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Objectives

* By the end of this session, we hope you will
understand the:

* What?
* Why?
* How? (in Stata)

Of Network Meta-analysis



Two big problems with modern medicine

* Contradictory
studies on almost
every topic

* Flood of new data
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Huge advantages of meta-analysis

* Understand how different treatments work in different settings
* Find when treatments are harmful

* Compost huge volumes of data into something useable

* Understand the quality of the evidence

* Policy-making bodies love them
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(Old) New problem

Traditional meta-analysis
Is treatment A better than treatment B?
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The real clinical question

Which of the six available treatments is the most effective and safest?
Is treatment B better than treatment F?



Networks: using indirect comparisons

* If we know how much taller building B is to A and how much taller is
Cto A, we know how much taller is B compared to C
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* For any pair B and C, typical difference of C over B = difference of C
over A minus difference of B over A



Indirect comparison

 \WWe can obtain an indirect estimate of treatment effect for B vs C from
trials comparingAvBand Av C

Treatment effect BC = Treatment effect AC — Treatment effect AB
Variance BC = variance AC + variance AB



Example: Toothpaste versus gel

Toothpaste

\
69 1/1 \?

Placebo <
13

31

No treat



Example: Toothpaste versus gel

Toothpaste
SMD -0.34
/\
69 ™
N\ D SMD = -0.34 — (-0.19) = -0.15
Placebo <13 \\ Variance is -0.27 to -0.03

SMD -0.19

Even when there are no studies — we can estimate that toothpaste is better than gel



Using direct and indirect effects

Toothpaste

Placebo




Mixed effects: more precise?

Toothpaste

69
Mixed effect!
Placebo <13

Indirect SMD = -0.15 (0.0037)
Direct SMD 0.04 (0.01) Gel
Mixed SMD = -0.10 (0.0027) €
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Criticism of indirect
comparisons

* Indirect comparison respects randomization but it is not randomized
evidence

* Indirect and mixed effects (toothpaste versus gel) can answer policy
guestions taking a broad approach (e.g., which is the safest of all
treatments)

* BUT

* They use non-randomized evidence and extra considerations are
needed



Is network meta-analysis valid?

e That one can learn about B versus C via A

* (That one can learn about toothpaste versus gel via placebo)




Is the common treatment similar?

Treatment A is similar when
it appears in AB and AC trials

Plausible when A is placebo givenin
different forms

(e.g. injection versus pill )?




Is the common treatment similar?

For example, placebo rinse and
placebo toothpaste might not be
comparable as the mechanical action

of brushing might have a different
effect on caries

Issue must be addressed when
building the network (at the start of
the project)




Are the populations in the network similar?

Early cancer

Late cancer

Just like in
conventional meta-
analysis, there are
ways to explore and
understand
heterogeneity and
inconsistency



PRACTICAL APPLICATIONS OF NMA



1. Show the geometry of the evidence
(antipsychotics in schizophrenia)

Leucht Lancet 2013



2. Show effects of drugs in which there are

no trials

Palmer in press 2014

All-cause mortality

Epoetin beta

Placebo

Darbepoetin alfa

Methoxy-polyethylene glycol epoetin beta
No treatment

Epoetin alfa

Biosimilar ESA

Transfusion

Epoetin beta

Methoxy polyethylene glycol-epoetin beta
No treatment

Darbepoetin alfa

Epoetin alfa

Biosimilar ESA

Placebo

Odds ratio (95% Cl)

Odds ratio (95% Cl)

0.82 (0.45-1.48)
Reference
1.06 (0.91-1.24)
1.16 (0.74-1.82)
1.22 (0.56-2.63)
1.25(0.71-2.21)
1.31(0.65-2.62)

0.09 (0.02-0.38)
0.15 (0.03-0.70)
0.15(0.01-1.73)
0.17 (0.05-0.57)
0.18 (0.05-0.59)
0.27 (0.05-1.47)
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3. Rank treatments in order of best to worst
which antidepressant would you not want!)
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Ranking for efficacy (solid line) and acceptability (dotted line). Ranking: probability to be the best treatment, to be the second best, the 17
third best and so on, among the 12 comparisons).



4. Display in single graphic entire relative
evidence for a condition or drug
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Cipriani Lancet 2011 Acceptability



Application in STATA
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Abstract

Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions
and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network
meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and
computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of
the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In
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graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present
the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.
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Exercise versus drugs in absence of trials (or
why you should exercise more!)

Study Odds ratio 0dds ratio
(95% Crl) (95% Crl)
Coronary heart disease

Exercise -af

Statins - 0.82 (0.75 to 0.90)

B blockers = 0.85 (0.78 t0 0.92)

ACE inhibitors C - 0.83 (0.72 t0 0.96)

Antiplatelets - 0.83 (0.74 t0 0.93)
Stroke

Exercise -

Anticoagulants » 1.03 (0.93 to 1.12)

Antiplatelets - 0.93 (0.85 to 1.01)
Heart disease

Exercise —e

ACE inhibitors —ar— 0.88 (0.69 to 1. 16)

Diuretics - 0.19 (0.03 t0 0.66)

B blockers e 0.71 (0.61 to 0.80)

Angiotensin receptor blockers - 0.92 (0.74 to 1.09)
Prediabetes

Exercise =

a glucosidase inhibitors 3.03 (0.51 to 34.87)

Thiazolidinediones*

Biguanides ® 0.25 (0.02 to 1.46)

ACE inhibitors —_ 0.93 (0.37 to 2.59)

Glinides 0.99 (0.25 to 3.93) Naci BMJ 2014
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