Analyzing interval-censored survival-time data in Stata

Xiao Yang

Senior Statistician and Software Developer StataCorp LLC

2018 Stata Webinar

Outline

- What is interval-censoring?
 - Introduction
 - Examples
- Parametric regression models
 - stintreg overview
 - Case I (current status) interval-censored data
 - Case II (general) interval-censored data
- Diagnostics and inference after stintreg
 - Motivating example
 - Residuals and diagnostic measures
 - Predictions
 - Survivor function plots
- Conclusion

Introduction

- Suppose the event time T_i is an independent random variable with an underlying distribution function $f(t_i)$.
- The corresponding survival function is denoted as $S(t_i)$.
- Event time T_i is not always exactly observed.
- $(L_i, R_i]$ denotes the observed time interval in which T_i falls.
- There are four types of censoring: no censoring, right-censoring, left-censoring, and interval-censoring.

Types of censoring

T; No censoring $L_i = R_i$ $(L_i = T_i, R_i = T_i]$ **Right-censoring** L; T: $(L_i, R_i = +\infty)$ Left-censoring Γ. R $(L_i = 0, R_i]$ Interval-censoring . Τι Li R $(L_i, R_i]$

 T_i : unobserved event time L_i, R_i : observed end points

Interval-censored data occur in many ways and in many fields.

- Remission times in cancer clinical trials
- Unemployment duration in economic data
- Time of weaning in demographic data
- Time to obesity in epidemiological data
- Time to the first use of marijuana in a social study

Types of interval-censored data

- Case I (current status) interval-censored data: occur when subjects are observed only once, and we only know whether the event of interest occurred before the observed time. The observation on each subject is either leftor right-censored.
- Case II (general) interval-censored data: occur when we do not know the exact event time T_i , but only know that the event happened within a random time interval $(L_i, R_i]$, or before the left endpoint L_i , or after the right endpoint R_i . The observation on each subject can be arbitrarily censored.

Types of interval-censored data

- Case I (current status) interval-censored data: occur when subjects are observed only once, and we only know whether the event of interest occurred before the observed time. The observation on each subject is either leftor right-censored.
- Case II (general) interval-censored data: occur when we do not know the exact event time T_i, but only know that the event happened within a random time interval (L_i, R_i], or before the left endpoint L_i, or after the right endpoint R_i. The observation on each subject can be arbitrarily censored.

What happens if interval censoring has been ignored or treated as right-censored data?

- Rucker and Messerer (1988) stated that assuming interval survival times as exact times can lead to biased estimates and underestimation of the true error variance, which may lead to false positive results.
- Law and Brookmeyer (1992) interpolated the failure time by the midpoint of the censored interval and showed that the statistical properties depend strongly on the underlying distributions and the width of the intervals. Therefore, the survival estimates may be biased and the variability of the estimates may be underestimated.

What happens if interval censoring has been ignored or treated as right-censored data?

- Rucker and Messerer (1988) stated that assuming interval survival times as exact times can lead to biased estimates and underestimation of the true error variance, which may lead to false positive results.
- Law and Brookmeyer (1992) interpolated the failure time by the midpoint of the censored interval and showed that the statistical properties depend strongly on the underlying distributions and the width of the intervals. Therefore, the survival estimates may be biased and the variability of the estimates may be underestimated.

Methods for analyzing interval-censored data

- Imputation-based methods
- Parametric regression models
- Nonparametric maximum-likelihood estimation
- Semiparametric regression models
- Bayesian analysis
- ...

stintreg fits parametric models to survival-time data, which can be uncensored, right-censored, left-censored, or interval-censored.

- Supports different distributions and parameterizations
- Fits models to two types of interval-censored data:
 - Case I (current status) interval-censored data
 - Case II (general) interval-censored data
- Supports modeling of ancillary parameters and stratification
- Provides diagnostic measures, predictions, and much more after fitting the model

Basic syntax

stintreg [indepvars], interval($t_l t_u$) distribution(distname) [...]

- interval() specifies two time variables that contain the endpoints of the censoring interval.
- distribution() specifies the survival model to be fit.
- stseting the data is not necessary and will be ignored.

Interval-censored data setup

Each subject should contain two time variables, t_l and t_u , which are the left and right endpoints of the time interval.

Type of data		tı	tu
uncensored data	a = [a, a]	а	а
interval-censored data	(a, b]	а	b
left-censored data	(0, <i>b</i>]		b
left-censored data	(0, <i>b</i>]	0	b
right-censored data	$[a,\infty)$	а	
missing			
missing		0	

Supported distributions and parameterizations

stintreg supports six different parametric survival distributions and two parameterizations: proportional hazards (PH) and accelerated failure-time (AFT).

Distribution	Metric
Exponential	PH, AFT
Weibull	PH, AFT
Gompertz	PH
Lognormal	AFT
Loglogistic	AFT
Generalized gamma	AFT

Proportional hazards model

• The PH model specifies that the covariates have a multiplicative effect on the hazard function.

$$h_i(t) = h_0(t) \exp(\mathbf{x}_i \boldsymbol{\beta})$$

- The baseline hazard function $h_0(t)$ takes a specific parametric form.
- Three distributions are supported as PH models: the exponential, Weibull, and Gompertz distributions.

Accelerated failure-time model

• The AFT models the natural logarithm of the survival time as a linear function of the covariates,

$$\log t_i = \mathbf{x}_i \boldsymbol{\beta} + z_i$$

- z_i is the error with density f(). The distributional form of the error term determines the regression model.
- The effect of covariates is multiplicative on survival time.

Maximum likelihood estimation

stintreg estimates parameters via maximum likelihood:

$$egin{aligned} \mathsf{log}\, L &= \sum_{i \in \mathit{UC}} \mathsf{log}\, f_i(t_{\mathit{li}}) + \sum_{i \in \mathit{RC}} \mathsf{log}\, S_i(t_{\mathit{li}}) + \sum_{i \in \mathit{LC}} \mathsf{log}\, \{1 - S_i(t_{\mathit{ui}})\} \ &+ \sum_{i \in \mathit{IC}} \mathsf{log}\, \{S_i(t_{\mathit{li}}) - S_i(t_{\mathit{ui}})\} \end{aligned}$$

Case II (general) interval-censored data

Example of Case II (general) interval-censored data

Time to resistance to zidovudine

- 31 AIDS patients enrolled in four clinical trials
- Resistance assays were very expensive; few assessments were performed on each patient
- Covariates of interest:
 - The stage of the disease, stage
 - The dose level of the treatment, dose
- Time interval, in months, is stored in variables t_l and t_r
- We want to investigate whether stage has any effect on time to drug resistance

Case II (general) interval-censored data

t_l	t_r	stage	dose
11		0	0
5		0	1
13		0	1
11		0	1
0	14	0	1
2		1	0
12	19	1	0
5		1	1
0	17	1	1
1	11	1	1

Parametric regression models

Case II (general) interval-censored data

Fit Weibull model

. stintreg i.stage, interval(t_l t_r) distribution(weibull)							
Weibull PH reg	Weibull PH regression					31	
				Uncer	nsored =	0	
				Left-	-censored =	15	
				Right	-censored =	13	
				Inter	val-cens. =	3	
				LR chi2((1) =	10.02	
Log likelihood	d = −13.27946	5		Prob > c	:hi2 =	0.0016	
	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]	
1.stage	6.757496	4.462932	2.89	0.004	1.851897	24.65783	
_cons	.0003517	.0010552	-2.65	0.008	9.82e-07	.1259497	
/ln_p	1.036663	.3978289	2.61	0.009	.2569325	1.816393	
p 1/p	2.819791 .3546362	1.121795 .1410845			1.292958 .1626112	6.149638 .7734204	

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline hazard.

Case II (general) interval-censored data

Model ancillary parameters

Assume that the hazards for different dosage levels have different shape parameters.

. stintreg i.stage, interval(t_l t_r) distribution(weibull) ancillary(i.dose) note: option nohr is implied if option strata() or ancillary() is specified

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
t_l 1.stage _cons	2.795073 -10.8462	1.167501 4.233065	2.39 -2.56	0.017 0.010	.5068139 -19.14286	5.083332 -2.549547
ln_p 1.dose _cons	.1655302 1.252361	.0874501 .4143257	1.89 3.02	0.058 0.003	0058689 .4402972	.3369292 2.064424

 $\widehat{ln(p)}_{low} \approx 1.252$ and $\widehat{ln(p)}_{high} \approx 1.252 + 0.166 \approx 1.418$. Thus, $\hat{p}_{low} \approx 3.50$ and $\hat{p}_{high} \approx 4.13$

Case II (general) interval-censored data

Model ancillary parameters

Assume that the hazards for different dosage levels have different shape parameters.

. stintreg i.stage, interval(t_l t_r) distribution(weibull) ancillary(i.dose) note: option nohr is implied if option strata() or ancillary() is specified

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
t_l								
1.stage cons	2.795073 -10.8462	1.167501 4.233065	2.39 -2.56	0.017	.5068139 -19.14286	5.083332 -2.549547		
	1010102	11200000	2100	0.010	10111200			
ln_p								
1.dose	.1655302	.0874501	1.89	0.058	0058689	.3369292		
_cons	1.252361	.4143257	3.02	0.003	.4402972	2.064424		
$\frac{1.252361}{\widehat{ln(p)}_{low}} \approx 1.252 \text{ and } \widehat{ln(p)}_{high} \approx 1.252 + 0.166 \approx 1.418.$ Thus, $\hat{p}_{low} \approx 3.50$ and $\hat{p}_{high} \approx 4.13$								

Use nlcom to compute the estimates and CIs for \hat{p}_{low} and \hat{p}_{high}

. nlcom p_low: exp(_b[ln_p:_cons])

p_low: exp(_b[ln_p:_cons])

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
p_low	3.498592	1.449557	2.41	0.016	.6575131	6.339672

. nlcom p_high: exp(_b[ln_p:_cons]+ _b[ln_p:1.dose])

p_high: exp(_b[ln_p:_cons]+ _b[ln_p:1.dose])

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
p_high	4.128404	1.648225	2.50	0.012	.8979427	7.358865

Case II (general) interval-censored data

Fit stratified model

A stratified model means that the coefficients on the covariates are the same across strata, but the intercept and ancillary parameters are allowed to vary for each level of the stratum variable.

You can fit the stratified model using

. stintreg i.stage i.dose, interval(t_l t_r)
distribution(weibull) ancillary(i.dose)

or, more conveniently, using

stintreg i.stage, interval(t_l t_r) distribution(weibull)
strata(i.dose)

Case II (general) interval-censored data

Fit stratified model

A stratified model means that the coefficients on the covariates are the same across strata, but the intercept and ancillary parameters are allowed to vary for each level of the stratum variable.

You can fit the stratified model using

```
. stintreg i.stage i.dose, interval(t_l t_r)
distribution(weibull) ancillary(i.dose)
```

or, more conveniently, using

. stintreg i.stage, interval(t_l t_r) distribution(weibull)
 strata(i.dose)

Case II (general) interval-censored data

Fit stratified model

A stratified model means that the coefficients on the covariates are the same across strata, but the intercept and ancillary parameters are allowed to vary for each level of the stratum variable.

You can fit the stratified model using

```
. stintreg i.stage i.dose, interval(t_l t_r)
distribution(weibull) ancillary(i.dose)
```

or, more conveniently, using

```
. stintreg i.stage, interval(t_l t_r) distribution(weibull)
    strata(i.dose)
```


Case II (general) interval-censored data

Fit stratified model

	stage, intervanohr is implie						
Weibull PH re	gression			Number	of obs =	31	
				Unce	ensored =	0	
				Left	t-censored =	15	
				Righ	nt-censored =	13	
				Inte	erval-cens. =	3	
				LR chi2	2(2) =	12.40	
Log likelihoo	d = -11.115197	7		Prob >	chi2 =	0.0020	
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
t_1							
1.stage	2.711532	1.084146	2.50	0.012	.5866456	4.836419	
1.dose	-2.661872	5.883967	-0.45	0.651	-14.19424	8.870492	
_cons	-9.143003	4.930789	-1.85	0.064	-18.80717	.5211664	
ln_p							
1.dose	.453894	.670098	0.68	0.498	8594739	1.767262	
_cons	1.051935	.6190537	1.70	0.089	1613879	2.265258	
	1					STa	ITA 15

Case I (current status) interval-censored data

Example of Case I (current status) interval-censored data

Nonlethal lung tumor

- 144 male mice in a tumorigenicity experiment
- Lung tumors are known to be nonlethal for the mice
- Time to tumor onset is of interest but not directly observed
- Consists of the death time (death) and indicator of lung tumor presence (status)
- Covariate of interest: environment (group)
 - conventional environment (CE)
 - germ-free environment (GE)
- We want to investigate whether group has any effect on time to tumor onset

stintreg in Stata 15 Parametric regression models Case I (current status) interval-censored data

Data setup

• Conventional storage: observation times (death) and an indicator of whether the event of interest (status) occured by the observation time.

	group	status	death
26.	CE	With tumor	811
27.	CE	With tumor	839
28.	CE	No tumor	45
29.	CE	No tumor	198
30.	CE	No tumor	215

. list in 26/30

Parametric regression models

Case I (current status) interval-censored data

Data setup

stintreg requires two time variables:

```
. generate ltime = death
. generate rtime = death
. replace ltime = . if status == 1
(62 real changes made, 62 to missing)
. replace rtime = . if status == 0
(82 real changes made, 82 to missing)
```

```
. list in 26/30
```

	group	status	death	ltime	rtime
26.	CE	With tumor	811		811
27.	CE	With tumor	839		839
28. 29.	CE CE	No tumor	45	45	•
29. 30.	CE	No tumor No tumor	198 215	198 215	•
30.	CE	NO CUMOI	215	215	•

Case I (current status) interval-censored data

Fit exponential PH model

. stintreg i.group, interval(ltime rtime)				ribution(exponential)	
Exponential PH regression				Number o	of obs =	144
				Unce	nsored =	0
				Left	-censored =	62
					t-censored =	82
				Inte	rval-cens. =	0
				LR chi2	(1) =	16.09
Log likelihood = -81.325875				Prob > 0	chi2 =	0.0001
	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
group GE _cons	2.90202 .0005664	.7728318 .0001096	4.00 -38.63	0.000	1.721942 .0003876	4.890828 .0008277

Note: _cons estimates baseline hazard.

The estimated hazard of time to lung tumor onset for the mice in GE is approximately three times the hazard of that for the mice in CE.

Case I (current status) interval-censored data

Fit exponential AFT model

. stintreg i.g	group, interva	al(ltime rtin	ne) distr	ribution(exponential)	time
Exponential A	T regression			Number	of obs =	144
-	-			Unce	nsored =	0
				Left	-censored =	62
				Righ	t-censored =	82
				Inte	rval-cens. =	0
				LR chi2	(1) =	16.09
Log likelihood = -81.325875				Prob >	chi2 =	0.0001
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
group						
GE	-1.065407	.2663082	-4.00	0.000	-1.587362	5434525
_cons	7.476278	.1935597	38.63	0.000	7.096908	7.855648

The survival time for the mice in GE is 66% ($e^{-1.07} = 0.34$) shorter than the survival time for the mice in CE.

stata

Diagnostics and inference after stintreg

stintreg provides several features after estimation:

- Prediction of residuals and diagnostic measures
- Predictions of survival time, hazard, and scores
- Plots for survivor, hazard, and cumulative hazard functions

Motivating example

Breast cancer study

- 94 patients with breast cancer
- Treated with either radiation therapy alone (RT), or radiation therapy plus adjuvant chemotherapy (RCT)
- Patients had different visit times and durations between visits
- Breast retraction (cosmetic deterioration) was measured at each visit
- The exact time of breast retraction was not observed and was known to fall in an interval between visits
- We want to study the effect of treatment on time (in months) to breast retraction

Motivating example cont.

id	ltime	rtime	treat	age
1	0	7	Radia	48
11	11	18	Radia	44
21	24		Radia	38
31	36		Radia	39
41	46	•	Radia	40
51	5	8	Radia+Chemo	37
61	12	20	Radia+Chemo	34
71	16	24	Radia+Chemo	29
81	23		Radia+Chemo	38
91	35	•	Radia+Chemo	37

Fitting our motivating example

. scincleg 1.	treat, interva	al(ltime rti	me) dist	ribution(weibull)	
Weibull PH reg	gression			Number o	of obs =	94
				Uncer	nsored =	0
				Left	-censored =	5
				Right	t-censored =	38
				Inte	rval-cens. =	51
				LR chi2	(1) =	10.93
Log likelihood	d = -143.19228	3		Prob > o		0.0009
	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treat						
treat Radia+Chemo	2.498526	.7069467	3.24	0.001	1.434961	4.350383
	2.498526 .0018503	.7069467 .0013452	3.24 -8.66		1.434961 .000445	4.350383 .007693
Radia+Chemo						
Radia+Chemo _cons	.0018503	.0013452	-8.66	0.000	.000445	.007693

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline hazard.

31 / 42

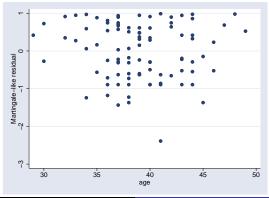
Jan 24, 2018

Diagnostics and inference after stintreg

Residuals and diagnostic measures

Residuals and diagnostic measures

stintreg provides two types of residuals to assess the appropriateness of the fitted models.


- Martingale-like residuals:
 - to examine the functional form of covariates
 - to assess whether additional covariates are needed
 - to identify outliers
- Cox-Snell residuals: to assess the overall model fit

- Diagnostics and inference after stintreg
 - Residuals and diagnostic measures

Check whether additional covariates are needed

- Should the patient's age be included in the model?
 - . predict mg, mgale
 - . scatter mg age

Xiao Yang (StataCorp) Jan

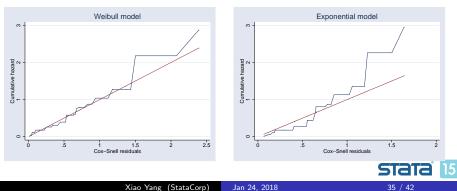
Jan 24, 2018

Diagnostics and inference after stintreg

Residuals and diagnostic measures

Goodness-of-fit plot

- estat gofplot is used to assess the goodness-of-fit of the model visually; available as of the 20170720 update.
- It plots the Cox-Snell residuals versus the estimated cumulative hazard function corresponding to these residuals.
- The estimated cumulative hazards are calculated using the self-consistency algorithm proposed by Turnbull (1976).
- The Cox-Snell residuals form the 45° reference line. If the model fits the data well, the plotted estimated cumulative hazards should be close to the reference line.



Diagnostics and inference after stintreg

Residuals and diagnostic measures

Goodness-of-fit plot

• Does the Weibull model fit the data better than the exponential model?

Using predict after stintreg

- What is the median time to breast retraction?
 - . predict time, median time
 - . tabulate treat, summarize(time) means freq

Treatment	Summary of Pre median fo (ltime,rt: Mean	or
Radia Radia+Che	39.332397 22.300791	46 48
Total	30.635407	94

Using margins after stintreg

• What are the confidence intervals for those values?

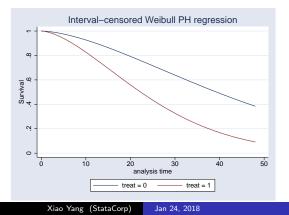
. margins tr	at, predict(median time)	
Adjusted pre	ictions Number of obs = 9	4
Model VCE	: OIM	
Expression	: Predicted median for (ltime, rtime], predict(median time)	

] Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
treat Radia Radia+Chemo	39.3324 22.30079	5.342493 2.436642	7.36 9.15	0.000	28.8613 17.52506	49.80349 27.07652

Compute survivor probabilities

- Estimates of survivor probabilities (as well as hazard estimates and Cox-Snell residuals) are intervals.
- We need to specify two new variable names in predict.
 - . predict surv_l surv_u, surv
 - . list surv_l surv_u in 1/5

	surv_l	surv_u
1.	1	.95814
2.	1	.948338
3.	1	.9754614
4.	.9828176	.9151379
5.	.9754614	.9029849



stintreg in Stata 15 Diagnostics and inference after stintreg Plot survivor function

Plot survivor function

• Do RCT (treat = 1) patients experience breast retraction earlier than RT (treat = 0) patients?

. stcurve, survival at1(treat = 0) at2(treat = 1)

stata

Conclusions

stintreg

- fits parametric models to survival-time data, which can be uncensored, right-censored, left-censored, or interval-censored.
- supports different distributions and parameterizations
- fits models to two types of interval-censored data
- supports modeling of ancillary parameters and stratification
- provides diagnostic measures, predictions, and much more after fitting the model

More resources

https://www.stata.com/manuals/ststintreg.pdf
https://www.stata.com/manuals/ststintregpostestimation.pdf
https://www.stata.com/manuals/ststcurve.pdf

References

- C. C. Law and R. Brookmeyer. "Effects of mid-point imputation on the analysis of doubly censored data". In: *Statistics in Medicine* 11 (1992), pp. 1569–1587.
- G. Rucker and D. Messerer. "Remission duration: an example of interval-censored observations". In: *Statistics in Medicine* 7 (1988), pp. 1139–1145.
- B. W. Turnbull. "The empirical distribution function with arbitrarily grouped censored and truncated data". In: *Journal* of the Royal Statistical Society, Series B 38 (1976), pp. 290–295.

