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https://tinyurl.com/StataLCA


Population characteristics



Population characteristics

group



Population characteristics

?



Latent class analysis (LCA)
• We use a categorical latent variable to represent 

unobserved groups in the population that we call 
classes. 

Class (C) 
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Mixture model in Stata
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Latent class analysis

vandalismalcohol truant theft weapon
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Types of LCA
• Latent class analysis (LCA): 

categorical/binary indicators

• Latent profile analysis (LPA): 

continuous indicators

• Latent transition analysis (LTA): 

one indicator that changes over time

• All these models can be analyzed in the same 
way with minor modifications.



Example:
Universalistic vs particularistic
1. Would you disclose health concerns to a 

friend's insurance company?

2. Would you give a negative review of a friend's 
play?

3. Would you keep a company secret from a 
friend?

4. Would you testify against a friend in an 
accident case?



Universalistic vs particularistic

.2

.4

.6

.8

1

P
ro

b
a
b

ili
ty

 o
f 
u

n
iv

e
rs

a
lis

ti
c
 c

h
o
ic

e

in
su

ra
nc

e
pl
ay

st
oc

k

ac
ci
de

nt

Class 1 Class 2



Health profiles
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Adolescent delinquency
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Path diagram

vandalismalcohol truant theft weapon

Class (C) 



Model formulation

vandalismalcohol truant theft weapon
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Model formulation

vandalismalcohol truant theft weapon

Class (C) 

Pr 𝐶 =
𝑒𝛾𝑐

σ𝐶 𝑒𝛾𝑐

Multinomial 

logistic 

regression

Pr(outcome|C ) =
𝑒𝛼𝐶

1+𝑒𝛼𝐶

Logistic regressions



LCA in Stata



Class probabilities



Class 1 coefficients



Class 2 coefficients



Class 3 coefficients



Class marginal means



Class enumeration

• When deciding on the number of classes, it’s 
important to consider statistical fit as well as 
substantive interpretability. 

• Start with one class, then increase the number of 
classes until you can’t estimate any more.



Options for starting values
startvalues() option Description

factor runs a factor analysis on all observed variables to 

obtain preliminary class predictions

randomid, draws(#) randomly assigns observations to initial classes

randompr, draws(#) randomly assigns initial class probabilities

jitter, draws(#) randomly perturbs starting values from a Gaussian 

approximation to each outcome

classid varname specifies a variable that identifies the initial class 

membership for each case

classpr varlist specifies a list of variables that give the probability of 

membership in each class



Options for starting values
startvalues() option Description

factor runs a factor analysis on all observed variables to 

obtain preliminary class predictions

randomid, draws(#) randomly assigns observations to initial classes

randompr, draws(#) randomly assigns initial class probabilities

jitter, draws(#) randomly perturbs starting values from a Gaussian 

approximation to each outcome

classid varname specifies a variable that identifies the initial class 

membership for each case

classpr varlist specifies a list of variables that give the probability of 

membership in each class

iterate(#) - set the maximum number of iterations  
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Probabilities for class



Class means



Class marginal means



Class characteristics plot
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Class characteristics plot
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Goodness of fit



Predicted probabilities



Predicted class membership
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Adding predictors

vandalismalcohol truant theft weapon

Class (C) 
age

male
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Class probabilities by covariates
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NHANES example data
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Linear regression mixture 
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Linear regression mixture
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The lcinvariant() option

pclassname Description

cons intercepts and cutpoints

coef fixed coefficients

errvar covariances of errors

scale scaling parameters

all all the above

none none of the above

lcinvariant(pclassname) – specify parameters 
that are equal across latent classes



Constraining all coefficients



Class-specific models



Comparing models



Marginal means by class
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Multivariate regression mixture
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Thank you!

Questions?

You can download the dataset, do-file, and slides here: 

https://tinyurl.com/StataLCA

You can contact tech support at tech-support@stata.com

https://tinyurl.com/StataLCA
mailto:tech-support@stata.com

