
Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Loops: Essential tools for repetitive tasks

Gabriela Ortiz

StataCorp LLC

January 18, 2023

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Motivation
Goals

Fitting many models

Suppose you need to perform the same task for groups of
observations
You could repeat the command for each group:
. logistic heartatk i.diabetes i.sex if agegrp==1
. logistic heartatk i.diabetes i.sex if agegrp==2
. logistic heartatk i.diabetes i.sex if agegrp==3
. logistic heartatk i.diabetes i.sex if agegrp==4
. logistic heartatk i.diabetes i.sex if agegrp==5
. logistic heartatk i.diabetes i.sex if agegrp==6

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Motivation
Goals

Write a loop

Or, you could save some time with a loop:

forvalues g = 1/6 {
logistic heartatk i.diabetes i.sex if agegrp==`g'

}

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Motivation
Goals

Performing multiple tests

Now suppose you need to perform the same task for multiple
variables
You could repeat the command for each variable:
. ttest tcresult, by(sex) unequal
. ttest tgresult, by(sex) unequal
. ttest hdresult, by(sex) unequal
. ttest bpresult, by(sex) unequal

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Motivation
Goals

Write a loop

This can also be done more quickly with a loop:

foreach var of varlist *result {
ttest `var', by(sex) unequal

}

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Motivation
Goals

Goals

Learn how to
Use macros
Loop over values
Loop over variables
Use tracing to debug your loops
Issue code conditional on an expression
Write loops that will run despite any errors

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Why we need macros

To loop over variables, we need
A list with the variables we’ll be working with
A way to move through the items in the list, in order to issue the
command separately for each variable

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Why we need macros

To loop over variables, we need
A list with the variables we’ll be working with
A way to move through the items in the list, in order to issue the
command separately for each variable

To loop over values, we need
A list with the values we’ll be working with
An easy way to work with a range of values

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Why we need macros

To loop over variables, we need
A list with the variables we’ll be working with
A way to move through the items in the list, in order to issue the
command separately for each variable

To loop over values, we need
A list with the values we’ll be working with
An easy way to work with a range of values

We can use macros to store our list of values and variables
We’ll use forvalues to work with lists of values
We’ll use foreach to work with lists of variables and other items

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining the contents of a local macro

In Stata, there are global and local macros
We’ll only work with local macros, but we’ll discuss global macros
later

First, let’s see how we can store items in a local macro

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining the contents of a local macro

We can store a string in a macro:
local macroname " string "

The " marks are optional but often can help readability

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining the contents of a local macro

We can store a string in a macro:
local macroname " string "

The " marks are optional but often can help readability
We can use macros to evaluate expressions:
local macroname = exp

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining the contents of a local macro

We can store a string in a macro:
local macroname " string "

The " marks are optional but often can help readability
We can use macros to evaluate expressions:
local macroname = exp

And we can use special functions to define a macro
local macroname : macro_function

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Expanding local macros

A local macro is expanded via
`macroname'
Note the left and right quotes!

The left quote is above the tab key on US keyboards

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Storing text in a macro

. local me "Gabriela"

. display "Hello, my name is ‘me’"
Hello, my name is Gabriela

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Storing an expression in a macro

. local age "20+1"

. display "‘age’"
20+1

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Using a macro to evaluate an expression

. local age2 = 20 + 1

. display "‘age2’"
21

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Macro function for working with a variable label

. sysuse auto, clear
(1978 automobile data)
. describe make
Variable Storage Display Value

name type format label Variable label

make str18 %-18s Make and model
. local makelbl : variable label make
. display "‘makelbl’"
Make and model

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Using macros in our loops

Now we know how to store contents in a macro and how to refer
to the stored contents
Now we’re ready to loop over any items we store in a macro
We’ll start by looping over a series of values

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

forvalues syntax

The forvalues command allows us to issue the same code for
the range of values we specify
The syntax is as follows:
forvalues lname = range {

Stata commands referring to `lname'
}

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

forvalues

. forvalues g= 1/3 {
2. display "g=‘g’"
3. }

g=1
g=2
g=3

forvalues creates a macro called g
Then it places the first value in the macro g
Then the second value, and so forth, one at a time

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

NHANES data

We have data from the National Health and Nutrition and
Examination Survey (NHANES)

. webuse nhanes2, clear

. desc agegrp heartatk diabetes highbp
Variable Storage Display Value

name type format label Variable label

agegrp byte %8.0g agegrp Age group
heartatk byte %16.0g heartlbl Prior heart attack
diabetes byte %12.0g diabetes Diabetes status
highbp byte %8.0g * High blood pressure

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Age groups

The variable agegrp groups individuals in their 20s, 30s, etc.

. codebook agegrp

agegrp Age group

Type: Numeric (byte)
Label: agegrp
Range: [1,6] Units: 1

Unique values: 6 Missing .: 0/10,351
Tabulation: Freq. Numeric Label

2,320 1 20-29
1,622 2 30-39
1,272 3 40-49
1,291 4 50-59
2,860 5 60-69

986 6 70+

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Fit regression models for each group

Suppose we want to fit separate regression models for each age
group
We could fit our models by issuing multiple logistic
commands:
. logistic heartatk i.diabetes i.sex if agegrp==1
. logistic heartatk i.diabetes i.sex if agegrp==2
. logistic heartatk i.diabetes i.sex if agegrp==3
This can quickly get repetitive

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Loop over values: forvalues

We can do this more quickly with forvalues
We’ll skip the first two age groups because some variables get
omitted in those models
. forvalues g= 3/6 {

2. logistic heartatk i.diabetes i.highbp i.sex if agegrp==‘g’
3. }
(output omitted)

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Loop over values: forvalues

forvalues g = 3/6 {
forvalues will create a macro called g and store the first value
in there:

logistic heartatk . . . if agegrp==3

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Loop over values: forvalues

forvalues g = 3/6 {
forvalues will create a macro called g and store the first value
in there:

logistic heartatk . . . if agegrp==3
Then it places next value in the macro g:

logistic heartatk . . . if agegrp==4

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Loop over values: forvalues

forvalues g = 3/6 {
forvalues creates a macro called g and stores the first value in
there:

logistic heartatk . . . if agegrp==3
Then it places next value in the macro g:

logistic heartatk . . . if agegrp==4
Then, the next one:

logistic heartatk . . . if agegrp==5

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Loop over values: forvalues

forvalues g = 3/6 {
forvalues creates a macro called g and stores the first value in
there:

logistic heartatk . . . if agegrp==3
Then it places next value in the macro g:

logistic heartatk . . . if agegrp==4
Then, the next one:

logistic heartatk . . . if agegrp==5
It cycles through the values until it gets to the last value, 6:

logistic heartatk . . . if agegrp==6
We’ll run forvalues.do to see the output

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Issuing several commands in the loop

If we want to perform any other computations with this age
group, we can simply add code to our loop
forvalues g = 3/6 {

logistic heartatk i.diabetes i.sex if agegrp==`g'
margins r.(diabetes highbp sex) if e(sample), post
etable, append

}

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Issuing several commands in the loop

If we want to perform any other computations with this age
group, we can simply add code to our loop
forvalues g = 3/6 {

logistic heartatk i.diabetes i.sex if agegrp==`g'
margins r.(diabetes highbp sex) if e(sample), post
etable, append

}
After we fit the model, we estimate contrasts using the
estimation sample
Then, we create a table with the results from margins

In each run of the loop, we are appending results to the existing
table

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Adding labels to our output

We can add labels to distinguish the output from each model
forvalues g = 3/6 {

local agelbl : label agegrp `g'
display as result "Age group=`agelbl'"
logistic heartatk i.diabetes i.sex if agegrp==`g'
margins r.(diabetes highbp sex) if e(sample), post
etable, append

}
The local macro agelbl will contain the label corresponding to
the value in g
We then display this label as result, meaning it will be black
and bold

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Inline use of macro functions

We could be more efficient when using a macro_function
Instead of typing this:
local agelbl : label agegrp `g'
display as result "Age group=`agelbl'"

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Inline use of macro functions

We could be more efficient when using a macro_function
Instead of typing this:
local agelbl : label agegrp `g'
display as result "Age group=`agelbl'"
We can simply type the following:
display as result "Age group=`:label agegrp `g''"

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Inline use of macro functions

We could be more efficient when using a macro_function
Instead of typing this:
local agelbl : label agegrp `g'
display as result "Age group=`agelbl'"
We can simply type the following:
display as result "Age group=`:label agegrp `g''"
More generally, we type:
`:macro_function'

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Other ways to work with forvalues

There are two other ways to work with forvalues

. * from 10 to 100, in increments of 10

. forvalues vals = 10(10)100 {
2. display "Value: ‘vals’"
3. }

Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80
Value: 90
Value: 100

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

How it works
Example 1: Data
Example 1: Goal
Example 1: Loop
More examples

Other ways to work with forvalues

. * from 3 to 12, in increments of 6-3

. forvalues vals = 3 6 to 12 {
2. display "Value: ‘vals’"
3. }

Value: 3
Value: 6
Value: 9
Value: 12

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Looping over variables

If you need to perform the same task for multiple variables, you
can use foreach
The syntax is as follows:
foreach lname of varlist varlist {

Stata commands referring to `lname'
}
The of varlist tells Stata that what follows is a list of
variables; this means you can abbreviate variables, specify a
range of variables, and use wildcards

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Goal

We would now like to compare the proportion of men and women
who have high blood pressure, diabetes, and who have had a
heart attack
First let’s see how we can do this for a single variable

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Test of proportions

. prtest heartatk, by(sex)
Two-sample test of proportions Male: Number of obs = 4915

Female: Number of obs = 5434

Group Mean Std. err. z P>|z| [95% conf. interval]

Male .0646999 .0035089 .0578227 .0715771
Female .0290762 .0022793 .0246088 .0335435

diff .0356237 .0041842 .0274229 .0438245
under H0: .0041234 8.64 0.000

diff = prop(Male) - prop(Female) z = 8.6394
H0: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 1.0000 Pr(|Z| > |z|) = 0.0000 Pr(Z > z) = 0.0000

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Accessing returned results
. return list
scalars:

r(N1) = 4915
r(N2) = 5434
r(P1) = .0646998982706002
r(P2) = .0290761869709238

r(P_diff) = .0356237112996764
r(se1) = .0035088558630739
r(se2) = .0022792999752738

r(se_diff0) = .004123417153509
r(se_diff) = .0041841699111187

r(lb1) = .0578226671520332
r(ub1) = .0715771293891672
r(lb2) = .0246088411094242
r(ub2) = .0335435328324234

r(lb_diff) = .0274228889686876
r(ub_diff) = .0438245336306652

r(z) = 8.639366324932814
r(p_l) = 1

r(p) = 5.65256590335e-18
r(p_u) = 2.82628295167e-18

r(level) = 95 Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Loop: test of proportions

foreach var of varlist heartatk diabetes highbp {
prtest `var', by(sex)
matrix `var'= r(N1), r(P1), r(N2), r(P2), ///
r(P_diff), r(p)

}
foreach creates a macro called var, and will cycle through the
variable list (varlist)
With this loop, we can perform the test of proportions for each
variable and create a matrix with the results

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Issuing several commands in the loop

We just created matrices named heartatk, diabetes, and
highbp
If we combine them, and provide descriptive row and column
names, we’ll get a nice table:
matrix prtest = heartatk \ diabetes \ highbp
matrix colnames prtest = "Males" "Males" ///
"Females" "Females" "Difference" "p-value"

matrix rownames prtest = "Heart attack" ///
"Diabetes" "High BP"

Let’s see this work in foreach.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

foreach: Working with other items

foreach will work with any other set of items
You could simply list the items in the foreach command:

foreach lname in anylist {
Or, you could store items in a local macro first, then loop over
the items in lmacroname

foreach lname of local lmacroname {

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

foreach: Working with other items

foreach will work with any other set of items
You could simply list the items in the foreach command:

foreach lname in anylist {
Or, you could store items in a local macro first, then loop over
the items in lmacroname

foreach lname of local lmacroname {
You could also use foreach with a list of numbers:

foreach lname of numlist numlist {

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

foreach: Working with other items

foreach will work with any other set of items
You could simply list the items in the foreach command:

foreach lname in anylist {
Or, you could store items in a local macro first, then loop over
the items in lmacroname

foreach lname of local lmacroname {
You could also use foreach with a list of numbers:

foreach lname of numlist numlist {
Compared with forvalues, the advantage here is that you don’t
have to work with evenly spaced values
Your numlist could be, for example, 1 -2 4

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Survey of young women

We have information on wages, union membership, and college
completion for young women:

. use nlswork2, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. d wage collgrad union ttl_exp ind_code
Variable Storage Display Value

name type format label Variable label

wage float %9.0g
collgrad byte %12.0g grad College graduate
union byte %12.0g union Union member
ttl_exp float %9.0g Total work experience
ind_code byte %8.0g Industry of employment

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Fitting multiple models

We would like to fit a regression model for wages, separately for
each industry
You could repeat the command for each level of industry:
. regress wage i.collgrad i.union if industry==1
. regress wage i.collgrad i.union if industry==2
. regress wage i.collgrad i.union if industry==3
. . . .

But we don’t know how many industries are present in this
dataset

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Accessing levels with levelsof

We can use the levelsof command to list the levels of a
variable, and store them in a named macro

. levelsof ind_code, local(industries)
1 2 3 4 5 6 7 8 9 10 11 12
. display "‘industries’"
1 2 3 4 5 6 7 8 9 10 11 12

Now we can just loop over the items in this macro called
industries

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Example 2: Goal
Example 2: Loop
foreach with other items
Example 3: Data
Example 3: Goal
Example 3: Loop

Fitting a regression model for each industry

. levelsof ind_code, local(industries)
1 2 3 4 5 6 7 8 9 10 11 12
. foreach i of local industries {

2. regress wage i.collgrad i.union ttl_exp if ind_code==‘i’
3. estimates store ind‘i’
4. }
(output omitted)

In addition to fitting the model for each industry, we’re storing
the results with a name corresponding to the industry number
Let’s see this work with foreach.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Goal: loop over items and values
Our next goal is to fit separate regressions for each industry and
year
This can be done by looping over the year for each industry

. estimates clear

. levelsof ind_code, local(industries)
1 2 3 4 5 6 7 8 9 10 11 12
. foreach i of local industries {

2. forvalues y = 68(1)88 {
3. regress wage i.collgrad i.union ttl_exp if ind_code==‘i’ & year==‘y’
4. estimates store ind‘i’_‘y’
5. }
6. }

no observations
r(2000);
end of do-file
r(2000);

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

trace: Looking inside the loop

It’s hard to know which industry and year is causing this error
If only we could see the commands that are being issued

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

trace: Looking inside the loop

It’s hard to know which industry and year is causing this error
If only we could see the commands that are being issued
If we set trace on, Stata will show us what is going on behind
the scenes
By default, this will provide too much information and output

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

trace: Looking inside the loop

It’s hard to know which industry and year is causing this error
If only we could see the commands that are being issued
If we set trace on, Stata will show us what is going on behind
the scenes
By default, this will provide too much information and output
So, we use set tracedepth 1

This means we’ll trace the execution of programs we call, like
regress, but not the programs that regress may call

Let’s see this work with error.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Deciphering the output from trace

Each line of code starts with a marker:
Nothing if the line was not executed
- if a line was executed
= if macros were expanded to show precisely what was done

The output will easily fill up the Results window, so it’s best to
store it in a log file

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Fitting models with a large sample

There may be other industries and years with this issue
One solution is to fit the models conditional on a large enough
sample
First, we’ll count the number of observations for that year and
industry, for which none of our variables are missing
. count if ind_code==‘i’ & year==‘y’ & ///
!missing(wage, collgrad, union, ttl_exp)

The number of observations will be stored in r(N)
We can then fit the model conditional on r(N) exceeding some
value

Let’s see this work with error.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Guarantee a smooth run

Another option is to fit as many models as possible
For any cases where we don’t have enough observations, we’ll
just ignore the error
capture will suppress (or capture) any errors and output
Let’s see this work with error2.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

noisily

We can combine capture with noisily to display the output
and errors, but continue to run the commands in the loop despite
these errors
Let’s see this work with error2.do

Errors will be displayed, but they won’t stop the loop from
running to completion

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Quietly: suppressing output

capture is great if you expect errors, but you want your code to
keep running

For example, we knew there wouldn’t be enough observations for
some of our models

If you want to suppress output, but you want the loop to stop
running when there is an error, you can use the quietly prefix
Let’s see this work with error2.do

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Nesting loops

We have 12 different industries and about 15 different years
While we could fit the model for every year available for each
industry, let’s keep things simple

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Tracing
if
capture
capture noisily
quietly
Example 4

Nesting loops
Suppose we’re only interested in industries 4, 6, and 7, and the
years 1980 and 1985

. estimates clear

. foreach i of numlist 4 6 7 {
2. forvalues y = 80(5)85 {
3. regress wage i.collgrad i.union ttl_exp if ind_code==‘i’ & year==‘y’
4. estimates store ind‘i’_19‘y’
5. }
6. }
(output omitted)

We can’t use forvalues here, because our values are not evenly
spaced. We have an increment of 2 and an increment of 1, but
forvalues can only work with one increment.

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining and expanding global macros

Global macros are filled just like a local macro except that the
keyword global is used

global macroname " string "
The " marks are optional but often can help readability

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Defining and expanding global macros

Global macros are filled just like a local macro except that the
keyword global is used

global macroname " string "
The " marks are optional but often can help readability

A global macro is expanded via
$macroname

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Examples

Just like with local macros, we can store text and evaluate
expressions

. global names Jane Julie Jenna

. display "$names"
Jane Julie Jenna
. global age = 20 + 1
. display "$age"
21

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Examples
We can also use the special macro functions with global macros

. global data: dir . files "file*.dta"

. clear

. append using $data, generate(whichfile)

. list make whichfile, sepby(whichfile)

make whichfile

1. AMC Concord Appended dataset 1
2. AMC Pacer Appended dataset 1
3. AMC Spirit Appended dataset 1

4. Buick Century Appended dataset 2
5. Buick Electra Appended dataset 2
6. Buick LeSabre Appended dataset 2

7. Buick Opel Appended dataset 3
8. Buick Regal Appended dataset 3
9. Buick Riviera Appended dataset 3

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Function keys

In fact, you can store text in a macro named after one of the
function keys (F5, F6, etc.)
global F6 regress

Now hit the F6 key on your keyboard. Depending on your
keyboard, you may need to simultaneously hit the FN key

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Local vs. global macros

Local macros are especially useful in loops because they only
exist where they are defined

If you define a local macro in a loop, it only exists while the loop
is running
If you define a local macro in a do-file, it only exists while the
do-file is running

Global macros are known in every context—they can be defined
in one (a)do-file and used in another

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Macros in other do-files

We created a local and a global macro in the file names.do
. do names
. global first George Jenna Sergio
. local last Johnson Medina Clooney
.
end of do-file
. foreach i of global first {

2. display "First name: ‘i’"
3. }

First name: George
First name: Jenna
First name: Sergio
. foreach i of local last {

2. display "Last name: ‘i’"
3. }

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Including other do-files

If you want to work with local macros defined in another file, use
the include command instead of do

. include names

. global first George Jenna Sergio

. local last Johnson Medina Clooney

.

. foreach i of local last {
2. display "Last name: ‘i’"
3. }

Last name: Johnson
Last name: Medina
Last name: Clooney

With include, it’s as if we copied the code from names.do into
our current file, so local macros are still defined
Now we can see the names from the local macro last

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Summary

Today we learned
the different ways to define a macro
how to use forvalues to fit separate regression models for
groups of our data
how to use foreach to perform tests for multiple variables
how to trace the execution of our code in order to see which
observations caused an error
how to run a series of commands conditional on an expression
how to run our loops quietly and despite any errors
how to easily append several datasets

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Where to learn more

You can type help foreach or help forvalues for a quick
reference

In the help file, you’ll see a link to the PDF documentation, which
contains worked examples

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Where to learn more

You can type help foreach or help forvalues for a quick
reference

In the help file, you’ll see a link to the PDF documentation, which
contains worked examples

Take a look at frequently asked questions (FAQs) about looping:
. search looping, faq

Loops

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

Where to learn more

You can type help foreach or help forvalues for a quick
reference

In the help file, you’ll see a link to the PDF documentation, which
contains worked examples

Take a look at frequently asked questions (FAQs) about looping:
. search looping, faq
Sign up for a NetCourse on Stata Programming:

http://www.stata.com/netcourse/programming-intro-nc151/

Take a look at this book about Stata Programming:
http://www.stata.com/bookstore/stata-programming-introduction/

Loops

http://www.stata.com/netcourse/programming-intro-nc151/
http://www.stata.com/bookstore/stata-programming-introduction/

Introduction
Local macros

Looping with forvalues
Looping with foreach

Nesting loops
Global macros

Conclusion

The end

Thank you!

Loops

	Introduction
	Motivation
	Goals

	Local macros
	Looping with forvalues
	How it works
	Example 1: Data
	Example 1: Goal
	Example 1: Loop
	More examples

	Looping with foreach
	Example 2: Goal
	Example 2: Loop
	foreach with other items
	Example 3: Data
	Example 3: Goal
	Example 3: Loop

	Nesting loops
	Tracing
	if
	capture
	capture noisily
	quietly
	Example 4

	Global macros
	Conclusion

