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INTRODUCTION – QUANTILE REGRESSION

• Since Koenker and Bassett (1978) (Conditional) Quantile Regression
(CQR) is a general approach to estimate conditional quantile partial
effects (CQPE), i.e., the effect of a covariate (ceteris paribus) on the
conditional quantile distribution of the outcome.

• For example, a linear quantile regression model

QY[η∣X1] = β0(η) +β1(η)X

• CQR is a useful way to represent heterogeneity across quantiles.



INTRODUCTION – UNCONDITIONAL QUANTILE REGRESSION

• Unconditional Quantile Regression (UQR) was originally proposed by
Firpo, Fortin, and Lemieux (2009, FFL).

• UQR provides a method to evaluate the impact of changes in the
distribution of the explanatory variables on quantiles of the
unconditional (marginal) distribution of the outcome variable.

• UQR leads to the unconditional quantile partial effect (UQPE), which
refers to the effect of a covariate (ceteris paribus) on the
unconditional quantiles of the outcome variable.



INTRODUCTION – QR VS UQR

• The interpretations of CQPEX(η, x) and UQPEX(τ) are different.

• The CQPEX(η, x) amounts to manipulating X locally at x and
evaluating the impact on the η-quantile of Y ∣X = x.
⇒ Ex.: The impact of one additional year of education on the

conditional distribution of wages, conditional on all
observables.

• The UQPEX(τ) is obtained by a global change in X and evaluating the
impact on the τ- quantile of Y .
⇒ Ex.: The impact of one additional year of education on the

unconditional distribution of wages.



INTRODUCTION – THIS PAPER

• We provide a way to deal with endogeneity to estimate UQPE.

• Our approach combines a Control Function along with a new
expression for the UQPE which relies on CQPEs.

• Based on this, we propose a novel estimator for UQPE under
endogeneity.



RELATED LITERATURE

• Although the literature on applications of UQR methods is extensive,
the literature on theoretical developments is relatively small.

• The seminal paper is Firpo, Fortin, and Lemieux (2009).

• Rothe (2010, 2012) propose some generalizations, including an
identification result in the endogenous case.

• Inoue, Li, and Xu (2022) tackle UQR in a two-sample problem, Sasaki,
Ura, and Zhang (2022) develop high-dimensional UQR.

• In previous work, we study a new estimation method for the
“exogenous” case.



RELATED LITERATURE

• There are multiple methods to solve endogeneity in standard CQR.
Chernozhukov, Hansen, andWüthrich (2017) provide a nice
overview.

• Chernozhukov and Hansen (2004, 2005, 2006, 2008) develop a very
prolific IVQR procedure that has been applied in several contexts.

• Ma and Koenker (2006) present an estimator for a triangular recursive
structural equation model, which is useful in our approach.

• The partially linear model of Lee (2007) is also related our approach.



(CONDITIONAL) QUANTILE REGRESSION

• Consider a general model Y = g(X,U), where X = (X1, X′2)′.

• X1 is the target variable of interest and is a scalar, and is continuous.

• X2 is a (d − 1) × 1 vector consisting of other observable covariates.

• U consists of unobservables.



(CONDITIONAL) QUANTILE REGRESSION

• Let QY[η∣X1, X2] be the conditional η-quantile:

Pr(Y ≤ QY[η∣X1, X2]∣X1, X2) = η.

• The typical object of study of CQR is the conditional quantile partial
effect (CQPE):

CQPEX1(η, x) : = ∂QY[η∣X1 = z, X2 = x2]
∂z

∣
z=x1

.

• Interpretation: marginal effect of X1 on the conditional quantile of Y
when X1 = x1 and X2 = x2.

– If QY[η∣X1] = β0(η) +β1(η)X1, then CQPEX1(η, x) = β1(η).



UNCONDITIONAL QUANTILE REGRESSION

• Consider the counterfactual outcome

Yδ,X1 = g(X1 + δ, X2,U),

where δ captures a “small” location change in the variable X1.

• Yδ,X1 is the outcome we would observe if every individual receives an
additional quantity δ of X1.

• The unconditional quantile partial effect (UQPE) is defined as

UQPEX1(τ) : = lim
δ→0

QYδ,X1
[τ] − QY[τ]
δ

.



UNCONDITIONAL QUANTILE REGRESSION

• Identification of UQPEX1(τ) for the “exogenous” case is due to FFL:

UQPEX1(τ) = −
1

fY(QY[τ]) ∫
∂FY ∣X(QY[τ]∣z, x2)

∂z
∣
z=x1

dFX(x).

• Note that UQPEX1(τ) ∝ an average derivative.

• FFL propose several ways to estimate the UQPE.

• The most popular approach is the re-centered influence function (RIF)
regression method, commonly referred to as RIF regression.

– It is a two-step procedure, where in the first stage one estimates
the RIF, and in the second step, a standard OLS regression of the
RIF on covariates estimates the UQPE.



UNCONDITIONAL QUANTILE REGRESSION

• Now UQPEX1(τ) under endogeneity.

• If X1 is correlated with U, then standard identification breaks down:

UQPEX1(τ) ≠ −
1

fY(QY[τ]) ∫
∂FY ∣X(QY[τ]∣z, x2)

∂z
∣
z=x1

dFX(x).



UNCONDITIONAL QUANTILE REGRESSION

• Identification of UQPEX1(τ) under endogeneity is due to Rothe (2010).

• It relies on a valid control variable.

• Suppose there is valid control variable V : X1 ⊥ ε∣X2,V .

• Sketch of identification under endogeneity:

Pr(Yδ,X1 ≤ y)

= ∫
V
∫
X

Pr(Yδ,X1 ≤ y∣X = x,V = v)dFX,V(x, v)

= ∫
V
∫
X

Pr(g(X1 + δ, X2, ε) ≤ y∣X = x,V = v)dFX,V(x, v)

= ∫
V
∫
X

Pr(g(X1, X2, ε) ≤ y∣X1 = x1 + δ, X2 = x2,V = v)dFX,V(x, v).

• The last step is possible because of X ⊥ ε∣V .



UNCONDITIONAL QUANTILE REGRESSION

• Therefore, for “small” δ, the counterfactual CDF is

FYδ,X1
(y) = E [FY ∣X,V(y∣X1 + δ, X2,V)] .

• Support of (X + δ,V) is a subset of the support of (X,V) for small δ.

• We are interested in the marginal effect.

• This corresponds to the limiting case when δ→ 0.

• Under some mild conditions

lim
δ→0

FYδ,X1
(y) − FY(y)

δ
= E [∂x1FY ∣X,V(y∣X,V)] .



UNCONDITIONAL QUANTILE REGRESSION

• Recall that our object of interest is UQPEX1(τ) defined above.

• To obtain the UQPEX1(τ), we combine this latter result with the
Hadamard derivative of the quantile functional, yielding

UQPEX1(τ) := −
E [∂x1FY ∣X,V(Qτ[Y]∣X,V)]

fY(Qτ[Y])

= − 1
fY(Qτ[Y]) ∫V∫X

∂FY ∣X,V(Qτ[Y]∣x, v)
∂x1

dFX,V(x, v).



UNCONDITIONAL QUANTILE REGRESSION

• Compared to the exogenous case, we need to add V .

• The three estimation methods proposed originally by FFL can be
adapted to this case.

• Our aim, instead, is to relate UQPEX1(τ) to conditional quantiles to
provide a different estimation strategy.



UQPE IN TERMS OF CQPE

• Consider the “augmented” CQPE

CQPEX1(η, x, v) := ∂Qη[Y ∣X = x,V = v]
∂x1

,

• Since Q⋅[Y ∣X = x,V = v], is the inverse of FY ∣X,V(⋅∣x, v), their derivatives
are related by

CQPEX1(η, x, v) = −
∂FY ∣X,V(Qη[Y ∣X = x,V = v]∣x, v)/∂x1

fY ∣X,V(Qη[Y ∣X = x,V = v]∣x, v) .



UQPE IN TERMS OF CQPE

• Contrast with

UQPEX1(τ) = −
1

fY(Qτ[Y]) ∫V∫X
∂FY ∣X,V(Qτ[Y]∣x, v)

∂x1
dFX,V(x, v).

• UQPEX1(τ) is integrating CQPEX1(η, x, v) but at different quantile
levels.



UQPE IN TERMS OF CQPE

• Consider ξτ(x, v) : (0, 1) ×XV→ (0, 1) given by

ξτ(x, v) = {η : Qη[Y ∣X = x,V = v] = Qτ[Y]} .

• For fixed τ, X = x, and V = v, this function matches the conditional
quantiles with the unconditional quantiles.

• This is a version of thematching function introduced by FFL.



UQPE IN TERMS OF CQPE

• Here ξτ(x, v) is an interval.

y

1

FY ∣X=x,V=v(y)

ξτ(x, v)

QY[τ]



UQPE IN TERMS OF CQPE

• Here ξτ(x, v) is empty.

y

1

ξτ(x, v)

FY ∣X=x,V=v(y)

QY[τ]



UQPE IN TERMS OF CQPE

• The CQPEX1(η, x, v) evaluated at η = ξτ(x, v) is given by

CQPEX1(ξτ(x, v), x, v) = − 1
fY ∣X,V(Qτ[Y]∣x, v)

∂FY ∣X,V(Qτ[Y]∣x, v)
∂x1

,

because Qξτ(x,v)[Y ∣X = x,V = v] = Qτ[Y].

• Similarly, UQPEX1(τ) can be written as

UQPEX1(τ) = −
1

fY(Qτ[Y]) ∫VX
∂FY ∣X,V(Qτ[Y]∣x, v)

∂x1
dFX,V(x, v)

= ∫
VX

CQPEX1(ξτ(x, v), x, v)
fY ∣X,V(Qτ[Y]∣x, v)fX,V(x, v)

fY(Qτ[Y])
dxdv.

• Averaging CQPEX1(ξτ(x, v), x, v) does not yield UQPEX1(τ).



UQPE IN TERMS OF CQPE

• By combining all the densities, we obtain

fY ∣X,V(Qτ[Y]∣x, v)fX,V(x, v)
fY(Qτ[Y])

= fX,V ∣Y(x, v∣Qτ[Y]).

• Hence,

UQPEX1(τ) = ∫V∫X CQPEX1(ξτ(x, v), x, v)fX,V ∣Y(x, v∣QY[τ])dxdv,

which can be expressed succinctly as a reverse projection:

UQPEX1(τ) = E [CQPEX1(ξτ(X,V), X,V)∣Y = Qτ[Y]] .



UQPE IN TERMS OF CQPE

• We have

UQPEX1(τ) = E [CQPEX1(ξτ(X,V), X,V)∣Y = Qτ[Y]] .

• This result allows to solve the UQPE level endogeneity by first solving
the CQPE endogeneity, and then properly averaging out over the
CQPE given the unconditional quantile of Y .

• In practice, we assume a particular triangular model at the CQPE level.



HETEROGENEITY IN τ

• Besides being a suggestion for a different estimation strategy, it can
help us understand where the τ-heterogeneity is coming from at the
UQPE level.

• Recall this a local average of (random) quantile slopes:

UQPEX1(τ) = E [CQPEX1(ξτ(X,V), X,V)∣Y = Qτ[Y]] .

• The random slopes are given by ξτ(X,V).

• ∂UQPEX1(τ)/∂τ depends on how ξτ(X,V)moves with τ, and how the
slopes move with η.



A TRACTABLE TRIANGULAR MODELLING

• We specify a location-scale linear triangular model:

Y = γ + X′α + (1 + X′θ)ε,

X1 = Z′π + U,

where α = (α1,α2), θ = (θ1,θ2), π = (π1,π2).

• In this model, since the first stage is linear/invertible, we have that a
control variable is

V = U = X1 − Z′π.



A TRACTABLE TRIANGULAR MODELLING

• Recall the structural model

Y = γ + X′α + (1 + X′θ)ε

• Now consider how the η-conditional quantile function of Y

Qη[Y ∣X,V] = γ + Qη[ε∣V] + X′(α + θQη[ε∣V])

• The key is the modeling of Qη[ε∣V].

• We consider a parametric approach as in Koenker and Ma (2006, KM)

Qη[ε∣V] =
p
∑
s=0

µ j(η)Vs



A TRACTABLE TRIANGULAR MODELLING

• If the first stage is not invertible, one can resort to the idea of
“set-valued control functions” as introduced byHan and Kaido (2024).

• In this case, we lose point identification.

• This implications are left for future work.



COMPARISON TO THE EXOGENOUS CASE

• The case where X1 is exogenous is much easier to handle.

• Assume first that

QY[η∣X1 = x1, X2 = x2] = x1β1(η) + x′2β2(η) = x′β(η),

• Then CQPEX1(ξτ(x), x) = β1(ξτ(x)), and UQPEX1(τ) has the
convenient form

UQPEX1(τ) = E [β1(ξτ(X))∣Y = QY[τ]] .

• The estimator is a nonparametric regression of the quantile slopes
{β1(ξτ(xi))}ni=1 on {yi}

n
i=1 evaluated at QY[τ].



PRACTICAL ESTIMATION

• In the first step, the control variable, V , is estimated as the residuals of
the OLS regression of X1 on Z (recall Z contains X2).

• In the second step, the CQPE are estimated.

• In the third step, after finding the matched coefficients, we compute
the unconditional quantile partial effect (UQPE) by non-parametrically
estimating the conditional expectation.

• The third step requires estimating the matching function ξτ(⋅), and
the unconditional quantile QY[τ] as well.



PRACTICAL ESTIMATION

• For the first stage, let π̂ be the OLS estimators of the regression of X1
on Z. Then, the residuals are:

v̂i := x1i − z′i π̂.

• This is the estimated control variable.



ESTIMATION

• In the second stage, we dom η-quantile regression of Y , on
(X′, V̂ , X′ ⊗ V̂)′.

• Define ŵi := (x1i, x1iv̂i, x′2i, v̂i, x
′
2i ⊗ v̂i)

′.

• In particular, we start with a grid ofm values of η’s given by
Hm = {ϵ < η1 < ⋯ < η j < ⋯ < ηm < 1 − ϵ}, ϵ ∈ (0, 1

2).

• Solve the following quantile regression program each η j:

β̂(η j) = arg min
β

1
n

n
∑
i=1

ρη j (yi − ŵ
′
iβ) ,

where ρη(u) = u(η − 1{u < 0}) is the check function.



ESTIMATION

• The estimated conditional quantile linear fit is

Q̂η j[Y ∣ŵ] = ŵ
′β̂(η j),

and the conditional quantile effect is

ĈQPEX1(η j, v̂) = β̂1(η j) + β̂2(η j)v̂.

where β̂1(η j) and β̂2(η j) are the first two elements of β̂(η j).



ESTIMATION
• Now we need to estimate the matching function:

ξτ(x, v) = {η : Qη[Y ∣X = x,V = v] = Qτ[Y]} .

• First we need the unconditional quantile Qτ[Y]which is estimated as

Q̂τ[Y] = arg min
q

1
n

n
∑
i=1

ρτ(yi − q).

• For a fixed quantile of interest τ, we estimate the matching function in
the following way for i = 1, ...,n:

ξ̂τ(ŵi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϵ if Q̂τ[Y] < Q̂η1[Y ∣ŵi];
η j ∈Hm if Q̂η j[Y ∣ŵi] ≤ Q̂τ[Y] < Q̂η j+1[Y ∣ŵi]
ηm ∈Hm if Q̂τ[Y] ≤ Q̂ηm[Y ∣ŵi],



ESTIMATION

• Finally to estimate UQPEX1(τ), we have

ÛQPEX1(τ) = Ê [ĈQPEX1(ξ̂τ(Ŵ), V̂)∣Y = Q̂τ[Y]]

= b̂0 + b̂1Q̂τ[Y] + . . . + b̂pQ̂τ[Y]p,

where (b̂0, b̂1, . . . , b̂p)′ are the OLS coefficients of the regression of
ĈQPEX1(ξ̂τ(ŵi), v̂i) on (1, yi, y2

i , . . . , ypi ).

• Other nonparametric estimators could be used, such as Kernel-based
estimators:

ÛQPEX1(τ) =
∑ni=1 Kh(yi − Q̂Y[τ]) ⋅ ĈQPEX1(ξ̂τ(ŵi), v̂i)

∑ni=1 Kh(yi − Q̂Y[τ])
.



MONTE CARLO SIMULATIONS

• We consider the following model:

Y = X1 + X2 + (1 + θX1)(U + λV)

X1 = 1 + Z + X2 + V ,

where X2 ∼ N(15, 2), Z ∼ N(15, 2), U ∼ N(0, 1) and V ∼ N(0, 1).

• Heterogenous effects: θ = {0, 1}

• Endogeneity: λ = {0, 1}

• n = {500, 5000}

• mn = {19, 99}

• τ = {0.25, 0.50, 0.75}



MONTE CARLO SIMULATIONS

• In general, there is no closed form for the UQPE.

• Instead we need to compute it numerically by approximating

UQPEX1(τ) ≈
QYδ,X1

[τ] − QY[τ]
δ

,

for small δ.



MONTE CARLO SIMULATIONS

• Here are the numerical values for UQPE.

λ θ τ UQPE

0 1 25 1.000
0 1 50 1.000
0 1 75 1.000

1 1 25 0.034
1 1 50 1.000
1 1 75 1.945



HETEROGENEITY AND EXOGENOUS (λ = 0,θ = 1)

Estimator τ n
Bias Variance MSE

QR IVQR QR IVQR QR IVQR

25
500 0.0669 0.1542 1.7003 3.3116 1.7047 3.3354

5000 0.0222 0.0138 0.1816 0.3657 0.1821 0.3659

Nadaraya -
50

500 0.0307 0.0502 1.4558 2.9010 1.4567 2.9035
Watson 5000 0.0200 0.0222 0.1482 0.2875 0.1487 0.2880

75
500 0.0703 0.0744 1.7472 3.7617 1.7522 3.7673

5000 0.0208 -0.0005 0.1650 0.3422 0.1654 0.3422

25
500 0.0670 0.1550 1.6958 3.3014 1.7003 3.3254

5000 0.0221 0.0138 0.1815 0.3649 0.1820 0.3650

OLS - Cubic
50

500 0.0285 0.0477 1.4488 2.8897 1.4497 2.8920
model 5000 0.0196 0.0218 0.1482 0.2876 0.1486 0.2881

75
500 0.0646 0.0688 1.7399 3.7540 1.7441 3.7588

5000 0.0197 -0.0012 0.1648 0.3422 0.1652 0.3422
Note: Monte Carlo experiments based on 1000 simulations.



HETEROGENEITY AND ENDOGENOUS (λ = 1,θ = 1)

Estimator τ n
Bias Variance MSE

QR IVQR QR IVQR QR IVQR

25
500 16.257 0.2097 1.9522 4.7279 266.226 4.7718

5000 16.218 0.0320 0.2080 0.4399 263.225 0.4409

Nadaraya -
50

500 16.002 0.1333 1.6526 4.6334 257.709 4.6512
Watson 5000 15.953 -0.0017 0.1851 0.4404 254.668 0.4404

75
500 15.818 0.1248 1.7962 5.2540 251.998 5.2696

5000 15.724 0.0133 0.1986 0.4905 247.455 0.4907

25
500 16.275 0.1863 1.9468 4.7262 266.808 4.7609

5000 16.232 0.0287 0.2088 0.4428 263.677 0.4436

OLS - Cubic
50

500 15.998 0.1374 1.6555 4.6333 257.579 4.6521
model 5000 15.952 -0.0008 0.1847 0.4420 254.663 0.4420

75
500 15.785 0.1430 1.7752 5.1996 250.944 5.2201

5000 15.707 0.0169 0.1969 0.4882 246.904 0.4885
Note: Monte Carlo experiments based on 1000 simulations.



MONTE CARLO SIMULATIONS

Estimator τ n
Nadaraya - Watson OLS - Cubic model

Gaussian Percentile Gaussian Percentile

25
500 0.952 0.952 0.956 0.954

1000 0.954 0.946 0.952 0.944

λ = 1, θ = 1
50

500 0.960 0.954 0.962 0.954
U ∼ N(0, 1) 1000 0.952 0.938 0.952 0.932

75
500 0.960 0.950 0.960 0.952

1000 0.936 0.936 0.936 0.934

25
500 0.942 0.918 0.944 0.932

1000 0.954 0.940 0.958 0.944

λ = 1, θ = 1
50

500 0.930 0.920 0.930 0.920
U ∼ (χ2

(1) − 1)/
√

2 1000 0.958 0.950 0.948 0.952

75
500 0.930 0.926 0.928 0.926

1000 0.956 0.948 0.948 0.946



EMPIRICAL APPLICATION: CLASS SIZE AND EDUCATIONAL
PERFORMANCE

• Reference: Angrist, Battistin, and Vuri (2017).

• Data: information on 140,010 classes in the Italian education system
for the period 2009 to 2011.

• Test results in mathematics and language conducted in grades 2 and 5.

• Identification strategy: IV using an administrative rule.



EMPIRICAL APPLICATION: CLASS SIZE AND EDUCATIONAL
PERFORMANCE

• yi the test score (math or language),

• si class size (endogenous variable),

• xi other controls (gender, background, employment status, parental
education, etc.).

• Administrative rule: Ministerial Decree 331/98

zig =
rg

[int ((rg − 1)/cg) + 1]

where zig is the predicted size of class i in grade g, rg is the beginning
of the year enrollment at grade g and cg is the relevant cap per grade
in force in the administrative rule.



EFFECTS OF CLASS SIZE ON EDUCATIONAL PERFORMANCE
Math Italian

QR-NW (no IV) MK-NW (IV) QR-NW (no IV) MK-NW (IV)

Q10 0.0263** 0.00920 0.0385*** 0.0225
(0.0114) (0.0232) (0.0120) (0.0207)

Q25 0.00458 -0.0175 0.000620 -0.0148
(0.0101) (0.0190) (0.00918) (0.0166)

Q50 -0.0187* -0.0606*** -0.0312*** -0.0560***
(0.0103) (0.0166) (0.00806) (0.0155)

Q75 -0.0527*** -0.106*** -0.0555*** -0.0855***
(0.0138) (0.0219) (0.00946) (0.0182)

Q90 -0.0902*** -0.142*** -0.0696*** -0.109***
(0.0205) (0.0377) (0.0149) (0.0285)

Mean -0.0198* -0.0609*** -0.0176** -0.0451***
(0.0104) (0.0176) (0.00878) (0.0162)

Observations 22,976 22,976 22,976 22,976
Notes: Extract from the database used in Angrist, Battistin, and Vuri (2017), only for the Lombardy region. The unit of observation is the

class. Class size coefficients show the effect of ten students. Standard errors in parentheses, bootstrap of 200 replicates.



EFFECTS OF CLASS SIZE ON MATH SCORES



EMPIRICAL APPLICATION

• We replicate results similar to Angrist, Battistin, and Vuri (2017) for
the effects on the mean.

• Heterogeneity: increasing class size negatively affects high-achieving
students.

• Endogeneity: the above result is strengthened if we control for the
endogeneity of class size using the Maimonides Rule as IV.

• Mechanisms? (effect of ability in the unobservables? students,
teachers, both?)



CONCLUSION

• We study UQPE under endogeneity.

• With a valid CF, UQPE can be identified through the conditional
average of CQPE given the unconditional quantile of the dependent
variable of interest.

• Based on this identification result, we propose a three-step estimator
that combines a triangular model with a non-parametric estimator.

• Monte Carlo simulations show that the proposed methods have good
finite sample properties.



Thank you!


