Modelling multiple timescales using flexible parametric survival models 2023 Stata Biostatistics and Epidemiology Virtual Symposium

Hannah Bower

Karolinska Institutet (hannah.bower@ki.se) Red Door Analytics (hannah.bower@reddooranalytics.se)

23rd February 2023

- I currently work at Karolinska Institutet (70%), and Red Door Analytics (30%)
- Background in maths and biostatistics
- Defended my thesis at Karolinska Institutet in March 2018
 - Flexible parametric models for cancer patient survival: loss in expectation of life and further developments

- Defining the timescale(s) of interest is essential in any time-to-event analysis
- Two main components of survival analysis are the event/outcome of interest and time(scale)
- The timescale is defined by the start and stop of follow-up time, and a time origin

- Different timescales could be important for different outcomes
 - Time since a cancer diagnosis to death
 - Attained age for the incidence disease
- Several timescales may also be simultaneously of interest
 - Incidence of breast cancer (attained age, time since childbirth)
 - Mortality rates in the population (calendar year, attained age)
 - Risk of infection after admittance to intensive care unit (time since admittance, calendar time)

How to model with multiple timescales?

- Common to model multiple timescales by splitting one one or more timescales[1, 2].
- For example, if we were to use a piece-wise constant exponential (Poisson) model:
 - Split your dataset up according to timescale 1
 - Split your dataset up according to timescale 2
 - Fit a Poisson model to this stacked dataset with
 - Categories for the timescales
 - Could use some smoothed function (e.g. spline)
- This can be computationally intensive.

. list id hormon _t0 _t _d in 1/10

	id	hormon	_t0	_t	_d
1. 2.	1 2 2	0 1	0	4.9665973 5.5251342	1
4. 5.	4 5	1 0	0	4.9474318 2.1136787	1 1
6. 7. 8. 9. 10.	6 7 8 9 10	0 1 0 0 0	0 0 0 0	1.2265907 5.9467747 5.9166575 1.289563 5.5141825	1 0 0 1 0

. list id hormon fu _t0 _t _d in 1/10

	id	hormon	fu	_t0	_t	_d
1.	1	0	0	0	2	0
2.	1	0	2	2	4.9665973	1
з.	2	1	0	0	2	0
4.	2	1	2	2	5	0
5.	2	1	5	5	5.5251342	1
6.	3	1	0	0	1.9494031	1
7.	4	1	0	0	2	0
8.	4	1	2	2	4.9474318	1
9.	5	0	0	0	2	0
10.	5	0	2	2	2.1136787	1

- Flexible parametric survival model (FPM) use restricted cubic splines to model the baseline function
- Here the restricted cubic splines model the baseline log hazard function ln h(t)
- With one timescale:

 $\ln(h(t|\mathbf{x})) = s(f(t)|\gamma_0) + \mathbf{x'}\beta$

where $s(f(t); \gamma_0)$ represents the spline function, \boldsymbol{x} are covariates, t is time.

- Note that it is more common to fit FPM on the log cumulative hazard scale
- To maximise the likelihood when modelling on the log hazard scale we have to numerically integrate
- FPMs are flexible, easy to include time-dependent effects, software allows for nice predictions [3].

To incorporate multiple timescales we utilise the fact that timescales increase with the same unit [4, 5, 6]

- One timescale is a function of the other
- Have to consider where the origin of each timescale is

To illustrate, say an individual is diagnosed with a disease at age 55 and has follow-up for 5 years:

Then we can extend this idea to the following:

- t_{diag} = time since diagnosis of a disease
- t_{age} = attained age
- a = age at diagnosis (constant offset)

Then, we can write

$$t_{age} = t_{diag} + a$$

Flexible parametric model with two timescales becomes:

$$\ln(h(t_{diag}|a, \mathbf{x})) = \underbrace{s_1(f(t_{diag})|\gamma_1)}_{s_1(f(t_{diag})|\gamma_1)} + \underbrace{s_2(f(t_{diag}+a)|\gamma_2)}_{s_2(f(t_{diag}+a)|\gamma_2)} + \mathbf{x}'\beta$$

Time since diagnosis

Attained age

- ► In most situations, using one primary timescale should be OK
 - Survival estimates from models with one timescale may be biased when the hazard rate of the event of interest is actually a function of two timescales [7]
- Part of the research question
- If it is of interest, there is now a user-friendly Stata command stmt
 [8]
 - Note that these models can also be fitted using stmerlin, a more generalised command (survival analysis using merlin [9])

Modelling multiple timescales in Stata using stmt

- stmt is a Stata command which fits multiple timescales using FPMs on the log hazard scale [8]
- First timescale is specified using the stset command
- Second is specified in stmt options

<u>Title</u>

stmt — Modelling multiple timescales using flexible parametric survival models on the log hazard scale

Syntax 3 1

stmt [varlist] [if] [in] [, time1(sub-options) time2(sub-options) time3(sub-options) options]

Modelling multiple timescales in Stata using stmt

- Covariates, and interactions with the timescale can be specified
- Numerical integration performed via Gauss-Legendre quadrature
- Requires rcsgen and stpm2 to be installed
- Analytic derivatives for the score and Hessian are included to increase speed and accuracy when maximising the likelihood

stmt syntax

stmt varlist [if] [in], time1(sub-options)
[time2(sub-options) time3(sub-options) timeint(int_list)
timeintknots(int_list) timeintbknots(int_list)
noconstant nodes(#) noorthog nohr verbose from(matrix) inith(varname)
maximise_options]

Time-scale specific sub-options include:

- The offset between the two timescales (start() option)
- Number and position of knots of restricted cubic splines
- Interactions with the timescale, i.e. HRs which change over the timescale
- Subgroup-specific timescale

It is also possible to predict from the fitted model using the predict command

- The linear predictor and hazard function
- Can specify which values of each timescale to predict over

predict syntax

```
predict newvar [if] [in], { hazard |xb}
time1var(varname) time2var(varname) time3var(varname)
[at(varname # [varname # ...]) ci nodes per zeros level(#)]
```

- 2982 females diagnosed with breast cancer
- Our outcome of interest is death (due to any cause)
- We follow patients from primary surgery
- Grade of cancer is our exposure of interest (2 or 3)
- Timescales of interest
 - Time since primary surgery
 - Attained age

stset with time since surgery as timescale 1:

```
. stset survtime, f(dead==1) scale(12)
Survival-time data settings
Failure event: dead==1
Observed time interval: (0, survtime]
Exit on or before: failure
Time for analysis: time/12
```

2,982 total observations 0 exclusions

. stmt grade, time1(df(5)) nolog

Log likelihood = -3023.3924

Number of obs = 2,982

		Haz. ratio	Std. err.	z	P> z	[95% conf	interval]
xb							
	grade	1.659792	.1152621	7.30	0.000	1.448582	1.901798
rcs							
	t1_s1	.1130917	.0309638	3.65	0.000	.0524038	.1737795
	t1_s2	.1179876	.0291052	4.05	0.000	.0609425	.1750326
	t1_s3	1213544	.0299503	-4.05	0.000	1800559	062653
	t1_s4	0914425	.0299644	-3.05	0.002	1501716	0327134
	t1_s5	026898	.0318642	-0.84	0.399	0893507	.0355546
	_cons	-4.12488	.1960625	-21.04	0.000	-4.509155	-3.740604

Note: Estimates are transformed only in the first equation to hazard ratios. Quadrature method: Gauss-Legendre with 30 nodes

We use the time2() option with the start() sub-option to specify our second timescale, attained age

. stmt grade, time1(df(5)) time2(df(3) start(agesurgery)) nolog

Log likelihood = -2956.7515

Number of obs = 2,982

		Haz. ratio	Std. err.	z	P> z	[95% conf.	interval]
xb							
	grade	1.609036	.1118154	6.84	0.000	1.404151	1.843816
rcs							
	t1_s1	.078144	.0316819	2.47	0.014	.0160487	.1402394
	t1_s2	.1307119	.0291879	4.48	0.000	.0735047	.187919
	t1_s3	1186399	.0300058	-3.95	0.000	1774502	0598297
	t1_s4	0946102	.0300088	-3.15	0.002	1534263	0357941
	t1_s5	030988	.0318674	-0.97	0.331	0934469	.0314709
	t2_s1	.2271669	.0260366	8.72	0.000	.1761361	.2781977
	t2_s2	2377882	.0251054	-9.47	0.000	2869938	1885825
	t2_s3	0887876	.0266178	-3.34	0.001	1409575	0366178
	_cons	-4.048158	.1961963	-20.63	0.000	-4.432695	-3.66362

Note: Estimates are transformed only in the first equation to hazard ratios. Quadrature method: Gauss-Legendre with 30 nodes

We can add an interaction using the tvc() and dftvc() options:

. stmt grade, time1(df(5) tvc(grade) dftvc(2)) time2(df(3) start(agesurgery)) nolog Log likelihood = -2953.3856 Number of obs = 2,982

Haz. ratio	Std. err.	z	P> z	[95% conf.	interval]
1.514219	. 1233225	5.09	0.000	1.290816	1.776287
.5111851	.2011859	2.54	0.011	.116868	.9055022
.3295628	.2191507	1.50	0.133	0999648	.7590903
098055	.0353463	-2.77	0.006	1673326	0287775
091684	.0300071	-3.06	0.002	1504969	0328711
0309256	.0319089	-0.97	0.332	093466	.0316147
.2274068	.0260295	8.74	0.000	.1763899	.2784236
2386316	.0251059	-9.51	0.000	2878382	189425
0892667	.0266396	-3.35	0.001	1414793	0370541
1539901	.0712874	-2.16	0.031	2937108	0142695
068185	.0770798	-0.88	0.376	2192586	.0828886
-3.884596	.2262782	-17.17	0.000	-4.328093	-3.441099
	Haz. ratio 1.514219 .5111851 .2295628 098055 091684 0309256 .2286316 0892667 1539901 068185 -3.884596	Haz. ratio Std. err. 1.514219 .1233225 .5111851 .2011859 .3295628 .2191507 -098055 .0353463 -091684 .0300071 -0309256 .0319089 .2274068 .0260295 -2386316 .0251059 -0892667 .0266396 -1539901 .0712874 -068455 .0770798 -3.884596 .2262782	Haz. ratio Std. err. z 1.514219 .1233225 5.09 .5111851 .2011859 2.54 .3295623 .2191507 1.50 098055 .0353463 -2.77 091684 .030071 -3.06 0309256 .0319089 -0.97 .2274068 .0260295 8.74 386316 .0251059 -9.51 0892667 .0266396 -3.35 1533901 .0712874 -2.16 968165 .077078 -0.68 -3.884596 .2262782 -17.17	Haz. ratio Std. err. z P> z 1.514219 .1233225 5.09 0.000 .5111851 .2011859 2.54 0.011 .3295628 .2191507 1.50 0.133 .098055 .0353463 -2.77 0.006 091684 .0300071 -3.06 0.002 .0309256 .0319089 -0.97 0.332 .2274068 .0260295 8.74 0.000 0882667 .0266396 -3.35 0.001 1539901 .0712874 -2.16 0.0376 068185 .0770798 -0.88 0.376 -3.884596 .2262782 -17.17 0.000	Haz. ratio Std. err. z P> z [95% conf.] 1.514219 .1233225 5.09 0.000 1.290816 .5111851 .2011859 2.54 0.011 .116868 .3295628 .2191507 1.50 0.133 -0999648 098055 .0353463 -2.77 0.006 -1673326 091684 .0300071 -3.06 0.002 -1504969 0309256 .0319089 -0.97 0.332 039466 .2274068 .0260295 8.74 0.000 .1763899 2386316 .0251059 -9.51 0.000 2873822 0892667 .0266396 -3.35 0.001 1414793 068185 .077078 -0.88 0.376 292586 3884596 .2262782 -17.17 0.000 -4.328093

Note: Estimates are transformed only in the first equation to hazard ratios. Quadrature method: Gauss-Legendre with 30 nodes We define our own timescale variables

- time1 (time since surgery, 0-15 years)
- time2 (attained age, 40 to 70 years)

and then predict the hazard using the predict command:

. predict h2, h time1var(time1) time2var(time2) at(grade 3) ci

•	list	time1	time2	ageatsurgery	h2	in	1/	1	C
---	------	-------	-------	--------------	----	----	----	---	---

	time1	time2	ageats~y	h2
1.	.2	40	39.8	.00693705
2.	.2	40.1	39.9	.00691959
з.	.2	40.2	40	.00690231
4.	.2	40.3	40.1	.0068852
5.	.2	40.4	40.2	.00686827
6.	.2	40.5	40.3	.0068515
7.	.2	40.6	40.4	.00683491
8.	.2	40.7	40.5	.00681849
9.	.2	40.8	40.6	.00680223
10.	.2	40.9	40.7	.00678614

Fixing age at surgery, we can plot the mortality rate across attained age:

Fixing age at surgery, we can plot the mortality rate across time since surgery:

Can also show confidence intervals (here for mortality rate for 50 year old at surgery):

Now we fix the attained age timescale:

Or we can fix the time since surgery timescale:

Hazard ratio using predictnl

```
. predictnl lnhr= ///
> ln(predict(h timelvar(time1) time2var(time2) at(grade 3))) ///
> ln(predict(h timelvar(time1) time2var(time2) at(grade 2))) ///
>, ci(lnhr_lci lnhr_uci)
```

- . gen hr=exp(lnhr)
- . gen hr_lci=exp(lnhr_lci)
- . gen hr_uci=exp(lnhr_uci)

Other information

See our Stata Journal paper [8], and paper by Batyrbekova et al. [7]

The Stata Journal (2022) 22, Number 3, pp. 679–701

DOI: 10.1177/1536867X221124552

Flexible parametric survival analysis with multiple timescales: Estimation and implementation using stmt

Hannah Bower Clinical Epidemiology Division Department of Medicine Solna, Karolinska Institutet Stockholm, Sweden hannah.bower@ki.se

Therese M.-L. Andersson Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm, Sweden therese.m-Landersson@ki.se

Michael J. Crowther Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm, Sweden michael.crowther@ki.ise

Paul C. Lambert Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm, Sweden and Biostatistics Research Group Department of Health Sciences, University of Leicester Leicester, U.K. paul.lambert@icester.ac.uk

Multiple timescales using FPMs

23rd February 2023 32 / 3

- Red Door Analytics has plans for a course, see https://reddooranalytics.se/services/training/ for updates
- Others have been working with extending this work:
 - stmerlin allows for other models with multiple timescales
 - Extensions to multi-state models to include multiple timescales [10]

Other information

```
//cox
stmerlin trt.
                  dist(cox)
                                                                111
                                                                111
                time2(df(2) offset(agec) time noorthog)
                time3(df(2) offset(yearc) time noorthog)
// rovston parmer (FPM on log cumulative hazard)
stmerlin trt.
                   dist(rp) df(3) noorthog
                                                                111
                time2(df(2) offset(agec) time noorthog)
                                                                111
                time3(df(2) offset(yearc) time noorthog)
// stmerlin equivalent to stmt
stmerlin trt.
                   dist(rcs) df(3) noorthog
                                                                111
                                                                111
                time2(df(2) offset(agec) time noorthog)
               time3(df(2) offset(yearc) time noorthog)
//stmt
stmt trt, time1(df(3)) noorthog
                                                                111
        time2(df(2) start(agec) logtoff)
                                                                111
        time3(df(2) start(yearc) logtoff)
                                                                111
        nohr
 . timer list
  1:
        99.07 /
                                 99.0690
                        1 =
      0.32 /
   2:
                        1 =
                                0.3150
  3:
      7.07 /
                        1 =
                                 7.0720
  4:
          2.30 /
                        1 =
                                  2,2970
```

Many thanks to my co-authors and colleagues for their work on this:

- Michael J Crowther, Red Door Analytics
- Nurgul Batyrbekova, Karolinska Institutet
- Paul C Lambert, Karolinska Institutet, University of Leicester
- Therese Andersson, Karolinska Institutet

References I

[1] B. Carstensen.

Demography and epidemiology: Practical use of the Lexis diagram in the computer age or: Who needs the Cox model anyway?

Technical report, Department of Biostatistics, University of Copenhagen, 2006.

[2] P. Royston and P. C. Lambert.

Flexible parametric survival analysis in Stata: Beyond the Cox model. Stata Press, 2011.

[3] P. Royston and M. K. B. Parmar.

Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects.

Statistics in Medicine, 21(15):2175-2197, Aug 2002.

[4] Bradley Efron.

The two-way proportional hazards model.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):899–909, 2002.

[5] D. Danardono.

Multiple Time Scales and Longitudinal Measurements in Event History Analysis. PhD thesis, UmeåUniversity, 2005.

[6] S. Iacobelli and B. Carstensen.

Multiple time scales in multi-state models. Statistics in Medicine, 32(30):5315–5327, Dec 2013.

- [7] N. Batyrbekova, H. Bower, Dickman P.W., R. Szulkin, P.C. Lambert, and T.M-L. Andersson. Potential bias introduced by not including multiple time-scales in survival analysis: a simulation study. Communications in Statistics - Simulation and Computation, 0(0):1–14, 2022.
- [8] H. Bower, T.M-L. Andersson, M. J. Crowther, and Lambert P.C. Flexible parametric survival analysis with multiple timescales: Estimation and implementation using stmt. *Stata Journal*, 22(2):679–701, 2022.
- M.J. Crowther. merlin—a unified modeling framework for data analysis and methods development in stata. *The Stata Journal*, 20(4):763–784, 2020.
- [10] Caroline E. Weibull, Paul C. Lambert, Sandra Eloranta, Therese M. L. Andersson, Paul W. Dickman, and Michael J. Crowther.

A multistate model incorporating estimation of excess hazards and multiple time scales. *Statistics in Medicine*, 40(9):2139–2154, 2021.