Spatial Dynamic Panel Data Models with Interactive Effects

Ongoing research agenda with several co-authors: Guowei Cui (HUST), Jia Chen (Macau), Takashi Yamagata (York), Sebastian Kripfganz (Exeter)

Vasilis Sarafidis

Brunel University of London

vasilis.sarafidis@brunel.ac.uk
https://sites.google.com/view/vsarafidis
www.youtube.com/@FrontierEconometrics

2025 Stata Economics Virtual Symposium

Model

$$y_{i,t} = \alpha y_{i,t-1} + \psi \sum_{j=1}^{N} w_{i,j} y_{j,t} + \sum_{\ell=1}^{K} \beta_{\ell} x_{\ell,i,t} + \underbrace{\lambda_{i}' \mathbf{f}_{t} + \varepsilon_{i,t}}_{u_{i,t}},$$

$$i = 1, \dots, N; \quad t = 1, \dots, T,$$

$$(1)$$

"State dependence": Balestra-Nerlove 1966, Anderson-Hsiao 1982, Arellano-Bond 1991, Blundell-Bond 1998;

Spatial lag: "endogenous interactions" due to networks, peer effects, spillovers etc, e.g. Case 1991, Manski 1993, 1995, Fisher 1935, Tobler 1970, Elhorst 2014;

"Causal effects": K idiosyncratic, time-varying own characteristics;

Nonlinear error components: "Latent Common Factors" / "Interactive Effects"; e.g., technological disruptions, energy price shocks, geopolitical conflicts, regulatory changes, financial crises, macro policies etc: e.g. Pesaran 2006, Bai 2009, Sarafidis-Wansbeek 2021.

Comparison with Two-Way (or additive) Effects

The Two-Way Effects model assumes error components enter additively: $u_{i,t} = \eta_i + \tau_t + \varepsilon_{i,t}$. But this is a special case of the interactive effects structure.

$$r = 2$$
, $\lambda_i = (\eta_i, 1)' \& \mathbf{f}_t = (1, \tau_t)' \Rightarrow \lambda_i' \mathbf{f}_t = \eta_i + \tau_t$.

Neither first-differencing nor the within transformation will remove the common factor component.

The use of multiplicative time dummies at a group level (e.g. using the absorb function in Stata) is not warranted.

To illustrate, let r = 1 and $u_{i,t} = \lambda_i f_t + \varepsilon_{i,t}$.

We can rewrite this as $u_{i,t} = u_{i,t} \pm \lambda_{g_i} f_t = \lambda_{g_i} f_t + \varepsilon_{i,t} + (\lambda_i - \lambda_{g_i}) f_t$

.: Covariates remain correlated w.r.t. the nonlinear error component.

Technical Issues

$$y_{i,t} = \alpha_i y_{i,t-1} + \psi_i \sum_{j=1}^{N} w_{i,j} y_{j,t} + \mathbf{x}'_{i,t} \boldsymbol{\beta}_i + \boldsymbol{\lambda}'_i \mathbf{f}_t + \varepsilon_{i,t}.$$

- 3 potential sources of endogeneity
 - Lagged dependent variable is endogenous by construction;
 - Spatial lag variable is endogenous by construction;
 - Covariates may also be correlated with the composite error;
- "How many factors?"
- "Incidental parameters problem"
- "Asymptotic analysis with $N, T \to \infty$ jointly"
- "Heterogeneous Slope Parameters"

Econometric literature: large N, T asymptotics

$$y_{i,t} = \alpha_i y_{i,t-1} + \psi_i \sum_{j=1}^N w_{i,j} y_{j,t} + \mathbf{x}'_{i,t} \boldsymbol{\beta}_i + \lambda'_i \mathbf{f}_t + \varepsilon_{i,t}$$

Dynamic panels with additive fixed effects: $(\psi = 0, \lambda_i' \mathbf{f}_t = \eta_i + \tau_t)$ e.g. Hahn-Kuersteiner 2002, Alvarez-Arellano 2003, Hayakawa 2015;

Spatial panels with additive fixed effects: ($\alpha = 0$, $\lambda_i' \mathbf{f}_t = \eta_i + \tau_t$) e.g. Yu-De Jong-Lee 2008, Korniotis 2010, Lee-Yu 2014;

Dynamic panels with "interactive fixed effects": ($\psi = 0$) e.g. Chudik-Pesaran 2015, Moon-Weidner 2017, Juodis-Sarafidis 2021;

Present agenda sits on the intersection of the above strands of literature. Most approaches available are based on QMLE (Shi-Lee 2017, Bai-Li 2021);

No literature on spatial, dynamic panels with heterogeneous coefficients.

Contribution (Homogeneous case)

- Cui-Sarafidis-Yamagata 2023 put forward a two-stage spatial IV (2SIV) estimator; consistent and asy. normal under $N, T \to \infty$, s.t. $N/T \to c$, $0 < c < \infty$;
- 2SIV is linear and easy to compute;
 In contrast, for QMLE, estimation of the Jacobian matrix of likelihood function is computational intensive. MC: for N = T = 200. QMLE is 60 times slower.
- 2SIV is asymptotically unbiased;
 QMLE suffers from asy. bias due to incidental parameters ⇒ severe size distortions. Bias-correction is based on true # of factors;
- 2SIV can accommodate **endogenous regressors** (provided there are exogenous instruments available.)

Contribution cont. (Heterogeneous case)

- Chen-Cui-Sarafidis-Yamagata 2025 put forward a Mean Group spatial IV estimator; consistent and asy. normal under N, $T \to \infty$, s.t. $N/T^2 \to 0$;
- MGIV is given by

$$\widehat{\boldsymbol{\theta}}_{MGIV} = \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{\theta}}_{i},$$

where
$$\widehat{\boldsymbol{\theta}}_i = \left(\widehat{\alpha}_i, \widehat{\psi}_i, \widehat{\boldsymbol{\beta}}_i'\right)'$$
.

- There exist no alternative methods in this case.
- Both 2SIV and MGIV are now available in Stata with the spxtivdfreg command
- net install xtivdfreg, from(https://www.kripfganz.de/stata) replace

Generalisations

$$y_{i,t} = \alpha y_{i,t-1} + \psi \sum_{j=1}^{N} w_{i,j} y_{j,t} + \mathbf{x}'_{i,t} \boldsymbol{\beta} + \lambda'_{i} \mathbf{f}_{t} + \varepsilon_{i,t}$$
$$+ \psi_{1} \sum_{j=1}^{N} w_{i,j} y_{j,t-1} + \gamma' \sum_{j=1}^{N} w_{i,j} \mathbf{x}_{j,t} + \sum_{s=2}^{p} \alpha_{s} y_{i,t-s}.$$

"Spatial-time lag" (sometimes "contagion")

"Exogenous network effects", or "contextual effects" (the "Spatial Durbin model")

"AR process of order > 1"

Could also think of "spatially-correlated unobservables", through ε_{it} . But not jointly identified (Manski, 1993).

Model in stacked form

Stacking the T observations for each i yields

$$\mathbf{y}_{i} = \alpha \mathbf{y}_{i,-1} + \psi \sum_{j=1}^{N} w_{i,j} \mathbf{y}_{j} + \mathbf{X}_{i} \boldsymbol{\beta} + \mathbf{F} \boldsymbol{\lambda}_{i} + \boldsymbol{\varepsilon}_{i};$$
 (2)

or

$$\mathbf{y}_i = \mathbf{C}_i \boldsymbol{\theta} + \mathbf{u}_i, \tag{3}$$

where $\mathbf{C}_i = (\mathbf{y}_{i,-1}, \sum_{j=1}^N w_{i,j} \mathbf{y}_j, \mathbf{X}_i)$, $\boldsymbol{\theta} = (\alpha, \psi, \beta')'$ and $\mathbf{u}_i = \mathbf{F} \boldsymbol{\lambda}_i + \boldsymbol{\varepsilon}_i$.

We assume

$$\mathbf{X}_{i} = \mathbf{F}_{x} \mathbf{\Gamma}_{i} + \mathbf{V}_{i}. \tag{4}$$

F & \mathbf{F}_{\times} can overlap, be identical or completely different. Similarly, λ_i and Γ_i can be mutually correlated.

Outline of two-stage IV procedure (Stage 1)

Remove \mathbf{F}_{x} from \mathbf{X} (i.e. we "defactor" \mathbf{X}) using PCA (e.g. Bai 2003);

Let
$$\mathbf{M}_{\widehat{\mathbf{F}}_{x,-\tau}} = \mathbf{I}_T - \widehat{\mathbf{F}}_{x,-\tau} \left(\widehat{\mathbf{F}}'_{x,-\tau} \widehat{\mathbf{F}}_{x,-\tau} \right)^{-1} \widehat{\mathbf{F}}'_{x,-\tau}$$
, where

$$\left(\frac{1}{NT}\sum_{i=1}^{N}\mathbf{X}_{i,-\tau}\mathbf{X}'_{i,-\tau}\right)\widehat{\mathbf{F}}_{x,-\tau}=\widehat{\mathbf{F}}_{x,-\tau}\widehat{\Omega}_{\tau}.$$
 (5)

We formulate $\hat{\mathbf{Z}}_i$ based on defactored covariates:

$$\underbrace{\widehat{\mathbf{Z}}_{i}}_{T\times 3K} = \left(\mathbf{M}_{\widehat{\mathbf{F}}_{x}}\mathbf{X}_{i}, \quad \mathbf{M}_{\widehat{\mathbf{F}}_{x,-1}}\mathbf{X}_{i,-1}, \quad \sum_{j=1}^{N} w_{ij}\mathbf{M}_{\widehat{\mathbf{F}}_{x}}\mathbf{X}_{j}\right), \tag{6}$$

and estimate heta using

$$\widehat{\boldsymbol{\theta}}_{1SIV} = \left(\widehat{\mathbf{A}}'\widehat{\mathbf{B}}^{-1}\widehat{\mathbf{A}}\right)^{-1}\widehat{\mathbf{A}}'\widehat{\mathbf{B}}^{-1}\widehat{\mathbf{c}},\tag{7}$$

$$\widehat{\mathbf{A}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}' \mathbf{C}_{i}; \quad \widehat{\mathbf{B}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}' \widehat{\mathbf{Z}}_{i}; \quad \widehat{\mathbf{c}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}' \mathbf{y}_{i}.$$

Outline of two-stage IV procedure (Stage 2)

Project out **F** from \mathbf{u}_i (\mathbf{y}_i) using the 1SIV residuals, $\hat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{C}_i \hat{\theta}_{1SIV}$; Next, run IV regression again using the same instruments:

$$\widehat{\boldsymbol{\theta}}_{2SIV} = (\widetilde{\mathbf{A}}'\widetilde{\mathbf{B}}^{-1}\widetilde{\mathbf{A}})^{-1}\widetilde{\mathbf{A}}'\widetilde{\mathbf{B}}^{-1}\widetilde{\mathbf{c}}$$
 (8)

$$\widetilde{\mathbf{A}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}^{\prime} \mathbf{M}_{\widehat{\mathbf{F}}} \mathbf{C}_{i}, \widetilde{\mathbf{B}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}^{\prime} \mathbf{M}_{\widehat{\mathbf{F}}} \widehat{\mathbf{Z}}_{i}, \widetilde{\mathbf{c}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}^{\prime} \mathbf{M}_{\widehat{\mathbf{F}}} \mathbf{y}_{i}.$$

 $\widehat{\boldsymbol{\theta}}_{2SIV}$ is free from asy. bias. QMLE is subject to two sources of asy. bias: (i) "Nickell bias" due to the presence of $\mathbf{y}_{i,-1}$; (ii) bias due to the defactoring of \mathbf{X}_i ; estimation error in $\widehat{\mathbf{F}}$ depends on \mathbf{U}_i , and this feeds in \mathbf{X}_i due to defactoring. That is, defactored regressors are asy. correlated with the error term.

Assumption (idiosyncratic error in **y**)

 $arepsilon_{i,t}$ is independently distributed across i and over t, with mean zero, $\mathbb{E}(arepsilon_{i,t}^2) = \sigma_{arepsilon}^2 > 0$ and $\mathbb{E}|arepsilon_{i,t}|^{8+\delta} \leq C < \infty$ for some $\delta > 0$.

Assumption (idiosyncratic error in x)

- **1** $\mathbf{v}_{i,t}$ is group-wise independent from $\varepsilon_{i,t}$, $\mathbb{E}(\mathbf{v}_{i,t}) = 0$ and $\mathbb{E}\|\mathbf{v}_{i,t}\|^{8+\delta} \leq C < \infty$;
- 2 Let $\Sigma_{i,j,s,t} \equiv \mathbb{E}\left(\mathbf{v}_{i,s}\mathbf{v}_{j,t}'\right)$. There exist $\bar{\sigma}_{i,j}$ and $\tilde{\sigma}_{s,t}$, $\|\Sigma_{i,j,s,t}\| \leq \bar{\sigma}_{i,j}$ for all (s,t), and $\|\Sigma_{i,j,s,t}\| \leq \bar{\sigma}_{s,t}$ for all (i,j), such that

$$\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{N}\bar{\sigma}_{i,j}\leq C<\infty, \frac{1}{T}\sum_{s=1}^{T}\sum_{t=1}^{T}\tilde{\sigma}_{s,t}\leq C<\infty,$$

$$\frac{1}{NT} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{s=1}^{T} \sum_{t=1}^{T} || \mathbf{\Sigma}_{i,j,s,t} || \leq C < \infty.$$

Assumption (factors)

 $\mathbb{E}\|\mathbf{f}_{x,t}\|^4 \leq C < \infty$, $T^{-1}\mathbf{F}_x'\mathbf{F}_x \xrightarrow{p} \Sigma_{F_x} > 0$ as $T \to \infty$ for some non-random positive definite matrix Σ_{F_x} . $\mathbb{E}\|\mathbf{f}_t\|^4 \leq C < \infty$, $T^{-1}\mathbf{F}'\mathbf{F} \xrightarrow{p} \Sigma_F > 0$ as $T \to \infty$ for some non-random positive definite matrix Σ_F . $\mathbf{f}_{x,t}$ and \mathbf{f}_t are group-wise independent from $\mathbf{v}_{i,t}$ and $\varepsilon_{i,t}$.

Assumption (factor loadings)

 $\Gamma_i \sim \mathrm{i.i.d}(\mathbf{0}, \Sigma_{\Gamma})$, $\lambda_i \sim \mathrm{i.i.d}(\mathbf{0}, \Sigma_{\lambda})$, where Σ_{Γ} and Σ_{λ} are positive definite. $\mathbb{E} \|\mathbf{\Gamma}_i\|^4 \leq C < \infty$, $\mathbb{E} \|\lambda_i\|^4 \leq C < \infty$. In addition, Γ_i and λ_i are independent groups from $\varepsilon_{i,t}$, $\mathbf{v}_{i,t}$, $\mathbf{f}_{x,t}$ and \mathbf{f}_t .

Assumption (spatial weighting matrix)

- **1** All diagonal elements of \mathbf{W}_N are zeros;
- 2 The row and column sums of the matrices \mathbf{W}_N and $(\mathbf{I}_N \psi \mathbf{W}_N)^{-1}$ are bounded uniformly in absolute value.
- 3

$$\sum_{\ell=0}^{\infty} \| [\alpha (\mathbf{I}_{N} - \psi \mathbf{W}_{N})^{-1}]^{\ell} \|_{\infty} \le C; \quad \sum_{\ell=0}^{\infty} \| [\alpha (\mathbf{I}_{N} - \psi \mathbf{W}_{N})^{-1}]^{\ell} \|_{1} \le C$$

Assumption (identification)

- ① $\overline{\mathbf{A}} = plim_{N,T \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \mathbf{C}_{i}$ is fixed with full column rank, and $\overline{\mathbf{B}} = plim_{N,T \to \infty} \frac{1}{NT} \sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \mathbf{Z}_{i}$ is fixed and positive definite.
- $2 \mathbb{E} \left\| T^{-1} \mathbf{Z}_i' \mathbf{Z}_i \right\|^{2+2\delta} \leq C < \infty \text{ and } \mathbb{E} \left\| T^{-1} \mathbf{Z}_i' \mathbf{C}_i \right\|^{2+2\delta} \leq C < \infty \text{ for all } i, \ T.$

1SIV - Asymptotic Properties

Proposition

Under Assumptions A-F, we have

$$\frac{1}{\sqrt{NT}}\sum_{i=1}^{N}\widehat{\mathbf{Z}}_{i}'\mathbf{u}_{i}=\frac{1}{\sqrt{NT}}\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{u}_{i}+\sqrt{\frac{T}{N}}\mathbf{b}_{1}+\sqrt{\frac{N}{T}}\mathbf{b}_{2}+o_{p}\left(1\right).$$

Theorem

Under Assumptions A-F, as N, $T \to \infty$ such that N/T \to c, where $0 < c < \infty$, we have

$$\sqrt{NT}\left(\widehat{\theta}_{1SIV}-\theta\right)=O_{p}\left(1\right). \tag{9}$$

2SIV - Asymptotic Properties

Theorem

Under Assumptions A-F, as N, $T \to \infty$ such that N/T \to c, where $0 < c < \infty$, $\widehat{\theta}_{2SIV}$ is consistent and

$$\sqrt{\mathit{NT}}\left(\widehat{\boldsymbol{ heta}}_{\mathit{2SIV}} - \boldsymbol{ heta}\right) \overset{\mathit{d}}{\longrightarrow} \mathit{N}\left(\mathbf{0}, \boldsymbol{\Psi}\right)$$

where $\Psi = \sigma_{\varepsilon}^2 \left(\mathbf{A}_0' \mathbf{B}_0^{-1} \mathbf{A}_0 \right)^{-1}$, $\mathbf{A}_0 = \operatorname{plim}_{N,T \to \infty} \mathbf{A}$, $\mathbf{B}_0 = \operatorname{plim}_{N,T \to \infty} \mathbf{B}$, with

$$\mathbf{A} = \frac{1}{NT} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{C}_{i}, \mathbf{B} = \frac{1}{NT} \sum_{i=1}^{N} \mathbf{Z}_{i}' \mathbf{Z}_{i}.$$

Moreover, $\widetilde{\Psi} - \Psi \stackrel{p}{\longrightarrow} \mathbf{0}$ as $N, T \to \infty$, where $\widetilde{\Psi} = \widetilde{\sigma}_{\varepsilon}^2 \left(\widetilde{\mathbf{A}}' \widetilde{\mathbf{B}}^{-1} \widetilde{\mathbf{A}} \right)^{-1}$.

Outline of MGIV procedure

We further assume that $\theta_i = \theta + \mathbf{e}_i$, where $\theta = (\alpha, \psi, \beta')'$ and \mathbf{e}_i is a random i.i.d. error with mean zero and variance Σ_{θ} .

First, recover estimates of θ_i as follows:

$$\widehat{\boldsymbol{\theta}}_i = \left(\widehat{\mathbf{A}}_i'\widehat{\mathbf{B}}_i^{-1}\widehat{\mathbf{A}}_i\right)^{-1}\widehat{\mathbf{A}}_i'\widehat{\mathbf{B}}_i^{-1}\widehat{\mathbf{c}}_i,$$

where

$$\widehat{\boldsymbol{A}}_i = \mathcal{T}^{-1} \widehat{\boldsymbol{Z}}_i' \boldsymbol{C}_i, \hspace{0.5cm} \widehat{\boldsymbol{B}}_i = \mathcal{T}^{-1} \widehat{\boldsymbol{Z}}_i' \widehat{\boldsymbol{Z}}_i, \hspace{0.5cm} \widehat{\boldsymbol{c}}_i = \mathcal{T}^{-1} \widehat{\boldsymbol{Z}}_i' \boldsymbol{y}_i,$$

and $\hat{\mathbf{Z}}_i = (\mathbf{M}_{\hat{\mathbf{F}}} \mathbf{M}_{\hat{\mathbf{F}}_{-1}} \mathbf{X}_{i,-1}, \ \sum_{j=1}^N w_{ij} \mathbf{M}_{\hat{\mathbf{F}}} \mathbf{X}_j, \ \mathbf{M}_{\hat{\mathbf{F}}} \mathbf{X}_i)$ as the instruments in the estimation of $\boldsymbol{\theta}_i$.

Subsequently, we construct the sample average of $\widehat{\theta}_i$ as

$$\widehat{\boldsymbol{\theta}}_{MGIV} = \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{\theta}}_{i}.$$

MGIV - Asymptotic Properties

Theorem

Under aforementioned assumptions, as $N,T\to\infty$ such that $N/T^2\to 0$, then $\widehat{\theta}_{MGIV}$ is consistent for the population mean θ . If, it further holds that $N/T^{6/5}\to 0$, then $\widehat{\theta}_{MGIV}$ has the following asymptotic distribution

$$\sqrt{N}(\widehat{\boldsymbol{\theta}}_{MGIV} - \boldsymbol{\theta}) \stackrel{d}{\longrightarrow} N(\mathbf{0}, \ \Sigma_{\boldsymbol{\theta}}), \text{ as } N, T \to \infty.$$

Remarks

- DGP for covariates: $x_{i,t} = \gamma_i' \mathbf{f}_t + v_{i,t}$;
 - Frequently employed in economics or econometrics (e.g. Pesaran et al. 2013, Westerlund-Urbain 2015, Hansen-Liao 2018 etc.)
- As least one element of β must not equal to zero;
- Endogeneity of $X_i \Rightarrow$ use external instruments, e.g. $\widetilde{Z}_i = \widetilde{F}\widetilde{\Gamma}_i + \widetilde{V}_i$;

Simulation Experiments - Design

$$y_{i,t} = \eta_i + \alpha y_{i,t-1} + \psi \sum_{j=1}^{N} w_{i,j} y_{j,t} + \sum_{\ell=1}^{2} \beta_{\ell} x_{\ell,i,t} + \sum_{s=1}^{r_y} \lambda_{s,i} f_{s,t} + \varepsilon_{i,t}; \quad r_y = 3.$$
(10)

$$x_{\ell,i,t} = \mu_{\ell,i} + \sum_{s=1}^{r_x} \gamma_{\ell,s,i} f_{(x),s,t} + \nu_{\ell,i,t}; \quad r_x = 2; \quad i = 1, \dots, N; t = -49, \dots, T.$$
(11)

$$i = 1, \ldots, N; t = -49, \ldots, T.$$

 $arepsilon_{i,t}$, is non-normal and heteroskedastic across both i and t, such that $arepsilon_{i,t} = \varsigma_{arepsilon} \sigma_{i,t} (\epsilon_{i,t}-1)/\sqrt{2}, \; \epsilon_{i,t} \sim i.i.d.\chi_1^2, \; \text{with} \; \sigma_{i,t}^2 = g_i \phi_t, \; g_i \sim i.i.d.\chi_2^2/2, \; \text{and} \; \phi_t = t/T \; \text{for} \; t = 0, 1, ..., T \; \text{and} \; \text{unity otherwise}.$

All remaining time-varying error components are AR(1) processes with parameter equal to .5. All individual-specific error components are correlated, $\alpha_{\eta,\mu}=0.5$.

We set $\varsigma_{\varepsilon}^2$ s.t. $\pi_u \in \{1/4, 3/4\}$. We set $var(v_{\ell it})$ s.t. SNR = 4. We set $\alpha = 0.4$, $\psi = 0.25$, and $\beta_1 = 3$ and $\beta_2 = 1$, following Bai (2009).

Variance estimator for 2SIV

In order to allow for cross-section and time series heteroskedasticity, the variance estimator for 2SIV is

$$\widetilde{\boldsymbol{\Psi}} = \left(\widetilde{\boldsymbol{\mathsf{A}}}'\widetilde{\boldsymbol{\mathsf{B}}}^{-1}\widetilde{\boldsymbol{\mathsf{A}}}\right)^{-1}\widetilde{\boldsymbol{\mathsf{A}}}'\widetilde{\boldsymbol{\mathsf{B}}}^{-1}\widehat{\boldsymbol{\mathsf{\Omega}}}\widetilde{\boldsymbol{\mathsf{B}}}^{-1}\widetilde{\boldsymbol{\mathsf{A}}}\left(\widetilde{\boldsymbol{\mathsf{A}}}'\widetilde{\boldsymbol{\mathsf{B}}}^{-1}\widetilde{\boldsymbol{\mathsf{A}}}\right)^{-1},\tag{12}$$

with

$$\widehat{\mathbf{\Omega}} = \frac{1}{NT} \sum_{i=1}^{N} \widehat{\mathbf{Z}}_{i}' \mathbf{M}_{\widehat{\mathbf{H}}} \widehat{\mathbf{u}}_{i}' \widehat{\mathbf{u}}_{i}' \mathbf{M}_{\widehat{\mathbf{H}}} \widehat{\mathbf{Z}}_{i}, \tag{13}$$

and $\hat{\mathbf{u}}_i = \mathbf{y}_i - \mathbf{C}_i \hat{\boldsymbol{\theta}}_{1SIV}$.

$$\mathbf{\hat{Z}}_{i} = \left(\mathbf{M}_{\widehat{\mathbf{F}}}\underline{\mathbf{X}}_{i}, \quad \mathbf{M}_{\widehat{\mathbf{F}}_{-1}}\underline{\mathbf{X}}_{i,-1}, \quad \mathbf{M}_{\widehat{\mathbf{F}}}\sum_{j=1}^{N} w_{ij}\underline{\mathbf{X}}_{j}, \quad \mathbf{M}_{\widehat{\mathbf{F}}_{-1}}\sum_{j=1}^{N} w_{ij}\underline{\mathbf{X}}_{j,-1}\right). \tag{14}$$

Results (homogeneous case)

Table 1A. RMSE, $\pi_u = 3/4$

Table 1A. RIVISE, $\pi_u=3/4$							
$\alpha (= 0.4)$	2SIV QMLE						
au	1	2	4	1	2	4	
$N = 100\tau$, $T = 25\tau$.017	.007	.004	.014	.006	.003	
N=25 au, $T=100 au$.014	.007	.003	.008	.004	.002	
N=50 au, $T=50 au$.015	.003	.003	.009	.005	.002	
ψ (= 0.25)		2SIV			QMLE		
au	1	2	4	1	2	4	
N=100 au, $T=25 au$.019	.008	.004	.033	.015	.006	
N=25 au, $T=100 au$.017	.008	.004	.023	.010	.005	
N=50 au, $T=50 au$.017	.008	.004	.025	.011	.005	
$\beta_2 (=1)$		2SIV			QMLE		
$\overline{ au}$	1	2	4	1	2	4	
N=100 au, $T=25 au$.066	.025	.012	.093	.029	.012	
N=25 au, $T=100 au$.049	.025	.012	.118	.040	.014	
N=50 au, $T=50 au$.050	.024	.012	.086	.028	.012	

Results ctd

Table 1B. ARB, $\pi_u=3/4$, $ARB\equiv\Big($	$ \widehat{ heta}_{\ell} - heta_{\ell} / heta_{\ell} $	× 100
--	---	-------

Tuble 1B. Fixed, $\kappa_{\parallel} = 3/1$, Fixed = $\left(\frac{ \partial \ell }{ \partial \ell } \frac{ \partial \ell }{ \partial \ell } \right) \times 100$								
$\alpha (= 0.4)$	2SIV			QMLE				
au	1	2	4	1 2 4				
N=100 au, $T=25 au$.082	.104	.054	2.52 1.08 .551				
N=25 au, $T=100 au$.116	.033	.008	.169 .087 .080				
$N = 50\tau$, $T = 50\tau$.074	.026	.017	.870 .493 .225				
$\psi (= 0.25)$	2SIV			QMLE				
$\overline{\tau}$	1	2	4	1 2 4				
N=100 au, $T=25 au$.119	.112	.080	.216 .159 .113				
N=25 au, $T=100 au$.054	.009	.016	.156 .226 .007				
N=50 au, $T=50 au$.218	.039	.012	.026 .092 .001				

$$β_2(=1)$$
 2SIV QMLE

 $τ$ 1 2 4 1 2 4

 $N = 100τ$, $T = 25τ$.947 .087 .039 6.41 1.35 .379

 $N = 25τ$, $T = 100τ$.043 .043 .003 7.10 1.81 .361

 $N = 50τ$, $T = 50τ$.222 .023 .023 5.18 1.15 .228

Results ctd

Table 1C. Size (nominal size = 5%), $\pi_u = 3/4$

Table 1C. Size (nominal size = 5%), $\pi_u = 5/4$							
$\alpha (= 0.4)$	2SIV QMLE						
au	1	2	4	1	2	4	
N=100 au, $T=25 au$.065	.059	.052	.361	.293	.286	
N=25 au, $T=100 au$.084	.066	.048	.138	.085	.079	
$N = 50\tau$, $T = 50\tau$.052	.056	.053	.146	.121	.109	
$\psi (= 0.25)$		2SIV			QMLE		
$\overline{\tau}$	1	2	4	1	2	4	
N=100 au, $T=25 au$.062	.051	.052	.392	.258	.134	
N=25 au, $T=100 au$.094	.062	.054	.156	.078	.070	
$N = 50\tau$, $T = 50\tau$.076	.060	.054	.213	.139	.068	
$\beta_2 (=1)$	2SIV QMLE						
au	1	2	4	1	2	4	
$N = 100\tau$, $T = 25\tau$.109	.057	.055	.415	.142	.079	
N=25 au, $T=100 au$.086	.074	.059	.531	.306	.134	
N=50 au, $T=50 au$.063	.052	.050	.369	.156	.090	

Spillovers and Drivers of U.S. Population Growth

Kripfganz-Sarafidis 2025 specify:

$$\Delta y_{i,t} = \delta_i y_{i,t-1} + \psi_i \sum_{j=1}^{N} w_{i,j} \Delta y_{j,t} + \sum_{\ell=1}^{4} \beta_{\ell,i} x_{\ell,i,t} + \lambda_i \mathbf{f}_t + \eta_i + \tau_t + \varepsilon_{i,t},$$

$$i = 1, \dots, N (= 49) \text{ and } t = 1, \dots, T (= 52), \text{ i.e. } 1966 - 2017.$$
(15)

```
\Delta y_{i,t} \equiv \ln(pop_{i,t}) - \ln(pop_{i,t-1}): population growth; y_{i,t-1} \equiv \ln(pop_{i,t-1}): lagged level of logged population; \Delta y_{j,t} \equiv \ln(pop_{j,t}): population growth of state j; x_{1,i,t} \equiv TFP_{i,t}: "Total Factor Productivity"; x_{2,i,t} \equiv \ln(amenities)_{i,t}: logged "amenities"; x_{3,i,t} \equiv \ln(income_{i,t}): logged labour income; x_{4,i,t} \equiv \ln(MigCost)_{i,t}: logged migration frictions.
```

 $\mathbf{f}_t := \text{nationwide demographic/institutional shocks}$ (changes in fertility/aging patterns, shifts in federal immigration policy, national housing and credit cycles).

 $\delta_i := \text{conditional convergence: pop. converges (diverges) if } \delta_i < 0 \ (\delta_i > 0) \ \forall i.$

Network Specification

Our baseline model estimates **W** from the data using the method of Juodis-Kapetanios-Sarafidis 2025.

We also consider contiguity and distance-based networks:

$$w_{i,j} = \begin{cases} 1, & \text{if } j \text{ shares common border with } i \\ 0, & \text{otherwise,} \end{cases}$$
 (16)

and

$$w_{i,j} = \begin{cases} 1/d_{i,j}, & \text{if } d_{i,j} \le c \\ 0, & \text{otherwise,} \end{cases}$$
 (17)

where c denotes the cth percentile of the empirical distribution of $d_{i,j}$.

Finally, we set $w_{i,j,t} = 1/(\text{trade-inflows})_{i,j,t}$, where $(\text{trade-inflows})_{i,j,t}$ represents the value of trade inflows from state j to state i at time t.

Instruments & Marginal Effects

We use the following instruments:

$$\widehat{\mathbf{Z}}_{i} = \left(\mathbf{M}_{\widehat{\mathbf{F}}}\mathbf{X}_{i}, \ \mathbf{M}_{\widehat{\mathbf{F}}}\mathbf{M}_{\widehat{\mathbf{F}}_{-1}}\mathbf{X}_{i,-1}, \ \mathbf{M}_{\widehat{\mathbf{F}}}\mathbf{M}_{\widehat{\mathbf{F}}_{-2}}\mathbf{X}_{i,-2}, \right.$$

$$\mathbf{M}_{\widehat{\mathbf{F}}}\sum_{j=1}^{N} w_{i,j}\mathbf{X}_{j}, \ \mathbf{M}_{\widehat{\mathbf{F}}}\mathbf{M}_{\widehat{\mathbf{F}}_{-1}}\sum_{j=1}^{N} w_{i,j}\mathbf{X}_{j,-1}, \ \mathbf{M}_{\widehat{\mathbf{F}}}\mathbf{M}_{\widehat{\mathbf{F}}_{-2}}\sum_{j=1}^{N} w_{i,j}\mathbf{X}_{j,-2}\right).$$
(18)

Distinguish among direct, indirect and total effects:

$$\mathbf{y}_{(t)} = [\mathbf{I}_{N} - \psi \mathbf{W}]^{-1} \left(\delta \mathbf{y}_{(t-1)} + \sum_{\ell=1}^{k} \beta_{\ell} \mathbf{x}_{\ell(t)} + \mathbf{u}_{(t)} \right), \quad (19)$$

$$\left[\frac{\partial E\left(\mathbf{y}\right)}{\partial x_{\ell 1}} \dots \frac{\partial E\left(\mathbf{y}\right)}{\partial x_{\ell N}}\right] = \left[\mathbf{I}_{N} - \psi \mathbf{W}\right]^{-1} \beta_{\ell}. \tag{20}$$

spxtivdfreg command in Stata

Kripfganz, S. and V. Sarafidis (2025). <u>Estimating Spatial Dynamic Panel Data Models with Common Factors</u>, *Journal of Statistical Software*, 113(6), 1–27.

For time-invariant networks, we specify:

spxtivdfreg D.lnPop L.lnPop TFP Amenity
lnLaborInc_pc MigTradeCost, absorb(statefp
year) splag spmatrix("W_contiguity.xlsx",
import) iv(TFP Amenity lnLaborInc_pc
MigTradeCost, splags lag(2)) mg factmax(4)

For time-varying networks we use:

spxtivdfreg D.lnPop L.lnPop TFP Amenity
lnLaborInc_pc MigTradeCost, absorb(statefp
year) splag spmatrix("W_*_trade.xlsx", import)
iv(TFP Amenity lnLaborInc_pc MigTradeCost,
splags lag(2)) mg factmax(4)

spxtivdfreg command in Stata

If we want to include: (i) spatial-time lags; (ii) spatial lags of covariates (SDM); and (iii) lags of the dependent variable, we specify:

```
spxtivdfreg D.lnPop L.lnPop TFP Amenity
lnLaborInc_pc MigTradeCost, absorb(statefp
year) splag sptlags(#) spindepvars(varlist)
tlags(#) spmatrix("W_contiguity.xlsx", import)
iv(TFP Amenity lnLaborInc_pc MigTradeCost,
splags lag(2)) mg factmax(4)
```

The command is very flexible, as it allows: defactoring individual covariates (useful for common covariates without cross-sectional variation), saving individual-specific estimated coefficients, computing direct/indirect/total effects, computing spillins/spillouts, and many other options.

Table 1: Homogeneous (2SIV) Slope Coefficients

	ŵ	W_1	\mathbf{W}_2	W_3	W_4	W ₅
$y_{i,t-1}$ (lagged population)	-0.016***	-0.022***	-0.014***	-0.019***	-0.025***	-0.025***
	(0.006)	(0.005)	(0.004)	(0.005)	(0.005)	(0.005)
$x_{1,i,t}$ (TFP)	0.000	0.002	0.002**	0.003**	0.002**	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$x_{2,i,t}$ (amenities)	0.005***	0.006***	0.006***	0.006***	0.007***	0.006***
	(0.000)	(0.001)	(0.000)	(0.000)	(0.000)	(0.000)
$x_{3,i,t}$ (labour income)	0.038***	0.030***	0.033***	0.031***	0.032***	0.033***
	(0.004)	(0.004)	(0.005)	(0.005)	(0.003)	(0.004)
$x_{4,i,t}$ (migration cost)	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
$\sum_{j=1}^{N} w_{i,j} \Delta y_{j,t}$ (spatial lag)	0.335***	0.083***	0.169***	0.135***	0.230*	0.538***
	(0.038)	(0.013)	(0.037)	(0.034)	(0.125)	(0.141)
N χ ² _J ρ _J r _x r _y	49 36.504 0.006 2 1 0.614	49 35.064 0.009 2 1 0.702	49 33.895 0.013 2 1 0.745	49 33.261 0.016 2 1 0.744	49 34.584 0.011 2 1 0.739	49 34.678 0.010 2 1 0.700

 $\widehat{\mathbf{W}}$ denotes the data-driven network obtained based on Juodis-Kapetanios-Sarafidis 2025. \mathbf{W}_1 is contiguity; $\mathbf{W}_2 - \mathbf{W}_3$ are inverse-distance (10th/5th percentile cutoffs); $\mathbf{W}_4 - \mathbf{W}_5$ are trade-based (time-averaged/time-varying).

Heterogeneity in Conditional Convergence

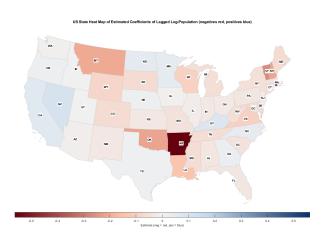


Figure: U.S. Heat Map of Estimated Coefficients of Lagged Log-Population (negatives red, positives blue).

Average Marginal Effects - Direct/Indirect

	MGIV						
	ŵ	W_1	\mathbf{W}_2	W_3	W_4	W_5	
Direct effects							
Lagged population	-0.051***	-0.046***	-0.048***	-0.050***	-0.050***	-0.052	
	(0.015)	(0.013)	(0.013)	(0.014)	(0.014)	_	
TFP	0.005**	0.001	0.003	0.003	0.005	0.004	
	(0.003)	(0.003)	(0.003)	(0.003)	(0.004)	_	
Amenities	0.007***	0.006***	0.006***	0.006***	0.006***	0.006	
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	_	
Labour income	0.051***	0.051***	0.052***	0.053***	0.052***	0.051	
	(0.012)	(0.011)	(0.012)	(0.013)	(0.011)	_	
Migration cost	-0.004***	-0.002***	-0.003***	-0.002***	-0.003***	-0.003	
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	_	
Indirect effects							
Lagged population	-0.028**	-0.049***	-0.039***	-0.030***	-0.127	-0.075	
	(0.011)	(0.018)	(0.013)	(0.009)	(0.135)	_	
TFP	0.003**	0.001	0.002	0.002	0.014	0.005	
	(0.001)	(0.003)	(0.003)	(0.002)	(0.016)	_	
Amenities	0.004***	0.006***	0.005***	0.004***	0.016	0.008	
	(0.001)	(0.002)	(0.002)	(0.001)	(0.017)	_	
Labour income	0.028***	0.054**	0.043***	0.032***	0.131	0.074	
	(0.010)	(0.022)	(0.014)	(0.009)	(0.137)	_	
Migration cost	-0.002***	-0.002***	-0.002***	-0.001***	-0.008	-0.004	
	(0.000)	(0.001)	(0.001)	(0.000)	(800.0)	_	

 $[\]widehat{\mathbf{W}}$ denotes the data-driven network obtained based on Juodis-Kapetanios-Sarafidis 2025. \mathbf{W}_1 is contiguity; $\mathbf{W}_2 - \mathbf{W}_3$ are inverse-distance (10th/5th percentile cutoffs); $\mathbf{W}_4 - \mathbf{W}_5$ are trade-based (time-averaged/time-varying).

Spillouts originating from Midwest States

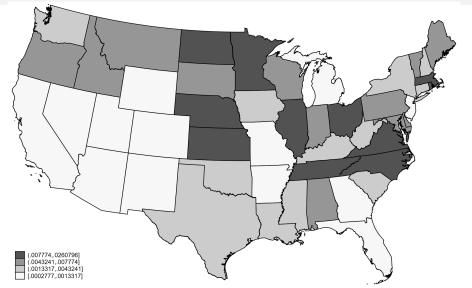


Figure: Spillouts Originating from the Midwest Region.

U.S. Population Growth Network

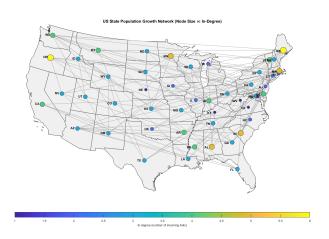


Figure: U.S. States Population Growth Network.

Concluding Remarks

- We put forward two IV estimators for homogeneous and heterogeneous models; Both are asy. unbiased, consistent and asy. normal under N, $T \to \infty$;
- Both IV estimators are linear and computationally inexpensive, and can accommodate endogeneity;
- spxtivdfreg implements these estimators in Stata and is very flexible as it allows for:
 - importing W from a csv/Excel file;
 - W being time-varying;
 - different instrumentation and defactoring strategies;
 - computation of direct/indirect effects and spillins/spillouts.

Pillars of the *spxtivdfreg* command

The spxtivdfreg Stata command draws upon the following work:

- Cui, G., Chen, J., Sarafidis, V., and T. Yamagata. 2025. <u>Estimating Spatial Dynamic Panel Data Models with Common Factors in Stata</u>. Unpublished Manuscript, arXiv:2501.18467v1.
- Cui, G., Sarafidis, V., and T. Yamagata. 2023. IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude Toward Risk. Econometrics Journal, Vol. 26(2), pp. 124-146.
- Juodis, A., Sarafidis, V., and G. Kapetanios. 2025. Identification and estimation of panel network models using high-dimensional regression. Unpublished Manuscript.
- Kripfganz, S., and V. Sarafidis. 2025. <u>Estimating Spatial Dynamic Panel Data Models with Common Factors in Stata</u>. *Journal of Statistical Software*, Vol. 113(6), pp. 1-27.
- Kripfganz, S., and V. Sarafidis. 2025. Chasing Opportunity: Spillovers and Drivers of U.S. State Population Growth. Invited contribution.

Thank you so much for listening!

