Performing multivariate meta-analysis in Stata

Gabriela Ortiz

StataCorp LLC

May 24, 2022

Performing multivariate meta-analysis in Stata

< 同 > < 国 > < 国 >

- What is multivariate meta-analysis?
- Perform multivariate meta-analysis in Stata
- Obtain fitted values and create diagnostic plots
- Perform sensitivity analysis

Introduction

Example 1 Example 2 Sensitivity analysis Summary

Introduction

Performing multivariate meta-analysis in Stata

Univariate meta-analysis

- Meta-analysis is a statistical technique for combining the results from several similar studies.
- The goal is to provide a single estimate of the effect of interest.
- If results vary widely across studies, the goal is then to understand the inconsistencies in the results.

Performing multivariate meta-analysis in Stata

• • = • • = •

Introduction

Example 1 Example 2 Sensitivity analysis Summary

Univariate meta-analysis data

. list study es se studylab in 1/5

	study	es	se	studylab
1.	1	1.4796	.93426213	Smith et al. (1984)
2.	2	.99909748	.9856864	Jones and Miller (1989)
з.	3	1.2720385	.43128775	Johnson et al. (1991)
4.	4	1.0008144	.12801226	Brown et al. (1995)
5.	5	1.1788405	.87014702	Clark and Thomas (1998)

stata 🛙

∃ ► < ∃ ►</p>

Multivariate meta-analysis

- Multivariate meta-analysis extends the application of meta-analysis to scenarios where each study reports multiple, dependent effect sizes.
- As with univariate meta-analysis, our goal is to synthesize the results from the studies; if results vary widely across studies, we aim to explain the heterogeneity.

ヨト イヨト

Multivariate meta-analysis data

- Multivariate meta-analysis data can arise when you are comparing multiple outcomes across two groups.
 - Suppose our treatment group is on a low-carb diet, and we want to compare weight loss, blood pressure, and cholesterol across the treatment and control groups.
 - The three measures are compared across the same subjects, so the effect sizes are dependent.

ヨトイヨト

Multivariate meta-analysis data

- Multivariate meta-analysis data can also arise when you are comparing different treatment groups with a control group.
 - For example, you might look at the difference in the average weight loss for individuals on a keto diet, those undergoing intermittent fasting, and those on a high protein diet, compared with a control group.
 - The differences would be correlated across groups because we are comparing them with the same control group.

Performing multivariate meta-analysis in Stata

▶ < 몰 ▶ < 몰 ▶</p>

Analyzing multivariate data

Traditional methods used to analyze these data:

- Perform univariate meta-analysis for each outcome.
 - This would ignore any dependence between the effect sizes, leading to biased results and less precise estimates.
- Combine the effect sizes for each study into one effect size. Then, perform univariate meta-analysis on this combined effect size.
 - This method results in loss of information.
 - Summarizing changes in weight loss, blood pressure, and cholesterol with a single value may be hard to interpret.

- 3 b - 4 3 b

Multivariate meta-analysis

- With multivariate meta-analysis we can use the information we have about the correlation of the outcomes to get a more precise estimate of the effect sizes.
- If the studies are heterogeneous, we can try to determine the reason for the between-study heterogeneity by including moderators and performing multivariate meta-regression.

ヨト イヨト

Example 1

Performing multivariate meta-analysis in Stata

Periodontal data

• We have data from Antczak-Bouckoms et al. (1993) comparing the effectiveness of two treatments for treating periodontal disease.

Treatment 1: Surgical

Treatment 2: Nonsurgical

- We have two outcomes (effect sizes)
 - Y1: Mean improvement from baseline in probing depth (mm)
 - Y2: Mean improvement in attachment level (mm)

- 3 b - 4 3 b

Probing depth and attachment levels

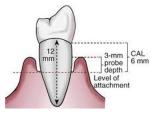


Figure: Image of probe depth and attachment level. *Pocket Dentistry* https://pocketdentistry.com/7-periodontal-diseases. Accessed 08 Feb. 2022.

Performing multivariate meta-analysis in Stata

• • = • • = •

Periodontal data

. describe

Contains dat Observation Variable	is:	ps://www.st 5 10	ata-press.	com/data/r17/periodontal.dta Treatment of moderate periodontal disease 13 Jan 2021 18:11 (_dta has notes)
Variable name	Storage type	Display format	Value label	Variable label
trial pubyear depth attachment v_d cov_da v_a se_d se_d study	str23 byte float float float float double double float	%6.2f %6.4f %6.4f %6.4f		Trial label Publication year centered at 1983 Mean improvement in probing depth (mm) Mean improvement in attachment level (mm) Variance of depth Covariance of depth and attachment Variance of attachment Standard error of depth Standard error of attachment Study number

Sorted by:

Note: Dataset has changed since last saved.

< ロ > < 回 > < 回 > < 回 > < 回 >

stata 🛛

э

Periodontal data

. list study depth v_d attachment v_a cov_da, ab(10)

	study	depth	v_d	attachment	v_a	cov_da
1. 2.	1	0.47 0.20	0.0075	-0.32 -0.60	0.0077	0.0030
3. 4.	3 4	0.40	0.0021	-0.12 -0.31	0.0014	0.0007
4. 5.	5	0.56	0.0029	-0.39	0.0304	0.0003

< ロ > < 回 > < 回 > < 回 > < 回 >

stata 🛛

æ

Multivariate meta-analysis models

- Fixed effects: We assume all heterogeneity between study effect sizes is due to sampling error.
- Random effects: We assume some of the variability is due to sampling error and a portion is due to actual differences in the true effect size.
 - For example, we could observe differences in the risk ratio if one study had many subjects with poor dental hygiene (a risk factor for periodontal disease) and another study mainly had subjects with great dental hygiene.

• • = • • = •

Multivariate meta-regression in Stata

• Fixed-effects

meta mvregress *depvars* [= *moderators*], *wcovspec* fixed

Random-effects

meta mvregress depvars [= moderators], wcovspec
[random(rspec)]

- *wcovspec* refers to the relationship between the outcomes, within each study. You'll specify either of the following:
 - the variance of each outcome and the covariance of the outcomes
 - the standard error for each outcome and the correlation between the outcomes
- Unlike with other meta commands, our data do not need to be meta set to use meta mvregress.

イロト イポト イラト イラト

Random-effects models

- random(remethod [, covariance(recov) se(seadj)]
- We can specify the type of estimator (*remethod*) and the structure of the covariance matrix (*recov*) and apply adjustments to the standard errors (*seadj*):
 - *remethod* can be restricted maximum likelihood, maximum likelihood, or the Jackson-White-Riley method.
 - *recov* can be unstructured, independent, exchangeable, identity, or fixed.
 - *seadj* can be the Jackson-Riley adjustment or the truncated Jackson-Riley adjustment.
- The default is random(reml, covariance(unstructured)).

< ロ > < 同 > < 三 > < 三 >

Multivariate meta-analysis

. meta mvregress depth attachment, wcovvariables(v_d cov_da v_a) nolog

Multivariate n Method: REML	random-effects	meta-analy:	sis	Number o Number o Obs per	of studies =	10 5
				-	min =	2
					avg =	2.0
					max =	2
				Wald chi	= (0) =	
Log restricted	d-likelihood =	2.0823276		Prob > c	= hi2	
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
depth						
_cons	.3534282	.0588486	6.01	0.000	.238087	.4687694
attachment _cons	3392152	.0879051	-3.86	0.000	5115061	1669243

Test of homogeneity: Q_M = chi2(8) = 128.23

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate
Unstructured:	
sd(depth)	.1083191
sd(attach~t)	.1806968
corr(depth,attach~t)	.6087987

Performing multivariate meta-analysis in Stata

イロト イボト イヨト イヨト

ਤਾ<u></u>ਗਾ⊐™

Heterogeneity

. estat heterogeneity Method: Cochran Joint: I2 (%) = 93.76H2 = 16.03Method: Jackson-White-Riley depth: I2 (%) = 76.42R = 2.06attachment: I2 (%) = 95.50R = 4.71Joint: I2 (%) = 88.66R = 2.97

Performing multivariate meta-analysis in Stata

イロト イボト イヨト イヨト

stata 🛛

э

Multivariate meta-regression

. meta m vregress depth attachment = pubyear, wcovvariables(v_d cov_d a v_a) nolog								
Multivariate 1	andom-effects	meta-regre	ssion	Number	of obs =	10		
Method: REML				Number	of studies =	5		
				Obs per	study:			
				-	min =	2		
					avg =	2.0		
					max =	2		
				Wald ch	i2(2) =	0.40		
Log restricted	d-likelihood =	-3.5399567		Prob >	chi2 =	0.8197		
_								
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]		
depth								
pubyear	.0048615	.0218511	0.22	0.824	0379658	.0476888		
_cons	.3587569	.07345	4.88	0.000	.2147975	.5027163		
attachment								
pubyear	0115367	.0299635	-0.39	0.700	070264	.0471907		
_cons	3357368	.0979979	-3.43	0.001	5278091	1436645		

Test of homogeneity: Q_M = chi2(6) = 125.76

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate
Unstructured:	
sd(depth)	.1429917
sd(attach~t)	.2021314
corr(depth,attach~t)	.561385

Performing multivariate meta-analysis in Stata

イロト イヨト イヨト

stata 🛛

Multivariate meta-analysis

. meta mvregress depth attachment, wcovvariables(v_d cov_da v_a) nolog

Multivariate n Method: REML	random-effects	meta-analy:	sis	Number o Number o Obs per	of studies =	10 5
				-	min =	2
					avg =	2.0
					max =	2
				Wald chi	= 2(0) =	
Log restricted	d-likelihood =	2.0823276		Prob > c	= hi2	
	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
depth						
_cons	.3534282	.0588486	6.01	0.000	.238087	.4687694
attachment _cons	3392152	.0879051	-3.86	0.000	5115061	1669243

Test of homogeneity: Q_M = chi2(8) = 128.23

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate
Unstructured:	
sd(depth)	.1083191
sd(attach~t)	.1806968
corr(depth,attach~t)	.6087987

Performing multivariate meta-analysis in Stata

イロト イボト イヨト イヨト

ਤਾ<u></u>ਗਾ⊐™

Making adjustments

- The REML estimator assumes the random effects are normally distributed; we can relax this assumption with the Jackson-White-Riley estimator.
- Additionally, we'll apply the Jackson-Riley adjustment (Jackson and Riley 2014) to the standard errors of the coefficients.
 - This adjustment provides more accurate estimates of the standard errors when working with a small number of studies.

・ 同 ト ・ ヨ ト ・ ヨ ト

Multivariate meta-analysis

	random-effects on-White-Riley		sis	Number Number	of obs = of studies =	10 5	
SE adjustment	: Jackson-Rile	y		Obs per	study:		
•		•			min =	2	
					avg =	2.0	
					max =	2	
				F(0,	8.00) =		
				Prob >	F =	•	
	Coefficient	Std. err.	t	P> t	[95% conf	. interval]	
depth							
_cons	. 352096	.0596134	5.91	0.000	.2146271	.4895648	
attachment	3380344						
		.1062918		0.013	5831438	0929251	

Test of homogeneity: Q_M = chi2(8) = 128.23

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate
Unstructured:	
sd(depth)	.1210675
sd(attach~t)	.240236
corr(depth,attach~t)	.7393752

イロト イヨト イヨト

stata 🛛

Obtaining fitted values

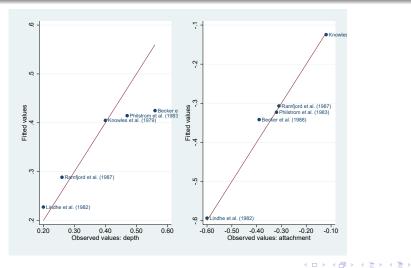
- With predict, you can obtain the best linear unbiased prediction of the random effects and their standard errors, as well as predictions of the residuals and standardized residuals.
- Below, we obtain the fitted values for each outcome:
 - . predict double fit1, fitted depvar(depth)
 - . predict double fit2, fitted depvar(attachment)

- 4 周 ト 4 戸 ト 4 戸 ト

Diagnostic plot

- Below, we plot the fitted values against the observed values.
- Graph for outcome 1:
 - . twoway (scatter fit1 depth, mlabel(trial))

(function y = x), name(graph1)


- Graph for outcome 2:
 - . twoway (scatter fit2 attach, mlabel(trial))

(function y = x), name(graph2)

- Combine the graphs:
 - . graph combine graph1 graph2

ヘロト 人間 ト 人 戸 ト 人 戸 ト

Assessing goodness of fit

stata 🗖

Performing multivariate meta-analysis in Stata

Example 2

Performing multivariate meta-analysis in Stata

Data on smoking cessation

- We have data from Fiore et al. (1996) on the impact of four interventions on smoking cessation
 - a: no contact
 - \mathbf{b} : self-help
 - c: individual counseling
 - d: group counseling
- Our effect sizes are the log odds-ratios comparing intervention types b, c, and d with intervention a

Performing multivariate meta-analysis in Stata

ヨトイヨト

Intervention types for smoking cessation

```
. webuse smokecess, clear (Smoking cessation interventions)
```

. describe y* v*

Variable name	Storage type	Display format	Value label	Variable label
yb	double	%9.0g		Log-odds ratio (b vs a)
ус	double	%9.0g		Log-odds ratio (c vs a)
yd	double	%9.0g		Log-odds ratio (d vs a)
vbb	double	%9.0g		Variance of yb
vbc	double	%9.0g		Covariance of yb and yc
vbd	double	%9.0g		Covariance of yb and yd
vcc	double	%9.0g		Variance of yc
vcd	double	%9.0g		Covariance of yc and yd
vdd	double	%9.0g		Variance of yd

< ロ > < 同 > < 回 > < 回 >

STa

Trivariate meta-analysis

. meta mvregress yb yc yd, wcovvariables(vbb vbc vbd vcc vcd vdd) random(mle) nolog noheader

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
уЪ	_cons	.2092245	.1646492	1.27	0.204	1134821	.5319311
ус	_cons	.6723171	.1957326	3.43	0.001	.2886881	1.055946
yd	_cons	.7284868	.2693173	2.70	0.007	.2006345	1.256339
Test	of homoge	eneity: Q_M =	chi2(28) = 2	204.22		Prob > Q	M = 0.0000

.1525079 .712901 .422447 .7160185 .9915944 .6196787

イロト イボト イヨト イヨト

ਤਾਰਾਰ ^ॼ

Example 1 Example 2

Heterogeneity

```
. estat heterogeneity
Method: Cochran
Joint:
  I2 (\%) = 86.29
      H2 = 7.29
Method: Jackson-White-Riley
yb:
  I2 (\%) = 41.45
       R = 1.31
yc:
  12 (\%) = 90.89
       R = 3.31
vd:
  I2 (\%) = 51.32
       R = 1.43
Joint:
  I2 (\%) = 69.05
       R = 1.80
```

イロト イボト イヨト イヨト Performing multivariate meta-analysis in Stata

stata[™]

э

Assess joint heterogeneity

```
. estat heterogeneity, jwriley(yb yd)
Method: Jackson-White-Riley
yb yd:
    I2 (%) = 45.10
        R = 1.35
```


Performing multivariate meta-analysis in Stata

Trivariate meta-analysis

. meta mvregress yb yc yd, wcovvariables(vbb vbc vbd vcc vcd vdd) random(mle) nolog noheader

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
уЪ	_cons	.2092245	.1646492	1.27	0.204	1134821	.5319311
ус	_cons	.6723171	.1957326	3.43	0.001	.2886881	1.055946
yd	_cons	.7284868	.2693173	2.70	0.007	.2006345	1.256339
Test	of homoge	eneity: Q_M =	chi2(28) = 2	204.22		Prob > Q	M = 0.0000

.1525079 .712901 .422447 .7160185 .9915944 .6196787

イロト イボト イヨト イヨト

ਤਾਰਾਰ ^ॼ

Missing values

. misstable pattern yb yd, frequency

Missing-value patterns (1 means complete)

Frequency	Patte 12	ern
2	1 1	
14 4 4	0 0 0 1 1 0	
24 Variables are	(1) ył	o (2) yd

Performing multivariate meta-analysis in Stata

イロト イヨト イヨト

stata[™]

Covariance structures

unstructured
$$\Sigma = \begin{bmatrix} \sigma_{11} & & \\ \sigma_{21} & \sigma_{22} & \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

independent $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ 0 & \sigma_{22} & & \\ 0 & 0 & \sigma_{33} \end{bmatrix}$
exchangeable $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ \sigma_{21} & \sigma_{11} & & \\ \sigma_{21} & \sigma_{21} & \sigma_{11} \end{bmatrix}$
identity $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ 0 & \sigma_{11} & & \\ 0 & 0 & \sigma_{11} \end{bmatrix}$

Independent covariance structure

. met	a mvregre	ess y*, wcovva	riables(v*)	random(r	nle, cova	riance(indepe	ndent)) nolo
		random-effects	meta-analys	is	Number		31
Metho	od: ML					of studies =	24
					Obs per	study: min =	1
							1.3
						avg = max =	1.3
					Wald ch		5
I og 1	ikelihoo	1 = -52.106793	1		Prob >		
LOE 1	IKCIINOO	1 - 02.100750	,		1100 /		· .
		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
yb							
	_cons	.1472931	.1345138	1.10	0.274	1163492	.4109354
vc							
5-	_cons	.6486399	.1931684	3.36	0.001	.2700368	1.027243
yd							
5	_cons	.6631891	.2435873	2.72	0.006	.1857668	1.140611
Test	of homoge	eneity: Q_M =	chi2(28) = 2	204.22		Prob > Q_	M = 0.0000

Random-effects param	neters Estimate
Independent:	
-	sd(yb) .000179
5	sd(yc) .6942969
5	sd(yd) .0927756

Performing multivariate meta-analysis in Stata

イロト イボト イヨト イヨト

ਤਾਗਾ 🖉

More missing values

```
. misstable pattern yb, frequency Missing-value patterns
```

(1 means complete)

Frequency	Pattern 1
6	1
18	0
24	
Variables are	e (1) yb

™ **চারার** এ০০ র ধর্ষ ধর্ম ধ্রম ব

Covariance structures

unstructured
$$\Sigma = \begin{bmatrix} \sigma_{11} & & \\ \sigma_{21} & \sigma_{22} & \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

independent $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ 0 & \sigma_{22} & & \\ 0 & 0 & \sigma_{33} \end{bmatrix}$
exchangeable $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ \sigma_{21} & \sigma_{11} & & \\ \sigma_{21} & \sigma_{21} & \sigma_{11} \end{bmatrix}$
identity $\Sigma = \begin{bmatrix} \sigma_{11} & & & \\ 0 & \sigma_{11} & & \\ 0 & 0 & \sigma_{11} \end{bmatrix}$

Identity covariance structure

. met	a mvregr	ess y*, wcovva	riables(v*)	random(r	nle, cova	riance(ident	ity)) nolog
Multi	variate :	random-effects	meta-analys	sis	Number	of obs =	31
Metho	od: ML				Number	of studies =	24
					Obs per	study:	
						min =	1
						avg =	1.3
						max =	3
					Wald ch		
Log]	likelihoo	d = -54.501897			Prob >	chi2 =	
		Coefficient	Std. err.	z	P> z	[95% conf	. interval]
yb							
	_cons	.3671705	.3168396	1.16	0.247	2538237	.9881648
ус							
	_cons	.6742327	.1759043	3.83	0.000	.3294666	1.018999
yd							
	_cons	.8642315	.3964733	2.18	0.029	.0871582	1.641305
Test	of homog	eneity: Q_M =	chi2(28) = 2	204.22		Prob > Q	M = 0.0000

Random-effects parameters	Estimate
Identity: sd(yb yc yd)	.579771

Performing multivariate meta-analysis in Stata

stata 🛛

∃ ► < ∃ ►</p>

Sensitivity analysis

Sensitivity analysis

• Sensitivity analysis may be of interest when you have a lot of missing observations or when the number of observations is small relative to the number of parameters to be estimated.

<pre>misstable pattern yb yd, frequency Missing-value patterns (1 means complete)</pre>								
1	P	atte	ern					
Frequency	1	2						
2	1	1						
14	0	0						
4	0 0	1						
4	1	0						
24								
Variables are	e (1) yl	b (2)	yd			

Performing multivariate meta-analysis in Stata

< ロ > < 同 > < 三 > < 三 >

Sensitivity analysis

- To perform sensitivity analysis, we will fit the model setting the correlation between the random effects of **yb** and **yc** to 0, 0.4, and 0.8.
- We will assume that the random effect associated with **yd** is uncorrelated with the random-effects of **yb** and **yc**.
- Then, we will create a table with all three sets of estimation results.

Performing multivariate meta-analysis in Stata

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Correlation matrices

```
. matrix list Sigma1 // no correlation
symmetric Sigma1[3,3]
   c1 c2 c3
r1 1
r2 0 1
r3 0 0 1
. matrix list Sigma2 // moderate correlation (0.4)
symmetric Sigma2[3,3]
   c1 c2 c3
r1 1
r2 .4 1
r3 0 0 1
. matrix list Sigma3 // high correlation (0.8)
symmetric Sigma3[3,3]
   c1 c2 c3
r1 1
r2 .8 1
r3 0
       0
         1
```

Performing multivariate meta-analysis in Stata

イロト イポト イヨト イヨト

No correlation

. meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma1))) noheader

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
yb	_cons	.4293913	.502528	0.85	0.393	5555455	1.414328
ус	_cons	.7629462	.2739889	2.78	0.005	.2259379	1.299955
yd	_cons	1.028532	.5979445	1.72	0.085	1434175	2.200482

Test of homogeneity: Q_M = chi2(28) = 204.22

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate	
User-specified Sigma1:		
sd(yb)	1	
sd(yc)	1	
sd(yd)	1	
corr(yb,yc)	0	
corr(yb,yd)	0	
corr(yc,yd)	0	

. estimates store corr0

イロト イボト イヨト イヨト

ਤਾਗਾ 🖉

э

Moderate correlation

. meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma2))) noheader

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
уЪ	_cons	.4718864	.4776655	0.99	0.323	4643209	1.408094
ус	_cons	.7524677	.2714654	2.77	0.006	.2204053	1.28453
yd	_cons	1.039496	.6030185	1.72	0.085	1423987	2.22139

Test of homogeneity: Q_M = chi2(28) = 204.22

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate			
User-specified Sigma2:				
sd(yb)	1			
sd(yc)	1			
sd(yd)	1			
corr(yb,yc)	.4			
corr(yb,yd)	0			
corr(yc,yd)	0			

. estimates store corr4

イロト イボト イヨト イヨト

ਤਾ<u></u>ਗਾ⊐™

э

High correlation

. meta mvregress y*, wcovvariables(v*) random(mle, covariance(fixed(Sigma3))) noheader

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
уЪ	_cons	.5656914	.4182064	1.35	0.176	2539781	1.385361
ус	_cons	.7299476	.2659099	2.75	0.006	.2087738	1.251121
yd	_cons	1.05668	.6067065	1.74	0.082	1324433	2.245803
-			/				

Test of homogeneity: Q_M = chi2(28) = 204.22

 $Prob > Q_M = 0.0000$

Random-effects parameters	Estimate			
User-specified Sigma3:				
sd(yb)	1			
sd(yc)	1			
sd(yd)	1			
corr(yb,yc)	.8			
corr(yb,yd)	0			
corr(yc,yd)	0			

. estimates store corr8

イロト イボト イヨト イヨト

ਤਾਗਾ 🖉

э

Estimation results

. estimates table corr0 corr4 corr8,

keep(yb:_cons yc:_cons yd:_cons) b(%8.3f) se(%8.3f)

	Variable	corr0	corr4	corr8
yb	_cons	0.429 0.503	0.472 0.478	0.566 0.418
ус	_cons	0.763 0.274	0.752 0.271	0.730 0.266
yd	_cons	1.029 0.598	1.039 0.603	1.057 0.607

Legend: b/se

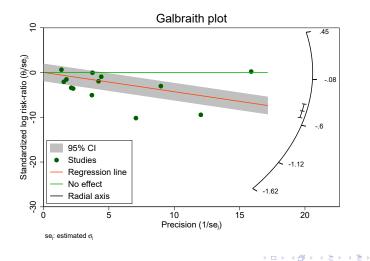
イロト イヨト イヨト

ਤਾਗਾ 🖉

Summary

- Today, we learned how to do the following in Stata:
 - Perform multivariate meta-analysis.
 - Obtain multivariate heterogeneity statistics.
 - Obtain fitted values.
 - Create diagnostic plots.
 - Perform sensitivity analysis.

Multivariate meta-analysis with Stata's graphical interface


			Displ	ay meta settings	Modify meta setting		
Setup	Multivariate meta-analysis Note: Multivariate meta-analysis ignores all meta settings.						
	Model	if/in	Reporting	Maximization	Postestimation		
Summary	Dependent variables						
					~		
	Moderators						
Forest plot					~		
	Suppress constant	t term					
	Within-study varia	nce-covariance i	nformation				
	Specify variance	and covariance	variables in specif	ic order			
Heterogeneity					~ ?		
	O Specify standar	d-error variables	and correlations in	specific order			
	Standard-error vari	ables:		orrelation values:			
Regression			\sim		?		
,	Meta-analysis model						
	Default model						
	O Random effects						
Publication bias	O Fixed effects						
	Compute t tests for fixed-effects coefficients and specify degrees of freedom						
					Submit		
Addition of the second							
Multivariate	No. of studies: <none></none>	Model: <n< td=""><td>one></td><td>Effect size: <none></none></td><td></td></n<>	one>	Effect size: <none></none>			

Performing multivariate meta-analysis in Stata

stat

▶ < ∃ ▶</p>

Also new in Stata 17: Galbraith plots

Also new in Stata 17: Leave-one-out meta analysis

Omitted study		Risk ratio with 95% Cl	p-value
Aronson, 1948		- 0.49 [0.34, 0.72]	0.000
Ferguson & Simes, 1949	•	— 0.52 [0.36, 0.74]	0.000
Rosenthal et al., 1960	•	- 0.50 [0.35, 0.73]	0.000
Hart & Sutherland, 1977	•	— 0.53 [0.38, 0.75]	0.000
Frimodt-Moller et al., 1973		0.47 [0.32, 0.68]	0.000
Stein & Aronson, 1953		- 0.49 [0.33, 0.73]	0.000
Vandiviere et al., 1973	•	— 0.52 [0.36, 0.74]	0.000
TPT Madras, 1980	•	0.45 [0.32, 0.64]	0.000
Coetzee & Berjak, 1968	•	0.48 [0.32, 0.70]	0.000
Rosenthal et al., 1961	•	— 0.52 [0.36, 0.75]	0.000
Comstock et al., 1974	•	0.47 [0.32, 0.69]	0.000
Comstock & Webster, 1969	•	0.47 [0.33, 0.67]	0.000
Comstock et al., 1976	•	0.46 [0.32, 0.66]	0.000
C).32	0.75	

Random-effects REML model

Performing multivariate meta-analysis in Stata

イロト イヨト イヨト

ਤਾ<u></u>ਗਾ⊐™

- Overview of Multivariate meta-analysis features in Stata
- Stata News: Multivariate meta-analysis
- Video tutorial on performing multivariate meta-analysis in Stata
- Stata Meta-Analysis Reference Manual

References

- Antczak-Bouckoms, A., K. Joshipura, E. Burdick, and J. F. Camilla Tulloch. 1993. Meta-analysis of surgical versus non-surgical methods of treatment for periodontal disease. *Journal of Clinical Periodontology* 20: 259–268. https://doi.org/10.1111/j.1600-051X.1993.tb00355.x.
- Fiore, M. C., W. C. Bailey, S. J. Cohen, S. F. Dorfman, M. G. Goldstein, E. R. Gritz, R. B. Heyman, J. Holbrook, C. R. Jaen, T. E. Kottke, H. A. Lando, R. Mecklenburg, P. D. Mullen, L. M. Nett, L. Robinson, M. L. Stitzer, A. C. Tommasello, L. Villejo, and M. E. Wewers. 1996. Smoking Cessation. In *Clinical Practice Guideline No. 18.* Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. AHCPR Publication No. 96-0692.

< ロ > < 同 > < 三 > < 三 >

• Thank you!

