Choice models using Stata

Joerg Luedicke

StataCorp LLC

October 29, 2019

(StataCorp LLC)

October 29, 2019 1 / 35

э

★ ∃ > < ∃ >

Image: Image:

What are choice models? (1)

- With discrete choice models, we describe decision makers' choices among a given set of alternatives
- Discrete choice models are used across disciplines to analyze choice behavior, for example:
 - Companies choose whether to use TV, print, or Internet advertising
 - Individuals choose their favorite breakfast cereal
 - Voters choose their favorite candidate or party
 - Individuals choose among long-term care options such as nursing home, assisted living, moving in with family
 - Individuals choose among educational programs
- In all of these cases, we observe decision making entities that are faced with a set of alternatives to choose from

< 回 > < 回 > < 回 >

What are choice models? (2)

• The set of alternatives is called a choice set, which ...

- ... consists of mutually exclusive alternatives
- ... includes all possible alternatives, i.e. is exhaustive
- ... contains a finite number of alternatives
- If we have a discrete choice model that allows for including variables that can vary both over decision makers as well as alternatives, we speak of **discrete choice models with** alternative-specific variables. This is what we are referring to when we speak of choice models in Stata.
- In other words, we can incorporate attributes of the decision maker as well as attributes of the alternatives into our analysis

A B A A B A

Discrete choice analysis with alternative-specific variables (cross-sectional data)

. webuse transport

(Transportation choice data)

. list id alt choice trcost trtime age income if t==1 & id < 3, sepby(id)

id	alt	choice	trcost	trtime	age	income
1	Car	1	4.14	0.13	3.0	3
1	Public	0	4.74	0.42	3.0	3
1	Bicycle	0	2.76	0.36	3.0	3
1	Walk	0	0.92	0.13	3.0	3
2	Car	0	4.36	0.23	3.0	2
2	Public	0	4.43	0.43	3.0	2
2	Bicycle	0	1.25	1.23	3.0	2
2	Walk	1	0.89	0.12	3.0	2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete choice analysis with alternative-specific variables (panel data)

. list id t alt choice trcost trtime age income in 1/12, sepby(t) noobs

id	t	alt	choice	trcost	trtime	age	income
1	1	Car	1	4.14	0.13	3.0	3
1	1	Public	0	4.74	0.42	3.0	3
1	1	Bicycle	0	2.76	0.36	3.0	3
1	1	Walk	0	0.92	0.13	3.0	3
1	2	Car	1	8.00	0.14	3.2	5
1	2	Public	0	3.14	0.12	3.2	5
1	2	Bicycle	0	2.56	0.18	3.2	5
1	2	Walk	0	0.64	0.39	3.2	5
1	3	Car	1	1.76	0.18	3.4	5
1	3	Public	0	2.25	0.50	3.4	5
1	3	Bicycle	0	0.92	1.05	3.4	5
1	3	Walk	0	0.58	0.59	3.4	5

< ロ > < 同 > < 回 > < 回 >

Examples of things we want to learn from discrete choice analyses

- How does the probability of choosing public transportation change if yearly income increases from \$30,000 to \$40,000?
- How does travel time and cost affect the probability of choosing each transportation mode?
- If travel cost related to car travel increases, how does that affect the probability of using a car?
- If travel time is increasing for public transportation, how does that affect the probability of choosing car travel?
- If we are public administrators and wish to reduce car travel in our metropolitan area during rush hours by ten percentage points, how strong do we need to incentivize public transportation?

・ロト ・ 四ト ・ ヨト ・ ヨト

Some estimation results from a discrete choice model

<snip>


	choice	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
alt							
	trcost	8388216	.0438587	-19.13	0.000	9247829	7528602
	trtime	-1.508756	.2641554	-5.71	0.000	-2.026492	9910212

<snip>

- If cost and time of travel increases for a given alternative, the probability of choosing that alternative decreases.
- While a result like this may provide some information, it is not a lot!
- In Stata 16, we can now use margins not only to discover more interesting results, but also results that are easier to quantify.

4 11 14 14 14 14

Probability of choosing car as a function of public transportation cost

(StataCorp LLC)

Discrete choice estimators in Stata 16

cm commands in Stata 16:

- cmclogit
- cmmprobit
- cmroprobit
- cmrologit
- cmmixlogit
- cmxtmixlogit

(formerly asclogit)
(formerly asmprobit)
(formerly asroprobit)
(formerly rologit)
(formerly asmixlogit)
(new in Stata 16)

All cm commands now support margins

New [CM] manual

Set-up and utility commands: cmset, cmchoiceset, cmsample, cmsummarize, cmtab

Other discrete choice estimators:

• nlogit, mlogit, mprobit, logit, probit, ...

cmxtmixlogit

- Works with margins
- Random coefficient distributions $f(\beta)$:
 - (multivariate) normal
 - lognormal
 - truncated normal
 - uniform
 - triangle
- Estimates the parameters of the mixed logit model by **maximum** simulated likelihood
- Halton, Hammersley, and pseudo-random draws with uni- and multidimensional antithetics
- Full support of factor variables and time-series operators
- Support of complex survey data
- Case-specific variables

cmset - declaring cm data

note: data have been **xtset**

-

イロト 不得 トイヨト イヨト

Panel-data mixed logit model using cmxtmixlogit (1)

. cmxtmixlogit	choice trcost, random(trti	me) casevars(age income) nolog
Mixed logit ch	noice model	Number of obs Number of cases	= 6,000 = 1,500
Panel variable	e: id	Number of panels	= 500
Time variable:	: t		$\begin{array}{ccc} n &= & 3\\ rg &= & 3.0\\ x &= & 3\end{array}$
Alternatives v	variable: alt		$\begin{array}{llllllllllllllllllllllllllllllllllll$
Integration se	1 1		
Integration po		Wald chi2(8)	
Log simulated	likelihood = -1005.9899	Prob > chi2	= 0.0000
choice	Coef. Std. Err.	z P> z [95% C	Conf. Interval]
(anin)			

<snip>

э

イロト イポト イヨト イヨト

Panel-data mixed logit model using cmxtmixlogit (2)

<snip>

choice	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
alt						
trcost	8388216	.0438587	-19.13	0.000	9247829	7528602
trtime	-1.508756	.2641554	-5.71	0.000	-2.026492	9910212
/Normal						
sd(trtime)	1.945596	.2594145			1.498161	2.526661
Car	(base alte	rnative)				

<snip>

э

イロト イポト イヨト イヨト

Panel-data mixed logit model using cmxtmixlogit (3)

<snip>

Car	(base alternative)							
Public								
age	.1538915	.0672638	2.29	0.022	.0220569	.2857261		
income	3815444	.0347459	-10.98	0.000	4496451	3134437		
_cons	5756547	.3515763	-1.64	0.102	-1.264732	.1134222		
Bicycle								
age	.20638	.0847655	2.43	0.015	.0402426	.3725174		
income	5225054	.0463235	-11.28	0.000	6132978	4317131		
_cons	-1.137393	.4461318	-2.55	0.011	-2.011795	2629909		
Walk								
age	.3097417	.1069941	2.89	0.004	.1000372	.5194463		
income	9016697	.0686042	-13.14	0.000	-1.036132	7672078		
_cons	4183279	.5607111	-0.75	0.456	-1.517302	.6806458		

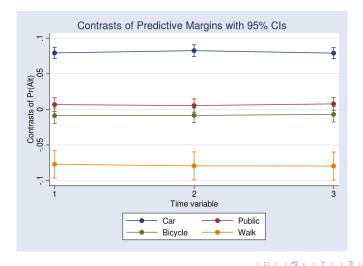
э

What would be the expected choice probabilities if every person in the population had a yearly income of \$30,000?

. margins, at	(income=3)						
Predictive man Model VCE	rgins : OIM			Number o	of obs	=	6,000
-	: Pr(alt), pro: : income	edict() =	3				
	Delta-method						
	Margin	Std. Err.	Z	P> z	[95%	Conf.	Interval]
_outcome							
Car	.3331611	.0196734	16.93	0.000	.294	1602	.3717203
Public	.2210964	.0184285	12.00	0.000	.1849	9772	.2572156
Bicycle	.1676081	.0181511	9.23	0.000	.1320)325	.2031837
Walk	.2781343	.0243791	11.41	0.000	.2303	3521	.3259166

< ロ > < 同 > < 回 > < 回 >

What would be the differences between an income of \$40,000 and \$30,000 over time?


. margins, at	(income=(3 4)) contr	ast(at(r) nov	wald) over(t)		
	predictive margins : OIM		Number of o	os =	6,000
	: Pr(alt), predict() : t				
1at	: 1.t income	-	3		
-	: 2.t income	-	3		
1at	: 3.t income	=	3		
	: 1.t income	=	4		
	: 2.t income	=	4		
2at	: 3.t income	=	4		
. <u></u>	Contrast	Delta-method Std. Err.	[95% Conf.	Interval]	
at@_out (2 vs 1) (2 vs 1) (2 vs 1) Pub (2 vs 1) Pub (2 vs 1) Pub (2 vs 1) Bicy (2 vs 1) Bicy (2 vs 1) Bicy (2 vs 1) W (2 vs 1) W (2 vs 1) W	Car#1 .0793997 Car#2 .0825786 Car#3 .0790618 lic#2 .0053644 lic#3 .007187 cle#1 .0084672 cle#2 .0084672 alk#1 .0771273	.0040536 .0042477 .0040101 .0049098 .00474 .0046076 .0055205 .0052449 .0054537 .0098791 .0100246	.0714548 .0742532 .0712022 002925 0039258 0013121 0197005 018747 017762 09658	.0873446 .090904 .0869214 .0163212 .0146547 .0167495 .0019396 .0018126 .0036161 0578546 059828	

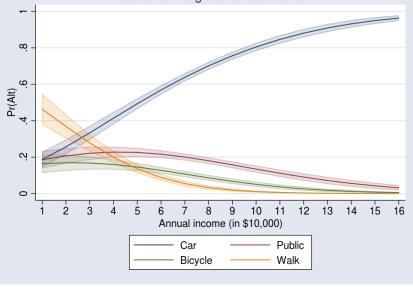
(StataCorp LLC)

We better plot these:

. marginsplot

Variables that uniquely identify margins: t _outcome

э


What are the averaged choice probabilities over the entire income range?

- . margins, at(income=(1(1)16))
 <output omitted>
- . marginsplot, recast(line) ciopts(recast(rarea) color(%20))
 Variables that uniquely identify margins: income _outcome

3

イロト 不得 トイヨト イヨト

Predictive Margins with 95% CIs

2

イロト イヨト イヨト イヨト

Marginal predictions with alternative-specific variables

- Direct and indirect effects
- If travel costs related to cars increased by 25%, how would that affect the probability of choosing a car?
- How would that increase affect the probability of choosing any of the other transportation modes?

margins specification

```
. margins, alternative(Car) ///
> at(trcost = generate(trcost)) ///
> at(trcost = generate(1.25*trcost)) ///
> subpop(if t==1)
```

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Applying the counterfactual

. webuse transport (Transportation choice data)

- . generate trcost_cf = trcost
- . qui replace trcost_cf = 1.25*trcost if alt == 1
- . format trcost_cf %3.2f
- . list id t alt choice trcost trcost_cf in 1/12, sepby(t) noobs

id	t	alt	choice	trcost	trcost_f
1	1	Car	1	4.14	5.17
1	1	Public	0	4.74	4.74
1	1	Bicycle	0	2.76	2.76
1	1	Walk	0	0.92	0.92
1	2	Car	1	8.00	10.00
1	2	Public	0	3.14	3.14
1	2	Bicycle	0	2.56	2.56
1	2	Walk	0	0.64	0.64
1	3	Car	1	1.76	2.20
1	3	Public	0	2.25	2.25
1	3	Bicycle	0	0.92	0.92
1	3	Walk	0	0.58	0.58

margins output

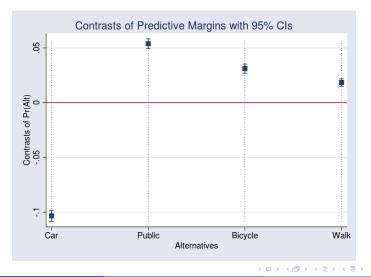
	Predictive margins Model VCE : OIM			Number o Subpop.		=	6,000 2,000
Expression Alternative	: Pr(alt), pred : Car	ict()					
1at	: trcost	= trcost					
2at	: trcost	= 1.25*trcost					
	De	lta-method					
	Margin	Std. Err.	Z	P> z	[95% (Conf.	Interval]
_outcome#_at							

_outcome#_at						
Car#1	.5439062	.0113994	47.71	0.000	.5215638	.5662486
Car#2	.4405694	.0101017	43.61	0.000	.4207704	.4603683
Public#1	.2010082	.0104382	19.26	0.000	.1805497	.2214668
Public#2	.2548516	.0117988	21.60	0.000	.2317264	.2779769
Bicycle#1	.1255662	.0095539	13.14	0.000	.1068409	.1442914
Bicycle#2	.1566796	.0110237	14.21	0.000	.1350736	.1782856
Walk#1	.1295194	.0101536	12.76	0.000	.1096187	.1494201
Walk#2	.1478994	.0110109	13.43	0.000	.1263185	.1694803

2

イロト イポト イヨト イヨト

Contrasts with alternative-specific variables


> at(trcos	st = generate st = generate t(at(r) nowal	e(trcost)) e(1.25*trcost)) d)				
Contrasts of predic Model VCE : OIM	ctive margins	5	Number of Subpop. n			6,000 2,000
Expression : Pr(a Alternative : Car	alt), predict	. ()				
1at : tree	ost	= trcost				
2at : troo	ost	= 1.25*trcost				
	Contrast	Delta-method Std. Err.	[95% Conf.	Interva	1]	
_at@_outcome (2 vs 1) Car (2 vs 1) Public (2 vs 1) Bicycle (2 vs 1) Walk	1033369 .0538434 .0311134 .01838	.0022563 .0021237	.0269511	.05826 .03527	556 757	

æ

イロト イポト イヨト イヨト

Plotting contrasts

. marginsplot, recast(dot) yline(0) plotopts(msymbol(square))
<output omitted>

(StataCorp LLC)

э

Average marginal effects: how does the probability of choosing a car change with car travel time?

. margins, dyc	dx(trtime)	outcome(Car)	alternativ	e(Car)		
Average margir Model VCE :		3		Number of obs	=	6,000
Expression : Alternative : Outcome : dy/dx w.r.t. :	Car Car	predict()				
		Delta-metho	od			

	Delta-method					
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
trtime _cons	1581844	.0269102	-5.88	0.000	2109275	1054414

< ロ > < 同 > < 回 > < 回 >

Average marginal effects: how does the probability of choosing public transportation change with travel time related to car use?

. margins, d	ydx(trtime) outcome(Public)	alternative(Car)		
Average marg. Model VCE		Number of obs	=	6,000
Expression Alternative Outcome dy/dx w.r.t.	: Public			

	Delta-method					
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
trtime						
_cons	.1055447	.0171745	6.15	0.000	.0718834	.139206

< ロ > < 同 > < 回 > < 回 >

Average direct & indirect marginal effects

. margins, dydx(trtime) outcome(Car)
Average marginal effects Number of obs = 6,000
Model VCE : OIM
Expression : Pr(alt), predict()
Outcome : Car
dy/dx w.r.t. : trtime

	Delta-method					
	dy/dx	Std. Err.	Z	P> z	[95% Conf.	Interval]
trtime						
alt						
Car	1581844	.0269102	-5.88	0.000	2109275	1054414
Public	.1055447	.0171745	6.15	0.000	.0718834	.139206
Bicycle	.0374872	.0073318	5.11	0.000	.0231171	.0518573
Walk	.0151526	.0043034	3.52	0.000	.006718	.0235871

-

イロン イ団 とく ヨン ・ ヨン …

Theoretical motivation of discrete choice models

- Random utility models
- $U_{ijt} = V_{ijt} + \epsilon_{ijt}$
 - $U_{ijt} \rightarrow \text{Utility of person } i \text{ for the } j \text{th alternative at time } t$
 - $V_{ijt} \rightarrow \text{Observed component of utility}$
 - $\epsilon_{ijt} \rightarrow$ Unobserved component of utility
- Decision makers choose alternative *j* if $U_{ijt} > U_{ikt}$ $\forall k \neq j$
- Specification of *V_{ijt}* and assumptions about *ϵ_{ijt}* constitute different discrete choice estimators (e.g., logit or probit)
- New estimation command in Stata 16: **cmxtmixlogit** for fitting panel-data mixed logit models

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The mixed logit model

- With mixed logit, for the random utility model U_{ijt} = V_{ijt} + ϵ_{ijt} we have:
 - $V_{ijt} = x_{ijt}\beta_i$
 - ϵ_{ijt} ~ iid type I extreme value
- The random coefficients β_i induce correlation across the alternatives
- We estimate the parameters of a specified distribution for β_i
- The mixed multinomial logit model uses random coefficients to model the correlation of choices across alternatives, thereby relaxing IIA

3

4 D N 4 B N 4 B N 4 B N

cmchoiceset - exploring choice sets

- . cmchoiceset
- Tabulation of choice-set possibilities

Choice set	Freq.	Percent	Cum.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,053 210 90 147	70.20 14.00 6.00 9.80	70.20 84.20 90.20 100.00
Total	1,500	100.00	

Total is number of cases.

э

イロト イポト イヨト イヨト

cmsample - reasons for sample exclusion

```
. preserve
```

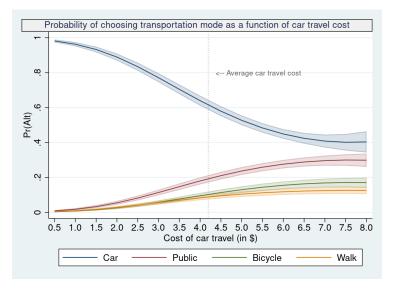
```
. webuse transport, clear
(Transportation choice data)
. replace trcost = . in 5
(1 real change made, 1 to missing)
. replace alt = . in 2
(1 real change made, 1 to missing)
. replace choice = 0 if t==3 & id==1
(1 real change made)
. replace income = 1 in 1
(1 real change made)
```

cmsample - reasons for sample exclusion

note: data have been **xtset**

cmsample - reasons for sample exclusion

. cmsample trcost trtime, choice(choice) casevars(age income)


Reason for exclusion	Freq.	Percent	Cum.
observations included caseid variable missing varlist missing choice variable all 0 casevars not constant within case*	5,988 1 4 3	99.80 0.02 0.07 0.07 0.05	99.80 99.82 99.88 99.95 100.00
Total	6,000	100.00	

* indicates an error

. restore

э

Thank You!

æ

・ロト ・ 四ト ・ ヨト ・ ヨト