Treatment Effect Heterogeneity in Regression Discontinuity Designs: Methodology and the rdhte Package

Max H. Farrell

Joint work with Sebastian Calonico, Matias D. Cattaneo, Filippo Palomba, and Rocío Titiunik

November 6, 2025

Introduction

Motivation

- Many policies have effects that differ across individuals or groups.
- Understanding these heterogeneous treatment effects (HTE) is essential for:
 - Fairness and equity analysis
 - ► Targeted interventions
 - Policy design
- ▶ This project develops formal tools to study HTE in the regression discontinuity (RD) design
 - ▶ Method/theory to augment standard local polynomials with additional covariates
 - ► Fully feature package rdhte, complements rdrobust

References

- CCFPT (2025) "Treatment Effect Heterogeneity in Regression Discontinuity Designs"
- rdhte: Software implementing all results, see https://rdpackages.github.io/rdhte/

Background: Standard Sharp Regression Discontinuity

Model & Parameter of Interest

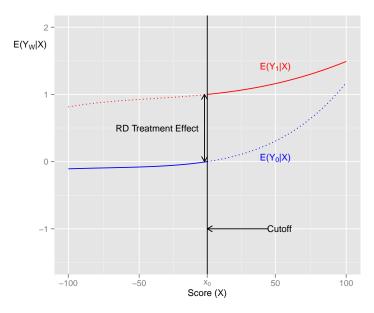
ightharpoonup Each unit i gets a continuous **score** X_i .

(test score, index value, vote share)

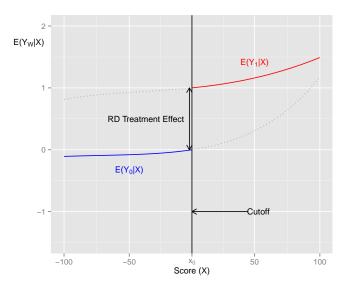
- ▶ Cutoff x_0 (I'll set $x_0 = 0$ most of the time)
- ▶ Potential outcomes $Y_i(0)$ and $Y_i(1)$; observed Y_i
- ▶ Parameter of interest = average treatment effect at the cutoff (not the usual ATE)

$$\tau_{\text{SRD}} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = x_0]$$

$$\tau_{SRD} = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x_0]$$



$$\tau_{\text{SRD}} = \underbrace{\mathbb{E}[Y_i(1) - Y_i(0) | X_i = x_0]}_{\text{Unobservable}} = \underbrace{\lim_{x \downarrow x_0} \mathbb{E}[Y_i | X_i = x]}_{\text{Observable}} - \underbrace{\lim_{x \uparrow x_0} \mathbb{E}[Y_i | X_i = x]}_{\text{Observable}}$$



RD Estimation & Inference

Estimating τ_{SRD}

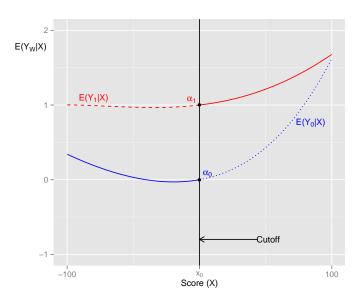
- Nonparametric regression problem
- ▶ Use **local polynomial regression**, usually local linear
- ► Choose a **bandwidth** to determine how local
- ► Conduct inference with robust bias correction (RBC)
- ► Industry standard rdrobust package

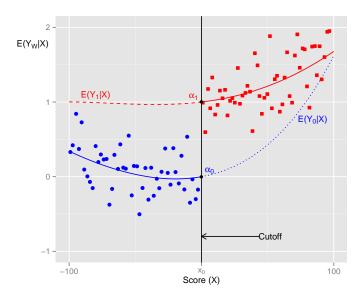
As a regression

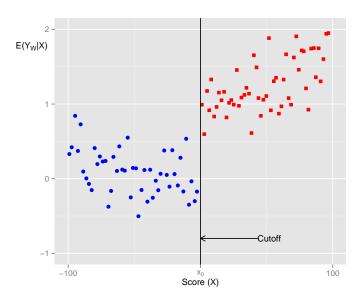
▶ After kernel weighting, run a linear regression:

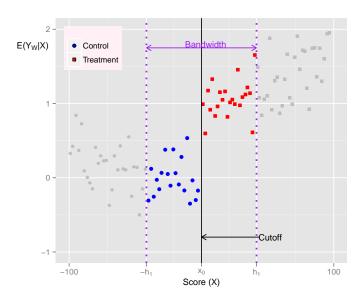
$$\dot{Y}_i = \dot{\mu} + \dot{\tau} T_i + \dot{\omega}_1 X_i + \dot{\omega}_2 T_i X_i.$$

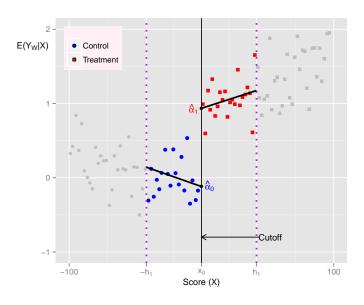
- ightharpoonup Same as separate regressions on either side $(\dot{ au}=\dot{lpha}_1-\dot{lpha}_0)$
- ► Cannot conduct inference using this linear regression, need RBC











Adding Covariates – Efficiency Only

Prior methodology work: add covariates for efficiency

- ► CCFT (2019) "Regression Discontinuity Designs Using Covariates"
- \triangleright Pre-treatment variables \mathbf{Z}_i
- ► Estimating equation for rdrobust:

$$\widetilde{Y}_i = \widetilde{\mu} + \widetilde{\tau} T_i + \widetilde{\omega}_1 X_i + \widetilde{\omega}_2 T_i X_i + \widetilde{\gamma}' \mathbf{Z}_i$$

- Not from separate fits on either side, common coefficient on Z
- \blacktriangleright Key: nonparametric in X_i , like standard RD, with a projection in \mathbf{Z}_i for feasibility
- ▶ Still estimating the average effect $\widetilde{\tau} \rightarrow_p \tau_{\mathtt{SRD}}$
- No heterogeneity!

Heterogeneity in RD?

Heterogeneity analysis is common in research

- ▶ In practice, researchers often explore whether RD effects differ by gender, income, region, etc.
- Mostly ad hoc, methods vary widely and are not always valid

Conditional (Local) Average Treatment Effect

- lacktriangle Pre-treatment variables \mathbf{W}_i (different from \mathbf{Z}_i)
- ► Parameter of interest is

$$\kappa(\mathbf{w}) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = 0, \mathbf{W}_i = \mathbf{w}].$$

This paper & package

- ▶ Formalize how to estimate heterogeneous treatment effects (HTE) in RD
- ▶ Simplify and unify empirical practice, add rigor but keep interpretability
- ▶ Maintain key RD idea & empirical feasibility: localization is based on X
- ▶ Package uses regress at heart, so it is fast, reliable, and has all the options

Main Ideas

- ightharpoonup Localize in X_i , not in \mathbf{W}_i
- ► Full nonparametric estimation is. . .
 - ▶ Unappealing in practice: curse of dimensionality, many bandwidth choices, small samples
 - \triangleright Perhaps not in the spirit of RD, only nonparametric in X
- ▶ Natural extension of rdrobust, keep all the rdrobust advantages

Our Estimation Method

$$\widehat{Y}_i = \widehat{\alpha} + \widehat{\theta} T_i + \widehat{\boldsymbol{\lambda}}' \mathbf{W}_i + \widehat{\boldsymbol{\xi}}' T_i \mathbf{W}_i + \widehat{\omega}_1 X_i + \widehat{\omega}_2 T_i X_i + \widehat{\omega}_3' X_i \mathbf{W}_i + \widehat{\omega}_4' T_i X_i \mathbf{W}_i$$

ightharpoonup Heterogeneous effect at some value $\mathbf{W} = \mathbf{w}$

$$\widehat{\kappa}(\mathbf{w}) = \widehat{\theta} + \widehat{\boldsymbol{\xi}}'\mathbf{w}$$

- lacktriangle The "intercept" $\widehat{\theta}$ is the baseline effect, the "slope" $\widehat{\xi}$ captures how the TE change with \mathbf{W}
- ▶ Localize with a bandwidth h, weight with a kernel $K(\cdot)$, then run reg
- \triangleright Add other efficiency covariates \mathbf{Z}_i if you want
- ▶ Inference using robust bias correction (don't grab standard errors from reg!)

Main Results

Most important: When does $\widehat{\kappa}(\mathbf{w})$ capture HTE?

▶ Requires that potential outcomes follow a functional coefficient model:

$$\mathbb{E}[Y_i(t)|X_i = x, \mathbf{W}_i = \mathbf{w}] = \beta_t(x) + \boldsymbol{\delta}_t(x)'\mathbf{w}$$

- Automatically holds for dummy variables (e.g., gender, region)
- ► For continuous W it's a mild semiparametric assumption
 - ▶ The W vector can include bins, polynomials, etc

Estimation/Inference Results: All the usual good stuff

- MSE expansion and bandwidth selection
 - Important to vary bandwidth (e.g. different size subgroups)
- Consistent standard errors (including clustering)
- Valid inference via RBC
 - ightharpoonup Confidence intervals for $\kappa(\mathbf{w})$
 - ► Tests across subgroups $\kappa(\mathbf{w}_1) = \kappa(\mathbf{w}_2)$

Empirical Illustration

Setting & data

- Brazilian mayoral elections & political turnover
- Klasnja & Titiunik (2017) APSR / Akhtari, Moreira, & Trucco (2022) AER
- ► RD design uses close elections
- ► Comparing municipalities where the incumbent party barely loses (resulting in political turnover) to those where the incumbent party barely wins (no turnover)
- ▶ Akhtari, Moreira, & Trucco find that turnover ⇒ expansion of municipal bureaucracy

Heterogeneity – Example for Today

- ightharpoonup Running variable X= vote margin
- lacktriangle Outcome Y= replacement of school headmasters
- ► Heterogeneity variable **W**: municipal income
 - Discretize income into buckets?
 - Use as continuous?

Empirical Analysis

Key Empirical Findings

- ▶ Large heterogeneity: effect is much stronger in low-income municipalities
- ► Formal inference confirms **statistically significant** heterogeneity
- ► Continuous analysis (using income directly) agrees with discretized results

Implementation

- ► Illustrate rdhte and post estimation
- Visualize results

Continuous Heterogeneity

▶ Linear in Income

. rdhte Y X, covs_hte(W) vce(hc2 cluster_id_var)

Sharp RD Heterogeneous Treatment Effects: Continuous.

	Cutoff c	= 0	1	Left of c	Right of c	Number of obs	=	26099
			+-			BW type	=	mserd
	Number of	obs	1	13689	12410	Kernel	=	Triangular
E	f. Number of	obs	1	7404	7188	VCE method	=	HC2
	Order est.	(p)	1	1	1			
	Order bias	(q)		2	2			
	BW est.	(h)		0.151	0.151			

Outcome: Y. Running variable: X.

W	•	Robust In		[95% Conf.	Interval]
=	0.472	5.669	0.000	0.307	0.632
	-0.217	-2.847	0.004	-0.381	-0.070

(Std. err. adjusted for 2515 clusters in cluster_id_var)

Continuous Heterogeneity

- Quadratic in Income
- ► STATA's factor/interaction syntax is allowed (c., i., etc)
 - . rdhte Y X, covs_hte(c.W##c.W) vce(hc2 cluster_id_var)

 ${\tt Sharp\ RD\ Heterogeneous\ Treatment\ Effects:\ Continuous.}$

Cutoff c	= 0	Left of c	Right of c	Number of obs	=	26099
		+		BW type	=	mserd
Number of	obs	13689	12410	Kernel	=	Triangular
Eff. Number of	obs	I 7404	7188	VCE method	=	HC2
Order est.	(p)	1	1			
Order bias	(q)	1 2	2			
BW est.	(h)	0.151	0.151			

Outcome: Y. Running variable: X.

c.W##c.W					Inference P> z	[95% Conf.	Interval]
T	i	0.625	-	3.447	0.001	0.248	0.903
T#c.W	-	-0.586	- 1	-1.202	0.229	-1.269	0.304
T#c.W#c.W	1	0.161		0.600	0.548	-0.255	0.480

(Std. err. adjusted for 2515 clusters in cluster_id_var)

- ► Split Income at the Median
- ► Linear combination testing requires our rdhte_lincom

. rdhte Y X, covs_hte(i.W_med) vce(cluster cluster_id_var)

Sharp RD Heterogeneous Treatment Effects: Subgroups.

Cutoff $c = 0$	Left of c	Right of c	Number of obs =	26099
	+		BW type =	mserd
Number of obs	13689	12410	Kernel =	Triangular
Order est. (p)	1	1	VCE method =	Cluster
Order bias (q)	1 2	2		

Outcome: Y. Running variable: X.

i.W_med	Point Estimate	Robust I	nference P> z	[95% Conf.	Interval]	Nh-	Nh+	h-	h+	
0.W_med 1.W_med		7.771 1.634	0.000 0.102	0.286 -0.022	0.479 0.246	5126 2844	4328 3232	0.187 0.160	0.187 0.160	

(Std. err. adjusted for 2667 clusters in cluster_id_var)

- Split Income at the Median
- ► Linear combination testing requires our rdhte_lincom

- Split Income at the Quartiles
- ► STATA's test command works fine

```
. rdhte Y X, covs_hte(i.W_qrt) vce(hc2 cluster_id_var)
```

Sharp RD Heterogeneous Treatment Effects: Subgroups.

Cutoff c =	= 0	Left of c	Right of c	Number of	obs =	26099
	+			BW type	=	mserd
Number of o	bs	13689	12410	Kernel	=	Triangular
Order est. ((p)	1	1	VCE method	=	HC2
Order bias ((a)	2	2			

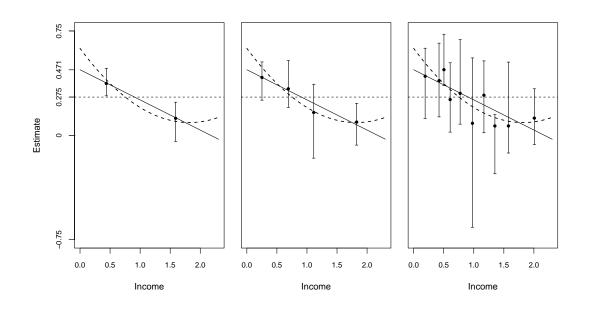
Outcome: Y. Running variable: X.

- 1	Point Estimate	Robust I: z-stat	nference P> z	[95% Conf.	Interval]	Nh-	Nh+	h-	h+
 0.W_qrt	•	5.710	0.000	0.256	0.524	2371	1983	0.151	0.151
1.W_qrt	0.334	4.457	0.000	0.207	0.531	2244	1888	0.166	0.166
2.W_qrt	0.164	0.793	0.428	-0.150	0.353	1134	1180	0.151	0.151
3.W_qrt	0.102	1.330	0.183	-0.051	0.265	1723	2116	0.175	0.175

(Std. err. adjusted for 2557 clusters in cluster_id_var)

- ► Split Income at the Quartiles
- ► STATA's test command works fine

Graphical Version



Conclusion

- ▶ Heterogeneous effects are key for modern policy evaluation
- ▶ The paper formalizes how to estimate and test them in RD settings
- ► Maintains RD's simplicity while adding rigor and interpretability
- rdhte implements all the results
- https://rdpackages.github.io/rdhte/
 - ► Package, papers, replication files