Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Introduction to Bayesian Analysis in Stata

Gustavo Sánchez

StataCorp LLC

January 30, 2019 College Station, Texas

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= nar

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Outline

1 Bayesian analysis: Basic concepts

- The general idea
- The method

2 The Stata tools

- The general command bayesmh
- The bayes prefix
- Postestimation commands

3 A few examples

- Probit regression
- Panel data random-effects Poisson model

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Change-point model

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

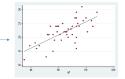
bayes: - bayesn Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

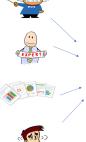

Summary

References

The general idea

Frequentist

イロト 不得 トイヨト イヨト


э.

General idea

MCMC

bavesgraph bayestestmodel

The general idea

I don't know.

Bayesian

In_wage	webon	hours.	when work	Earth Far	Va. Get	Q7.8.2M	112_04
1.453214		20	27	. 5 6 3 3 3 3 3	NACK	12	1.04333
1.773002		10	24	-1666647	blank.	12	2.77564
1,778681	0	32	52	1.5	DOA-OR	12	3,775643
2.434132	i	42	97	1.116647	black	12	7.16035
2.534534	1	15	10	3.3166.67	2014/28	1.7	1.1111

イロト 不得 トイヨト イヨト ъ

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Frequentist Analysis

- Estimates unknown fixed parameters.
- The data come from a random sample (hypothetical repeatable).
- Uses data to estimate unknown fixed parameters.
- Data expected to satisfy the assumptions for the specified model.

"Conclusions are based on the distribution of statistics derived from random samples, assuming unknown but fixed parameters." **Bayesian Analysis**

Bayesian Analysis vs Frequentist Analysis

- Probability distributions for unknown random parameters.
- The data are fixed.
- Combines data with prior beliefs to get updated probability distributions for the parameters.
- Posterior distribution is used to make explicit probabilistic statements.

"Bayesian analysis answers questions based on the distribution of parameters conditional on the observed sample."

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Stata's convenient syntax: bayes:

```
regress y x1 x2 x3
```

bayes: regress y x1 x2 x3

logit y x1 x2 x3

bayes: logit y x1 x2 x3

mixed y x1 x2 x3 || region: bayes: mixed y x1 x2 x3 || region:

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへ⊙

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

f (*y*; θ): probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; then we can write the fundamental equation for Bayesian analysis:

 $\boldsymbol{p}\left(heta | \boldsymbol{y}
ight) \propto \boldsymbol{L}\left(heta ; \boldsymbol{y}
ight) \pi \left(heta
ight)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

・ コット (雪) (小田) (コット 日)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; then we can write the fundamental equation for Bayesian analysis:

 $\boldsymbol{p}\left(heta | \boldsymbol{y}
ight) \propto \boldsymbol{L}\left(heta ; \boldsymbol{y}
ight) \pi \left(heta
ight)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

• Inverse law of probability (Bayes' Theorem):

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{f(y;\theta)\pi(\theta)}{f(y)}$$

Where:

 $f(y; \theta)$: probability density function for y given θ . $\pi(\theta)$: prior distribution for θ

 The marginal distribution of y, f(y), does not depend on θ; then we can write the fundamental equation for Bayesian analysis:

 $p(\theta|\mathbf{y}) \propto L(\theta; \mathbf{y}) \pi(\theta)$

Where:

 $L(\theta; y)$: likelihood function of the parameters given the data.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

- Let's assume that both the data and the prior beliefs are normally distributed:
 - The data: $y \sim N(\theta, \sigma_d^2)$

• The prior:
$$\theta \sim N\left(\mu_p, \sigma_p^2\right)$$

- Homework...: Doing the algebra with the fundamental equation, we find that the posterior distribution would be normal with (see for example Cameron & Trivedi 2005):
 - The posterior: $heta|m{y}\simm{N}\left(\mu,\sigma^2
 ight)$

Where:

$$\mu = \sigma^2 \left(N \bar{y} / \sigma_d^2 + \mu_p / \sigma_p^2 \right)$$

$$\sigma^2 = \left(N / \sigma_d^2 + 1 / \sigma_p^2 \right)^{-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General idea

The method

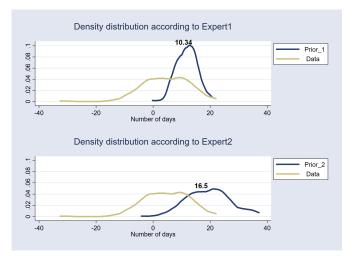
Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel


2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example (Prior distributions)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

General idea

The method

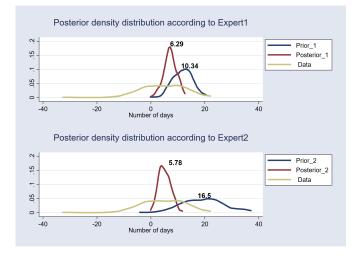
Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel


2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example (Posterior distributions)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

- The previous example has a closed form solution.
- What about the cases with non-closed solutions, or more complex distributions?
 - Integration is performed via simulation.
 - We need to use intensive computational simulation tools to find the posterior distribution in most cases.
 - Markov chain Monte Carlo (MCMC) methods are the current standard in most software. Stata implements two alternatives:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Metropolis–Hastings (MH) algorithm
- · Gibbs sampling

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The method

- Links for Bayesian analysis and MCMC on our YouTube channel:
 - Introduction to Bayesian statistics, part 1: The basic concepts

https://www.youtube.com/watch?v=0F0QoMCSKJ4&feature=youtu.be

• Introduction to Bayesian statistics, part 2: MCMC and the Metropolis–Hastings algorithm.

https://www.youtube.com/watch?v=OTO1DygELpY&feature=youtu.be

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

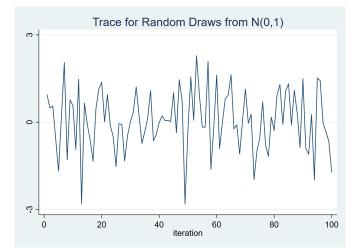
Stata tool

bayes: - bayesn Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval


3- Changepoint model Gibbs sampling

Summary

References

The method

Monte Carlo Simulation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

General idea

The method

Fundamenta equation MCMC

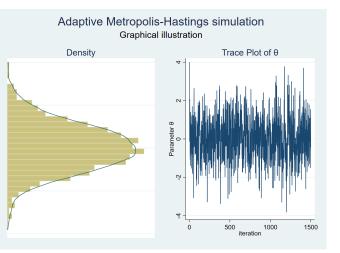
Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interva


3- Changepoint model Gibbs sampling

Summary

References

The method

- Metropolis–Hastings simulation
 - The trace plot illustrates the sequence of accepted proposal states.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

The method

Outline

General idea

The method

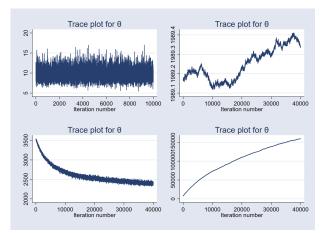
Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel


2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

• We expect to obtain a stationary sequence when convergence is achieved.

Outline

General idea

The method

Fundamental equation MCMC

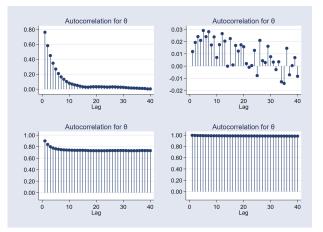
Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval


3- Changepoint model Gibbs sampling

Summary

References

The method

- An efficient MCMC should have small autocorrelation.
- We expect autocorrelation to become negligible after a few lags.

(日)

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The Stata tools for Bayesian regression

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

The Stata tools: bayes: bayesmh

- bayes: Convenient syntax for Bayesian regressions
 - Estimation command defines the likelihood for the model.
 - Default priors are assumed to be "weakly informative"'.
 - Other model specifications are set by default depending on the model defined by the estimation command.
 - Alternative specifications may need to be evaluated.
- bayesmh General purpose command for Bayesian analysis
 - You need to specify all the components for the Bayesian regression: likelihood, priors, hyperpriors, blocks, etc.

Outline

General idea

The method

- Fundamental equation MCMC
- Stata tools
- bayes: bayesmh Postestimation
- Examples
- 1 Probit regression bayesstats ess bayesgraph bayestestmodel
- 2- Randomeffects Poisson bayesgraph bayestest interval
- 3- Changepoint model Gibbs sampling
- Summary
- References

The Stata tools: Postestimation commands

- bayesstats ess
- bayesgraph
- bayesstats ic
- bayestest model
- bayestest interval
- bayesstats summary
- grubin (user-written command)

https://blog.stata.com/2016/05/26/gelman-rubin-convergencediagnostic-using-multiple-chains/

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: Probit regression

- Let's look at our first example:
 - We have stats on scores, strength of schedule, and bowl game result (win/loss) for the Texas A&M University football team.
 - We fit a probit model for the probability to win the bowl game.
 - Let's consider a couple of model specifications for a binary dependent variable, whose values depend on a linear latent variable:

 $\begin{array}{lll} \textit{win_bowl}^* & = & \alpha_1 + \beta_{\textit{sc_dif}} * \textit{score_dif} + \beta_{\textit{sos}} * \textit{sos} + \epsilon_1 \\ \textit{win_bowl}^* & = & \alpha_2 + \beta_{\textit{scored}} * \textit{score_avg} + \beta_{\textit{against}} * \textit{against_avg} + \epsilon_2 \end{array}$

$$\textit{win_bowl} = \left\{ \begin{array}{ll} 1 & \text{if } \textit{win_bowl}^* > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

Where:

win_bowl	: result in the bowl game (winloss).
score_dif	: Average score difference during the regular season.
SOS	: Strength of schedule.
score_avg	: Average points scored during the regular season.
against_avg	: Average points against during the regular season.

(ロ) (同) (三) (三) (三) (○) (○)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmode


2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: Probit regression

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools bayes: - bayesmh

Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: Probit regression

• Probit regression with the bayes: prefix

bayes, rseed(123): probit win_bowl score_diff sos

• Equivalent model with bayesmh

 bayesmh win_bowl score_diff sos, rseed(123)
 ///

 likelihood(probit)
 ///

 prior({win_bowl:score_diff}, normal(0,10000))
 ///

 prior({win_bowl:sos}, normal(0,10000))
 ///

 prior({win_bowl:sos}, normal(0,10000))
 ///

Example 1: Menu for Bayesian regression

Stata/MP 15.1 - C\Users\gas\Documents\aggiecon\2018\data talk.dta

Outline

General idea

	m		

Fundamental equation MCMC

Stata tools bayes: - bayesm Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interva

3- Changepoint model Gibbs sampling

Summary

References

🖹 🖩 🛢 🖻 🖷 🖬 👘	A					
공 Command	Count outcomes					
Rev. Command	Fractional outcomes	→ [
	Generalized linear models	> _				
	Time series	•				
	Multivariate time series					
	Spatial autoregressive models					
	Longitudinal/panel data	•				
	Multilevel mixed-effects models					
	Survival analysis	•				
	Epidemiology and related					
	Endogenous covariates	•				
	Sample-selection models					
	Treatment effects					
	SEM (structural equation modeling)					
	LCA (latent class analysis)				Continuous outcomes	
	FMM (finite mixture models)				Binary outcomes	
	IRT (item response theory)				Ordinal outcomes	
	Survey data analysis				Categorical outcomes	
	Multiple imputation				Count outcomes	
	Nonparametric analysis	> [Regression models		Fractional outcomes	
	Multivariate analysis	•	General estimation and regression		Generalized linear model (GLM)	
	Exact statistics	•	Graphical summaries		Survival models	
	Resampling	•	Effective sample sizes		Selection models	
	Power and sample size		Summary statistics		Censored and truncated models	
	Bayesian analysis	•	Information criteria		Zero-inflation count models	
	Postestimation		Hypothesis testing using model posterior probabilities		Multilevel models	

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesml Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: Menu for Bayesian regression

Command			
Bayesian Regression Models Selector	×	bayes: probit - Bayesian probit regression -	×
- Bayesian regression models:		Model if/in Weights Priors Simulation Blocking Initialization Adaptation Reporting	Ac 1
Continuous automis Bilany autocimes Bi	 Launch Cancel 	Dependent variable: winkbow winkow constant term Optors: Offset variable: Resp collinear variables (arely used)	
		Ø Ø 🗅 OK Cancel :	Submit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1- Probit regression bayesstats ess

bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interval

- 3- Changepoint model Gibbs sampling
- Summary
- References

Example 1: Menu for Bayesian regression

- Make the following sequence of selection from the main menu:
 - Statistics > Bayesian analysis > Regression models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2 Select "Binary outcomes"
- 3 Select "Probit regression"
- 4 Click on "Launch"
- Specify the dependent variable (win_bowl) and the explanatory variables (score_dif sos)
- 6 Click on "OK"

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Postestimation

Examples

1- Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayes: prefix

. bayes, rseed(123):probit win_bowl score_dif sos

Burn-in ... Simulation ... Model summary

Likelihood:

win_bowl ~ probit(xb_win_bowl)

Prior:

{win_bowl:score_dif sos _cons} ~ normal(0,10000)

(1) Parameters are elements of the linear form xb_win_bowl.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1- Probit regression bayesstats ess

bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayes: prefix

. bayes, rseed(123):probit win_bowl score_dif sos

Bayesian probit regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	14
	Acceptance rate =	.2522
	Efficiency: min =	.06504
	avg =	.07364
Log marginal likelihood = -25.891444	max =	.07973

			Equal-	tailed		
win_bowl	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
score_dif	.1722847	.1011987	.003668	.1633205	.0064462	.4011969
sos	.0797042	.2138371	.007573	.0882321	3346481	.4871838
_cons	-2.08378	1.128949	.044266	-2.033869	-4.501485	.0358983

Note: Default priors are used for model parameters.

We expect an acceptance rate that is neither too small nor too large.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression

bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayesstats ess

- Let's evaluate the effective sample size.
 - . bayesstats ess

Efficiency	summaries	MCMC sa	ample	size	=	10,000
------------	-----------	---------	-------	------	---	--------

winbowl	ESS	Corr. time	Efficiency
score_dif	761.28	13.14	0.0761
sos	797.34	12.54	0.0797
_cons	650.45	15.37	0.0650

- We expect to have low autocorrelation. Correlation time provides an estimate for the lag after which autocorrelation in an MCMC sample is small.
- Efficiencies over 10% are considered good for MH. Efficiencies under 1% would be a source of concern.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

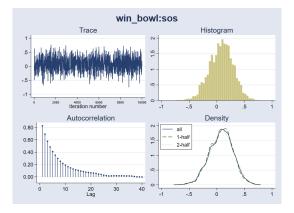
Examples

1 - Probit regression bayesstats ess

bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 1: bayesgraph

• We can use <code>bayesgraph</code> to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {sos}

• The trace indicates that convergence was achieved.

(日)

• Correlation dies out after around 10 periods.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

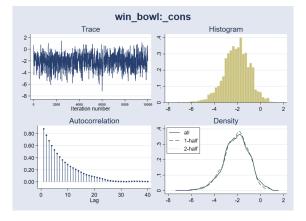
Examples

1 - Probit regression bayesstats ess

bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 1: bayesgraph

• We can use <code>bayesgraph</code> to look at the trace, the correlation, and the density. For example:

. bayesgraph diagnostic {_cons}

• Correlation dies out after around 15 periods.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayestest model

- bayestest model is another postestimation command to compare different models.
- bayestest model computes the posterior probabilities for each model.
- The result indicates which model is more likely.
- It requires that the models use the same data and that they have proper posterior.
- It can be used to compare models with:
 - Different priors and/or different posterior distributions.
 - Different regression functions.
 - Different covariates.
- MCMC convergence should be verified before comparing the models.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayestest model

- Let's fit two other models and compare them with the one we already fit.
- We store the results for the three models, and we use the postestimation command <code>bayestest model to select one of them.</code>

quietly {

bayes , rseed(123) saving(dif_sos,replace): /// probit winbowl score_dif sos estimates store dif_sos

bayes , rseed(123) saving(score,replace): /// probit winbowl scored_avg against_avg estimates store scored_against

bayes , rseed(123) saving(srs_linear,replace) /// prior({winbowl:srs}, normal(10,20)): /// block({winbowl:srs_cons}): /// regress winbowl srs estimates store srs_linear

bayestest model dif_sos scored_against srs_linear

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph

bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayestest model

- Here is the output for bayestest model
 - . quietly {

. bayestest model dif_sos scored_against srs_linear Bayesian model tests

	log(ML)	P (M)	P (M Y)
dif_sos	-25.9158	0.3333	0.3679
scored_against srs_linear	-26.7528 -25.6652	0.3333 0.3333	0.1593 0.4727

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

• We could also assign different priors for the models:

```
. bayestest model dif_sos scored_against srs_linear, ///
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

prior(.3 .5 .2)

Bayesian model tests

log(ML)	P (M)	P(M y)
-25.9158		0.3879
-26.7528		0.2799
-25.6652		0.3322

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 1: bayestest model

- Here is the output for bayestest model
 - . quietly {

. bayestest model dif_sos scored_against srs_linear Bayesian model tests

	log(ML)	P (M)	P (M Y)
dif_sos	-25.9158	0.3333	0.3679
scored_against	-26.7528	0.3333	0.1593
<pre>srs_linear</pre>	-25.6652	0.3333	0.4727

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

· We could also assign different priors for the models:

```
. bayestest model dif_sos scored_against srs_linear, ///
```

prior(.3 .5 .2)

Bayesian model tests

	log(ML)	P (M)	P(M y)
dif_sos scored_against	-25.9158 -26.7528	0.3000 0.5000	0.3879 0.2799
srs_linear	-25.6652	0.2000	0.3322

Note: Marginal likelihood (ML) is computed using Laplace-Metropolis approximation.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayesgraph bayestest interva

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

• Let's use bayes: to fit a random-effects Poisson model for a count dependent variable.

$$Pr(y_{it} = y | x_{it}, \alpha_i) = \frac{e^{-\mu_{it}} \mu_{it}^y}{y!}$$

Where:

$$\mu_{i,t} = \exp(\mathbf{x}_{i,t}\beta + \alpha_i)$$

 $\alpha_i \sim N(0, \sigma_{\alpha}^2)$ is the individual panel random effect.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- This is also referred to as a two-level random intercept model.
- We can also fit this model with mepoisson or xtpoisson, re normal.

Outline

```
General idea
```

```
The method
```

Fundamenta equation MCMC

```
Stata tools
```

bayes: - bayesmh Postestimation

```
Examples
```

```
1 - Probit
regression
bayesstats ess
bayesgraph
bayestestmodel
```

```
2- Random-
effects
Poisson
bayesgraph
bayestest interval
```

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

- This time we are going to work with simulated data.
- Here is the code to simulate the panel dataset:

```
clear
set obs 300
set seed 123
*Panel level*
generate id = _n
generate alpha = rnormal(0,.33)
*Observation level*
expand 5
bysort id:generate year = _n
xtset id year
generate x1 = rnormal()
generate x2 = runiform()
generate x3 = rnormal()
```

Generate dependent variable

generate y = rpoisson(exp(.1*x1-.1*x2+.1*x3+.75+alpha))

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayesgraph bayestest interva

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

monojegon v v1 v2 v3 LL id: nolog

Let's show the results with mepoisson:

Mixed-effects	Poisson regre			Number	of obs	=	1,500
Group variable	:	id		Number	of groups	=	300
				Obs per	group:		
					mi	n =	5
					av	g =	5.0
					ma	x =	5
Integration me	thod: mvaghe	rmite		Integra	ation pts.	=	7
				Wald ch	ni2(3)	=	68.33
Log likelihood	= -2646.553	4		Wald ch Prob >		=	68.33 0.0000
			7	Prob >	chi2	=	0.0000
Log likelihood Y	= -2646.5534 Coef.	4 Std. Err.	z		chi2	=	
i			z 4.18	Prob >	chi2	= onf.	0.0000
У	Coef.	Std. Err.		Prob > P> z	chi2 [95% C	= onf. 75	0.0000 Interval]
у ×1	Coef.	Std. Err.	4.18	Prob > P> z 0.000	chi2 [95% C .04282	= onf. 75 17	0.0000 Interval] .1184484
y x1 x2	Coef. .0806379 1134928	Std. Err. .0192914 .06522	4.18 -1.74	<pre>Prob > P> z 0.000 0.082</pre>	chi2 [95% C .04282 24132	= onf. 75 17 02	0.0000 Interval] .1184484 .0143361
y x1 x2 x3	Coef. .0806379 1134928 .1285766	Std. Err. .0192914 .06522 .0187383	4.18 -1.74 6.86	<pre>Prob > P> z 0.000 0.082 0.000</pre>	chi2 [95% C .04282 24132 .09185	= onf. 75 17 02	0.0000 Interval] .1184484 .0143361 .1653029

LR test vs. Poisson model: chibar2(01) = 116.41

Prob >= chibar2 = 0.0000

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayesgraph bayestest interva

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

• We now fit the model with bayes:

```
bayes, nodots rseed(123): ///
mepoisson y x1 x2 x3 || id:
```

• Equivalent model with <code>bayesmh</code>

bayesmh y x1 x2 x3, rseed(123)	
likelihood(poisson) reffects(id)	///
prior({y:x1 x2 x3 _cons}, normal(0,10000))	///
<pre>prior({y:i.id}, normal(0,{sigma2}))</pre>	///
<pre>prior({sigma2}, igamma(.01,.01))</pre>	///
<pre>block({sigma2}) nodots</pre>	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

General idea

The method

Fundament equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

```
1 - Probit
regression
bayesstats ess
bayesgraph
bayestestmodel
```

2- Randomeffects Poisson bayesgraph

bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

```
. bayes, nodots rseed(123) : ///
> mepoisson y x1 x2 x3 || id:
```

Burn-in ... Simulation ... Multilevel structure

id

{U0}: random intercepts

Model summary

Likelihood:

```
y ~ mepoisson(xb_y)

Priors:

{y:x1 x2 x3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Hyperprior:

```
{U0:sigma2} ~ igamma(.01,.01)
```

(1) Parameters are elements of the linear form xb_y.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

. bayes, nodots rseed(123) : /// > mepoisson y x1 x2 x3 || id:

Bayesian multilevel Poisson regression Random-walk Metropolis-Hastings sampling Group variable: id	MCMC iterations = 12,500 Burn-in = 2,500 MCMC sample size = 10,000 Number of groups = 300	נ כ
	Obs per group:	
	min =	5
	avg = 5.0	נ
	max =	ذ
Family : Poisson	Number of obs = 1,500	נ
Link : log	Acceptance rate = .2715	5
	Efficiency: min = .02614	1
	avg = .0409)
Log marginal likelihood	max = .05729	•

					Equal-	tailed
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
У						
x1	.0810731	.0192223	.000803	.0805926	.0448467	.1195346
x2	1137537	.0648044	.003071	1128703	2428485	.0164924
x 3	.1296011	.0183267	.00082	.1294387	.0931207	.167355
_cons	.7368688	.0427745	.002624	.7378466	.6528039	.8186462
id						
U0:sigma2	.1099352	.0177164	.001096	.1093387	.0765145	.1469857

Note: Default priors are used for model parameters.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson

bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Random-effects Poisson model

. bayesstats ess

Efficiency summaries MCMC sample size = 10,000

	ESS	Corr. time	Efficiency
у			
x1	572.89	17.46	0.0573
x 2	445.22	22.46	0.0445
x 3	499.81	20.01	0.0500
_cons	265.72	37.63	0.0266
id			
U0:sigma2	261.41	38.25	0.0261

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

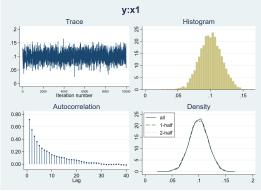
Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bavesgraph

bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 2: bayesgraph diagnostic

• We can look at the diagnostic graph for a couple of variables:

. bayesgraph diagnostic {y:x1}

- The trace seems to indicate convergence.
- Autocorrelation becomes negligible after about 15 periods.

-

Densities are similar for first and second halves of the MCMC sample.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

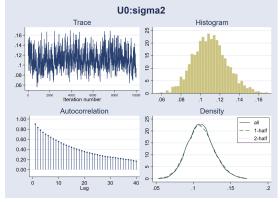
Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bavesgraph

bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 2: bayesgraph diagnostic

• We now look at the diagnostic graphs for {U0:sigma2}

. bayesgraph diagnostic {U0:sigma2}

- The trace seems to indicate convergence.
- Autocorrelation is slightly high, but decays steadily.
- Densities are similar for first and second halves of the MCMC sample.

・ コット (雪) (小田) (コット 日)

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: bayestest interval

- We can perform interval testing with the postestimation command bayestest interval.
- It estimates the probability that a model parameter lies in a particular interval.
- For continuous parameters, the hypothesis is formulated in terms of intervals.
- We can perform point hypothesis testing only for parameters with discrete posterior distributions.
- bayestest interval estimates the posterior distribution for a null hypothesis about intervals for one or more parameters .
- bayestest interval reports the estimated posterior mean probability for Ho.

bayestest interval ({y:x1},lower(.08) upper(.12)) /// ({y:x2},lower(-.12) upper(-.09))

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: bayestest interval

 We can, for example, perform separate tests for different parameters:

	Mean	Std. Dev.	MCSE
prob1	. 4909	0.49994	.0199632
prob2	.1926	0.39436	.0145117

 If we draw θ₁ from the specified prior and we use the data to update the knowledge about θ₁, then there is a 49% chance that θ₁ belongs to the interval (.08,.12).

We can also perform a joint test:

	Mean	Std. Dev.	MCSE
prob1		0.28403	.0098171

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: bayestest interval

 We can, for example, perform separate tests for different parameters:

	Mean	Std. Dev.	MCSE
prob1	. 4909	0.49994	.0199632
prob2	.1926	0.39436	.0145117

- If we draw θ₁ from the specified prior and we use the data to update the knowledge about θ₁, then there is a 49% chance that θ₁ belongs to the interval (.08,.12).
- We can also perform a joint test:

	Mean	Std. Dev.	MCSE
prob1	. 0885	0.28403	.0098171

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesn Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 2: Show random effects

. bayes, show({U0[1/6]}) noheader

	Equal-tai			tailed		
U0[id]	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
1	.1005875	.2248611	.005989	.1137852	3503203	.5382369
2	1376598	.2372418	.006347	1312831	6391449	.3238192
3	.1669656	.2171576	.006349	.1645487	2620912	.5840191
4	.1415134	.2192747	.006385	.1401843	3075952	.5717826
5	0802774	.2361239	.007224	0747518	5665242	.3531596
6	.1128583	.2338012	.006719	.1093227	3585934	.5664554

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Note: Default priors are used for model parameters.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesmh Postestimation

Examples

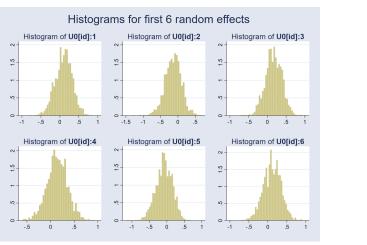
1 - Probit regression bayesstats ess bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint mode Gibbs sampling

Summary

References


Example 2: Histograms for random effects

bayesgraph histogram

. bayesgraph histogram {U0[1/6]},name(g1 g2 g3 g4 g5 g6,replace)

. graph combine g1 g2 g3 g4 g5 g6, ///

title("Histograms for first 6 random effects")

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Outline

General idea

The method

Fundamental equation MCMC

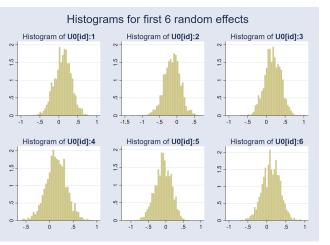
Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmode

2- Randomeffects Poisson bayesgraph bayestest interval


3- Changepoint mode Gibbs sampling

Summary

References

Example 2: Histograms for random effects

- bayesgraph histogram
 - . bayesgraph histogram {U0[1/6]},name(g1 g2 g3 g4 g5 g6,replace) . graph combine g1 g2 g3 g4 g5 g6, ///
 - > title("Histograms for first 6 random effects")

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Change-point model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

General idea

The method

Fundamental equation MCMC

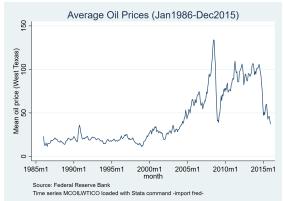
Stata tools

bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval


3- Changepoint model Gibbs sampling

Summary

References

Example 3: Change-point model

- Let's work now with an example where we write our model using a substitutable expression.
- We have average oil prices for January 1986 to December 2015:

(日)

- The series has a significant increase around 2005.
- We may consider fitting a change-point model.

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interva

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

bayesmh oilprice = ({mu1}*sign(year<{cp}) + {mu2}*sign(year>={cp})),	
rseed(123) mcmcsize(40000)	
dots(500,every(5000))	
quietly {	
matrix mean=e(mean)	
noisily display n col(10) "Date: " mean[1,1]	
n col(17) "Cut point (Month): " %tm mean[1,	11
}	

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

bayesmh oilprice = ({mu1}*sign(year<{cp}) + {mu2}*sign(year>={cp})),	/// ///
likelihood(normal({var}))	///
prior({mu1}, normal(0,50))	
prior({mu2}, normal(50,150))	
prior({cp}, uniform(tm(1986m1),2015m12))	///
prior({var}, igamma(.01,.01))	///
rseed(123) mcmcsize(40000)	
dots(500,every(5000))	
quietly {	
matrix mean=e(mean)	
noisily display _n _col(10) "Date: " mean[1,1]	
_n _col(17) "Cut point (Month): " %tm mean[1,	1]
}	

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

bayesmh oilprice = ({mu1}*sign(year<{cp}) + {mu2}*sign(year>={cp})),	/// ///
likelihood(normal({var}))	///
prior({mu1}, normal(0,50))	///
prior({mu2}, normal(50,150))	///
prior({cp}, uniform(tm(1986m1),2015m12))	///
prior({var}, igamma(.01,.01))	///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1))	///
rseed(123) mcmcsize(40000)	
dots(500,every(5000))	
quietly {	
matrix mean=e(mean)	
noisily display _n _col(10) "Date: " mean[1,1]	
_n _col(17) "Cut point (Month): " %tm mean[1,	1]
}	

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

bayesmh oilprice = ({mu1}*sign(year<{cp}) + {mu2}*sign(year>={cp})),	
likelihood(normal({var}))	///
prior({mu1}, normal(0,50))	
prior({mu2}, normal(50,150))	///
prior({cp}, uniform(tm(1986m1),2015m12))	///
prior({var}, igamma(.01,.01))	///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1))	///
<pre>block({var}, gibbs) block({cp}) blocksummary</pre>	///
rseed(123) mcmcsize(40000)	
dots(500,every(5000))	
quietly {	
matrix mean=e(mean)	
noisily display _n _col(10) "Date: " mean[1,1] _n _col(17) "Cut point (Month): " %tm mean[1,1	///
}	

Outline

General idea

The method

Fundamental equation MCMC

Stata tools

bayes: - bayesm Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

bayesmh oilprice = ({mu1}*sign(year<{cp})	
+ {mu2}*sign(year>={cp})),	///
likelihood(normal({var}))	
prior({mu1}, normal(0,50))	///
prior({mu2}, normal(50,150))	
prior({cp}, uniform(tm(1986m1),2015m12))	///
prior({var}, igamma(.01,.01))	///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1))	
<pre>block({var}, gibbs) block({cp}) blocksummary</pre>	///
rseed(123) mcmcsize(40000)	///
dots(500,every(5000))	
quietly {	
matrix mean=e(mean)	
noisily display _n _col(10) "Date: " mean[1,1]	///
_n _col(17) "Cut point (Month): " %tm mean[1,	1]
}	

MCMC

baves: - bavesmh

Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice=({mu1}*sign(month<{cp})+{mu2}*sign(month>={cp})), /// likelihood(normal({var})) 111 > prior({mul}, normal(0,50)) 111 > > prior({mu2}, normal(50,150)) 111 prior({cp}, uniform(tm(1986m1),tm(2015m12))) 111 > prior({var}, igamma(.01,.01)) 111 > initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) rseed(123) 111 > > block({var}, gibbs) block({cp}) blocksummary 111 mcmcsize(20000) dots(500, every(5000)) >

```
Model summary
```

```
Likelihood:
```

```
\texttt{oilprice ~ normal({mu1}*sign(month<{cp})+{mu2}*sign(month>={cp}), {var})}
```

```
Priors:
```

```
{var} ~ igamma(.01,.01)
{mu1} ~ normal(0,50)
{mu2} ~ normal(50,150)
{cp} ~ uniform(tm(1986m1),tm(2015m12))
```

Block summary

1:	{var}	(Gibbs)
2:	{cp}	
3:	{mu1} {mu2}	

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

3- Changepoint mode Gibbs sampling

bavesgraph

bavesgraph

bayestestmodel

Summary

References

Outline

General idea

The method

Fundament equation MCMC

Stata tools

bayes: - bayesml Postestimation

Examples

```
1 - Probit
regression
bayesstats ess
bayesgraph
bayestestmodel
```

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Example 3: Gibbs sampling

Change-point model specification with blocking

. bayes > > >	<pre>mh oilprice=({mul}*sign(month<{cp}) likelihood(normal({var}))) prior({mul}, normal(0,50)) prior({mul}, normal(50,150))</pre>)+{mu2}*sign(month>={cp})), /// /// ///
Ś	prior({cp}, uniform(tm(1986m1),	
>	<pre>prior({var}, igamma(.01,.01)) initial({mu1} =15 {mu2} =100 {c</pre>	
>	<pre>block({var}, gibbs) block({cp})</pre>	
>	mcmcsize (20000) dots (500, every	
Bayesiar	n normal regression	MCMC iterations = 22,500
Metropol	is-Hastings and Gibbs sampling	Burn-in = 2,500
		MCMC sample size = 20,000
		Number of obs = 360
		Acceptance rate = .5632
		Efficiency: min = .09094
		avg = .3304
Log marg	ginal likelihood = -1481.9487	max = 1

					Equal-tailed	
	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
ср	541.5063	1.806737	.037169	541.4515	536.7238	544.9228
mu1	22.07432	.936419	.01974	22.09333	20.23623	23.85525
mu2	78.69139	1.259118	.029524	78.67589	76.2043	81.19035
var	197.286	14.80914	.104716	196.6902	169.991	228.0003

. quietly {

elapsed date: 541.50629 Cut point (Month): 2005m2

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

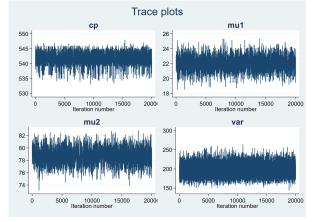
bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 3: bayesgraph trace

• Use bayesgraph trace to look at the trace for all the parameters.

. bayesgraph trace _all,combine

The plots indicate that convergence seems to be achieved.

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

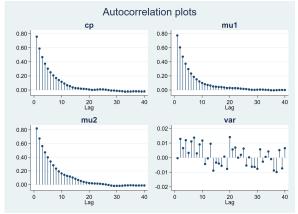
bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 3: bayesgraph ac

 Use bayesgraph ac to look at the autocorrelation for all the parameters.

. bayesgraph ac _all,combine

Autocorrelation quickly becomes negligible for all the parameters.

ъ

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Outline

General idea

The method

Fundamenta equation MCMC

Stata tools

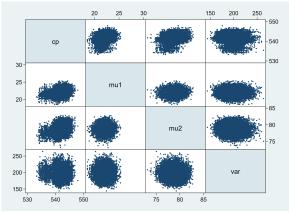
bayes: - bayesmh Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling


Summary

References

Example 3: bayesgraph matrix

• Use bayesgraph matrix to look at pairwise correlation for the parameters.

. bayesgraph matrix _all

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

 The plots seem to indicate that there are no significant pairwise correlations among the parameters.

Outline

General idea

The method

- Fundamenta equation MCMC
- Stata tools
- bayes: bayesmh Postestimation
- Examples
- 1 Probit regression bayesstats ess bayesgraph bayestestmodel
- 2- Randomeffects Poisson bayesgraph bayestest interval
- 3- Changepoint model Gibbs sampling
- Summary
- References

Summing up

- Bayesian analysis: A statistical approach that can be used to answer questions about unknown parameters in terms of probability statements.
- It can be used when we have prior information on the distribution of the parameters involved in the model.
- Alternative approach or complementary approach to classic/frequentist approach?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

General idea

The method

Fundamental equation MCMC

Stata tools bayes: - bayesmh

Postestimation

Examples

1 - Probit regression bayesstats ess bayesgraph bayestestmodel

2- Randomeffects Poisson bayesgraph bayestest interval

3- Changepoint model Gibbs sampling

Summary

References

Reference

Cameron, A. and Trivedi, P. 2005. *Microeconometric Methods and Applications*. Cambridge University Press, Section 13.2.2, 422–423.

Links

Stata users group meetings presentations https://www.stata.com/meeting/uk17/slides/uk17_Marchenko.pdf https://www.stata.com/meeting/brazil16/slides/rising-brazil16.pdf https://www.stata.com/meeting/spain18/slides/spain18_Sanchez.pdf Blog post for grubin

https://blog.stata.com/2016/05/26/gelman-rubin-convergencediagnostic-using-multiple-chains/