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Outline
1 Bayesian analysis: Basic concepts

• The general idea
• The method

2 The Stata tools
• The general command bayesmh
• The bayes prefix
• Postestimation commands

3 A few examples
• Probit regression
• Panel data random-effects Poisson model
• Change-point model
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The general idea
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Bayesian Analysis vs Frequentist Analysis

Frequentist Analysis

• Estimates unknown fixed
parameters.

• The data come from a
random sample (hypothetical
repeatable).

• Uses data to estimate
unknown fixed parameters.

• Data expected to satisfy the
assumptions for the specified
model.

"Conclusions are based on the
distribution of statistics derived
from random samples, assuming
unknown but fixed parameters."

Bayesian Analysis

• Probability distributions for
unknown random
parameters.

• The data are fixed.

• Combines data with prior
beliefs to get updated
probability distributions for
the parameters.

• Posterior distribution is used
to make explicit probabilistic
statements.

"Bayesian analysis answers
questions based on the distribution
of parameters conditional on the
observed sample."
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Stata’s convenient syntax: bayes:

regress y x1 x2 x3

bayes: regress y x1 x2 x3

logit y x1 x2 x3

bayes: logit y x1 x2 x3

mixed y x1 x2 x3 || region:

bayes: mixed y x1 x2 x3 || region:
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The method
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The method

• Inverse law of probability (Bayes’ Theorem):

p (θ|y) =
p (y |θ) p (θ)

p (y)
=

f (y ; θ)π (θ)

f (y)

Where:
f (y ; θ): probability density function for y given θ.
π (θ): prior distribution for θ

• The marginal distribution of y, f(y), does not depend on θ; then
we can write the fundamental equation for Bayesian analysis:

p (θ|y) ∝ L (θ; y) π (θ)

Where:
L (θ; y): likelihood function of the parameters given the data.
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The method

• Inverse law of probability (Bayes’ Theorem):

p (θ|y) =
p (y |θ) p (θ)

p (y)
=

f (y ; θ)π (θ)

f (y)

Where:
f (y ; θ): probability density function for y given θ.
π (θ): prior distribution for θ

• The marginal distribution of y, f(y), does not depend on θ; then
we can write the fundamental equation for Bayesian analysis:

p (θ|y) ∝ L (θ; y) π (θ)

Where:
L (θ; y): likelihood function of the parameters given the data.



Bayesian
analysis

Outline

General idea

The method
Fundamental
equation

MCMC

Stata tools
bayes: - bayesmh

Postestimation

Examples

1- Probit
regression
bayesstats ess

bayesgraph

bayestestmodel

2- Random-
effects
Poisson
bayesgraph

bayestest interval

3- Change-
point model
Gibbs sampling

Summary

References
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• Inverse law of probability (Bayes’ Theorem):

p (θ|y) =
p (y |θ) p (θ)

p (y)
=

f (y ; θ)π (θ)

f (y)

Where:
f (y ; θ): probability density function for y given θ.
π (θ): prior distribution for θ

• The marginal distribution of y, f(y), does not depend on θ; then
we can write the fundamental equation for Bayesian analysis:

p (θ|y) ∝ L (θ; y) π (θ)

Where:
L (θ; y): likelihood function of the parameters given the data.
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The method
• Let’s assume that both the data and the prior beliefs

are normally distributed:

• The data: y ∼ N
(
θ, σ2

d

)
• The prior: θ ∼ N

(
µp, σ

2
p
)

• Homework...: Doing the algebra with the fundamental
equation, we find that the posterior distribution would
be normal with (see for example Cameron & Trivedi
2005):

• The posterior: θ|y ∼ N
(
µ, σ2

)
Where:

µ = σ2 (Nȳ/σ2
d + µp/σ

2
p
)

σ2 =
(
N/σ2

d + 1/σ2
p
)−1
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Example (Prior distributions)
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Example (Posterior distributions)
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The method

• The previous example has a closed form solution.

• What about the cases with non-closed solutions, or
more complex distributions?

• Integration is performed via simulation.
• We need to use intensive computational simulation

tools to find the posterior distribution in most cases.

• Markov chain Monte Carlo (MCMC) methods are the
current standard in most software. Stata implements
two alternatives:

• Metropolis–Hastings (MH) algorithm
• Gibbs sampling
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The method

• Links for Bayesian analysis and MCMC on our YouTube
channel:

• Introduction to Bayesian statistics, part 1: The basic
concepts

https://www.youtube.com/watch?v=0F0QoMCSKJ4&feature=youtu.be

• Introduction to Bayesian statistics, part 2: MCMC and
the Metropolis–Hastings algorithm.

https://www.youtube.com/watch?v=OTO1DygELpY&feature=youtu.be
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The method

• Monte Carlo Simulation
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The method

• Metropolis–Hastings simulation
• The trace plot illustrates the sequence of accepted

proposal states.
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The method

• We expect to obtain a stationary sequence when
convergence is achieved.
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The method

• An efficient MCMC should have small autocorrelation.
• We expect autocorrelation to become negligible after a

few lags.



Bayesian
analysis

Outline

General idea

The method
Fundamental
equation

MCMC

Stata tools
bayes: - bayesmh

Postestimation

Examples

1- Probit
regression
bayesstats ess

bayesgraph

bayestestmodel

2- Random-
effects
Poisson
bayesgraph

bayestest interval

3- Change-
point model
Gibbs sampling

Summary

References

The Stata tools for Bayesian regression
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The Stata tools: bayes: bayesmh

• bayes: Convenient syntax for Bayesian regressions

• Estimation command defines the likelihood for the
model.

• Default priors are assumed to be "weakly informative"’.

• Other model specifications are set by default depending
on the model defined by the estimation command.

• Alternative specifications may need to be evaluated.

• bayesmh General purpose command for Bayesian
analysis

• You need to specify all the components for the Bayesian
regression: likelihood, priors, hyperpriors, blocks, etc.
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The Stata tools: Postestimation commands

• bayesstats ess

• bayesgraph

• bayesstats ic

• bayestest model

• bayestest interval

• bayesstats summary

• grubin (user-written command)

https://blog.stata.com/2016/05/26/gelman-rubin-convergence-
diagnostic-using-multiple-chains/
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Example 1: Probit regression

• Let’s look at our first example:

• We have stats on scores, strength of schedule, and bowl game
result (win/loss) for the Texas A&M University football team.

• We fit a probit model for the probability to win the bowl game.

• Let’s consider a couple of model specifications for a binary
dependent variable, whose values depend on a linear latent
variable:

win_bowl∗ = α1 + βsc_dif ∗ score_dif + βsos ∗ sos + ε1

win_bowl∗ = α2 + βscored ∗ score_avg + βagainst ∗ against_avg + ε2

win_bowl =

{
1 if win_bowl∗ > 0
0 otherwise

Where:

win_bowl : result in the bowl game (winloss).
score_dif : Average score difference during the regular season.
sos : Strength of schedule.
score_avg : Average points scored during the regular season.
against_avg : Average points against during the regular season.
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Example 1: Probit regression
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Example 1: Probit regression

• Probit regression with the bayes: prefix

bayes, rseed(123): probit win_bowl score_diff sos

• Equivalent model with bayesmh

bayesmh win_bowl score_diff sos, rseed(123) ///
likelihood(probit) ///
prior({win_bowl:score_diff}, normal(0,10000)) ///
prior({win_bowl:sos}, normal(0,10000)) ///
prior({win_bowl:_cons}, normal(0,10000))
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Example 1: Menu for Bayesian regression
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Example 1: Menu for Bayesian regression
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Example 1: Menu for Bayesian regression

1 Make the following sequence of selection from the main
menu:

Statistics > Bayesian analysis > Regression models
2 Select "Binary outcomes"
3 Select "Probit regression"
4 Click on "Launch"
5 Specify the dependent variable (win_bowl) and the

explanatory variables (score_dif sos)

6 Click on "OK"
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Example 1: bayes: prefix

. bayes, rseed(123):probit win_bowl score_dif sos

Burn-in ...
Simulation ...
Model summary

Likelihood:
win_bowl ~ probit(xb_win_bowl)

Prior:
{win_bowl:score_dif sos _cons} ~ normal(0,10000) (1)

(1) Parameters are elements of the linear form xb_win_bowl.
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Example 1: bayes: prefix

. bayes, rseed(123):probit win_bowl score_dif sos

Bayesian probit regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 14
Acceptance rate = .2522
Efficiency: min = .06504

avg = .07364
Log marginal likelihood = -25.891444 max = .07973

Equal-tailed
win_bowl Mean Std. Dev. MCSE Median [95% Cred. Interval]

score_dif .1722847 .1011987 .003668 .1633205 .0064462 .4011969
sos .0797042 .2138371 .007573 .0882321 -.3346481 .4871838

_cons -2.08378 1.128949 .044266 -2.033869 -4.501485 .0358983

Note: Default priors are used for model parameters.

We expect an acceptance rate that is neither too small nor too large.
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Example 1: bayesstats ess

• Let’s evaluate the effective sample size.

. bayesstats ess
Efficiency summaries MCMC sample size = 10,000

winbowl ESS Corr. time Efficiency

score_dif 761.28 13.14 0.0761
sos 797.34 12.54 0.0797

_cons 650.45 15.37 0.0650

• We expect to have low autocorrelation. Correlation time
provides an estimate for the lag after which autocorrelation
in an MCMC sample is small.

• Efficiencies over 10% are considered good for MH.
Efficiencies under 1% would be a source of concern.
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Example 1: bayesgraph

• We can use bayesgraph to look at the trace, the
correlation, and the density. For example:

. bayesgraph diagnostic {sos}

• The trace indicates that convergence was achieved.
• Correlation dies out after around 10 periods.
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Example 1: bayesgraph

• We can use bayesgraph to look at the trace, the
correlation, and the density. For example:

. bayesgraph diagnostic {_cons}

• Correlation dies out after around 15 periods.
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Example 1: bayestest model

• bayestest model is another postestimation command to
compare different models.

• bayestest model computes the posterior probabilities for
each model.

• The result indicates which model is more likely.

• It requires that the models use the same data and that they
have proper posterior.

• It can be used to compare models with:
• Different priors and/or different posterior distributions.
• Different regression functions.
• Different covariates.

• MCMC convergence should be verified before comparing the
models.
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Example 1: bayestest model

• Let’s fit two other models and compare them with the one
we already fit.

• We store the results for the three models, and we use
the postestimation command bayestest model to
select one of them.

quietly {
bayes , rseed(123) saving(dif_sos,replace): ///

probit winbowl score_dif sos
estimates store dif_sos

bayes , rseed(123) saving(score,replace): ///
probit winbowl scored_avg against_avg

estimates store scored_against

bayes , rseed(123) saving(srs_linear,replace) ///
prior({winbowl:srs}, normal(10,20)): ///
block({winbowl:srs _cons}): ///
regress winbowl srs

estimates store srs_linear
}
bayestest model dif_sos scored_against srs_linear
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Example 1: bayestest model

• Here is the output for bayestest model

. quietly {

. bayestest model dif_sos scored_against srs_linear
Bayesian model tests

log(ML) P(M) P(M|y)

dif_sos -25.9158 0.3333 0.3679
scored_against -26.7528 0.3333 0.1593

srs_linear -25.6652 0.3333 0.4727

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

• We could also assign different priors for the models:

. bayestest model dif_sos scored_against srs_linear, ///

prior(.3 .5 .2)
Bayesian model tests

log(ML) P(M) P(M|y)

dif_sos -25.9158 0.3000 0.3879
scored_against -26.7528 0.5000 0.2799

srs_linear -25.6652 0.2000 0.3322

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.
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Example 1: bayestest model

• Here is the output for bayestest model

. quietly {

. bayestest model dif_sos scored_against srs_linear
Bayesian model tests

log(ML) P(M) P(M|y)

dif_sos -25.9158 0.3333 0.3679
scored_against -26.7528 0.3333 0.1593

srs_linear -25.6652 0.3333 0.4727

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.

• We could also assign different priors for the models:

. bayestest model dif_sos scored_against srs_linear, ///

prior(.3 .5 .2)
Bayesian model tests

log(ML) P(M) P(M|y)

dif_sos -25.9158 0.3000 0.3879
scored_against -26.7528 0.5000 0.2799

srs_linear -25.6652 0.2000 0.3322

Note: Marginal likelihood (ML) is computed using
Laplace-Metropolis approximation.
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Example 2: Random-effects Poisson model

• Let’s use bayes: to fit a random-effects Poisson model for
a count dependent variable.

Pr(yit = y |xit , αi) =
e−µitµy

it
y !

Where:
µi,t = exp(xi,tβ + αi)

αi ∼ N
(
0, σ2

α

)
is the individual panel random effect.

• This is also referred to as a two-level random intercept
model.

• We can also fit this model with mepoisson or
xtpoisson,re normal.
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Example 2: Random-effects Poisson model

• This time we are going to work with simulated data.
• Here is the code to simulate the panel dataset:

clear
set obs 300
set seed 123

*Panel level*
generate id = _n
generate alpha = rnormal(0,.33)

*Observation level*
expand 5
bysort id:generate year = _n
xtset id year
generate x1 = rnormal()
generate x2 = runiform()
generate x3 = rnormal()

*Generate dependent variable*

generate y = rpoisson(exp(.1*x1-.1*x2+.1*x3+.75+alpha))
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Example 2: Random-effects Poisson model

Let’s show the results with mepoisson:

. mepoisson y x1 x2 x3 || id:,nolog

Mixed-effects Poisson regression Number of obs = 1,500
Group variable: id Number of groups = 300

Obs per group:
min = 5
avg = 5.0
max = 5

Integration method: mvaghermite Integration pts. = 7

Wald chi2(3) = 68.33
Log likelihood = -2646.5534 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0806379 .0192914 4.18 0.000 .0428275 .1184484
x2 -.1134928 .06522 -1.74 0.082 -.2413217 .0143361
x3 .1285766 .0187383 6.86 0.000 .0918502 .1653029

_cons .7373862 .0416085 17.72 0.000 .655835 .8189375

id
var(_cons) .1087738 .0171051 .0799226 .14804

LR test vs. Poisson model: chibar2(01) = 116.41 Prob >= chibar2 = 0.0000
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Example 2: Random-effects Poisson model

• We now fit the model with bayes:

bayes, nodots rseed(123): ///
mepoisson y x1 x2 x3 || id:

• Equivalent model with bayesmh

bayesmh y x1 x2 x3, rseed(123) ///
likelihood(poisson) reffects(id) ///
prior({y:x1 x2 x3 _cons}, normal(0,10000)) ///
prior({y:i.id}, normal(0,{sigma2})) ///
prior({sigma2}, igamma(.01,.01)) ///
block({sigma2}) nodots
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Example 2: Random-effects Poisson model

. bayes, nodots rseed(123) : ///
> mepoisson y x1 x2 x3 || id:

Burn-in ...
Simulation ...

Multilevel structure

id
{U0}: random intercepts

Model summary

Likelihood:
y ~ mepoisson(xb_y)

Priors:
{y:x1 x2 x3 _cons} ~ normal(0,10000) (1)

{U0} ~ normal(0,{U0:sigma2}) (1)

Hyperprior:
{U0:sigma2} ~ igamma(.01,.01)

(1) Parameters are elements of the linear form xb_y.
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Example 2: Random-effects Poisson model

. bayes, nodots rseed(123) : ///
> mepoisson y x1 x2 x3 || id:

Bayesian multilevel Poisson regression MCMC iterations = 12,500
Random-walk Metropolis-Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Group variable: id Number of groups = 300

Obs per group:
min = 5
avg = 5.0
max = 5

Family : Poisson Number of obs = 1,500
Link : log Acceptance rate = .2715

Efficiency: min = .02614
avg = .0409

Log marginal likelihood max = .05729

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

y
x1 .0810731 .0192223 .000803 .0805926 .0448467 .1195346
x2 -.1137537 .0648044 .003071 -.1128703 -.2428485 .0164924
x3 .1296011 .0183267 .00082 .1294387 .0931207 .167355

_cons .7368688 .0427745 .002624 .7378466 .6528039 .8186462

id
U0:sigma2 .1099352 .0177164 .001096 .1093387 .0765145 .1469857

Note: Default priors are used for model parameters.
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Example 2: Random-effects Poisson model

. bayesstats ess
Efficiency summaries MCMC sample size = 10,000

ESS Corr. time Efficiency

y
x1 572.89 17.46 0.0573
x2 445.22 22.46 0.0445
x3 499.81 20.01 0.0500

_cons 265.72 37.63 0.0266

id
U0:sigma2 261.41 38.25 0.0261
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Example 2: bayesgraph diagnostic

• We can look at the diagnostic graph for a couple of
variables:

. bayesgraph diagnostic {y:x1}

• The trace seems to indicate convergence.
• Autocorrelation becomes negligible after about 15 periods.
• Densities are similar for first and second halves of the

MCMC sample.
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Example 2: bayesgraph diagnostic

• We now look at the diagnostic graphs for {U0:sigma2}

. bayesgraph diagnostic {U0:sigma2}

• The trace seems to indicate convergence.
• Autocorrelation is slightly high, but decays steadily.
• Densities are similar for first and second halves of the

MCMC sample.
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Example 2: bayestest interval

• We can perform interval testing with the postestimation
command bayestest interval.

• It estimates the probability that a model parameter lies in a
particular interval.

• For continuous parameters, the hypothesis is formulated in
terms of intervals.

• We can perform point hypothesis testing only for parameters
with discrete posterior distributions.

• bayestest interval estimates the posterior distribution
for a null hypothesis about intervals for one or more
parameters .

• bayestest interval reports the estimated posterior mean
probability for Ho.

bayestest interval ({y:x1},lower(.08) upper(.12)) ///
({y:x2},lower(-.12) upper(-.09))



Bayesian
analysis

Outline

General idea

The method
Fundamental
equation

MCMC

Stata tools
bayes: - bayesmh

Postestimation

Examples

1- Probit
regression
bayesstats ess

bayesgraph

bayestestmodel

2- Random-
effects
Poisson
bayesgraph

bayestest interval

3- Change-
point model
Gibbs sampling

Summary

References

Example 2: bayestest interval

• We can, for example, perform separate tests for
different parameters:

. bayestest interval ({y:x1},lower(.08) upper(.12)) ///
> ({y:x2},lower(-.12) upper(-.09))

Interval tests MCMC sample size = 10,000

prob1 : .08 < {y:x1} < .12
prob2 : -.12 < {y:x2} < -.09

Mean Std. Dev. MCSE

prob1 .4909 0.49994 .0199632
prob2 .1926 0.39436 .0145117

• If we draw θ1 from the specified prior and we use the
data to update the knowledge about θ1, then there is a
49% chance that θ1 belongs to the interval (.08,.12).

• We can also perform a joint test:

. bayestest interval (({y:x1},lower(.08) upper(.12)) ///
> ({y:x2},lower(-.12) upper(-.09)),joint)

Interval tests MCMC sample size = 10,000

prob1 : .08 < {y:x1} < .12, -.12 < {y:x2} < -.09

Mean Std. Dev. MCSE

prob1 .0885 0.28403 .0098171
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Example 2: bayestest interval

• We can, for example, perform separate tests for
different parameters:

. bayestest interval ({y:x1},lower(.08) upper(.12)) ///
> ({y:x2},lower(-.12) upper(-.09))

Interval tests MCMC sample size = 10,000

prob1 : .08 < {y:x1} < .12
prob2 : -.12 < {y:x2} < -.09

Mean Std. Dev. MCSE

prob1 .4909 0.49994 .0199632
prob2 .1926 0.39436 .0145117

• If we draw θ1 from the specified prior and we use the
data to update the knowledge about θ1, then there is a
49% chance that θ1 belongs to the interval (.08,.12).

• We can also perform a joint test:

. bayestest interval (({y:x1},lower(.08) upper(.12)) ///
> ({y:x2},lower(-.12) upper(-.09)),joint)

Interval tests MCMC sample size = 10,000

prob1 : .08 < {y:x1} < .12, -.12 < {y:x2} < -.09

Mean Std. Dev. MCSE

prob1 .0885 0.28403 .0098171
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Example 2: Show random effects

. bayes, show({U0[1/6]}) noheader

Equal-tailed
U0[id] Mean Std. Dev. MCSE Median [95% Cred. Interval]

1 .1005875 .2248611 .005989 .1137852 -.3503203 .5382369
2 -.1376598 .2372418 .006347 -.1312831 -.6391449 .3238192
3 .1669656 .2171576 .006349 .1645487 -.2620912 .5840191
4 .1415134 .2192747 .006385 .1401843 -.3075952 .5717826
5 -.0802774 .2361239 .007224 -.0747518 -.5665242 .3531596
6 .1128583 .2338012 .006719 .1093227 -.3585934 .5664554

Note: Default priors are used for model parameters.
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Example 2: Histograms for random effects

• bayesgraph histogram

. bayesgraph histogram {U0[1/6]},name(g1 g2 g3 g4 g5 g6,replace)

. graph combine g1 g2 g3 g4 g5 g6, ///
> title("Histograms for first 6 random effects")
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Example 2: Histograms for random effects

• bayesgraph histogram

. bayesgraph histogram {U0[1/6]},name(g1 g2 g3 g4 g5 g6,replace)

. graph combine g1 g2 g3 g4 g5 g6, ///
> title("Histograms for first 6 random effects")
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Example 3: Change-point model
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Example 3: Change-point model

• Let’s work now with an example where we write our model
using a substitutable expression.

• We have average oil prices for January 1986 to December
2015:

• The series has a significant increase around 2005.
• We may consider fitting a change-point model.
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Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice = ({mu1}*sign(year<{cp}) ///
+ {mu2}*sign(year>={cp})), ///

likelihood(normal({var})) ///
prior({mu1}, normal(0,50)) ///
prior({mu2}, normal(50,150)) ///
prior({cp}, uniform(tm(1986m1),2015m12)) ///
prior({var}, igamma(.01,.01)) ///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) ///
block({var}, gibbs) block({cp}) blocksummary ///
rseed(123) mcmcsize(40000) ///
dots(500,every(5000))

quietly {
matrix mean=e(mean)
noisily display _n _col(10) "Date: " mean[1,1] ///

_n _col(17) "Cut point (Month): " %tm mean[1,1]
}
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Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice = ({mu1}*sign(year<{cp}) ///
+ {mu2}*sign(year>={cp})), ///

likelihood(normal({var})) ///
prior({mu1}, normal(0,50)) ///
prior({mu2}, normal(50,150)) ///
prior({cp}, uniform(tm(1986m1),2015m12)) ///
prior({var}, igamma(.01,.01)) ///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) ///
block({var}, gibbs) block({cp}) blocksummary ///
rseed(123) mcmcsize(40000) ///
dots(500,every(5000))

quietly {
matrix mean=e(mean)
noisily display _n _col(10) "Date: " mean[1,1] ///

_n _col(17) "Cut point (Month): " %tm mean[1,1]
}
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Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice = ({mu1}*sign(year<{cp}) ///
+ {mu2}*sign(year>={cp})), ///

likelihood(normal({var})) ///
prior({mu1}, normal(0,50)) ///
prior({mu2}, normal(50,150)) ///
prior({cp}, uniform(tm(1986m1),2015m12)) ///
prior({var}, igamma(.01,.01)) ///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) ///
block({var}, gibbs) block({cp}) blocksummary ///
rseed(123) mcmcsize(40000) ///
dots(500,every(5000))

quietly {
matrix mean=e(mean)
noisily display _n _col(10) "Date: " mean[1,1] ///

_n _col(17) "Cut point (Month): " %tm mean[1,1]
}
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Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice = ({mu1}*sign(year<{cp}) ///
+ {mu2}*sign(year>={cp})), ///

likelihood(normal({var})) ///
prior({mu1}, normal(0,50)) ///
prior({mu2}, normal(50,150)) ///
prior({cp}, uniform(tm(1986m1),2015m12)) ///
prior({var}, igamma(.01,.01)) ///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) ///
block({var}, gibbs) block({cp}) blocksummary ///
rseed(123) mcmcsize(40000) ///
dots(500,every(5000))

quietly {
matrix mean=e(mean)
noisily display _n _col(10) "Date: " mean[1,1] ///

_n _col(17) "Cut point (Month): " %tm mean[1,1]
}
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Example 3: Gibbs sampling

Change-point model specification with blocking

bayesmh oilprice = ({mu1}*sign(year<{cp}) ///
+ {mu2}*sign(year>={cp})), ///

likelihood(normal({var})) ///
prior({mu1}, normal(0,50)) ///
prior({mu2}, normal(50,150)) ///
prior({cp}, uniform(tm(1986m1),2015m12)) ///
prior({var}, igamma(.01,.01)) ///
initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) ///
block({var}, gibbs) block({cp}) blocksummary ///
rseed(123) mcmcsize(40000) ///
dots(500,every(5000))

quietly {
matrix mean=e(mean)
noisily display _n _col(10) "Date: " mean[1,1] ///

_n _col(17) "Cut point (Month): " %tm mean[1,1]
}
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Example 3: Gibbs sampling
Change-point model specification with blocking

. bayesmh oilprice=({mu1}*sign(month<{cp})+{mu2}*sign(month>={cp})), ///
> likelihood(normal({var})) ///
> prior({mu1}, normal(0,50)) ///
> prior({mu2}, normal(50,150)) ///
> prior({cp}, uniform(tm(1986m1),tm(2015m12))) ///
> prior({var}, igamma(.01,.01)) ///
> initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) rseed(123) ///
> block({var}, gibbs) block({cp}) blocksummary ///
> mcmcsize(20000) dots(500, every(5000))

Burn-in 2500 aaaaa done
Simulation 20000 .........5000.........10000.........15000.........20000 done

Model summary

Likelihood:
oilprice ~ normal({mu1}*sign(month<{cp})+{mu2}*sign(month>={cp}),{var})

Priors:
{var} ~ igamma(.01,.01)
{mu1} ~ normal(0,50)
{mu2} ~ normal(50,150)
{cp} ~ uniform(tm(1986m1),tm(2015m12))

Block summary

1: {var} (Gibbs)
2: {cp}
3: {mu1} {mu2}



Bayesian
analysis

Outline

General idea

The method
Fundamental
equation

MCMC

Stata tools
bayes: - bayesmh

Postestimation

Examples

1- Probit
regression
bayesstats ess

bayesgraph

bayestestmodel

2- Random-
effects
Poisson
bayesgraph

bayestest interval

3- Change-
point model
Gibbs sampling

Summary

References

Example 3: Gibbs sampling
Change-point model specification with blocking

. bayesmh oilprice=({mu1}*sign(month<{cp})+{mu2}*sign(month>={cp})), ///
> likelihood(normal({var})) ///
> prior({mu1}, normal(0,50)) ///
> prior({mu2}, normal(50,150)) ///
> prior({cp}, uniform(tm(1986m1),tm(2015m12))) ///
> prior({var}, igamma(.01,.01)) ///
> initial({mu1} =15 {mu2} =100 {cp} =tm(1986m1)) rseed(123) ///
> block({var}, gibbs) block({cp}) blocksummary ///
> mcmcsize(20000) dots(500, every(5000))

Bayesian normal regression MCMC iterations = 22,500
Metropolis-Hastings and Gibbs sampling Burn-in = 2,500

MCMC sample size = 20,000
Number of obs = 360
Acceptance rate = .5632
Efficiency: min = .09094

avg = .3304
Log marginal likelihood = -1481.9487 max = 1

Equal-tailed
Mean Std. Dev. MCSE Median [95% Cred. Interval]

cp 541.5063 1.806737 .037169 541.4515 536.7238 544.9228
mu1 22.07432 .936419 .01974 22.09333 20.23623 23.85525
mu2 78.69139 1.259118 .029524 78.67589 76.2043 81.19035
var 197.286 14.80914 .104716 196.6902 169.991 228.0003

. quietly {

elapsed date: 541.50629
Cut point (Month): 2005m2
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Example 3: bayesgraph trace

• Use bayesgraph trace to look at the trace for all the
parameters.

. bayesgraph trace _all,combine

• The plots indicate that convergence seems to be achieved.
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Example 3: bayesgraph ac

• Use bayesgraph ac to look at the autocorrelation for all the
parameters.

. bayesgraph ac _all,combine

• Autocorrelation quickly becomes negligible for all the
parameters.
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Example 3: bayesgraph matrix

• Use bayesgraph matrix to look at pairwise correlation for
the parameters.

. bayesgraph matrix _all

• The plots seem to indicate that there are no significant
pairwise correlations among the parameters.
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Summing up

• Bayesian analysis: A statistical approach that can be
used to answer questions about unknown parameters
in terms of probability statements.

• It can be used when we have prior information on the
distribution of the parameters involved in the model.

• Alternative approach or complementary approach to
classic/frequentist approach?
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Reference

Cameron, A. and Trivedi, P. 2005. Microeconometric
Methods and Applications. Cambridge University Press,
Section 13.2.2, 422–423.

Links

Stata users group meetings presentations

https://www.stata.com/meeting/uk17/slides/uk17_Marchenko.pdf

https://www.stata.com/meeting/brazil16/slides/rising-brazil16.pdf

https://www.stata.com/meeting/spain18/slides/spain18_Sanchez.pdf

Blog post for grubin

https://blog.stata.com/2016/05/26/gelman-rubin-convergence-
diagnostic-using-multiple-chains/
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