Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Introduction to Panel-Data Analysis using Stata

Gustavo Sánchez

StataCorp LLC

July 28, 2022 StataCorp LLC

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marrinal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Outline

- Basic Concepts
 - Pooled vs. Panel
 - Stata tools
 - Data management
- Linear models for panel data
 - Data generating process
 - Random effects
 - Fixed effects
 - Fixed or random effects
 - Marginal analysis
- Dynamic panel-data linear models
 - Arellano-Bond
 - Arellano-Bover/Blundell-Bond
- Extended regression models for panel data

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Panel unit roots and cointegration

Pooled vs. Panel

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic concepts

Pooled vs. Panel Stata tools

Linear PD

- DGP Data and mod Panel structur Random Effects
- FE vs RE
- Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Pooled vs. Panel

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

How it Looks

•

>

>

Outline

Basic concepts

Pooled vs. Panel

Stata tools

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analys

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

list country year consumption gdp irate /// if CountryName=="Mexico" | /// CountryName=="United States", /// sepby(country) abbreviate(12) noobs

country	year	consumption	gdp	irate
Mexico	2010	815.78416	1057.8013	1.2125
Mexico	2011	842.78459	1096.5486	.95583333
Mexico	2012	863.83937	1136.4885	1.0816667
Mexico	2013	877.37001	1151.8776	1.3316667
Mexico	2014	896.49265	1184.1801	.84
Mexico	2015	919.70082	1223.1159	.58916667
Mexico	2016	952.52868	1258.7152	1.2875
Mexico	2017	979.32119	1285.3759	2.6958333
Mexico	2018	1002.938	1312.831	3.2708333
United States	2010	12695.979	14992.053	2.4000001
United States	2011	12812.144	15224.555	6.5
United States	2012	12932.334	15567.038	7
United States	2013	13039.38	15853.796	6.3000002
United States	2014	13336.045	16242.526	6.3000002
United States	2015	13783.285	16710.459	4.9000001
United States	2016	14137.888	16972.348	4.4000001
United States	2017	14456.84	17348.627	4.5
United States	2018	14857.51	17856.477	2.7

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Outline

Basic concepts

Pooled vs. Panel Stata tools

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marringal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressio Models

xtunitroot

xtcointtest

Summary

How it Looks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

Basic concepts

Pooled vs. Panel

Stata tools

Linear PD

DGP Data and mode Panel structure Random Effects Fixed Effects FE vs RE

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Stata Tools

- Data management
- Linear regression estimators
- Dynamic panel-data estimators
- Binary-outcome estimators
- Ordinal-outcome estimators
- Count-data estimators
- Survival-time estimators
- Extended regression models
- Unit-root and cointegration tests

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Data management

- reshape: convert data (wide <-> long).
- xtsum: summarize xt (panel) data.
- Tabulate one-way generalization for xt (panel) data.
 - xttab: Counts decomposition between-within components.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• xttrans: Transition probabilities report.

Outline

Basic concept

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

LINEAR PANEL-DATA MODELS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Data Generating Process

• The data generating process is given by:

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \eta_{it}$$

$$\eta_{it} \equiv \alpha_i + \varepsilon_{it}$$

$$i = 1, \ldots n$$

$$t = 1, \ldots T$$

- We have redefined the nature of the random disturbance to include an unobservable component
 - The unobservable component is particular to each panel and is independent of time (e.g. for individuals: ability, intelligence, work ethic)
 - As in the regression case the assumptions made on η_{it}, with particular emphasis on α_i, define the models we work with.

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Model for aggregate consumption

 $consumption_{it} = \alpha + gdp_{it} * \beta_1 + irate_{it} * \beta_3 + \mu_i + \nu_{it}$

Data

• World Bank public online data on:

consumption: Final consumption expenditure (2010 US\$)

- gdp: Gross domestic product (2010 US\$) irate: deposit interest rate
- Example : 2010-2018 for 131 countries
- Source:http://databank.worldbank.org/data/Home.aspx

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Specifying the panel structure in Stata

Assuming that the second dimension corresponds to time series, we use the -xtset- command to specify the panel structure with:

- Panel identifier variable (e.g. country)
- Time identifier variable (e.g. year)

```
panel variable: country (unbalanced)
time variable: year, 2010 to 2018, but with a gap
delta: 1 unit
```

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Specifying the panel structure in Stata

Assuming that the second dimension corresponds to time series, we use the -xtset- command to specify the panel structure with:

- Panel identifier variable (e.g. country)
- Time identifier variable (e.g. year)

. xtset country year

```
panel variable: country (unbalanced)
time variable: year, 2010 to 2018, but with a gap
delta: 1 unit
```

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP Data and m
- Panel structure

Random Effects

Fixed Effects FE vs RE Marginal Analysi

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Theoretical Framework

- As in the classical linear regression all models are defined by two components:
 - The data generating process (DGP)
 - The relationship between the random disturbance or idiosyncratic shock and the explanatory variables
- From the first consideration, we can distinguish the DGP for the panel data case:

$$y_{it} = \beta_0 + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \eta_{it}$$

$$\eta_{it} = \alpha_i + \varepsilon_{it}$$

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and m

Panel structur

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Random Effects Model

 The regressors are unrelated to the unobserved time invariant component α_i

$$\boldsymbol{\mathsf{E}}\left(\alpha_{i}|\boldsymbol{x}_{it1},\ldots,\boldsymbol{x}_{itk}\right)=\boldsymbol{\mathsf{E}}\left(\alpha_{i}\right)$$

strict exogeneity, no lagged dependent variables:

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_i\right)=0$$

• The previous two assumptions allow us to think about using a regression. But:

$$E\left(\varepsilon_{i}\varepsilon_{i}^{\prime}|x_{i},\alpha_{i}\right) = \sigma_{\varepsilon}^{2}I_{T}$$

$$E\left(\varepsilon_{it}^{2}\right) = \sigma_{\varepsilon}^{2}$$

$$E\left(\varepsilon_{it}\varepsilon_{is}\right) = 0$$

$$V\left(\alpha_{i}\right) = E\left(\alpha_{i}^{2}|x_{i}\right) = \sigma_{\varepsilon}^{2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mo

Panel structur

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random Effects Model

 The regressors are unrelated to the unobserved time invariant component α_i

$$\boldsymbol{E}\left(\alpha_{i}|\boldsymbol{x}_{it1},\ldots,\boldsymbol{x}_{itk}\right)=\boldsymbol{E}\left(\alpha_{i}\right)$$

• strict exogeneity, no lagged dependent variables:

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

• The previous two assumptions allow us to think about using a regression. But:

$$E\left(\varepsilon_{i}\varepsilon_{i}'|x_{i},\alpha_{i}\right) = \sigma_{\varepsilon}^{2}I_{T}$$

$$E\left(\varepsilon_{it}^{2}\right) = \sigma_{\varepsilon}^{2}$$

$$E\left(\varepsilon_{it}\varepsilon_{is}\right) = 0$$

$$V\left(\alpha_{i}\right) = E\left(\alpha_{i}^{2}|x_{i}\right) = \sigma_{\varepsilon}^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Panel structure

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Random Effects Model

 The regressors are unrelated to the unobserved time invariant component α_i

$$\boldsymbol{E}\left(\alpha_{i}|\boldsymbol{x}_{it1},\ldots,\boldsymbol{x}_{itk}\right)=\boldsymbol{E}\left(\alpha_{i}\right)$$

• strict exogeneity, no lagged dependent variables:

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

• The previous two assumptions allow us to think about using a regression. But:

$$\begin{split} E\left(\varepsilon_{i}\varepsilon_{i}'|x_{i},\alpha_{i}\right) &= \sigma_{\varepsilon}^{2}I_{T} \\ E\left(\varepsilon_{it}^{2}\right) &= \sigma_{\varepsilon}^{2} \\ E\left(\varepsilon_{it}\varepsilon_{is}\right) &= 0 \\ V\left(\alpha_{i}\right) &= E\left(\alpha_{i}^{2}|x_{i}\right) = \sigma_{\alpha}^{2} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and mod Panel structure

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Random Effects Variance-Matrix

For each individual we have that:

$$\Omega = \boldsymbol{E} \left(\eta_{i} \eta_{j}^{\prime} \right) = \begin{pmatrix} \sigma_{\varepsilon}^{2} + \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \dots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\varepsilon}^{2} + \sigma_{\alpha}^{2} & \dots & \vdots \\ \vdots & & \ddots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \dots & \sigma_{\varepsilon}^{2} + \sigma_{\alpha}^{2} \end{pmatrix}$$

• This gives rise to an efficient estimator:

$$\Omega^{-1/2} y_i = \Omega^{-1/2} x_i \beta + \Omega^{-1/2} \eta_i$$

$$\Omega^{-1/2} z_i \equiv z_i^*$$

• This implies that we have the following model:

$$\begin{array}{rcl} y_i^* &=& x_i^*\beta + \eta_i \\ \Xi \left(\eta_i^* \eta_i^{*'} \right) &=& I_T \end{array}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and mod

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Random Effects Variance-Matrix

For each individual we have that:

$$\Omega = \boldsymbol{E} \left(\eta_i \eta_i' \right) = \begin{pmatrix} \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 & \dots & \vdots \\ \vdots & & \ddots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \dots & \sigma_{\varepsilon}^2 + \sigma_{\alpha}^2 \end{pmatrix}$$

• This gives rise to an efficient estimator:

$$\Omega^{-1/2} y_i = \Omega^{-1/2} x_i \beta + \Omega^{-1/2} \eta_i$$

$$\Omega^{-1/2} z_i \equiv z_i^*$$

• This implies that we have the following model:

$$\begin{array}{rcl} \mathbf{y}_i^* &=& \mathbf{x}_i^*\beta + \eta_i^* \\ \mathbf{E} \left(\eta_i^* \eta_i^{*'} \right) &=& \mathbf{I}_T \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Panel structure Bandom Effects

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random Effects Estimation with Stata

. use panel_slides

. xtset country year

```
panel variable: country (unbalanced)
time variable: year, 2010 to 2018, but with a gap
delta: 1 unit
```

describe

Contains	data from panel_slic	les.dta				
obs:	1,016					
vars:	9	6	Mar	2020	13:40	

variable name	storage type	display format	value label	variable label
country	long	%30.0g	country	Country Name
year	float	%10.0g		
consumption	double	%10.0g		Consumption (Billions 2000 US\$)
gdp	double	%10.0g		GDP (Billions 2000 US\$)
irate	double	%10.0g		Deposit interest rate
region	long	%12.0g	region	Regional groups
ln_cons	float	%9.0g		Log of consumption
ln_gdp	float	%9.0g		Log of gdp
ln_irate	float	%9.0g		Log of irate

Sorted by: country year Note: Dataset has changed since last saved.

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mode

Random Effects

Fixed Effects FE vs RE Marginal Analysis

Dynamic Pl Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random Effects Estimation with Stata

. xtreg ln_cons ln_gdp ln_irate,re

Random-effects GLS regression				Number o	of obs	=	1,016
Group variable: country				Number o	of group	s =	131
R-sq:				Obs per	group:		
within =	= 0.8033				m	in =	1
between =	= 0.9859			avg =			
overall =	= 0.9847				m	ax =	9
				Wald chi	i2(2)	=	13277.81
corr(u_i, X)	= 0 (assumed	d)		Prob > c	chi2	=	0.0000
ln_cons	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
ln_gdp	. 958856	.0084128	113.98	0.000	. 9423	672	.9753449
ln_irate	0039294	.0041147	-0.95	0.340	011	994	.0041352
_cons	.760708	.2065915	3.68	0.000	. 3557	961	1.16562
sigma u	.2339765						
sigma_e	.05205235						
rho	.95284182	(fraction	of varia	nce due to	o u_i)		

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP
- Data and mode

Random Effects

Fixed Effects FE vs RE Marginal Analys

Dynamic PE Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Interpreting Results

- The Wald chi2 (df) statistic is the equivalent of the F and regards the overall relevance of the model
- The three different R-sq statistics represent the variability of y explained by its predicted values. But there are three possible measures of y:
 - *y_{it}* OVERALL
 - \bar{y}_i BETWEEN
 - $y_{it} \bar{y}_i$ WITHIN
- corr (u_i, X) refers to the correlation between the time invariant component α_i, in this case called u_i, and the regressors. For the random effects we assume it is zero.

sigma_u =
$$\sigma_{\alpha}$$
,
sigma_e = σ_{ε} ,
rho= $\sigma_{\alpha}^2 \left(\sigma_{\varepsilon}^2 + \sigma_{\alpha}^2\right)^-$

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and mode

Random Effects

Fixed Effects

Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random effects vs. Pooled OLS

. xttest0

Breusch and Pagan Lagrangian multiplier test for random effects

ln_cons[country,t] = Xb + u[country] + e[country,t]

Estimate	d results:			
		Var	sd = so	[rt (Var)
	ln_cons	4.027035	2.00	6747
	е	.0027094	. 052	0524
	u	.054745	. 233	9765
Test:	Var(u)	= 0		
		chibar2	(01) =	3108.85

Prob > chibar2 =

0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mod Panel structure

Random Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Fixed Effects Models

 The regressors can be correlated with the unobserved time invariant component α_i

 $Cov(\alpha_i, x_i) \neq 0$

• strict exogeneity, no lagged dependent variables:

 $E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_i\right)=0$

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mode Panel structure

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Fixed Effects Models

 The regressors can be correlated with the unobserved time invariant component α_i

$$Cov(\alpha_i, x_i) \neq 0$$

• strict exogeneity, no lagged dependent variables:

$$E\left(\varepsilon_{it}|x_{it1},\ldots,x_{itk},\alpha_{i}\right)=0$$

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Bandom Effects

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Interpretation

• In the model we have been discussing:

 $In(consumption_{it}) = \beta_0 + \beta_1 In(gdp_{it}) + \beta_2 In(irate_{it}) + \alpha_i + \varepsilon_{it}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 It is difficult to maintain, for a particular model, that the unobserved individual component is independent of all regressors

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mode Panel structure Bandom Effects

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Within Transform

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{x}_{it1} + \ldots + \beta_k \mathbf{x}_{itk} + \alpha_i + \varepsilon_{it}$$
(1)

• If we take the average over the *T* observations of each panel, we obtain:

$$\bar{\mathbf{y}}_i = \beta_0 + \beta_1 \bar{\mathbf{x}}_{i1} + \ldots + \beta_k \bar{\mathbf{x}}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Where:

$$\bar{y}_i = T^{-1} \sum_{t=1}^T y_{it},$$

 $\bar{x}_{ij} = T^{-1} \sum_{t=1}^{T} x_{itj}$

• We now can construct the following object:

 $y_{it}-\bar{y}_i=(\beta_0-\beta_0)+\beta_1(x_{it1}-\bar{x}_{i1})+\ldots+\beta_k(x_{itk}-\bar{x}_{ik})+(\alpha_i-\alpha_i)+(\varepsilon_{it}-\varepsilon_i)$

• And we can then estimate the parameters of interest from equation (1):

$$\tilde{y}_i = \beta_1 \tilde{x}_{i1} + \ldots + \beta_k \tilde{x}_{ik} + \tilde{\varepsilon}_i$$

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Within Transform

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{x}_{it1} + \ldots + \beta_k \mathbf{x}_{itk} + \alpha_i + \varepsilon_{it}$$
(1)

• If we take the average over the *T* observations of each panel, we obtain:

$$\bar{\nu}_i = \beta_0 + \beta_1 \bar{x}_{i1} + \ldots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Where:

$$\bar{y}_i = T^{-1} \sum_{t=1}^T y_{it},$$

$$\bar{x}_{ij} = T^{-1} \sum_{t=1}^{T} x_{itj}$$

• We now can construct the following object:

 $y_{it} - \bar{y}_i = (\beta_0 - \beta_0) + \beta_1 (x_{it1} - \bar{x}_{i1}) + \ldots + \beta_k (x_{itk} - \bar{x}_{ik}) + (\alpha_i - \alpha_i) + (\varepsilon_{it} - \varepsilon_i)$

• And we can then estimate the parameters of interest from equation (1):

$$\tilde{y}_i = \beta_1 \tilde{x}_{i1} + \ldots + \beta_k \tilde{x}_{ik} + \tilde{\varepsilon}_i$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Within Transform

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{x}_{it1} + \ldots + \beta_k \mathbf{x}_{itk} + \alpha_i + \varepsilon_{it}$$
(1)

• If we take the average over the *T* observations of each panel, we obtain:

$$\bar{\lambda}_i = \beta_0 + \beta_1 \bar{x}_{i1} + \ldots + \beta_k \bar{x}_{ik} + \alpha_i + \bar{\varepsilon}_i$$

Where:

$$\bar{y}_i = T^{-1} \sum_{t=1}^T y_{it}$$

$$\bar{x}_{ij} = T^{-1} \sum_{t=1}^{T} x_{itj}$$

• We now can construct the following object:

$$\mathbf{y}_{it} - \bar{\mathbf{y}}_i = (\beta_0 - \beta_0) + \beta_1 (\mathbf{x}_{it1} - \bar{\mathbf{x}}_{i1}) + \ldots + \beta_k (\mathbf{x}_{itk} - \bar{\mathbf{x}}_{ik}) + (\alpha_i - \alpha_i) + (\varepsilon_{it} - \varepsilon_i)$$

• And we can then estimate the parameters of interest from equation (1):

$$\tilde{\mathbf{y}}_i = \beta_1 \tilde{\mathbf{x}}_{i1} + \ldots + \beta_k \tilde{\mathbf{x}}_{ik} + \tilde{\varepsilon}_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP

Data and mode Panel structure

Random Effec

Fixed Effects

FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Within Estimation

. xtreg ln_cons ln_gdp ln_irate,fe

Fixed-effects (within) regression				Number	of obs =	1,016
Group variable: country				Number	of groups =	131
R-sq:				Obs per	group:	
within =	= 0.8034			-	min =	1
between =	= 0.9858				avg =	7.8
overall =	= 0.9845				max =	9
				F(2,883) =	1804.60
<pre>corr(u_i, Xb)</pre>	= -0.0175			Prob >	F =	0.0000
ln_cons	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_gdp	.958713	.016523	58.02	0.000	.926284	.991142
ln_irate	0074047	.0042761	-1.73	0.084	0157972	.0009878
_cons	.7750608	.4063998	1.91	0.057	0225615	1.572683
sigma_u	.24585324					
sigma e	.05205235					
rho	.95709727	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(130, 883) = 152.63

Prob > F = 0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP Data and mode Panel structure Random Effects
- Fixed Effects
- Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Fixed effects vs. Random effects

- Theory should be one of the main factors guiding your modeling decision
- However, you should present statistical test to back up your claims
 - Hausman test for fixed effects vs random effects
 - Mundlak test for fixed effects vs random effects

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP Data and mode Panel structure Random Effects
- FE vs RE

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Hausman Test

 The following object has a Chi-Squared distribution with degrees of freedom equal to the number of regressors:

$$H = \left(\hat{\beta}_{fe} - \hat{\beta}_{re}\right)' \left[\widehat{VCE}_{fe} - \widehat{VCE}_{re}\right]^{-1} \left(\hat{\beta}_{fe} - \hat{\beta}_{re}\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- The test implicitly assumes that the random effects model is efficient, which in turn makes $\left[\widehat{VCE}_{fe} \widehat{VCE}_{re} \right]$ positive definite.
- The test rules out heteroskedasticity and serial correlation

Outline

- Basic
- concepts
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP Data and m
- Panel structure
- Random Effe
- FE vs BE
- Marginal Analysi

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Hausman Test

- . quietly xtreg ln_cons ln_gdp ln_irate,fe
- . estimates store eq_fe
- . quietly xtreg ln_cons ln_gdp ln_irate, re
- . estimates store eq_re
- . hausman eq_fe eq_re

	Coeff:			
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	eq_fe	eq_re	Difference	S.E.
ln_gdp	.958713	.958856	000143	.0142209
ln_irate	0074047	0039294	0034753	.0011638

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-B) '[(V_b-V_B)^(-1)](b-B) = 17.25

= 17.25 Prob>chi2 = 0.0002

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects

FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Mundlak Test

• The main idea is to model the correlation between the unobserved component and the regressors.

$$\mathsf{E}\left(\alpha_{i}|\mathbf{x}_{it}\right) = \theta_{0} + \theta_{1}\bar{\mathbf{x}}_{i1} + \ldots + \theta_{k}\bar{\mathbf{x}}_{ik} + \nu_{i}$$

· This implies that:

 $E(y_{it}|x_{it},) = (\beta_0 + \theta_0) + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \theta_1 \overline{x}_{i1} + \ldots + \theta_k \overline{x}_{ik} + \nu_i + \varepsilon_{it}$ $E(y_{it}|x_{it},) = \gamma_0 + \gamma_1 x_{it} + \gamma_2 \overline{x}_i + \epsilon_{it}$

If we have a random effects model:

$$\theta_1 = \dots = \theta_k = 0$$

$$\gamma_2 = 0$$

- If not the coefficients will have some meaning
- Therefore:

$$H_o : \theta_1 = \ldots = \theta_k = 0$$
$$H_o : \gamma_2 = 0$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects

FE vs RE Marginal Analysi:

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

- xtunitroot
- xtcointtest
- Summary

Mundlak Test

• The main idea is to model the correlation between the unobserved component and the regressors.

$$\mathsf{E}\left(\alpha_{i}|\mathbf{x}_{it}\right) = \theta_{0} + \theta_{1}\bar{\mathbf{x}}_{i1} + \ldots + \theta_{k}\bar{\mathbf{x}}_{ik} + \nu_{i}$$

• This implies that:

 $E(y_{it}|x_{it},) = (\beta_0 + \theta_0) + \beta_1 x_{it1} + \ldots + \beta_k x_{itk} + \theta_1 \overline{x}_{i1} + \ldots + \theta_k \overline{x}_{ik} + \nu_i + \varepsilon_{it}$ $E(y_{it}|x_{it},) = \gamma_0 + \gamma_1 x_{it} + \gamma_2 \overline{x}_i + \epsilon_{it}$

• If we have a random effects model:

$$\begin{aligned} \theta_1 &= \ldots = \theta_k = \mathbf{0} \\ \gamma_2 &= \mathbf{0} \end{aligned}$$

- · If not the coefficients will have some meaning
- Therefore:

$$H_o : \theta_1 = \ldots = \theta_k = 0$$

$$H_o : \gamma_2 = 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Basic concepts
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

- DGP Data and mode Panel structure Random Effects
- Fixed Effects

FE vs RE

Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

```
xtunitroot
```

xtcointtest

Summary

Constructing the Mundlak Test

- First lets construct a list
 - . local explain ln_gdp ln_irate
 - . local explainm ln_gdpm ln_iratem
- Now lets generate a sample mean for each object of the list, and then run the auxiliary regression for the test:

```
foreach var of local explain {
```

2. by id: egen double `var´m = mean(`var´)
3. }

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

. xtreg ln_cons `explain´ `explainm´, re
Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and mode Panel structure Random Effects

Fixed Effects

FE vs RE

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

```
xtunitroot
```

xtcointtest

Summary

Constructing the Mundlak Test

- First lets construct a list
 - . local explain ln_gdp ln_irate
 - . local explainm ln_gdpm ln_iratem
- Now lets generate a sample mean for each object of the list, and then run the auxiliary regression for the test:

```
. foreach var of local explain {
   2. by id: egen double `var´m = mean(`var´)
   3. }
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

. xtreg ln_cons `explain´ `explainm´, re

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects

FE vs RE

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Mundlak Results

		• · ·		· · · ·			
Random-effect:	s GLS regress:	ion		Number	of obs	=	1,010
Group variable	e: country			Number	of groups	5 =	131
R-sq:				Obs per	group:		
within =	= 0.8034				mi	in =	1
between :	= 0.9872				av	/g =	7.1
overall :	= 0.9864				ma	ax =	9
				Wald ch	i2(4)	=	13443.43
corr(u_i, X)	= 0 (assumed	i)		Prob >	chi2	=	0.0000
ln_cons	Coef.	Std. Err.	z	P> z	[95% 0	Conf.	Interval
ln_gdp	.958713	.0165226	58.02	0.000	. 92632	292	.991096
ln_irate	0074047	.004276	-1.73	0.083	01578	355	.000976
ln_gdpm	.0031773	.0191767	0.17	0.868	03440	083	.040762
ln_iratem	.0680654	.0184904	3.68	0.000	.03182	248	.104306
_cons	. 6099668	.2413124	2.53	0.011	.13700	031	1.08293
	.2339765						
sigma_u							
sigma_u sigma_e	.05205235						

イロト 不得 トイヨト イヨト

э.

. test `explainm´

Outline

Basic concept

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

MARGINAL ANALYISIS

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Interpreting the Coefficients

• Notice that all the variables are in natural logs. Therefore:

$$E(\ln(y_{it})|\ln x_{it},\alpha_i) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_k \ln x_{itk} + \alpha_i$$

• If you want the impact of a continuous regressor on y_{it}:

ί

$$\frac{\partial E\left(y_{it}|x_{it},\alpha_{i}\right)}{\partial x_{itj}}\frac{x_{itj}}{E\left(y_{it}|x_{it},\alpha_{i}\right)}=\beta_{j}$$

- Use margins to get the elasticities (dydx() in this particular case):
 - . quietly xtreg ln_cons ln_gdp ln_irate,fe
 - . margins, dydx(*)

Average margi	al effects		Number o	f obs	-	1,016
Model VCE	Conventional					
Expression dy/dx w.r.t.	Linear prediction, ln_gdp ln_irate	predict()				

		Delta-method				
	dy/dx	Std. Err.	Z	₽> z	[95% Conf.	Interval]
ln_gdp ln_irate		.016523 .0042761	58.02 -1.73		.9263284 0157857	.9910976 .0009763

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Outline

Basic concept

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

```
xtunitroot
```

xtcointtest

Summary

Interpreting the Coefficients

• Notice that all the variables are in natural logs. Therefore:

$$E(\ln(y_{it})|\ln x_{it},\alpha_i) = \beta_0 + \beta_1 \ln x_{it1} + \ldots + \beta_k \ln x_{itk} + \alpha_i$$

• If you want the impact of a continuous regressor on y_{it}:

$$\frac{\partial E\left(y_{it}|x_{it},\alpha_{i}\right)}{\partial x_{itj}}\frac{x_{itj}}{E\left(y_{it}|x_{it},\alpha_{i}\right)}=\beta_{j}$$

• Use margins to get the elasticities (dydx() in this particular case):

```
. quietly xtreg ln_cons ln_gdp ln_irate,fe
```

```
. margins, dydx(*)
```

verage marginal effects			Number	of	obs	=	1,016	
Model VCE	:	Conventional						
Expression dy/dx w.r.t.	:	Linear prediction, ln_gdp ln_irate	predict()					

	1	Delta-method					
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]	
ln_gdp ln_irate	.958713 0074047	.016523 .0042761	58.02 -1.73	0.000 0.083	.9263284 0157857	.9910976 .0009763	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- Basic concepts
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Marginal Effects with interactions

Regional interactions with In_gdp:

.9440403

1.017993

.8729883

Asia

Europe

Aust Oceania

- . quietly xtreg ln_cons i.region#c.ln_gdp ln_irate,fe
- . margins, dydx(ln_gdp) over(region)

Average margi Model VCE	nal effects : Conventional		N	umber of	obs =	986	
Expression dy/dx w.r.t. over	: Linear predict : ln_gdp : region	tion, predict	()				
		Delta-method	1				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]	
ln_gdp							
region							
Africa	1.003669	.0253091	39.66	0.000	.9540644	1.05327	
America	.8961536	0409304	21 89	0 000	8159314	976375	

36.26

10.43

6 28

0.000

0 000

0.000

0260334

1622033

.0837015

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

.8930157

.7089363

70008

.9950649

1 335905

1.03704

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic F Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Marginal effects by region

. marginsplot

Variables that uniquely identify margins: region

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

- Basic concepts
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Marginal Effects with interactions

Regional interactions with In_irate:

. margins, dydx(ln_irate) over(region)

Average margi Model VCE	.na :	al effects Conventional	Number	of	obs	=	986
Expression dy/dx w.r.t. over	::	Linear prediction, predict() ln_irate region					

	Del	ta-method				
	dy/dx S	td. Err.	z P	> z	[95% Conf.	Interval]
ln_irate region						
Africa	0270155	.0114371	-2.36	0.018	0494319	0045991
America	0070408	.0088792	-0.79	0.428	0244436	.0103621
Asia	0141604	.0115014	-1.23	0.218	0367028	.0083819
Aust_Oceania	0175721	.0509582	-0.34	0.730	1174484	.0823041
Europe	0012435	.0059118	-0.21	0.833	0128304	.0103435

▲□▶▲□▶▲□▶▲□▶ □ のQ@

xtunitroot

xtcointtest

Summary

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic F Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regressior Models
- xtunitroot
- xtcointtest
- Summary

Marginal effects by region

. marginsplot

Variables that uniquely identify margins: region

Outline

Basic concept

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

DYNAMIC PANEL-DATA MODELS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

- Basic
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Dynamic Models

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{y}_{i(t-1)} + \mathbf{x}'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

- In the model above *x_{it}* could also include lagged variables.
- Taking first differences:

$$\Delta y_{it} = \beta_1 \Delta y_{i(t-1)} + \Delta x'_{it} \beta_2 + \Delta \varepsilon_{it}$$

• We have eliminated the fixed effect but notice that:

$$\Xi\left(\Delta y_{i(t-1)}\Delta \varepsilon_{it}
ight)
eq 0$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Dynamic Models

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{y}_{i(t-1)} + \mathbf{x}'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

- In the model above *x_{it}* could also include lagged variables.
- Taking first differences:

$$\Delta y_{it} = \beta_1 \Delta y_{i(t-1)} + \Delta x'_{it} \beta_2 + \Delta \varepsilon_{it}$$

• We have eliminated the fixed effect but notice that:

$$E\left(\Delta y_{i(t-1)}\Delta \varepsilon_{it}\right) \neq 0$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Dynamic Models

$$\mathbf{y}_{it} = \beta_0 + \beta_1 \mathbf{y}_{i(t-1)} + \mathbf{x}'_{it} \beta_2 + \alpha_i + \varepsilon_{it}$$

- In the model above *x_{it}* could also include lagged variables.
- Taking first differences:

$$\Delta y_{it} = \beta_1 \Delta y_{i(t-1)} + \Delta x'_{it} \beta_2 + \Delta \varepsilon_{it}$$

• We have eliminated the fixed effect but notice that:

$$E\left(\Delta y_{i(t-1)}\Delta \varepsilon_{it}\right) \neq 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Instrumental Variable (GMM) Estimation

• The key to estimation is to find a set of instruments that satisfy:

$$E(z_{it}\Delta\varepsilon_{it})=0$$

- This gives rise to the following models:
 - Anderson-Hsiao $y_{i(t-2)}$ and $\Delta y_{i(t-2)}$ (xtivreg, fd).
 - Arellano and Bond suggest using all available lag levels (not only the second lag) for the first difference equation (xtabond).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Instrumental Variable (GMM) Estimation

• The key to estimation is to find a set of instruments that satisfy:

$$E(z_{it}\Delta\varepsilon_{it})=0$$

- This gives rise to the following models:
 - Anderson-Hsiao $y_{i(t-2)}$ and $\Delta y_{i(t-2)}$ (xtivreg, fd).
 - Arellano and Bond suggest using all available lag levels (not only the second lag) for the first difference equation (xtabond).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Pooled vs. Panel

FE vs BE

Arellano/Bond

Arellano-Bond

. xtabond ln_cons ln_gdp ln_irate, twostep

Arellano-Bond	dynamic pane	l-data estim	ation	Number	of obs =	761
Group variable	e: country			Number	of groups =	121
Time variable	: year					
				Obs per	group:	
					min =	1
					avg =	6.289256
					max =	7
Number of inst	truments =	31		Wald ch	i2(3) =	9345.33
				Prob >	chi2 =	0.0000
Two-step resu	lts					
ln_cons	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
ln cons						
L1.	.3616734	.0072234	50.07	0.000	.3475158	.375831
ln_gdp	. 602238	.0073699	81.72	0.000	.5877932	.6166828
ln_irate	- 0085773	.0024087	-3.56	0.000	0132982	0038564
cons	.7702696	2566304	3.00	0.003	.2672833	1.273256

Warning: qmm two-step standard errors are biased; robust standard errors are recommended.

Instruments for differenced equation

GMM-type: L(2/.).ln cons Standard: D.ln gdp D.ln irate

Instruments for level equation

Standard: cons

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

Model Specification

. estat sargan

Sargan test of overidentifying restrictions H0: overidentifying restrictions are valid chi2(27) = 32.56842 Prob > chi2 = 0.2117

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• The overidentification restriction is a test of the validity of the instruments under correct specification.

Outline

- Basic
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Model Specification

estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z
1	-2.5248	0.0116
2	1.5938	0.1110

H0: no autocorrelation

• The arellano-bond test is testing that Ho: $E\left[\Delta \varepsilon_{it} \Delta \varepsilon_{i(t-1)}\right] \neq 0$:

$$\begin{split} E\left[\Delta\varepsilon_{it}\Delta\varepsilon_{i(t-1)}\right] &= E\left[\left(\varepsilon_{it}-\varepsilon_{i(t-1)}\right)\left(\varepsilon_{i(t-1)}-\varepsilon_{i(t-2)}\right)\right] \\ &= E\left[\varepsilon_{i(t-1)}^{2}\right]+0 \end{split}$$

 According to our assumptions we should reject this hypothesis. Also, according to our hypothesis:

$$E \left[\Delta \varepsilon_{it} \Delta \varepsilon_{i(t-2)} \right] = E \left[\left(\varepsilon_{it} - \varepsilon_{i(t-1)} \right) \left(\varepsilon_{i(t-2)} - \varepsilon_{i(t-3)} \right) \right]$$

= $E \left(\varepsilon_{it} \varepsilon_{i(t-2)} \right) - E \left(\varepsilon_{it} \varepsilon_{i(t-3)} \right) + E \left(\varepsilon_{i(t-1)} \varepsilon_{i(t-2)} \right)$
 $- E \left(\varepsilon_{i(t-1)} \varepsilon_{i(t-3)} \right)$
= 0

(日)

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regressior Models

- xtunitroot
- xtcointtest
- Summary

A New Set of Moment Conditions

• The lagged-level instruments in xtabond become weak as the AR process becomes too persistent or σ_u^2/σ_e^2 becomes too large, so a new set of moments conditions are proposed:

$$E(z_{it}\Delta\varepsilon_{it}) = 0$$

$$E(\Delta z_{it}\varepsilon_{it}) = 0$$

- These are defined by Arellano-Bover/Blundell-Bond.
- Notice that you have moments for the equation in levels and for the equation in first difference

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• Fit this model with xtdpdsys

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond Arellano-

- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

A New Set of Moment Conditions

• The lagged-level instruments in xtabond become weak as the AR process becomes too persistent or σ_u^2/σ_e^2 becomes too large, so a new set of moments conditions are proposed:

$$E(z_{it}\Delta\varepsilon_{it}) = 0$$

$$E(\Delta z_{it}\varepsilon_{it}) = 0$$

- These are defined by Arellano-Bover/Blundell-Bond.
- Notice that you have moments for the equation in levels and for the equation in first difference

(日) (日) (日) (日) (日) (日) (日)

• Fit this model with xtdpdsys

Arellano-Bover/Blundell-Bond

. xtdpdsys ln_cons ln_gdp ln_irate,twostep

System dynamic	c panel-data e	estimation		Number	of obs	=	884
Group variable	e: country			Number	of groups	=	122
Time variable:	: year						
				Obs per	group:		
					min	=	1
					avg	=	7.245902
					max	=	8
Number of inst	cruments =	38		Wald ch	i2(3)	=	36908.02
				Prob >	chi2	=	0.0000
Two-step resul	lts						
ln_cons	Coef.	Std. Err.	Z	P> z	[95% Co:	nf.	Interval]
ln_cons							
L1.	.464653	.0063034	73.71	0.000	.452298	5	.4770074
ln_gdp	.4918536	.0051095	96.26	0.000	.481839	1	.501868
ln_irate	0092232	.0029176	-3.16	0.002	014941	5	0035049
_cons	.9754017	.1538629	6.34	0.000	. 673835	9	1.276967

Warning: gmm two-step standard errors are biased; robust standard errors are recommended. Instruments for differenced equation GMM-type: L(2/.).ln_cons Standard: D.ln_gdp D.ln_irate Instruments for level equation GMM-type: LD.ln_cons Standard: _cons

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Outline

Basic concept

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Arellano-Bover/Blundell-Bond

Overidentification and Autocorrelation Tests

. estat sargan

```
Sargan test of overidentifying restrictions
H0: overidentifying restrictions are valid
chi2(34) = 46.01339
Prob > chi2 = 0.0819
```

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors

Order	z	Prob > z
1	-2.6633	0.0077
2	1.6218	0.1048

H0: no autocorrelation

・ロト・西ト・西ト・西・ うろの

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic Pl Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Your Own Dynamic Model

- This models relies heavily on the idea that the dynamics are correctly specified
- For instance you could have:

 $y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it}\beta_2 + \alpha_i + \varepsilon_{it} + \gamma \varepsilon_{i(t-1)}$ $\Delta y_{it} = \Delta \beta_1 y_{i(t-1)} + \Delta x'_{it}\beta_2 + \Delta \varepsilon_{it} + \gamma \Delta \varepsilon_{i(t-1)}$

- You now need to construct a new set of instruments that satisfy the moment conditions.
- Stata allows you to do this with xtdpd. You need to specify the instruments for the level and difference equations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic Pl Models

Arellano/Bond

Arellano-Bover/Blundell-Bond

Extended Regressior Models

- xtunitroot
- xtcointtest
- Summary

Your Own Dynamic Model

- This models relies heavily on the idea that the dynamics are correctly specified
- For instance you could have:

$$y_{it} = \beta_0 + \beta_1 y_{i(t-1)} + x'_{it}\beta_2 + \alpha_i + \varepsilon_{it} + \gamma \varepsilon_{i(t-1)}$$

$$\Delta y_{it} = \Delta \beta_1 y_{i(t-1)} + \Delta x'_{it}\beta_2 + \Delta \varepsilon_{it} + \gamma \Delta \varepsilon_{i(t-1)}$$

- You now need to construct a new set of instruments that satisfy the moment conditions.
- Stata allows you to do this with xtdpd. You need to specify the instruments for the level and difference equations.

Outline

Basic concept:

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Extended Regression Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Extended regression models for panel data

- Random effects linear regression with endogenous covariates
 - xteregress y x1 x2, /// endogenous(w = x1 z1 z2)
- Random effects linear regression with sample selection
 - xteregress y x1 x2, ///
 select(selected = x2 w2)
- Random effects linear regression with endogenous treatment

```
• xteregress y x1 x2, ///
entreat(treatment = w z2 z3)
```

・ロト・「聞・・「思・・「思・・」 しゃくの

Outline

- Basic concepts
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

- xtunitroot
- xtcointtest
- Summary

Extended regression models for panel data

- Binary dependent variables
 - xteprobit y x1 x2, ///
 endogenous(w = x1 z1 z2) ///
 select(selected = x2 w2) ///
 entreat(treatment = w z2 z3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Random effects ordered probit regression
 - xteoprobit
- Random effects Interval regression
 - xteintreg
- Random effects Heckman model
 - xtheckman

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random effects probit regression with sample selection

. describe

Contains data from https://www.stata-press.com/data/r16/womenhlthre.dta obs: 7,200 Women's health status panel vars: 10 6 Sep 2018 16:14

variable name	storage type	display format	value label	variable label
grade	byte	%8.0g		Years of education
personid	int	%9.0q		Person ID
vear	int	%9.0q		Year
workschool	byte	%8.0q	yesno	Employed or in school
insured	byte	%8.0g	yesno	Has health insurance
regcheck	byte	%8.0q	vesno	Has regular checkups
select	byte	%8.0q	-	In sample
exercise	byte	%8.0g	yesno	Exercises regularly
health	byte	%9.0g	status	Health status
goodhlth	float	%9.0g		Good-Excellent Health condition

Sorted by: personid year Note: Dataset has changed since last saved.

Random effects probit regression with sample selection

. xteprobit goodhlth exercise grade, select (select = grade i.regcheck)

(setting technique to bhhh)

Iteration 0: log likelihood = -6840.671

asic
ncepts
oled vs. Panel
ata tools
ata momt

DGP
Data and model
Panel structure
Random Effects
Fixed Effects
FE vs RE
Marginal Analysis

Bover/Blundell-Bond

Extended Regression Models

Iteration 1:	log likelihood = -6808.647	5		
Iteration 2:	log likelihood = -6808.153	5		
Iteration 3:	log likelihood = -6808.151	5		
Iteration 4:	log likelihood = -6808.151	5		
Extended probi	t regression	Number of obs	=	7,200
-	-	Selected	=	5,421
		Nonselected	=	1,779
Group variable	: personid	Number of groups	=	1,800
		Obs. per group:		
		min	=	4
		avg	=	4.0
		max	=	4
Integration me	thod: mvaghermite	Integration pts.	=	7
		Wald chi2(2)	=	348.34
Log likelihood	= -6808.1515	Prob > chi2	=	0.0000

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Random effects probit regression with sample selection

. xteprobit goodhlth exercise grade, select(select = grade i.regcheck)

	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
goodhlth						
exercise	.3554439	.0400762	8.87	0.000	.276896	.4339919
grade	.1743015	.0095533	18.25	0.000	.1555774	.1930256
_cons	-2.252753	.1154867	-19.51	0.000	-2.479102	-2.026403
select						
grade	.0832256	.007392	11.26	0.000	.0687376	.0977137
regcheck						
yes	.4800144	.036039	13.32	0.000	.4093793	.5506495
_cons	5420435	.0964841	-5.62	0.000	731149	3529381
<pre>corr(e.select,e.goodhlth)</pre>	.8060986	.0855705	9.42	0.000	.5627727	. 9208657
<pre>var(goodhlth[personid])</pre>	.2640095	.0364768			.2013787	.346119
<pre>var(select[personid])</pre>	.1538155	.0271043			.1088948	.2172667
corr(select[personid],						
<pre>goodhlth[personid])</pre>	.6224091	.0808206	7.70	0.000	.4384837	.7562961

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Outline

Ba	ic	
		ts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random effects probit regression with endogenous treatment

```
. xteprobit goodhlth exercise grade, ///
> entreat(insured = workschool,nore) nolog
```

Extended probit regression	Number of obs =	7,200
Group variable: personid	Number of groups =	1,800
	Obs. per group:	
	min =	4
	avg =	4.0
	max =	4
Integration method: mvaghermite	Integration pts. =	7
	Wald chi2(6) =	265.10
Log likelihood = -7572.592	Prob > chi2 =	0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Random effects probit regression with endogenous treatment

. xteprobit goodhlth exercise grade, /// > entreat(insured = workschool,nore) nolog

Coef Std Err [95% Conf. Interval] z P>|z| goodhlth insured#c.exercise .5563098 .0916258 6.07 0.000 .3767266 .735893 no yes .486376 .0454754 10.70 0.000 .3972458 .5755062 insured#c.grade no .0125397 .0207005 0.61 0.545 -.0280325.053112 0788714 0100576 7 84 0 000 0591589 098584 ves insured -1.398234.3668983 -3.810.000 -2.117342-.679127 no yes -.6820556 .1458962 -4 67 0.000 -.9680069 -.3961043 insured workschool .6620277 .058127 11 39 0.000 5481008 .7759545 - 0088057 0557336 -0 16 0 874 - 1180415 1004301 cons corr(e, insured, e, goodhlth) .3433395 .1522733 2 25 0 024 0195374 .6019547 var(goodhlth[personid]) .3394691 .0451158 .2616222 .4404797

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Panel-Data Unit-Root and Cointegration Tests

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

- Basic
- Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Panel-data unit-root tests

- Ho: All panels contain a unit root.
 H1: At least some panels contain unit roots.
 - xtunitroot llc: Levin-Lin-Chu test
 - xtunitroot ht: Harris-Tzavalis test
 - xtunitroot breitung: Breitung test
 - xtunitroot ips: Im-Pesaran-Shin test
 - xtunitroot fisher: Fisher-type test
- Ho: All the panels are (trend) stationary.
 - H1: At least some panels contain unit roots.
 - xtunitroot hadri: Hadri LM stationarity test

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PE Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Panel-data cointegration tests

- Ho: No cointegration.
 - H1: Variables cointegrated in all panels.
 - xtcointtest kao
 - xtcointtest pedroni
 - xtcointtest westerlund, allpanels
- Ho: No cointegration.
 - H1: Variables cointegrated in some panels.
 - xtcointtest westerlund, somepanels

・ロト・西ト・日本・日本・日本

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PI Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Panel unit root test (fictitious data)

. use productivity (Fictitious cointegration data)

. xtset

```
Panel variable: id (strongly balanced)
Time variable: time, 1973q3 to 2010q4
Delta: 1 quarter
```

. xtsum product rddomest rdfor

Variable		Mean	Std. dev.	Min	Max	Obser	vations
product	overall	9.030543	5.980432	-7.10538	26.32578	N =	15000
	between		1.738041	3.524668	13.841	n =	100
	within		5.724926	-4.839727	26.2163	т =	150
rddomest	overall	74.09569	43.99242	-3.273872	170.2226	N =	15000
	between		6.873214	53.24847	90.06024	n =	100
	within		43.45757	-14.45431	161.2792	т =	150
rdfor	overall	44.6047	27.0383	-4.653028	116.5821	N =	15000
	between		6.410035	24.97034	58.58555	n =	100
	within		26.27526	-16.42538	109.3243	т =	150

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで
Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Panel unit root test for productivity

. xtunitroot Breitung unit	breitung product -root test for produ	ict	
H0: Panels co Ha: Panels ar	ntain unit roots e stationary	Number of panels = 100 Number of periods = 150	
AR parameter: Panel means: Time trend:	Common Included Not included		Asymptotics: T,N -> Infinity sequentially Prewhitening: Not performed
	Statistic	p-value	
lambda	5.8117	1.0000	
. xtunitroot Breitung unit	breitung D.product -root test for D.pro	oduct	
H0: Panels co Ha: Panels ar	ntain unit roots e stationary	Number of panels = 100 Number of periods = 149	
AR parameter: Panel means: Time trend:	Common Included Not included		Asymptotics: T,N -> Infinity sequentially Prewhitening: Not performed
	Statistic	p-value	
lambda	-61.6147	0.0000	

ヘロト 人間 とく ヨン 人 ヨン

æ –

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regressior Models

xtunitroot

xtcointtest

Summary

Panel unit root test for RD_domestic

H0: Panels co	ntain unit roots	Number of panels = 100 Number of periods = 150	
Ha: Panels ar	e stationary		
AR parameter: Common Panel means: Included			Asymptotics: T,N -> Infinity sequentially
Time trend:	Not included		Prewhitening: Not performed
	Statistic	p-value	
lambda	74.2929	1.0000	
. xtunitroot	breitung D.rddomest	domost	
. xtunitroot Breitung unit H0: Panels co	breitung D.rddomest -root test for D.rd ntain unit roots	domest	Number of panels = 100 Number of pariods = 149
. xtunitroot Breitung unit HO: Panels co Ha: Panels ar	breitung D.rddomest -root test for D.rd ntain unit roots e stationary	domest	Number of panels = 100 Number of periods = 149 Asymptotics: TN -> Definity
. xtunitroot Breitung unit H0: Panels co Ha: Panels ar AR parameter: Panel means:	breitung D.rddomest -root test for D.rd ntain unit roots e stationary Common Included	domest	Number of panels = 100 Number of periods = 149 Asymptotics: T,N -> Infinity sequentially
. xtunitroot Breitung unit H0: Panels co Ha: Panels ar AR parameter: Panel means: Time trend:	breitung D.rddomest -root test for D.rd ntain unit roots e stationary Common Included Not included	domest	Number of panels = 100 Number of periods = 149 Asymptotics: T,N -> Infinity sequentially Prewhitening: Not performed
. xtunitroot Breitung unit H0: Panels co Ha: Panels ar AR parameter: Panel means: Time trend:	breitung D.rddomest -root test for D.rd ntain unit roots e stationary Common Included Not included Statistic	domest	Number of panels = 100 Number of periods = 149 Asymptotics: T,N -> Infinity sequentially Prewhitening: Not performed

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

Basic

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marginal Analysis

Dynamic PD Models

Arellano/Bond Arellano-Bover/Blundell-Bond

Extended Regression Models

xtunitroot

xtcointtest

Summary

Panel unit root test for RD_foreign

Breitung unit H0: Panels co Ha: Panels ar AR parameter: Panel means: Time trend:	-root test for D.rd ntain unit roots re stationary Common Included Not included	for	Number of panels = 100 Number of periods = 149 Asymptotics: T,N -> Infinity sequentially Prewhitening: Not performed
Breitung unit H0: Panels co Ha: Panels ar	ntain unit roots	for	Number of panels = 100 Number of periods = 149
Breitung unit	-root test for D.rd	for	
. x tunitroot	breitung D.rdfor		
lambda	52.9037	1.0000	
	Statistic	p-value	
Panel means: Time trend:	Included Not included		sequentially Prewhitening: Not performed
H0: Panels co Ha: Panels ar AR parameter:	ontain unit roots e stationary Common	Number of panels = 100 Number of periods = 150 Asymptotics: T.N -> Infinity	
H0: Panels co	ntain unit roots		Number of panels = 100

ヘロト 人間 とくほとくほとう

€ 990

Outline

Pooled vs. Panel Stata tools

Bover/Blundell-Bond

xtcointtest

Panel cointegration test for productivity, RD_domestic and RD_foreign

. xtcointtest kao product rddomest rdfor

Kao test for cointegration

H0: No cointegration Ha: All panels are cointegrated		Number of panels Number of period	s = 100 is = 148	
Cointegrating vect Panel means: Time trend: AR parameter:	cor: Same Included Not included Same	Kernel: Lags: Augmented lags:	Bartlett 3.60 (Newey-West) 1	
		Statistic	p-value	
Modified Dickey-Fuller t		-23.6733	0.0000	
Dickey-Fuller t Augmented Dickey-Fuller t Unadjusted modified Dickey-Fuller t Unadjusted Dickey-Fuller t		-15.1293	0.0000 0.0001 0.0000 0.0000	
		-3.6909		
		-46.7561		
		-20.2521		

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Basic concepts

Pooled vs. Panel Stata tools Data mgmt

Linear PD

DGP Data and model Panel structure Random Effects Fixed Effects FE vs RE Marringal Analysis

Dynamic PD Models

- Arellano/Bond Arellano-Bover/Blundell-Bond
- Extended Regression Models
- xtunitroot
- xtcointtest
- Summary

Summing up

- Basic Concepts
- Linear panel-data models
 - Random effects
 - Fixed effects
 - Marginal analysis
- Dynamic panel-data models
 - Arellano-Bond
 - Arellano-Bover/Blundell-Bond
- Extended regression models for panel data

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Panel unit roots and cointegration