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From the End

» Combine machine learning with stochastic frontier analysis.

» Establish moment/parameter redundancy for use of post
double LASSO with MLE.

» Simple and effective step-wise estimator that preserves
efficiency and valid inference.



ALLOCATIVE EFFICIENCY VS. “X-EFFICIENCY”

By HARVEY LEIBENSTEIN*

At the core of economics is the concept of efficiency. Microeconomic
theory is concerned with allocative efficiency. Empirical evidence has
been accumulating that suggests that the problem of allocative efficien-
cy is trivial. Yet it is hard to escape the notion that efficiency in some
broad sense is significant. In this paper I want to review the empirical
evidence briefly and to consider some of the possible implications of
the findings, especially as they relate to the theory of the firm and to
the explanation of economic growth. The essence of the argument is that
microeconomic theory focuses on allocative efficiency to the exclusion
of other types of efficiencies that, in fact, are much more significant in
many instances. Furthermore, improvement in “nonallocative efficien-
cy” is an important aspect of the process of growth.



X-inefficiency?

The Xistence of X-Efficiency

By GEORGE J. STIGLER*

Harvey Leibenstein called attention in an
influential article (1966) to a source of eco-
nomic inefficiency which was given the awful
name of X-[in]efficiency. He cited studies in
which misallocations of resources due to
monopoly or tariffs had trifling social costs,
whereas simple failure to attain the produc-
tion frontier apparently led to social losses
of a vastly greater magnitude. I propose to
argue that this type of inefficiency can use-
fully be assimilated into the traditional
theory of allocative inefficiency.

It is a question (to be discussed below)
whether one ascribes failures to reach the
ultimate limits of output from given inputs
in any state of technology to inadequacy of
knowledge alone, or adds also inadequate
“motivation.” Leibenstein (1966) separates

[Flor the same set of human inputs pur-
chased and the same knowledge of pro-
duction techniques available to the firm,
a variety of output results are possible.
If individuals can choose, to some de-
gree, the APQT bundles [choice of Ac-
tivity, Pace, Quality of work, Time
spent] they like, they are unlikely to
choose a set of bundles that will maxi-
mize the value of output. [p. 768]

If management seeks to impose output-
maximizing APQT bundles on the workers,
indeed, these assignments of tasks would
likely be ¢ . .. less efficient than those that
individuals would choose themselves under
an acceptable set of [managerial] restraints”
(p. 769).

In this case, and in every motivational



X-inefficiency!

X-Inefficiency Xists—Reply to an Xorcist

By HARVEY LEIBENSTEIN*

Under the title “The Xistence of X-Effi-
ciency,” George J. Stigler (1976) wrote a
critique of X-efficiency theory, indicated his
distaste for the concept, and urged econo-
mists to abandon the idea. I will argue that
this exercise in exorcism is just that. It
achieves some of its results by unusual re-
definitions of ordinary concepts. In the end
it makes nonscientific appeals. Hence, this
plea for exorcism should be ignored. At the
same time, I am grateful to Stigler. As a by-
product of his attack he has raised some
points that others have raised orally. This
provides an opportunity to clarify some is-
sues.

Stigler makes two essential points: 1)

1975) probably available to Stigler, and in a
recent book (1976), I developed such a
framework. I shall refer to this larger frame-
work as general X-efficiency theory. Table 1
contrasts the neoclassical model and general
X-efficiency theory. Under the latter the
neoclassical model can be included as a spe-
cial case.

With the aid of the concepts developed
below I shall try to show that there is noth-
ing in the operation of an economy that is
inconsistent with the existence of X-ineffi-
ciency, nor does competition necessarily
lead to its elimination. Space constraints
permit me to do little more than suggest the
nature of the basic arguments.



Selective Attention

LEARNING THROUGH NOTICING: THEORY AND
EVIDENCE FROM A FIELD EXPERIMENT*

REMA HANNA
SENDHIL MULLAINATHAN
JOSHUA SCHWARTZSTEIN

We consider a model of technological learning under which people “learn
through noticing”: they choose which input dimensions to attend to and subse-
quently learn about from available data. Using this model, we show how people
with a great deal of experience may persistently be off the production frontier
because they fail to notice important features of the data they possess. We also
develop predictions on when these learning failures are likely to occur, as well
as on the types of interventions that can help people learn. We test the model’s
predictions in a field experiment with seaweed farmers. The survey data reveal
that these farmers do not attend to pod size, a particular input dimension.
Experimental trials suggest that farmers are particularly far from optimizing
this dimension. Furthermore, consistent with the model, we find that simply
having access to the experimental data does not induce learning. Instead, be-
havioral changes occur only after the farmers are presented with summaries
that highlight previously unattended-to relationships in the data. JEL Codes:
D03, D83, 013, 014, 030, Q16.



Stochastic Frontier Analysis (SFA)
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The Stochastic Frontier Model

The stochastic frontier model we consider in this paper can be
written as follows:

y=a'B+v—u=2a'B+e¢, (1)

where y is an n-vector of output, @ is an p x 1 vector of
production inputs including a constant, € = v — u is the
n-vector of error terms ; composed of a Normal part

v; ~ N(0,0?) and a Half-Normal inefficiency component
Ui ~ N+(0, 0',3)



» Aside from presence of u; this is a trivial model to estimate.

» But we are interested in wu;.



ML Formlation of Frontier Model

inputs  confounders

I / .
yi=xB+ =20 HFvi—u, i=1,....2n. (2)
NS ~ v
stochastic frontier

» p (number of inputs) is small (and fixed).

v

d (number of confounders), possibly large (> 2n).

v

3 can be estimated at O(n~'/2) if § can be.

v

Impossible to estimate § at this rate when d is large.



Double Machine Learning

» Consider estimation of a treatment effect (not a frontier
model)
Y = x; +  zid v, i=1,...,2n.
~— ~—

scalar treatment  con founders

1. Use any ML tool to predict E[y|z] and E[z|z], using half of
the sample for each (hence the 2n).

2. Obtain B from the regression of § on & where

w = w — Elw|z].



Double Machine Learning

> 3 is y/n-consistent and asymptotically Normal even if RMSE
of '8 has rate O(n~'/*) (so can estimate nonparametrically).

» The moment conditions for which B is constructed imply
Neyman Orthogonality.



Neyman Orthogonality and M/P Redundancy

» In the context of asymptotically optimal testing, Neyman
(1959) asked when do errors of nuisance functions not carry
over into (.

> Let ¢ denote the functional nuisance parameter and let
hi(53,0) be the moment function implied by the FOC for £:

E[h1(8,0)] = 0.



Neyman Orthogonality and M/P Redundancy

» We say hi(-,-) is Neyman orthogonal if the moment function
remains valid under perturbations in §:

D12[6 — do] = O5E[h1(5,0)][6 — do] = 0. (3)

» Dy5[d — do) is the Gateaux derivative of the moment function
in the direction ¢ around the true value dg.

» Neyman orthogonality is connected to and best understood in
a GMM framework.



Neyman Orthogonality and M/P Redundancy

GMM of (3,6) is based on moment conditions assumed to
hold in the population:

[A] for B: E[hi(8,0)]
[B] for 6: E[hs(8,0)]

0
0.

We assume that [A] is enough to identify /3 given .

Using more knowledge in the form of [B] and/or using d
improves statistical efficiency asymptotically.

Prokhorov and Schmidt (2009) asked when is it irrelevant for
the estimation of 3 whether we know [B] and/or d.



Neyman Orthogonality and M/P Redundancy

» Assume finite dimensional J:

[A] for 3: E[h1(8,9)]
[B] for 6: Elha(B,9)]

0
0.

(7)

» When is it irrelevant for estimation of 5 whether we know [B]
and/or o7

» When asymptotic variance of GMM based on [A] with known
J is equal to asymptotic variance of GMM based on [A] and
[B] with unknown 6.



Neyman Orthogonality and M/P Redundancy
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Neyman Orthogonality and M/P Redundancy

» So start by specifying

[A] for B: E[hi(8,0)]
[B] for 6: E[hs(83,0)]

0 (8)

|
—~~
=]
~

and look for valid moment function hj(53,9) that is
uncorrelated with hy(-, ) such that

D12 - E [Vgh;(ﬁ, 5)] - 0
» The we can use any slowly converging ML tool (LASSO, GRF,

etc.) to obtain 4, plug it into A, (8,6) and obtain a
\/n-consistent and asymptotically Normal §.



Return to ML Formlation of Frontier Model

inputs  confounders
/ / .
yi=x:B+ z0 Hvi—u, i=1,...,2n. (10)
N g
Vv
stochastic frontier

» All ML tools give biased estimators.

» Inputs correlate with confounders: x; = m(z;) + n;.

» Biases in & and ri(z) affect B and ;.

» So what changes with the introduction of u > 0 into the

model and what are the M/P redundant moments?



Return to ML Formlation of Frontier Model

inputs  confounders
/ / -
yi=x,8+ z0 Hvi—u;, i=1,...,2n.

TV
stochastic frontier

» Conventional estimation (COLS) (assume u ~ |[N(0,02)| and
v is symmetric and E[v] = 0):

A 2n
/6 R / 7 S\2
(5 ) —Hﬁl}QE (yi — @33 — z;6)

=1

2
accounting for E[u;] = \/jou > 0.
m

» Evidence of inefficiency is captured through negative skewness
of the residuals &; = y; — ;3 — z}9.



Return to ML Formlation of Frontier Model

inputs  confounders

!/ / -
Yi = \wiﬁ + 20 U — Uy = 1,...,2n.

stochastic frontier

» Conventional estimation (maximum likelihood) (assume
u~ |N(,02)], v~ N(0,02) and u L v):

N _ AT A2 A2
6 = maxIn £(6), 6= (5,5,%,%).

» Evidence of inefficiency: o2 >> 0.



Does Inefficiency Exist?

d
Y; = 1+ nglz + 04%21 + 038$3Z + Z 6jzij + v — Uy
j=1
True 0, =0, 2z; ~N(0,1), d=cn,
v ~ N(0,0.5), u~ |N(0,1.2)|



Does Inefficiency Exist?

Average skewness of OLS residuals over 1,000 simulations

n 0 0.01 0.1 0.2 0.3 0.5 0.9

100 —-0.494 -0.483 —0.420 -0.342 -0.267 —0.143 —0.001
200 —-0.525 —-0.517 —-0.445 -0.375 —-0.299 -0.177 —0.011
400 —-0.536 —-0.530 —-0.454 —-0.380 —-0.308 —0.186 —0.012
800 —-0.5647 -0.539 -0466 -0.391 -0.319 -0.193 —0.016
1,600 | —0.549 —-0.542 -0.468 —-0.391 -0.319 -0.189 —0.016




Resort to ML? - Post-Single-LASSO

» LASSO = some elements of 5,;,4550 are exactly 0; drop these

confounders
/é 2n d
LASSO . / 1 5\2
< = min yi —x;,8—20)" + A J;
( dLas50 ) Bs 3 ( ) ;’ i
» COLS using only confounders picked by LASSO =
PSL-COLS
ﬁf 2n
PSL o R 2
( . ) =min > (y; — ;6 — 26)",

i=1

st. 0, =0forany j ¢ SUPP(SLASSO)



Resort to ML? - Post-Single-LASSO

» LASSO = some elements of 5,;,4550 are exactly 0; drop these
confounders

. 2n d
( Brasso ) =minY (4 — '8 — 26)° + )‘Z 1951
Jj=1

0ras50 —

» or MLE using only confounders picked by LASSO =
PSL-MLE

éPSL = mgxlnﬁ(@), st. 0, =0forany j ¢ supp(gLAsgo).



Inefficiency Exists!

Average skewness of PSL-OLS residuals over 1,000 simulations

n 0 0.01 0.1 0.2 0.3 0.5 0.9

100 -0.503 -0.404 -0.386¢ —0.374 —-0.367 —0.359 —0.350
200 —0.520 —-0.452 —-0.436 —0.430 —-0.425 -0.420 -0.413
400 —-0.536 —-0.479 —-0.470 —-0.465 —0.463 —0.459 —0.455
800 —-0.546 —0.506 —0.500 —0.498 —0.497 —-0.494 —0.492
1,600 | —0.552 —-0.522 -0.519 -0.517 —-0.516 —0.516 —0.514




Another Problem: Inference for PSL-MLE

200

=1

True §; = (1/5)%, 25 ~ N(0,1), 2n =100, X by CV,
v ~ N(0,05), u; ~ |N(0,1.2)],

200
7 =06 &z +m, ni~N(O1)

=1



Sampling distribution of standardized BPSL over 1,000
simulations

PSL-MLE

Density

0.0 04

o



Why Does PSL Fail?

Look at MLE when y; = .3 + 2.0 + v; — u; for
Vi ~ N(O7012;) 1 U; ~ |N(0’O-12L)|

2
felei) = —9(ei/0) (= Aei/0)
where 0° = 02 + 02, A = 0, /0,
2n
) — ) = — 23— 2
OriLe = meaxizz;ln fe(ei), wheree; =y, —x;8 — z,0.

Recall: PSL zeros out some d;s = let 074550 contain 0's for
those j's, then

&=y — B+ 2043550 = i + 21(6 — dpasso) # €



Why Does LASSO Break?

» For simplicity assume that (o,\) = (1,1), d = dim(d) < 2n

and define r;(v;) = Inverse Mill's Ratio).

» Moment equations implied by FOCs from MLE:

[A] for 8: E [z (ei +1i(e:))] = 0
[B] ford: E [Z: (Ei + ’I“Z(EJ)] =0.

» Moment equations implied by FOCs from PSL-MLE:
[A] for 5 Elx; (& +7:i(&%))] =0
[B] for dpasso: E [z; (fz + Tz(gz))] =0.

PSL-MLE is using invalid moment conditions; LASSO
regularization bias carries over to estimation of f3.



How to Conduct Valid Inference in SFA?

» Let & := (yz — W;Zi) — (x; — ﬁ;zi)/ﬁ — z0.

» Consider the moment conditions

[AY] E [(ar:Z —mlz) (& + 7‘,(8]))] =0
[B*] El[z (g + ()] =0

[C] Elz(zi — m2;)] =0

D] B [+ (1 - )] —

» Under homoskedasticity, [A*] satisfies Neyman orthogonality.

» Equivalently, [B*], [C] and [D] are M/P redundant for the
estimation of (.



Sketch of the Argument

» Look at

» Expected derivative:

5 8 i e (B o) -

E [(CBZ — W;Zi), (—Zi + 231‘7"1‘({::,‘) (él + Tl(gl)))} =0.



» ldentical result holds for both 7, and 7.
» The idea is similar to partialing out from Frisch-Waugh-Lovell.

» [A*] and [B*] correspond to running MLE where the
dependent variable is the part of y; that is orthogonal to z;
and the explanatory variables are z; and the part of x; that is
orthogonal to z;.



Post-Double-LASSO

» LASSO of y; on z;
n d
~ . 2
T As50 = n}r})nz (i = 2im°) " + o Z |75
i=1 j=1
» LASSO of «; (one-by-one) on z;

d
— zjn) gEEp |74
ﬂ—LASSO — mln I:U[l 7T 4 ] .



Post-Double-LASSO

» MLE using the union of confounders picked by LASSO in the
first two steps PDL-MLE

2n

OprprL Zmé%X Z In fs(é?i),

=1

p
st. 9;=0forany j ¢ [ = U supp (7%2,4550) :
=0

» [ is called the amelioration set (Belloni, Chernozhukov and
Hansen, 2013)



Sampling distribution of standardized BPDL over 1,000

simulations

PDL-MLE

Density
0.3
1111




Empirical Example

» 137 dairy farms in Spain from 1999-2010 (Alvarez & Atrias,
2004).

» y is milk production (liters).

» x is labor (man-equivalent units), cows, feed (kg), land
(hectares) and roughage (expenses incurred to produce
roughage: fertilizer, machines, seed, silage additives, etc.).



Empirical Example

» z is year dummies, zone dummies, land-ownership,
bacteriological content of the milk, price of milk, price of feed,
membership in an agricultural cooperative, milk quality
indicators (fat, protein, somatic cell count), and something
called AVGCOST (neither Antonio or Carlos could remember
what this variable captured).

» dim(z) = 50 with first order terms [Cobb-Douglas];
dim(z) = 87 with second order terms [translog].



Empirical Example: Cobb-Douglas

OLS SFA

OLS SFA Large Large SFA-PSL SFA-PDL
Feedstuffs | 0.386 0.360  0.464 0.464 0.439 0.401

0.012 0.013 0.011 0.011 0.011 0.013
Cows 0.595 0.642  0.467 0.467 0.546 0.560

0.020 0.022  0.017 0.017 0.017 0.021
Land —0.010 —0.012 0.032 0.032 0.007 0.033

0.009 0.009  0.009 0.009 0.008 0.010
Labor 0.035 0.032 0.013 0.013 —0.015 0.005

0.012 0.012  0.010 0.009 0.009 0.011
Roughage | 0.067 0.060 0.073 0.073 0.082 0.061

0.005 0.005  0.004 0.004 0.004 0.005
RTS 1.074 1.082  1.048 1.048 1.059 1.059
Eff 0.930 0.892  1.000 0.999 0.999 0.926




Empirical Example: Translog

OLS SFA
OLS SFA Large Large SFA-PSL SFA-PDL
Feedstuffs 0.341 0.319 0.457 0.457 0.409 0.342
0.014 0.014 0.013 0.013 0.013 0.014
Cows 0.633 0.676 0.454 0.454 0.574 0.618
0.024 0.024 0.021 0.020 0.020 0.023
Land -0.011 -0.017 -0.017 -0.017 —0.014 —0.013
0.010 0.010 0.009 0.009 0.009 0.010
Labor 0.021 0.014 —0.007 —0.007 —0.033 0.000
0.014 0.013 0.010 0.010 0.010 0.012
Roughage 0.093 0.088 0.122 0.122 0.126 0.079
0.008 0.008 0.007 0.007 0.007 0.007
RTS 1.076 1.080 1.008 1.008 1.062 1.025
Eff 0.932 0.887 1.000 0.999 0.927 0.915




Concluding remarks

» Neyman orthogonality is key to ensuring valid causal inference;
it is equivalent to M/P redundancy.

» Abundance of data makes it harder to establish and address
inefficiency of production.

» Machine Learning tools are effective at reversing the spurious
finding of full efficiency.

» Partialing out offers a way of conducting valid
post-machine-learning causal inference.

» We derive and apply Neyman orthogonal moment conditions
for production frontier models.



