Nonparametric regression–Estimation, inference, and effects

StataCorp LLC

May 09, 2018

(StataCorp LLC)

May 09, 2018 1 / 69

A .

Why is nonparametric regression relevant?

- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

A (10) A (10)

- Why is nonparametric regression relevant?
- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

- Why is nonparametric regression relevant?
- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

- Why is nonparametric regression relevant?
- Nonparametric regression is agnostic
- Unlike parametric estimation, nonparametric regression assumes no functional form for the relationship between outcomes and covariates.
- You do not need to know the functional form to answer important research questions
- You are not subject to problems that arise from misspecification

• Some parametric functional form assumptions.

- regression: $E(Y|X) = X\beta$
- probit: $E(Y|X) = \Phi(X\beta)$
- Poisson: $E(Y|X) = \exp(X\beta)$

• The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

A (10) A (10)

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

$$E\left(y|X\right) = g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

< 🗇 🕨 < 🖻 🕨 <

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

 $E\left(y|X\right) = g\left(X\right)$

• Where the mean function $g(\cdot)$ is unknown

A (10) > A (10) > A (10)

- Some parametric functional form assumptions.
 - regression: $E(Y|X) = X\beta$
 - probit: $E(Y|X) = \Phi(X\beta)$
 - Poisson: $E(Y|X) = \exp(X\beta)$
- The relationship of interest is also a conditional mean:

$$E\left(y|X\right)=g\left(X\right)$$

• Where the mean function $g(\cdot)$ is unknown

- **→ → →**

- In the parametric models β fully characterizes the mean function
- We work hard to look and understand β
- Most of the interesting questions and results are inferences about the relationship of interest, the mean function.
- The answers to these questions is not β_i
- Nonparametric regression invites us to think in terms of the questions of interest
- Nonparametric regression invites you to think about inference not about parameters

< 回 > < 三 > < 三 >

- In the parametric models β fully characterizes the mean function
- We work hard to look and understand β
- Most of the interesting questions and results are inferences about the relationship of interest, the mean function.
- The answers to these questions is not β_i
- Nonparametric regression invites us to think in terms of the questions of interest
- Nonparametric regression invites you to think about inference not about parameters

- 4 回 ト 4 回 ト

- In the parametric models β fully characterizes the mean function
- We work hard to look and understand β
- Most of the interesting questions and results are inferences about the relationship of interest, the mean function.
- The answers to these questions is not β_i
- Nonparametric regression invites us to think in terms of the questions of interest
- Nonparametric regression invites you to think about inference not about parameters

A (10) A (10) A (10) A

- In the parametric models β fully characterizes the mean function
- We work hard to look and understand β
- Most of the interesting questions and results are inferences about the relationship of interest, the mean function.
- The answers to these questions is not β_i
- Nonparametric regression invites us to think in terms of the questions of interest
- Nonparametric regression invites you to think about inference not about parameters

A (10) A (10) A (10) A

- In the parametric models β fully characterizes the mean function
- We work hard to look and understand β
- Most of the interesting questions and results are inferences about the relationship of interest, the mean function.
- The answers to these questions is not β_i
- Nonparametric regression invites us to think in terms of the questions of interest
- Nonparametric regression invites you to think about inference not about parameters

A (10) A (10)

To Summarize the Discussion

イロト イヨト イヨト イヨト

Traditional Approach to Nonparametric Estimation

• A cross section of counties

- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

Traditional Approach to Nonparametric Estimation

- A cross section of counties
- citations: Number of monthly drunk driving citations
- fines: The value of fines imposed in a county in thousands of dollars if caught drinking and driving.

Implicit Relation

Simple linear regression

(StataCorp LLC)

May 09, 2018 8 / 69

・ロト ・回ト ・ヨト

Regression with nonlinearities

(StataCorp LLC)

May 09, 2018 9 / 69

• • • • • • • • • • • •

Poisson regression

Nonparametric Estimation of Mean Function

lpoly citations fines

.

Now That We have the Mean Function

• What is the effect on the mean of citations of increasing fines by 10% ?

Traditional Approach Gives Us

• • • • • • • • • • •

Additional Variables

- I would like to add controls
 - Whether county has a college town college
 - Number of highway patrol patrols units per capita in the county
- With those controls I can ask some new questions

• What is the mean of citations if I increase patrols and fines ?

• How does the mean of citations differ for counties where there is a college town, averaging out the effect of patrols and fines?

• What policy has a bigger effect on the mean of citations, an increase in fines, an increase in patrols, or a combination of both?

What We Have Is

(StataCorp LLC)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

- I have a mean function. That makes no functional form assumptions.
- I cannot answer the previous questions.
- My analysis was graphical not statistical
- My analysis is limited to one covariate
- This is true even if I give you the true mean function, g(X)

npregress

 New command in Stata 15 for nonparametric regression estimation

- We will be able to answer these question and make inferences
- We will be able to include multiple continuous and discrete
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question
- Stata is unique in being able to provide nonparametric graphics,

- 4 回 ト 4 回 ト

npregress

- New command in Stata 15 for nonparametric regression estimation
- We will be able to answer these question and make inferences using the mean function
- We will be able to include multiple continuous and discrete covariates
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question and get inferences using your estimator.
- Stata is unique in being able to provide nonparametric graphics, estimation, and inference

A (10) A (10) A (10) A
- New command in Stata 15 for nonparametric regression estimation
- We will be able to answer these question and make inferences using the mean function
- We will be able to include multiple continuous and discrete covariates
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question and get inferences using your estimator.
- Stata is unique in being able to provide nonparametric graphics, estimation, and inference

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- New command in Stata 15 for nonparametric regression estimation
- We will be able to answer these question and make inferences using the mean function
- We will be able to include multiple continuous and discrete covariates
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question and get inferences using your estimator.
- Stata is unique in being able to provide nonparametric graphics, estimation, and inference

- New command in Stata 15 for nonparametric regression estimation
- We will be able to answer these question and make inferences using the mean function
- We will be able to include multiple continuous and discrete covariates
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question and get inferences using your estimator.
- Stata is unique in being able to provide nonparametric graphics, estimation, and inference

- New command in Stata 15 for nonparametric regression estimation
- We will be able to answer these question and make inferences using the mean function
- We will be able to include multiple continuous and discrete covariates
- npregress is an estimator not just a graphical tool
- It is a Stata estimator. You are going to be able to ask question and get inferences using your estimator.
- Stata is unique in being able to provide nonparametric graphics. estimation, and inference

く 同 ト く ヨ ト く ヨ ト

Nonparametric Estimation Intuition

A .

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

< 回 > < 三 > < 三 >

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

• regress lbweight 1.msmoke, noconstant

• *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

< 回 > < 三 > < 三 >

Nonparametric regression: discrete covariates

Mean function for a discrete covariate

• Mean (probability) of low birthweight (lbweight) conditional on smoking 1 to 5 cigarettes (msmoke=1) during pregnancy

. mean lbweig	ght if	msmoke	==1				
Mean estimatio	on			Number	of obs	=	480
		Mean	Std.	Err.	[95%	Conf.	Interval]
lbweight		.1125	.014	4375	.0841	313	.1408687

- regress lbweight 1.msmoke, noconstant
- *E*(*lbweigth*|*msmoke* = 1), nonparametric estimate

A (10) A (10)

- Iow birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

- low birthweight conditional on log of family income fincome
- E(lbweight|fincome = 10.819)
- Take observations near the value of 10.819 and then take an average
- $|fincome_i 10.819| \le h$
- *h* is a small number referred to as the bandwidth

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- |fincome_i 10.819| ≤ h
- *h* is a small number referred to as the bandwidth

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- |*fincome_i* 10.819| ≤ *h*
- *h* is a small number referred to as the bandwidth

- low birthweight conditional on log of family income fincome
- *E*(*lbweight*|*fincome* = 10.819)
- Take observations near the value of 10.819 and then take an average
- |*fincome_i* 10.819| ≤ *h*
- *h* is a small number referred to as the bandwidth

Graphical representation

(StataCorp LLC)

▲ ▶ ▲ 王 ▶ 王 夕々で May 09, 2018 24 / 69

• • • • • • • • •

÷

Graphical example

(StataCorp LLC)

2 May 09, 2018 25 / 69

ъ

Graphical example continued

Two concepts

🛈 h !!!!

2 Definition of distance between points, $|x_i - x| \le h$

Kernel weights

• Epanechnikov

Gaussian

- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

э

< (T) > <

Kernel weights

- Epanechnikov
- Gaussian
- Epanechnikov2
- Rectangular(Uniform)
- Triangular
- Biweight
- Triweight
- Cosine
- Parzen

A .

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot\right) = \begin{cases} 1 & \text{if } x_i = x \\ h & \text{otherwise} \end{cases}$$

Cell mean

$$k(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$$

 Cell mean was used in the example of discrete covariate estimate E(lbweigth|msmoke = 1)

A (1) > A (1) > A

Discrete bandwidths

• Li-Racine Kernel

$$k\left(\cdot
ight)=\left\{egin{array}{cc} 1 & ext{if} & x_{i}=x\ h & ext{otherwise} \end{array}
ight.$$

Cell mean

$$k(\cdot) = \begin{cases} 1 & \text{if } x_i = x \\ 0 & \text{otherwise} \end{cases}$$

 Cell mean was used in the example of discrete covariate estimate *E*(*lbweigth*|*msmoke* = 1)

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

Selecting The Bandwidth

- A very large bandwidth will give you a biased estimate of the mean function with a small variance
- A very small bandwidth will give you an estimate with small bias and large variance

A Large Bandwidth At One Point

• • • • • • • • • •

A Large Bandwidth At Two Points

No Variance but Huge Bias

A Very Small Bandwidth at a Point

A Very Small Bandwidth at 4 Points

(StataCorp LLC)

May 09, 2018 35 / 69

Small Bias Large Variance

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 三 > < 三 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 三 > < 三 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

・ 同 ト ・ ヨ ト ・ ヨ ト

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

< 回 > < 回 > < 回 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.

• Local-linear regression is the default

< 回 > < 回 > < 回 >

Choose bandwidth optimally. Minimize bias-variance trade-off

- Cross-validation (default)
- Improved AIC (IMAIC)
- Compute a mean for every point in data (local-constant)
- Compute a regression for every point in data (local linear)
 - Computes constant (mean) and slope (effects)
 - Mean function and derivatives and effects of mean function
 - There is a bandwidth for the mean computation and another for the effects.
- Local-linear regression is the default

A D A D A D A
Nonparametric Estimation With npregress

A (1) > A (2) > A

The Data

- lbweight: 1 if low birthweight baby
- msmoke: cigarettes smoked during pregnancy (3 categories)
- mage: mother's age
- medu: mother's educational attainment
- alcohol: 1 if alcohol is consumed during pregnancy

npregress kernel lbweight mage medu i.msmoke i.alcohol

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.msmoke States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

< 回 ト < 三 ト < 三

npregress kernel lbweight mage medu i.msmoke i.alcohol

• kernel refers to the kind of nonparametric estimation

- By default Stata assumes variables in my model are continuous
- i.msmoke States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

< 回 ト < 三 ト < 三

npregress kernel lbweight mage medu i.msmoke i.alcohol

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.msmoke States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress kernel lbweight mage medu i.msmoke i.alcohol

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.msmoke States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress kernel lbweight mage medu i.msmoke i.alcohol

- kernel refers to the kind of nonparametric estimation
- By default Stata assumes variables in my model are continuous
- i.msmoke States the variable is categorical
- Interactions between continuous variables and between continuous and discrete variables are implicit

npregress Bandwidth

. npregress kernel lbweight mage medu i.msmoke i.alcohol Computing mean function

Minimizing cross-validation function:

Iteration	0:	Cross-validation	criterion	=	-1.7960703
Iteration	1:	Cross-validation	criterion	=	-1.8051048
Iteration	2:	Cross-validation	criterion	=	-1.8051048
Iteration	3:	Cross-validation	criterion	=	-1.8097678
Iteration	4:	Cross-validation	criterion	=	-1.8161976
Iteration	5:	Cross-validation	criterion	=	-1.8295231
Iteration	6:	Cross-validation	criterion	=	-1.8295231
Iteration	7:	Cross-validation	criterion	=	-1.8327629
Iteration	8:	Cross-validation	criterion	=	-1.8327629
Iteration	9:	Cross-validation	criterion	=	-1.8344806
Iteration	10:	Cross-validation	criterion	=	-1.8348909
Iteration	11:	Cross-validation	criterion	=	-1.8348909
Iteration	12:	Cross-validation	criterion	=	-1.8348909

Computing optimal derivative bandwidth

```
Iteration 0: Cross-validation criterion = 1.0020523
Iteration 1: Cross-validation criterion = .997563
Iteration 2: Cross-validation criterion = .99756116
```

npregress Output

Bandwidth

	Mean	Effect			
mage medu msmoke alcohol	3.149233 1.092557 .4397903 .0369884	36.95622 12.82115 .4397903 .0369884			
Local-linear Continuous kei Discrete kerne Bandwidth	regression rnel : epanec el : liraci : cross	chnikov ine validation	Number of obs E(Kernel obs) R-squared	= = =	1,000 1,000 0.4215
lbweight	Estimate				
Mean lbweight	.0964155				
Effect mage medu	002998 023344				
msmoke (1-5 vs 0) (6+ vs 0)	.0969135 .2136147				
alcohol (yes vs no)	.2147543				

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

Note: You may compute standard errors using vce(bootstrap) or reps().

<ロ> <四> <四> <四> <四> <四</p>

npregress Standard Errors

https://www.stata.com/manuals/rnpregress.pdf

npregress kernel y x i.a, vce(bootstrap, reps(1000) seed(111))

npregress kernel y x i.a, reps(1000) seed(111)

npregress Standard Errors

https://www.stata.com/manuals/rnpregress.pdf

npregress kernel y x i.a, vce(bootstrap, reps(1000) seed(111))

npregress kernel y x i.a, reps(1000) seed(111)

(StataCorp LLC)

▲ ▲ 볼 ▶ 볼 ∽ ි May 09, 2018 43 / 69

< ロ > < 同 > < 回 > < 回 >

npregress Standard Errors

https://www.stata.com/manuals/rnpregress.pdf

npregress kernel y x i.a, vce(bootstrap, reps(1000) seed(111))

npregress kernel y x i.a, reps(1000) seed(111)

< 回 > < 三 > < 三 >

npregress Confidence Intervals

. npregress kernel lbweight mage medu i.msmoke i.alcohol, reps(1000) seed(111) (running npregress on estimation sample) Bootstrap replications (1000) (output omitted) Bandwidth

	Mean	Effect				
mage medu msmoke alcohol	3.149233 1.092557 .4397903 .0369884	36.95622 12.82115 .4397903 .0369884				
Local-linear regression Continuous kernel : epanechnikov Discrete kernel : liracine Bandwidth : cross validation		Numi E (Ko R-s)	ber of obs ernel obs) quared	= =	1,000 1,000 0.4215	
lbweight	Observed Estimate	Bootstrap Std. Err.	Z	₽> z	Perce [95% Conf.	ntile Interval]
Mean lbweight	.0964155	.0092934	10.37	0.000	.0784985	.1146061
Effect mage medu msmoke	002998 023344	.0012575 .0033661	-2.38 -6.94	0.017 0.000	0055092 0298985	0006704 0167461
(1-5 vs 0) (6+ vs 0)	.0969135 .2136147	.0110657 .0243908	8.76 8.76	0.000 0.000	.0758351 .1621227	.1183473 .2603727
alcohol (yes vs no)	.2147543	.0219014	9.81	0.000	.1712824	.2571516

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

Inference

(StataCorp LLC)

■ ▶ ▲ ■ ▶ ■ 夕々の May 09, 2018 45 / 69

- What is the population-average probability of low birthweight?
- Average of the mean function (conditional probability)

4 A N

- What is the population-average probability of low birthweight?
- Average of the mean function (conditional probability)

• margins

Note: You may compute standard errors using vce(bootstrap) or reps().

<ロ> <四> <四> <四> <四> <四</p>

• margins

. margins Predictive ma Expression	rgins : mean function, predict()	Number of obs	=	1,000
	Margin			
cons	.0964155			

Note: You may compute standard errors using vce(bootstrap) or reps().

イロト イヨト イヨト イヨト

. margins, re (running margi Bootstrap repl	eps(1000) seed ins on estimat lications (100	d(111) tion sample) D0)					
(output omitte	ed)						
Predictive man	rgins			Number	of obs	=	1,000
				Replica	tions	=	1,000
Expression :	mean function	on, predict()					
	Observed	Bootstrap				Percei	ntile
	Margin	Std. Err.	Z	P> z	[95%	Conf.	Interval]
_cons	.0964155	.0092934	10.37	0.000	.078	4985	.1146061

◆□> ◆□> ◆注> ◆注> □注

• What is the population-average probability of low birthweight evaluated at different values of msmoke

- What is the population—average probability of low birthweight for different levels of the treatment msmoke
- Counterfactual

- What is the population-average probability of low birthweight evaluated at different values of msmoke
- What is the population-average probability of low birthweight for different levels of the treatment msmoke
- Counterfactual

- What is the population-average probability of low birthweight evaluated at different values of msmoke
- What is the population-average probability of low birthweight for different levels of the treatment msmoke
- Counterfactual

Probabilities at Different Values of msmoke

. margins msm (running margi Bootstrap repl (output omitte	noke, reps(100 ins on estimat lications (100 ed)	00) seed(111) tion sample) 00)					1 000
Predictive mai	rgins			Replicat	tions	=	1,000
Expression	mean functio	on, predict()		Repried			1,000
	Observed Margin	Bootstrap Std. Err.	z	₽> z	[95%	Percer Conf.	ntile Interval]
msmoke 0 1-5 6+	.0220855 .1189991 .2357003	.0074394 .0110734 .0224171	2.97 10.75 10.51	0.003 0.000 0.000	.0083 .098 .1913	1794 6169 3104	.0377342 .140994 .276417

э

• What is the average treatment effect of smoking

• The population—average of the difference of mean function estimates at each level with respect to the base level

- What is the average treatment effect of smoking
- The population-average of the difference of mean function estimates at each level with respect to the base level

Treatment Effects

. margins r.msmoke, contrast(nowald) reps(1000) seed(111) (running margins on estimation sample) Bootstrap replications (1000) (output omitted) Contrasts of predictive margins

Number of obs = 1,000 Replications = 1,000

Expression : mean function, predict()

	Observed	Bootstrap	Perce	ntile
	Contrast	Std. Err.	[95% Conf.	Interval]
msmoke (1-5 vs 0) (6+ vs 0)	.0969135 .2136147	.0110657	.0758351 .1621227	.1183473 .2603727

xpression : mean function, predict()

3

Treatment Effects

. margins r.msmoke, contrast(nowald) reps(1000) seed(111) (running margins on estimation sample) Bootstrap replications (1000) (output omitted) Contrasts of predictive margins

Number of obs = 1,000 Replications = 1,000

Expression : mean function, predict()

	Observed	Bootstrap	Perce	ntile
	Contrast	Std. Err.	[95% Conf.	Interval]
msmoke (1-5 vs 0) (6+ vs 0)	.0969135 .2136147	.0110657 .0243908	.0758351 .1621227	.1183473 .2603727

Expression : mean function, predict()

	Observed Margin	Bootstrap Std. Err.	Z	₽> z	Perce [95% Conf.	entile Interval]
msmoke 0 1-5 6+	.0220855 .1189991 .2357003	.0074394 .0110734 .0224171	2.97 10.75 10.51	0.003 0.000 0.000	.0081794 .0986169 .1913104	.0377342 .140994 .276417

May 09, 2018

52/69

- What would the effects be if I compared them to adjacent levels instead of the base level.
- Incremental effect

- What would the effects be if I compared them to adjacent levels instead of the base level.
- Incremental effect

. margins ar.msmoke, contrast(nowald) reps(1000) seed(111) (running margins on estimation sample) Bootstrap replications (1000) (output omitted) Contrasts of predictive margins

Expression	: mean functio	on, predict()	Numb Repl	er of obs ications	=	1,000 1,000
	Observed Contrast	Bootstrap Std. Err.	Perce [95% Conf.	ntile Interval]		
msmoke (1-5 vs 0) (6+ vs 1-5)	.0969135	.0110657	.0758351 .0815164	.1183473		

 What would the population-averaged probability of low birthweight be if all mothers in the population increased their education by 4 years.

4 **A b b b b b b**

Counterfactual Education Levels

<pre>. margins, at(medu=generate(medu)) at(medu=generate(medu+4) > reps(1000) seed(111) (running margins on estimation sample) Bootstrap replications (1000) (output omitted) Predictive margins Number of ok Benlications</pre>					du+4)) of obs	/	1,000
Expression 1at 2at	: mean functio : medu : medu	on, predict() = medu = medu+4	1	Repireu	10115		1,000
	Observed Margin	Bootstrap Std. Err.	Z	₽> z	[95%	Perce Conf.	ntile Interval]
at 1 2	.0964155 .0321729	.0092934 .0114623	10.37 2.81	0.000	.0784	4985 0669	.1146061

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Contrasting

```
. margins, at (medu=generate (medu)) at (medu=generate (medu+4)) ///
<
                  contrast(at(r)) reps(1000) seed(111)
(running margins on estimation sample)
Bootstrap replications (1000)
(output omitted)
Contrasts of predictive margins
                                                Number of obs
                                                                         1,000
                                                Replications
                                                                         1,000
                                                                  =
Expression
             : mean function, predict()
1._at
             : medu
                               = medu
2. at
             : medu
                               = medu+4
                                           Percentile
                 Observed
                            Bootstrap
                           Std. Err.
                                          [95% Conf. Interval]
                 Contrast
        at
   (2 vs 1)
                -.0642426
                          .0121771
                                         -.0856404
                                                    -.0376858
```

- What is the population-average of low birthweight for each counterfactual level of msmoke if everyone in the population received a different level of education
- population-average of low birthweight for fixed level of msmoke and medu

< 回 > < 三 > < 三 >

- What is the population-average of low birthweight for each counterfactual level of msmoke if everyone in the population received a different level of education
- population-average of low birthweight for fixed level of msmoke and medu

Counterfactual Education Level

- margins msmoke, at(medu=(6(1)15))
- marginsplot, recastci(rarea) ciopts(fcolor(%50))

A (10) A (10) A (10)

イロト イヨト イヨト イヨト

Interpretation of Confidence Bands and contrast

- Overlapping confidence intervals do not mean there is no difference between (0 and 1-5)
- Confidence intervals are for the point estimates not the difference
- The way to test this is testing for the differences, the effects.

Interpretation of Confidence Bands and contrast

- Overlapping confidence intervals do not mean there is no difference between (0 and 1-5)
- Confidence intervals are for the point estimates not the difference
- The way to test this is testing for the differences, the effects.

0 vs 1-5

margins $r(0 \ 1)$.msmoke , at(medu=(6(1)15))

イロト イヨト イヨト イヨト

1-5 vs 6+

margins $r(1 \ 2)$.msmoke , at(medu=(6(1)15))

イロト イヨト イヨト イヨト

Continue Exploring Function

• margins msmoke, at(medu=(6(1)15))

• margins msmoke, at(medu=(6(1)15) alcohol=0
 mage=(16(1)34)) at(medu=(6(1)15) alcohol=1
 mage=(16(1)34))

Continue Exploring Function

- margins msmoke, at(medu=(6(1)15))
- margins msmoke, at(medu=(6(1)15) alcohol=0) at(medu=(6(1)15) alcohol=1)
- margins msmoke, at(medu=(6(1)15) alcohol=0
 mage=(16(1)34)) at(medu=(6(1)15) alcohol=1
 mage=(16(1)34))

Continue Exploring Function

- margins msmoke, at(medu=(6(1)15))
- margins msmoke, at(medu=(6(1)15) alcohol=0) at(medu=(6(1)15) alcohol=1)
- margins msmoke, at(medu=(6(1)15) alcohol=0
 mage=(16(1)34)) at(medu=(6(1)15) alcohol=1
 mage=(16(1)34))

Parting Words

(StataCorp LLC)

■ ▶ ◀ ■ ▶ ■ 夕 � ♂ May 09, 2018 65 / 69

イロト イポト イヨト イヨ

If you have a lot of data per covariate

- Data per region is important (identification)
- Time consuming
- Benefits

A (10) > A (10) > A (10)

- If you have a lot of data per covariate
- Data per region is important (identification)
- Time consuming
- Benefits

A (1) > A (1) > A

- If you have a lot of data per covariate
- Data per region is important (identification)
- Time consuming
- Benefits

A .

- If you have a lot of data per covariate
- Data per region is important (identification)
- Time consuming
- Benefits

A .

margins After Correctly Specified Functional Form

probit lbweight c.mage#c.mage c.medu##c.mage i.msmoke##i.alcohol

Note: dy/dx for factor levels is the discrete change from the base level.

< ロ > < 同 > < 回 > < 回 >

margins After Correctly Specified Functional Form

probit lbweight c.mage#c.mage c.medu##c.mage i.msmoke##i.alcohol

. margins, c	ydx(*)			
Average margi	nal effects	Number of obs	=	1,000
Model VCE	: OIM			
Expression	: Pr(lbweight), predict()			
dy/dx w.r.t.	: mage medu 1.msmoke 2.msmoke 1.	alcohol		

	dy/dx	Delta-method Std. Err.	Z	P>∣z∣	[95% Conf.	Interval]
mage medu	0030745 025059	.0012678	-2.43 -7.07	0.015	0055593 0320069	0005898 0181112
msmoke 1-5 6+	.088816 .2155829	.0146566	6.06 8.90	0.000	.0600897 .1681125	.1175424 .2630533
alcohol yes	.2103893	.0198121	10.62	0.000	.1715584	.2492203

Note: dy/dx for factor levels is the discrete change from the base level.

イロト イポト イヨト イヨト

npregress

lbweight	Observed Estimate	Bootstrap Std. Err.	Z	P> z	Perce [95% Conf.	entile Interval]
Mean lbweight	.0964155	.0101926	9.46	0.000	.0754131	.1146312
Effect mage medu	002998 023344	.001135 .003595	-2.64 -6.49	0.008	0047728 030541	0007828 0164684
msmoke (1-5 vs 0) (6+ vs 0)	.0969135 .2136147	.0125798 .0255175	7.70 8.37	0.000	.0660747 .1568306	.1185829 .2565002
alcohol (yes vs no)	.2147543	.021038	10.21	0.000	.1752073	.2571517

. npregress

Note: Effect estimates are averages of derivatives for continuous covariates and averages of contrasts for factor covariates.

<ロ> <四> <四> <四> <四> <四</p>

- Obtain understanding and intuition about nonparametric regression
- Think about nonparametric regression as a tool to make inferences about the mean function
 - npregress as a tool to obtain the mean function, effects, and average derivatives
 - margins as a tool to explore the mean function and ask interesting questions
- Unique to Stata

< 回 > < 三 > < 三 >

- Obtain understanding and intuition about nonparametric regression
- Think about nonparametric regression as a tool to make inferences about the mean function
 - npregress as a tool to obtain the mean function, effects, and average derivatives
 - margins as a tool to explore the mean function and ask interesting questions
- Unique to Stata

< 回 > < 三 > < 三 >

- Obtain understanding and intuition about nonparametric regression
- Think about nonparametric regression as a tool to make inferences about the mean function
 - npregress as a tool to obtain the mean function, effects, and average derivatives
 - margins as a tool to explore the mean function and ask interesting questions
- Unique to Stata

< 回 > < 回 > < 回 >

- Obtain understanding and intuition about nonparametric regression
- Think about nonparametric regression as a tool to make inferences about the mean function
 - npregress as a tool to obtain the mean function, effects, and average derivatives
 - margins as a tool to explore the mean function and ask interesting questions
- Unique to Stata

A D A D A D A