power N
.01 .03711 10
.01 .07245 20
.01 .1138 30
.01 .1599 40
.01 .2095 50
.01 .2613 60
.01 .3141 70
.01 .367 80
.01 .4191 90
.01 .4698 100
.05 L1211 10
.05 .1999 20
.05 .2774 30
.05 .3524 40
.05 .4238 50
.05 .4906 60
.05 .5524 70
.05 .6088 80
.05 .6597 90
.05 .7054 100




power myztest :Automatic graphs

. power myztest, alpha(0.01 0.05) n(10(10)100) stddiff(0.25) graph

Estimated power
Two-sided test

T T
0 20 40 60 80 100
Sample size (N)

Significance level (x)
—e&— (01 —e— 05




Customizing your power command

* Add method-specific options and set them up to allow
multiple values

* Tables

* Change column labels, formats, and widths to modify the
look and contents for the table created by default

* Graphs
* Change the default column labels
* Use different symbols to label the results

* See [PSS-2] power usermethod for more examples.



http://www.stata.com/manuals/pss-2powerusermethod.pdf

Precision and sample-size
analysis




Motivating questions

Suppose you want to construct an interval for the
average weight loss for a new exercise program.

* How many subjects would be required to ensure that the
confidence interval for the mean is no wider than 27

* If we only have enough resources to include 40 subjects in
our study, what kind of precision would we expect our
confidence interval to have?

* How would this precision change as we increase our sample
size to 50, 60, and 707

The ciwidth command will help you answer these questions
and more.




Overview of ciwidth examples

* Perform precision and sample-size analysis for confidence intervals
* Population mean
* Comparison of means from independent samples
« Comparison of means from paired samples

* Compute
* Sample size
* Cl precision
* Probability of Cl precision

* Perform sensitivity analysis
* Present results graphically or in a table
* Customize graphs and tables




Computation of a
confidence interval




Confidence intervals

* Computation

* Confidence level
95%, 97%, other
* Sample size
How many participants can you afford to have in your study?

 Standard deviation
How did weight loss vary in the sample?

* Precision
* Measured by the Cl width
* Ensured by the probability of Cl width




Confidence interval for a population mean

A 100X (1- )% CI:

_ S —_ S
[ X '\ tn-l,l-Y(xQ (\/_ﬁ)) y Xt t\n—l,l—oz/YZ(\/_ﬁ) )]

1/, width 1/, width

a = significance level
s = sample standard deviation
n = sample size




Confidence interval for a population mean

[ X -t 1100 (\/%) , X + tn-l,l—a/Z(\/iﬁ) ]

Sample mean Sample mean t 95% Confidence interval
half-width

5-5, 5+5

5 8 5-4,5+4 1 9

5 4 5-2, 5+2 3 7




Confidence interval for a population mean
_ S _ S
[ X - tha1-02 (\/_ﬁ) y X T tn—l,l—a/Z(\/_ﬁ) ]

Choose the values of the confidence
level (100%(1-«r)), sample standard
deviation, and sample size that will
provide the desired level of precision,
given the resources you have




A first example




Precision analysis for a population mean

*How long do plug-in air fresheners last?

*How many air fresheners would we need to
test to obtain a two-sided 95% Cl for the
mean scent duration with a width no larger
than 4 days?




Computing sample size for a population
mean

. ciwidth onemean, sd(6) probwidth(0.96) width(4)
Performing iteration ...

Estimated sample size for a one-mean CI
Student's t two-sided CI

Study parameters:

level = 95.00

Pr width = 0.9600
width = 4.0000

sd = 6.0000

Estimated sample size:

N = 51




Computing CI width for a population mean

How big of an interval width would we
expect if we could only afford to
sample 30 air fresheners?




Computing CI width for a population mean

. ciwidth onemean, sd(6) probwidth(0.96) n(30)

Estimated width for a one-mean CI
Student's t two-sided CI

Study parameters:

level = 95.00

N = 30

Pr width = 0.9600
sd = 6.0000

Estimated width:

width = 5.4945




Computing probability of CI width for a
population mean

What's the probability that we’ll obtain
a desired Cl width of 4, if we only
sample 30 air fresheners?




Computing probability of CI width for a
population mean

. ciwidth onemean, sd(6) width(4) n(30)

Estimated probability of width for a one-mean CI
Student's t two-sided CI

Study parameters:

level = 95.00
N = 30
width = 4.0000
sd = 6.0000

Estimated probability of width:

Pr width = 0.2285




Syntax overview for a one-mean CI

Estimate sample size
°* ciwidth onemean, sd(6) probwidth(0.96) width (4)

Estimate CI width
°* ciwidth onemean, sd(6) probwidth(0.96) n(30)

Estimate probability of Cl width
°* ciwidth onemean, sd(6) width(4) n(30)

Also see documentation entry [PSS-2] ciwidth onemean for details.



http://www.stata.com/manuals/pss-3ciwidthonemean.pdf

General syntax for ciwidth

* Estimate sample size
* ciwidth method .., probwidth() width()
* Estimate Cl width
* ciwidth method .., probwidth() n()..

* Estimate probability of Cl width
* ciwidth method .., width() n{()..

method:
onemean
onevariance
twomeans
pairedmeans

usermethod




General syntax for ciwidth

* Estimate sample size
* ciwidth method .., probwidth (numlist) width(numlist) [options]

* Estimate Cl width
* ciwidth method .., probwidth (numlist) n(numlist) [options]

* Estimate probability of Cl width
* ciwidth method .., width(numlist) n(numlist) [options]

method: options:
onemean table
onevariance graph
twomeans lower
pairedmeans upper
usermethod

* See [PSS-3] ciwidth for an overview of precision and sample-size analysis in Stata.



http://www.stata.com/manuals/pss-3ciwidth.pdf

One-sided confidence intervals




One-sided confidence intervals

* You may want one-sided confidence intervals if

* You are certain of the direction of an effect.

Examples include toxicity studies and analysis of occurences of adverse drug
reaction data(Chow, Shao, Wang, & Lokhnygina, 2017).

* You are mainly interested in either the lower or upper limit.

An example would be product quality and reliability (Meeker, Hahn, & Escobar,
2017).

* In general, use caution with one-sided confidence intervals.

* There have been cases where the placebo effect is superior to the
actual drug effect (Meeker, Hahn, & Escobar, 2017).




Lower 95% confidence interval

. ciwidth onemean, sd(6) probwidth(0.96) n(30) lower

Estimated width for a one-mean CI
Student's t lower CI

Study parameters:

level = 95.00

N = 30

Pr width = 0.9600
sd = 6.0000

Estimated width:

width = 2.2823




Sensitivity analysis




Sensitivity analysis

* Precision and sample-size analysis is centered on a
prospective study, and we are obtaining estimates based
on values that are truly unknown.

* Estimates may come from historical data or pilot studies

* Sensitivity analysis is used to investigate the effect of
varying study parameters on Cl precision, probability of Cl
width, sample size, and other components of a study.

* In Stata, you can perform sensitivity analysis with tables and
graphs.




Computing probability of CI width for a
population mean

. ciwidth onemean, sd(6) width(4) n(30)

Estimated probability of width for a one-mean CI
Student's t two-sided CI

Study parameters:

level = 95.00
N = 30
width = 4.0000
sd = 6.0000

Estimated probability of width:

Pr width = 0.2285




Probability of CI width for a range of
standard deviations

. ciwidth onemean, sd(6 7 8 9) width(4) n(45)

Estimated probability of width for a one-mean CI
Student's t two-sided CI

Llevel N Pr width width sd
95 45 .8599 4 6
95 45 .3476 4 7
95 45  .06042 4 8
95 45  .00627 4 9




Probability of CI width for ranges of multiple
parameters

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65)

Estimated probability of width for a one-mean CI
Student's t two-sided CI

level N Pr width width sd
95 45 .8599 4 6
95 45 .3476 4 7
95 45 .06042 4 8
95 45 . 00627 4 9
95 55 .9918 4 6
95 55 .7419 4 7
95 55 .2336 4 8
95 55 .03245 4 9
95 65 .9999 4 6
95 65 .9599 4 7
95 65 .3635 4 8
95 65 .1295 4 9




Tables for sensitivity analysis

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65) table(, separator(4))

Estimated probability of width for a one-mean CI
Student's t two-sided (I

level N Pr width width sd
95 45 .8599 4 6
95 45 .3476 4 7
95 45 .06042 4 8
95 45  .00627 4 9
95 55 .9918 4 6
95 55 .7419 4 7
95 55 .2336 4 8
95 55 .03245 4 9
95 65 9999 4 6
95 65 .9599 4 7
95 65 .5635 4 8
95 65 .1295 4 9




Reordering table columns

. ciwidth onemean, sd(6 7 8 9) width(4) n(45(10)65) table(N sd Pr width width, separator(4))

Estimated probability of width for a one-mean CI
Student's t two-sided CI

N sd Pr width width
45 6 .8599 4
45 7 .3476 4
45 8 .06042 4
45 9 .00627 4
55 6 .9918 4
55 7 .7419 4
55 8 .2336 4
55 9 .03245 4
65 6 .9999 4
65 7 .9599 4
65 8 .5635 4
65 9 .1295 4

See [PSS-3] ciwidth, table to learn more about producing tables with results from ciwidth.



http://www.stata.com/manuals/pss-3ciwidthtable.pdf

Paired samples




Paired-means for bad (LDL) cholesterol levels

Cholesterolg,,. Cholesterol ., Difference
(mg/dL) (mg/dL)

167

149 138 -11
192 194 2
200 180 -20
162 162 0
52 41 67.25

m 129.58 111.96 -17.62

52.27 42.15 6.47




CI for a paired-means difference

. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(18)




CI for a paired-means difference

. ciwidth pairedmeans, width(6) probwidth(0.98) sddiff(18)
Performing iteration ...

Estimated sample size for a paired-means-difference CI
Student's t two-sided CI

Study parameters:

level = 95.0000

Pr width = 0.9800
width = 6.0000
sd d = 18.0000

Estimated sample size:

N = 174




Sample-size determination using the correlation

. ciwidth pairedmeans, width(6) probwidth(0.98) sd1(16) sd2(23) corr(0.78)
Performing iteration ...

Estimated sample size for a paired-means-difference CI
Student's t two-sided CI

Study parameters:

level = 95.0000 sdl = 16.0000

Pr width = 0.9800 sd2 = 23.0000

width = 6.0000 corr = 0.7800
sd d = 14.5231

Estimated sample size:

N = 119

See [PSS-3] ciwidth pairedmeans to learn more about precision and sample-size
analysis for a paired-means-difference confidence interval.



http://www.stata.com/manuals/pss-3ciwidthpairedmeans.pdf

CI for a difference of two means

* Let’s consider the cholesterol example, but
instead randomly sample individuals who take
cholesterol medication and individuals who don’t

Two independent samples

* Group sizes may differ




CI for a difference of two means

. ciwidth twomeans, width(6) probwidth(0.99) sd(12)
Performing iteration ...

Estimated sample sizes for a two-means-difference (I
Student's t two-sided CI assuming sdl = sd2 = sd

Study parameters:

level = 95.00

Pr width = 0.9900
width = 6.0000

sd = 12.0000

Estimated sample sizes:

N
N per group

298
149




Graphs for sensitivity analysis

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12) graph

Estimated total sample size for a two-means-difference ClI
Student's ftwo-sided Cl assuming o, =02=0
300

250

200

Total sample size (N)

150 -

) —
C0 —

Cl width (w)

Probability of Cl width (pwiatn)
—®— 85 —e— 95
—e— 99

Parameters: 100{1-o) = 95, o = 12




Define the x axis

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12)
> graph(xdimension(Pr_width))

Estimated total sample size for a two-means-difference CI
Student's ¢ two-sided Cl assuming 61 =0>=0

300 /
— o
=
8 250+
w
o
L
=
&
5 2007
= . ————*
._
150 -
| | 1
85 95 99
Probability of CI width (py)
Cl width (w)

—e— 6 —e— 8

Parameters: 100(1-c) =95, o= 12




Label distinct values on the y axis

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99) sd(12)
> graph(xdimension(Pr_width) yvalues)

Estimated total sample size for a two-means-difference CI
Student's ttwo-sided Cl assuming 0y =02 =0

298 - /
284 -

— 272-{@&—
e
)]
N
w
o
o
=
5]
w
8
©

178 - /

168

158 @-

85 95 99
Probability of CI width (P
Cl width (w)

—e—6 —e— 8

Parameters: 100{1-a) = 95, o= 12




Specifying multiple values for multiple parameters

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99)
> sd(11 12 13) graph

Estimated total sample size for a two-means-difference CI
Student's ttwo-sided Cl assuming 01 =02 =0

g 350
S 300-
]
o
2 250
£
© 200+
o
5 150-
| 1
6 8
Cl width (w)
Puwidth, T

—®— 85,11 —8&— 85,12
—8— 85,13 —&— 95 11
—®— 095,12 —8&— 09513
—&— 99, 11 99,12
—8— 99,13

Parameters: 100(1-cf) = 95




Create subgraphs for values of width

. ciwidth twomeans, width(6 8) probwidth(0.85 0.95 0.99)
> sd(11 12 13) graph(bydimension(width) legend(rows(1)))

Total sample size (N)

350

300

250 4

200+

150 4

Estimated total sample size for a two-means-difference ClI

Student's ttwo-sided Cl assuming 01 =02=0

w=6 w=8

._

95 99 85 95 99
Probability of Cl width (pyt)

Common standard deviation (o)
—e— 11 —e— 12 —e— 13

Parameters: 100{1-c) = 95




Where to learn more

* See [PSS-3] ciwidth twomeans to learn more about precision
and sample-size analysis for a confidence interval for a
difference between two means from independent samples.

* See [PSS-3] ciwidth, graph to learn more about graphing
results from the ciwidth command.



http://www.stata.com/manuals/pss-3ciwidthtwomeans.pdf
http://www.stata.com/manuals/pss-3ciwidthgraph.pdf

Unbalanced sample sizes

Experimental group Control group
(Medication) (No medication)




Specifying the sample-size ratio

. ciwidth twomeans, width(6) sd(12) probwidth(©.99) nratio(0.5)
Performing iteration

Estimated sample sizes for a two-means-difference CI
Student's t two-sided CI assuming sdl = sd2 = sd

Study parameters:

level = 95.00

Pr width = 0.9900
width = 6.0000

sd = 12.0000

N2/N1 = 0.5000

Estimated sample sizes:

N = 333
N1 = 222
N2 = 111




Compute one sample size given another

. ciwidth twomeans, width(6) sd(12) probwidth(0.99) n2(108) compute(nl)
Performing iteration

Estimated sample sizes for a two-means-difference CI
Student's t two-sided CI assuming sdl = sd2 = sd

Study parameters:

level = 95.00

Pr width = 0.9900
width = 6.0000

sd = 12.0000

N2 = 100

Estimated sample sizes:

N = 370
N1l = 270




Known standard deviations

. ciwidth twomeans, width(6) sd(12) n2(100) compute(nl) knownsds

Estimated sample sizes for a two-means-difference (I
Normal two-sided CI assuming sdl = sd2 = sd

Study parameters:

level = 95.00
width = 6.0000
sd = 12.0000
N2 = 100

Estimated sample sizes:

N = 260
N1 160




More on unbalanced designs

* The power and ciwidth suites support unbalanced
designs for two-sample studies.

* Compute the total sample size given the allocation ratio
* Compute one group size given the other

* Specify the total sample size and the allocation ratio

* Specify one group size and the allocation ratio

* The syntax is consistent across power and ciwidth
commands.

* See [PSS-4] unbalanced designs to learn more.



http://www.stata.com/manuals/pss-4unbalanceddesigns.pdf

Do you have another method in mind?




Adding your own method to ciwidth

Similar to power, you can add your own method to
ciwidth by following the same steps.

Simply write an r-class program to perform the
computations, making sure to follow ciwidth’s

convention for naming common options and storing
results, and place the program where Stata can find it.

You can then create tables and graphs as you would with
any official ciwidth method.

To learn more, see [PSS-3] ciwidth usermethod.



http://www.stata.com/manuals/pss-3ciwidthusermethod.pdf

Summary

* We performed power and sample-size analysis for

A population mean

A population mean, when using a sample from a cluster randomized design
An odds ratio for matched case-control data

A log hazard-ratio from a Cox proportional hazards model

* We performed precision and sample-size analysis for
* A population mean
* A difference between two independent means
* A difference between paired means

* We were able to perform sensitivity analysis graphically and with a table.

* We implemented our own method, and easily created graphs and tables
as if we were using an official power command.

* See the Stata Power, Precision, and Sample-Size Reference Manual
([PSS]) for more examples.

» See stata.com/features/power-precision-and-sample-size for a full list of
features and overview examples.



http://www.stata.com/manuals/pss.pdf
http://www.stata.com/features/power-precision-and-sample-size/
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Thank you !!




