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INTRODUCTION — QUANTILE REGRESSION

Since Koenker and Bassett (1978) (Conditional) Quantile Regression
(CQR) is a general approach to estimate conditional quantile partial
effects (CQPE), i.e., the effect of a covariate (ceteris paribus) on the
conditional quantile distribution of the outcome.

For example, a linear quantile regression model

Qy[miX1] = Bo(m) + B (M)X

CQRis a useful way to represent heterogeneity across quantiles.



INTRODUCTION — UNCONDITIONAL QUANTILE REGRESSION

Unconditional Quantile Regression (UQR) was originally proposed by
Firpo, Fortin, and Lemieux (2009, FFL).

UQR provides a method to evaluate the impact of changes in the
distribution of the explanatory variables on quantiles of the
unconditional (marginal) distribution of the outcome variable.

UQR leads to the unconditional quantile partial effect (UQPE), which
refers to the effect of a covariate (ceteris paribus) on the
unconditional quantiles of the outcome variable.



INTRODUCTION - QR VS UQR

The interpretations of CQPEx (1, x) and UQPEx () are different.
The CQPEx(n,x) amounts to manipulating X locally at x and
evaluating the impact on the n-quantile of Y|X = x.
Ex.: The impact of one additional year of education on the
conditional distribution of wages, conditional on all
observables.
The UQPEx () is obtained by a global change in X and evaluating the
impact on the t- quantile of V.

Ex.: The impact of one additional year of education on the
unconditional distribution of wages.



INTRODUCTION — THIS PAPER

We provide a way to deal with endogeneity to estimate UQPE.

Our approach combines a Control Function along with a new
expression for the UQPE which relies on CQPEs.

Based on this, we propose a novel estimator for UQPE under
endogeneity.



RELATED LITERATURE

Although the literature on applications of UQR methods is extensive,

the literature on theoretical developments is relatively small.

The seminal paper is Firpo, Fortin, and Lemieux (2009).

Rothe (2010, 2012) propose some generalizations, including an
identification result in the endogenous case.

Inoue, Li, and Xu (2022) tackle UQR in a two-sample problem, Sasaki,
Ura, and Zhang (2022) develop high-dimensional UQR.

In previous work, we study a new estimation method for the
“exogenous” case.



RELATED LITERATURE

There are multiple methods to solve endogeneity in standard CQR.
Chernozhukov, Hansen, and Wiithrich (2017) provide a nice
overview.

Chernozhukov and Hansen (2004, 2005, 2006, 2008) develop a very
prolific IVQR procedure that has been applied in several contexts.

Ma and Koenker (2006) present an estimator for a triangular recursive
structural equation model, which is useful in our approach.

The partially linear model of Lee (2007) is also related our approach.



(CONDITIONAL) QUANTILE REGRESSION

Consider a general model Y = g(X, U), where X = (X1,X})".
X1 is the target variable of interest and is a scalar, and is continuous.

Xy isa (d - 1) x 1 vector consisting of other observable covariates.

U consists of unobservables.



(CONDITIONAL) QUANTILE REGRESSION

Let Qy[n|X1,X> ] be the conditional n-quantile:
Pr(Y < Qy[nlX1,X2][X1,X2) =n.

The typical object of study of CQR is the conditional quantile partial
effect (CQPE):

0Qy[n|X1 = 2,X2 = x7]
0z

CQPEY, (,x) : =

Z=X1

Interpretation: marginal effect of X; on the conditional quantile of Y
when X7 = x3 and X3 = x3.

If Qy[n|X1] = Bo(m) + B1(n)X1, then CQPEX, (n,x) = B1(M).



UNCONDITIONAL QUANTILE REGRESSION

Consider the counterfactual outcome
Vs x, = 9(X1+8,X,U),

where & captures a “small” location change in the variable Xj.

Y5 x, is the outcome we would observe if every individual receives an

additional quantity 6 of X;.
The unconditional quantile partial effect (UQPE) is defined as

Qv; -Q
UapE (1) - lim Vo, [Ti Y[T].



UNCONDITIONAL QUANTILE REGRESSION

Identification of UQPEy, () for the “exogenous” case is due to FFL:

OFy,(Q )
UQPEx, (T) = - fy(Qi[T]) f i g[T“Z %) dFy(x).

z Z=X1

Note that UQPEy, (T) o< an average derivative.
FFL propose several ways to estimate the UQPE.

The most popular approach is the re-centered influence function (RIF)
regression method, commonly referred to as RIF regression.
Itis a two-step procedure, where in the first stage one estimates
the RIF, and in the second step, a standard OLS regression of the
RIF on covariates estimates the UQPE.



UNCONDITIONAL QUANTILE REGRESSION

Now UQPEy, (T) under endogeneity.

If X7 is correlated with U, then standard identification breaks down:

OFyv(Q ,
UQPEy, (1) + _fy(Qi[T]) f vix g[T]lZ X2) oy (X).

Z Z=X1




UNCONDITIONAL QUANTILE REGRESSION

Identification of UQPEy, (T) under endogeneity is due to Rothe (2010).
It relies on a valid control variable.
Suppose there is valid control variable V: X; 1 €|Xp, V.

Sketch of identification under endogeneity:

Pr(Ysx, <¥)
= /\7 fx Pr(Yé,X1 <yX=x,V=v)dFyy(x,v)
= '/;7 A Pr(g(xl + 6,X2, £) < y|X =x,V = V)dFX,V(X,V)

= [7 ‘/f)\C Pr(g(XLXz’ E) < y|X1 =X1+ 6’X2 = X2, V= V)dFX,V(X1 V)'

The last step is possible because of X 1 €]|V.



UNCONDITIONAL QUANTILE REGRESSION

Therefore, for “small” 3, the counterfactual CDF is

From (V) =E [FY|X,V(Y|X1 +8,X2, V)] :

Support of (X + 0, V) is a subset of the support of (X, V) for small 5.
We are interested in the marginal effect.

This corresponds to the limiting case when 6 — 0.

Under some mild conditions

FY(S,Xl (y) _FY(y)
m
5—0 )

= E[0 P 06 1)].



UNCONDITIONAL QUANTILE REGRESSION

Recall that our object of interest is UQPEy, (T) defined above.

To obtain the UQPEy, (T), we combine this latter result with the
Hadamard derivative of the quantile functional, yielding

E [0 Fyp (Q:LY I V)]
fy (Q<[Y])

1 OFypx,v (Qc[Y]Ix,v)
D b )

UQPEy, (T) := -




UNCONDITIONAL QUANTILE REGRESSION

Compared to the exogenous case, we need to add V.

The three estimation methods proposed originally by FFL can be
adapted to this case.

Our aim, instead, is to relate UQPEy, (T) to conditional quantiles to
provide a different estimation strategy.



UQPE IN TERMS OF CQPE

Consider the “augmented” CQPE

0Qq[YX =x,V = V]

3

Since Q.[Y|X =x,V = v], is the inverse of Fy|y ,,(:|x, v), their derivatives
are related by

aFY‘X,V(Qn[Y]X =x,V=v]x,v)/ox;
fy v (QnlYIX =X,V = v]x,v)

CQPEx, (M, x,v) = —



UQPE IN TERMS OF CQPE

Contrast with

1 OFypx,v (Qc[Y]Ix,v)
UQPEXl (T) = _—fy(QT[Y]) /V ./;C aXl dFX,V(X, V).

UQPEy, (T) is integrating CQPEy, (n, x, v) but at different quantile

levels.



UQPE IN TERMS OF CQPE

Consider &¢(x,v) : (0,1) x XV — (0,1) given by
L6 v) ={n:QqYIX =X,V =v] = Q[Y]}.

For fixed T, X = x, and V = v, this function matches the conditional

quantiles with the unconditional quantiles.

This is a version of the matching function introduced by FFL.



UQPE IN TERMS OF CQPE

Here &<(x,Vv) is an interval.

ET(X) V)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,




UQPE IN TERMS OF CQPE

Here & (x,Vv) is empty.
1

Fyix=x,v=v(¥)

Ex(x,v)




UQPE IN TERMS OF CQPE

The CQPEy, (n,x, V) evaluated atn = & (x,v) is given by

B 1 OFy v (Q<[Y]Ix,v)
fyx,v (Qz[Y]x, v) 0x1

CQPEy, (&x(x,v),x,v) =

>

because Qg _ () [YIX =X,V =v] = Q<[Y].

Similarly, UQPEy, (T) can be written as

1 OFypx v (Q<[Y]Ix,v)
fr(Q<[Y]) JVx 0xq

fY|X,V(QT[Y]|X’ V)fX,V(X’ V)
= fvxCQPEXl(ET(X,v),x,V) (7]

dFy v (x,v)

UQPEx, (T) =

Averaging CQPEy, (&<(x,v),x,v) does not yield UQPEy, (7).



UQPE IN TERMS OF CQPE

By combining all the densities, we obtain

fY|X,V(QT[Y] |X’ V)fX,V(X’ V)
fy(Q<[Y])

= fy vy (6 VIQ<[Y]).
Hence,

UQPEY, (1) = fv fx CQPEx, (£, V), X, V)fy, yy (X, VIQy [] ) dxclv,

which can be expressed succinctly as a reverse projection:

UQPEy, () = E[CQPEX, (£<(X, V), X,V)|Y = Q[Y]].



UQPE IN TERMS OF CQPE

We have

UQPEy, () = E[CQPEX, (&x(X, V), X, V)|Y = Q<[¥]].

This result allows to solve the UQPE level endogeneity by first solving
the CQPE endogeneity, and then properly averaging out over the
CQPE given the unconditional quantile of Y.

In practice, we assume a particular triangular model at the CQPE level.



HETEROGENEITYIN T

Besides being a suggestion for a different estimation strategy, it can
help us understand where the t-heterogeneity is coming from at the
UQPE level.

Recall this a local average of (random) quantile slopes:
UQPEY, (T) = E [CQPEX, (£x(X, V), X, V)|Y = Q<[Y]].

The random slopes are given by &+ (X, V).
OUQPEY, (T)/dt depends on how & (X, V) moves with T, and how the

slopes move with n.



A TRACTABLE TRIANGULAR MODELLING

We specify a location-scale linear triangular model:

Y=vy+X o+ (1+X0)¢,
Xy =Z'm+ U,

where & = (1, ), 0 = (01,07), T = (711,717).

In this model, since the first stage is linear/invertible, we have that a
control variable is
V=U=X-Z'm



A TRACTABLE TRIANGULAR MODELLING

Recall the structural model
Y=v+X o+ (1+X0)e
Now consider how the n-conditional quantile function of ¥
QulYIX, V] =7y + QqlelV] + X' (ac+ 0Qn[e|V])

The key is the modeling of Q,[¢|V].

We consider a parametric approach as in Koenker and Ma (2006, KM)

p
%mm=§wmws



A TRACTABLE TRIANGULAR MODELLING

If the first stage is not invertible, one can resort to the idea of
“set-valued control functions” as introduced by Han and Kaido (2024).

In this case, we lose point identification.

This implications are left for future work.



COMPARISON TO THE EXOGENOUS CASE

The case where Xj is exogenous is much easier to handle.

Assume first that

Qy[nX1 = x1,X2 = x2] =x1B1(n) +x5B2(n) =x'B(n),

Then CQPEy, (&x(x),x) = B1(&x(x)), and UQPEy, () has the
convenient form

UQPEy, () = E[B1(&x(X))|Y = Qy[T]].

The estimator is a nonparametric regression of the quantile slopes
{B1(&x(x))} 1y on {y;}i; evaluated at Qy[t].



PRACTICAL ESTIMATION

In the first step, the control variable, V, is estimated as the residuals of
the OLS regression of X1 on Z (recall Z contains X5).

In the second step, the CQPE are estimated.

In the third step, after finding the matched coefficients, we compute
the unconditional quantile partial effect (UQPE) by non-parametrically
estimating the conditional expectation.

The third step requires estimating the matching function &+(-), and
the unconditional quantile Qy[t] as well.



PRACTICAL ESTIMATION

For the first stage, let 7t be the OLS estimators of the regression of X;
on Z. Then, the residuals are:

\7,' =Xy leﬁ

This is the estimated control variable.



ESTIMATION

In the second stage, we do mn-quantile regression of ¥, on
X, V,X oV).

Define w; := (x1j,X1iVj, X5, Vj, X5, ® V7).

In particular, we start with a grid of m values of n’s given by
Hm={e<mi<-<nj<<nm<l-e},ec (0,%).

Solve the following quantile regression program eachn;:
A R L A,
B(n;) =arg mﬁm o > Pn; (Yi - Wiﬁ),
i=1

where pyy(u) = u(m - 1{u < 0}) is the check function.



ESTIMATION

The estimated conditional quantile linear fit is
Qn, [YIW] = w'B(ny),
and the conditional quantile effect is
C’Qﬁfxl(ﬂj,f/) = Bl(nj) + Bz(ﬂj)V-

where Bl(nj) and Bz(nj) are the first two elements of B(nj).



ESTIMATION

Now we need to estimate the matching function:

Ex(x,v) = {n (VX =x,V=v]= QT[Y]}'

First we need the unconditional quantile Q[Y] which is estimated as

.12
Q[Y] =argmin =" pr(y; - q).

9 n-
For a fixed quantile of interest T, we estimate the matching function in
the following way fori=1,...,n:

5 if Qc[V] < Qny[YIW;];
Ex(w;) = nje Hm if Onj[YWVi] <Q[Y] < @nj+1[y|'7'/i]
NMm € Hm if OT[Y] < Qnm YW1,



ESTIMATION

Finally to estimate UQPEy, (), we have

UQPEy, () = E[CQPE, (&x(W),V)|Y = Q«[V]]
= b+ b1Q<[Y] + ... + bpQ<[Y]P,

where ([)O, Bl, ce, Bp)’ are the OLS coefficients of the regression of
CQPEy, (&x(W)), ;) on (1,5, ¥2,..., ¥7).

Other nonparametric estimators could be used, such as Kernel-based
estimators:

S 1 Kn(yi = Qy[T]) - CQPEY, (& (W;), ¥7)

UQPEx, () = 1 K (vi = Qr[T])




MONTE CARLO SIMULATIONS

We consider the following model:

Y=X1+Xo+ (1+6X1)(U+AV)
X1=1+Z+X+V,

where X5 ~ N(15,2),Z ~ N(15,2), U ~ N(0,1) and V ~ N(0, 1).
Heterogenous effects: 0 = {0,1}

Endogeneity: A = {0,1}

n = {500,5000}

mp = {19,99}

T ={0.25,0.50,0.75}



MONTE CARLO SIMULATIONS

In general, there is no closed form for the UQPE.

Instead we need to compute it numerically by approximating

QYE,Xl [T] - QY [T]
5 ’

UQPE)(l (T) N

for small d.



MONTE CARLO SIMULATIONS

Here are the numerical values for UQPE.

A 0 T UQPE

1 25 1.000

1 50 1.000
0 1 75 1.000
1 1 25 0.034
1 1 50 1.000
1 1 75 1945




HETEROGENEITY AND EXOGENOUS (A =0,0 = 1)

Bias Variance MSE
Estimator T n

QR IVQR QR IVQR QR IVQR
500  0.0669 0.1542  1.7003 3.3116 17047 3.3354
25 5000 0.0222 0.0138 0.1816 0.3657 0.1821  0.3659
Nadaraya - 500  0.0307 0.0502 14558 29010 1.4567  2.9035
Watson 50 5000 0.0200 0.0222 0.1482 0.2875 0.1487  0.2880
500 0.0703 0.0744 17472 3.7617 17522 3.7673
75 5000 0.0208 -0.0005 0.1650 0.3422 0.1654 0.3422
500 0.0670  0.1550 1.6958 3.3014 17003  3.3254
25 5000 0.0221 0.0138 0.1815 03649 0.1820  0.3650
OLS - Cubic 500  0.0285 0.0477 14488 2.8897 1.4497  2.8920
model 50 5000 0.0196 0.0218 0.1482 0.2876 0.1486  0.2881
500  0.0646  0.0688 17399 3.7540 17441 3.7588
75 5000 0.0197 -0.0012 0.1648 0.3422 0.1652  0.3422

Note: Monte Carlo experiments based on 1000 simulations.



HETEROGENEITY AND ENDOGENOUS (A =1,0 = 1)

Bias Variance MSE
Estimator T n

QR IVQR QR IVQR QR IVQR
500 16.257 0.2097 1.9522  4.7279  266.226 4.7718
25 5000 16.218 0.0320 0.2080 0.4399 263.225 0.4409
Nadaraya - 500 16.002 0.1333 1.6526  4.6334 257.709 4.6512
Watson 50 5000 15.953 -0.0017 0.1851 0.4404 254.668 0.4404
500 15.818 0.1248 1.7962 5.2540 251.998 5.2696
75 5000 15.724 0.0133 0.1986  0.4905 247.455 0.4907
500 16.275 0.1863 1.9468 4.7262 266.808 4.7609
25 5000 16.232 0.0287 0.2088  0.4428 263.677 0.4436
OLS - Cubic 500 15.998 0.1374 1.6555 4.6333 257.579 4.6521
model 50 5000 15952  -0.0008  0.1847 0.4420 254.663 0.4420
500 15.785 0.1430 1.7752  5.1996  250.944  5.2201
75 5000 15.707 0.0169 0.1969 0.4882 246.904 0.4885

Note: Monte Carlo experiments based on 1000 simulations.



MONTE CARLO SIMULATIONS

Estimator

Nadaraya - Watson

OLS - Cubic model

Gaussian  Percentile Gaussian Percentile

500 0.952 0.952 0.956 0.954

25 1000 0.954 0.946 0.952 0.944

A=1,0=1 500 0.960 0.954 0.962 0.954
U~N(0,1) 50 1000  0.952 0.938 0.952 0.932
500 0.960 0.950 0.960 0.952

75 1000 0.936 0.936 0.936 0.934

500 0.942 0.918 0.944 0.932

25 1000 0.954 0.940 0.958 0.944

A=10=1 500 0.930 0.920 0.930 0.920
U~ (X, -1/V2 50 1000  0.958 0.950 0.948 0.952
500 0.930 0.926 0.928 0.926

75 1000 0.956 0.948 0.948 0.946




EMPIRICAL APPLICATION: CLASS SIZE AND EDUCATIONAL
PERFORMANCE

Reference: Angrist, Battistin, and Vuri (2017).
Data: information on 140,010 classes in the Italian education system
for the period 2009 to 2011.

Test results in mathematics and language conducted in grades 2 and 5.

Identification strategy: IV using an administrative rule.



EMPIRICAL APPLICATION: CLASS SIZE AND EDUCATIONAL
PERFORMANCE

y; the test score (math or language),
sj class size (endogenous variable),

x; other controls (gender, background, employment status, parental
education, etc.).

Administrative rule: Ministerial Decree 331/98

- 'g
%ig = [int((rg—1)/cg) +1]

where zjg is the predicted size of class i in grade g, rq is the beginning
of the year enrollment at grade g and cq is the relevant cap per grade
in force in the administrative rule.



EFFECTS OF CLASS SIZE ON EDUCATIONAL PERFORMANCE

Math ‘ Italian

QR-NW (no1V)  MK-NW (V) \ QR-NW (no1IV)  MK-NW (IV)

Q10 0.0263** 0.00920 0.0385*** 0.0225
(0.0114) (0.0232) (0.0120) (0.0207)
Q25 0.00458 -0.0175 0.000620 -0.0148
(0.0101) (0.0190) (0.00918) (0.0166)
Q50 -0.0187* -0.0606*** -0.0312*** -0.0560***
(0.0103) (0.0166) (0.00806) (0.0155)
Q75 -0.0527*** -0.106*** -0.0555*** -0.0855***
(0.0138) (0.0219) (0.00946) (0.0182)
Q90 -0.0902*** -0.142*** -0.0696*** -0.109***
(0.0205) (0.0377) (0.0149) (0.0285)
Mean -0.0198* -0.0609*** -0.0176** -0.0451***
(0.0104) (0.0176) (0.00878) (0.0162)
Observations 22,976 22,976 22,976 22,976

Notes: Extract from the database used in Angrist, Battistin, and Vuri (2017), only for the Lombardy region. The unit of observation is the
class. Class size coefficients show the effect of ten students. Standard errors in parentheses, bootstrap of 200 replicates.



EFFECTS OF CLASS SIZE ON MATH SCORES

— QR-NW
——— 95% Conf. Interval
— MK-NW
——— 95% Conf. Interval

Standardized math score

T T T T
0 20 40 60 80 100
Quantile



EMPIRICAL APPLICATION

We replicate results similar to Angrist, Battistin, and Vuri (2017) for
the effects on the mean.

Heterogeneity: increasing class size negatively affects high-achieving
students.

Endogeneity: the above result is strengthened if we control for the
endogeneity of class size using the Maimonides Rule as IV.

Mechanisms? (effect of ability in the unobservables? students,
teachers, both?)



CONCLUSION

We study UQPE under endogeneity.

With a valid CF, UQPE can be identified through the conditional
average of CQPE given the unconditional quantile of the dependent
variable of interest.

Based on this identification result, we propose a three-step estimator
that combines a triangular model with a non-parametric estimator.

Monte Carlo simulations show that the proposed methods have good
finite sample properties.



Thank you!



