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Standardized Relative/Net Survival
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@ Relative survival removes
differential other cause
mortality.

@ Age standardization removes
differences in age distribution
at diagnosis.
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Regression Standardization

© Fit a statistical model incorporating exposure, X, and
confounders, Z.

@ Predict outcome for all individuals assuming they are all exposed
(X =1).

© Take mean to give marginal estimate of outcome.

© Repeat for unexposed (X = 0).

© Take the difference in means to form contrasts.

e Key point is the distribution of confounders, Z, is the same for
the exposed and unexposed.

o If model is sufficient for confounding control then such contrasts
can be interpreted as causal effects.

@ Also known as direct/model based standardization. G-formula
(with no time-dependent confounders)[1].
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But.... margins does this?

@ margins does regression standardization, so why not use this?

@ It is an excellent command, but does not do what | wanted for
survival data.

@ In particular, extensions to competing risks and relative survival.
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Marginal survival time

o With survival data

X - is a binary exposure: 0 (unexposed) and 1 (exposed).
T - is a survival time.

T% - s the potential survival time if X is set to 0.

T' - s the potential survival time if X is set to 1.

@ The average causal difference in mean survival time
E[T'] - E[T°]

@ This is what stteffects can estimate.

@ We often have limited follow-up and calculating the mean
survival requires extrapolation and makes very strong
distributional assumptions.

Paul C Lambert 18 February 2021 5



Problems with extrapolation | |

Follow-up to three years
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Problems with extrapolation | |

Survival extrapolated to 40 years
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Marginal Survival functions

@ Rather than use mean survival we can define our causal effect in
terms of the marginal survival function.

E[T' > t] - E[T° > ]

@ We can limit t within observed follow-up time.

@ For confounders, Z, we can write this as,
EZ[S(t|X = 17 Z)] - EZ[S(t|X = 07 Z)]

@ Note that this is the expectation over the distribution of Z.
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Fit a survival model for exposure X and confounders Z.

Predict survival function for each individual setting X = x and
then average.

@ Force everyone to be exposed and then unexposed.

N
1 ~
E S(tX=1,Z=2z)- S(tX=0,Z=z)

||Mz

Use their observed covariate pattern, Z = z;.

standsurv will perform these calculation.
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What can standsurv do?

@ standsurv will obtain standardized survival curves and related
measures over the study population (or a subset).

Can treat some covariates as fixed (at () option).
Implemented for streg, stpm2 and strcs models.

Linear and non-linear function of marginal estimates.

Weights (useful for external standardization & mediation
analysis)
| will describe the use of standsurv in three frameworks.
e Standard survival
e Competing risks
o Relative survival
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Parametric models

We make a lot of use of flexible parametric survival models[3].

The flexibility comes from the use of splines to model the effect
of time

Can model on the log cumulative hazard (stpm2)[4] or log
hazard scale (strcs)[5].

In[H(t)] = s(In(t)|ko) + X3
In[A(£)] = s(in(t)]ko) + X3

@ Shown to capture complex shapes for hazard functions[6, 7].

Can fit proportional hazards models, but easy to relax this
assumption.

standsurv also works with streg models.
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@ | will use the Rotterdam breast cancer data: 2,982 women
diagnosed with primary breast cancer.

@ Observational study, but interest lies in comparing those taking
and not taking hormonal therapy (hormon).

@ Outcome is all-cause mortality.
@ In a simplified analysis | will consider the following confounders.
age Age at diagnosis
enodes Number of positive lymph nodes (transformed)

pr_1 Progesterone receptors (fmol/l) (transformed)
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Kaplan-Meier curves

Kaplan-Meier survival estimates
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Confounders

. tabstat age nodes pr, by(hormon)

Summary statistics: mean
by categories of: hormon (Hormonal therapy)

hormon age nodes pTr

no 54.09762 2.326523 168.706
yes 62.54867 5.719764  108.233

Total 55.05835 2.712274 161.8313

A\

@ Those taking treatment tend to be older and have more severe
disease.
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Hazards Ratios

Unadjusted 1.54 (95% Cl 1.30 to 1.82)
Adjusted 0.79 (95% CI 0.66 to 0.94)
@ Strong confounding.

@ From the adjusted model we can predict the survival for any
combination of covariates.
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Adjusted Hazard Ratio

. stpm2 hormon age enodes pr_1, scale(hazard) df(4) eform nolog cformat(%3.2f)

Log likelihood = -2668.4925 Number of obs = 2,982
exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
xb
hormon 0.79 0.07 -2.60 0.009 0.66 0.94
age 1.01 0.00 5.53  0.000 1.01 1.02
enodes 0.11 0.01 -22.40 0.000 0.09 0.14
pr_1 0.91 0.01 -7.46 0.000 0.88 0.93
_rcsl 2.63 0.07 34.67 0.000 2.49 2.78
_rcs2 1.18 0.03 6.08  0.000 1.12 1.25
_rcs3 1.02 0.02 1.36 0.175 0.99 1.05
_rcsé4 1.00 0.01 -0.47 0.639 0.98 1.01
_cons 1.10 0.18 0.60 0.546 0.80 1.51

Note: Estimates are transformed only in the first equation.
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Predicted survival functions (centiles)
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Marginal survival functions using standsurv

. range tt 0 10 101
. standsurv, atl(hormon 0) at2(hormon 1) timevar(tt) ci ///

> contrast (difference) atvar(ms_hor0O ms_horl) contrastvar(ms_diff)
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Standardized Survival Difference

. range tt 0 10 101
. standsurv, atl(hormon 0) at2(hormon 1) timevar(tt) ci ///
> contrast (difference) atvar(ms_hor0O ms_horl) contrastvar(ms_diff)
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Mean survival time
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Mean survival time

S(t)

Paul C Lambert

Mean survival is 3.18 years

5

10
Years from diagnosis
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Restricted mean survival time (5 years)
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Restricted mean survival time (RMST)

restricted mean survival time

RMST (t*) = E [min(T, t*)]

t*
RMST,(¢|X = x, Z) = E» [/ S(EX = x, Z)}
0

and is estimated by

RMST (+]X = x, 7) = / S(HX = x, 7 = 7))

@ we can then take differences or ratios.

@ Various authors suggest a better causal effect than HR[11]
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Difference in standardized RMST

. standsurv, atl(hormon 0) at2(hormon 1) timevar(tt) ci rmst ///
> contrast(difference) atvar(rmst_horO rmst_horl) contrastvar(rmst_diff)
. list rmst_horO rmst_horl rmst_diff* if tt==10, noobs

rmst_hor0 rmst_horil rmst_diff rms~f_lci rms~f_uci

7.5505209 < 7.9399486 .38942772 .11008298 .66877246
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Centiles of the marginal survival function

E-[S(t,]X = x,2)] = a

This is done through root finding (using Brent's root finder) by
solving for t,,

N
1
NZS(tp|X:x,Z:z,-)—a:O

i=1

@ Can perform contrasts, e.g. difference in median of marginal
survival functions.

@ Use centile option.
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Hazard of the marginal survival function

@ Apply standard transformation from survival to hazard of
marginal survival function.

Marginal hazard function
d
h(t) = —— log (Ez [S(t|X = x, Z))
and is estimated by,

1SN S(t|X = x,Z = z)h(t|X = x, Z = z)
N Z,N:1 S(tIX =x,Z = z)

hy(t) =

v

@ Note this is very different from the mean of the hazard functions.

e Can perform contrasts to get marginal hazard ratios (or
differences).

@ Use the hazard option.
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User defined functions

@ We may need other transformations of standardized functions.

@ Use userfunction() option for this.
@ For example, in survival studies the attributable fraction is

defined as,
E[F(t|X, Z)] — E[F(t|X =0, 2)]
AF(t) =
(®) E[F(t]X, 2)]
mata:
function calcAF(at)
{

// at2 is F(t|unexposed,Z)

// atl is F(t|X,Z)

return((at[1] - at[2])/at[1])
}
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Example of user defined function

. standsurv, atl1(.) at2(hormon 1) ci failure ///
>  timevar(tt) userfunction(calcAF) userfunctionvar (AF)

0.30
0.254
0.20

045\

0.101

Attributable fraction

0.05-
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Years from diagnosis
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Competing risks

Alive

Separate models for each cause, e.g.

hl(t|Z) = ho’l(t) exp (612)
h2(t|Z) = h0’2(t) eXp (ﬁzZ)
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Two types of probability

@ We may be interested in cause-specific survival /failure.

(1) In the absence of other causes (net)

F(t)=1—=5(t)=P(Tx <t)= /Ot S(u)hy(u)du

@ We may be interested in cumulative incidence functions.

(2) In the presence of other causes (crude)

CIFu(t) = P(T < ¢, event = k) — /OtS(u)hk(u)du

@ Both are of interest - depends on research question.

@ (1) Needs conditional independence assumption to interpret as
net probability of death.
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Description of Example

@ 39,625 patients with bladder cancer in England (2000-2012).
@ Death due to cancer and other causes.
o Covariates age, sex and deprivation in five groups.

@ Restrict here to most and least deprived.

Flexible parametric (Royston-Parmar) models|3]

Separate model for cancer and other causes.

Age modelled using splines (3 df)

2-way interactions

Time-dependent effects for all covariates.
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Two separate cause-specific models

Cancer Model

stset dod, failure(status==1) exit(time min(dx+365.24*10,mdy(12,31,2013))) ///
origin(dx) id(patid) scale(365.24)

stpm2 dep5 male agercs* dep_agercs*, df(5) scale(hazard) ///
tvc(agercs* male dep5) dftvc(3)
estimates store cancer

Other Cause Model

stset dod, failure(status==2) exit(time min(dx+365.24*10,mdy(12,31,2013))) ///
origin(dx) id(patid) scale(365.24)

stpm2 dep5 male agercs* dep_agercs*, df(5) scale(hazard) ///
tvc(agercs* male dep5) dftvc(3)
estimates store cancer
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Conditional cause-specific CIFs (Females)

CIF
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Standardized cause-specific CIF

@ Probability of death in the presence of other causes.
@ We can standardize the cause-specific CIF in the same way.

@ These requires combining K different models

EZ [C/Fk(t|X = X, Z)]

N

1 t_ -

m E / S(wX =x,Z =z)h(ulX =x,Z = z)du
i=1 V0

@ Calculate for X=1 and X=0 and then obtain contrast.

@ Can be interpreted as causal effects under assumptions[12].
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Using standsurv

@ Take mean of 39,625 CIFs where all individuals forced to be
unexposed.

@ Take mean of 39,625 CIFs where all individuals forced to be
exposed.
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Using standsurv

@ Take mean of 39,625 CIFs where all individuals forced to be

unexposed.
@ Take mean of 39,625 CIFs where all individuals forced to be
exposed.
standsurv, crmodels(cancer other) timevar(tt) cif ci ///
at1(dep5 O dep_agercsl O dep_agercs2 0 dep_agercs3 0) 11/
at2(dep5 1 dep_agercsl=agercsl dep_agercs2=agercs2 dep_agercs3=agercs3) ///
contrast (difference) ///
atvar (CIF_s_depl CIF_s_dep5)) ///

contrastvar (CIF_diff)
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Using standsurv

@ Take mean of 39,625 CIFs where all individuals forced to be

unexposed.
@ Take mean of 39,625 CIFs where all individuals forced to be
exposed.
standsurv, crmodels(cancer other) timevar(tt) cif ci ///
atl(dep5 O dep_agercsl O dep_agercs2 O dep_agercs3 0) ///
at2(dep5 1 dep_agercsl=agercsl dep_agercs2=agercs2 dep_agercs3=agercs3) ///
contrast (difference) /17
atvar (CIF_s_depl CIF_s_dep5)) ///

contrastvar (CIF_diff)
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Using standsurv

@ Take mean of 39,625 CIFs where all individuals forced to be

unexposed.
@ Take mean of 39,625 CIFs where all individuals forced to be
exposed.
standsurv, crmodels(cancer other) timevar(tt) cif ci ///
at1(dep5 O dep_agercsl O dep_agercs2 0 dep_agercs3 0) 11/
at2(dep5 1 dep_agercsl=agercsl dep_agercs2=agercs2 dep_agercs3=agercs3) ///
contrast (difference) ///
atvar (CIF_s_depl CIF_s_dep5)) ///

contrastvar (CIF_diff)
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Using standsurv

@ Take mean of 39,625 CIFs where all individuals forced to be

unexposed.
@ Take mean of 39,625 CIFs where all individuals forced to be
exposed.
standsurv, crmodels(cancer other) timevar(tt) cif ci ///
at1(dep5 O dep_agercsl O dep_agercs2 0 dep_agercs3 0) 11/
at2(dep5 1 dep_agercsl=agercsl dep_agercs2=agercs2 dep_agercs3=agercs3) ///
contrast (difference) ///
atvar (CIF_s_depl CIF s_dep5)) ///

contrastvar (CIF_diff)
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Standardized cause-specific CIF

Standardized CIF,(t)
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Stacked standardized cause-specific CIF
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Competing Risks - extensions

@ Can also obtain area under standardized CIF which gaves a
standardized version of the expected years of life lost (Andersen
2013[13]). Use cif and rmft options. See Mozumder et al
2021 [14].

@ Various causal in measures in competing risks described in
Young et al 2020[15] can be estimated using standsurv.

@ Separable effects can also be estimated (Stensrud et al
2020)[16].

@ Can also use user-defined functions, e.g. Standardized
attributable fraction in competing risks setting.

o Different parametric models can be used for different causes.

o Different time scales can be used for different causes (e.g.
attained age / time from diagnosis).
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Relative Survival

@ Relative survival models used with large population cancer
registry data when cause of death not available or not reliable.

h(t|X, Z) = h*(t|X, Z) + A(t|X, Z) |
h(t|X,Z) - All-cause mortality rate
h*(t|X,Z) - Expected mortality rate
A(t|X,Z) - Excess mortality rate

@ Expected mortality rates obtained from national lifetables.
@ On survival scale.

S(t|X, Z) = S*(t|X, Z)R(t|X, 2Z) J

@ The equivalent of a CIF is know as a crude probability in the

relative survival framework.
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Melanoma Example

Relative Survival Model
stpm2 dep5 agercs* , scale(hazard) df(5) tvc(dep5 agercs*) dftvc(3) bhazard(rate)

—

R(t|X =x,2Z) = m > wiR(tIX = x,Z = z)
i=1

@ The weights, w;, enables standardization to external population
through up- or down-weighting relative to a reference population.

Standardized Relative Survival

standsurv, timevar(tt) ci 11/
at1(dep5 O agercsl_dep5 O agercs2_dep5 O agercs3_dep5 0) ///
at2(dep5 1 agercsl_depb=agercsl agercs2_depb=agercs2 agercs3_depb=agercs3) ///
indweights (wt) /17
contrast(difference) /17
atvar (R_dep5 R_depl) 11/

contrastvar (R.diff)
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Standardized Relative Survival
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All-cause Survival

N
— 1
S(tX =x,2) =4 D SH(tX =x,Z = Z)Ri(t|X = x,Z = z)
i=1

y
standsurv, timevar(tt) ci 11/
atl(dep5 O agercsl_dep5 O agercs2.dep5 O agercs3._dep5 0) ///
at2(dep5 1 agercsl_depb=agercsl agercs2_depb=agercs2 agercs3.dep5=agercs3) ///
expsurv(using (popmort_uk_regions_2017.dta) ///
datediag(dx) /17
agediag(agediag) /17
pmrate(rate) ///
pmage (age) 11/
pmyear (year) /17
pmother (sex dep region) 11/
pmmaxyear (2016) /17
ati(dep 1) /17
at2(dep 5)) /17
contrast(difference) 11/
atvar (S_dep5 S_depl) /17

contrastvar (S_diff) )
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Standardized All-cause Survival
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Standardized Crude Probabilities

Nt
Fe(t]X =x,2) = % Z/ S* (X = x, Z = Z)R(ulX = x, Z = z)A(ulX = x, Z = z,),
=170 )
standsurv, crudeprob timevar(tt) ci ///
at1(dep5 0 agercsl_dep5 O agercs2.dep5 O agercs3.dep5 0) ///
at2(dep5 1 agercsl_depb=agercsl agercs2 depb=agercs2 agercs3_depb=agercs3) ///
expsurv(using(popmort_uk_regions_2017.dta) 11/
datediag(dx) /1/
agediag(agediag) ///
pmrate(rate) /1/
pmage (age) ///
pmyear (year) /17
pmother (sex dep re) /1/
pmmaxyear (2016) 11/
atl(dep 1) /17
at2(dep 5)) /1/
contrast (difference) 11/
atvar (CP_dep5 CP_depl) /11
contrastvar (CP_diff)

Paul C Lambert 18 February 2021 42



Standardized Crude Probabilities of Death
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Mediation Analysis in Relative Survival Framework
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Mediation Analysis in Relative Survival Framework

// Natural Indirect Effect
standsurv, failure timevar(tt) ///

at1(dep5 1 stage2 O stage3 O stage4 O st2dep5 O st3dep5 O stddep5 O, atindweights(pll)) ///
at2(dep5 1 stage2 1 stage3 0 stage4 O st2dep5 1 st3dep5 O std4dep5 0, atindweights(pl2)) ///
at3(dep5 1 stage2 O stage3 1 stage4 O st2dep5 O st3dep5 1 stddep5 0, atindweights(p13)) ///
at4(dep5 1 stage2 O stage3 O stage4 1 st2dep5 O st3dep5 O stddep5 1, atindweights(pl4)) ///
at5(dep5 1 stage2 O stage3 0 stage4 O st2dep5 O st3dep5 O std4dep5 0, atindweights(p01)) ///
at6(dep5 1 stage2 1 stage3 O stage4 O st2dep5 1 st3dep5 O stddep5 0, atindweights(p02)) ///
at7(dep5 1 stage2 O stage3 1 stage4 O st2dep5 O st3dep5 1 st4dep5 0, atindweights(p03)) ///
at8(dep5 1 stage2 O stage3 O stage4 1 st2dep5 O st3dep5 O stddep5 1, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(t_nie) ci
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Mediation Analysis in Relative Survival Framework

// Natural Indirect Effect
standsurv, failure timevar(tt) ///

at1(dep5 1 stage2 O stage3 O stage4 O st2dep5 O st3dep5 O stddep5 O, atindweights(pll)) ///
at2(dep5 1 stage2 1 stage3 0 stage4 O st2dep5 1 st3dep5 O std4dep5 0, atindweights(pl2)) ///
at3(dep5 1 stage2 O stage3 1 stage4 O st2dep5 O st3dep5 1 stddep5 0, atindweights(p13)) ///
at4(dep5 1 stage2 O stage3 O stage4 1 st2dep5 O st3dep5 O stddep5 1, atindweights(pl4)) ///
at5(dep5 1 stage2 O stage3 0 stage4 O st2dep5 O st3dep5 O std4dep5 0, atindweights(p01)) ///
at6(dep5 1 stage2 1 stage3 O stage4 O st2dep5 1 st3dep5 O stddep5 0, atindweights(p02)) ///
at7(dep5 1 stage2 O stage3 1 stage4 O st2dep5 O st3dep5 1 st4dep5 0, atindweights(p03)) ///
at8(dep5 1 stage2 O stage3 O stage4 1 st2dep5 O st3dep5 O stddep5 1, atindweights(p04)) ///
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(t_nie) ci
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Relative Survival Framework Extensions

e Common to use weights (indweights () )to standardize to
external population.

@ Reference adjusted measures - using expected mortality rates
from external population[17].

@ Incorporate inverse probability weights into model to get doubly
robust standardization.

@ Marginal measures of life expectancy.
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Summary

@ Regression standardisation is a simple and underused tool with
survival data.

@ As long as we can predict survival function, models can be as
complex as we like (non-linear effects, non-proportional hazards,
interactions with exposure etc.)

@ Marginal estimates also used in validation of prognostic models
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