Dynamic stochastic general equilibrium models in Stata 15

David Schenck

Senior Econometrician Stata

October 11, 2017

-

A⊒ ▶ ∢ ∃

• Models used in macroeconomics for policy analysis

(日) (同) (三) (三)

э

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy

3

- 4 同 6 4 日 6 4 日

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy
- You need a model

3

- 4 同 6 4 日 6 4 日 6

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy
- You need a model
 - Dynamic

3

- 4 同 6 4 日 6 4 日 6

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy
- You need a model
 - Dynamic
 - Stochastic

3

< 回 ト < 三 ト < 三 ト

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy
- You need a model
 - Dynamic
 - Stochastic
 - General equilibrium

A D A D A D A

- Models used in macroeconomics for policy analysis
- Suppose you want to understand the effect of some policy
- You need a model
 - Dynamic
 - Stochastic
 - General equilibrium
- and you need to estimate the model parameters

Consumers

- Consume and save output
- Take inflation and interest rate as given

3

(日) (同) (三) (三)

Consumers

- Consume and save output
- Take inflation and interest rate as given
- Producers
 - Produce output and set prices
 - Take demand as given

Consumers

- Consume and save output
- Take inflation and interest rate as given
- Producers
 - Produce output and set prices
 - Take demand as given
- Central bank
 - Sets interest rate
 - Adjusts interest rate in response to inflation

Consumers

- Consume and save output
- Take inflation and interest rate as given
- Producers
 - Produce output and set prices
 - Take demand as given
- Central bank
 - Sets interest rate
 - Adjusts interest rate in response to inflation
- In equilibrium, this is a model that simultaneously determines output, inflation, and the interest rate

Here's a model in equations I

Consumers demand output (x_t), given inflation (π_t), the interest rate (r_t), and latent factors (z_t):

$$x_t = E_t(x_{t+1}) - (r_t - E_t(\pi_{t+1}) - z_t)$$

< ロ > < 同 > < 三 > < 三

Here's a model in equations I

Consumers demand output (x_t), given inflation (π_t), the interest rate (r_t), and latent factors (z_t):

$$x_t = E_t(x_{t+1}) - (r_t - E_t(\pi_{t+1}) - z_t)$$

• Producers set prices, given output demand:

$$\pi_t = \beta E_t(\pi_{t+1}) + \kappa x_t$$

A (10) A (10)

Here's a model in equations I

Consumers demand output (x_t), given inflation (π_t), the interest rate (r_t), and latent factors (z_t):

$$x_t = E_t(x_{t+1}) - (r_t - E_t(\pi_{t+1}) - z_t)$$

• Producers set prices, given output demand:

$$\pi_t = \beta E_t(\pi_{t+1}) + \kappa x_t$$

• Central bank sets interest rate, given inflation

$$r_t = \frac{1}{\beta}\pi_t + u_t$$

Here's a model in equations II

• The model's endogenous variables are characterized by equations:

$$\begin{aligned} x_t &= \mathcal{E}_t(x_{t+1}) - (r_t - \mathcal{E}_t(\pi_{t+1}) - z_t) \\ \pi_t &= \beta \mathcal{E}_t(\pi_{t+1}) + \kappa x_t \\ r_t &= \frac{1}{\beta} \pi_t + u_t \end{aligned}$$

3

(日) (同) (三) (三)

Here's a model in equations II

• The model's endogenous variables are characterized by equations:

$$\begin{aligned} x_t &= E_t(x_{t+1}) - (r_t - E_t(\pi_{t+1}) - z_t) \\ \pi_t &= \beta E_t(\pi_{t+1}) + \kappa x_t \\ r_t &= \frac{1}{\beta} \pi_t + u_t \end{aligned}$$

• The model is completed by adding equations for the state variables:

$$z_{t+1} = \rho_z z_t + \xi_{t+1}$$
$$u_{t+1} = \rho_u u_t + \varepsilon_{t+1}$$

< □ > < 同 > < 三 > < 三

Here's a model in Stata

• The model equations:

$$x_{t} = E_{t}(x_{t+1}) - (r_{t} - E_{t}(\pi_{t+1}) - z_{t})$$

$$\pi_{t} = \beta E_{t}(\pi_{t+1}) + \kappa x_{t}$$

$$r_{t} = \frac{1}{\beta} \pi_{t} + u_{t}$$

$$z_{t+1} = \rho_{z} z_{t} + \xi_{t+1}$$

$$u_{t+1} = \rho_{u} u_{t} + \varepsilon_{t+1}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Here's a model in Stata

• The model equations:

$$x_{t} = E_{t}(x_{t+1}) - (r_{t} - E_{t}(\pi_{t+1}) - z_{t})$$

$$\pi_{t} = \beta E_{t}(\pi_{t+1}) + \kappa x_{t}$$

$$r_{t} = \frac{1}{\beta} \pi_{t} + u_{t}$$

$$z_{t+1} = \rho_{z} z_{t} + \xi_{t+1}$$

$$u_{t+1} = \rho_{u} u_{t} + \varepsilon_{t+1}$$

• In Stata:

3

イロト イヨト イヨト イヨト

Data and data management

- We will use data on inflation and interest rates
- Available from the Federal Reserve Economic Database (FRED) repository
 - . import fred GDPDEF FEDFUNDS, aggregate(quarterly, eop)
 - . generate dateq = qofd(daten)
 - . tsset dateq, quarterly
 - . generate lprice = ln(GDPDEF)
 - . generate p = 400*D.lprice

```
. rename FEDFUNDS r
```

(日) (周) (三) (三)

Data figure

Parameter estimation

. dsge	(x = E(F.x) - (r - E(F.p) - z), unobserved)	///
>	$(p = {beta}*E(F.p) + {kappa}*x)$	///
>	$(r = 1/{beta}*p + u)$	///
>	$(F.z = {rhoz}*z, state)$	///
>	(F.u = {rhou}*u, state), nolog	
DSGE model		

Sample: 1955q1 -	2015q4	Number of	f obs	=	244
Log likelihood =	-753.57131				

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	[Interval]
/structural						
beta	.5146675	.0783489	6.57	0.000	.3611065	.6682284
kappa	.1659054	.0474072	3.50	0.000	.0729889	.2588218
rhoz	.9545256	.0186424	51.20	0.000	.9179872	.991064
rhou	.7005486	.0452604	15.48	0.000	.6118398	.7892573
sd(e.z)	.6211211	.101508			.4221692	.8200731
sd(e.u)	2.318202	.3047436			1.720916	2.915489

 What is the effect of an unexpected increase in interest rates?

Estimated DSGE model provides an answer to this question. We can subject the model to a shock, then see how that shock feeds through the rest of the system.

・ 同 ト ・ ヨ ト ・ ヨ ト

Impulse response setup

- First we set up the impulse response file:
 - . irf set dsge_irf
 - . irf create model1

- 34

イロト イポト イヨト イヨト

Impulse response setup

- First we set up the impulse response file:
 - . irf set dsge_irf
 - . irf create model1
- Then we draw the graph:
 - . irf graph irf, impulse(u) response(x p r u) byopts(yrescale) yline(0)

3

(日) (周) (三) (三)

Impulse responses from the estimated model

October 11, 2017 12 / 25

Solving a DSGE Model

 Solution to a model is the key to estimation and generating impulse responses

3

(日) (周) (三) (三)

Solving a DSGE Model

- Solution to a model is the key to estimation and generating impulse responses
- Solution expresses endogenous variables as a function of state variables alone

< 回 ト < 三 ト < 三 ト

Viewing solution matrices

- You may wish to view the solution matrices
- Use the postestimation commands estat policy and estat transition
 - . estat policy

Policy matrix

	Delta-met				
Co	ef. Std. Er	r. z	P> z	[95% Conf	. Interval]
2.718	669 .942099	3 2.89	0.004	.8721883	4.56515
n -1.608	225 .405056	9 -3.97	0.000	-2.402122	8143284
.8865	.240622	9 3.68	0.000	.4149761	1.358201
u4172	524 .039360	9 -10.60	0.000	4943985	3401064
1.722	641 .227653	5 7.57	0.000	1.276449	2.168834
ı .1892	784 .059166	3 3.20	0.001	.0733147	.3052422
	2 2.718 1 -1.608 2 .8865 14172 2 1.722 1 .1892	Delta-met Coef. Std. Er 2 2.718669 .942099 1 -1.608225 .405056 2 .8865884 .240622 14172524 .039360 2 1.722641 .227653 1 .1892784 .059166	Delta-method Coef. z 2 2.718669 .9420993 2.89 1 -1.608225 .4050569 -3.97 2 .8865884 .2406229 3.68 1 4172524 .0393609 -10.60 2 1.722641 .2276535 7.57 1 .1892784 .0591663 3.20	Delta-method Coef. z P> z z 2.718669 .9420993 2.89 0.004 -1.608225 .4050569 -3.97 0.000 z .8865884 .2406229 3.68 0.000 4172524 .0393609 -10.60 0.000 z 1.722641 .2276535 7.57 0.000 1 .1892784 .0591663 3.20 0.001	Delta-method Coef. z P> z [95% Conf z 2.718669 .9420993 2.89 0.004 .8721883 1 -1.608225 .4050569 -3.97 0.000 -2.402122 z .8865884 .2406229 3.68 0.000 .4149761 1 4172524 .0393609 -10.60 0.000 4943985 z 1.722641 .2276535 7.57 0.000 1.276449 1 .1892784 .0591663 3.20 0.001 .0733147

Predictions of observed variables

 We can use the DSGE model to generate one-step-ahead predictions of the observed variables

. predict p_pred r_pred
(option xb assumed; fitted values)

通 ト イヨ ト イヨト

Prediction of inflation rate, p

Schenck (Stata)

Prediction of interest rate, r

→

▲ □ ► < □ ►</p>

DSGE

Predictions of latent states

• We can use the DSGE model to generate estimates of the latent states

. predict z u, state

3

(日) (周) (三) (三)

Prediction of latent demand state, z

October 11, 2017 19 / 25

Prediction of latent monetary state, u

Schenck (Stata)

October 11, 2017 20 / 25

Using constraints to fix some parameters

You might want to fix some parameters and estimate others.

$$\begin{aligned} x_t &= E_t(x_{t+1}) - (r_t - E_t(\pi_{t+1}) - z_t) & (\text{Output demand}) \\ \pi_t &= \beta E_t(\pi_{t+1}) + \kappa x_t & (\text{Pricing}) \\ r_t &= \psi \pi_t + u_t & (\text{Interest rate}) \\ z_{t+1} &= \rho_z z_t + \xi_{t+1} & (\text{Demand shock}) \\ u_{t+1} &= \rho_u u_t + \varepsilon_{t+1} & (\text{Monetary shock}) \end{aligned}$$

- New: the ψ parameter in the third equation.
- New: β no longer appears in multiple equations.
- Assume: you wish to fix β and estimate the remaining parameters conditional on your choice of β .

Constrained model in Stata

. constraint 1 _b[beta]=0.96

- 2

イロン イヨン イヨン イヨン

Parameter estimation with constraints

DSGE model

Sample: 1955q1 - 2015q4 Number of obs = 244 Log likelihood = -753.57131 (1) [/structural]beta = .96

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	[Interval]
/structural						
beta	.96	(constraine	d)			
kappa	.0849632	.0287693	2.95	0.003	.0285764	.1413501
psi	1.943004	.2957865	6.57	0.000	1.363273	2.522734
rhoz	.9545257	.0186424	51.20	0.000	.9179873	.991064
rhou	.7005482	.0452603	15.48	0.000	.6118396	.7892568
sd(e.z)	.568989	.0982973			.3763299	.7616482
sd(e.u)	2.318204	.3047431			1.720918	2.915489

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Conclusion

- dsge estimates the parameters of DSGE models
- Impulse response functions trace the effect of a shock on the model
- View the model's estimated reduced-form matrices
- Predictions of observable variables and latent states
- Constrained estimation
- Other features: solve a model at a particular parameter point (calibration), identification and stability diagnostics

Thank You!

3

▲口> ▲圖> ▲国> ▲国>