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Plan of talk

Introduce simulation studies and ADEMP

Some tips when something has gone wrong

Analysis of simulation studies using siman
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Introducing simulation studies

Simulation studies are used in a variety of disciplines.

They are an important and useful tool which enables researchers to compare 
different statistical methods and understand their properties. 
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What can simulation studies be used for?

• Check that code does the intended analysis
• Check robustness of programs
• Better understand statistical concepts
• Understand new commands
• Check algebra
• Evaluate a new statistical method
• Compare statistical methods head-to-head
• Calculate sample size / power
• …and more

4



Simulation study set up: ADEMP 
In a simulation study, data is often generated from some distribution (so often 
we know the truth), the data is analysed and compared with the known truth. 
Convenient to plan using ‘ADEMP’ structure.

Aims: What question(s) the simulation study addresses
Data-generating mechanisms (DGMs): How the simulated datasets are to be 
generated
Estimands/targets: quantities to be estimated by the analysis
Methods of analysis: How a given simulated dataset is to be analysed
Performance measures: How the performance of the methods of analysis is 
to be summarised
(Also worth thinking about implementation and reporting)
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Two types of dataset

Simulated 
datasets

Estimates 
dataset



I don’t believe it!

We often find ourselves in the position of seeing some simulation results –
our own, a colleague’s or a student’s – and thinking:

‘I’M SCEPTICAL OF THESE RESULTS’
or

‘I DON’T BELIEVE THIS’
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But is it wrong?

The fact that we are sceptical does not necessarily mean the result is wrong

That being said, in many cases it is.

We need to make sure we have exhausted possible errors to the extent 
possible.
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Three ‘phases’ of simulation study
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Design
Getting ADEMP right!

Conduct
Writing code to generate 

data, analyse, store 
results

Analysis
Computing performance 

measures from an 
estimates dataset



A series of tips

Based on ‘How to check a simulation study’ osf.io/cbr72/ (pre-print).

Problems often arise when we have many DGMs, estimands and/or methods 
of analysis.

Issues that involve Stata can occur in any of the three stages.
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Running example: White & Carlin

Loosely based on:
White IR, Carlin JB. Bias and efficiency of multiple imputation compared with 
complete-case analysis for missing covariate values. Statistics in Medicine
2010; 29: 2920–2931.
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Running example: White & Carlin
Aim To compare multiple imputation with complete case analysis.

Data-generating 
mechanism (rough)

Quantitative confounder C is drawn from a standard Normal 
distribution.

Binary exposure E and binary outcome D are drawn from logistic 
models depending on C (so E does not cause D).

Data are made missing on C, initially using a missing completely at 
random model.

Parameters to be varied are the marginal probabilities of E and D, 
the strength of the dependence of E and D on C, and the missing 
data mechanism. The sample size of 500 is fixed.
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Running example: White & Carlin
Estimand The log odds ratio between E and D, conditional on C.

Methods of analysis 1. Analysis of full data before data deletion in C.
2. Analysis of complete cases (excluding cases with missing C).
3. Multiple imputation of missing values of C (various imputation 

models may be used).
Performance measures Bias

Empirical standard error
Relative error in model-based standard error
Coverage

Implementation? 1,000 repetitions
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Two tips

TIP: If possible, include a ‘benchmark’ setting with known properties – either 
known theoretically or ‘known’ from someone else’s simulation study. In our 
missing data example, we have included ‘full data’ as this should give better 
performance than any analysis with incomplete data.

TIP: Write well-structured code from the start!

15



Well-structured code?

Two criteria for ‘well structured code’:
1. For a single repetition, to the extent possible, separate data generation, 

data analysis and ‘posting’/storage of result/s
2. Produce a well-structured estimates dataset

16



Well structured code: a suggestion

Write:
• A program that generates data
• A program that analyses data and returns (or directly posts) results of 

interest
• A program that repeatedly calls these and structures the results sensibly an 

estimates dataset
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DGM program

program define gendata
version 17
syntax, obs(int) logite(string) logitd(string) pmiss(string)
clear
set obs `obs'
drawnorm Ctrue
gen E = runiform() < invlogit(`logite')
gen D = runiform() < invlogit(`logitd')
gen Cobs = Ctrue if runiform()>=`pmiss'

end
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Analysis program
program define anadata

version 14
syntax, rep(int 0) [ post(string) ]

* Method 1: full data before data deletion
logit D E Ctrue
if !mi("`post'") post `post' (`rep') ("Full") (_b[E]) (_se[E]) (e(N)) (.)
* we are posting:            rep     method   est se         N      df
…

mi impute regress Cobs D##E, add(5)
mi estimate, post: logit D E Cobs 
if !mi("`post'") post `post' (`rep') ("MI") (_b[E]) (_se[E]) (e(N)) ///
(e(df_mi)[1,"D:E"])

end
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Tip: study a single very large dataset

Ideally, ‘fit back’ the data-generating model and check that number of 
observations is correct, parameters are close to inputs, true values of 
parameters are trapped by confidence intervals, etc.

gendata , obs(1000000)
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Tip: run with three repetitions

1. Verify that your estimates dataset is ‘well-structured’
2. Verify that the second and third repetitions produce different data and 

results

Why? Sometimes simulation code wrongly sets the seed within a program 
starting the first repetition. This is sometimes done in some program called by 
gendata or anadata.

If (for example) this is done at the end of a repetition, the second and third 
repetitions will produce identical data and results.
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Tip: run with three repetitions
. set rngstream 1
. set seed 576819506
. local nreps 3

. tempname est

. postfile `est' int(rep) str3(method) float(b se) int(N) float(df) 
> using estimates, replace

. forvalues i=1/`nreps' {

.     gendata, obs(500) logite(-1+C) logitd(-1+C) pmiss(.3)

.     anadata, rep(`i') post(`est')

. }

. postclose `est'
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Tip: run with three repetitions
. list, sepby(rep)

+------------------------------------------------------+
| rep   method           b         se     N         df |
|------------------------------------------------------|

1. |   1     Full   -.1081978   .2457296   500          . |
2. |   1      CCA   -.3064098    .314233   337          . |
3. |   1       MI    -.207532   .2880667   500   71.65478 |

|------------------------------------------------------|
4. |   2     Full    .0867077   .2260111   500          . |
5. |   2      CCA    .1381473   .2631429   349          . |
6. |   2       MI    .1110958   .2330245   500   1092.247 |

|------------------------------------------------------|
7. |   3     Full    .1232898   .2289063   500          . |
8. |   3      CCA   -.1608068   .2822033   348          . |
9. |   3       MI    .0335785   .2445695   500   508.5607 |

+------------------------------------------------------+
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Tip: anticipate analysis failures

Code should be written to capture the error so the simulation does not halt.

The failure of a method should be stored – and investigated – along with its 
error code.

. capture noisily logit D E Cobs

. if _rc==0 & !mi("`post'") post `post' (`rep') ("CCA") 
> (_b[E]) (_se[E]) (e(N)) (.) (_rc)

. if _rc>0 & !mi("`post'") post `post' (`rep') ("CCA") (.)
> (.) (.) (.) (_rc)
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Tip: make it easy to recreate
any simulated dataset

Your estimates dataset needs a unique identifier for each result (I have a 
repetition number and a variable giving the method of analysis used)

If we can recreate a specific result, we can explore method failures, outliers, 
etc. Two ways:
1. Store the RNG state at the start of a repetition: see 

github.com/tpmorris/TheRightWay/
2. Save every simulated dataset (if the analysis has a stochastic element, 

such as multiple imputation or bootstrap, you still need the RNG state)
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Analysis tips

The pre-print gives some tips for understanding issues with analysis, which we 
won’t recap here (more focused on understanding results than on ‘coding 
robust simulation studies’).

If you have a well-structured estimates dataset, Ella is now going to talk 
through a suite of commands that analyse a simulation study. In particular, it 
automates unpleasant data wrangling, analysis and several graphics.
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ELLA’S SLIDES
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Introducing siman

We introduce the siman suite which has been created to assist the analysis 
of simulation results.

A set of Stata programs that offer data manipulation, analysis and graphics to 
process, explore and visualise the results of simulation studies.

The new siman program described here is available at 
https://github.com/UCL/siman

Work with Ian White and Tim Morris, MRC Clinical Trials Unit at UCL
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Types of dataset: Estimates data
• Estimates data set: results from analysing multiple simulated data sets, with 

data relating to different statistics (e.g. point estimate (est), se) for each 
simulated data set.

• repetition (rep): simulation number
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Types of dataset: long and wide
For the input estimates data, there are 3 formats permitted by the siman
suite:

1. Long for both targets and methods: longlong
2. Wide for both target and methods : widewide
3. Long for targets, wide for methods : longwide
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Performance Measures

Typically a statistical method outputs an estimate !𝜃, its standard error #𝑠𝑒 !𝜃 and a 
confidence interval ( !𝜃 𝑙𝑜𝑤, !𝜃 𝑢𝑝𝑝)
The following performance measures may be of interest:

•Properties of estimate !𝜃
§Bias
§Empirical SE
§MSE

• Properties of SE
§Average model-based SE

•Properties of confidence interval 
§Coverage
§Power
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Types of Data Sets: OUTPUT Performance 
Measures
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Performance measures data set: results from analysing an estimates 
data set, with data relating to different performance measures (e.g. bias, 
coverage) summarised over estimates data sets for different data 
generating mechanisms.



Setting up siman: long-long format
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siman setup takes the estimates data set held in memory, checks the 
data, reformats it if necessary and attaches characteristics to the data 
set available for use across multiple sessions.

siman setup, rep(rep) dgm(dgm) target(estimand)    
method(method) est(est) se(se) true(true) 



Setting up siman: wide-wide format
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siman setup, rep(rep) dgm(dgm) target(beta gamma)    
method(A B) est(est) se(se) true(true) order(method) 



Setting up siman: siman describe
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Exploring the estimates data: siman reshape
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siman reshape, longlong
siman reshape, longwide



Exploring the estimates data: example data 
from earlier
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simcheck paper, White et al. (preprint https://osf.io/cbr72/)

https://osf.io/cbr72/


Exploring the estimates data: siman scatter
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siman scatter [if] [in] [, options]

siman scatter if dgm == 1



Exploring the estimates data: siman swarm
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siman swarm [if] [in] [, options]



Exploring the estimates data: 
siman comparemethodsscatter

40

siman comparemethodsscatter [estimate|se] [if] [in] [, options]



Exploring the estimates data: 
siman blandaltman
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siman blandaltman [if] [in] [, options]



Exploring the estimates data: 
siman zipplot
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siman zipplot [if] [in] [, options]



Creating performance measures
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Once siman setup has been run, performance measures can be 
created using the command siman analyse

performancemeasures as per simsum.  If none of the following 
options are specified, then all available performance measures are 
computed…..      

bsims reports the number of simulations with non-missing 
point estimates.
sesims reports the number of simulations with non-missing 
standard errors.
bias estimates the bias in the point estimates.empse estimates the empirical standard error -- the standard   

deviation of the point estimates.
relprec estimates the relative precision -- the inverse squared 
ratio of the empirical standard error of this method to the empirical 
standard error of the reference method.  This calculation is slow: 
omitting it can reduce run time by up to 90%.

mse estimates the mean squared error.modelse estimates the model-based standard error.relerror estimates the proportional error in the model-based 
standard error, using the empirical standard error as gold   
standard.

cover estimates the coverage of nominal confidence intervals at 
the specified level.

power estimates the power to reject the null hypothesis that 
the true parameter is zero, at the specified level.
mean the average (mean) of the point estimates.ciwidth estimates the width of the confidence interval at 

the specified level.
rmse estimates the root mean squared error.

siman analyse [if], [performancemeasures perfonly
replace]



Creating performance measures cont.
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perfonly the program will automatically append the 

performance measures data to the estimates data, 
unless the user specifies perfonly for performance 
measures only.

replace      if siman analyse has already been run and the user 
specifies it again then they must use the replace 
option, to replace the existing performance measures 
in the data set.



Creating performance measures: siman
table
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siman table [performancemeasures] [if], [column(varname)]

siman table bias



Creating performance measures graphs: siman
lollyplot
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siman lollyplot [performancemeasures] [if] [, options]



Creating performance measures graphs: 
siman trellis
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siman trellis [performancemeasures] [if] [, options]



Creating performance measures graphs: siman
nestloop
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siman nestloop [performancemeasures] [if] [, options]



Software testing

We have a program of testing our unit’s software.

The siman suite is being tested on numerous data set formats by EMZ, IW, 
TM: long-long, long-wide, wide-wide, numeric and string, multiple methods, 
targets and dgms.

Error checking to make sure it fails when it is meant to (with a sensible error 
message).
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Roundup 1

We’ve given a collection of tips that help to find/avoid errors in simulation 
studies.

The siman suite automates the data wrangling and analysis that often leads 
to problems. People often, for example:
1. Tangle up DGMs with methods
2. Compute average of model SEs (instead of root-mean variance)
3. Forget to separate out different estimands, DGMs or methods

50



Roundup 2

Doing all these things may simply be a matter of reassuring yourself that a 
particular result is ‘real’ and not goofing the code.

One remaining (unpopular?) tip if you don’t believe your results: write at least 
some of your code in another software package. In the pre-print, there is 
code for both Stata and R, and the different approaches to handling near-
separation are very interesting.
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