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Bayesian vs classical statistics

Introduction

The main concept.
In classical statistical analysis, we assume fixed unknown
parameters, a dataset generated with a distribution based on
them, and we use the data to construct an estimate of those
underlying parameters.

In Bayesian statistic, parameters are considered random,
according to a distribution, and our aim is to use previous
knowledge of this distribution to estimate an updated version of
it conditional on the observed data.
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Stata commands

Stata commands for Bayesian estimation
bayes: prefix provides a simple way to fit bayesian
regression models. For example:
. bayes: regress y x1 x2
It supports a wide range of commands including
regressions for continous, binary, ordinal, categorical,
count or fractional outcomes, survival analysis, sample
selection, panel data, multilevel, time series, and dynamic
stochastic general equilibrium models. Type help bayes
estimation to see the complete list.
bayesmh allows us to fit customized Bayesian regressions
by choosing among a set of available prior and likelihood
functions, or with evaluators provided by the user. It can be
used for linear and/or non-linear, one-level or multilevel,
and one or multiple-equations models.
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Stata commands

Stata’s Bayesian suite consists of the following commands

Command Description
Estimation
bayes: Bayesian regression models using the bayes prefix
bayesmh General Bayesian models using MH
bayesmh evaluators User-defined Bayesian models using MH

Postestimation
bayesgraph Graphical convergence diagnostics

bayesstats ess Effective sample sizes and more
bayesstats grubin Gelman–Rubin convergence diagnostics
bayesstats summary Summary statistics

bayesstats ic Information criteria and Bayes factors
bayestest model Model posterior probabilities
bayestest interval Interval hypothesis testing

bayespredict Bayesian predictions (available only after bayesmh)
bayesstats ppvalues Bayesian predictive p-values (available only after bayesmh)
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Estimation

Bayes’ Theorem: p(θ|y) = f (y |θ)π(θ)
m(y)

Assume that we know π(θ) (“prior”)
We have already assumed that we know f (Y |θ) = L(y ; θ)
We observe the data, Y

Bayes’ theorem tell us that we can obtain the “posterior”
distribution of the parameter, p(θ|y)

p(θ|y) ∝ L(y ; θ)× π(θ)

In theory, we don’t need the constant because densities
integrate to 1. In practice, we won’t need the constant to
simulate a sample for p(θ|y).
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Example 1: Weight of sugar packets

Example: weight of sugar packets.

Let’s assume we have a random sample y1, . . . y70 ∼ N(µ, σ2)
and we are interested in estimating the mean, µ. This can be
estimated as the constant of a regression without covariates.
. use sugar, clear
(Weights of Domino sugar packets, Triola, Elementary Statistics.)

. regress weight , noheader

weight Coefficient Std. err. t P>|t| [95% conf. interval]

_cons 3.586043 .0088481 405.29 0.000 3.568391 3.603694
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Estimation

Example 1: Weight of sugar packets

The Bayesian version would be:

. bayes, rseed(3876): regress weight

Bayesian estimation is performed via simulations; we set a
seed for reproducibility.
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Estimation

Example 1: Weight of sugar packets

Model summary:
. bayes, rseed(3876): regress weight ,vsquish notable

Burn-in ...
Simulation ...

Model summary

Likelihood:
weight ~ regress({weight:_cons},{sigma2})

Priors:
{weight:_cons} ~ normal(0,10000)

{sigma2} ~ igamma(.01,.01)

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 70
Acceptance rate = .4382
Efficiency: min = .1988

avg = .2231
Log marginal-likelihood = 66.950733 max = .2475

Why are we using this prior by default?
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Example 1: Weight of sugar packets

The less “informative” the prior, the more we rely on the data.
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Example 1: Weight of sugar packets

The table
. bayes, rseed(3876) : regress weight ,vsquish noheader

Burn-in ...
Simulation ...

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

weight
_cons 3.586146 .009181 .000185 3.586458 3.567973 3.604502

sigma2 .0059266 .0010415 .000023 .0057973 .0042246 .0083358

Mean, median and std. dev. are estimates of the mean, the
median and the standard deviation of the posterior
distribution.
A 95% credibility interval is interpreted as an interval such
us the probability of the parameter being there is 0.95.
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Implementation: Monte Carlo Markov Chains

How is this density estimated? Because there is, in most cases,
not a closed form for the posterior distribution, this is estimated
via simulation (i.e., generating a large random sample of this
distribution rather than having a functional form).
We use MCMC, i.e. create an ergodic Markov Chain whose
limit (stationary) distribution is theoretically proven to be the
posterior we are looking for.

Stata implements two methods: Gibbs sampling and
Metropolis-Hastings algorithm.
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Estimation

Implementation: Monte Carlo Markov Chains

Metropolis-Hasting algorithm.
We choose a “proposal” distribution q(.) (unrelated with our
prior or our posterior, we actually use a Gaussian distribution)
and start with θ0 in the domain of the posterior p. Then, for
each iteration t :

Generate a proposal state θ∗ ∼ q(.|θ)
Compute the acceptance probability

r(θ∗|θt−1) =
p(θ∗|y)

p(θt−1|y)

We accept θ∗ with probability r(θ∗|θt−1) (or with probability
1 if r(θ∗|θt−1) > 1 ).
Accepting means θt = θ∗; otherwise θt = θt−1
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The concept of convergence

The concept of convergence

Converge is achieved if the simulated values reach stationarity.
Trace plots show the trajectory of those values.
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Estimation

The concept of convergence

Autocorrelation plots: we expect the correlation to be negligible
after a few lags. High autocorrelations imply low efficiency, so
reaching stationarity will take more iterations than for more
efficient problems.
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Example 2: Bike rentals vs weather

. use bikes, clear
(Bike sharing dataset, Hadi Fanaee-T)

. describe

Contains data from bikes.dta
Observations: 731 Bike sharing dataset, H. Fanaee-T

Variables: 4 4 Sep 2022 16:08

Variable Storage Display Value
name type format label Variable label

precip byte %15.0g preclab Precipitation
ntemp float %9.0g Normalized Temperature (Celsius)
count100 float %9.0g Hundreds of bikes rented
temp float %9.0g Temperature (Celsius)

We fit a Bayesian linear model to the rental counts (×0.01) vs
temperature and indicators of levels of precipitations (we set a
seed for reproducibility).

. bayes, rseed(1357): regress count100 temp i.precip
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Estimation

Example 2: Bike rentals vs weather
Burn-in ...
Simulation ...

Model summary

Likelihood:
count100 ~ regress(xb_count100,{sigma2})

Priors:
{count100:temp i.precip _cons} ~ normal(0,10000) (1)

{sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_count100.

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 731
Acceptance rate = .3475
Efficiency: min = .051

avg = .09622
Log marginal-likelihood = -3008.9227 max = .2236

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count100
temp 1.347828 .0626141 .002614 1.346385 1.233055 1.469331

precip
Mist -5.802201 1.160169 .047753 -5.785858 -8.105655 -3.573989

Light rain/snow -25.8168 3.281888 .109326 -25.84465 -32.31738 -19.29535
_cons 27.13917 1.198321 .053062 27.12183 24.85218 29.45991

sigma2 206.305 10.80463 .228511 206.0586 185.9393 228.7717

Note: Default priors are used for model parameters.
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Estimation

Example 2: Bike rentals vs weather

The header is:
. bayes, rseed(1357) nomodelsummary:regress count100 temp i.precip, vsquish

Burn-in ...
Simulation ...

Bayesian linear regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 731
Acceptance rate = .3758
Efficiency: min = .02825

avg = .07818
Log marginal-likelihood = -3013.5765 max = .2101
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Example 2: Bike rentals vs weather

Marginal log-likelihood m(y) = p(Y = y |(θ ∼ π))
=

∫
(p(y |θ, π)p(θ|π)dθ. (i.e., integrate p(y |θ) over the

distribution π of θ), evaluated at the observed data y .
MCMC iterations - total number of iterations
Burn-in - discarded iteration to eliminate influence of the
initial values
MCMC sample size - iterations used for estimation
Acceptance rate - fraction of proposal values accepted.
We expected it to be neither too small nor too large -
optimal value for multivariate posteriors and proposal:
0.234; for univariate posteriors:0.45
Efficiency - Indicator of the mixing quality of the chain
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Example 2: Bike rentals vs weather

The table:

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count100
temp .0135365 .0006187 .000034 .0135331 .0122963 .01472

precip
Mist -5.747835 1.143186 .042002 -5.774701 -7.882743 -3.509883

Light rain/snow -25.65604 3.173647 .149708 -25.59269 -31.96759 -19.44203
_cons 27.00479 1.169644 .069591 27.02894 24.73269 29.2549

sigma2 206.1646 10.93242 .238485 205.9812 185.4657 228.1383

Note: Default priors are used for model parameters.
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Example 2: Bike rentals vs weather

Mean (θ̂), median and standard deviation (ŝ) are the mean,
the median and the standard deviation of the posterior
sample. Estimate respectively the mean (E(θt)), the
median and the standard deviation

√
Var(θt) of the

posterior distribution.
A 95% credibility interval - an interval such us the
probability of the parameter being there is 0.95.
MCSE - Monte Carlo standard error - an indicator of the
precision of the sample posterior mean ("Mean" in the
table). MCSE(θ̂)=ŝ/

√
ESS
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Convergence and Diagnostics

Convergence is attained when the chain achieves stationarity
(and therefore the sample is drawn from the posterior
distribution).

Inspecting mixing and time trends within the chains of
individual parameters

bayesgraph diagnostics, trace, ac,
histogram, kdensity
bayesgraph csum
bayesstats ess

Inspecting multiple chains for each parameter
bayesgraph diagnostics, trace, ac,
histogram, kdensity
bayesstats grubin
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Convergence and Diagnostics

Diagnostics need to be performed for each parameter. In this
example, we will do it only for the coefficient for variable temp.
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Visual assessment of convergence: bayesgraph diagnostics.
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Efficiency summaries: bayesstats ess

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000
Efficiency: min = .02825

avg = .07818
max = .2101

ESS Corr. time Efficiency

count100
temp 334.69 29.88 0.0335

precip
Mist 740.79 13.50 0.0741

Light rain/snow 449.39 22.25 0.0449
_cons 282.49 35.40 0.0282

sigma2 2101.42 4.76 0.2101
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Convergence and Diagnostics

ESS -Effective sample size - Number of i.i.d observations
that would contain the same information as in our MCMC
sample.
Corr time - T/ESS - Number of iterations where
autocorrelation becomes negligible (T=MCMC sample
size).
Efficiency - ESS/T - Indicator of the the mixing quality of
the MCMC procedure. The higher the better.

Efficiencies over 10% are considered good for MH.
Efficiencies under 1% would be a source of concern.

See Methods and Formulas section in manual entry for
[BAYES] bayesstats ess for details.
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Convergence and Diagnostics

Multiple chains

Simulating multiple chains allows us to further assess
convergence; in addition, it improves precision (lowers MCMC
errors).

Reported results are based on all the chains
Literature recommends 4 chains
It allows us to compare chains with different starting values
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Convergence and Diagnostics

We fit our regression model with three chains.
. bayes, rseed(1357) nchains(3): regress count100 temp i.precip

The output header:

Chain 1
Burn-in ...
Simulation ...
(output omitted )

Model summary

(output omitted )

(1) Parameters are elements of the linear form xb_count100.

Bayesian linear regression Number of chains = 3
Random-walk Metropolis-Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 731
Avg acceptance rate = .3413
Avg efficiency: min = .04364

avg = .09016
max = .2174

Avg log marginal-likelihood = -3008.9373 Max Gelman-Rubin Rc = 1.004
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Convergence and Diagnostics

Summary statistics (acceptance rate, efficiency) are
averaged over all the chains (use (chainsdetail) to see
them separately for each chain)
With multiple chains, the maximum Gelman-Rubin
convergence statistic (Rc) is reported.

It is based on the between-chains variance B and the
within-chains variance W (See Methods and Formulas for
bayesstats grubin)
It is required that Rc be less than 1.1 to declare
convergence.
In any case, it important to also visually assess
convergence.
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Convergence and Diagnostics

The output table:
Bayesian linear regression Number of chains = 3
Random-walk Metropolis-Hastings sampling Per MCMC chain:

Iterations = 12,500
Burn-in = 2,500
Sample size = 10,000

Number of obs = 731
Avg acceptance rate = .3413
Avg efficiency: min = .04364

avg = .09016
max = .2174

Avg log marginal-likelihood = -3008.9373 Max Gelman-Rubin Rc = 1.004

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count100
temp 1.353114 .0630514 .001667 1.353777 1.230509 1.475987

precip
Mist -5.779365 1.152578 .025497 -5.753522 -8.116835 -3.535928

Light rai.. -25.82078 3.229853 .068592 -25.84465 -32.03808 -19.4659
_cons 27.04732 1.231426 .034035 27.06031 24.71367 29.45991

sigma2 206.1531 10.92119 .13522 205.834 185.7931 228.9021

Note: Default priors are used for model parameters.
Note: Default initial values are used for multiple chains.
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Convergence and Diagnostics

Graphic diagnostics with multiple chains

bayesgraph diagnostics allows us to compare the behavior of
the different chains.
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Convergence and Diagnostics

It looks like there is room for improvement in the density plot.
bayesgraph kdensity count100:temp, show(both)
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Convergence and Diagnostics

We increase the burn-in period from 25000 to 10000:

bayes, rseed(1357) nchains(3) burnin(10000): regress count100 temp
i.precip

Increasing the burn-in period improved our graphs.
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Performing tests on the parameters

bayestest interval allows us to test the null hypothesis
that a parameter is in a certain interval

. bayestest interval {count100:temp}, lower(1.3) upper(.)

Interval tests MCMC sample size = 10,000

prob1 : {count100:temp} > 1.3

Mean Std. dev. MCSE

prob1 .7757 0.41714 .0156717

The (posterior mean estimate of the) probability of the
coefficient for temp being larger than 3 is 0.78 (It is estimated
as the proportion of simulated values for this coefficient in our
chain that are larger than 3)
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Comparing models

We can use bayesstats ic or bayestest model to
compare different models. The only requirement is that they are
fitted on the same data.
. bayes, rseed(1357) saving(reg, replace): regress count temp i.precip

(output omitted )
. est store reg

. bayes, rseed(1357) saving(poi, replace): poisson count temp i.precip
(output omitted )

. bayesstats ic reg poi

Bayesian information criteria

DIC log(ML) log(BF)

reg 5973.529 -3008.923 .
poi 7871.914 -3970.533 -961.6104

Note: Marginal likelihood (ML) is computed
using Laplace-Metropolis approximation.

The smaller the DIC and larger the log-likelihood, the better.
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Comparing models

bayestest model allows us to compare posterior
probabilities for different models.

. bayestest model reg poi

Bayesian model tests

log(ML) P(M) P(M|y)

reg -3.01e+03 0.5000 1.0000
poi -3.97e+03 0.5000 0.0000

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

In this case, P(M) is 0.5 for the two cases, because we are
assuming that both models are equally probable a priori. This
can be modified with prior() option. Under this assumption,
the Gaussian model (bayes:regress) and the Poisson model
have respectively probabilities 1 and 0 given the data.
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Bayesian predictions

After fitting the model with bayesmh, we can simulate
replications of the dependent variable.

This allows us to assess the model, by comparing the
simulated distribution of the dependent variable with the
observed.
Computing predictions for observations with missing
values on the dependent variable allows us to forecast the
response, given our estimated model and the covariate
patterns.
The mechanism is the same in the two cases, so we will
start by showing the behavior of bayespredict in
general, and then we will apply it to the two situations.

bayespredict is also supported by panel data models like
bayes:xtreg.
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Bayesian predictions: how it is done

Bayesian predictions: bayespredict
We started with a prior distribution, π(θ), and updated that prior
with the information in our dataset, y , obtaining the posterior
distribution, p(θ).
Now we can consider that the data we have already observed
are fixed, and the actual distribution of θ is our posterior p.
Under this assumption, we can predict the distribution of future
outcomes, ynew .
Assuming that θ ∼ p, and we can use this (posterior)
distribution and the likelihood (f (y |θ)) to compute the predictive
posterior distribution for a new value ynew of Y :

p(ynew ) =

∫
f (y |θ)p(θ)dθ.

We can see it as:

p(ynew |yobs) =

∫
f (y |θ)p(θ|yobs)dθ.
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Bayesian predictions: how it is done

To obtain predictions, first we fit our model with bayesmh and
save the chains in a new file.

. bayesmh count100 temp i.precip, likelihood(normal({sigma2})) ///
prior({count100:}, normal(0, 10000)) ///
prior({sigma2}, igamma(.01, .01)) rseed(2476) ///
saving(bikespost, replace) vsquish

We saved the simulated values for the posterior distribution of
the parameters in a new file (bikepost). This file will be
needed to perform predictions.



Introduction to Bayesian Analysis in Stata

Bayesian replications and forecasts

Bayesian predictions: how it is done

(output omitted )
Bayesian normal regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 731
Acceptance rate = .1968
Efficiency: min = .02171

avg = .03907
Log marginal-likelihood = -3009.1647 max = .05898

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

count100
temp 1.357601 .0627935 .002586 1.358048 1.237237 1.480288

precip
Mist -5.637735 1.121772 .058148 -5.604706 -7.831796 -3.528415

Light rain/snow -25.61719 3.111537 .156311 -25.54275 -31.87835 -19.8676
_cons 26.90482 1.178267 .060584 26.87755 24.60462 29.20782

sigma2 204.306 10.741 .72906 203.9492 184.8968 226.2071

file bikespost.dta saved.

. est store bmh_bikes
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Bayesian replications and forecasts

Bayesian predictions: how it is done

bayespredict creates simulated outcomes for each
observation.

. bayespredict {_ysim}, rseed(1357) saving(ypred0, replace)

Computing predictions ...

file ypred0.dta saved.
file ypred0.ster saved.
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Bayesian replications and forecasts

Bayesian predictions: how it is done

The dataset created by bayespredict contains one variable
per observation in the original dataset, and one observation per
replication in the estimation chain. (also, the posterior means
(_µ1,_µ2, . . .) based on the chains created in the estimation
and the data).
. use ypred0, clear

. list _ysim1_1-_ysim1_5 _fr in 1/10, noobs

_ysim1_1 _ysim1_2 _ysim1_3 _ysim1_4 _ysim1_5 _frequ~y

34.949 35.325 20.281 21.341 7.3716 1
36.916 67.079 34.021 24.457 21.03 1
34.022 48.495 11.672 20.878 50.914 1
56.217 13.915 31.911 54.263 11.735 1
13.649 41.505 39.603 56.341 29.562 1

52.75 34.509 25.022 39.288 25.493 1
16.08 25.435 63.214 8.9858 56.277 1
47.346 47.817 49.882 31.385 42.355 1
49.107 52.311 20.986 33.556 32.482 1
16.692 16.116 34.526 36.091 51.351 1
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Assessing model fit

Using replications to visually assess the model fit

We can use bayesrep to check how well our assumed model
captures the distribution of the dependent variable. We create 5
replicates of the dependent variable count100, and compare
the distribution of those replications with the distribution of
count100.
. use bikes, clear
(Bike sharing dataset, Hadi Fanaee-T)

. estimates restore bmh_bikes
(results bmh_bikes are active now)

. bayesreps c100rep*, nreps(5) rseed(9451)

Computing predictions ...

Instead of creating a new file, bayesrep adds the replications
to our dataset.
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Bayesian replications and forecasts

Assessing model fit

We draw histograms to compare distribution of the observed
dependent variable with the replications.
. quietly histogram count100, name(hist0, replace) nodraw color(red)

. local histlist hist0

. forvalues i = 1/5 {
2. quietly histogram c100rep`i´, name(hist`i´, replace) nodraw color(blue)
3. local histlist `histlist´ hist`i´
4. }

. graph combine `histlist´
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Bayesian replications and forecasts

Assessing model fit

The distribution of count100 looks different from those of the
replications. We might consider a different specification, either
changing the covariate patter or the assumed distribution for
the residuals.
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Bayesian replications and forecasts

Posterior predictive checks

-bayespredict- allows us to compute a statistic (such as the
mean) for the actual sample and the replicated samples, and
compare them.

. bayespredict (mean:@mean({_ysim})) (min:@min({_ysim})) ///
> (max:@max({_ysim})), saving(count100_stats, replace) rseed(1359)

Computing predictions ...

file count100_stats.dta saved.
file count100_stats.ster saved.

.

. bayesstats ppvalues {mean} {min} {max} using count100_stats

Posterior predictive summary MCMC sample size = 10,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

mean 45.00876 .740575 45.04349 .4797
min -16.38561 7.217064 .22 .0005
max 102.0574 6.034314 87.14 .9993

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.
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Bayesian replications and forecasts

Posterior predictive checks

Out of sample predictions: bayespredict
Now, let’s assume that the weather forecast for tomorrow is no
precipitacions (precip=1) and a temperature of 20°Celsius
(temp=20); given this weather, how do we predict the number
of bikes to be rented?
. use bikes, clear
(Bike sharing dataset, Hadi Fanaee-T)

. estimates restore bmh_bikes
(results bmh_bikes are active now)

. local N1 = _N + 1

. set obs `N1´
Number of observations (_N) was 731, now 732.

. replace precip = 1 in `N1´
(1 real change made)

. replace temp = 20 in `N1´
(1 real change made)

. global N1 = `N1´

. * _ysim represents the outcome

. bayespredict {_ysim} if _n == `N1´, rseed(1357) saving(ypred, replace)

Computing predictions ...

file ypred.dta saved.
file ypred.ster saved.
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Bayesian replications and forecasts

Posterior predictive checks

We can use bayesstats summary to display posterior
summaries for the prediction.
. bayesstats summary _ysim_$N1 using ypred

Posterior summary statistics MCMC sample size = 10,000

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

_ysim1_732 54.20513 14.37852 .143785 54.23792 26.1864 82.50352

There is 95% probability of renting between 2618 and 8250
bikes.
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Bayesian replications and forecasts

Posterior predictive checks

Final remarks:
Bayesian analysis can be used to answer questions about
unknown parameters in terms of probability statements,
using prior information on such probability.
Stata provides a suite of commands for Bayesian
estimation, diagnostics, visualization and prediction. Today
we have just described a few of them. Please see the
[Bayes] manual for a complete reference.
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