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Conventional randomized controlled trials =/ University

* Suppose we have a new experimental treatment and we want to determine whether it provides a
benefit over the current standard-of-care

Patients are randomly allocated to one of the treatments and their outcome data is compared
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* Trials are very expensive...is this the best we can do? Can we make evaluation more efficient?
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Group sequential trials =/ University

* Recruitment and outcome data collection does not happen instantaneously in an RCT
* We can potentially exploit this by including a series of interim analyses at which the trial may stop

* Reduces the expected required sample size compared to only analysing the data at the end of the
trial
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Multi-arm trials University

* Compare several experimental treatments to a shared control group

* Requires fewer patients in total than doing a series of two-arm trials
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Multi-arm multi-stage (MAMS) trials \J-/University

* Include interim analyses in a multi-arm trial

* Can be a highly efficient approach to evaluating multiple experimental treatments
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Many varieties of MAMS design now available g/ University

Different types of outcome data
* E.g., continuous, binary, survivall
* Covariates?!
* Changing outcomes — “intermediate” outcome available at interim analyses?:3

* ‘Separate’ and ‘simultaneous’ stopping®
* Do you terminate the whole trial as soon as one experimental treatment is found to be efficacious?

e Bayesian designs>®
e Particularly useful for inputting external information. E.g., COVID trials

* Sample size re-estimation’
* Helps handle scenarios in which there is limited information available to help power the trial accurately

e Several varieties that are about targeting improved statistical efficiency in terms of either

* Benefit to patients in the trial
* The required sample size/power
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Sample size efficient designs g/ University

* Code available on ssc a few years ago now for this type of design
e Adaptive design course run with Adrian Mander, David Robertson, and James Wason

* Provides a lot of flexibility in terms of the stopping rules
» Little flexibility in terms of the sample size per-stage

e Discuss fixed vs. variable stage-wise sample size
* Relates to practical considerations in some recent trials
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Variable stage-wise sample size g/ University

 Majority of MAMS literature assumes that a particular number of patients will be enrolled to an arm
if it is present in the trial®?

e Exact stage-wise sample size is variable
 E.g., 3 experimental arms and 3 stages allowed: 8 possible sample sizes

e Can be problematic in terms of costing the trial, knowing when the interim analyses will occur,
knowing whether recruitment is going well
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Variable stage-wise sample size g/ University

Control
Experimental 1 §§
Experimental 2
Experimental 3 ==
Realised stage-wise total
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Fixed stage-wise sample size g/ University

Share a fixed sample size between the arms present in each stage

* Limit number of possible sample sizes

Control
Experimental 1 §§
Experimental 2 N/4 N/3 N/2
Experimental 3 ==
Deterministic stage-wise total
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Remainder of talk s/ University

e Discuss some of the key statistical details behind the MAMS approach

* Go through an example: what are the advantages/disadvantages of fixing the stage-wise sample
size compared to the more conventional approach?

e Overview and discussion of Stata implementation

Multi-arm multi-stage trials
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Design framework =/ University

* Suppose there are K experimental arms, and we allow at most | stages

» Test the following hypotheses, through the series of analyses:
H,:17, <0, k=1,.. K
* T represents the effect of experimental treatment k relative to the control
* Use the following test statistics at stage j to test Hy:
Tik

. JVar(fjk)

Zj
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Design framework =/ University

* Need to specify lower (futility) and upper (efficacy) stopping boundaries: f = (fl, ,f]) and e =
(el, ...,e])

 E.g., decision rules
o |If Zj, > e; then terminate the trial, rejecting Hy. Else:
o Drop the k with Z;; < f; for futility
o Ifone has f; < Zj, < g;, continue to next stage retaining those not dropped + control arm

* Control the familywise error-rate to level « whent; = --- =17 =0
* Probability of at least one type-I error

* Powerof 1 — 5 to reject H; when:
71 = 51,7:2 = =T = 50

where §; and §, are interesting and uninteresting effects
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Designh determination =/ University

Need to find suitable e, f, and required sample size
* |f allowing the stage-wise sample size to vary, search for n: sample size for each present arm in each stage

e If fixing the stage-wise sample size, search for N: the total stage-wise sample size

* In practice the stopping boundaries are usually assumed to follow a simple functional form
* E.g., Pocock boundaries:e; =--=¢, =f;=C, f; =--=f_1 =—C

* To find an efficient design, need to be able to evaluate statistical quantities of interest. In particular,

for choices of C and n/N we would like to be able for any values of 74, ...., Tx to compute:
* Expected, standard deviation, median, and modal sample sizes
* Probability each null hypothesis is rejected

» Use fact that joint distribution of the test statistics is multivariate normal
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Designh determination =/ University

* For example, suppose that ] = K = 2 and you want to know the probability that H; is rejected at
stage 2, and experimental drug 2 is dropped for futility at stage 1
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Designh determination =/ University

* Two one-dimensional optimization steps: find C and then find n/N

e Speed therefore dependent on how fast you can
e Evaluate multivariate normal integrals
* Perform a one-dimensional search

e More on this later
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Example: TAILoR trial s/ University

* Trial assessing drugs for reducing insulin resistance in HIV-positive individuals on combination
antiretroviral therapy®

e UseK=3and] =3

e Alsoa =0.05p=0.1,6; =0.545,8,=0.178,0 = 1,r = 1, and O’Brien-Fleming stopping
boundaries
* Results not very sensitive to these choices

 Conventional MAMS design with a variable stage-wise sample size would need ~26 patients per-arm

per-stage. 8 possible sample sizes
o 105,157, 183, 209, 235, 262, 288, 314

* Fixing the stage-wise sample size means you need 105 patients per-stage
o 105, 209, 314

o By construction these are very similar!
o Need to delve deeper to spot the differences
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Probability we reject H, \J/University

Variable Fixed

.975
.925
.875
.825
775
.725
.675
.625
575
.525
475
425
375
.325
.275
.225
175
125
.075
.025
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Probability we reject H, \J/University

Power(Fixed) - Power(Variable)
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Expected sample size \J/University

Variable Fixed

310
290
270
250
230
210
190
170
150
130
110
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Median sample size \J/University

Variable Fixed

310
290
270
250
230
210
190
170
150
130
110
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Modal sample size \J/University

Variable Fixed

310
290
270
250
230
210
190
170
150
130
110
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Discussion University

* |nthe end, easy to summarise
e All things being equal in terms of how error-rates etc. are controlled, performance of the two approaches often
similar: in many cases you might not expect to see a difference
 When they do differ, it is a question of what do you want to do more, minimize the sample size (variable) or maximise
the power (fixed)

* Other considerations for the fixed approach

* Advantage: Under (roughly) known recruitment rate, easier to predict timing of interim analysis
* Disadvantage: Potentially more patients on the control arm
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Stata implementation University

des mams, k(integer 3) j(integer 2) ALPha(real 0.05) beta(real 0.2)
DELtal(real 0.5) deltaO(real 0) sd(real 1) RATio(real 1)
FSHape(string) ESHape(string) ffix(real 0) efix(real 2)
SEParate FIXed

e Set-up similarly to power
* What you need and nothing more!

« rclass; returns the required sample size, the stopping boundaries, and prints a summary of the
key operating characteristics

* Internally des mams is broken down into modules and written in a very general way
» Still know it’s difficult to know it works correctly — limited results/software to compare to
* So make sim mams available as an internal check on results
* Working on relating results to those from nstage where possible®
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Stata implementation University
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Stata implementation University

des mams, k(integer 3) j(integer 2) ALPha(real 0.05) beta(real 0.2)
DELtal(real 0.5) deltaO(real 0) sd(real 1) RATio(real 1)
FSHape(string) ESHape(string) ffix(real 0) efix(real 2)
SEParate FIXed

e Set-up similarly to power
* What you need and nothing more!

« rclass; returns the required sample size, the stopping boundaries, and prints a summary of the
key operating characteristics

* Internally des mams is broken down into modules and written in a very general way
» Still know it’s difficult to know it works correctly — limited results/software to compare to
* So make sim mams available as an internal check on results
* Working on relating results to those from nstage where possible®

Michael Grayling (michael.grayling@newcastle.ac.uk) Multi-arm multi-stage trials



A Newcastle

Stata implementation University

des mams, Jj(3) beta(0.1) delta(0.545) delta0(0.178) fshape("obf") eshape("obf")

The hypotheses to be tested will be:
Hk: tk = pk - 0 =0, k=1, 2, 3

Futility stopping boundaries, f, determined to be: (-3.64, -2.57, 2.1)
Efficacy stopping boundaries, e, determined to be: (3.64, 2.57, 2.1)

Required stage-wise group size in the control arm, n, determined to be: 27

The operating characteristics of the design are:

r() | Variable

P _HG | P HA(HG) = .05,

P LFC | P_H1(LFC) = .909,
ESS HG | ESS(HG) = 322.13,
ESS LFC | ESS(LFC) = 252.59,
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Stata implementation University

Algorithms for evaluating the performance of a candidate design have improved a lot!!

Still slow for (reasonably) large | and K

Multivariate normal integrals done with an updated version of code from Grayling and Mander
(2018)12

e Similarin speed to mvnormalcv ()

Result in a key sub-routine called power mams (n,...)
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Stata implementation University

Current: One-dimensional root-solving done with our own implementation of Brent’s algorithm

power mams(n,..) — (1 - beta)

Started with optimize (), re-framing as a minimization problem — convergence unreliable

(power mams(n,..) — (1 - beta))”2

- T /

True required n

Then moved to awhile loop = too slow

Thenmm root () — nearly there...own code allows us to strip out anything not needed

ssc install desma
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Stata implementation University

Current: One-dimensional root-solving done with our own implementation of Brent’s algorithm

power mams(n,..) — (1 - beta)

Started with optimize (), re-framing as a minimization problem — convergence unreliable

(power mams(n,..) — (1 - beta))”2

‘..I-.J’

True required n

Then moved to awhile loop = too slow
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