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Today’s talk

. What causes heteroskedasticity in Sample Selection models?
heterogeneity!
. What are the consequences of heteroskedasticity in Sample Selection
models?

LIML vs FIML estimators

heteroskedasticity in outcome vs selection equation
. Can we test for heteroskedasticity?

LIML over FIML — (demeaned) Breusch and Pagan (1979) test and
Hausman (1978) test
Validity of LIML — MCC test
. Is there an alternative estimator for sample selection models with
general forms of heteroskedasticity.

gtsheckman
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Sample Selection Model

The outcome is modeled as

yi = X108 + u; (1)
but the outcome is not always observed.
1y; is only observed when s; = 1,

S; = 1(X21‘5 + ug; > O) (2)

both x1; and x2; include a constant
often x2; = (X1, W;)
Ex: Estimating married woman wages

In(wage;) =Bo + educ; B1 + u1s
inl f; =1(do + educ;01 + nwifinc;d2 + u2; > 0)



Sample Selection Model

Vi =X148 + Uy (1)
s; =1(x2;0 + ug; > 0) (2)

Problem: want to estimate
E(yilx1:) = x1.8
but you can only use the observed sample,

E(yi\Xu, S = 1) # x1;8

if uq; is correlated with us;



Sample Selection Estimators

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Heckman (1979) assumes

uyg e 0 o po
(i) rooxa=n(()- G 7))

Which suggests two possible estimators:
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Sample Selection Estimators

Vi =X148 + Uy (1)
s; =1(x2;0 + ug; > 0) (2)

Heckman (1979) assumes

(Ei) Ko Xai ~ N((?)) (Zj T >) (3)

Which suggests two possible estimators:

1. Full information ML (FIML): maximum likelihood over the joint
distribution of y; and s;.
Requires joint distribution to be correctly specified
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FIML

Stata command:

heckman depvar [indepvars] , select(depvars = wvarlists)

1. Maximize the joint log likelihood

l; :(1 — 81‘) ln[l — @(XQ»L(S)] + s;In

Ny

@ <X2i5 + p(yi — x1:3) /01 >:|

(yi — x1.8)*

Y
2
207

+in(o)|

with respect to 8,3, p,o1.
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Sample Selection Estimators

Vi =X148 + Uy (1)
s; =1(x2;0 + ug; > 0) (2)

Heckman (1979) assumes

(Ei) Ko Xai ~ N((?)) (Zj T >) (3)

Which suggests two possible estimators:

2. Limit information ML (LIML): two-step estimator based on the
conditional distribution of y; | s; =1
Requires Minimial Consistency Condition (MCC) (Wooldridge,
2010, Assumption 19.1):

U2; | X1, X245 N(07 1) (4)

E(u1s | w2, X134, X2i) = Yu2i
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LIML

Under MCC
E(yi | s; = 1,%14, X2i) = X153 + YA(%x2:6) (5)
where
A(x2i0) = ilé(()fgi?) = BE(ug; | 8; = 1,%14,X2;)

Stata command:

heckman depvar [indepvars] , select (depvars = wvarlists) twostep

1. Estimate the binary choice in equation (2) using probit, calculate the
estimated inverse mills ratio:

-~

3, (x2i0)

7 — =

<I>(xQ1-6)

2. Estimate the following augmented regression:

yi = X103+ ’y//{i + &;.



FIML and LIML in Stata

. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear

. reg lwage educ

Source SS df MS Number of obs = 428
F(1, 428) = 56.93

Model 26.3264237 1 26.3264237 Prob > F = 9.0000
Residual 197.e01028 426 .462443727 R-squared = 8.1179
Adj R-squared = 9.1158

Total 223.327451 427 .523e151e8 Root MSE = .68003
lwage | Coefficient Std. err. t P>[t] [95% conf. interval
educ .lese4s7 .0143998 7.55 ©@.000 .0803451 .1369523
_cons -.1851969 .1852259 -1.80 8.318 -.5492674 .1788735

Mroz (1987) PSID data on the wages of 428 working, married women



FIML and LIML in Stata

. heckman lwage educ, select(inlf = educ nwifeinc) nolog

Heckman selection model Humber of obs = 753
(regression model with sample selection) Selected = 428
Nonselected = 325
Wald chi2(1) = 49.21
Log likelihood = -929.6295 Prob > chi2 = 9.0000
Coefficient Std. err. z P>|z]| [95% conf. interval

lwage
educ .1176578 .0167722 7.02 0.000 .0847848 .1585307
_cons -.3920955 .2700523 -1.45 0.147 -.9213882 .1371972

inlf
educ .1433212 .0226377 6.33 ©.000 .0989522 .1876902
nwifeinc -.0216104 .0043381 -4.98 ©.000 -.0301129 -.0131e79
_cons -1.144077 .2656869 -4.31 ©0.000 -1.664813 -.6233399
/athrho «289972 .2003914 1.05 @.295 -.1827879 .6027318
/1nsigma -.3759879 .0415655 -9.05 0.000 -.4574549 -.29452@9
rho .2069397 .19180938 -.18@779 .53899%06
sigma .6866106 .0285393 .6328924 .7448884
lambda .142087 .1351505 -.1228031 .4069771

LR test of indep.

egns. (rho

= 0): chi2(1) = .85

Prob > chi2 = @.3575



FIML and LIML in Stata

. heckman lwage educ, select(inlf = educ nwifeinc) twostep

Heckman selection model -- two-step estimates  Number of obs = 753
(regression model with sample selection) Selected = 428
Nonselected = 325
Wald chi2(1) - 34.07
Prob » chi2 = 2.0000
Coefficient Std. err. z P>lz| [95% conf. interval]
lwage
educ .1282506 .821972 5.84 ©.000 .0851862 .171315
_cons -.6339939 .4179628 -1.52 @.129 -1.453186 .1851981
inlf
educ .1418686 .8225342 6.3 e.e00 .8977025 .1860@348
nwifeinc -.0213744 .8843692 -4.89 0.000 -.0299378 -.2128189
_cons -1.13e936 .26442438 -4.28 0.e00 -1.649199 -.6126727
/mills
lambda .306887 .2544542 1.21 e.228 -.1918341 .8056081
rho 9.42874
sigma .71578623
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?

Variation in wages is changing for different education levels
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?

Heterogeneous effects

In(wage;) =Po + educibi; + ui;
inlfi =1(do + educidyi; + nwifincida; + u2; > 0)
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?

Heterogeneous effects

In(wage;) =Po + educibi; + ui;
inlfi =1(do + educidyi; + nwifincida; + u2; > 0)

let 51 = E(bu), 01 = E(dh‘), and 02 = E(dgi), then

In(wage;) =Bo + educ;B1 + G1s
inlfi =1(6o + educ;61 + nwi finc; 62 + G2; > 0)

where

U1 = u1; + (bis — B1)educ;
U2; = u2; + (dis — 01)educ; + (d2; — d2)nwi fince;
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Introducing Heteroskedasticity

What causes heteroskedasticity in Sample Selection models?
Heterogeneous effects

In(wage;) =fo + educ;bii + u1 (6)
inlf; :1(60 + educ;di; + nwifinc;da; + ua; > 0) (7)

let ﬁ1 = E(bu), 01 = E(dli), and 62 = E(dm‘), then

In(wage;) =Bo + educ; B1 + U1s (8)
inlfi =1(6o + educ;61 + nwi finc; 62 + G2; > 0) 9)
then
Var(t1; | educ;, nwi finc;) =02 + Ugleducl2
Var(tz; | educ;, nwifine;) =1+ o2 educ? + oaenwi finc?
+ 03, meduc; X nwifinc;

~ ~ o 2 .
Cov (14, G; | educy, nwifine;) =po + ov1,q1educ; + op1,a2educ; X nwifine;

(assuming (u1i,u2:) L (b1s, d1s, d2i))

19



Introducing Heteroskedasticity

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Suppose we have heteroskedasticity

NN ) 2
Uo; 0 Pi01i02; 03,

What are the consequences?



Introducing Heteroskedasticity

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Suppose we have heteroskedasticity

NN ) 2
Uo; 0 Pi01i02; 03,

What are the consequences?
1. FIML

joint distribution is misspecified — inconsistent!
robust standard errors does not fix this!



Introducing Heteroskedasticity

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Suppose we have heteroskedasticity

NN ) 2
Uo; 0 Pi01i02; 03,

What are the consequences?
1. FIML

joint distribution is misspecified — inconsistent!
robust standard errors does not fix this!

2. LIML
if MCC holds — consistent

o2; = 1
pPid1i =Y

but need robust standard errors!
if MCC does not hold — inconsistent!



Introducing Heteroskedasticity

Stata LIML estimator does not produce heteroskedastic robust
standard errors,

. heckman lwage educ, select(inlf = educ nwifeinc) twostep vce(robust)
vcetype robust not allowed
r(198);



Introducing Heteroskedasticity

DGP 1: Homoskedastic

Estimator N Bias StdDev SE RSE CR RCR
FIML 500 -0.004 ©.108 @©.103 0.le4 e.94 0.94
LIML 5ee -0.e04 @.112 e©.111 eo.lle @.95 e.9%4
FIML leea -0.002 @.a75 8.873 @.a73 8.94 8.94
LIML leee -0.0e3 0.079 ©0.878 0.078 @.95 0.94
FIML 2000 ©.020 @.052 ©0.051 @.e51 .95 @.95
LIML 2000 ©.002 0.056 ©@.855 0.855 @.95 0.94




Introducing Heteroskedasticity

DGP 2: Heteroskedastic (MCC)

Estimator N Bias StdDev SE RSE CR RCR
FIML 5ee ©0.240 0.264 0.115 @©.180 e.38 0.64
LIML 560 -0.016 ©.249 ©.144 ©.236 e.76 0.95
FIML leee ©.253 @.182 0.081 ©.134 .23 0.48
LIML leee -0.008 ©.188 0.103 ©.176 e.72 0.94
FIML 2000 ©.263 @.111 ©@.e57 ©.e99 e.e7 e.21
LIML 2000 @.001 @.130 0.073 ©.128 e.74 @.96

N



Introducing Heteroskedasticity

DGP 3: Heteroskedastic (no MCC)

Estimator N Bias StdDev SE RSE CR RCR
FIML 5e@ @.898 0.163 0.171 @.158 e.ee e.oe
LIML 5@ ©.807 ©.146 ©.171 0.138 e.00 8.00
FIML leee ©.896 @.1le ©.121 @.111 e.ee e.ee
LIML leee ©.8ee ©.098 ©.121 @.097 e.ee e.oe
FIML 2000 ©.894 ©.073 ©.085 0.078 e.00 e.00
LIML 2000 ©.799 @.070 ©.085 0.068 e.ee e.ee




Introducing Heteroskedasticity

What are the consequences of heteroskedasticity?

If there is heteroskedasiticty in outcome equation — FIML is
inconsistent, LIML can be consisent
If MCC does not hold — both FIML and LIML are inconsistent

Can we test for this?
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Introducing Heteroskedasticity

What are the consequences of heteroskedasticity?

If there is heteroskedasiticty in outcome equation — FIML is
inconsistent, LIML can be consisent
If MCC does not hold — both FIML and LIML are inconsistent

Can we test for this? Yes!

Testing for heteroskedasiticty in outcome equation — (demeaned)
Breusch and Pagan (1979) test and Hausman (1978) test
Testing for MCC — MCC test (using gtsheckman command)

[\v)
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Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
Without sample selection — Breusch and Pagan (1979) test

Yi = X103 + u1, (1)
homoskedasticity implies E(u?; | x1:) = o}

1. Regress y; on x1;, obtain residuals squared, ﬂ%l
2. Regress ﬂ%l on x1; evaluate overall test of significance



Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
With sample selection — Naive Breusch and Pagan (1979) test

Yy =x1:03 + u1s 1)
5; =1(x2:0 + uz: > 0) (2)

1. Estimate the sample selection model using LIML, obtain residuals
squared for the observed sample,

ﬁ%z = (yi — xli:@)2

2. Regress ﬂf ; on x1; on the observed sample and evaluate overall test of
significance

[v)
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Testing for Heteroskedasticity

Naive Breusch Pagan test

. quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep

. gen uhatsq = (lwage - (_b[lwage:_cons]+_b[lwage:educ]*educ))”2 if inlf=z1
(325 missing values generated)

. reg uhatsq educ

Source SS df MS Number of obs = 428
F(1, 426) = @.01

Model .006770959 1 .006770959 Prob > F = 2.9360
Residual 447.077377 426 1.84947741 R-squared = 9.02000
Adj R-squared = -0.0023

Total 447.084148 427 1.04703548 Root MSE = 1.0244
uhatsq | Coefficient Std. err. t P> |t] [95% conf. interval]
educ .ee17424 .8216928 e.e8 8.936 -.0408958 .2443886
_cons .4804915 .279@351 1.72 e@.es6 -.0679654 1.028948




Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
With sample selection — Naive Breusch and Pagan (1979) test

Yy =x1:03 + u1s 1)
5; =1(x2:0 + uz: > 0) (2)

1. Estimate the sample selection model using LIML, obtain residuals
squared for the observed sample,

ﬁ%z = (yi — Xlz‘,@)Q

2. on x1; on the observed sample and evaluate overall test of

2. Reg?ess uy,;
significance

But this is not a valid test!



Testing for Heteroskedasticity

Testing for heteroskedasticity in outcome equation
With sample selection — Naive Breusch and Pagan (1979) test

Yy =x1:03 + u1s 1)
5; =1(x2:0 + uz: > 0) (2)

1. Estimate the sample selection model using LIML, obtain residuals
squared for the observed sample,

ﬁ%z = (yi — Xlz‘,@)Q

2. on x1; on the observed sample and evaluate overall test of

2. Regress u3,
significance
But this is not a valid test!
Even with homoskedasticity in ui;, conditioning on the selected
sample looks like heteroskedasticity

E(u%z | X14,%2i,8i = 1) = U% — 'y2/\(xzi6)xzi6



Testing for Heteroskedasticity

Naive BP (full)

Naive BP (selected) |

T T T T

= -5 0 .5 1



Testing for Heteroskedasticity

Why was it asymmetric?

8 =2 8 =-2

Depends on how the selection relates to the heteroskedasticity



Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?



Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?
Demeaned Breusch and Pagan (1979) test
With homoskedasticity in wy;,

E(ui | X14yX2448; = 1) = cr% — 'y2>\(x2i5)in5
instead we can demean it!

E(u%l +'y2/\(x2i5)x2i6 ‘ X1i,X2i,8; = 1) = a%

-2
Ui



Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?
Demeaned Breusch and Pagan (1979) test
With homoskedasticity in wy;,

E(ui | X14yX2448; = 1) = cr% — 'y2>\(x2i5)in5
instead we can demean it!

E(u%l +'y2/\(x2i5)x2i6 ‘ X1i,X2i,8; = 1) = a%

Execute in the following steps
1. Estimate the sample selection model using LIML, obtain demeaned
residuals squared for the observed sample,
a3 = (yi — x1:8)% + 77 Nix2:0

2. Regress ﬂ% ; on x1; on the observed sample and evaluate overall test of
significance



Testing for Heteroskedasticity

Demeaned Breusch Pagan test

. quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep mills(lambdah
> at)

. gen uhatsq_dm = uhatsq +_b[/mills:lambda]*2*lambdahat*(_b[inlf:_cons]+_b[inlf:
> educ]*educ +_b[inlf:nwifeinc]*nwifeinc)
(325 missing values generated)

. reg uhatsq_dm educ

Source SS df MS Number of obs = 428
F(1, 426) - 0.11

Model .113992521 1 .113992521 Prob > F = 9.7419
Residual 447 .307608 426 1.05001786 R-squared = 2.0003
Adj R-squared = -@.0021

Total 447.421601 427 1.04782576 Root MSE = 1.0247
uhatsq_dm | Coefficient Std. err. t P>[t] [95% conf. interval]
educ .0071494  .0216984 @.33 0.742 -.8354998 .0497985
_cons .4218472 .2791069 1.51 0.131 -.126751 .9704453




Testing for Heteroskedasticity

How should we test for heteroskedasticity in outcome equation with
sample selection?
Hausman (1978) test

With homoskedasticity both FIML and LIML are consistent, FIML is
efficient

Without homoskedasticity (with MCC), only LIML is consistent

In Stata,

hausman FIML LIML



Testing for Heteroskedasticity

Hausman test

. quietly heckman lwage educ, select(inlf = educ nwifeinc) twostep
. estimates store LINML

. quietly heckman lwage educ, select(inlf = educ nwifeinc)

. estimates store FIML

. hausman LIML FIML

—— Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
LIML FIML Difference Std. err.
educ .1282506 .1176578 .0105929 .0141937

b = Consistent under H@ and Ha; obtained from heckman.
B = Inconsistent under Ha, efficient under H®; obtained from heckman.

Test of H@: Difference in coefficients not systematic
chi2(1) = (b-B)"[(V_b-V_B)~(-1)]1(b-B)

= @.56
Prob > chi2 = @.4555



Testing for Heteroskedasticity

Demeaned BP
Hausman

1

36



Estimation with Heteroskedasticity

Consistency of LIML is fundamentally reliant on MCC

Can we test for this?
Can we get a consistent estimator without MCC?



Estimation with Heteroskedasticity

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Suppose we have heteroskedasticity

NN ) 2
Uo; 0 Pi01i02; 03,

Can we still derive a correction?



Estimation with Heteroskedasticity

Vi =X148 + Uy
si =1(x2;0 + ug; > 0)

Suppose we have heteroskedasticity

NN ) 2
Uo; 0 Pi01i02; 03,

Can we still derive a correction? Yes!
d(x2:0/02;)
02i®(X2i0/02;)

Yi = Pi01i02i

)\iE

then
E(yi | si = 1,X13,X2i) = X130 + Yi\i

(13)



Estimation with Heteroskedasticity

Vi =X148 + uy;
53 =1(x247y + ug; > 0)

Estimation depends on modeling o9; and ~;

(x2i0/02;)

N = 20/ T2)
092i®(x2i0/02;)

E(y; | si = 1, %15, X2i) = X158 + i\

Consider parametric models for the heteroskedasticity:

03; = Var(ug; | X1i,%2i) = {exp(z2;m)}?

vi = Cov(uis, ug; | X145, X2i) = Z12:P

39



generalized two-step Heckman Estimator

What to include in z9; and z1o;7

Z9; are the covariates in the conditional variance of the binary sample
selection equation

never includes a constant (binary response only identified to scale)
variables with a heterogeneous effect on sample selection

Var(tg; | educ;, nwifine;) =1 + ooeducs + oaanwifinc:

2 .
+ og1g2educ; X nwifinc;

10



generalized two-step Heckman Estimator

What to include in z9; and z1o;7

Z19; are the covariates in the conditional covariance across the
outcome and sample selection equations
it always includes a constant (first element)
variables whose heterogeneous effects could be correlated across
equations

- - e 2 o
Cov(1s, U2: | educi, nwifine;) = po+op1,d1educ; +0p1,a2educ; Xnwi finc;



generalized two-step Heckman Estimator

generalized two-step Heckman Estimator

1. Estimate the binary choice in equation (2) with exponential
heteroskedasticity in equation (14) via a MLE approach using
hetprobit, calculate the scaled estimated inverse mills ratio:

qu(XQig/ exp(z2;7)) ‘
D(x2:0/ exp(z2:T)) exp(z2: )

o

2. Estimate the following augmented regression
yi = X108 + Xizlzz‘p + €.
Stata command:

gtsheckman depvar [indepvars} , select (depvars = varlists)

[ het (varlist;) clp(varlists) vce(uvcetype) ]

(16)



generalized two-step Heckman Estimator

. gtsheckman lwage educ, select(inlf = educ nwifeinc) het(educ nwifeinc c.educ#ic
» .nuwifeinc) clp(c.educ#c.(educ nwifeinc)) vce(robust) nolog

Generalized Two Step Heckman Estimator Number of obs = 753
Selected = 428
Nonselected = 325
First-stage heteroskedastic probit estimates
inlf | Coefficient Std. err. z P>|z| [95% conf. interval]
inlf
educ -1064374 -1287153 98.83 ©.408 -.14584 -3587147
nwifeinc -.8196065 .0230412 -0.85 0.395 -.9647664 .8255534
_cons -.B20798 1.824283 -8.80 09.423 -2.828355 1.186759
Insigma
educ -.9543857 .@859826 -0.63 0.527 -.2229085 -1141371
nwifeinc .B208967 .856284 8.37 8.710 -.089418 -1312114
c.educ#
c.nwifeinc .0000222 .0039891 09.01 9.996 -.0077964 .0078407




generalized two-step Heckman Estimator

Second-stage augmented regression estimates

Robust
Coefficient std. err. z P>|z| [95% conf. interval]
lwage

educ .2219466 -142621 1.56 ©.120 -.8575855 .5014787
lambda 1.019362 1.11739 8.91 8.362 -1.178681 3.2089405

c.lambda#
c.eductic.educ -.8063103 . 0054442 -1.16 ©8.246 -.9169808 .0043603

c.lambda#

c.educ#
c.nwifeinc .0004444 .0Be7381 @.50 0.547 -.8010023 .6@1891
_cons -1.7458  2.28@336 -8.77 0.444 -6.215176 2.723576




Testing for MCC

Consistency of LIML is fundamentally reliant on MCC

Ug; | X145, X2 ~ N(0,1)

E(Uli | U2i:X1iaX2i) = Yu2;

Can we test for this?



Testing for MCC

Consistency of LIML is fundamentally reliant on MCC
ug; | X14,%2; ~ N(0, 1)
BE(uys | wai, X14, X2;) = YUz
Can we test for this?

the gtsheckman command does not rely on MCC

Us; | X14, %25 ~ N(0, {exp(zo;m)}?)
Z12iP (17)

Blurs | uai, 300, %01) = o e

but MCC holds if
=0 and Z12;Pp =7

in other words, test of all the heteroskedasticity terms and all
covariance terms (not including the constant)



Testing for MCC

. hetprobit inlf educ meifeinc, het(educ nwifeinc c.eductc.nuifeinc) nolog

Heteroskedastic probit model Number of obs = 753
Zero outcomes = 325
Nonzero outcomes = 428
Wald chi2(2) = .73
Log likelihood = -486.2947 Prob > chi2 = @.6959
inlf | coefficient Std. err. z P>|z| [95% conf. interval]
inlf
educ -1864374 -1287153 0.83 8.408 -.14584 -3587147
nwifeinc -.08196065 -08230412 -0.85 8.395 -.8647664 -8255534
_cons -.820798 1.024283 -9.80 ©0.423 -2.828355 1.186759
Insigma
educ -.@543857 .0859826 -9.63 8.527 -.2229085 -1141371
nwifeinc -02088967 -B56284 @8.37 0.718 -.889418 -1312114
c.educ#c.nwifeinc - 0000222 -0039891 8.1 8.996 -.8077964 -8a78407

LR test of lnsigma=8: chi2(3) = 5.00 Prob > chi2z = @.1721



Testing for MCC

. quietly gtsheckman lwage educ, select(inlf = educ nwifeinc) het(educ nwifeinc
» c.educ#c.nwifeinc) clp(c.educ#c.(educ nuifeinc)) vce(robust) nolog

. test c.lambda#c.educ#c.educ c.lambda#c.educ#c.nwifeinc

( 1) [lwage]c.lambda#c.educ#ic.educ = @
( 2) [lwage]c.lambda#c.eductic.nwifeinc = @

chi2( 2) =  1.34
Prob > chi2 = ©.5106



Testing for MCC

MCC test




Conclusion

. What causes heteroskedasticity in Sample Selection models?
heterogeneity!
. What are the consequences of heteroskedasticity in Sample Selection
models?

LIML vs FIML estimators

heteroskedasticity in outcome vs selection equation
. Can we test for heteroskedasticity?

LIML over FIML — (demeaned) Breusch and Pagan (1979) test and
Hausman (1978) test
Validity of LIML — MCC test

. Is there an alternative estimator for sample selection models with
general forms of heteroskedasticity.

gtsheckman
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