
Coding robust simulation
studies in Stata
Ella Marley-Zagar, Tim Morris
MRC Clinical Trials Unit at UCL

e.marley-zagar@ucl.ac.uk
tim.morris@ucl.ac.uk @tmorris_mrc

123 Feb 2023Stata Biostatistics and Epidemiology Virtual Symposium

Plan of talk

Introduce simulation studies and ADEMP

Some tips when something has gone wrong

Analysis of simulation studies using siman

2

Introducing simulation studies

Simulation studies are used in a variety of disciplines.

They are an important and useful tool which enables researchers to compare
different statistical methods and understand their properties.

3

What can simulation studies be used for?

• Check that code does the intended analysis
• Check robustness of programs
• Better understand statistical concepts
• Understand new commands
• Check algebra
• Evaluate a new statistical method
• Compare statistical methods head-to-head
• Calculate sample size / power
• …and more

4

Simulation study set up: ADEMP
In a simulation study, data is often generated from some distribution (so often
we know the truth), the data is analysed and compared with the known truth.
Convenient to plan using ‘ADEMP’ structure.

Aims: What question(s) the simulation study addresses
Data-generating mechanisms (DGMs): How the simulated datasets are to be
generated
Estimands/targets: quantities to be estimated by the analysis
Methods of analysis: How a given simulated dataset is to be analysed
Performance measures: How the performance of the methods of analysis is
to be summarised
(Also worth thinking about implementation and reporting)

5

6

Two types of dataset

Simulated
datasets

Estimates
dataset

I don’t believe it!

We often find ourselves in the position of seeing some simulation results –
our own, a colleague’s or a student’s – and thinking:

‘I’M SCEPTICAL OF THESE RESULTS’
or

‘I DON’T BELIEVE THIS’

7

8

But is it wrong?

The fact that we are sceptical does not necessarily mean the result is wrong

That being said, in many cases it is.

We need to make sure we have exhausted possible errors to the extent
possible.

9

Three ‘phases’ of simulation study

10

Design
Getting ADEMP right!

Conduct
Writing code to generate

data, analyse, store
results

Analysis
Computing performance

measures from an
estimates dataset

A series of tips

Based on ‘How to check a simulation study’ osf.io/cbr72/ (pre-print).

Problems often arise when we have many DGMs, estimands and/or methods
of analysis.

Issues that involve Stata can occur in any of the three stages.

11

https://osf.io/cbr72/

Running example: White & Carlin

Loosely based on:
White IR, Carlin JB. Bias and efficiency of multiple imputation compared with
complete-case analysis for missing covariate values. Statistics in Medicine
2010; 29: 2920–2931.

12

Running example: White & Carlin
Aim To compare multiple imputation with complete case analysis.

Data-generating
mechanism (rough)

Quantitative confounder C is drawn from a standard Normal
distribution.

Binary exposure E and binary outcome D are drawn from logistic
models depending on C (so E does not cause D).

Data are made missing on C, initially using a missing completely at
random model.

Parameters to be varied are the marginal probabilities of E and D,
the strength of the dependence of E and D on C, and the missing
data mechanism. The sample size of 500 is fixed.

13

Running example: White & Carlin
Estimand The log odds ratio between E and D, conditional on C.

Methods of analysis 1. Analysis of full data before data deletion in C.
2. Analysis of complete cases (excluding cases with missing C).
3. Multiple imputation of missing values of C (various imputation

models may be used).
Performance measures Bias

Empirical standard error
Relative error in model-based standard error
Coverage

Implementation? 1,000 repetitions

14

Two tips

TIP: If possible, include a ‘benchmark’ setting with known properties – either
known theoretically or ‘known’ from someone else’s simulation study. In our
missing data example, we have included ‘full data’ as this should give better
performance than any analysis with incomplete data.

TIP: Write well-structured code from the start!

15

Well-structured code?

Two criteria for ‘well structured code’:
1. For a single repetition, to the extent possible, separate data generation,

data analysis and ‘posting’/storage of result/s
2. Produce a well-structured estimates dataset

16

Well structured code: a suggestion

Write:
• A program that generates data
• A program that analyses data and returns (or directly posts) results of

interest
• A program that repeatedly calls these and structures the results sensibly an

estimates dataset

17

DGM program

program define gendata
version 17
syntax, obs(int) logite(string) logitd(string) pmiss(string)
clear
set obs `obs'
drawnorm Ctrue
gen E = runiform() < invlogit(`logite')
gen D = runiform() < invlogit(`logitd')
gen Cobs = Ctrue if runiform()>=`pmiss'

end

18

Analysis program
program define anadata

version 14
syntax, rep(int 0) [post(string)]

* Method 1: full data before data deletion
logit D E Ctrue
if !mi("`post'") post `post' (`rep') ("Full") (_b[E]) (_se[E]) (e(N)) (.)
* we are posting: rep method est se N df
…

mi impute regress Cobs D##E, add(5)
mi estimate, post: logit D E Cobs
if !mi("`post'") post `post' (`rep') ("MI") (_b[E]) (_se[E]) (e(N)) ///
(e(df_mi)[1,"D:E"])

end

19

Tip: study a single very large dataset

Ideally, ‘fit back’ the data-generating model and check that number of
observations is correct, parameters are close to inputs, true values of
parameters are trapped by confidence intervals, etc.

gendata , obs(1000000)

20

Tip: run with three repetitions

1. Verify that your estimates dataset is ‘well-structured’
2. Verify that the second and third repetitions produce different data and

results

Why? Sometimes simulation code wrongly sets the seed within a program
starting the first repetition. This is sometimes done in some program called by
gendata or anadata.

If (for example) this is done at the end of a repetition, the second and third
repetitions will produce identical data and results.

21

Tip: run with three repetitions
. set rngstream 1
. set seed 576819506
. local nreps 3

. tempname est

. postfile `est' int(rep) str3(method) float(b se) int(N) float(df)
> using estimates, replace

. forvalues i=1/`nreps' {

. gendata, obs(500) logite(-1+C) logitd(-1+C) pmiss(.3)

. anadata, rep(`i') post(`est')

. }

. postclose `est'

22

Tip: run with three repetitions
. list, sepby(rep)

+--+
rep method b se N df

1. | 1 Full -.1081978 .2457296 500 . |
2. | 1 CCA -.3064098 .314233 337 . |
3. | 1 MI -.207532 .2880667 500 71.65478 |

|--|
4. | 2 Full .0867077 .2260111 500 . |
5. | 2 CCA .1381473 .2631429 349 . |
6. | 2 MI .1110958 .2330245 500 1092.247 |

|--|
7. | 3 Full .1232898 .2289063 500 . |
8. | 3 CCA -.1608068 .2822033 348 . |
9. | 3 MI .0335785 .2445695 500 508.5607 |

+--+

23

Tip: anticipate analysis failures

Code should be written to capture the error so the simulation does not halt.

The failure of a method should be stored – and investigated – along with its
error code.

. capture noisily logit D E Cobs

. if _rc==0 & !mi("`post'") post `post' (`rep') ("CCA")
> (_b[E]) (_se[E]) (e(N)) (.) (_rc)

. if _rc>0 & !mi("`post'") post `post' (`rep') ("CCA") (.)
> (.) (.) (.) (_rc)

24

Tip: make it easy to recreate
any simulated dataset

Your estimates dataset needs a unique identifier for each result (I have a
repetition number and a variable giving the method of analysis used)

If we can recreate a specific result, we can explore method failures, outliers,
etc. Two ways:
1. Store the RNG state at the start of a repetition: see

github.com/tpmorris/TheRightWay/
2. Save every simulated dataset (if the analysis has a stochastic element,

such as multiple imputation or bootstrap, you still need the RNG state)

25

https://github.com/tpmorris/TheRightWay/blob/master/3TheRightWay.do

Analysis tips

The pre-print gives some tips for understanding issues with analysis, which we
won’t recap here (more focused on understanding results than on ‘coding
robust simulation studies’).

If you have a well-structured estimates dataset, Ella is now going to talk
through a suite of commands that analyse a simulation study. In particular, it
automates unpleasant data wrangling, analysis and several graphics.

26

ELLA’S SLIDES

27

Introducing siman

We introduce the siman suite which has been created to assist the analysis
of simulation results.

A set of Stata programs that offer data manipulation, analysis and graphics to
process, explore and visualise the results of simulation studies.

The new siman program described here is available at
https://github.com/UCL/siman

Work with Ian White and Tim Morris, MRC Clinical Trials Unit at UCL

28

Types of dataset: Estimates data
• Estimates data set: results from analysing multiple simulated data sets, with

data relating to different statistics (e.g. point estimate (est), se) for each
simulated data set.

• repetition (rep): simulation number

29

Types of dataset: long and wide
For the input estimates data, there are 3 formats permitted by the siman
suite:

1. Long for both targets and methods: longlong
2. Wide for both target and methods : widewide
3. Long for targets, wide for methods : longwide

30

Performance Measures

Typically a statistical method outputs an estimate !𝜃, its standard error #𝑠𝑒 !𝜃 and a
confidence interval (!𝜃 𝑙𝑜𝑤, !𝜃 𝑢𝑝𝑝)
The following performance measures may be of interest:

•Properties of estimate !𝜃
§Bias
§Empirical SE
§MSE

• Properties of SE
§Average model-based SE

•Properties of confidence interval
§Coverage
§Power

31

Types of Data Sets: OUTPUT Performance
Measures

32

Performance measures data set: results from analysing an estimates
data set, with data relating to different performance measures (e.g. bias,
coverage) summarised over estimates data sets for different data
generating mechanisms.

Setting up siman: long-long format

33

siman setup takes the estimates data set held in memory, checks the
data, reformats it if necessary and attaches characteristics to the data
set available for use across multiple sessions.

siman setup, rep(rep) dgm(dgm) target(estimand)
method(method) est(est) se(se) true(true)

Setting up siman: wide-wide format

34

siman setup, rep(rep) dgm(dgm) target(beta gamma)
method(A B) est(est) se(se) true(true) order(method)

Setting up siman: siman describe

35

Exploring the estimates data: siman reshape

36

siman reshape, longlong
siman reshape, longwide

Exploring the estimates data: example data
from earlier

37

simcheck paper, White et al. (preprint https://osf.io/cbr72/)

https://osf.io/cbr72/

Exploring the estimates data: siman scatter

38

siman scatter [if] [in] [, options]

siman scatter if dgm == 1

Exploring the estimates data: siman swarm

39

siman swarm [if] [in] [, options]

Exploring the estimates data:
siman comparemethodsscatter

40

siman comparemethodsscatter [estimate|se] [if] [in] [, options]

Exploring the estimates data:
siman blandaltman

41

siman blandaltman [if] [in] [, options]

Exploring the estimates data:
siman zipplot

42

siman zipplot [if] [in] [, options]

Creating performance measures

43

Once siman setup has been run, performance measures can be
created using the command siman analyse

performancemeasures as per simsum. If none of the following
options are specified, then all available performance measures are
computed…..

bsims reports the number of simulations with non-missing
point estimates.
sesims reports the number of simulations with non-missing
standard errors.
bias estimates the bias in the point estimates.empse estimates the empirical standard error -- the standard

deviation of the point estimates.
relprec estimates the relative precision -- the inverse squared
ratio of the empirical standard error of this method to the empirical
standard error of the reference method. This calculation is slow:
omitting it can reduce run time by up to 90%.

mse estimates the mean squared error.modelse estimates the model-based standard error.relerror estimates the proportional error in the model-based
standard error, using the empirical standard error as gold
standard.

cover estimates the coverage of nominal confidence intervals at
the specified level.

power estimates the power to reject the null hypothesis that
the true parameter is zero, at the specified level.
mean the average (mean) of the point estimates.ciwidth estimates the width of the confidence interval at

the specified level.
rmse estimates the root mean squared error.

siman analyse [if], [performancemeasures perfonly
replace]

Creating performance measures cont.

44

perfonly the program will automatically append the

performance measures data to the estimates data,
unless the user specifies perfonly for performance
measures only.

replace if siman analyse has already been run and the user
specifies it again then they must use the replace
option, to replace the existing performance measures
in the data set.

Creating performance measures: siman
table

45

siman table [performancemeasures] [if], [column(varname)]

siman table bias

Creating performance measures graphs: siman
lollyplot

46

siman lollyplot [performancemeasures] [if] [, options]

Creating performance measures graphs:
siman trellis

47

siman trellis [performancemeasures] [if] [, options]

Creating performance measures graphs: siman
nestloop

48

siman nestloop [performancemeasures] [if] [, options]

Software testing

We have a program of testing our unit’s software.

The siman suite is being tested on numerous data set formats by EMZ, IW,
TM: long-long, long-wide, wide-wide, numeric and string, multiple methods,
targets and dgms.

Error checking to make sure it fails when it is meant to (with a sensible error
message).

49

Roundup 1

We’ve given a collection of tips that help to find/avoid errors in simulation
studies.

The siman suite automates the data wrangling and analysis that often leads
to problems. People often, for example:
1. Tangle up DGMs with methods
2. Compute average of model SEs (instead of root-mean variance)
3. Forget to separate out different estimands, DGMs or methods

50

Roundup 2

Doing all these things may simply be a matter of reassuring yourself that a
particular result is ‘real’ and not goofing the code.

One remaining (unpopular?) tip if you don’t believe your results: write at least
some of your code in another software package. In the pre-print, there is
code for both Stata and R, and the different approaches to handling near-
separation are very interesting.

51

Acknowledgements

52

Ian
White

Tra My Pham Jingyi Xuan

Michael
Crowther

Matteo
Quartagno

53

References
I. R. White, T. M. Pham, M. Quartagno, T. P. Morris. 2023. How to check a simulation study.
Pre-print [under review]: doi.org/10.31219/osf.io/cbr72

T. P. Morris, I. R. White, M. J. Crowther. 2019. Using simulation studies to evaluate statistical
methods. Statistics in Medicine 38(11): 2074-2102.

G. Rücker, G. Schwarzer. 2014. Presenting simulation results in a nested loop plot. BMC
Medical Research Methodology 14(1): 1-8.

I. R. White 2010. simsum: Analyses of simulation studies including Monte Carlo error. The
Stata Journal 10(3): 369-385.

I. R. White, J. B. Carlin. Bias and efficiency of multiple imputation compared with complete-
case analysis for missing covariate values. Statistics in Medicine 2010; 29: 2920–2931.

