STATA TREATMENT-EFFECTS
REFERENCE MANUAL.:

POTENTIAL OUTCOMES/COUNTERFACTUAL OUTCOMES
RELEASE 14

A Stata Press Publication
StataCorp LP
College Station, Texas



E\?’\ ®  Copyright (¢) 1985-2015 StataCorp LP
:’J"’"\( N[ Al rights reserved
A Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-168-4
ISBN-13: 978-1-59718-168-6

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LP.



Contents

IO vttt Introduction to treatment-effects manual
treatment effects ........... ... .. .. .. ... Introduction to treatment-effects commands
eteffects . ... . Endogenous treatment-effects estimation
eteffects postestimation ................c.coovinan... Postestimation tools for eteffects
etpoiSSON .« .o vt Poisson regression with endogenous treatment effects
etpoisson postestimation . ..............c..ieiao... Postestimation tools for etpoisson
BLIEEICSS © v v ve e eeiee e Linear regression with endogenous treatment effects
etregress postestimation ............... .. ..., Postestimation tools for etregress
stteffects . .............. Treatment-effects estimation for observational survival-time data
stteffects intro ....... Introduction to treatment effects for observational survival-time data
stteffects ipw . ... . i Survival-time inverse-probability weighting
stteffects ipwra ......... Survival-time inverse-probability-weighted regression adjustment
stteffects postestimation ........... .. .. .. . ... Postestimation tools for stteffects
stteffects ra .. ... L Survival-time regression adjustment
stteffects wra ... ... L i Survival-time weighted regression adjustment
tebalance ............ ... ... .. ..., Check balance after teffects or stteffects estimation
tebalance boX . ... ...t Covariate balance box
tebalance density .............. .. il Covariate balance density
tebalance overid ......... ... Test for covariate balance
tebalance summarize ................oeueninaan.. Covariate-balance summary statistics
teffects ... .. Treatment-effects estimation for observational data
teffects intro .................... Introduction to treatment effects for observational data
teffects intro advanced .. Advanced introduction to treatment effects for observational data
teffects aipw ... ... Augmented inverse-probability weighting
teffects IpW ..ot Inverse-probability weighting
teffects ipwra ............ ... ... ... Inverse-probability-weighted regression adjustment
teffects multivalued ......... ... .. .. . . i Multivalued treatment effects
teffects nnmatch ....... ... ... .. .. . Nearest-neighbor matching

teffects overlap . ... e Overlap plots

14
19
32
36
64

69
70
89
99
127
137
148

156
169
174
179
184

190
191
204
217
239
247
257
266
280



ii Contents

teffects postestimation .................ouiiuirainan.. Postestimation tools for teffects 288
teffects psmatch ...... ... .. Propensity-score matching 296
teffects ra ... Regression adjustment 305
GlOSSATY . o e vttt et e e e e e e e e e e 317

Subject and author index . ....... ... . 323



Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[D] reshape
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s

Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[D] Stata Data Management Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[1] Stata Glossary and Index

[M] Mata Reference Manual






Title

intro — Introduction to treatment-effects manual

Description Also see

Description

This manual documents commands for the analysis of treatment effects and is referred to as [TE]
in cross-references.

After this entry, [TE] treatment effects provides an overview of the treatment-effects estimation
commands. The other parts of this manual are arranged alphabetically. If you are new to Stata’s
treatment-effects commands, we recommend that you read the following sections first:

[TE] teffects intro Introduction to treatment effects for observational data
[TE] teffects intro advanced Advanced introduction to treatment effects for observational data
[TE] teffects multivalued Multivalued treatment effects

If you are interested in survival analysis, we also recommend that you read the following section
first:

[TE] stteffects intro Introduction to treatment effects for observational survival-time data

Stata is continually being updated, and Stata users are always writing new commands. To find out
about the latest treatment-effects features, type search treatment effects.

Also see
[U] 1.3 What’s new

[R] intro — Introduction to base reference manual



Title

treatment effects — Introduction to treatment-effects commands

Description Also see

Description

This manual documents commands that use observational data to estimate the effect caused by
getting one treatment instead of another. In observational data, treatment assignment is not controlled
by those who collect the data; thus some common variables affect treatment assignment and treatment-
specific outcomes. Observational data is sometimes called retrospective data or nonexperimental data,
but to avoid confusion, we will always use the term “observational data”.

When all the variables that affect both treatment assignment and outcomes are observable, the
outcomes are said to be conditionally independent of the treatment, and the teffects and stteffects
estimators may be used.

When not all of these variables common to both treatment assignment and outcomes are observable,
the outcomes are not conditionally independent of the treatment, and eteffects, etpoisson, or
etregress may be used.

teffects and stteffects offer much flexibility in estimators and functional forms for the
treatment-assignment models. teffects provides models for continuous, binary, count, fractional,
and nonnegative outcome variables. stteffects provides many functional forms for survival-time
outcomes. See [TE] teffects intro, [TE] teffects intro advanced, and [TE] stteffects intro for more
information.

eteffects, etpoisson, and etregress offer less flexibility than teffects because more struc-
ture must be imposed when conditional independence is not assumed. eteffects is for continuous,
binary, count, fractional, and nonnegative outcomes and uses a probit model for binary treatments; see
[TE] eteffects. etpoisson is for count outcomes and uses a normal distribution to model treatment
assignment; see [TE] etpoisson. etregress is for linear outcomes and uses a normal distribution to
model treatment assignment; see [TE] etregress.

Treatment effects

[TE] teffects aipw Augmented inverse-probability weighting

[TE] teffects ipw Inverse-probability weighting

[TE] teffects ipwra Inverse-probability-weighted regression adjustment
[TE] teffects nnmatch Nearest-neighbor matching

[TE] teffects psmatch Propensity-score matching

[TE] teffects ra Regression adjustment
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Survival treatment effects

[TE] stteffects ipw Survival-time inverse-probability weighting

[TE] stteffects ipwra Survival-time inverse-probability-weighted regression adjustment
[TE] stteffects ra Survival-time regression adjustment

[TE] stteffects wra Survival-time weighted regression adjustment

Endogenous treatment effects

[TE] eteffects Endogenous treatment-effects estimation

[TE] etpoisson Poisson regression with endogenous treatment effects

[TE] etregress Linear regression with endogenous treatment effects
Also see

[U] 1.3 What’s new

[TE] teffects intro — Introduction to treatment effects for observational data

[TE] teffects intro advanced — Advanced introduction to treatment effects for observational data
[TE] teffects multivalued — Multivalued treatment effects

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data



Title

eteffects — Endogenous treatment-effects estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs) from observational data when treatment assignment
is correlated with the potential outcomes. It allows for continuous, binary, count, fractional, and
nonnegative outcomes and requires a binary treatment. To control for the endogeneity of the treatment
assignment, the estimator includes residuals from the treatment model in the models for the potential
outcomes, known as a control-function approach.

Quick start

ATE of binary treatment treat using a linear model for outcome y1 on x and the residuals from a
probit model for treat on x and z
eteffects (yl x) (treat x z)

As above, but estimate ATET
eteffects (y1 x) (treat x z), atet

As above, but estimate POMs
eteffects (y1 x) (treat x z), pomeans

As above, and show parameters from auxiliary equations
eteffects (yl x) (treat x z), pomeans aequations

ATE of treat using an exponential-mean model for y1
eteffects (yl x, exponential) (treat x z)

Same as above, but for count outcome y2
eteffects (y2 x, exponential) (treat x z)

As above, but use a probit model for binary outcome y3
eteffects (y3 x, probit) (treat x z)

As above, but use a fractional probit model for y4 ranging from O to 1
eteffects (y4 x, fractional) (treat x z)

Menu
Statistics > Treatment effects > Continuous outcomes > Endogenous treatment, control function
Statistics > Treatment effects > Binary outcomes > Endogenous treatment, control function
Statistics > Treatment effects > Count outcomes > Endogenous treatment, control function
Statistics > Treatment effects > Fractional outcomes > Endogenous treatment, control function

Statistics > Treatment effects > Nonnegative outcomes > Endogenous treatment, control function

4
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Syntax

eteffects (ovar omvarlist [, omodel noconstant])

(tvar tmvarlist [, noconstant]) [l_'f] [zn] [weight] [, stat options]

ovar is the depvar of the outcome model.

omvarlist is the list of exogenous indepvars in the outcome model.

tvar is the binary treatment variable.

tmvarlist is the list of covariates that predict treatment assignment.

omodel Description
Model
linear linear outcome model; the default
fractional fractional probit outcome model
probit probit outcome model
exponential exponential-mean outcome model
stat Description
Model
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
options Description
Model
noconstant suppress constant term
SE/Robust
vce (veetype) vcetype may be robust, cluster clustvar, bootstrap, or
jackknife
Reporting
level (#) set confidence level; default is 1level (95)
aequations display auxiliary-equation results

display_options

Maximization
maximize_options

Advanced
pstolerance (#)
osample (newvar)

coeflegend

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

control the maximization process; seldom used
set tolerance for overlap assumption

generate newvar to mark observations that violate the overlap assumption

display legend instead of statistics
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omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

noconstant; see [R] estimation options.
stat is one of three statistics: ate, atet, or pomeans. ate is the default.
ate specifies that the average treatment effect be estimated.
atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar),
and that use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate(#), [@]170& and from (init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of

matname [, skip copy]

#[,#...], copy

Advanced

pstolerance (#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(le-5). eteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample (newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.
The following option is available with eteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples

If you are unfamiliar with treatment-effects estimators for observational data or the teffects
commands, we recommend that you look at [TE] teffects intro. For the intuition behind some of the
concepts discussed below, we recommend that you read Defining treatment effects in [TE] teffects
intro advanced.

The estimators implemented in eteffects extend the regression adjustment (RA) estimators
implemented in teffects ra to allow for endogenous treatments, that is, when treatment assignment
is not independent of outcomes. This endogeneity is a violation of the conditional mean independence
assumption used by teffects ra, as discussed in The potential-outcome model in [TE] teffects intro
advanced.

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs). It uses a linear, a probit, a fractional probit, or
an exponential-mean model for the potential outcomes and a probit model for treatment assignment.
After conditioning on the observable covariates, eteffects allows some remaining unobservable
components to affect both treatment assignment and the potential outcomes. The treatment assignment
process is endogenous because these unobservable components affect both treatment assignment and
the potential outcomes.

To control for the endogeneity of the treatment assignment, eteffects uses a control-function
approach. This method controls for endogeneity by including the residuals from the treatment-
assignment model as a regressor in the models for the potential outcome. The implementation in
eteffects follows Wooldridge (2010), who provides an excellent discussion of the control-function
approach that addresses endogeneity problems in a treatment-effects context.

The control-function approach estimates the parameters of the conditional means of the potential
outcomes. Sample averages of the conditional means are used to estimate the unconditional ATE,
ATET, or POMs. This method is known as RA.

Taken collectively, the estimators implemented in eteffects are control-function RA estimators.
See Methods and formulas below for details about the estimation procedure.

> Example 1: Linear outcome estimates for ATE

Suppose we want to know the effect of a mother smoking while pregnant on the birthweight of
her infant. We use an extract from Cattaneo (2010) in which bweight records the baby’s birthweight
and mbsmoke is the variable (0 or 1) indicating whether a mother smoked while pregnant.

We may believe that birthweight (the potential outcome) is influenced by whether the mother had
a prenatal exam in the first trimester, whether the mother is married, the mother’s age, whether this
is the first birth, and the education level of the father. We may also believe that the smoking decision
(the treatment) is influenced by the mother’s marital status, the education level of the mother, her
age, whether she had a prenatal exam in the first trimester, and whether this baby is her first baby.

Thus we condition on different sets of covariates in the models for treatment assignment and
the potential outcomes. In the probit model for smoking status (mbsmoke), we condition on marital
status (mmarried), age (mage), mother’s education level (medu), father’s education level (fedu), and
whether it was the mother’s first baby (fbaby). We model birthweight (bweight) as a linear function
of whether the mother had a first-trimester prenatal exam (prenatall), mmarried, mage, and fbaby.
We can estimate the ATE of smoking status using one of the teffects estimators if we believe that
there are no unobservable components that affect both the decision to smoke while pregnant and the
potential birthweights.
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If we believe there is some unobservable factor that affects both assignment to treatment and the
potential outcome, we must select another estimator. For example, we do not observe a mother’s health
consciousness, which affects both the smoking decision and each potential birthweight through other
behaviors such as intake of prenatal vitamins. Under these assumptions, the estimators in eteffects
consistently estimate the ATE, but the estimators in [TE] teffects yield inconsistent estimates.

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. eteffects (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration O: EE criterion = 4.704e-24
Iteration 1: EE criterion = 1.223e-25

Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model : linear
Treatment model: probit

Robust

bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE

mbsmoke

(smoker

vs

nonsmoker) -455.9119 212.4393 -2.15 0.032 -872.2853 -39.53852
POmean

mbsmoke

nonsmoker 3437.964 31.21145 110.15 0.000 3376.791 3499.138

When no mother smokes, the average birthweight is 3,438 grams. The average birthweight is 456
grams less when all mothers smoke than when no mother smokes.

We can compare these results with those obtained if we ignore the endogeneity of the smoking
decision. Below we estimate the ATE using the inverse-probability-weighted regression-adjustment
estimator in [TE] teffects ipwra.

. teffects ipwra (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration O: EE criterion = 3.036e-22
Iteration 1: EE criterion = 3.755e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit
Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
mbsmoke
(smoker
vs
nonsmoker) -233.6835 25.07695 -9.32 0.000 -282.8335 -184.5336
POmean
mbsmoke
nonsmoker 3403.191 9.529709 357.11 0.000 3384.513 3421.869
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In magnitude, the estimated ATE is more than half the estimate that allows for endogenous treatment
assignment. If there is endogeneity, disregarding it underestimates the effect of smoking on birthweight.
We show how to test for endogeneity in example 1 of [TE] eteffects postestimation.

4

> Example 2: Estimating the ATET

Continuing example 1, we can use the atet option to estimate the ATET.

. eteffects (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu), atet

Iteration O: EE criterion = 4.688e-24
Iteration 1: EE criterion = 8.479e-26
Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model : linear
Treatment model: probit
Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATET
mbsmoke
(smoker
Vs
nonsmoker) -409.8527 161.4816 -2.54 0.011 -726.3507 -93.35466
POmean
mbsmoke
nonsmoker 3547.512 160.0595 22.16 0.000 3233.801 3861.223

In the population of mothers who smoke, the average infant birthweight would be 3,548 grams if
none of these mothers smoked. For the mothers who smoke, the average infant birthweight is 410
grams less than if none of these mothers smoked.

N

> Example 3: Exponential-mean outcomes

We estimate the ATE of living in an urban area on monthly earnings (wage), using a subset of the
National Longitudinal Survey in 1980 found in Wooldridge (2010). We assume that once we condition
on work experience (exper), whether education level attained is college or higher (college), and
1Q (iq), individual wages follow an exponential mean. The variables used to predict residence in an
urban area (urban) are college and whether the respondent’s father attained a bachelor’s degree or
higher (fcollege).
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. use http://www.stata-press.com/data/r14/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

Iteration O: EE criterion = 3.479e-11

Iteration 1: EE criterion = 2.432e-25
Endogenous treatment-effects estimation Number of obs = 935
Outcome model : exponential
Treatment model: probit
Robust
wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
urban
(1 vs 0) 481.0465  31.74882 15.15  0.000 418.82 543.2731
POmean
urban
0 233.8083  13.51028 17.31  0.000 207.3286 260.288

When everyone lives outside urban areas, wages are $234 a month on average. Wages are $481 a
month greater, on average, when everyone lives in urban areas.

4

Stored results

eteffects stores the following in e():

Scalars
e(N) number of observations
e(ny) number of observations for treatment level j
e(k_eq) number of equations in e(b)
e(k_levels) number of levels in treatment variable
e(rank) rank of e(V)
e(converged) 1 if converged, O otherwise
Macros
e(cmd) eteffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e (omodel) fractional, linear, probit, or exponential
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
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Functions
e(sample) marks estimation sample

Methods and formulas

The treatment-effects models considered in eteffects are given by

yio = E (yio|xi) + €0

DN

¥ =ty + (1 — ) vio
E (eij|xi,2:) = E (€5]2:) = E (e;5/x;) =0 for j € {0,1}
E (eij]t) #0 for j € {0,1}

ot w
D D O —

A~ N~~~
=~

(=2}

where the subscript ¢ denotes individual level observations, y;; is the potential outcome of receiving
the treatment, ;o is the potential outcome when the treatment is not received, ¢; is the observed
binary treatment, and y; is the observed outcome. Each one of the potential outcomes is determined
by its expected value conditional on a set of regressors x; and an unobserved random component €;;,
for j € {0,1}. Similarly, the treatment is given by its expectation conditional on a set of regressors
z;, which does not need to differ from x;, and an unobserved component v;.

Equations (1)—(5) describe the parametric treatment-effects models in [TE] teffects. Equation (6)
adds endogeneity to the framework. It states that the unobservables in the potential-outcome equations
are correlated to treatment status. For our birthweight example, this would happen if mothers who
do not smoke are more health conscious than those who smoke and if we do not observe health
awareness in our data. If we do not observe health awareness, the decision to smoke or not to smoke
is not independent of the infant’s birthweight.

Equations (3), (5), and (6) are the basis of the control-function estimator implemented by eteffects.
Equation (5) states that the unobserved components in the potential outcome are independent of z;.
Therefore, the correlation between t; and the unobserved components must be equivalent to the
correlation between €;; and v;. Another way of stating this is

from (3) E (Eij‘ti) =F (Eij‘E (t|Zi) + I/i)
from (5) = FE (ei;|vi)
= vif3y;

We fit (3) using a probit estimator. We then obtain 7; as the difference between the treatment
and our estimate of E (¢;]z;) and use this statistic to compute an estimate of E (y;;|x;,v;,t;) for
j € {0, 1}. If the outcome is linear, for instance,

E (yij|xia Vist; = j) = X;BU + ViIBQj for j€{0,1} (7)
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For the probit and exponential-mean cases, respectively, we have the following:

E (yijxi,vi,t; = §) = @ (X,By; + vifs) (8)
E (yij|xi, vi, ts = j) = exp (XiBy1; + viBs;) 9)

The parameters of (3) and (7)—(9), and the ATE, ATET, and POMs are estimated using the
generalized method of moments (GMM). The moment equations used in GMM are the sample analogs
of E{we;(6)} = 0, where w; are the instruments, €;(6) are residuals, and 0 are the parameters of
the model (see [R] gmm). The moment conditions in the GMM estimation for the linear model are
given by

n x;(yi — X;ﬁu + ﬁz‘sz)tz’ =0 (10)
i=1
I x; (yi — X;Blj + /V\i//é2j)(1 —t;)=0 (11)
i=1
I, [, ¢(=z7) N IR
{dem -0 la) 12

n

1 n

- Z {(Xgﬁll + ﬁiﬁQl) — POMO — ATE
i=1

1 zn: { (x;@m n ai@o) - pﬁo} =0 (13)
1=1
J

- =0 (14)

where D; = t; — ® (z,7), n is the number of observations, and B, 810, Ba1, Bag, 7, ATE, and POMO
are the parameters. If we want to estimate the ATET, we replace (14) with

n

1 ~ ~ _ _
= { (X;ﬁll + ﬁiﬁm) " om0t — ATET} =0 (15)
n

=1

uz ny

and if we want to estimate the potential-outcome means, we replace (14) with
1 n
EZ{(X;ﬁU +Di521) —POMl} =0 (16)
i=1

where ATET and POM]1 are the parameters of the model, and n; is the number of treated units.



eteffects — Endogenous treatment-effects estimation 13

For the exponential-mean outcome model, we replace xg,/él ;+ ﬁi,@2 ; with exp(xé,@l i+ ﬁiBQj) to
obtain the residual equations in (10)—(16). For the probit outcome model, we replace (10) and (11)
with the following:

1 <& ) (XQBU + ﬁiazj) ¢ (XQBU + ’//\iBQj)
gztixl Yi = = - (=) = — =0
i=1 ® (Xgﬁh + Vzﬂgj) 1-@ (Xgﬁu + ViﬁQj)
1< ¢ (X;Br + 0B, ) ) (Xéﬁr + 7B, )
72(1_151‘))(; Yi ,\j ,\j -(1—wy i /J\ =0
nia ® (Xzﬁu + ViBQj) 1-@ (Xgﬁu + Vi52j)

For the remaining equations, x;B; + .?i52j is replaced with ®(x{B; + ViBy;). The fractional
probit model uses the same moment conditions as the probit model.
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eteffects postestimation — Postestimation tools for eteffects

Postestimation commands predict estat Remarks and examples Also see

Postestimation commands

The following postestimation command is of special interest after eteffects:

Command Description

estat endogenous perform tests of endogeneity

The following postestimation commands are available after eteffects:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means,
propensity scores, and linear predictions.

Menu for predict

Statistics > Postestimation

14
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Syntax for predict

predict [lype] {stub*|ne»war|newvarlist} [l:f} [zn] [, statistic mvel]

predict [type] {stub*|newvarlist} [lf} [in], scores

statistic Description
Main
te treatment effect; the default
cmean conditional mean at treatment level
ps propensity score
xb linear prediction
psxb linear prediction for propensity score
xbtotal linear prediction, using residuals from treatment model

Specify one new variable with te; specify one or two new variables with cmean, ps, and xb.

Options for predict

Main

te, the default, calculates the treatment effect.

cmean calculates the conditional mean for the control group. To also obtain the conditional mean for
the treatment group, specify two variables. If you want the conditional mean for only the treatment
group, specify the tlevel option.

ps calculates the probability of being in the control group. To also obtain the probability of being in
the treatment group, specify two variables. If you want the probability of being in the treatment
group only, specify the tlevel option.

xb calculates the linear prediction for the control group. To also obtain the linear prediction for the
treatment group, specify two variables. If you want the linear prediction for only the treatment
group, specify the tlevel option.

psxb calculates the linear prediction for the propensity score.

xbtotal calculates the linear prediction for the control group, including the residuals from the
treatment model as regressors. To also obtain the linear prediction for the treatment group, specify
two variables. If you want the linear prediction, including the residuals from the treatment model
as regressors, only for the treatment group, specify the tlevel option.

tlevel specifies that the statistic be calculated for the treatment group; the default is to calculate
the statistic for the control group.

scores calculates the score variables. For eteffects, this is the same as the residuals in the moment
conditions used by the generalized method of moments (see [R] gmm). For the average treatment
effect, the average treatment effect on the treated, and the potential-outcome means, parameter-level
scores are computed. For the auxiliary equations, equation-level scores are computed.
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estat

Description for estat

estat endogenous performs a Wald test to determine whether the estimated correlations between
the treatment-assignment and potential-outcome models are different from zero. The null hypothesis
is that the correlations are jointly zero. Rejection of the null hypothesis suggests endogeneity.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat endogenous

Remarks and examples

> Example 1: Testing for endogeneity

In example 3 of [TE] eteffects, endogeneity could arise if unobservable factors that determine
wages are correlated with the decision to live in an urban area. If there is no endogeneity, we would
prefer to use one of the teffects estimators because they will give us the correct standard errors.
The control-function approach used by eteffects allows us to test for endogeneity.

The control-function approach estimates the correlation between the unobservables of the treatment-
assignment and potential-outcome models. If there is no correlation between the unobservables, then
there is no endogeneity. We test for correlation, and thus for endogeneity, by typing

. use http://www.stata-press.com/data/r14/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

(output omitted )
. estat endogenous

Test of endogeneity
Ho: treatment and outcome unobservables are uncorrelated

chi2( 2) = 275.36
Prob > chi2 = 0.0000

We reject the null hypothesis of no endogeneity. This suggests that unobservable factors that
determine wages mediate the decision to live in an urban area.

N

Q Technical note

The estimated correlations between the unobservables of the treatment-assignment and potential-
outcome models are auxiliary parameters. They appear under the headings TEOMO and TEOM1, which
refer to treatment residuals (TE) for outcome model 0 (OMO) and outcome model 1 (0M1), when the
option aequations is specified.
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For the model in example 3 of [TE] eteffects with the aequations option, the results are the
following:

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege), aequations

Iteration O: EE criterion = 3.479e-11
Iteration 1: EE criterion = 2.432e-25
Endogenous treatment-effects estimation Number of obs = 935
Outcome model : exponential
Treatment model: probit
Robust
wage Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
urban
(1 vs 0) 481.0465  31.74882 15.15  0.000 418.82 543.2731
POmean
urban
0 233.8083  13.51028 17.31  0.000 207.3286 260.288
TME1
college
1 .1956811 .1012119 1.93 0.053 -.0025607 .3941827
fcollege .1069748 .0992075 1.08 0.281 -.0874683 .3014179
_cons .498012 .056408 8.83 0.000 .3874543 .6085698
OMEO
exper .0193244 .0085633 2.26 0.024 .0025405 .0361082
iq .0099473 .0036949 2.69 0.007 .0027053 .0171892
college
1 -.3718598 .2678636 -1.39 0.165 -.8968629 .1531433
OME1
exper .0238566 .017597 1.36 0.175 -.0106329 .058346
iq .0148581 .0113311 1.31  0.190 -.0073505 .0370667
college
1 1.236947 .6401383 1.93 0.053 -.0177013 2.491595
TEOMO
_cons =7.771932 .6406251 -12.13  0.000 -9.027534 -6.51633
TEOM1
_cons 16.7739  4.777519 3.51 0.000 7.410131 26.13766

Among other things, we can use these correlations to test the joint significance of the coefficients
on the residuals from the treatment-assignment models. This is equivalent to the endogeneity test in
example 1. We type

. test [TEOMO]_cons [TEOM1]_cons

( 1) [TEOMO]_cons = 0O
( 2) [TEOM1]_cons = 0
chi2( 2) = 275.36
Prob > chi2 = 0.0000
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Also see
[TE] eteffects — Endogenous treatment-effects estimation

[U] 20 Estimation and postestimation commands



Title

etpoisson — Poisson regression with endogenous treatment effects

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

etpoisson estimates the parameters of a Poisson regression model in which one of the regressors

is an endogenous binary treatment. Both the average treatment effect and the average treatment effect
on the treated can be estimated with etpoisson.

Quick start

Poisson model of y on x and endogenous binary treatment treat modeled by x and w
etpoisson y x, treat(treat = x w)

With robust standard errors

etpoisson y x, treat(treat = x w) vce(robust)

Average treatment effect after etpoisson with the required vce (robust) option
margins r.treat, vce(unconditional)

As above, but calculate average treatment effect on the treated

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu

Statistics > Treatment effects > Count outcomes > Endogenous treatment, maximum likelihood

19
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Syntax

etpoisson depvar [indepvars] [zf] [m} [weight} ,

treat (depvary = indepvarsy [, noconstant offset (varnameo)b [options]

options Description
Model
*treat () equation for treatment effects
noconstant suppress constant term
exposure (varname,) include In(varname,.) in model with coefficient constrained to 1

offset (varname,)
constraints (constraints)
collinear

SE/Robust
vce (veetype)

Reporting
level (#)
irr
nocnsreport
display_options

Integration
intpoints (#)

Maximization
maximize_options

coeflegend

include varname, in model with coefficient constrained to 1
apply specified linear constraints
keep collinear variables

vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

set confidence level; default is 1level (95)
report incidence-rate ratios
do not display constraints

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

use # Gauss—Hermite quadrature points; default is intpoints(24)

control the maximization process; seldom used

display legend instead of statistics

*treat () is required.

The full specification is treat (depvary = indepvarsy [, noconstant offset(varname,) ]).

indepvars and indepvarsy may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, depvary, indepvars, and indepvarsy may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

Model

treat (depvar, = indepvars, [, noconstant offset(varname,) ]) specifies the variables and
options for the treatment equation. It is an integral part of specifying a treatment-effects model
and is required.

The indicator of treatment, depvar;, should be coded as 0 or 1.

noconstant, exposure (varname.), offset (varname,), constraints (constraints), collinear;
see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, €Pi rather than B;.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Integration

intpoints (#) specifies the number of integration points to use for integration by quadrature. The
default is intpoints(24); the maximum is intpoints(128). Increasing this value improves
the accuracy but also increases computation time. Computation time is roughly proportional to its
value.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following option is available with etpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.



22 etpoisson — Poisson regression with endogenous treatment effects

Remarks and examples

Remarks are presented under the following headings:

Overview

Basic example

Average treatment effect (ATE)

Average treatment effect on the treated (ATET)

Overview

etpoisson estimates the parameters of a Poisson regression model that includes an endogenous
binary-treatment variable. The dependent variable must be a Poisson distributed count. The parameters
estimated by etpoisson can be used to estimate the average treatment effect (ATE) and average
treatment effect on the treated (ATET).

We call the model fit by etpoisson an endogenous treatment-regression model, although it is also
known as an endogenous binary-variable model or as an endogenous dummy-variable model. The
endogenous treatment-regression model fit by etpoisson is a specific endogenous treatment-effects
model; it uses a nonlinear model for the outcome and a constrained normal distribution to model
the deviation from the conditional independence assumption imposed by the estimators implemented
by teffects; see [TE] teffects intro. In treatment-effects jargon, the endogenous binary-variable
model fit by etpoisson is a nonlinear potential-outcome model that allows for a specific correlation
structure between the unobservables that affect the treatment and the unobservables that affect the
potential outcomes. See [TE] etregress for an estimator that allows for a linear-outcome model and
a similar model for the endogeneity of the treatment.

More formally, we have an equation for outcome y; and an equation for treatment ;:

E(yjIXj,tj,Ej) = exp(xjﬁ—i—&tj +6j)
. = 1, wivy+u; >0
J 0, otherwise

The x; are the covariates used to model the outcome, w; are the covariates used to model treatment
assignment, and error terms €; and u; are bivariate normal with mean O and covariance matrix

o op

op 1
The covariates x; and w; are unrelated to the error terms; in other words, they are exogenous. Note
that y; may be a count or continuous and nonnegative in this specification.

Terza (1998) describes the maximum likelihood estimator used in etpoisson. Terza (1998)
categorized the model fit by etpoisson as an endogenous-switching model. These models involve a
binary switch that is endogenous for the outcome. Calculation of the maximum likelihood estimate
involves numeric approximation of integrals via Gauss—Hermite quadrature. This is computationally
intensive, but the computational costs are reasonable on modern computers.
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Basic example

> Example 1

In this example, we observe a simulated random sample of 5,000 households. The outcome of
interest is the number of trips taken by members of the household in the 24-hour period immediately
prior to the interview time.

We have fictional household level data on the following variables: number of trips taken in the past
24 hours (trips), distance to the central business district from the household (cbd), distance from
the household to a public transit node (ptn), an indicator of whether there is a full-time worker in the
household (worker), an indicator of whether the examined period is on a weekend (weekend), the
ratio of the household income to the median income of the census tract (realinc), and an indicator
of car ownership (owncar). We suspect that unobservables that affect the number of trips also affect
the household’s propensity to own a car.

We use etpoisson to estimate the parameters of a Poisson regression model for the number of
trips with car ownership as an endogenous treatment. In subsequent examples, we will use margins
(see [R] margins) to estimate the ATE and the ATET of car ownership on the number of trips taken
by the household. In the etpoisson command below, we specify the vce (robust) option because
we need to specify vce(unconditional) when we use margins later.
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. use http://www.stata-press.com/data/r14/tripi
(Household trips, car ownership)

. etpoisson trips cbd ptn worker weekend,

> treat (owncar

cbd ptn worker realinc) vce(robust)

Iteration 0: log pseudolikelihood = -14845.147 (not concave)
Iteration 1: log pseudolikelihood = -14562.997 (not concave)
Iteration 2: log pseudolikelihood = -13655.592 (not concave)
Iteration 3: log pseudolikelihood = -12847.219 (not concave)
Iteration 4: log pseudolikelihood = -12566.037
Iteration 5: log pseudolikelihood = -12440.974
Iteration 6: log pseudolikelihood = -12413.485
Iteration 7: log pseudolikelihood = -12412.699
Iteration 8: log pseudolikelihood = -12412.696
Iteration 9: log pseudolikelihood = -12412.696
Poisson regression with endogenous treatment Number of obs = 5,000
(24 quadrature points) Wald chi2(5) = 397.94
Log pseudolikelihood = -12412.696 Prob > chi2 = 0.0000
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
trips
cbd -.0100919 .0020071 -5.03 0.000 -.0140258 -.006158
ptn -.0204038 .0020289 -10.06  0.000 -.0243805 -.0164272
worker .692301 .0548559 12.62  0.000 .5847854 .7998166
weekend .0930517 .034538 2.69 0.007 .0253585 .160745
1.owncar .5264713 .1124157 4.68 0.000 .3061406 . 746802
_cons -.2340772 .0810812 -2.89 0.004 -.3929934 -.0751609
owncar
cbd .007218 .00239 3.02 0.003 .0025337 .0119023
ptn .0084769 .0024518 3.46 0.001 .0036714 .0132824
worker .543643 .0504267 10.78  0.000 .4448085 .6424774
realinc .176479 .0108746 16.23 0.000 .1551652 .1977928
_cons -.4611246 .0592161 -7.79 0.000 -.5771859 -.3450633
/athrho .5741169 .0957832 5.99 0.000 .3863852 .7618486
/1nsigma -.2182037 .0256281 -8.51 0.000 -.2684338 -.1679735
rho .5183763 .0700449 .3682398 .6421645
sigma .8039617 .020604 . 764576 .8453762
Wald test of indep. egns. (rho = 0): chi2(1) = 35.93  Prob > chi2 = 0.0000

The Wald test in the header is highly significant, indicating a good model fit. All the covariates are
statistically significant, and the Wald test in the footer indicates that we can reject the null hypothesis

of no correlation between the treatment errors and the outcome errors.

We can interpret the coefficient on 1.owncar as the logarithm of the ratio of the treatment potential-
outcome mean to the control potential-outcome mean. The treatment variable did not interact with
any of the outcome covariates, so the effect of each regressor is the same in the two regimes and
will cancel from the ratio of potential-outcome means. This means the ratio is equivalent to the
exponentiated coefficient on 1.owncar. After discussing the other parameters, we will use lincom

to obtain this ratio. See [R] lincom for more information.

The estimated correlation between the treatment-assignment errors and the outcome errors is 0.518,
indicating that unobservables that increase the number of trips tend to occur with unobservables that

increase the chance of car ownership.
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The results for the two ancillary parameters require explanation. etpoisson estimates the inverse

hyperbolic tangent of p,
1 1+p
atanh p = —In| ——
P <1 - p)
and Ino rather than p and o. For numerical stability during optimization, etpoisson does not directly
estimate p and o.

Now we use lincom and the eform option to estimate the exponentiated coefficient for 1.owncar.
This corresponds to the ratio of the treatment regime potential-outcome mean to the control regime
potential-outcome mean.

. lincom [trips]_bl[l.owncar], eform
( 1) [trips]i.owncar = 0

exp(b)  Std. Err. z P>|z| [95% Conf. Intervall

1) 1.692948 .1903139 4.68 0.000 1.358173 2.110241

The potential-outcome mean for the treatment regime is 1.69 times the potential-outcome mean
for the control regime. So the average number of trips in the treatment regime is over one and a half
times the average number of trips in the control regime.

By interacting the treatment, owncar, with the other regressors, we could estimate different
coefficients for the regressors in the treatment and control regimes. In the current model, there are
no treatment interactions, so the coefficients are the same in each regime.

d

Average treatment effect (ATE)

The parameter estimates from etpoisson can be used by margins to estimate the ATE, the average
difference of the treatment and control potential outcomes.

> Example 2

Continuing with example 1, we use margins to estimate the ATE of car ownership on the number
of trips taken in a 24-hour period.

We can estimate the ATE of car ownership by using the potential-outcome means obtained through
the predict, pomean command and the margins command; see Methods and formulas below and
[TE] etpoisson postestimation for more details about the use of predict after etpoisson.

The r. notation indicates that the potential-outcome means for treatment and control will be
contrasted. We specify the contrast(nowald) option to suppress the Wald tests that margins
displays by default for contrasts.

. margins r.owncar, vce(unconditional) contrast(nowald)
Contrasts of predictive margins

Expression : Potential-outcome mean, predict()
Unconditional
Contrast  Std. Err. [95% Conf. Intervall

owncar
(1 vs 0) 1.058914 .1922909 .6820309 1.435797
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The estimated ATE of car ownership on the number of trips taken is 1.06. The average household
will take 1.06 more trips when it owns a car.

N

Average treatment effect on the treated (ATET)

The parameter estimates from etpoisson can be used by margins to estimate the ATET, the
average difference of the treatment and control potential outcomes in the treated population.

> Example 3

Continuing with the previous example, we use margins to estimate the ATET of car ownership on
the number of trips taken in a 24-hour period.

We can estimate the ATET of car ownership by using the conditional treatment effect (conditional
on exogenous covariates and treatment level) obtained through the predict, cte command and the
margins command; see Methods and formulas below and [TE] etpoisson postestimation for more
details about the use of predict after etpoisson.

We estimate the ATET with margins. We specify cte in the predict() option. Estimation is
restricted to the treated subpopulation by specifying owncar in the subpop() option.

. margins, predict(cte) vce(unconditional) subpop(owncar)

Predictive margins Number of obs = 5,000
Subpop. no. obs = 3,504
Expression : Conditional treatment effect, predict(cte)
Unconditional
Margin  Std. Err. z P>|z| [95% Conf. Intervall
_cons 1.251971 .2059201 6.08 0.000 .8483747 1.655567

The estimated ATET of car ownership on the number of trips taken is 1.25. Thus the average
household in the treated population will take 1.25 more trips than it would if it did not own a car.
This number is higher than the ATE. In this model, the ATE and ATET will only coincide when there is
no correlation between the treatment errors and outcome errors and the exogenous covariates X have
the same distribution in the general population and treated subpopulation. See Methods and formulas
for more details.

N
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Stored results
etpoisson stores the following in

Scalars

e():

e(N)

e(k)

e(k_eq)
e(k_eq_model)
e(k_aux)
e(k_dv)
e(df_m)
e(11)
e(N_clust)
e(chi2)
e(chi2_c)
e(n_quad)
e(p)

e(p-c)
e(rank)
e(ic)

e(rc)
e(converged)

Macros

e(cmd)
e(cmdline)
e(depvar)

e (wtype)

e (wexp)
e(title)
e(title2)
e(clustvar)
e(offsetl)
e(offset?2)
e(chi2type)
e(chi2_ct)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(user)
e(technique)
e(properties)
e(predict)
e(marginsok)
e(asbalanced)
e (asobserved)

Matrices

e(b)

e(Cns)

e(ilog)
e(gradient)

e (V)
e(V_modelbased)

Functions

e(sample)

number of observations
number of parameters
number of equations in e (b)
number of equations in overall model test
number of auxiliary parameters
number of dependent variables
model degrees of freedom
log likelihood
number of clusters

2
x? for comparison, p=0 test
number of quadrature points
significance
significance of comparison test
rank of e(V)
number of iterations
return code
1 if converged, O otherwise

etpoisson

command as typed

name of dependent variable

weight type

weight expression

title in estimation output

secondary title in estimation output
name of cluster variable

offset for regression equation

offset for treatment equation

Wald; type of model x? test

Wald; type of comparison x2 test
veetype specified in vce ()

title used to label Std. Err.

type of optimization

max or min; whether optimizer is to perform maximization or minimization
type of ml method

name of likelihood-evaluator program
maximization technique

bV

program used to implement predict
predictions allowed by margins

factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector

constraints matrix

iteration log (up to 20 iterations)

gradient vector

variance—covariance matrix of the estimators
model-based variance

marks estimation sample
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Methods and formulas

Terza (1998) derives the maximum likelihood estimator implemented here. We provide some details
of the derivation and then explain how the model is nested in a more general potential-outcomes
model. Then the ATE and ATET are derived.

Let x; be the covariates used to model the outcome, and let w; be the covariates used to model
treatment assignment. Define z; = (w;,x;). The vector z; contains all the exogenous covariates in
the model. When offsets 0? are used in the outcome variable equation, the following formulas apply
with x;3 changed to x;3 + 0? . Similarly, when offsets 0;7 are used in the endogenous treatment

equation, the following formulas apply with w;~ changed to w;~ + 0]7. If offsets are used in either
equation, they are included in the vector of exogenous covariates z;.

For treatment t;, z;, and €;, outcome y; of this model has conditional mean
E(yjlxj,t;,¢€;) = exp(x,; 8+ 0t; + ;) (1)

The probability density function of y; for this model, conditioned on treatment Z;, z;, and ¢;, is
given by
exp{—exp(x; B+ 6t; +¢;) Hexp(x; 8+ 6t; +¢;)}¥
Y5

fyslzs,t5,€5) =

The treatment ¢; is determined by

- 1, if wjvy+u; >0
77710, otherwise

The error terms €; and w; are bivariate normal with mean zero and covariance matrix
o op
op 1
Conditional on €;, u; is normal with mean €;p/0 and variance (1 — p?); thus we obtain the
following conditional probability density for Z;:
W . W .
Pr(tj|zj, Gj) —t;® Y T (p/a)ej +(1- t]‘) 1-& Y+ (p/O')EJ
V1—p?
® denotes the standard normal cumulative distribution function. This leads to the following joint

V1= p?
density of y;, t;, and ¢;:

ity eilzi) = fy;lz;,t5,€5) P(ti1z5, €5) f(€5)

The density of y; and ¢;, conditioned on z;, is obtained by integrating the above with respect to

€;. Recall that €; is normal with mean O and variance o2,

o 1 e \2
f(yj»tj|zj)=/_ f(yjZjatjafj)P(tjZjvﬁj)a\/ﬁexp{— <0\j/§> }dﬁj
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f(y;,t;|z;) cannot be evaluated in a closed form. We change the variable of integration from e;
to n; = ej/(U\@), which yields

1 oo
fy; tilz;) = ﬁ/ Fy;lzj,t5,V20m;) P(t;|z5, V20m;) exp(—n3) dn;

We approximate this integral by Gauss—Hermite quadrature. Observing a sample of ¢;, y;, and
z;, we calculate the log likelihood as the following:

InL = ij In{f(yj,tj|z;)}

Jj=1

The w; terms denote optional weights.

In the maximum likelihood estimation, o and p are not directly estimated. Directly estimated are

Ino and atanh p:
1 1+p
tanhp = —In[ ——
atanh p 2n<1_p)

Now we present formulas for the ATE and ATET. First, we nest the endogenous-treatment Poisson
regression model in a potential-outcome model. A potential-outcome model specifies what each
individual would obtain in each treatment level.

A potential-outcome model that nests the endogenous-treatment Poisson regression fit by etpoisson
is
E(yojlx;j, €;) = exp(x;By + €oj)
E(y1jlx;,€;) = exp(x;8; + €1;)

= 1, ifwiy+u; >0
77710, otherwise

where y; is the outcome that person j obtains if person j selects treatment 0, and y1; is the outcome
that person j obtains if person j selects treatment 1. This formulation allows differing coefficients for
the control (3,) and treatment (3,) regimes. The constant intercept for the control group is Boo. The
constant intercept for the treatment group is 811 = Boo + J, where § is the coefficient for treatment
t; in the outcome (1). The remaining notation was defined above.

We may allow other coefficients to differ across regimes in the outcome (1) by adding interactions
between the treatment ¢; and covariates X; to the model. To be concise, we use two coefficient
vectors B, and 3, here rather than a single coefficient vector with interactions between the treatment
t; and covariates x;. The two formulations are equivalent.

We never observe both yo; and y1;, only one or the other. We observe
yi = tiy1; + (1 —t;)yo;

The vector of error terms (€o;,€15,u;) comes from a mean zero trivariate normal distribution
with covariance matrix
o2 0 op
0 o2 op
op op 1
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The parameters ¢ and p were discussed earlier. The parameter € is the covariance between the two
potential outcomes. We cannot estimate 6 because we have no observations in which an individual
is observed in both potential outcomes. Fortunately, € is not required for the calculations that we
present.

The ATE is the difference in means of the potential outcomes. The mean of each potential outcome
accounts for each individual’s contribution, regardless of whether that individual selects that treatment
level.

The conditional means of the potential outcomes ¥, t € (0,1) for exogenous covariates z; are

52
E(yijlzj) = exp (Xjﬁt + 2)

We can see that when the coefficients are the same across the regimes, the ratio of potential-outcome
means will be equal to exp(d); this is true of the conditional and marginal potential-outcome means.

The difference in potential-outcome means or treatment effect at exogenous covariates z; is

Bluns = miln) = (exp 050) ~ exp (x50} exp (T )

By the law of iterated expectations, the ATE is
E(y1; — yo;j) = E{E(y1; — yo;z;)}
o

2
= B[ (e 0~ e x50 o0 ()|
This expectation can be estimated as a predictive margin.
Now we will derive an expression for the ATET.

The conditional means of the potential outcomes y;;, t € (0,1) for exogenous covariates z; and
treatment t; are

o\ [@(po +wn) " [1=@(po+wy) | "

E(ytjlz;,t;) = exp (x,ﬂ +> {J} { j }
3125, b5 P T P (w;7) 1—®(w;7)
Rather than the conditional potential-outcome means, the conditional mean of the observed outcome

may be of interest. The conditional mean of the observed outcome y; for endogenous treatment indicator
t; and exogenous covariates z; is given by

o2\ @ (po + w;~)
Ely:lz: t.) =t . J
(y;lzj,t5) j €Xp <X],81 + 2) o (w,7)
02) 1—®(po+w;v)

2) 1-®(w;9)

+ (1 —t;)exp (xj,ﬁo +
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The treatment effect at exogenous covariates z; and treatment ; is

E(y1j — yojlzj,t5) =

t; 1—t;
o2 P (po+w) | [1—®(po+w;) ’
(exp (1) — e 0} o0 () | ey e
By the law of iterated expectations, the ATET is
E(y1; — yojlt; = 1) = E{E(y1; — yos|zj, t; = Dt; = 1}
o>\ @ (po +w;7)
=F j — j — L0t =1
e 0) — e s exn (G ) P72y

This can be estimated as a predictive margin on the treated subpopulation.

We note that when p = 0, the correction factor involving ® will disappear from the ATET. Then
the ATE and ATET will be equivalent if the distribution of x; under the treated population is identical
to the distribution over the entire population.

The probability of y; conditional on ¢; and z; is

f(y; =n,tjlz;)
O (w;7)" @ (—wyy)' Y

Pr(y; = n|z;,t;) =

As discussed earlier, we approximate f(y;,t;|z;) using Gauss—Hermite quadrature.
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Title

etpoisson postestimation — Postestimation tools for etpoisson

Postestimation commands predict margins
Remarks and examples Methods and formulas Also see

Postestimation commands

The following standard postestimation commands are available after etpoisson:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)

estat summarize

estat vce

estat (svy)

estimates
*hausman

lincom

*lrtest
margins

marginsplot
nlcom

predict
predictnl
pwcompare
suest
test
testnl

summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data

cataloging estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predictions, probabilities, and treatment effects

point estimates, standard errors, testing, and inference for generalized predictions
pairwise comparisons of estimates

seemingly unrelated estimation

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

* hausman and lrtest are not appropriate with svy estimation results.

32
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predict

Description for predict

predict creates a new variable containing predictions such as counts, conditional treatment effects,
probabilities, and linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [zf] [in] [, statistic nooffset]

predict [lype] {stub*|newvarreg NeWVarireat NEWVArathrho newvarlnsigma}

[lﬂ [in] , scores

statistic Description
Main
pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(y; = n)
pr(a,b) probability Pr(a < y; < b)
xb linear prediction
xbtreat linear prediction for treatment equation
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Options for predict
Main

Is

pomean, the default, calculates the potential-outcome mean.
omean calculates the observed-outcome mean.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.



34 etpoisson postestimation — Postestimation tools for etpoisson

pr(n) calculates the probability Pr(y; = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a < y; < b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b > .) means +00;

pr(20,.) calculates Pr(y; > 20);

pr(20,b) calculates Pr(y; > 20) in observations for which » > . and calculates
Pr(20 < y; < b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction for the dependent count variable, which is x ;3 if neither offset ()

nor exposure () was specified; xjﬁJroffsetf if offset () was specified; or x;3-+ ln(exposurej)
if exposure() was specified.

xbtreat calculates the linear prediction for the endogenous treatment equation, which is w;~y if
offset () was not specified in treat () and wj'y—i-offset;‘- if offset () was specified in treat ().

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable.
nooffset removes the offset from calculations involving both the treat() equation and the
dependent count variable.

scores calculates equation-level score variables.
The first new variable will contain 01nL/0(x;3).
The second new variable will contain 0 InL/0(w ;7).
The third new variable will contain d1InL /0 atanh p.
The fourth new variable will contain J1nL /0 Ino.
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margins

Description for margins

margins estimates margins of response for counts, conditional treatment effects, probabilites, and
linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]
statistic Description
pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(y; = n)
pr(a,b) probability Pr(a < y; <b)
xb linear prediction
xbtreat linear prediction for treatment equation

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the
parameters most frequently estimated by postestimation techniques after etpoisson.

You can use the margins command (see [R] margins) after etpoisson to estimate the ATE
or ATET. See example 2 of [TE] etpoisson for an example of ATE estimation. See example 3 of
[TE] etpoisson for an example of ATET estimation.

See example | of [TE] etpoisson for an example using lincom after etpoisson.

Methods and formulas

See Methods and formulas of [TE] etpoisson for details.

Also see

[TE] etpoisson — Poisson regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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etregress — Linear regression with endogenous treatment effects

Description Quick start
Menu Syntax
Options for maximum likelihood estimates Options for two-step consistent estimates
Options for control-function estimates Remarks and examples
Stored results Methods and formulas
References Also see
Description

etregress estimates an average treatment effect (ATE) and the other parameters of a linear
regression model augmented with an endogenous binary-treatment variable. Estimation is by full
maximum likelihood, a two-step consistent estimator, or a control-function estimator.

In addition to the ATE, etregress can be used to estimate the average treatment effect on the
treated (ATET) when the outcome may not be conditionally independent of the treatment.

etreg is a synonym for etregress.

Quick start

ATE and ATET from a linear regression model of y on x and endogenous binary treatment treat
modeled by x and w
etregress y x, treat(treat = x w)

As above, but use a control-function estimator

etregress y x, treat(treat = x w) cfunction

With robust standard errors
etregress y x, treat(treat = x w) vce(robust)

Add the interaction between treat and continuous covariate x using factor variables
etregress y x i.treat#c.x, treat(treat = x w) vce(robust)

ATE after etregress with the required vce (robust) option and endogenous treatment interaction
terms
margins r.treat, vce(unconditional)

As above, but calculate ATET
margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu

Statistics > Treatment effects > Continuous outcomes > Endogenous treatment, maximum likelihood

36
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Syntax
Basic syntax

etregress depvar [indepvars] , treat(depvar; = indepvars) [twostep|cfunction}

Full syntax for maximum likelihood estimates only
etregress depvar [indepvars] [lf] [m] [weight} ,

treat (depvary = indepvarsy [, noconstant]) [etregress_ml_options]

Full syntax for two-step consistent estimates only
etregress depvar [indepvars] [lf] [m] ,

treat (depvar, = indepvarsy [, noconstant]) twostep [etregress_ts_options]

Full syntax for control-function estimates only
etregress depvar [indepvars] [lf] [m] ,

treat (depvar, = indepvarsy [, noconstant]) cfunction [etregress_cf_options]
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etregress_ml_options Description
Model
*treat() equation for treatment effects
noconstant suppress constant term
poutcomes use potential-outcome model with separate treatment and control

group variance and correlation parameters

constraints (constraints)  apply specified linear constraints

collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
first report first-step probit estimates
hazard (newvar) create newvar containing hazard from treatment equation
noskip perform likelihood-ratio test
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

*treat (depvary

= indepvarsy [ , noconstant}) is required.

etregress_ts_options Description
Model
*treat() equation for treatment effects
*twostep produce two-step consistent estimate
noconstant suppress constant term
SE
vce (veetype) vcetype may be conventional, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
first report first-step probit estimates
hazard (newvar) create newvar containing hazard from treatment equation
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
coeflegend display legend instead of statistics
*treat (depvary = indepvarsy [ , noconstant ]) and twostep are required.
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etregress_cf_options Description
Model
*treat() equation for treatment effects
*cfunction produce control-function estimate
noconstant suppress constant term
poutcomes use potential-outcome model with separate treatment and control

group variance and correlation parameters

SE
vce (veetype) vecetype may be robust, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
first report first-step probit estimates
hazard (newvar) create newvar containing hazard from treatment equation
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

*treat (depvar; = indepvars; [ , noconstant ]) and cfunction are required.

indepvars and indepvarsy may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvary, and indepvarsy may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

twostep, cfunction, vce(), first, hazard(), noskip, and weights are not allowed with the svy prefix; see
[SVY] svy.

pweights, aweights, fweights, and iweights are allowed with both maximum likelihood and control-function
estimation; see [U] 11.1.6 weight. No weights are allowed if twostep is specified.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for maximum likelihood estimates

Model

treat (depvar; = indepvarst[ , noconstant }) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

noconstant; see [R] estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test that all the parameters in the regression equation
are zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fint), pformat (% fimt),
sformat (%fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Options for two-step consistent estimates

Model

treat (depvary = indepvarst[ , noconstant }) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

twostep specifies that two-step consistent estimates of the parameters, standard errors, and covariance
matrix be produced, instead of the default maximum likelihood estimates.

noconstant; see [R] estimation options.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.

vce(conventional), the default, uses the conventionally derived variance estimator for the
two-step estimator of the treatment-effects model.

Reporting

level (#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fint), pformat (% fimt),
sformat (%fmt), and nolstretch; see [R] estimation options.

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for control-function estimates

_ (Wogel

treat (depvar, = indepvarst[ , noconstant }) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

cfunction specifies that control-function estimates of the parameters, standard errors, and covariance
matrix be produced instead of the default maximum likelihood estimates. cfunction is required.

noconstant; see [R] estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

[SE |

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.
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Reporting

level (#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate(#), [@]Qg, and from (init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of

matname [, skip copy]
# [# ] copy

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

Remarks are presented under the following headings:

Overview

Basic examples

Average treatment effect (ATE)

Average treatment effect on the treated (ATET)

Overview

etregress estimates an ATE and the other parameters of a linear regression model that also
includes an endogenous binary-treatment variable. In addition to the ATE, the parameters estimated
by etregress can be used to estimate the ATET when the outcome is not conditionally independent
of the treatment.

We call the model fit by etregress an endogenous treatment-regression model, although it is
also known as an endogenous binary-variable model or as an endogenous dummy-variable model.
The endogenous treatment-regression model is a specific endogenous treatment-effects model; it uses
a linear model for the outcome and a normal distribution to model the deviation from the conditional
independence assumption imposed by the estimators implemented in teffects; see [TE] teffects
intro. In treatment-effects jargon, the endogenous binary-variable model is a linear potential-outcome
model that allows for a specific correlation structure between the unobservables that affect the treatment
and the unobservables that affect the potential outcomes. See [TE] etpoisson for an estimator that
allows for a nonlinear outcome model and a similar model for the endogeneity of the treatment.
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Heckman (1976, 1978) brought this model into the modern literature. Maddala (1983) derives
the maximum likelihood and the control-function (CF) estimators of the model. Maddala (1983) also
reviews some empirical applications and describes it as an endogenous-switching model. Barnow,
Cain, and Goldberger (1981) provide another useful derivation of this model. They concentrate on
deriving the conditions for which the self-selection bias of the simple OLS estimator of the treatment
effect, 0, is nonzero and of a specific sign. Cameron and Trivedi (2005, sec. 16.7 and 25.3.4) and
Wooldridge (2010, sec. 21.4.1) discuss the endogenous binary-variable model as an endogenous
treatment-effects model and link it to recent work.

etregress performs CF estimation in one step by using the generalized method of moments
(GMM) with stacked moments. See Newey (1984) and Wooldridge (2010, sec. 14.2) for a description
of this technique. Many econometric and statistical models can be expressed as conditions on the
population moments. The parameter estimates produced by GMM estimators make the sample-moment
conditions as true as possible given the data. See [R] gmm for further information on GMM estimation
and how Stata performs it. Two-step CF estimation is also supported by etregress.

Formally, the endogenous treatment-regression model is composed of an equation for the outcome
y; and an equation for the endogenous treatment ¢;. The variables x; are used to model the outcome.
When there are no interactions between t; and x;, we have

y; = X;8+ 5tj + €5
L[ Wy >0
7 0, otherwise

where w; are the covariates used to model treatment assignment, and the error terms €; and u; are
bivariate normal with mean zero and covariance matrix

o2 po
po 1
The covariates x; and w; are unrelated to the error terms; in other words, they are exogenous. We

call this the constrained model because the variance and correlation parameters are identical across
the treatment and control groups.

This model can be generalized to a potential-outcome model with separate variance and correlation
parameters for the treatment and control groups. The generalized model is

Yoj = X; 89 + €o;
Y1 = XB1 + ey

P 1, ifwjvy+wu; >0
J 0, otherwise

where g; is the outcome that person j obtains if person j selects treatment 0, and % is the outcome
that person j obtains if person j selects treatment 1. We never observe both yg; and y1;, only one
or the other. We observe

yj =ty + (1 —1t5)y0;
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In this unconstrained model, the vector of error terms (60j, 61]'7’11,]')/ comes from a mean zero
trivariate normal distribution with covariance matrix

2
90 001 00P0
2
001 01 g1p1

oopo o1p1 1

The covariance o(; cannot be identified because we never observe both y; and yo,;. However,
identification of 0g; is not necessary to estimate the other parameters because all covariates and the
outcome are observed in observations from each group. We normalize the treatment error variance to
be 1 because we observe only whether an outcome occurs under treatment. More details are found
in Methods and formulas.

Rather than showing two separate regression equations, etregress reports one outcome equation
with interaction terms between the treatment and outcome covariates. etregress can fit the constrained
and generalized potential-outcome models using either the default maximum likelihood estimator or
the one-step CF estimator obtained with option cfunction. The two-step CF estimator provides
consistent estimates for the constrained model.

Basic examples

When there are no interactions between the treatment variable and the outcome covariates in the
constrained model, etregress directly estimates the ATE and the ATET.

> Example 1: Basic example

We estimate the ATE of being a union member on wages of women in 1972 from a nonrepresentative
extract of the National Longitudinal Survey on young women who were ages 14-26 in 1968. We will
use the variables wage (wage), grade (years of schooling completed), smsa (an indicator for living in
an SMSA—standard metropolitan statistical area), black (an indicator for being African-American),
tenure (tenure at current job), and south (an indicator for living in the South).
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We use etregress to estimate the parameters of the endogenous treatment-regression model.

. use http://www.stata-press.com/data/r14/union3

(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa black tenure, treat(union = south black tenure)

Iteration 0: log likelihood = -3140.811
Iteration 1: log likelihood = -3053.6629
Iteration 2: log likelihood = -3051.5847
Iteration 3: log likelihood = -3051.575
Iteration 4: log likelihood = -3051.575
Linear regression with endogenous treatment Number of obs 1,210
Estimator: maximum likelihood Wald chi2(6) = 681.89
Log likelihood = -3051.575 Prob > chi2 = 0.0000
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
wage
age .1487409 .0193291 7.70  0.000 .1108566 .1866252
grade .4205658 .0293577 14.33  0.000 .3630258 .4781058
smsa .9117044  .1249041 7.30 0.000 .6668969 1.156512
black -.7882471 .1367078 -5.77  0.000 -1.05619  -.5203048
tenure .1524015 .0369596 4.12  0.000 .0799621 .2248409
1.union 2.945815 .2749621 10.71  0.000 2.4069 3.484731
_cons -4.351572 .5283952 -8.24  0.000 -5.387208 -3.315936
union
south -.5807419 .0851111 -6.82 0.000 -.7475566  -.4139271
black .4557499 .0958042 4.76  0.000 .2679771 .6435226
tenure .0871536 .0232483 3.75  0.000 .0415878 .1327195
_cons -.8855758 .0724506  -12.22  0.000 -1.027576  -.7435753
/athrho -.6544347 .0910314 -7.19  0.000 -.832853 -.4760164
/1nsigma . 7026769 .0293372 23.95 0.000 .645177 .7601767
rho -.5746478 .060971 -.682005  -.4430476
sigma 2.019151 .0592362 1.906325 2.138654
lambda -1.1603 .1495097 -1.453334  -.8672668
LR test of indep. eqns. (rho = 0): chi2(1) = 19.84  Prob > chi2 = 0.0000

The likelihood-ratio test in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors. The estimated correlation between
the treatment-assignment errors and the outcome errors, p, is —0.575. The negative relationship
indicates that unobservables that raise observed wages tend to occur with unobservables that lower
union membership. We discuss some details about this parameter in the technical note below.

The estimated ATE of being a union member is 2.95. The ATET is the same as the ATE in this case
because the treatment indicator variable has not been interacted with any of the outcome covariates,
and the correlation and variance parameters are identical across the control and treatment groups.
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Q Technical note

The results for the ancillary parameters p and o require explanation. For numerical stability during
optimization, etregress does not directly estimate p or 0. Instead, etregress estimates the inverse
hyperbolic tangent of p,

1 1
atanh p = 3 In <1+p)
—p

and Ino. Also etregress reports A = po, along with an estimate of the standard error of the

estimate and the confidence interval.
Q

In contrast to the constrained model, etregress directly estimates the ATE only when there are no
interactions between the treatment variable and the outcome covariates in the unconstrained model.

> Example 2: Allowing group-specific variance and correlation

We estimate the ATE of having health insurance on the natural logarithm of total out-of-pocket
prescription drug expenditures from a simulated random sample of individuals between the ages of
26 and 64. We will use the variables 1ndrug (natural logarithm of spending on prescription drugs),
age (age of the individual), chron (whether the individual has a chronic condition), 1ninc (natural
logarithm of income), married (marriage status), and work (employment status). Our treatment is
whether the person has health insurance, ins. We allow the outcome error variance and correlation
parameters to vary between the treated (insured) and control (uninsured) groups in this example,
rather than constraining them to be equal as in example 1.

We use etregress to estimate the parameters of the endogenous treatment-effects model. To
estimate separate variance and correlation parameters for each of the control and treatment groups,
we specify the poutcomes option. We specify the cfunction option to use the CF estimator.
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. use http://www.stata-press.com/data/r14/drugexp

(Prescription drug expenditures)

. etregress lndrug chron age lninc, treat(ins=age married lninc work) poutcomes
> cfunction

Iteration O: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 6.358e-30

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: control-function
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
Indrug
chron .4671725 .0319731 14.61  0.000 .4045064 .5298387
age .1021359 .00292 34.98 0.000 .0964128 .1078589
Ininc .0550672 .0225036 2.45 0.014 .0109609 .0991735
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011
_cons 1.665539 .2527527 6.59 0.000 1.170153 2.160925
ins
age .021142 .0022961 9.21  0.000 .0166416 .0256424
married .084631 .0359713 2.35 0.019 .0141286 .1551334
Ininc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -5.73 0.000 -.8362273  -.4097587
/athrho0 .4035094 .1724539 2.34 0.019 .0655059 .7415129
/1nsigma0 .3159269 .0500476 6.31 0.000 .2178353 .4140184
/athrho1l . 7929459 .2986601 2.66 0.008 .2075829 1.378309
/lnsigmal .1865347 .0613124 3.04 0.002 .0663646 .3067048
rho0 .3829477 .1471637 .0654124 .6300583
sigma0 1.37153 .0686418 1.243382 1.512885
lambda0 .5252243 .226367 .08156532 .9688954
rhol .6600746 .1685343 .2046518 .880572
sigmal 1.205066 .0738855 1.068616 1.35894
lambdal .7954338 .2513036 .3028878 1.28798
Wald test of indep. (rhoO = rhol = 0): chi2(2) = 8.88 Prob > chi2 = 0.0118

The Wald test reported in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors for the control and treatment groups.
The estimate of the correlation of the treatment-assignment errors for the control group (pg) is
positive, indicating that unobservables that increase spending on prescription drugs tend to occur with
unobservables that increase health insurance coverage. Because p; is also positive, we make the same
interpretation for individuals with insurance. The estimate p; is larger than the estimate pg, indicating
a stronger relationship between the unobservables and treatment outcomes in the treated group.

The estimated ATE of having health insurance is —0.86. Note that while the ATE and ATET were the
same in example 1, that is not the case here. We show how to calculate the ATET for a potential-outcome
model in example 6.

The estimate of the outcome error standard-deviation parameter for the control group (og) is
slightly larger than that of the treatment group parameter (01), indicating a greater variability in the
unobservables among the untreated group.

N
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Average treatment effect (ATE)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATE, the average difference of the treatment
potential outcomes and the control potential outcomes.

> Example 3: Allowing interactions between treatment and outcome covariates, ATE

In example 1, the coefficients on the outcome covariates do not vary by treatment level. The
differences in wages between union members and nonmembers are modeled as a level shift captured
by the coefficient on the indicator for union membership. In this example, we use factor-variable
notation to allow some of the coefficients to vary over treatment level and then use margins (see
[R] margins) to estimate the ATE. (See [U] 11.4.3 Factor variables for an introduction to factor-variable
notation.)

We begin by estimating the parameters of the model in which the coefficients on black and
tenure differ for union members and nonmembers. We specify the vce (robust) option because
we need to specify vce(unconditional) when we use margins below.
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. use http://www.stata-press.com/data/r14/union3

(National Longitudinal Survey.

Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),

> treat(union = south black tenure) vce(robust)
Iteration O: log pseudolikelihood = -3614.6714
Iteration 1 log pseudolikelihood = -3218.8152
Iteration 2: log pseudolikelihood = -3057.0115
Iteration 3: log pseudolikelihood = -3049.3081
Iteration 4: log pseudolikelihood = -3049.2838
Iteration 5: log pseudolikelihood = -3049.2838
Linear regression with endogenous treatment Number of obs = 1,210
Estimator: maximum likelihood Wald chi2(8) = 493.40
Log pseudolikelihood = -3049.2838 Prob > chi2 = 0.0000
Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
wage
age .1489075 .0207283 7.18 0.000 .1082809 .1895342
grade .4200493 .0377621 11.12  0.000 .3460371 .4940616
smsa .9232615 .1201486 7.68 0.000 .6877746 1.158748
union#c.black
0 -.6685582 .1444213 -4.63 0.000 -.9516187  -.3854977
1 -1.1831 .2574817 -4.59  0.000 -1.6877556  -.6784455
union#
c.tenure
0 .168746 .0503107 3.35 0.001 .0701388 .2673532
1 .0836367 .0903669 0.93 0.355 -.0934792 .2607526
1.union 3.342859 .5586863 5.98 0.000 2.247854 4.437864
_cons -4.42566 .6493003 -6.82  0.000 -5.698265  -3.153055
union
south -.5844678 .0833069 -7.02 0.000 -.7477464 -.4211893
black .4740688 .093241 5.08 0.000 .2913197 .6568178
tenure .0874297 .0253892 3.44 0.001 .0376678 .1371916
_cons -.8910484 .0746329 -11.94 0.000 -1.037326  -.7447706
/athrho -.6733149 .2215328 -3.04 0.002 -1.107511  -.2391185
/1nsigma .7055907 .0749711 9.41  0.000 .55865 .8525313
rho -.5871562 .1451589 -.8031809 -.234663
sigma 2.025042 .1518197 1.748311 2.345577
lambda -1.189016 .3631079 -1.900695  -.4773378
Wald test of indep. eqns. (rho = 0): chi2(1) = 9.24 Prob > chi2 = 0.0024

The results indicate that the coefficients on black differ by union membership and that the
coefficient on tenure for nonmembers is positive, while the coefficient on tenure for members
is 0. The model fits well overall, so we proceed with interpretation. Because we interacted the
treatment variable with two of the covariates, the estimated coefficient on the treatment level is not
an estimate of the ATE. Below we use margins to estimate the ATE from these results. We specify
the vce (unconditional) option to obtain the standard errors for the population ATE instead of the
sample ATE. We specify the contrast(nowald) option to suppress the Wald tests, which margins
displays by default for contrasts.
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. margins r.union, vce(unconditional) contrast(nowald)

Contrasts of predictive margins

Expression : Linear prediction, predict()
Unconditional
Contrast  Std. Err. [95% Conf. Intervall
union
(1 vs 0) 3.042688 .5305151 2.002898 4.082478

The ATE estimate is essentially the same as the one produced by the constrained model in example 1.

N

We can use the same methods above to obtain the ATE in an unconstrained model.

> Example 4: Treatment interactions and group-specific variance and correlation, ATE

In example 2, the coefficients on the outcome covariates do not vary by treatment level. Suppose
we believe that the effect of having a chronic condition on out-of-pocket spending differs between
the insured and uninsured. Again, we use an interaction term. Because we are using a CF estimator,
the variance—covariance of the estimator (VCE) is already robust so we do not specify vce (robust).
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. use http://www.stata-press.com/data/r14/drugexp

(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc, treat(ins=age married lninc work)
> poutcomes cfunction

Iteration O: GMM criterion Q(b) = 2.279e-15

Iteration 1: GMM criterion Q(b) = 1.561e-28

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: control-function

Robust
Coef. Std. Err. z P>|z| [95% Conf. Intervall
Indrug
ins#chron
01 .3798705 .0720713 5.27  0.000 .2386132 .5211277
11 .4957773 .0352571 14.06 0.000 .4266746 .5648801
age .1022045 .0029228 34.97 0.000 .0964758 .1079331
Ininc .0548917 .0225219 2.44 0.015 .0107497 .0990337
1.ins -.89703 .3493058 -2.57 0.010 -1.581657 -.2124031
_cons 1.691336 .2531222 6.68 0.000 1.195225 2.187446
ins
age .021142 .0022961 9.21 0.000 .0166416 .0256424
married .084631 .0359713 2.35 0.019 .0141286 .1551334
1lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -56.73 0.000 -.8362273  -.4097587
/athrhoO .4046007 .1725597 2.34 0.019 .0663899 .7428115
/1nsigma0 .3157561 .0501956 6.29 0.000 .2173746 .4141376
/athrhol .7950592 .2992825 2.66 0.008 .2084763 1.381642
/1nsigmal .1868903 .0614281 3.04 0.002 .0664934 .3072871
rho0 .3838786 .1471308 .0662925 .6308408
sigmaO 1.371296 .0688329 1.24281 1.513065
lambdaO .5264111 .2264197 .0826366 .9701856
rhol .6612655 .1684146 .2055076 .8813184
sigmal 1.205495 .0740512 1.068754 1.359731
lambdal .7971523 .2514293 .3043599 1.289945
Wald test of indep. (rhoO = rhol = 0): chi2(2) = 8.90 Prob > chi2 = 0.0117

The results indicate that the coefficient on chron differs by whether an individual has insurance.
The model fits well overall, so we proceed with interpretation.

Because we interacted the treatment variable with one of the covariates, the estimated coefficient
on the treatment level is not an estimate of the ATE. Below we use margins to estimate the ATE
from these results. We specify the vce (unconditional) option to obtain the standard errors for the
population ATE instead of the sample ATE. We specify the contrast(nowald) option to suppress
the Wald tests.
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. margins r.ins, vce(unconditional) contrast(nowald)

Contrasts of predictive margins

Expression : Linear prediction, predict()
Unconditional
Contrast  Std. Err. [95% Conf. Intervall
ins
(1 vs 0) -.8632045 .3484924 -1.546237 -.1801718

The ATE estimate is similar to the one produced by the constrained model in example 2.

Average treatment effect on the treated (ATET)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATET, the average difference of the treatment
potential outcomes and the control potential outcomes on the treated population.

> Example 5: Allowing interactions between treatment and outcome covariates, ATET

The ATET may differ from the ATE in example 3 because the interaction between the treatment
variable and some outcome covariates makes the ATE and the ATET vary over outcome covariate
values. Below we use margins to estimate the ATET by specifying the subpop (union) option, which
restricts the sample used by margins to union members.

. use http://www.stata-press.com/data/r14/union3
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)

(output omitted )
. margins r.union, vce(unconditional) contrast(nowald) subpop(union)

Contrasts of predictive margins

Expression : Linear prediction, predict()
Unconditional
Contrast Std. Err. [95% Conf. Intervall
union
(1 vs 0) 2.968977 .5358457 1.918739 4.019215

The estimated ATET and ATE are close, indicating that the average predicted outcome for the
treatment group is similar to the average predicted outcome for the whole population.

4
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> Example 6: Treatment interactions and group-specific variance and correlation, ATET

The ATET may differ from the ATE in example 4 because the interaction between the treatment
variable and some outcome covariates makes the ATE and the ATET vary over values of the covariate
in the outcome equation. Even if there is no interaction between treatment assignment and a covariate
in the outcome equation, the estimated ATE and ATET will differ if the variances of the outcome errors
and their correlations with the treatment-assignment errors differ across the control and treatment
groups.

We can estimate the ATET of having health insurance by using the conditional treatment effect
(conditional on exogenous covariates and treatment level) obtained using the predict, cte and the
margins commands; see Methods and formulas below and [TE] etregress postestimation for more
details about the use of predict after etregress.

We restrict estimation to the treated subpopulation by specifying the subpop(ins) option with
margins.
. use http://www.stata-press.com/data/r14/drugexp
(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc,
> treat(ins = age married lninc work) poutcomes cfunction

(output omitted )
. margins, predict(cte) subpop(ins) vce(unconditional)

Predictive margins Number of obs = 6,000
Subpop. no. obs = 4,556

Expression : Conditional treatment effect, predict(cte)

Unconditional

Margin  Std. Err. z P>|z| [95% Conf. Intervall
_cons -.7558373 .3827579 -1.97 0.048 -1.506029 -.0056457

In absolute value, the treatment effect on the treated of —0.76 is smaller than the population
average effect of —0.86 that we found in example 4.

d
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Stored results

etregress (maximum likelihood) stores the following in e ():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model (noskip only)
e(N_clust) number of clusters
e(lambda) estimate of X\ in constrained model
e(selambda) standard error of A\ in constrained model
e(sigma) estimate of o in constrained model
e (lambda0) estimate of )¢ in potential-outcome model
e(selambda0) standard error of Ao in potential-outcome model
e(sigma0) estimate of o( in potential-outcome model
e(lambdal) estimate of \; in potential-outcome model
e(selambdal) standard error of \; in potential-outcome model
e(sigmal) estimate of o7 in potential-outcome model
e(chi2)
e(chi2_c) x? for comparison test
e(p-c) p-value for comparison test
e(p) significance
e(rho) estimate of p in constrained model
e(rho0) estimate of po in potential-outcome model
e(rhol) estimate of p; in potential-outcome model
e(rank) rank of e (V)
e (rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e (wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vee ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e (method) ml
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced

e (asobserved) factor variables fvset as asobserved
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Matrices
e(b)
e(Cns)
e(ilog)
e(gradient)
e (V)
e(V_modelbased)

Functions
e(sample)

coefficient vector

constraints matrix

iteration log (up to 20 iterations)

gradient vector

variance—covariance matrix of the estimators
model-based variance

marks estimation sample

etregress (two-step) stores the following in e():

Scalars
e(N)
e(df_m)
e (lambda)
e(selambda)
e(sigma)
e(chi2)
e(p)
e(rho)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e (hazard)
e(title)
e(title2)
e(chi2type)
e(vce)
e(vcetype)
e (method)
e(properties)
e(predict)
e(footnote)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)

Matrices
e(b)
e(\)

Functions
e(sample)

number of observations
model degrees of freedom
A

standard error of X\
estimate of sigma

X2

significance

P
rank of e(V)

etregress

command as typed

name of dependent variable

variable containing hazard

title in estimation output

secondary title in estimation output
Wald or LR; type of model x? test
veetype specified in vce()

title used to label Std. Err.

twostep

bV

program used to implement predict
program used to implement the footnote display
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample
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etregress (control-function) stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(lambda) estimate of X\ in constrained model
e(selambda) standard error of A\ in constrained model
e(sigma) estimate of o in constrained model
e(lambda0) estimate of Ao in potential-outcome model
e(selambda0) standard error of )¢ in potential-outcome model
e(sigma0) estimate of o( in potential-outcome model
e(lambdal) estimate of \; in potential-outcome model
e(selambdal) standard error of A\; in potential-outcome model
e(sigmal) estimate of o7 in potential-outcome model
e(chi2_c) x? for comparison test
e(p_c) p-value for comparison test
e(rho) estimate of p in constrained model
e(rho0) estimate of py in potential-outcome model
e(rhol) estimate of p; in potential-outcome model
e(rank) rank of e(V)
e(converged) 1 if converged, O otherwise

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(chi2_ct) Wald; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e (method) cfunction
e(properties) bV
e(predict) program used to implement predict

e(footnote)
e(marginsok)
e(asbalanced)
e(asobserved)

program used to implement the footnote display
predictions allowed by margins

factor variables fvset as asbalanced

factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas

Maddala (1983, 117-122 and 223-228) derives both the maximum likelihood and the CF estimators
implemented here. Greene (2012, 890-894) also provides an introduction to the treatment-effects model.
Cameron and Trivedi (2005, sections 16.7 and 25.3.4) and Wooldridge (2010, section 21.4.1) discuss
the endogenous binary-variable model as an endogenous treatment-effects model and link it to recent
work.



etregress — Linear regression with endogenous treatment effects 57

Methods and formulas are presented under the following headings:

Constrained model

General potential-outcome model
Average treatment effect

Average treatment effect on the treated

Constrained model

The primary regression equation of interest is
Yyj = X8+t + ¢ (1)
where ¢; is a binary-treatment variable that is assumed to stem from an unobservable latent variable:

t = wy+uy

The decision to obtain the treatment is made according to the rule

L1 it >0
77710, otherwise

where € and u are bivariate normal with mean zero and covariance matrix
o? po
po 1
Interactions between x; and the treatment ¢; are also allowed in (1). The likelihood function for
this model is given in Maddala (1983, 122). Greene (2000, 180) discusses the standard method of

reducing a bivariate normal to a function of a univariate normal and the correlation p. The following
is the log likelihood for observation 7,

2
In® {wm @&:‘ifp‘j‘ 6>p/a} . ;(w—»:ﬁ—é) —In(V270) t =1

. { —wiy— (y; — Xjﬂ)ﬂ/ff} _ 1<?/J‘XJ‘5>2 ~ In(V2r0) tj=0

lnLj =

1— p2 2 g
where ®(+) is the cumulative distribution function of the standard normal distribution.

In the maximum likelihood estimation, o and p are not directly estimated. Rather In o and atanh p

are directly estimated, where
1 1+p
tanh p = —In| ——
atanh p 5 n < T p)
The standard error of A = po is approximated through the delta method, which is given by

Var(\) ~ D Var{(atanh p Inc)} D’

where D is the Jacobian of A with respect to atanh p and Ino.
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Maddala (1983, 120-122) also derives the CF estimator as a two-step estimator. This estimator
is implemented here. We will discuss it and then discuss the one-step CF estimator that is also
implemented.

For the two-step estimator, probit estimates of the treatment equation
Pr(t; =1 w;) = ®(w;~)
are obtained in the first stage. From these estimates, the hazard, hj, for each observation j is computed
as
P(w;7)/®(w;7) tj=1
h; =
—¢(wA) /{1 - ®(w;7)} t;=0
where ¢ is the standard normal density function. If
dj = hj(hj +w;7)
then
E (yj ‘ tj,Xj,Wj) = Xjﬂ + 5tj + pO’hj
Var (y; | tj,x;, w;) = o> (1- dej)

The two-step parameter estimates of 3 and § are obtained by augmenting the regression equation
with the hazard h. Thus the regressors become [x t ], and the additional parameter estimate [, is
obtained on the variable containing the hazard. A consistent estimate of the regression disturbance
variance is obtained using the residuals from the augmented regression and the parameter estimate
on the hazard N

82 _ e/e+6}2LZj:1dj
N

The two-step estimate of p is then

S

b\:

To understand how the consistent estimates of the coefficient covariance matrix based on the
augmented regression are derived, let A = [x t h] and D be a square diagonal matrix of size N
with (1 — p2d;) on the diagonal elements. The conventional VCE is

Vtwostep = 0 2(A’A)_l(A'DA + Q)(A'A)_1
where
Q = 52(A'DA)V,(A'DA)
and V, is the variance—covariance estimate from the probit estimation of the treatment equation.

The one-step CF estimator is a GMM estimator with stacked moments. See Newey (1984) and
Wooldridge (2010, sec. 14.2) for a description of this technique. Many econometric and statistical
models can be expressed as conditions on the population moments. The parameter estimates produced
by GMM estimators make the sample-moment conditions as true as possible given the data.

Under CF estimation, as in maximum likelihood estimation, we directly estimate atanh p and Ino
rather than p and o, so the parameter vector is

0 = (8,6, ,atanh p,In )’
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In this case, we have separate error functions for the treatment assignment

d(w;v)/®(W;v) tj=1
ug(t, wj,0) =
—o(wiy) /{1 = (W)} t;=0
for the outcome mean
Um (Yj,tj, %5, Wj,0) = y; — X;8— 6t; — pouy,
and for the outcome variance

(Y55, %5, w5,0) = up, s — 0 [1— p {ue;(ug; +w;v)}]

We calculate the hazard, hj, prior to estimation from a probit regression of the treatment ¢; on
the treatment covariates w;. Let z; = (x;,t;, h;). Now we define

Ej 0 0
ZJZ 0 Wj 0
0 0 1
and
Um,j
sj(Yj i, X5, Wj,0) = Z; | uy
uw‘

The CF estimator 0 is the value of 6 that satisfies the sample-moment conditions
1
0= N Zl Sj(yj,tj,Xj,Wj,B)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is =R o
V=(1/N)GS G/’

where

-1
G = {(I/N)Z asj(yj’tjégj’wj70)}

and
S=(1/N)Y_ si(yj ty, %5, w5, 0)55(y, 5, %5, w;,6)'

7

The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge
to different matrices.
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General potential-outcome model

Equation (1) can be generalized to a potential-outcome model with separate variance and correlation
parameters for the control and treatment groups.
The generalized model is
Yoj = X; 80 + €o;
Y15 = X8 + e
P 1, if wjvy+wu; >0
J 0, otherwise
where gp; is the outcome that person j obtains if person j selects treatment 0, and ¥ is the outcome

that person j obtains if person j selects treatment 1. We never observe both yo; and y;;, only one
or the other. We observe

y; =ty + (1 —t5)y0;

In this unconstrained model, the vector of error terms (eoj,elj,uj)’ comes from a mean zero
trivariate normal distribution with covariance matrix

2
0o 001 00pPo
2
001 01 01pP1

Oopo  O1p1 1

The likelihood function for this model is given in Maddala (1983, 224).

. Cx. 1/ 0 — xs 2
In® w;iY+ (Y —%;81)p1/01 C 1y —xiB\ In(v2701), t;=1
V1-pi 2 o1

- { i Xjﬁo)PO/UO} ) 1(y—xﬂ>  n(VErow), £ =0

lnfj =

Ny o
InL = ij Inf;

Jj=1

where ®(-) is the cumulative distribution function of the standard normal distribution, and w; is an
optional weight. The covariance between €g; and €15, 091, cannot be estimated because the potential
outcomes yo; and y;; are never observed simultaneously.

As in the constrained model, og and o are not directly estimated in the maximum likelihood
estimation; rather, In oy and Ino; are estimated.

The parameters pg and p; are also not directly estimated; rather, atanh pg and atanh p; are directly
estimated.

The new parameter vector is
0= (/6/07 18/1’ 717 atanh P05, In 00, atanh P1, In 01)/
The CF estimator for this potential-outcome model uses new error functions for the outcome mean

Um (Y, b5, %5, Wj, 0) = yi—t;(x; 81 + pro1ue ;)
—(1 = t;)(x;8y + pooour,;)
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and for the outcome variances

U, 0(Yj>t5, %5, w5, 0) = (1 —t;) (us, ; — 05 [1— pp {uej(ue; +w;v)}])

U1 (Y5, L5, %5, w5, 0) = t; (up, ; — 05 [1— pF {ug j(ur; +wiv)}])

These error functions are derived based on the identities

E(y; | tj, x5, w;) =t;(x;8, + proru ;) + (1 — ;) (x;80 + pooour, ;)
Var (y; | t; = 0,%x;,w;) = 05 [1— pg {ue; (ue; + w;v)}]
ot [1— pF {ue,;(ue; +w;v)}]

Var (y; | t; =1,%;,w;)

We calculate the hazard, hj, prior to estimation from a probit regression of the treatment, Z;, on
the treatment covariates, w;. Let z; = {x;,¢;h;, (1 —t;)h;}. Now we define

Z]‘ 0 0 0

10 w; 0O

Z; = 0 0 1 0

0 0 01

and

Um,j
(st X 0 =17 Ut,j
55(Yj>tj, %5, W;, 0) I w0,
Uy, 1,5

The CF estimator 8 is the value of 6 that satisfies the sample-moment conditions
1
0= N ZZ Sj(yj,tj,Xj,Wj,e)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is =N o
V =(1/N)JGS G’

where

G = {(1/1\7) 3 331(%7%517%9) }

and
S = (I/N)Zsj(yj7tjaxj7wjaO)Sj(ijtjvxjawjve)/

%

The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge
to different matrices.
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Average treatment effect

The ATE is the average difference of the treated potential outcomes and the control potential
outcomes.

By the law of iterated expectations, the ATE is

E(y1j —yoj) = E{E(y1j — yo;|X;, €0j, €15) }
= E(xjﬁl + e — X8y — €0)
= E{x;(8; — Bo)}

This expectation can be estimated as a predictive margin when x;(3; — ;) varies in x;. Otherwise,
the ATE is estimated as the coefficient of ¢; in the model.

Average treatment effect on the treated

The ATE is the average difference of the treated potential outcomes and the control potential
outcomes on the treated population.

The conditional means of the potential outcomes ¥, t € (0, 1) for exogenous covariates x; and
treatment covariates w; at treatment ¢; = 1 are

E(yejlxj, wj,ty = 1) = %8, + prord(w;v) [ ®(w;)
By the law of iterated expectations, the ATET is

E(yrj = yojlty = 1) = B{E(y1; — yojlxj, W, t; = 1)}
= E{Xj(:ﬁl - ,30) + (p101 — p000)¢(wj’}’)/‘l)(wj"y)\tj _ 1}

This expectation can be estimated as a predictive margin on the treated population when x; (3, —3;)
varies in x; or when the variance and correlation parameters differ by treatment group. Otherwise,
the ATET is estimated as the coefficient of ¢; in the model.
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etregress postestimation — Postestimation tools for etregress

Postestimation commands predict margins Remarks and examples

Also see

Postestimation commands

The following postestimation commands are available after etregress:

Command

Description

contrast
*estat ic

estat summarize

estat vce

estat (svy)

estimates
*hausman

lincom

*lrtest
margins

marginsplot
nlcom

predict
predictnl
pwcompare
*suest
test
testnl

contrasts and ANOVA-style joint tests of estimates

Akaike’s and Schwarz’s Bayesian information criteria (AIC and BIC)
summary statistics for the estimation sample

variance—covariance matrix of the estimators (VCE)

postestimation statistics for survey data

cataloging estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized predictions
pairwise comparisons of estimates

seemingly unrelated estimation

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

* estat ic, 1rtest, and suest are not appropriate after etregress, twostep or etregress, cfunction
hausman and lrtest are not appropriate with svy estimation results.

64



etregress postestimation — Postestimation tools for etregress 65

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, conditional
treatment effects, standard errors, expected values, and probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict
After ML, twostep, or cfunction

predict [type] newvar [lf] [zn] [, statistic]

After ML or cfunction for constrained model
predict [type] { stub* | NeWVaryeg NEWVAlgreat NEWVAFathrho NEWVAllnsigma }

[lf] [ln] , scores

After ML or cfunction for general potential-outcome model

predict [type] {stub*|newvarmg NeWVarireat, NEWVAlathrho, N€WVaATlnsigmag

newvarathrho, newvarlnsigmal} [zf] [in] , scores

statistic Description
Main
xb linear prediction; the default
cte conditional treatment effect at treatment level
stdp standard error of the prediction
stdf standard error of the forecast
yetrt E(y; | treatment = 1)
yentrt E(y; | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
stdptrt standard error of the linear prediction for treatment equation
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

stdf is not allowed with svy estimation results.
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Options for predict

Main

r

xb, the default, calculates the linear prediction, x;b.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for one observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

yctrt calculates the expected value of the dependent variable conditional on the presence of the
treatment: F(y,; | treatment = 1).

yentrt calculates the expected value of the dependent variable conditional on the absence of the
treatment: E(y; | treatment = 0).

ptrt calculates the probability of the presence of the treatment:
Pr(treatment = 1) = Pr(w;vy+ u; > 0).

xbtrt calculates the linear prediction for the treatment equation.
stdptrt calculates the standard error of the linear prediction for the treatment equation.
scores, not available with twostep, calculates equation-level score variables.
The first new variable will contain 91nL/0(x;/3).
The second new variable will contain 01nL/0(w;~).
Under the constrained model, the third new variable will contain O InL / 0 atanh p.
Under the constrained model, the fourth new variable will contain 81nL/ Olno.

Under the general potential-outcome model, the third new variable will contain

OInL/90 atanh po.
Under the general potential-outcome model, the fourth new variable will contain 9 InL/d Inoy.
Under the general potential-outcome model, the fifth new variable will contain 0 InL/0 atanh p;.

Under the general potential-outcome model, the sixth new variable will contain d1nL /0 Ino;.
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margins

Description for margins

margins estimates margins of response for linear predictions, conditional treatment effects, expected
values, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins
margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]

Maximum likelihood and control-function estimation results

statistic Description

xb linear prediction; the default

cte conditional treatment effect at treatment level
yetrt E(y; | treatment = 1)

yentrt E(y; | treatment = 0)

ptrt Pr(treatment = 1)

xbtrt linear prediction for treatment equation

stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Two-step estimation results

statistic Description

xb linear prediction; the default

ptrt Pr(treatment = 1)

xbtrt linear prediction for treatment equation
cte not allowed with margins

yctrt not allowed with margins

yﬁtrt not allowed with margins

stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the
parameters most frequently estimated by postestimation techniques after etregress.

When there are no interactions between the treatment variable and the outcome covariates in
the constrained model, etregress directly estimates the ATE and the ATET; see example 1 of
[TE] etregress.

When there are no interactions between the treatment variable and the outcome covariates in
the general potential-outcome model, etregress directly estimates the ATE; see example 2 of
[TE] etregress.

When there are interactions between the treatment variable and the outcome covariates, you can
use margins after etregress to estimate the ATE. See example 3 and example 4 of [TE] etregress
for examples of ATE estimation.

When there are interactions between the treatment variable and the outcome covariates in the
constrained model, you can use margins after etregress to estimate the ATET. See example 5 of
[TE] etregress for an example of ATET estimation in the constrained model.

In the general potential-outcome model, you can use margins after etregress to estimate the ATET.
See example 6 of [TE] etregress for an example of ATET estimation in the general potential-outcome
model.

Also see

[TE] etregress — Linear regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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stteffects — Treatment-effects estimation for observational survival-time data

Description Syntax Also see

Description

stteffects estimates average treatment effects, average treatment effects on the treated, and
potential-outcome means using observational survival-time data. The available estimators are regres-
sion adjustment, inverse-probability weighting, and more efficient methods that combine regression
adjustment and inverse-probability weighting.

For a brief description and example of each estimator, see Remarks and examples in [TE] stteffects

intro.
Syntax
stteffects subcommand ... [, options]
subcommand Description
ra regression adjustment
ipw inverse-probability weighting
ipwra inverse-probability-weighted regression adjustment
wra weighted regression adjustment
Also see

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
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stteffects intro — Introduction to treatment effects for observational survival-time data

Description Remarks and examples Acknowledgments References
Also see

Description

This entry provides an overview of the treatment-effects estimators that use observational survival-
time data and are implemented in stteffects. It also provides an overview of the potential-outcomes
framework and its application to survival-time data and to the interpretation of the treatment-effects
parameters estimated.

The stteffects command estimates average treatment effects (ATEs), average treatment effects
on the treated (ATETs), and potential-outcome means (POMs). Each of these effect parameters is
discussed in this entry. stteffects implements a variety of estimators for the ATE, ATET, and POM.
The treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), inverse-probability-weighted regression adjustment (IPWRA), and weighted regression adjustment
(WRA). This entry also provides some intuition for the estimators and discusses the trade-offs between
them.

Remarks and examples

Remarks are presented under the following headings:

Introduction
A quick tour of the estimators
Regression adjustment
Inverse-probability weighting
Combinations of RA and IPW
Weighted regression adjustment
Average treatment effect on the treated
Comparison of treatment-effects estimators
Assumptions and trade-offs
The conditional independence assumption
The sufficient overlap assumption
The correct adjustment for censoring assumption
Assumptions for the ATET
Specification diagnostics and tests
Multivalued treatments

Introduction

The stteffects command estimates treatment effects using observational survival-time data.

For some intuition about the methods implemented in the stteffects command, consider the
following question: Does smoking decrease the time to a second heart attack in the population of
women aged 45-55 who have had one heart attack? Three aspects of this question stand out.

1. For ethical reasons, these data will be observational.

2. This question is about the time to an event, and such data are commonly known as survival-time
data or time-to-event data. These data are nonnegative and, frequently, right-censored.

3. Many researchers and practitioners want an effect estimate in easy-to-understand units of time.
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Aspect 1 is one of the most common reasons for using observational data, and aspect 2 focuses
interest on survival-time data.

We are most concerned with aspect 3 because it helps us define and understand the effect of
interest. In particular, we would like to know the average change in time to a second heart attack
that would occur in the population if all women smoked instead of if no women smoked. This effect
is an ATE.

We must solve a missing-data problem to estimate the ATE. The ATE is the population average
of the contrast in outcomes when everyone gets the treatment and when no one gets the treatment.
Formally, we write this as

ATE = E(t; — to)

where ¢; is the survival time when a subject gets the treatment and ¢o is the survival time when a
subject does not get the treatment. For each treatment level, there is a potential outcome that would
be observed if a subject received that treatment level: ¢; is the potential outcome that would occur
if someone gets the treatment and ¢( is the potential outcome that would occur if someone does not
get the treatment. The missing-data problem arises because each subject receives only one treatment
level, and so we observe only one of the two potential outcomes.

Much of the survival-time literature uses a hazard ratio as the effect of interest. The ATE has three
advantages over the hazard ratio as an effect measure.

1. The ATE measures the effect in the same time units as the outcome instead of in relative
conditional probabilities.

2. The ATE is much easier to explain to nontechnical audiences.

3. The models used to estimate the ATE can be much more flexible. Hazard ratios are useful for
population effects when they are constant, which occurs when the treatment enters linearly and
the distribution of the outcome has a proportional-hazards form. Neither linearity in treatment
nor proportional-hazards form is required for the ATE, and neither is imposed on the models fit
by the estimators implemented in stteffects.

The estimators implemented in stteffects use the common missing-data techniques of regression
modeling, weighting, and combinations thereof to account for data lost to censoring and to unobserved
potential outcomes.

Here we note only a few contributions and entry points to the vast literature on estimating
ATEs. The use of potential outcomes to define treatment effects has proved extraordinarily useful;
see Holland (1986), Rubin (1974), and Heckman (1997). Cameron and Trivedi (2005, chap. 25),
Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general intro-
ductions to estimating ATEs.

Q Technical note

Left-truncation would be another type of missing data. The estimators implemented in stteffects
do not adjust for left-truncation, so stteffects cannot be used with delayed-entry data.

stteffects cannot be used with time-varying covariates or multiple-record data because these
add a repeated-measure structure that significantly complicates the estimation problem.
a
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A quick tour of the estimators

The stteffects command implements five estimators of treatment effects. We introduce each
one by showing the basic syntax used to apply it to a common example dataset. See each command’s
entry for detailed information.

We have some fictional data on the time to a second heart attack among women aged 45-55 years.
The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain each woman’s
age at the time of her first heart attack (age), and indices of her exercise level (exercise), diet
quality (diet), and education attainment (education) prior to her first heart attack.

Like streg and other survival-time commands, stteffects uses the outcome variable and the
failure indicator computed by stset. In this dataset, atime is the observed time in years to the
second heart attack, and fail is the 0/1 indicator that a second heart attack was observed and recorded
in atime. (When fail is 1, atime records the time to the second attack; when fail is 0, atime
records a censored observation of the time to the second attack.)

We begin our examples by first reading in the data and then specifying the raw outcome and failure
variables to stset.
. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))
. stset atime, failure(fail)

failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure

2000 total observations
0 exclusions

2000 observations remaining, representing
1208 failures in single-record/single-failure data
3795.226 total analysis time at risk and under observation
at risk from t 0
earliest observed entry t 0
last observed exit t = 34.17743

The output indicates that 1,208 of the 2,000 observations record actual time to a second heart
attack. The remaining observations were censored. Now that we have stset the data, we can use
stteffects.

Regression adjustment

Regression modeling of the outcome variable is a venerable approach to solving the missing-data
problem in treatment-effects estimation. Known as the regression-adjustment (RA) estimator, this
method uses averages of predicted outcomes to estimate the ATE. If the outcome model is well
specified, this approach is surprisingly robust.
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> Example 1: RA estimation

We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of
age, exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none
Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639
POmean
smoke
Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When all women in the population smoke, the average time to a second heart attack is estimated
to be 1.96 years less than when no women smoke. The estimated average time to a second heart
attack when no women smoke is 4.24 years.

The output reports that a Weibull model was used for the outcome. The other outcome models
available are exponential, gamma, and log normal. See example 2 in [TE] stteffects ra for an application
of the gamma parameterization to this model.

The ratio of the ATE to control-level POM measures the importance of the effect. In this example,
when all women smoke, the time to a second heart attack falls by an estimated 46% relative to the
case in which none of them smoke. See example 3 in [TE] stteffects ra for an example that uses
nlcom to compute a point estimate and a confidence interval for this ratio.

N

Unlike the IPW estimator discussed in the next section, RA does not model treatment assignment or the
censoring process. Treatment assignment is handled by fitting separate models for each treatment level
and averaging the predicted outcomes. As is standard in the survival-time literature, the censoring
term in the log-likelihood function accounts for censoring; see Kalbfleisch and Prentice (2002,
chap. 3), Cameron and Trivedi (2005, chap. 17), Cleves, Gould, and Marchenko (2016, chap. 13),
and Wooldridge (2010, chap. 22).

See [TE] stteffects ra for further discussion of this command and the RA estimator.
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Inverse-probability weighting

Sometimes researchers are more comfortable modeling treatment assignment than the outcome.
Inverse-probability-weighted (IPW) estimators use weighted averages of the observed outcome to
estimate the POMs and the ATE. The weights correct for the missing data. When there is no censoring,
the missing potential outcome is the only missing data, and the weights are constructed from a model
of treatment assignment. When the data may be censored, the weights must control for censoring and
the missing potential outcome. In this case, IPW estimators construct the weights from two models,
one for the censoring time and one for treatment assignment.

> Example 2: IPW estimation

Here we use stteffects ipw to estimate the effect of smoking on the time to a second heart
attack. The model of assignment to the treatment smoke depends on age, exercise, diet, and
education. The time-to-censoring model also depends on age, exercise, diet, and education.

. stteffects ipw (smoke age exercise diet education)
> (age exercise diet education)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.042e-18
Iteration 1: EE criterion = 3.283e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights

Outcome model : welghted mean

Treatment model: logit

Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -2.187297 .6319837 -3.46 0.001 -3.425962 -.9486314
POmean
smoke
Nonsmoker 4.225331 .517501 8.16 0.000 3.211047 5.239614

When all women in the population smoke, the average time to a second heart attack is estimated
to be 2.19 years less than when no women smoke. The estimated average time to a second heart
attack when no women smoke is 4.23 years. When all women smoke, the average time to a second
heart attack falls by an estimated 52% relative to the case when no women smoke.

The estimates have changed; however, the interpretation is the same as for the RA estimator
because the IPW and RA estimators are estimating the same population effects. Under correct model
specification, the estimates will differ in finite samples, but the size of these differences will decrease
as the sample size gets larger. For the case at hand, the estimated ATE and control-level POM are
roughly similar to those produced by the RA estimator using the Weibull model for the outcome.

Recall that IPW estimators are weighted averages of observed outcomes and that the weights control
for the missing outcomes. Weights in survival-time data have two components: one for the missing
potential outcome and one for data lost to censoring. We used a logit model for treatment assignment,
so the component of the weights that controls for the missing potential outcome comes from the
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estimated logit parameters. We used a Weibull model for the time to censoring, so the component of
the weights that controls for data lost to censoring comes from the estimated Weibull parameters.

N

Using weighting from an estimated treatment-assignment model to control for the missing potential
outcome is standard in the treatment-effects literature; for example, see [TE] teffects intro advanced,
Wooldridge (2010, chap. 21), Vittinghoff et al. (2012, chap. 9), Hirano, Imbens, and Ridder (2003),
Cattaneo (2010), and Cattaneo, Drukker, and Holland (2013). Modeling the time to censoring is
specific to the survival-time treatment-effects literature; see Bai, Tsiatis, and O’Brien (2013) and
Robins and Rotnitzky (2006). See Methods and formulas in [TE] stteffects ipwra for more details.

See [TE] stteffects ipw for further discussion of this command and the IPW estimator.

Combinations of RA and IPW

More efficient estimators are obtained by combining IPW and RA, due to Wooldridge (2007)
and Wooldridge (2010, chap. 21) and denoted by IPWRA. Unlike the estimators discussed in
Wooldridge (2010, chap. 21), both the treatment and the outcome models must be correctly specified
to estimate the ATE.

The IPWRA estimator uses estimated weights that control for missing data to obtain missingness-
adjusted regression coefficients that are used to compute averages of predicted outcomes to estimate
the POMs. The estimated ATE is a contrast of the estimated POMs. These weights always involve a
model for treatment assignment. You choose whether to account for censoring by including a term in
the log-likelihood function or whether to use weights that also account for the data lost to censoring.

> Example 3: Likelihood-adjusted-censoring IPWRA estimation

We model the outcome (time to a second heart attack) as a function of age, exercise, diet,
and education. We model assignment to the treatment smoke as a function of the same covariates.
. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)
failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.153e-16
Iteration 1: EE criterion = 2.940e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none
Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -1.592494 4872777 -3.27 0.001 -2.54754 -.637447
POmean
smoke
Nonsmoker 4.214523 .2600165 16.21 0.000 3.7049 4.724146

The estimated ATE of —1.59 and control-level POM of 4.21 are similar to the reported values of
—1.96 and 4.24 in example 1.
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We did not specify a model for the time to censoring, so censoring is handled by including a term in
the log-likelihood function in the Weibull outcome model. We denote this likelihood-adjusted-censoring
(LAC) version of the IPWRA estimator by LAC-IPWRA.

d

» Example 4: Weighted-adjusted-censoring IPWRA estimation

Instead of including a term in the log-likelihood function, the weighted-adjusted-censoring IPWRA
(WAC-IPWRA) estimator uses estimated weights to adjust for censoring. We model the time to a second
heart attack as a function of age, exercise, diet, and education; we model assignment to the
treatment smoke as a function of the same covariates; and we model the time to censoring as a
function of age, exercise, and diet.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education) (age exercise diet)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 1.632e-16
Iteration 1: EE criterion = 2.367e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull

Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -2.037944 .6032549 -3.38 0.001 -3.220302 -.855586
POmean
smoke
Nonsmoker 4.14284 .4811052 8.61 0.000 3.199891 5.085789

The estimated ATE of —2.04 and control-level POM of 4.14 are similar to the reported values of
—1.96 and 4.24 in example 1.

The weights for censoring are constructed from the estimated parameters because we specified a
time-to-censoring model.

N

Under correct specification, both versions of the IPWRA estimator estimate the same ATE and
control-level POM as estimated by RA and IPW.

The addition of the time-to-censoring model makes the WAC-IPWRA somewhat less robust than
the LAC-IPWRA estimator. Weighting methods to control for censoring also place more restrictive
assumptions on the censoring process. For example, the censoring time must be random, otherwise it
would be impossible to construct the weights. In Assumptions and trade-offs below, we discuss the
trade-offs among the estimators and the assumptions that each requires. For the moment, we note
that we believe the LAC-IPWRA estimator is more robust than the WAC-IPWRA estimator.

See [TE] stteffects ipwra for further discussion of this command and the IPWRA estimator.
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Weighted regression adjustment

When estimating the parameters of an outcome model, the weighted regression-adjustment (WRA)
estimator uses weights instead of a term in the log-likelihood function to adjust for censoring.
These weights are constructed from a model for the censoring process. The estimated parameters are
subsequently used to compute averages of predicted outcomes that estimate the POMs. A contrast of
the estimated POMs estimates the ATE.

> Example 5: WRA estimation

We model the time to a second heart attack as a function of age, exercise, diet, and education;
we specify that smoke is the treatment; and we model the time to censoring as a function of age,
exercise, and diet.

. stteffects wra (age exercise diet education) (smoke) (age exercise diet)

failure _d: fail
analysis time _t: atime

Iteration O: EE criterion = 7.037e-19
Iteration 1: EE criterion = 1.110e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull

Treatment model: none
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -2.152014 .4986005 -4.32 0.000 -3.129253 -1.174775
POmean
smoke
Nonsmoker 4.079273 .4379517 9.31 0.000 3.220903 4.937642

The estimated ATE of —2.15 and control-level POM of 4.08 are similar to the reported values of
—1.96 and 4.24 in example 1. Like the other estimators discussed, the WRA estimators estimate the
same effect parameters as the RA estimator, so the interpretation is the same.

N

In many survival-time applications, using weights to adjust for censoring is probably less robust
than just including a term in the log-likelihood function for the outcome model. The model used to
construct the weights is just as complicated as the outcome model, and including the term in the
log-likelihood function places fewer restrictions on the censoring process, as discussed in The correct
adjustment for censoring assumption below.

See [TE] stteffects wra for further discussion of this command and the WRA estimator.
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Average treatment effect on the treated

Intuitively, the average treatment effect on the treated (ATET) is the effect in a well-defined,
at-risk subpopulation. Sometimes the subpopulation that gets the treatment defines such an at-risk
subpopulation. For example, we may want to know the average change in time to a second heart
attack among female smokers aged 45-55 who have had a heart attack if they all became nonsmokers.
This effect is the ATET.

Below, we use stteffects ra to estimate the ATET by RA.

. stteffects ra (age exercise diet education) (smoke), atet

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 1.525e-19
Iteration 1: EE criterion = 2.002e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull

Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATET
smoke
(Smoker
vs
Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602
POmean
smoke
Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

Now, all effects are calculated only for the subpopulation of women aged 45-55 years who smoke
after their first heart attack. If no women in the subpopulation were to smoke, the average time to a
second heart attack would be 3.44 years. When all women in the subpopulation smoke (the observed
behavior), the average time to a second heart attack is estimated to be 1.53 years less than if no
women in the subpopulation had smoked. In other words, if we could somehow turn all smokers in
the subpopulation into nonsmokers, the average time to a second heart attack would be 3.44 years
instead of 1.91 years (3.44 — 1.53 = 1.91).

These point estimates are a little different than those for the ATE and the control-level POM in the
full population of women aged 45-55 years who have had one heart attack. The difference indicates
that this particular health cost of smoking may be smaller among women who choose to smoke than
in the full population.

Comparison of treatment-effects estimators

We can classify the estimators implemented in stteffects into five categories: 1) estimators
based on a model for the outcome variable; 2) estimators based on models for the treatment assignment
and the censoring time; 3) estimators based on models for the outcome variable and the treatment
assignment; 4) estimators based on models for the outcome variable, the treatment assignment, and
the censoring time; and 5) estimators based on models for the outcome variable and the censoring
time.
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Because there are several categories of estimators, the user must decide whether to model the
outcome, the probability of treatment, the time to censoring, or some combination thereof.

Each category of estimator contains a variety of choices about the functional forms for the models.

We now provide some intuition behind each category of estimator and discuss the relationships.

1. When modeling only the outcome, separate outcome models for each treatment level account
for treatment assignment, and censoring is adjusted for in the log-likelihood function. This
approach is used in the RA estimators.

2. Some researchers would rather avoid modeling the outcome. Some estimators use weighted
averages of the observed outcome to estimate the effect. When estimating treatment effects
from observational survival-time data, the weights used must account for treatment assignment
and censoring. Models for treatment assignment and time to censoring are used to construct
the weights. This approach is used in the IPW estimators.

3. When seeking a more efficient estimator, it is natural to model both the outcome and the
treatment and to adjust for censoring in the outcome model. This approach is used in the
LAC-TPWRA estimators.

4. When seeking a more efficient estimator, another natural approach is to model both the outcome
and the treatment and to adjust for censoring by weights that come from a time-to-censoring
model. This approach is used in the WAC-IPWRA estimators.

5. We could modify approach 1 to model the outcome and the time to censoring so that censoring
is handled by weighting and its own model instead of by likelihood adjustment. This approach
is used in the WRA estimators.

While researcher preferences over what to model largely dictate the approach selected, we quickly
note two points that could affect which approach works best. First, we can adjust for censoring by
weighting only when censoring time is random. Second, weighting estimators become unstable if the
weights get too large.

In the next section, we elaborate on the assumptions needed and the trade-offs among the approaches
to estimation.

Assumptions and trade-offs

The estimators implemented in stteffects require three assumptions: conditional independence,
sufficient overlap, and correct adjustment for censoring.

The conditional independence assumption

All estimators implemented in stteffects require the potential outcomes to be independent of the
treatment assignment after conditioning on the covariates. Randomized experiments and the Heckman
selection model are two motivating frameworks for the conditional independence assumption.

When the treatment is assigned randomly, the randomization ensures that the potential outcomes
are independent of the treatment assignment. In observational data, the treatment is not randomly
assigned. However, many important questions can only be answered using observational data because it
would be unethical to randomly allocate hazardous treatments, for example, smoking. The conditional
independence assumption in observational data says that treatment assignment is as good as random
after conditioning on the covariates.
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We can also understand conditional independence from a modeling framework. The Heckman
selection model specifies that each of the potential outcomes and the treatment assignment process are
functions of observable covariates and unobservable errors. The potential outcomes are conditionally
independent of the treatment assignment when the unobservable errors in the treatment-assignment
process are independent of the unobservable errors in each of the potential-outcome processes. See
The CI assumption in [TE] teffects intro advanced for a detailed example.

Both frameworks lead to the same conclusion: we need to observe and to condition on a sufficient
number of covariates.

Essentially, all the estimators in stteffects are equally susceptible to violations of the conditional
independence assumption. No one estimator is any more robust to the conditional independence
assumption than any other one.

Estimating the ATE among the subpopulation of those who get the treatment requires a significantly
weaker version of the CI assumption; see Assumptions for the ATET below.

For more details about the conditional independence assumption, see The CI assumption in
[TE] teffects intro advanced, and see Rosenbaum and Rubin (1983), Heckman (1997), Imbens
and Wooldridge (2009), Cameron and Trivedi (2005, sec. 25.2), Wooldridge (2010, chap. 21), and
Vittinghoff et al. (2012, chap. 9).

The sufficient overlap assumption

The sufficient overlap assumption requires that each individual have a sufficiently positive probability
of being assigned to each treatment level. We believe that the RA estimator is more robust than the
other estimators to near violations of the sufficient overlap condition, under correct model specification.

The overlap condition has no specification test, but using teffects overlap and then summarizing
the predicted treatment probabilities presents good diagnostics of overlap problems.

The correct adjustment for censoring assumption

The correct adjustment for censoring assumption has two parts. First, either the censoring time must
be fixed or the process must be conditionally-on-covariates independent of the potential outcomes and
the treatment-assignment process. This assumption is standard in survival analysis; see, for example,
Kalbfleisch and Prentice (2002, chap. 3).

Second, the method used to adjust to censoring must be correct. For the RA and LAC-IPWRA
estimators, which use likelihood-adjusted censoring, the second assumption is no more restrictive than
assuming correct specification of the outcome model. For the IPW, WAC-IPWRA, and WRA estimators,
which adjust by weighting, the second assumption requires that the censoring be random and that the
censoring process be correctly modeled.

Under correct specification, all the estimators in stteffects perform well. However, we believe
that estimators that use likelihood adjustment instead of weighting are more robust for three reasons.

1. The estimators that use weighting to adjust for censoring cannot handle fixed censoring processes.
If the censoring process is not random, the weights are not well defined.

2. The estimators that use weighting to adjust for censoring do not allow the random censoring
process to vary by treatment level.

3. The estimators that use weighting to adjust for censoring require an additional sufficient overlap
condition: the probability of not being censored must be sufficiently greater than O or else the
weights that adjust for censoring get too large.
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While the estimators that use WAC instead of LAC require a few more assumptions, some researchers
are more comfortable modeling the treatment and censoring than the outcome. In this case, the IPW
or WAC-IPWRA estimator would be the estimator of choice.

See Specification diagnostics and tests below for information about testing these assumptions.

Assumptions for the ATET

We noted in Average treatment effect on the treated that the ATET is sometimes more interesting than
the ATE. We can also estimate the ATET under less restrictive versions of the conditional independence
assumption and the sufficient overlap assumption than those required for the ATE.

While ATE estimation requires that the potential outcomes for both the treated and the not treated
be conditionally independent of treatment assignment, ATET estimation requires that only the not
treated potential outcome be conditionally independent of treatment assignment.

This weaker version of conditional independence allows the gains from the treatment to be related
to treatment assignment, after conditioning on the covariates. We can estimate the ATET, but not the
ATE, if some unobserved factor increases (or decreases) the likelihood of assignment to the treatment,
increases (or decreases) the time to event in the treatment group, and has no effect on the time to
event when not in the treatment group.

For example, suppose that smoking is an acquired taste and that individuals who acquire the taste
for smoking more easily are less adversely affected by smoking and otherwise similar to everyone
else when not smoking. Taste for smoking is unobservable, and our data have no measure of this
variable. In this case, we could estimate the ATET but not the ATE.

The weaker version of the sufficient overlap assumption only requires that each individual in the
treated subpopulation have a positive probability of not getting treated. In contrast, ATE estimation
requires that each individual in the population have a positive probability of getting each treatment
level. In particular, we can estimate the ATET, but not the ATE, when some individuals in the population
have zero chance of getting the treatment. For example, we could estimate the ATET, but not the ATE,
if some women will never smoke for religious reasons.

Even when the conditions for ATE estimation hold, the ATE and ATET may differ. Finding that the
ATET is significantly different from the ATE does not mean that the ATE is incorrectly estimated.

See Heckman (1997) and Wooldridge (2010, 911-912) for more information about the assumptions
necessary to estimate the ATET.

Specification diagnostics and tests

After stteffects ipw and stteffects ipwra, some specification checks for the treatment-
assignment model and the overlap condition are available.

The checks for the treatment-assignment model are known as balance checks. When the covariate
distributions are invariant to the treatment level, the covariates are said to be balanced. The concept
of balanced covariates comes from the experimental literature, in which random treatment assignment
ensures that the covariates are balanced.

In observational data, the covariates are almost never balanced in the raw data. Weighting methods
can be viewed as using a treatment-assignment model to balance the covariates. If the treatment-
assignment model is well specified, the weights constructed from this model will balance the covariates.
One of the nice features of balance checks is that they do not depend on the outcome or its distribution.
This fact is especially useful for survival-time outcomes because censoring of the outcome has no effect
on the balance checks, so the balance checks implemented in tebalance work without modification.
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Conditional on the treatment-assignment model being well specified, we can use the estimated
probabilities of treatment, known as the propensity scores, to look for signs that the overlap condition
is violated. These checks depend only on the estimated treatment probabilities and are not affected
by any censoring of the outcome, so the methods implemented in teffects overlap work without
modification.

We begin examining our model by using tebalance summarize after refitting the models used
by the LAC-IPWRA estimator.
. quietly stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)
. tebalance summarize

Covariate balance summary

Raw Weighted

Number of obs = 2,000 2,000.0

Treated obs = 738 994.1

Control obs = 1,262 1,005.9

Standardized differences Variance ratio

Raw Weighted Raw Weighted

age -.3122094 -.0184574 .8547308 .9370065
exercise -.4975269 -.0458412 .4966778 .8342339
diet -.2479756 .0021802 . 7937645 1.095347
education -.4801442 -.0216366 .6015139 .978078

The weighted standardized differences are much closer to O than the raw standardized differences,
and the weighted variance ratios are much closer to 1 than the raw variance ratios. These results
indicate that the model-based treatment weights balanced the covariates; see [TE] tebalance and
[TE] tebalance summarize for details.

The diagnostics presented by tebalance summarize are not a formal test. However, we can use
tebalance overid to conduct a formal test of the hypothesis that the weights constructed from the
treatment-assignment model balanced the covariates.

. tebalance overid

Iteration O: criterion = .22681884
Iteration 1: criterion = .22692316 (backed up)
Iteration 2: criterion = .23090158
Iteration 3: criterion = .2311461
Iteration 4: criterion = .23256285
Iteration 5: criterion = .23286304
Iteration 6: criterion = .23335858
Iteration 7: criterion = .2335567
Iteration 8: criterion = .2335671
Iteration 9: criterion = .23356711

Overidentification test for covariate balance
HO: Covariates are balanced:

chi2(5) = 3.28142
Prob > chi2 = 0.6567

There is no significant evidence against the null hypothesis. The interpretation is that we do not
reject the null hypothesis that the treatment-assignment model is well specified; see [TE] tebalance
and [TE] tebalance overid for details.

Given that we do not reject the treatment-assignment model, we can use this model to look for
evidence that the overlap condition is violated. We begin by using teffects overlap.
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. teffects overlap, ptlevel(Smoker)

T T T
4 .6 8 1
Propensity score, smoke=Nonsmoker

smoke=Nonsmoker smoke=Smoker ‘

The densities of the propensity scores for the smokers and nonsmokers appear to have the same
support, indicating that there is no violation of the overlap condition. The only indicator of a possible
problem is that the support of the density for nonsmokers gets very close to 0. This problem would
affect ATE estimation but not ATET estimation, as discussed in Assumptions and trade-offs. To further
investigate, we compute and summarize the predicted propensity score by treatment level.
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. predict psl, ps tlevel(Smoker)

. summarize psl if smoke ==

Variable Obs Mean Std. Dev. Min Max
psi 1,262 .3410001 .1381673 .014819 .6161401

. summarize psl if smoke ==
Variable Obs Mean Std. Dev. Min Max
psi 738 .4168805 .1107557 .0454891 .6216282

To interpret these results, recall that ATE estimation requires that the minimum propensity score
for each treatment level be sufficiently greater than O and that the maximum propensity score for
each treatment level be sufficiently less than 1. Also recall that ATET estimation only requires that
the maximum propensity score for each treatment level be sufficiently less than 1.

For ATE estimation, only the minimum predicted propensity score for nonsmokers presents a
challenge, and 0.015 is probably not too small. For ATET estimation, neither maximum causes
concern.

For information about choosing among the stteffects estimators and their functional forms for
the different models, see Model choice under Remarks and examples in [TE] teffects intro advanced.

Multivalued treatments

stteffects can estimate treatment effects for multivalued treatments; here we provide some
examples. See [TE] teffects multivalued for an introduction to interpreting effects from multivalued
treatments.

> Example 6: Multivalued ATE estimation

We have another fictional dataset that records the time to a second heart attack among women
aged 45-55 years. In this dataset, atime is the observed time in years to the second heart attack,
and fail is the 0/1 indicator that a second heart attack was observed and recorded in atime. (When
fail is 1, atime records the time to the second attack; when fail is 0, atime records a censored
observation of the time to the second attack.)

These data also contain the age at the time of the first heart attack (age), and indices of each
woman’s exercise level (exercise), diet quality (diet), and education attainment (education) prior
to her first heart attack.

The treatment, smoking, is stored in the categorical variable smoke, which has the following value
labels. The women who never smoked are labeled as N; the women who previously smoked but quit
before their first heart attack are labeled as B; the women who previously smoked but quit after their
first heart attack are labeled as A; and the women who continued to smoke after their first heart attack
are labeled as S.
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We begin by first reading in the data and then reviewing information previously stored using

stset.

. use http://www.stata-press.com/data/r14/sheartm, clear
(Time to second heart attack (fictional))

. stset
-> stset atime, failure(fail)

failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure

10000 total observations
0 exclusions

10000 observations remaining, representing
9741 failures in single-record/single-failure data
27999.155 total analysis time at risk and under observation
at risk from t
earliest observed entry t
last observed exit t =

We continue by tabulating the treatment variable smoke.

. tabulate smoke

Smoking
level Freq. Percent Cum.
N 3,167 31.67 31.67
B 2,263 22.63 54.30
A 1,924 19.24 73.54
S 2,646 26.46 100.00
Total 10,000 100.00

0
0
17.40826

We see that 31.67% of the women never smoked, 22.63% of the women previously smoked but quit
before their first heart attack, 19.24% of the women previously smoked but quit after their first heart
attack, and 26.46% of the women continued to smoke after their first heart attack.
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We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of
age, exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 6.709e-21
Iteration 1: EE criterion = 8.284e-30

Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull

Treatment model: none
Censoring model: none

Robust
_t Coef . Std. Err. z P>z [95% Conf. Intervall
ATE
smoke
(B vs N) -.4129793 .0317 -13.03 0.000 -.47511 -.3508485
(A vs N) -1.281031 .032866 -38.98 0.000 —1.345447 -1.216614
(S vs N) -2.167359 .0338994 -63.93 0.000 -2.233801 -2.100917
POmean
smoke
N 3.745919 .0289014 129.61 0.000 3.689273 3.802565

The average time to a second heart attack is 0.41 years sooner when all the women smoked at
some point but quit before their first heart attack than when all the women never smoked. The average
time to a second heart attack is 1.28 years sooner when all the women smoked at some point but quit
after their first heart attack than when all the women never smoked. The average time to a second
heart attack is 2.17 years sooner when all the women continued to smoke after their first heart attack
than when all the women never smoked.

N
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> Example 7: Multivalued ATET estimation

In the at-risk subpopulation of women who continued to smoke, we want to estimate the effect of
continuing to smoke (S) versus quitting after the first heart attack (A). Below we estimate the ATETS
by RA, specifying A to be the control level and S to be the treatment level.

. stteffects ra (age exercise diet education) (smoke), atet control(A) tlevel(S)

failure _d: fail
analysis time _t: atime
Iteration O: EE criterion = 6.709e-21
Iteration 1: EE criterion = 6.836e-30
Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none
Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATET
smoke
(N vs A) 1.290123 .0377552 34.17 0.000 1.216125 1.364122
(B vs A) .8748349 .0239595 36.51 0.000 .8278751 .9217946
(S vs A) -.8869257 .0272301 -32.57 0.000 -.9402958 -.8335557
POmean
smoke
A 2.500108 .0217833 114.77 0.000 2.457413 2.542802

The parameter (S vs A) is the one of interest. The estimate implies that the average time to a
second heart attack among women who continue to smoke is 0.89 years sooner when they all continue
to smoke than when they all quit smoking after their first heart attack.

d
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stteffects ipw — Survival-time inverse-probability weighting

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ipw estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with
random time to censoring. Estimation is by inverse-probability weighting (IPW). IPW estimators use
weighted averages of the observed outcome. The estimated weights correct for missing data on the
potential outcomes and for censored survival times. stteffects ipw offers several choices for the
functional forms of the treatment model and the time-to-censoring model. Binary and multivalued
treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start

Specify time as observed failure time and fail as failure indicator
stset time, failure(fail)

ATE of binary treat2 on time by IPW using a logistic model of treat2 on x and w and using x
and w in a Weibull model for the censoring time

stteffects ipw (treat2 x w) (x w)

As above, but estimate the ATET
stteffects ipw (treat2 x w) (x w), atet

ATE of treat2 on time by IPW using a probit model of treat2 on x and w and using x and w in a
gamma model for the censoring time

stteffects ipw (treat2 x w, probit) (x w, gamma)

ATE for treatment levels 2 and 3 of three-valued treatment treat3
stteffects ipw (treat3d x w) (x w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ipw (treat3 x w) (x w), control("MyControl")

Menu

Statistics > Treatment effects > Survival outcomes > Inverse-probability weighting (IPW)

89
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Syntax
stteffects ipw (tvar tmvarlist [, tm()pti()nsb (cmvarlist [, cmoptions])

[if] [m} [, stat options}

fvar must contain integer values representing the treatment levels.
tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

tmoptions Description
Model
logit logistic treatment model; the default
probit probit treatment model
hetprobit (varlist) heteroskedastic probit treatment model
noconstant suppress constant from treatment model
cmoptions Description
Model
weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary (avarlist [ s noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from censoring model
stat Description
Stat
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description
SE/Robust
vce (veetype) vcetype may be robust, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
aequations display auxiliary-equation results
noshow do not show st setting information
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize_options control the maximization process; seldom used
iterinit (#) specify starting-value iterations; seldom used

Advanced
pstolerance (#) set the tolerance for the overlap assumption
osample (newvar) identify observations that violate the overlap assumption
control (# | label) specify the level of tvar that is the control
tlevel (#] label) specify the level of tvar that is the treatment
coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.

tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in
[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

ancillary (avarlist [ , noconstant ] ) specifies the variables used to model the ancillary parameter.
By default, the ancillary parameter does not depend on covariates. Specifying ancillary (avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] estimation options.

Stat

stat is one of three statistics: ate, atet, or pomeans. ate is the default.
ate specifies that the average treatment effect be estimated.
atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipw from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate (#), [nﬁo]lﬁog, and from(init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of
matname [, skip copy]
# [, #], copy

iterinit (#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

Advanced

pstolerance (#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(le-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample (newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control (#|label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.

tlevel (#|label) specifies the level of rvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. t1level () may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

IPW estimators use contrasts of weighted averages of observed outcomes to estimate treatment
effects. The estimated weights correct for data that are missing because each subject is only observed
after receiving one of the possible treatment levels and because some survival-time outcomes are
censored.

The IPW estimators implemented in stteffects ipw use a three-step approach to estimating the
ATE:

1. Estimate the parameters of a treatment-assignment model, and compute the component of the
estimated weights that accounts for data missing because each subject is only observed after
receiving one of the possible treatment levels.

2. Estimate the parameters of a time-to-censoring model, and compute the component of the
estimated weights that accounts for data lost to censoring.

3. Use the estimated weights to compute weighted averages of the outcomes for each treatment
level.

To estimate the ATET, we use different weights in step 2.

The time to censoring must be random to use stteffects ipw because the model in step 2
is not well defined if the time to censoring is fixed. See [TE] stteffects intro for more details. For
information about estimators that accommodate a fixed time to censoring, see [TE] stteffects ra and
[TE] stteffects ipwra.

Here we note only a few entry points to the vast literature on IPW estimators. Hirano, Imbens,
and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009), Rosenbaum and Ru-
bin (1983), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron and Trivedi (2005,
chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent
general introductions to estimating ATEs and to the IPW estimators in particular.

Like streg and other survival-time commands, stteffects ipw uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ipw
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

> Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45-55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the O0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ipw to estimate the ATE. We model treatment assignment using the default
logit model with covariates on age, exercise, and education. We model the time to censoring
using the default Weibull model with covariates on age, exercise, diet, and education.
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. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipw (smoke age exercise education) (age exercise diet education)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.042e-18
Iteration 1: EE criterion = 5.191e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: logit

Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983
POmean
smoke
Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

When every woman smoked in the population of women aged 45-55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 2.22 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.24 years.

The ratio of the ATE to the control-level POM measures the importance of the effect. In this example,
when every woman smoked, the average time to a second heart attack falls by an estimated 52%
relative to the case when none of them smoked. See example 3 in [TE] stteffects ra for an example
that uses nlcom to compute a point estimate and a confidence interval for this ratio.

4

> Example 2: Different treatment and censoring models

Instead of a logit model for the treatment assignment, we could have used a probit or a heteroskedastic
probit model. Instead of a Weibull model for the censoring time, we could have used an exponential,
a gamma, or a lognormal model. For a quick comparison, we now estimate the ATE using a probit
model for the treatment assignment and using a gamma model for the censoring time.
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. stteffects ipw (smoke age exercise education, probit)
> (age exercise diet education, gamma)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 3.534e-15
Iteration 1: EE criterion = 5.263e-27
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
Censoring model: gamma
Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -2.646808 .8368254 -3.16 0.002 -4.286956 -1.006661
POmean
smoke
Nonsmoker 4.702301 . 7404567 6.35 0.000 3.251033 6.15357

The estimated ATE of —2.65 and control-level POM of 4.70 are similar to the values of —2.22 and

4.24 reported in example 1.
d

> Example 3: Estimating the ATET

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs under Remarks and examples in [TE] stteffects intro.
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. stteffects ipw (smoke age exercise education) (age exercise diet education),
> atet

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.042e-18
Iteration 1: EE criterion = 1.248e-32

Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights

Outcome model : weighted mean

Treatment model: logit

Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATET
smoke
(Smoker
vs
Nonsmoker) -1.846136 .5076872 -3.64 0.000 -2.841185 -.8510877
POmean
smoke
Nonsmoker 3.543788 .474395 T.47 0.000 2.613991 4.473585

When every woman in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.85 years less than when no women in the subpopulation smoked. The estimated
average time to a second heart attack when no women in the subpopulation smoked is 3.54 years.

N

Stored results

stteffects ipw stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k_eq) number of equations in e (b)
e(k_levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, O otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) _d
e(depvar) —t
e(tvar) name of treatment variable
e(subcmd) ipw
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. Err.
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e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

Methods and formulas

The methods and formulas for the IPW estimators implemented in stteffects ipw are given in
Methods and formulas of [TE] stteffects ipwra.
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Also see
[TE] stteffects postestimation — Postestimation tools for stteffects
[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
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stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ipwra estimates the average treatment effect (ATE), the average treatment effect on
the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data
by inverse-probability-weighted regression adjustment (IPWRA). IPWRA estimators use missingness-
adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts
of these averages estimate the treatment effects. stteffects ipwra offers several choices for the
functional forms of the outcome model, of the treatment model, and of the optional time-to-censoring
model. Binary and multivalued treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start

Specify time as observed failure time and fail as failure indicator
stset time, failure(fail)

ATE of binary treatment treat2 estimated by IPWRA using a Weibull model for time on x1 and x2
and a logistic model for treat2 on x1 and w

stteffects ipwra (x1 x2) (treat2 x1 w)

As above, but estimate the ATET
stteffects ipwra (x1 x2) (treat2 x1 w), atet

Gamma model for time and probit model for treat2
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3
stteffects ipwra (x1 x2) (treat3 x1 w)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ipwra (x1 x2) (treat3 x1 w), control("MyControl")

ATE of treat?2 estimated by IPWRA using a Weibull model for time on x1 and x2, a logistic model
for treat2 on x1 and w, and a Weibull model for the time to censoring with covariates x1 and x2

stteffects ipwra (x1 x2) (treat2 x1 w) (x1 x2)

Gamma model for time, probit model for treat2, and gamma model for censoring
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit) (x1 x2, gamma)

99
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Menu

Statistics > Treatment effects > Survival outcomes > Regression adjustment with IPW

Syntax

stteffects ipwra (omvarlist [, ()moptions]) (tvar tmvarlist [, tmoptions])

[(cmvarlist [, cm()pti()ns])] [lf] [zn} [, stat options}

omvarlist specifies the variables that predict the survival-time variable in the outcome model.
tvar must contain integer values representing the treatment levels.
tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description
Model
weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary (avarlist [ , noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from outcome model
tmoptions Description
Model
logit logistic treatment model; the default
probit probit treatment model
hetprobit (varlist) heteroskedastic probit treatment model
noconstant suppress constant from treatment model
cmoptions Description
Model
weibull ‘Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal

ancillary (avarlist [ s noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from censoring model
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stat Description
Stat
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
options Description
SE/Robust
vce (veetype) vecetype may be robust, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1evel (95)
aequations display auxiliary-equation results
noshow do not show st setting information
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
iterinit (#) specify starting-value iterations; seldom used

Advanced
pstolerance (#) set the tolerance for the overlap assumption
osample (newvar) identify observations that violate the overlap assumption
control (# | label) specify the level of tvar that is the control
tlevel (# | label) specify the level of tvar that is the treatment
coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.

omvarlist, tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in
[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

ancillary (avarlist [ , noconstant ] ) specifies the variables used to model the ancillary parameter.
By default, the ancillary parameter does not depend on covariates. Specifying ancillary (avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the
censoring variable, or for both. If ancillary() is specified for both, the varlist used for each
model may be different.
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noconstant; see [R] estimation options.

Stat

stat is one of three statistics: ate, atet, or pomeans. ate is the default.
ate specifies that the average treatment effect be estimated.
atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipwra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate (#), [nﬁo]lﬁog, and from(init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of
matname [, skip copy]
# [, #], copy

iterinit (#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

Advanced

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(le-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample (newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control (#|label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel () may not specify the same treatment level.
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tlevel (#|label) specifies the level of fvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel () may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

IPWRA estimators use estimated weights to obtain missingness-adjusted outcome-regression pa-
rameters. The missingness-adjusted outcome-regression parameters are used to compute averages of
treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

The estimated weights account for the missing potential outcome and, optionally, for data lost to
censoring. The weights are estimated using a treatment-assignment model and, optionally, a model
for the censoring time. A term in the estimator for the outcome-regression parameters accounts for
data lost to censoring when estimated weights are not used.

There are two versions of the IPWRA estimator because there are two methods of accounting for
the data lost to censoring.

1. IPWRA estimators that adjust for censoring by including a term in the likelihood function for
the outcome-model parameters are known as likelihood-adjusted-censoring IPWRA (LAC-IPWRA)
estimators.

2. TPWRA estimators that adjust for censoring by weighting the likelihood function for the outcome-
model parameters by estimated inverse-probability-of-censoring weights are known as weighted-
adjusted-censoring IPWRA (WAC-IPWRA) estimators.

The LAC-IPWRA estimators require fewer assumptions than the WAC-IPWRA estimators. Outlining
the steps performed by LAC-IPWRA and WAC-IPWRA estimators allows us to be more specific about
the trade-offs between the estimators.

LAC-IPWRA estimators use a three-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights are used
to weight the maximum likelihood estimator. A term in the likelihood function adjusts for
right-censored survival times.

3. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATEs. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETS.
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WAC-IPWRA estimators use a four-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-
treatment weights.

2. Estimate the parameters of a time-to-censoring model and compute inverse-probability-of-
censoring weights.

3. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted
maximum likelihood estimators. Estimated inverse-probability-of-treatment weights and inverse-
probability-of-censoring weights are used to weight the maximum likelihood estimator. The
inverse-probability-of-censoring weights account for right-censored survival times.

4. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATES. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETSs.

The WAC-IPWRA estimators require that the censoring time be random and that the time-to-
censoring model be well specified. The implemented WAC-IPWRA estimators also require that the
time-to-censoring process not vary by treatment level. The LAC-IPWRA estimators do not require these
extra assumptions because they use a likelihood term instead of weights to adjust for the data lost to
censoring.

Here we note only a few entry points to the vast literature on estimators that combine IPW and RA
methods. Hirano, Imbens, and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009),
Rosenbaum and Rubin (1983), Robins and Rotnitzky (1995, 2006), Robins, Rotnitzky, and Zhao (1995),
Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and
Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to
the IPWRA estimators in particular.

Like streg and other survival-time commands, stteffects ipwra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ipwra
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

> Example 1: Estimating the ATE by LAC-IPWRA

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45-55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ipwra to estimate the ATE. We model the mean survival time using the
default Weibull model, controlling for age, exercise, diet, and education. We model treatment
assignment using the default logit model with covariates age, exercise, and education. We do
not specify a time-to-censoring model so that we obtain the LAC estimator.
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. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects ipwra (age exercise diet education) (smoke age exercise education)

failure _d: fail

analysis time _t: atime
Iteration O: EE criterion = 2.432e-16

Iteration 1: EE criterion = 1.021e-29
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment

Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -1.591874 .4837332 -3.29 0.001 -2.539973 -.643774
POmean
smoke
Nonsmoker 4.214263 .2598689 16.22 0.000 3.704929 4.723597

When every woman smoked in the population of women aged 45-55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 1.59 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.21 years.

The ratio of the ATE to the control-level potential-outcome mean (POM) measures the importance
of the effect. In this example, when all women smoked, the time to the second heart attack falls by
an estimated 38% relative to the case in which no women smoked. See example 3 in [TE] stteffects
ra for an example that uses nlcom to compute a point estimate and a confidence interval for this
ratio.

d
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> Example 2: Different outcome and treatment models

Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma,
or a lognormal model. Instead of a logit model for the treatment assignment, we could have used a
probit or a heteroskedastic probit model. This example uses a gamma model for the outcome and a
probit model for the treatment assignment.

. stteffects ipwra (age exercise diet education, gamma)
> (smoke age exercise education, probit)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.644e-13
Iteration 1: EE criterion = 2.153e-23

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment

Outcome model : gamma

Treatment model: probit

Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -1.387303 .4786032 -2.90 0.004 -2.325348 -.4492583
POmean
smoke
Nonsmoker 3.97986 .2258474 17.62 0.000 3.537207 4.422512

The estimated ATE of —1.39 and control-level POM of 3.98 are similar to the values of —1.59 and
4.21 that we obtained in example 1.

N



stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment 107

> Example 3: Estimating the ATE by WAC-IPWRA

Rather than using LAC, we may want to specify a time-to-censoring model. We now use stteffects
ipwra to estimate the ATE by WAC-IPWRA. We use the same specification of the outcome and treatment
models that we used in example 1. However, now we specify a time-to-censoring model, using the
default Weibull model with covariates age, exercise, diet, and education.

. stteffects ipwra (age exercise diet education) (smoke age exercise education)
> (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration O: EE criterion = 1.217e-17
Iteration 1: EE criterion = 9.176e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment

Outcome model : Weibull

Treatment model: logit

Censoring model: Weibull

Robust
_t Coef . Std. Err. z P>z [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -2.285057 .7318456 -3.12 0.002 -3.719448 -.8506656
POmean
smoke
Nonsmoker 4.385841 .6427521 6.82 0.000 3.12607 5.645612

The estimated ATE of —2.29 differs from the ATE of —1.59 estimated by LAC-IPWRA, but the
estimates of the control-level POM are similar between the two models: 4.39 for the WAC compared
with 4.21 for the LAC.

d



108 stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

> Example 4: Estimating the ATET by LAC-IPWRA

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and
trade-offs under Remarks and examples in [TE] stteffects intro.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise education), atet

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.671e-18
Iteration 1: EE criterion = 1.638e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment

Outcome model : Weibull

Treatment model: logit

Censoring model: none

Robust
_t Coef . Std. Err. z P>z [95% Conf. Intervall
ATET
smoke
(Smoker
vs
Nonsmoker) -1.775107 .3437506 -5.16 0.000 -2.448846 -1.101368
POmean
smoke
Nonsmoker 4.062424 2779877 14.61 0.000 3.517578 4.60727

When all women in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.78 years less than when no women in the subpopulation of interest smoked. If no
women in the subpopulation of interest smoked, the average time to a second heart attack is 4.06
years.

4

Stored results

stteffects ipwra stores the following in e():

Scalars
e(N) number of observations
e(n)) number of observations for treatment level j
e(k_eq) number of equations in e(b)
e(k_levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated
e(control) level of treatment variable defined as control
e(converged) 1 if converged, O otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) _d
e(depvar) _t
e(tvar) name of treatment variable

e(subcmd) ipwra
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e (omodel)
e(tmodel)
e(cmodel)
e(stat)
e(wtype)

e (wexp)
e(title)
e(tlevels)
e(vce)
e(vcetype)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

Matrices

e(b)
e(V)

Functions

e(sample)

outcome model: weibull, exponential, gamma, or lognormal
treatment model: logit, probit, or hetprobit

censoring model: weibull, exponential, gamma, or lognormal (if specified)
statistic estimated: ate, atet, or pomeans

weight type

weight expression

title in estimation output

levels of treatment variable

veetype specified in vce ()

title used to label Std. Err.

bV

program used to implement estat

program used to implement predict

predictions disallowed by margins

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample

Methods and formulas

Methods and formulas are presented under the following headings:

Introduction

Regression-adjusted estimators

Weighted-adjusted-censoring assumptions

Weighted regression-adjusted estimators

Inverse-probability-weighted estimators
Uncensored data

Inverse-probability-weighted regression-adjustment estimators
Weighted-adjusted-censoring IPWRA
Likelihood-adjusted-censoring IPWRA

Functional-form details

Introduction

This section presents the methods and formulas used by the estimators implemented in stteffects
ra, stteffects wra, stteffects ipw, and stteffects ipwra. This section assumes that you are
familiar with the concepts and intuition from the estimators discussed in [TE] teffects intro advanced.

Each of the estimators implemented in stteffects has a multistep logic but is implemented
as one step by simultaneously solving the estimating equations that define each step. This one-step
estimating-equation approach provides consistent point estimates and a consistent variance—covariance
of the estimator (VCE); see Newey (1984), Wooldridge (2010), and Drukker (2014).

Survival-time treatment-effects estimators handle two types of missing data. First, only one of the
potential outcomes is observed, as is standard in causal inference. Second, the potential outcome for
the received treatment may be censored. The data missing because of censoring may be handled by
an outcome model, a censoring model, or both, just like the data missing due to observing only one
potential outcome.
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Q Technical note

Delayed entry would be a third type of missing data. The left-truncation process caused by delayed
entry would also need to be modeled to estimate ATE parameters. The estimators implement in
stteffects do not allow for delayed entry because they do not have a method for modeling how
the left-truncation process selects the sample, conditional on the covariates.

a

All the implemented estimators are combinations of regression-adjustment (RA) and inverse-
probability-weighted (IPW) techniques. RA estimators use an outcome model to account for the
missing potential outcome and for censoring. IPW estimators use models for treatment assignment
and censoring to construct weights that account for the missing potential outcome and for censoring.

The remainder of this section provides technical details about how the estimators in stteffects
were implemented. We provide details only for the two-treatment-level case to simplify the formulas.
We provide outlines for how the extensions to the multiple-treatment-level case were implemented.

Regression-adjusted estimators

We begin with the RA estimators implemented in stteffects ra. The RA estimators have the
following logic:

RA1. For each treatment level 7 € {0, 1}, estimate by maximum likelihood (ML) the parameters 3,
of a parametric model for the survival-time outcome ¢ in which F'(¢|x, 7, 3,) is the distribution

of ¢ conditional on covariates x and treatment level 7. Denote the estimates 3, by 8, ;.

RA2. Use the estimated 3,, , and the functional form implied by F'(|x, 7,3, ) to estimate the mean
survival time, conditional on x and treatment level 7, for each sample observation, denoted by
E(t;|x;, T, /ara,7—>' Conditional independence of the treatment and the survival-time potential

outcomes ensures that E(t|x,7,3,) = E(t,;|x,3,), where ¢, is the potential survival-time
outcome corresponding to treatment level 7. Under correct model specification, sample averages

of E(tl ‘Xiv T, IB
RA3. A contrast of the estimated POMs estimates the ATE.

1a,r) consistently estimate the POM for treatment level 7, denoted by POM;.

If estimating an ATET, step RA2 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ith observation to the log likelihood that is maximized in step RA1 is

Lya(tisXi, T, Bea ») = @i == 7) | (1 — ci) In{ f (ts]%s, 7, Ba )}

A (1)

+ ¢ ln{l - F(ti|xi7 T, /Bra,‘r)}:|
where to; is the observation-level weight, c; is the 0/1 indicator for whether the survival-time
observation on person ¢ was censored, and f(¢;|x;, 7,3

bution F'(t;|x;, T, ,Braﬁ). The first term inside the curly braces in (1) accounts for the noncensored
observations, and the second term inside the curly braces accounts for the censored observations.

1a,7) is the density corresponding to distri-
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The RA estimators for the POMs simultaneously solve estimating equations (2a) through (2d) for
Bra,O’ ﬁra,l’ POMrd 0, and POMra 1.

N
1N salti, xi, 0, Brag, F) = 0 (2a)
=1
N o~
1N sealtixi 1, Bra 1, F) =0 (2b)
i=1
N A~
NS {E(ti\xi,T = 0,Br00) — @mo} =0 (2¢)
=1
N A~
NS {E(ti\xi,r =1,Br1) — mm} ~0 (2d)

=1

where

OLya(ti,x; 7076ra,0)
9B.a0

for B,, 0 based on survival-time model F,

Sra(ti,; Xi,0, B0, F) = is the vector of score equations from the ML estimator

OLya(t; 7x7171w/6\ra,1)
0B,..1

for B,,, based on survival-time model F,

Sra(ti, Xi, 1, Bran, F) = is the vector of score equations from the ML estimator

E(ti|xi, 7 = 0, By ) is the predicted mean survival time assuming treatment level O for observation
¢ conditional on x;, and

E(ti|x;, 7 = 1, Bya 1) is the predicted mean survival time assuming treatment level 1 for observation
¢ conditional on x;.

The ATE is estimated by replacing (2d) with
1/NZwZ{ (tilxim =1, 5M71)—mrayo—ﬁra} =0 (3)
and the ATET is estimated by replacing (2c) and (3) with
N
1/N1 sz(Tz == 1) {E(t1|x1, T = OVﬁra,O) — POMra,cot,O} =0
1/Z\/vl sz Ty == 1 {E(tilxi77 = lyl/éraJ) - 1:Y)K/[ra,cot,O - AﬁﬂETra} =0

where Ni = Zfil(ti == 1) and ﬁflm,cow is the estimated conditional-on-treatment POM for
treatment level 0.
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Asymptotic standard errors for estimating equation estimators, also known as exactly identified
generalized method of moments estimators, are standard in the literature; see Newey (1984), Newey
and McFadden (1994), Tsiatis (2006), and Wooldridge (2010). These standard errors always have a
robust structure and have been generalized to cluster—robust standard errors (see Wooldridge [2010]).

The score equations and the functional form for the predicted mean survival time depend on the
model for survival-time outcome F'. We provide these details below, under Functional-form details.

Weighted-adjusted-censoring assumptions

All estimators that permit you to model the time to censoring are subject to three assumptions:

1. The censoring time must be random.
2. The censoring time must be from a known distribution.

3. The distribution of the censoring time cannot vary by treatment level.

We call these three requirements the WAC assumptions. If the WAC assumptions are violated, you
can use either an RA estimator or the LAC version of the IPWRA estimator.

Q Technical note

We now describe how the observed survival-time outcome ¢ is generated from the random censoring
time t., the received treatment 7, and the potential-outcome survival times ¢y and ¢; under the WAC
assumptions. First, each potential outcome is either censored or not censored.

to =te(to > to) +to{l — (to > tc)}

ty =te(t1 > te) +t1{1 — (t1 > tc)}

Under the WAC assumptions, . is a random variable from a known distribution, and ¢. does not vary
by treatment level.

Next, the received treatment 7 € {0, 1} determines which, possibly censored, potential outcome
is observed. _ _
t= (177’)t0+7‘t1

The 0/1 indicator for whether the observed ¢ was censored, denoted by c, is given by

c=(1=7)(to > te) +7(t1 > t.)

Weighted regression-adjusted estimators

As is standard in the survival literature, the RA estimators account for censored survival times by
adding a term to the log-likelihood function for censored observations [see (1)]. In contrast, weighted
regression-adjustment (WRA) estimators use weights to account for censored observations and are
subject to the WAC assumptions.

Wooldridge (2007) and Lin (2000) derived estimators for the regression parameters that maximize
a weighted objective function of the uncensored observations. Each observation-level weight is the
inverse of the probability of not being censored. Like the RA estimators, the WRA estimators use
averages of the predicted mean survival times to estimate treatment-effect parameters.
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The WRA estimators have the following logic.

WRAL. Estimate by ML the parameters - of a parametric survival-time model for the time to censoring
tc, in which F,(t.|w,~) is the distribution of ¢. conditional on covariates w. Note that the
censoring process does not vary by treatment level and that we only observe t. when the
observed potential outcome was censored. Denote the estimates of v by 7.

WRA2. For each treatment level 7 € {0, 1}, estimate by weighted maximum likelihood (WML) the
3, parameters of a parametric survival-time model, denoted by F'(t|x, T, 3,), where t is the
survival-time outcome and x are the covariates. The weights are the inverse of the estimated
probabilities of not being censored, 1/{1 — F.(t.|w,7)}, and only the uncensored observations

are used. Denote the estimates of 3 by 3

wra,T "

WRA3. Use the estimated ﬁwraﬂ. and the functional form implied by F'(¢|x, 7, 3,) to estimate the mean
survival time, conditional on x and treatment level 7, for each sample observation, denoted by
E(t:|xs, T, Byra,-). Conditional independence of the treatment and the survival-time potential

outcomes ensures that E(t|x,7,3,) = E(t,;|x,3,), where ¢, is the potential survival-time
outcome corresponding to treatment level 7. Under correct model specification, sample averages

of E(tZ ‘Xi7 T, ﬁ
WRA4. A contrast of the estimated POMs estimates the ATE.

Wra’T) consistently estimate the POM for treatment level 7, denoted by POM, .

If estimating an ATET, step WRA3 is modified to use only the treated observations when estimating
the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the ¢th observation to the log likelihood that is maximized in step WRAL is
Lewra(ti, wi,y) = i [ci In{ fe(tilwi, A) } + (1 — ;) In{1 — Fe(t;|wi,7)}] (4)

where to; is the observation-level weight, c; is the 0/1 indicator for whether the survival-time
observation on person ¢ was censored, t; is the observed failure time, and f.(¢;|w;,7) is the density
corresponding to conditional time-to-censoring distribution F(t;|w;,¥). When ¢; = 1, t; is the time
to censoring. When c¢; = 0, the censoring time is not observed; we only know that it is greater
than the observed t;. The first term accounts for the observations in which ¢; is observed to be the
censoring time, and the second term accounts for the observations in which the censoring time is
greater than the observed t;.

The contribution of the ¢th observation to the log likelihood that is maximized in step WRA2 is

(1 —Ci)
{1 = Fe(ti|wi, )}

ln{f<ti‘xi77—7 Bwra,r)} (5)

Lwra(ti7 Xy T, Bwra,q—) = wi(Ti J— ,7_)

where f(ti|X;, T, Byya,-) is the density corresponding to distribution F(t;|X;, T, Byya - ). Equation
(5) does not contain a term that adjusts for censoring; see (1) for a comparison. Rather, it uses
inverse-probability weights to account for both the censored and the uncensored observations.

The WRA estimators for the POMs simultaneously solve estimating equations (6a) through (6e) for

~

Y ﬁwra,o’ /BwraJs POera,Oa and POera,l-

N
1/NZSwra(ti,Wi7’77 Fc) =0 (63')
i=1
N
1/stwra(tiaxi; Ovﬁwra,m F) =0 (6b)

i=1
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N
1/stwra(tiaxia 1yz§wra,1aF) =0 (6C)
=1
N A~ o~
NS {E(ti|xi,7 = 0, Byrao) — mwm,o} =0 (6d)
=1
N A~
NS @ {E(ti|xi,7 =1, Buras) — mwml} —0 (6¢)
i=1

where

~ AL wra i, wi, Y
Swra (tia Wi, %, FC) = 8(/’;’ 2

4 based on survival-time model F,,

is the vector of score equations from the ML estimator for

S OL(t;,xi,0,0,,, . .
swra(ti,xho,ﬁwmo,F ) = (*a,/éﬂiﬂ) is the vector of score equations from the WML
wra,0

estimator for 8,, o based on survival-time model F',

OL(ti,xi,1,8,,..1)
B
1 based on survival-time model F’,

Swra(tis Xi, 1, Byra1, ) = is the vector of score equations from the WML

estimator for 3

wra,

E(ti|x;,7 = 0,8ya0) is the predicted mean survival time assuming treatment level O for
observation ¢ conditional on x;, and

E(ti|xi,7 = 1,Ba,1) is the predicted mean survival time assuming treatment level 1 for
observation ¢ conditional on Xx;.

The observation-level scores Syra(t;, X, O?ﬁwra,@? F) and Sy (ti, x4, 1, Bwra,l? F) also depend on
¢i, Wi, 7, and F, but we ignored this dependence to simplify the notation.

The ATE is estimated by replacing (6e) with

N
N = {E(mxi,f =1, Byra1) — POMyra0 — A’T\Em} =0 (7)
i=1

and the ATET is estimated by replacing (6e) and (7) with
N ~
1/N1 Z wi(n == 1) {E(ti|Xi, T = 0, ﬂwra,o) — POera,cot,O} =0
i=1
N
1/Ny Z wi(r; == 1) {E(ti|xi, 7T =1,Byra.1) — POMyra,cot,0 — ATETww} =0
i=1

where ﬁ/[wra’como is the estimated conditional-on-treatment POM.
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Inverse-probability-weighted estimators

IPW estimators are weighted averages of the observed outcome. The weights correct for missing
data due to unobserved potential outcomes and censoring. Each weight is the inverse of the probability
that a given value is observed. Observed values that were not likely to be observed have higher weights.

When the outcome variable is never censored, the missing data is the unobserved potential outcome
and an observation’s weight is the inverse of a treatment probability. When the outcome may be
censored, the censoring is an additional source of missing data. In this case, an observation’s weight
is the inverse of the joint probability that an observation is uncensored and has a particular treatment
level.

To define this joint probability, the censoring time must be random. In practice, we make the WAC
assumptions.

As is standard in the survival-time literature, we assume that the censoring-time process is
independent of treatment assignment after conditioning on the covariates. This conditional independence
assumption implies that the probability that observation ¢ receives treatment level 1 and is not censored

is the product of the probability that 7 gets treatment level 1 and the probability that % is not censored
at time t;, which we denote by

where

p(2;, ) is the modeled probability that 7 gets treatment level 1, conditional on covariates z; with
parameters o, and

F.(t;|w;,~) is the survival-time model for the censoring time, conditional on covariates w; with
parameters 7, and evaluated at time ¢,.

Bai, Tsiatis, and O’Brien (2013) formally derive these weights to control jointly for the missing
potential outcome and censoring.

The 1PW estimators have the following logic.

1PW1. Estimate by ML the parameters « of a parametric survival-time model for the time to censoring,
in which F(t.|w,~) is the distribution of censoring time, conditional on covariates w. Denote
the estimates of ~ by ~.

1pw2. Estimate by ML the parameters o of a parametric model for the probability of treatment model
p(2z;, o). Denote the estimates of a by &.

1PW3. Use the 7 estimated in IPW1 and the & estimated in IPW2 to construct inverse-probability weights
by (8a) for treatment level 1 and by (8b) for treatment level 0.

[p(zi, ){1 — Fe(t:[wi, 7)}]

(1i == 0)(c;i ==0)

{1 = pl(zi; @) {1 = Fe(tilwi, 7)}]

(8a)

Wil =

wi}() = (Sb)

1IPW4. Use the estimated weights to estimate each POM, by a weighted average of the uncensored
observations on the observed potential outcome.
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The contribution of the ith observation to the log likelihood that is maximized in step IPW1 is
Lejipw(ti, Wi, ¥) = @i [e; In{ fe(tilwi, 7))} + (1 — ¢;) In{1 — Fe(t:[wi, 7)}]

where the definitions and intuition are as described after (4).

The contribution of the :th observation to the log likelihood that is maximized in step IPW2 is
Ly,ipw (71,24, @) = @; [(1i == 1) In{p(z;, @)} + {1 — (1, == 1)} In{1 — p(z;, @) }]

where p(z;, &) is the model for the probability that 7 gets treatment level 1.

The 1IPW estimators for the POMs simultaneously solve estimating equations (9a) through (9d) for
v, @, POMipy 0, and POMipy 1.

N
1/stipw(tiawia;;a FC) =0 (98')
=1
N
I/stipw(’rivziaavp) =0 (9b)
=1
N
1/NZwiwi,0 (ti — P/OK/[ipwyo) =0 (90)
=1
N
1/NZwiwi,1 (ti — POMipWJ) =0 (9(1)
=1

where

~ OLc ipw ti,wi, Y
Sipw (tla Wi, 7, FC) = £ 8(3 el

4 based on survival-time model F,, and

is the vector of score equations from the ML estimator for

~ ALy ipw (71,2:,Q0) : : ~
sipw(n, Zi, Q,p) = OLyp.ipw (7i,2:,0) is the vector of score equations from the ML estimator for o

based on probability model p.

The literature on IPW estimators discusses using normalized versus unnormalized weights, with
normalized weights doing better in simulation studies; see Busso, DiNardo, and McCrary (2014) for
example. The way that weights enter moment equations (9¢) and (9d) implies that they are normalized,
because the scale of the weights does not affect the estimates.

The estimated ATE is computed as

POMijpw,1 — POMjpw,0 = ATEjpw

The estimated ATET uses weights

(i ==1)(c; ==0)

ot = [T Foltlwi )] e

for treatment level 1 and

p(zi, @) (r; == 0)(c; ==0)

ot = T = pla, @)} {1 — Foltalwi, )] "
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for treatment level 0, and replaces (9¢) and (9d) with

N

1/Nq Zwiwi,cot,o (ti — POMipwcot,0) = 0 (11a)
i=1
N

1/N1 Zwiwi,cot,l (tz - POMipw,cot,l) =0 (11b)
i=1

and then computes
POMipw,cot,l - POMipw,cot,O = ATETipw

These IPW estimators can be viewed as weighted IPW estimators and are thus related to those in
Hirano, Imbens, and Ridder (2003).

Uncensored data

As mentioned, when the outcome variable is never censored, the missing data is the unobserved
potential outcome and an observation’s weight is the inverse of a treatment probability. In the never-
censored case, the IPW estimators are identical to those implemented in teffects ipw; see IPW
estimators under Methods and formulas in [TE] teffects aipw.

stteffects ipw computes the estimator for never-censored data when a censoring model is
not specified and there are no censored observations in the sample. In the never-censored case, the
following changes are made to the IPW estimator for the POMs and the ATE.

1. Step IPW1 is not performed.

2. The weights in (8a) and (8b) for the POMs and the ATE are replaced with (12a) for treatment
level 1 and (12b) for treatment level O.

(i==1)

@3 (12a)

Wi1 =

3

- (m==0)
S e (12b)

3. Only moment conditions (9b), (9¢c), and (9d) are used.

The following changes also are made to the IPW estimator for the ATET.

1. Step IPW1 is not performed.

2. The weights in (10a) and (10b) are replaced with (13a) for treatment level 1 and (13b) for
treatment level 0.

Wi,cot,1 = (Ti == 1) (133.)

p(zia a)(Ti == O)

Wi,cot,0 = = 13b
W= T @ a) (136)

3. Only moment conditions (9b), (11a), and (11b) are used.
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Inverse-probability-weighted regression-adjustment estimators

IPWRA estimators are averages of treatment-specific predicted conditional means that were made
using missingness-adjusted regression parameters. These estimators are Wooldridge’s IPWRA for
survival-time outcomes; see Wooldridge (2010, chap. 21) and Wooldridge (2007).

The censored observations can be handled either by weighting under the WAC assumptions to
obtain the WAC-IPWRA estimator or by adding a term to the log-likelihood function (which we call
likelihood-adjusted censoring) to obtain the LAC-IPWRA estimator. Correspondingly, there are two
versions of formulas for the IPWRA estimator.

1. When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator given in Weighted-adjusted-censoring IPWRA.

2. When a censoring model is not specified, stteffects ipwra uses the formulas for the
LAC-IPWRA given in Likelihood-adjusted-censoring IPWRA, below.

The WAC-IPWRA estimator requires that some observations be censored and that the WAC assumptions
hold; see Weighted-adjusted-censoring assumptions, above. The LAC-IPWRA estimator handles the case
in which no observations are censored and requires the weaker independent censoring assumptions,
which allows for fixed censoring times.

Weighted-adjusted-censoring IPWRA

When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA
estimator to obtain the model-based weights that account for censoring. For notational conciseness
and to reinforce its dependence on random censoring, we denote the WAC-IPWRA estimator by IPWRAR
in lists and formulas. The WAC-IPWRA estimators have the following logic.

IPWRARI. Estimate by ML the parameters < of a parametric survival-time model for the time to
censoring, in which F¢(t.|w, =) is the censoring-time distribution, conditional on covariates
w. We denote the estimates of ~ by 7.

IPWRAR?2. Estimate by ML the parameters o of a parametric model for the probability of treatment
model p(z;, ). We denote the estimates of « by a.

IPWRAR3. For each treatment level 7 € {0, 1}, estimate by WML the parameters 3, of a parametric
model for the survival-time outcome ¢, in which F(¢|x,7,3,) is the distribution of ¢
conditional on covariates x and treatment level 7. For the ATE, the weights are those in
equations (8a) and (8b). For the ATET, theAweights are those in equations (10a) and (10b).

We denote the estimates of B,y rar - bY B

IPWRAR4. Use the estimated (3, and the functional form implied by F'(t[x, 7, 3,) to estimate the
mean survival time, conditional on x and treatment level 7, for each sample observation,
denoted by E(t;|x;, T, Bipwrar,)- Conditional independence of the treatment and the
survival-time potential outcomes ensures that E(t|x, 7, 3,) = E(¢,|x,3,), where ¢, is
the potential survival-time outcome corresponding to treatment level 7. Under correct model
specification, sample averages of E(t;|x;, 7, 3
treatment level 7, denoted by POM.

ipwrar’T) consistently estimate the POM for

The contribution of the ith observation to the log likelihood that is maximized in step IPWRARI is
Lc,ipwrar(tiu Wma) = w; [Ci ln{fc(tz|wzva)} + (]- - Ci) ln{]- - Fc(tz|wu:)\/)}}

where the definitions and intuition are as described after (4).
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The contribution of the ¢th observation to the log likelihood that is maximized in step IPWRAR?2 is

Ly ipwrar(Ti, 23, @) = @i [(1i == 1) In{p(2;, @)} + {1 = (1 == 1)} In{1 — p(z;, @) }]

where p(z;, @) is the model for the probability that ¢ gets treatment level 1.

The weights and the parameters in step IPWRAR3 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAR3 is

LiPWFar (ti7 Xiy T, ﬁipwrar,ate,T) = WiWi,r ln{f(ti|xiﬂ T, IBipwrar,ate,T>}

where w; 1 is given in (8a), w;o is given in (8b), and f(%i[Xi, T, Bipwrarater) i the density

corresponding to distribution F'(¢;|x;, T, ,Bipwrarvamﬁ). Like WRA, only the uncensored observations
are used because the weights account for censoring.

The IPWRAR estimators for the POMs snnultaneously solve estimating equations (14a) through (14f)
for 5 e a ﬂlpwrar ate,0» 161pw1ar ate,0» POMIPWFaI‘ 0, and POMlpWrar 1

N
]-/stipwrar(tiawivav Fc) =0 (143)
=1
N
1/stipwrar(7-i7zi7a7p) =0 (14b)
1=1
N
1/N Z Sipwrar (t27 Xiy 07 ﬁipwrar,ate,Ov F) =0 (14(:)
1=1
N
]-/N Z Sipwrar (tzv Xi) ]-7 ﬂipwranate,l? F) = 0 (14d)
=1
N
l/N sz {E(ti|xia T = O?IBipwrar,ate,O) - POMiPWYﬂI",O} =0 (146)
=1
l/NZwv { t |X1, = laﬁipwrar,a‘ce,l) - P/(-)I\\/Iipwrar,l} =0 (14’f)
where
Sipwrar (ti, Wi, ¥, Fr.) = OLcipwrar(ti:Wi ) §o the vector of score equations from the ML estimator

%l
for 7 based on survival-time model F,,

~ L, (7,2:,00)
Sipwrar(Ti; Z;, aap) = L lpwrgzxx .

for a based on probability model p,

is the vector of score equations from the ML estimator

aLipwrar(ti7xi707ﬁipwramate,0)
aIBipwrar,ato,O
o based on survival-time model F’,

Sipwrar (tis X 0, Bipwrar ate,00 F) = is the vector of score equations

from the ML estimator for B,y ar ate,
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~
OLipwrar (ti,X; alvﬁipwrar,ate, 1)

aﬂipwrar,ate,l
from the ML estimator for B;,yar ate,1 based on survival-time model £,

Sipwrar (tis Xi, 1 Bipwrar.ate,10 F) = is the vector of score equations

E(t;|x;, 7 = 07ﬂipwmr,ate,o> is the predicted mean survival time assuming treatment level O for
observation ¢ conditional on x;, and

E(t;|x;, 7 = l,ﬂipwr?r}ate’l) is the predicted mean survival time assuming treatment level 1 for
observation ¢ conditional on x;.

The ATE is estimated by replacing (14f) with

1/]V Z Wi { t |Xu T=1 Blpwrar ate, 1) — POMipwrar,0 — ATEiPWTar} =0

For the ATET, the contribution of the ith observation to the weighted log likelihood that is maximized
in step IPWRAR3 is

Lipwrar (ti, Xi, T, ﬂipwrar,aten’) = wiwi,cot,T(Ti ==r7) ln{f(ti i, 7, IBipwrar,atet,T)}

where w; cot,1 15 given in (10a), w; cot,0 1S given in (10b), and ftilxi, Eipwmmtew) is the density
corresponding to distribution F'(¢;|x;, T, Bipwrar atet,r)-

The WAC-IPWRA estimators for the condltlonal -on-treatment POMs 51multaneously solve esti-
rnatmg equations (15a) through (15f) for /Blpwrar,atet,o’ /Blpwrar,atet,()’ 7. o, POMlpwrar cot,0, and

POMlpwrar,cot,l

N
1/stipwrar(ti7wiaaaFc) =0 (153')
i=1
N
1/stipwrar(7—i7ziaaap) =0 (15b)
=1
N
l/N Z sipwrar(ti7 Xi, 07 laipwrar,atet,ov F) =0 (15C)
=1
N
1/N Z Sipwrar(ti7xi7 1’ ﬂipwrar,atct,l? F) =0 (ISd)
i=1
1/N Z Wi { t ‘sz = 07 /@ipwrar,atet,O) - P/OT/IipWTaTVCOtyO} =0 (156)
1/NZZUZ { t ‘Xh = 13Eipwrar,atet,1) - mipwrar’cohl} =0 (ISf)
where
Sipwrar (ti, Wi, ¥, Fe) = OLecipwrar (Wi ) §¢ the vector of score equations from the ML estimator

oy
for 7 based on survival-time model F,
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ALy, ipwrar ( (7i,2:,0¢) .

slpwrar(n, Zi, Q, p) = is the vector of score equations from the ML estimator

oa
for & based on probability model p,
- OLipwrar (tisxi,0,0; o0 ) . .
Sipwrar (ti7 Xis 07ﬁipwrar7atet,07 F) = : > ﬁ‘p mnatetts s the vector of score equations
algipwrar,atet‘o
from the WML estimator for B,y ar atet,0 based on survival-time model F,

~ dL; (ti,%:,1,03. ). .
Sipwrar (ti, Xis 1 Bipwrar,atet,15 ) = —— s ———Reratetls s the vector of score equations

Igipwrar,atct,l
from the WML estimator for B;, a; atet,1 Dased on survival-time model £,

E(t;|x;, 7 =0, ﬁipwrar,atet,()) is the predicted mean survival time assuming treatment level O for
observation ¢ conditional on x;, and

E(t;|x;, T = 1>.Bipwre}r.,atet,1) is the predicted mean survival time assuming treatment level 1 for
observation ¢ conditional on x;.

The ATET is estimated by replacing (15f) with

1/N Z Wi { t ‘le T=1 ﬂlpwrar atet, 1) - POMiPWI"aT7COt7O - ATETiPWTar} =0

Likelihood-adjusted-censoring IPWRA

When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-IPWRA
estimator that add a term to the log-likelihood function. For notational conciseness and to reinforce

its use of an additional term in the log likelihood, we denote the LAC-IPWRA estimator by IPWRAL
in lists and formulas.

The methods and formulas for the LAC-IPWRA estimator differ in three ways from those for the
WAC-IPWRA estimator.

1. No censoring model is specified, so LAC-IPWRA does not perform a version of step IPWRARI
and it does not use the moment equations (14a).

2. The weights only depend on the treatment level and treatment assignment probabilities, not on
the censoring.

3. The WML estimator for 3, includes a term for censored observations and censored observations
are used. Recall that for the WAC-IPWRA estimator, the weights used in the WML estimator for
3, account for the censoring, and the censored observations are not used in the WML estimator.

The LAC-IPWRA estimators have the following logic.

IPWRALI1. Estimate by ML the parameters a of a parametric model for the probability of treatment
model p(z;, o).

IPWRAL2. For each treatment level 7 € {0, 1}, estimate by WML the parameters 3, of a parametric
model for the survival-time outcome t in which F'(¢|x,7,3,) is the distribution of
t conditional on covariates x and treatment level 7. The weights depend only on the
treatment level and the treatment-assignment probabilities. For the ATE, the weights are
those in (12a) and (12b).AFor the ATET, the weights are those in (13a) and (13b). We denote
the estimates of 3_ by 3,

ipwral,7*
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IPWRAL3. Use the estimated ,/B\ipwralﬁ and the functional form implied by F'(t|x,T,3,) to estimate

the mean survival time, conditional on x and treatment level 7, for each sample observa-
tion, denoted by E(;|X;, 7, Bipyral - ). Conditional independence of the treatment and the

survival-time potential outcomes ensures that E(t|x, 7, 8,) = E(¢,|x, 3,), where ¢ is the
potential survival-time outcome corresponding to treatment level 7. Under correct model

specification, sample averages of E(t;|x;, T, Bipyral ») consistently estimate the POM for
treatment level 7, denoted by POM,.

The contribution of the ith observation to the log likelihood that is maximized in step IPWRALLI is

Ly ipwral(Tiy i, @) = @; [(1i == 1) In{p(z;, @)} + {1 — (1 == 1)} In{1 — p(z;, @)}]

where p(z;, @) is the model for the probability that ¢ gets treatment level 1.

The weights and the parameters in step IPWRAL2 used to estimate the ATE differ from those used
to estimate the ATET. For the ATE, the contribution of the ith observation to the log likelihood that
is maximized in step IPWRAL?2 is

Lipwral(ti, Xiy T, 5ipwral,ate77) = (Ti == T)wiwi-ﬁ' {(1 - Ci) ln{f(ti‘xi’ 7, ﬂipwranate,‘r)}

C; ln{l - F(tz|xz7 T, lgipwrar,ate,T)}}

where w; 1 is given in (12a), w; ¢ is given in (12b), and f(¢;|x;, T, ,B

ipwral ate,~) 18 the density corre-

sponding to distribution F'(¢;|x;, T, 5ipwra1,am,r)~ Unlike the WRA estimator, the censored observations
are used, and there is a term in the likelihood function to account for censoring.

The LAC- IPWRA estlmators for the POMs snnultaneously solve estimating equations (16a) through
(16e) for a, ﬁlpwral ate,0° Iglpwl‘al ate,0> POI\/IIPWW1 0, and POMIIJWral 1

N
1/stipwral(7—i7zi7aap) =0 (163.)
1=1
N
I/N Z SiPWfﬂl(ti’ Xi, 07 IBipwral,ate,Oa F) =0 (16b)
=1
N
1/N Z Sipwral(ti7 Xi, 1, ﬁipwral,ate,la F) =0 (16C)
i=1
N A~
1/NZ w; {E(tz‘xu T = Oa ﬁipwral,ateﬁ) - POMipWraLO} =0 (16(1)
N
1/N Z wi {E(ti‘xi7 T= 1’ /Bipwral,ate,l) - POMipwral,l} =0 (166)

=1

where

ALy ipweal (T1,2:,Q0)
Slpwral(TmZu 7p) p]pwrg —

for & based on probability model p,

is the vector of score equations from the ML estimator
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~
aLipwral (ti X ’O"IBipwral,ate,O)

8ﬁipwral,ate,0
from the WML estimator for B,y al ate,0 based on survival-time model F,

Sipwral (tis Xi, 0, Bipwralate,00 F) = is the vector of score equations

~
OLipwral (ti ,Xhl,,@ipwmlwatey 1)
—

8ﬂipwral,atc,l
from the WML estimator for B, a1 ate,1 based on survival-time model F,

Sipwral (tis Xi, 1, Bipwral ate, 1, £) = is the vector of score equations

E(t|x;, 7 = O,ﬂipwral)ate’o) is the predicted mean survival time assuming treatment level O for
observation ¢ conditional on x;, and

E(ti|x;, 7 = l,_,@ipwr?l:aml) is the predicted mean survival time assuming treatment level 1 for
observation ¢ conditional on x;.

The ATE is estimated by replacing (16e) with

1/N Z Wi { t ‘X“ T=1 Blpwl’al ate, 1) — POMijpwral,0 — ATEiPWFal} =0

For the ATET, the contribution of the ¢th observation to the WML function that is maximized in step
IPWRAL?2 is

Lipwral(ti7 Xiy T, 5ipwra1,atct,'r) = (Ti == T)wiwi,cotﬂ' {(1 - Ci) ln{f(ti‘xi7 7 Bipwrar,atct,‘r)}

C; 111{1 — F(ti|xi7 T, ﬁipwrar,atetﬁ)}}

where w; cot,1 is given in (13a), Wi cot,0 is given in (13b), and f(ti[X;, 7, Bipwralatet,~) 18 the

density corresponding to distribution F(ti|?<i, T, Qipwal,atew). Again unlike the WRA, the censored
observations are used, and there is a term in the likelihood function to account for censoring.
The LAC-IPWRA estimators for the conditional- on-treatment POMs simultaneously solve estimating

equations (17a) through (17¢) for a, Blpwral atet,0s Blpwral atet,0s POMlpwral cot,0, and POMlpwral cot,1-

N
1/stipwral(7-iazi7a7p) =0 (178')
=1
N
1/‘]V Z Sipwral(ti7 Xy 03 /Bipwral,atet,Ov F) =0 (l7b)
1=1
N
1/N Z Sipwral(th Xis 17 Bipwral,atet,l? F) =0 (170)
i=1
I/N Zwl { t |Xu = Oal/éipwral,atct,o) - mipwral,eot,o} =0 (17d)
1/N sz {E(t2|xla T = 17Bipwral,atet,1) - @iPWTEI’COt,l} =0 (176)

i=1
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where

ALy, ipwrdl(Thzi:a)

slpwral(n, Zi, Q,p) = is the vector of score equations from the ML estimator

o
for & based on probability model p,

~ OLipwral (ti,xi,0,0 ). .
Sipwral (ti, Xi5 0, Bipwral atet 0, F) = —————=———2ra2etl’ s the vector of score equations

IBipwral,atet,O
from the WML estimator for B,y al atet,0 Dased on survival-time model F',

-~ OLipwral (ti,xi,1,0 ). .
Sipwral (ti, Xis 1, Bipwral atet, 1, F) = —————=———2raaetll s the vector of score equations

IBipwral,atet 1

from the WML estimator for B,y al ater,1 based on survival-time model F',

E(t;|x;, T = O7ﬂipqulzacet,0) is the predicted mean survival time assuming treatment level O for
observation ¢ conditional on x;, and

E(t;|x;, 7 = lvﬂipwral,atem) is the predicted mean survival time assuming treatment level 1 for
observation ¢ conditional on x;.

The ATET is estimated by replacing (17¢) with

—

I/NZ Wi { t |X1a =1, ﬁipwral,atct,l) — POMipwral,cot,0 — ATETiPWTal} =0

Functional-form details

In this section, we specify the functional forms for the conditional distribution function used in
the survival-time outcome model F, the conditional distribution function used in the survival-time
censoring model F,, and the conditional distribution used to model the treatment probabilities p.

You may choose among the same set of conditional distribution functions for either F' or F_:
exponential, weibull, 1Inormal, or gamma.

Name Cumulative Density Mean

exponential | 1 — exp(—A;t;) Aiexp(—Ait;) 1/\

Weibull |1 —exp{—(Nit:)*}  sit7 " AT exp{—(\it;)* } (/)T {(si +1)/s:}
log normal | ®{(In(t;) — X\;)/si}  (1/(sit:))p{(In(t;) — Xi)/s:} exp(\; + s2/2)
gamma | gammap{s;, (siti/A)} (s5'6; 1) /AT (si) Yexp(=siti/Ai) i

where the following table specifies how \; and s; are parameterized in terms of the covariates x;
and the ancillary covariates X;, respectively.

Name A Si
exponential exp(—x;03)

Weibull exp(—x;0) exp(X; B)
log normal x;3 eXP(ﬁi/@)
gamma exp(xi ) exp(—2%,3)
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For the treatment-assignment models, the probit model uses the standard normal distribution, the
logit uses the standard logistic distribution, the hetprobit model uses

{z11/ exp(zoca)}
and the multinomial logit uses
a
p(z,t) = exp(za;)/{1+ ) exp(zent)}
k=1

where the notation is defined below.

In the hetprobit model, z; are the covariates specified in the treatment-assignment specification,
Zo are the covariates specified in the hetprobit () option, and c; and iy are the corresponding
coefficients.

In the multinomial logit model, z are the covariates specified in the treatment-assignment
specification and «y, are the coefficients; see [R] mlogit for further details.
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Postestimation commands

The following postestimation commands are of special interest after stteffects:

Command

Description

teffects overlap overlap plots

tebalance

check balance of covariates

The following standard postestimation commands are also available:

Command

Description

estat summarize
estat vce
estimates
hausman

lincom

nlcom

predict
predictnl

test
testnl

summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means,
propensity scores, linear predictions, and log square roots of latent variances.

Menu for predict

Statistics > Postestimation

Syntaxes for predict

Syntaxes are presented under the following headings:

Syntax for predict after stteffects ipw
Syntax for predict after stteffects ipwra
Syntax for predict after stteffects ra
Syntax for predict after stteffects wra

Syntax for predict after stteffects ipw
predict [type] { stubx | newvar | newvarlist } [zf} [zn]

[ , Statistic tlevel (treat_level) ]

predict [rype] {stub*|newvarlist} [if} [in], scores

statistic Description
Main
ps propensity score; the default
censurv censored survival probability
xb linear prediction for propensity score
cxb linear prediction for censoring model
lnsigma log square root of latent variance (for treatment model hetprobit ())
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment
level.

If you do not specify tlevel() and only specify one new variable, xb and lnsigma assume tlevel() specifies the
first noncontrol treatment level.

You specify one or ¢t new variables with ps, where ¢ is the number of treatment levels.
You specify one or t—1 new variables with xb and lnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ipwra

predict [rype] { stub* | newvar | newvarlist } [if} [ll’l]

[ , statistic tlevel (treat_level) ]

predict [Iype] {stub*|newvarli5t} [zf} [in], scores

statistic Description
Main

te treatment effect; the default

cmean conditional mean at treatment level

ps propensity score

censurv censored survival probability

xb linear prediction for outcome model

cxb linear prediction for censoring model

psxb linear prediction for propensity score

1lnshape log of conditional latent shape (for outcome distribution Weibull,
log normal, or gamma) at treatment level

clnshape log of conditional latent shape (for censoring distribution Weibull,
log normal, or gamma)

pslnsigma log square root of latent variance (for treatment model hetprobit())

for propensity score

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first
noncontrol treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and pslnsigma assume tlevel()
specifies the first treatment level.

You specify one or ¢ new variables with cmean, ps, xb, and 1nshape, where ¢ is the number of treatment levels.
You specify one or t—1 new variables with te, psxb, and pslnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ra
predict [type] {stub* | newvar | newvarlist} [zf] [tn}

[ , statistic tlevel (treat_level) }

predict [type] {stub*\newvarlist} [lf] [in}, scores

statistic Description
Main
te treatment effect; the default
cmean conditional mean at treatment level
xb linear prediction for outcome model
1lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel()
specifies the first treatment level.

You specify one or ¢ new variables with cmean, xb, and 1nshape, where ¢ is the number of treatment levels.

You specify one or t—1 new variables with te.

Syntax for predict after stteffects wra
predict [type] {stub* | newvar | newvarlist} [lf] [in}

[ , statistic tlevel (treat_level) }

predict [lype] {stub*\newvarlist} [lf] [in}, scores

statistic Description
Main
te treatment effect; the default
cmean conditional mean at treatment level
censurv censored survival probability
xb linear prediction for outcome model
cxb linear prediction for censoring model
1lnshape log of conditional latent shape (for outcome distribution Weibull,
log normal, or gamma) at treatment level
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel()
specifies the first treatment level.

You specify one or ¢ new variables with cmean, xb, and 1nshape, where ¢ is the number of treatment levels.
You specify one or t—1 new variables with te.

You specify one new variable with censurv, cxb, and clnshape.
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Options for predict

Options are presented under the following headings:

Options for predict after stteffects ipw
Options for predict after stteffects ipwra
Options for predict after stteffects ra
Options for predict after stteffects wra

Options for predict after stteffects ipw

Main

Is

ps, the default, calculates the propensity score of each treatment level or the treatment level specified
in tlevel (). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the propensity score linear prediction at each noncontrol level of the treatment or the
treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify
only one new variable; otherwise, you must specify a new variable for each treatment level (except
the control level).

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring
model is specified at estimation time. You need to specify only one new variable.

1nsigma calculates the log square root of the latent variance. This option is valid only when treatment
model hetprobit () is used. You need to specify only one new variable.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution.
This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need
to specify only one new variable.

tlevel (treat_level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the censoring and
propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if 7 < ¢,
where ¢ is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
7 — t following the first ¢ parameters in the coefficient table.

Options for predict after stteffects ipwra

Main

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel (). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.
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ps calculates the propensity score of each treatment level or the treatment level specified in t1level().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you
must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring
model is specified at estimation time. You need to specify only one new variable.

psxb calculates the propensity score linear prediction at each noncontrol level of the treatment or the
treatment level specified in tlevel(). If you specify the tlevel () option, you need to specify
only one new variable; otherwise, you must specify a new variable for each treatment level (except
the control level).

1nshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in tlevel (). This option is valid when outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter for the censoring distribution.
This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need
to specify only one new variable.

pslnsigma calculates the log square root of the latent variance for the propensity score. This option
is valid only when treatment model hetprobit () is used. You need to specify only one new
variable.

tlevel(treat_level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and
average treatment-effect equations. Equation-level scores are computed for the outcome, censoring,
and propensity-score equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if 7 < ¢,
where ¢ is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
j — t following the first £ parameters in the coefficient table.

Options for predict after stteffects ra

Main

-

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.
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lnshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in t1level (). This option is valid when the outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel () option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

tlevel(treat_level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and
average treatment-effect equations. Equation-level scores are computed for the outcome equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if j < ¢,
where ¢ is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
7 — t following the first ¢ parameters in the coefficient table.

Options for predict after stteffects wra

Main

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment
level specified in tlevel (). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the
control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in
tlevel(). If you specify the tlevel() option, you need to specify only one new variable;
otherwise, you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it
calculates the probability that an outcome is not censored.) This option is allowed only if a
censoring model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level
specified in tlevel(). If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the
treatment level specified in t1level (). This option is valid when the outcome distribution Weibull,
log normal, or gamma is used. If you specify the tlevel () option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution.
This option is valid when the censoring distribution Weibull, log normal, or gamma is used. You
need to specify only one new variable.

tlevel (treat_level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean
and average treatment-effect equations. Equation-level scores are computed for the outcome and
censoring equations.

The jth new variable will contain the scores for the jth parameter in the coefficient table if 7 < ¢,
where ¢ is the number of treatment levels. Otherwise, it will contain the scores for fitted equation
7 — t following the first ¢ parameters in the coefficient table.
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Remarks and examples

Checking model specification is the most frequent reason for postestimation computation after
stteffects. teffects overlap provides a graphical method for checking the overlap assumption;
see [TE] teffects overlap. Summarizing the estimated probabilities provides another check. Recall that
the reciprocals of these estimated probabilities are used as weights by some of the estimators. If the
estimated probabilities are too small, the weights get too large and the estimators become unstable.

We estimate the average treatment effect of smoking on the time to a second heart attack by
inverse-probability weighting; see example 1 of [TE] stteffects ipw for background.
. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))
. stteffects ipw (smoke age exercise education) (age exercise diet education)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 2.042e-18
Iteration 1: EE criterion = 5.191e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull
Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983
POmean
smoke
Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

Below, we compute the estimated probabilities of being a Nonsmoker and store them in psO.
Likewise, the estimated probabilities of being a Smoker are stored in ps1.

. predict psO psl, ps

The overlap condition requires that each of these probabilities be sufficiently greater than O and
less than 1 for every individual; see Assumptions and trade-offs under Remarks and examples in
[TE] stteffects intro.

In practice, we know that weighting estimators perform poorly when the weights become too
large. This approach requires that the probability of being a Nonsmoker not be too small among
Nonsmokers and that the probability of being a Smoker not be too small among Smokers. Below,
we summarize these probabilities.



stteffects postestimation — Postestimation tools for stteffects 135

. summarize psO if fajil==1 & smoke==0

Variable Obs Mean Std. Dev. Min Max
psO 716 .6712529 .138754 .3872543 .9840293

. summarize psl if fail==1 & smoke==
Variable Obs Mean Std. Dev. Min Max
psi 492 .4101277 .1101277 .0850604 .6125538

The minimum probability of being a Nonsmoker among Nonsmokers is 0.39. The minimum
probability of being a Smoker among Smokers is 0.09. Neither minimum seems too small.

Estimating survival-time treatment effects also uses weights to adjust for censored outcomes; see
[TE] stteffects intro. Thus we require that the probability of an uncensored failure also be sufficiently
greater than 0. Below, we compute the estimated probabilities of failure and summarize them among
those that fail.

. predict fprob2, censurv
. summarize fprob if fail==
Variable | Obs Mean Std. Dev. Min Max

fprob2 | 1,208 . 7246067 .2143543 .0364246 .9999086

The minimum probability of 0.04 does not appear too small.

Q Technical note

The previous discussion builds on the intuition that the weights used in a weighting estimator
should not be too large.

This technical note goes a little further by explicitly computing the weights and using them to
replicate the inverse-probability-weighted point estimate for the Nonsmoker potential-outcome mean.

We now compute the weights using the predicted probabilities computed in the examples above
and then use mean to compute the weighted average that estimates the potential-outcome mean for
Nonsmokers.

. generate double ipw0 = 1/(psOxfprob)
. mean _t [pw=ipwO] if smoke==0 & fail==

Mean estimation Number of obs = 716
Mean  Std. Err. [95% Conf. Intervall]
_t 4.235569 .5820212 3.092894 5.378244

The weights account for data lost to the Smoker potential outcome or to censoring by increasing
the importance of observations that were observed to be Nonsmoker failure times even though they
were not likely to be observed.

The point estimate matches that reported by stteffects ipw; the standard errors differ because
mean takes the estimated weights as given. See Inverse-probability-weighted estimators under Methods

and formulas in [TE] stteffects ipwra.
Q
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Title

stteffects ra — Survival-time regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects ra estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data by
regression adjustment (RA). RA uses averages of treatment-specific predicted mean survival times to
estimate mean survival times for each potential outcome. Contrasts of these predicted mean survival
times estimate the treatment effects. stteffects ra offers several choices for the model used to
predict mean survival time. Binary and multivalued treatments are accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start

Specify time as observed failure time and fail as failure indicator
stset time, failure(fail)

ATE from a Weibull model for time on x1 and x2 with binary treatment treat2
stteffects ra (x1 x2) (treat2)

As above, but estimate the ATET
stteffects ra (x1 x2) (treat2), atet

As above, but estimate the potential-outcome means
stteffects ra (x1 x2) (treat2), pomeans

ATE of treat2 using a gamma model for time
stteffects ra (x1 x2, gamma) (treat2)

ATE for each level of three-valued treatment treat3
stteffects ra (x1 x2) (treat3)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects ra (x1 x2) (treat3), control("MyControl")

Menu

Statistics > Treatment effects > Survival outcomes > Regression adjustment
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Syntax

stteffects ra (omvarlist [, omoptions]) (tvar) [lf] [ln] [, stat Options]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

omoptions Description
Model
weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary (avarlist [ s noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from outcome model
stat Description
Stat
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated
pomeans estimate potential-outcome means
options Description
SE/Robust
vce (veetype) vcetype may be robust, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
aequations display auxiliary-equation results
noshow do not show st setting information
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
iterinit (#) specify starting-value iterations; seldom used
Advanced
control (#| label) specify the level of tvar that is the control
tlevel (#| label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics
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You must stset your data before using stteffects; see [ST] stset.

omvarlist and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in
[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

ancillary (avarlist [ , noconstant ] ) specifies the variables used to model the ancillary parameter.
By default, the ancillary parameter does not depend on covariates. Specifying ancillary (avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] estimation options.

Stat

stat is one of three statistics: ate, atet, or pomeans. ate is the default.
ate specifies that the average treatment effect be estimated.
atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate (#), [@]liog, and from (init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of

matname [, skip COPY]

#[,#...], copy
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iterinit (#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

Advanced

control (#|label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control () may not be specified with the statistic pomeans. control() and
tlevel() may not specify the same treatment level.

tlevel (#]label) specifies the level of rvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel () may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

RA estimators use contrasts of the averages of treatment-specific predicted mean outcomes to
estimate treatment effects. RA estimators use a two-step approach to estimating treatment effects:

1. For each treatment level, fit a model of the survival-time outcome on the same set of covariates.

2. Compute the averages of the predicted outcomes for each subject within each treatment level.

These averages estimate the potential-outcome means (POMs). Contrasts of these averages estimate
the ATEs. By restricting the computations of the averages to the subset of treated subjects, we obtain
estimates of the ATETS.

Here we note only a few entry points to the vast literature on RA estimators. Imbens (2004),
Imbens and Wooldridge (2009), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21),
and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and
to RA estimators in particular.

Like streg and other survival-time commands, stteffects ra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects ra is
not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.

> Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45-55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.
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The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects ra to estimate the ATE by RA. We model the mean survival time using
the default Weibull model, controlling for age, exercise, diet, and education, and we specify
that smoke is the treatment variable.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))
. stteffects ra (age exercise diet education) (smoke)

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull

Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATE
smoke
(Smoker
Vs
Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639
POmean
smoke
Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When every woman smoked in the population of women aged 45-55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 1.96 years less than when no
women in the population of interest smoked. The estimated average time to a second heart attack
when no women in the population of interest smoked is 4.24 years. In other words, if every woman
in the population of interest smoked, then the average time to a second heart attack would fall by an
estimated 46% relative to the case when no women smoked.

N

> Example 2: Changing the outcome model

Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma,
or a lognormal model. By way of comparison, we use a gamma model and the same covariates to
estimate the ATE.
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. stteffects ra (age exercise diet education, gamma) (smoke)

failure _d: fail

analysis time _t: atime
Iteration O: EE criterion = 6.212e-25
Iteration 1: EE criterion = 2.266e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment

Outcome model : gamma

Treatment model: none

Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Intervall]
ATE
smoke
(Smoker
vs
Nonsmoker) -1.801787 .2924388 -6.16 0.000 -2.374956 -1.228617
POmean
smoke
Nonsmoker 3.994327 .2258257 17.69  0.000 3.551717 4.436937

The estimated ATE of —1.80 and control-level POM of 3.99 are similar to those of —1.96 and 4.24
obtained from the Weibull model in example 1. The ratio of the estimated ATE to the control-level
POM indicates a 45% reduction instead of the 46% reduction obtained from the Weibull model.

d

> Example 3: Estimating the ratio of the ATE to the control-level POM

The ratio of the ATE to the control-level POM measures the importance of the effect. In example 1,
we computed the point estimate of this ratio from the output, but we were left without a confidence
interval. In this example, we use nlcom to compute a point estimate and a confidence interval.

Below, we refit the model from example 1, specifying the coeflegend option to learn the parameter
names. We use the parameter names in nlcom to estimate the ratio of the ATE to the control-level
POM.
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. stteffects ra (age exercise diet education) (smoke), coeflegend

failure _d: fail

analysis time _t: atime

Iteration O: EE criterion = 1.525e-19
Iteration 1: EE criterion = 1.931e-30

Survival treatment-effects estimation Number of obs =
Estimator : regression adjustment

Outcome model : Weibull

Treatment model: none

Censoring model: none

_t Coef. Legend
ATE
smoke
(Smoker
vs
Nonsmoker) -1.956657 _b[ATE:r1vs0.smoke]
POmean
smoke
Nonsmoker 4.243974 _b[POmean:0.smoke]

. nlcom _b[ATE:r1vs0O.smoke] / _b[POmean:0.smoke]
_nl_1: _b[ATE:r1vsO.smoke] / _b[POmean:0.smoke]

t Coef. Std. Err. z P>|z| [95% Conf.

_nl_1 -.4610437 .0598709 -7.70  0.000 -.5783885

The output shows that when every woman smoked, the average time to a second heart attack falls
by an estimated 46% relative to the case when no women smoked, as we computed earlier. We also

obtain a 95% confidence interval of 34% to 58% for this estimate.

> Example 4: Estimating the ATET

4

Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes
the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the
added benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and

trade-offs in [TE] stteffects intro.
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. stteffects ra (age exercise diet education) (smoke), atet

failure _d: fail
analysis time _t: atime

Iteration O: EE criterion = 1.525e-19
Iteration 1: EE criterion = 2.002e-31

Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment

Outcome model : Weibull

Treatment model: none

Censoring model: none

Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATET
smoke
(Smoker
vs
Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602
POmean
smoke
Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

When every woman in the subpopulation smoked, the average time to a second heart attack is
estimated to be 1.53 years less than when no women in the subpopulation smoked. The estimated
average time to a second heart attack when no women in the subpopulation smoked is 3.44 years.

4

> Example 5: Fixed or random censoring time

The time to censoring in survival-time data can be random or deterministic, although it must be
independent of treatment assignment and the potential outcomes; see Kalbfleisch and Prentice (2002,
chap. 3) for the standard case and see The correct adjustment for censoring assumption under
Assumptions and trade-offs in [TE] stteffects intro for the treatment-effects case.

The RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted
RA estimator can accommodate a fixed time to censoring; see The correct adjustment for censoring
assumption in [TE] stteffects intro. (The estimators that handle censoring by weighting cannot
accommodate a fixed time to censoring because the weights are not well defined with a fixed time
to censoring.)

We have fictional data on the time to rearrest among men aged 25-35 who were previously in
prison for a felony conviction (rtime). The time to censoring is fixed in these data because individuals
were followed for a maximum of five years.

Some of the young men chose to enter a vocational training program before release from prison;
train is 1 for participants and O for nonparticipants. The dataset also contains fail (which is 1 if
the observed time is a failure time and O if it is time to censoring), age at the time of the first arrest
(age), an index of the parents’ socioeconomic level (parental), and the number of years behind in
school at the time of the first arrest (edeficit).

We estimate the ATET because we wish to allow the gains from the training program to be related
to an unobservable characteristic that affects who self-selects into the program; see Average treatment
effect on the treated in [TE] stteffects intro.
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We model the outcome as a function of age, parental, and edeficit.

. use http://www.stata-press.com/data/r14/recid2, clear
(Time to rearrest (fictional))

. stteffects ra (age parental edeficit) (train), atet

failure
analysis time

d: fail

_t: rtime

Iteration O: EE criterion = 2.769e-19

Iteration 1: EE criterion = 9.441e-34
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none
Robust
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
ATET
train
(Student
vs
Nonstudent) 2.440919 .4689057 5.21 0.000 1.52188 3.359957
POmean
train
Nonstudent 2.062029 .1231492 16.74 0.000 1.820661 2.303397

When everyone who selected the training got the training, the average time to rearrest is 2.44
years later than the average rearrest time if none of those who selected the training got the training.
The average rearrest time if none of those who selected the training got the training is 2.06 years. In
other words, the average time to rearrest increases from about 2.06 years to about 4.50 years for the

subpopulation of young men who self-selected into the prerelease vocational training program.

Stored results

stteffects ra stores the following in e():

Scalars
e(N)
e(nj)
e(k_eq)
e(k_levels)
e(treated)
e(control)
e(converged)

Macros
e(cmd)
e(cmdline)
e(dead)
e(depvar)
e(tvar)
e (subcmd)
e (omodel)
e(stat)
e (wtype)

number of observations

number of observations for treatment level j
number of equations in e(b)

number of levels in treatment variable

level of treatment variable defined as treated
level of treatment variable defined as control
1 if converged, O otherwise

stteffects

command as typed

—d

-t

name of treatment variable

ra

outcome model: weibull, exponential, gamma, or lognormal
statistic estimated: ate, atet, or pomeans

weight type

4
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e (wexp) weight expression

e(title) title in estimation output

e(tlevels) levels of treatment variable

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. Err.

e(properties) bV

e(estat_cmd) program used to implement estat

e(predict) program used to implement predict

e(marginsnotok) predictions disallowed by margins
Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas

The methods and formulas for the RA estimators implemented in stteffects ra are given in
Methods and formulas of [TE] stteffects ipwra.
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stteffects wra — Survival-time weighted regression adjustment

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

stteffects wra estimates the average treatment effect (ATE), the average treatment effect on the
treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with
random time to censoring. Estimation is by weighted regression adjustment (WRA). WRA estimators use
inverse-probability-of-censoring adjusted regression coefficients to compute averages of treatment-level
predicted outcomes. Contrasts of these averages estimate the treatment effects. WRA uses estimated
weights from a time-to-censoring model to account for censored survival times instead of including
a term in the likelihood function. stteffects wra offers several choices for the functional forms
of the outcome model and the time-to-censoring model. Binary and multivalued treatments are
accommodated.

See [TE] stteffects intro for an overview of estimating treatment effects from observational
survival-time data.

Quick start

Specify time as observed failure time and fail as failure indicator
stset time, failure(fail)

ATE from a Weibull model for time on x1 and x2 with binary treatment treat2 and a Weibull
model on x1 and x2 for censoring

stteffects wra (x1 x2) (treat2) (x1 x2)

As above, but estimate the ATET
stteffects wra (x1 x2) (treat2) (x1 x2), atet

ATE of treat2 using a gamma model for time and a gamma censoring model
stteffects wra (x1 x2, gamma) (treat2) (x1 x2, gamma)

ATE for each level of three-valued treatment treat3
stteffects wra (x1 x2) (treat3) (x1 x2)

As above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3
stteffects wra (x1 x2) (treat3) (x1 x2), control("MyControl")

Menu

Statistics > Treatment effects > Survival outcomes > Weighted regression adjustment

148
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Syntax
stteffects wra (omvarlist [, omr)ptir)ns]) (tvar) (cmvarlist [, cmoptions])

[if] [m} [, stat options}

omvarlist specifies the variables that predict the survival-time variable in the outcome model.
tvar must contain integer values representing the treatment levels.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description
Model
weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary (avarlist [ s noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from outcome model
cmoptions Description
Model
weibull Weibull; the default
exponential exponential
gamma two-parameter gamma
lnormal lognormal
ancillary (avarlist [ s noconstant]) specify variables used to model ancillary parameter
noconstant suppress constant from censoring model
stat Description
Stat
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description
SE/Robust
vce (veetype) vcetype may be robust, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
aequations display auxiliary-equation results
noshow do not show st setting information
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize_options control the maximization process; seldom used
iterinit (#) specify starting-value iterations; seldom used

Advanced
pstolerance (#) set the tolerance for the overlap assumption
osample (newvar) identify observations that violate the overlap assumption
control (# | label) specify the level of tvar that is the control
tlevel (#] label) specify the level of tvar that is the treatment
coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.

omvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in
[ST] stset. However, weights may not be specified if you are using the bootstrap prefix.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ (Wogel

ancillary (avarlist [ , noconstant ] ) specifies the variables used to model the ancillary parameter.
By default, the ancillary parameter does not depend on covariates. Specifying ancillary (avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the
censoring variable, or for both. If ancillary() is specified for both, the varlist used for each
model may be different.

noconstant; see [R] estimation options.
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Stat

stat is one of three statistics: ate, atet, or pomeans. ate is the default.
ate specifies that the average treatment effect be estimated.
atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce_option.

Reporting

level (#); see [R] estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be
displayed. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects wra from showing the key st variables. This option is rarely used
because most people type stset, show or stset, noshow to permanently set whether they want
to see these variables mentioned at the top of the output of every st command; see [ST] stset.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: iterate (#), [@]Qg, and from (init_specs); see [R] maximize. These options
are seldom used.

init_specs is one of
matname [, skip copy]
# [, #], copy

iterinit (#) specifies the maximum number of iterations used to calculate the starting values. This
option is seldom used.

Advanced

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value
is pstolerance(le-5). stteffects will exit with an error if an observation has an estimated
propensity score smaller than that specified by pstolerance().

osample (newvar) specifies that indicator variable newvar be created to identify observations that
violate the overlap assumption.

control (#|label) specifies the level of tvar that is the control. The default is the first treatment
level. You may specify the numeric level # (a nonnegative integer) or the label associated with
the numeric level. control() may not be specified with the statistic pomeans. control() and
tlevel () may not specify the same treatment level.
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tlevel (#|label) specifies the level of fvar that is the treatment for the statistic atet. The default
is the second treatment level. You may specify the numeric level # (a nonnegative integer) or
the label associated with the numeric level. tlevel () may only be specified with statistic atet.
tlevel() and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks and examples

If you are not familiar with the framework for treatment-effects estimation from observational
survival-time data, please see [TE] stteffects intro.

Weighted regression-adjustment (WRA) estimators use estimated weights to account for censoring
when estimating outcome-regression parameters. The estimated outcome-regression parameters are
used to compute averages of treatment-level predicted outcomes. Contrasts of these averages estimate
the treatment effects.

WRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of a time-to-censoring model and compute inverse-probability-
of-censoring weights.

2. Using the estimated inverse-probability-of-censoring weights, they use weighted maximum
likelihood estimators for the outcome for each treatment level and obtain the treatment-specific
predicted mean outcomes for each subject. The inverse-probability-of-censoring weights account
for right-censored survival times.

3. They compute the means of the treatment-specific predicted mean outcomes. Contrasts of these
averages provide the estimates of the ATES. By restricting the computations of the means to the
subset of treated subjects, we can obtain the ATETs.

WRA estimators differ from RA estimators in that WRA estimators use weights to account for
observations lost to censoring while RA estimators use an additional term in the likelihood function.
A model for the time to censoring is used to estimate the weights.

WRA estimators require more assumptions than RA estimators. Specifically, they require that the
censoring time be random and that the time-to-censoring model be well specified. The implemented
WRA estimators also require that the time-to-censoring process not vary by treatment level. The
RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted RA
estimator do not require these extra assumptions, because they use a likelihood term instead of weights
to adjust for the data lost to censoring; see [TE] stteffects ra and [TE] stteffects ipwra.

Here we note only a few entry points to the vast literature on weighted estimators. Imbens (2004),
Imbens and Wooldridge (2009), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron
and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9)
provide excellent general introductions to estimating ATEs and to WRA estimators in particular.

Like streg and other survival-time commands, stteffects wra uses the outcome variable and
the failure indicator computed by, and optionally weights specified with, stset. stteffects wra
is not appropriate for data with time-varying covariates, also known as multiple-record survival-time
data, or for delayed-entry data.
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> Example 1: Estimating the ATE

Suppose we wish to study the effect of smoking on the time to a second heart attack among women
aged 45-55 years. In our fictional sheart dataset, atime is the observed time in years to a second
heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed.
(When fail is 1, atime records the time to the second heart attack; when fail is 0, atime records
a censored observation of the time to a second heart attack.) We previously stset these data; see A
quick tour of the estimators in [TE] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the
time of the first heart attack (age), and indices of the level of exercise (exercise), diet quality
(diet), and education (education) prior to the first heart attack.

We can use stteffects wra to estimate the ATE by WRA. We model the mean survival time using
the default Weibull outcome model with age, exercise, diet, and education as covariates, and
we specify that smoke is the treatment variable. We also specify the default Weibull time-to-censoring
model and include age, square of age, exercise, and education.

. use http://www.stata-press.com/data/r14/sheart
(Time to second heart attack (fictional))

. stteffects wra (age exercise diet education) ///
> (smoke) 11/

> (age c.age#c.age exercise diet education)

failure _d: fail

analysis time _t: atime
Iteration O: EE criterion = 4.096e-18
Iteration 1: EE criterion = 1.302e-29

Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment

Outcome model : Weibull

Treatment model: none

Censoring model: Weibull

Robust
_t Coef . Std. Err. z P>z [95% Conf. Intervall
ATE
smoke
(Smoker
vs
Nonsmoker) -2.374174 .6017498 -3.95 0.000 -3.553582 -1.194766
POmean
smoke
Nonsmoker 4.302131 .5528943 7.78 0.000 3.218478 5.385784

When every woman smoked in the population of women aged 45-55 years who have had a heart
attack, the average time to a second heart attack is estimated to be 2.37 years less than when no
women in the subpopulation of interest smoked. The estimated average time to a second heart attack
when no women in the subpopulation of interest smoked is 4.30 years.

N



154 stteffects wra — Survival-time weighted regression adjustment

Stored results

stteffects wra stores the following in e():

Scalars
e(N) number of observations
e(nj) number of observations for treatment level j
e(k_eq) number of equations in e (b)
e(k_levels) number of levels in treatment variable
e(treated) level of treatment variable defined as treated

e(control)
e(converged)

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

level of treatment variable defined as control
1 if converged, O otherwise

Macros
e(cmd) stteffects
e(cmdline) command as typed
e(dead) _d
e(depvar) —_t
e(tvar) name of treatment variable
e (subcmd) wra
e (omodel) outcome model: weibull, exponential, gamma, or lognormal
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

Methods and formulas

The methods and formulas for the WRA estimators implemented in stteffects wra are given in
Methods and formulas of [TE] stteffects ipwra.
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tebalance — Check balance after teffects or stteffects estimation

Description Syntax Remarks and examples Methods and formulas
References Also see

Description

The tebalance postestimation commands produce diagnostic statistics, test statistics, and diagnostic
plots to assess whether a teffects or an stteffects command balanced the covariates over treatment

levels.
Syntax
tebalance subcommand ... [ s options}
subcommand Description
summarize compare means and variances in raw and balanced data
overid overidentification test
density kernel density plots for raw and balanced data
box box plots for each treatment level for balanced data

Remarks and examples

This entry provides an overview of the commands in tebalance. We recommend that you read
this entry before proceeding to [TE] tebalance summarize, [TE] tebalance overid, [TE] tebalance
density, or [TE] tebalance box for command-specific syntax and details.

A covariate is said to be balanced when its distribution does not vary over treatment levels.

Covariates are balanced in experimental data because treatment assignment is independent of the
covariates because of the study design. In contrast, covariates must be balanced by weighting or
matching in observational data because treatment assignment is related to the covariates that also
affect the outcome of interest.

The estimators implemented in teffects and stteffects use a model or matching method to
make the outcome conditionally independent of the treatment by conditioning on covariates. If this
model or matching method is well specified, it should balance the covariates. Balance diagnostic
techniques and tests check the specification of the conditioning method used by a teffects or
an stteffects estimator; see [TE] teffects intro advanced for an introduction to teffects, and
[TE] stteffects intro for an introduction to stteffects.

tebalance implements four methods to check for balance after teffects and stteffects. Which
tebalance methods are available depends on the teffects estimation method, as summarized in
the table below.

156
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tebalance Works after teffects Works after
stteffects

method Description ipw aipw ipwra nnmatch psmatch ipw ipwra

summarize standardized differences and X X X X X X X
variance ratios

overid chi-squared test for balance X X X X X

density diagnostic kernel-density X X X X X X X
plots

box diagnostic box plots X X

tebalance overid implements a formal test, while the other three methods are exploratory
diagnostic techniques. There is no balance check after teffects ra, stteffects ra, or stteffects
wra, because they use neither a treatment model nor a matching method.

Austin (2009, 2011) and Guo and Fraser (2015, sec. 5.52) provide introductions to covariate
balance. Imai and Ratkovic (2014) derived a test for balance implemented in tebalance overid.

The remainder of this entry provides a quick introduction to using tebalance to check for balance
after teffects. See [TE] stteffects intro for examples after stteffects.

~> Example 1: Balance after estimators that use weighting

Inverse-probability-weighted (IPW) estimators use a model for the treatment to make the outcome
conditionally independent of the treatment. If this model is well specified, it will also balance the
covariates.

Using an extract from Cattaneo (2010), we use teffects ipw to estimate the effect of a mother’s
smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for marital status
(mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s
first trimester (prenatall), and whether this baby is the mother’s first child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried mage prenatall fbaby)

Iteration O: EE criterion = 1.873e-22
Iteration 1: EE criterion = 3.315e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
mbsmoke
(smoker
vs
nonsmoker) -236.1038 23.86187 -9.89 0.000 -282.8722 -189.3354
POmean
mbsmoke
nonsmoker 3402.552 9.539555 356.68 0.000 3383.855 3421.249
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Rubin (2008) recommends finding a model that balances the covariates before looking at results for
the estimated treatment effect. Thus we do not interpret the above results, and we note that we could
pay closer heed to Rubin’s recommendation by preceding the teffects command with quietly to
suppress the output.

Imai and Ratkovic (2014) derived a test for balance by viewing the restrictions imposed by balance
as overidentifying conditions. This test is implemented in tebalance overid, and we use it to test

whether the above treatment model balanced the covariates.

. tebalance overid

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

o

0 ~NOo O WN -

9:

10:
11:
12:
13:
14:
15:

criterion =

criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion
criterion

Overidentification test
HO: Covariates

chi2(5)

Prob > chi2 =

.02146858

= .02159149 (backed up)

= .02177783
= .02260102
= .02267956
= .02292367
= .02431697
= .02457043
= .02488579
= .02529453
= .02545885
= .02550248
= .02552866
= .02554462
= .02554512
= .02554514

for covariate balance

are balanced:

38.1464
0.0000

We reject the null hypothesis that the treatment model balanced the covariates.

Let’s use tebalance summarize to see where the problem lies. To get an idea of the extent to
which the covariates are unbalanced, we begin by summarizing the covariates by group in the raw

data by specifying the baseline option.

. tebalance summarize, baseline

Covariate balance summary

Raw Weighted
Number of obs = 4,642 4,642.0
Treated obs = 864 2,315.3
Control obs = 3,778 2,326.7

Means Variances
Control Treated Control Treated
mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429
prenatall .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

The output indicates that the covariates may not be balanced in the raw data. For example,
the distribution of the mother’s age may differ over the treatment groups. We can investigate the
differences further with standardized differences and variance ratios. A perfectly balanced covariate
has a standardized difference of zero and variance ratio of one. There are no standard errors on these
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statistics, so inference is informal. Austin (2009) provides a recent introduction to these diagnostics,
although they have been used at least since Rosenbaum and Rubin (1985).

By omitting the baseline option, we obtain these diagnostic statistics for the raw data and the
weighted data.

. tebalance summarize

Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0

Treated obs = 864 2,315.3

Control obs = 3,778 2,326.7

Standardized differences Variance ratio

Raw Weighted Raw  Weighted

mmarried -.5953009 -.0105562 1.335944 1.009079
mage -.300179 -.0672115 .8818025 .8536401
prenatall -.3242695 -.0156339 1.496155 1.023424
fbaby -.1663271 .0257705 .9430944 1.005698

Reviewing the output, we see that for mmarried, prenatall, and fbaby, our model improved
the level of balance. The weighted standardized differences are all close to zero and the variance
ratios are all close to one. However, output indicates that mage may not be balanced by our model.
The weighted standardized difference is close to zero, but the weighted variance ratio still appears to
be considerably less than one.

Now, let’s use tebalance density to look at how the densities of mage for treated and control
groups differ.

. tebalance density mage

Balance plot
Raw Weighted

Density
o

10 20 30 40 50 10 20 30 40 50
mother’s age

nonsmoker smoker ‘

The plots also indicate a lack of balance in mage between the treatment groups.
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To try to achieve better balance, we specify a richer model with interactions between mage and
the other covariates and look at the resulting standardized differences.
. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatall fbaby
> c.mage#(c.mage i.mmarried prenatall))
. tebalance summarize

Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0

Treated obs = 864 2,329.1

Control obs = 3,778 2,312.9

Standardized differences Variance ratio

Raw Weighted Raw  Weighted

mmarried -.5953009 .0053497 1.335944 .9953184

mage -.300179 .0410889 .8818025 1.076571

prenatall -.3242695 .0009807 1.496155 .9985165

fbaby -.1663271 -.0130638 .9430944 .9965406
mage#

mage -.3028275 .0477465 .8274389 1.109134
mmarried#
mage

married -.6329701 .0197209 1.157026 1.034108
prenatall#
mage

Yes -.4053969 .0182109 1.226363 1.032561
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The standardized difference and
zero and one, so we proceed to the formal test.

. tebalance overid

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

Overidentification test

0 ~NO O WNNH~O

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =
criterion =

HO: Covariates are
chi2(8) = 11.
Prob > chi2 = 0.

.0602349
.06172749
.06428588
.06489623
.06527284
.06643426
.07120383
.07647097
.07674915
.07684127
.07703321

.0776508
.07771863
.07773156
.07773561
.07774891
.07775314
.07775324
.07775325
.07775325
.07775325
.07775325
.07775325

balanced:

8612
1575

(backed up)
(backed up)
(backed up)
(backed up)

for covariate balance

variance ratio results for mage look closer to the expected values of

We do not reject the null hypothesis that the specified treatment model balances the covariates.

> Example 2: Balance after estimators that use matching

4

Instead of weighting, we might want to use a matching estimator. We can select teffects nnmatch
or teffects psmatch for balance and estimation; in this example, we use teffects nnmatch.

. teffects nnmatch (bweight mmarried mage prenatall fbaby)
> (mbsmoke), bias(mage) ematch(mmarried prenatall fbaby)

Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching in = 1
Distance metric: Mahalanobis = 139
AT Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
mbsmoke
(smoker
vs
nonsmoker) -240.4589  28.43008 -8.46  0.000 -184.7369

Again we ignore the estimated effect and first check for balance. We begin by reviewing whether
the summary statistics indicate good balance.
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. tebalance summarize
note: refitting the model using the generate() option

Covariate balance summary

Raw Matched

Number of obs = 4,642 9,284

Treated obs = 864 4,642

Control obs = 3,778 4,642

Standardized differences Variance ratio

Raw Matched Raw Matched

mmarried -.5953009 -2.42e-16 1.335944 1
mage -.300179 -.0040826 .8818025 .9815517
prenatall -.3242695 -2.78e-16 1.496155 1
fbaby -.1663271 2.24e-16 .9430944 1

We do not have standard errors on these statistics, so we cannot make any formal conclusions,
but the summary statistics appear to indicate much better balance than the IPW results. tebalance
summarize has to refit the model to recover the matched sample because the generate() option
was not specified on the teffects nnmatch command. The reestimation does not affect the results,
although the computation takes longer; see example 3 for details.

Because it is a matching estimator, and not an IPW estimator, we cannot use tebalance overid
after teffects nnmatch. The matching estimators, however, provide diagnostic box plots using
tebalance box that are not available after the IPW estimators.

. tebalance box mage
note: refitting the model using the generate() option

Balance plot
Raw Matched

50
|

A . |

40
|

mother’s age
30
7

20

10

‘l:l treated [ control
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The box plots of the matched data also indicate covariate balance.
Let’s look at the kernel density plots using the matched data.

. tebalance density mage
note: refitting the model using the generate() option

Balance plot
Raw Matched

g 4

34
2
22
j)
o

8 4

o

10 20 30 40 50 10 20 30 40 50
mother’s age

control treated ‘

The plots using the matched data appear to be balanced.

Q Technical note

teffects implements matching estimators, IPW estimators, regression-adjustment (RA) estimators,
and estimators that combine IPW and RA. Matching estimators define a matched sample, and IPW
estimators define a weighted sample, each of which can be used to compute covariate balance statistics.
RA estimators do not define an adjusted sample that can be used to compute covariate balance statistics,
and tebalance does not work after teffects ra. Only the IPW component of the estimators that
combine RA and IPW defines a weighted sample that can be used to compute balance statistics. So,
tebalance produces the same results after teffects aipw or teffects ipwra as it does after

teffects ipw.
a

> Example 3: Faster results after a matching estimator

The tebalance commands run in example 2 executed more slowly than necessary. tebalance
issued the note

note: refitting the model using the generate() option

after the commands

. tebalance summarize
. tebalance box mage

and

. tebalance density mage
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After teffects nnmatch or teffects psmatch, tebalance computes the balance statistics on
the matched sample defined by the matching estimator. teffects nnmatch and teffects psmatch
leave behind only variables that identify the matched sample when the generate () option is specified.
Unless the generate() option is specified with teffects nnmatch or teffects psmatch, each
tebalance command must rerun the estimation command to recover the matched sample.

Typing

. teffects nnmatch (bweight mmarried mage fbaby prenatall)
> (mbsmoke), bias(mage) ematch(mmarried fbaby prenatall)
> generate(matchv)

would generate variables that identify the matched sample that the tebalance commands could
use. See Remarks and examples in [TE] tebalance box, [TE] tebalance density, and [TE] tebalance
summarize for examples using the option generate() on teffects psmatch to speed up the
postestimation computations.

N
Methods and formulas
Methods and formulas are presented under the following headings:
Introduction
Matched samples
IPW samples
Testing the propensity-score model specification
Introduction
For covariate z, we observe values {21, 29, ..., 2y }. Define a treatment indicator variable for J
treatment levels as t; € {1,2,...,J}, fori = 1,..., N, and frequency weights as {wq, wa, ..., wx}.

The sample mean and variance of z for level ¢ are

N

elt) = and
N -~ 2
At = thwi {z — (1)}

~2 1

t =
3201 i
where N; = va wiI(t; = t), and
1 if t;, =1

1t = t) = {
(t ) 0 otherwise

As shown in Austin (2011), the standardized differences for covariate z between level ¢ and the
control ?y are computed as

e () — st
b.(1) = P2l —P:(lo) 1)
0.(t)+0_(to)
2

The variance ratio is p.(t) = {5> (t)}/{5> (to)}.
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Matched samples

We now turn our attention to the matched samples for the potential-outcome mean (POM), average
treatment effect (ATE), and average treatment effect on the treated (ATET) estimators. We estimate the
covariate for the counter-factual treatment by taking the mean of the matched observations

Zjeﬂ(i) Wjzj
ZjeQ(z’) Wi

P =

where (i) = (k1,k2,...,km;) is the set of observation indices that are matched to observation
i of the opposite treatment condition. The observed covariate and matched covariate pairs, (z;, 2;),
i = 1,...,N, are used in the box plot (see [G-2] graph box) and the kernel density plot (see
[R] kden51ty) The ATET sample is limited to those observations from the conditional treatment, t
and their matched covariate means.

In Methods and formulas of [TE] teffects nnmatch, we define K, (i) as the number of times
observation 7 is used in a match with observation j of the opposite treatment condition, i € (),
weighted by the total number of matches for observation j. Specifically,

ZI{ZEQ Zwk

kEQ(4)

These weights are used in the estimation of the mean and variance for the matched dataset. For the
POM and ATE models, the estimated mean and variance are computed as

~ Z I( )w Zt{1+Km( )}
M;
_ NIt = w1+ K (i) Hz — e (1))
M; —1

and

where M; = SN I(t; = ywi {1 + K, (i)}.

The standardized differences between the control level and all other levels for the matched covariate
distribution are computed as in (1), but i (¢) is substituted for ji.(t) and 52(t) for o2(t).

For the ATET model, there is no matched sample for the treatment levels other than the conditional
treatment . The covariate mean and variance for the conditional treatment are the same as that of
the raw data, y, (%) and o,(t). However, the covariate mean and variance for the sample matched
to the conditional treatment, ¢ tN are computed as

Z I(t; = w2z K (7)
M;
S It = ) wi K (i) {2 — iz (1)}
M; —1

and

[z (t) =

52() =

where M; = Ziv I(t; = )w; K,y (7).
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IPW samples

Computation of the inverse-probability weights is discussed in Methods and formulas of [TE] teffects
aipw and in Methods and formulas of [TE] stteffects ipwra. For the POM and ATE estimators, we defined
the normalized IPW weights as d;(t) = Nyd,(t)/ Ziv d;(t), where d;(t) = I(t; =t)/p(z;,t,7) for
treatment level ¢ and individual 3.

For the ATET estimator, we use the normalized weights f, = Nf;/ Ziv fi» where f; =
p(zi,t,7)/p(2i,t;,7) are the treatment-adjusted inverse-probability weights, and ¢ is the condi-
tional treatment.

We will simplify notation by defining a single weight

wit) = d;(t) if model is ATE or POM
’ F:(t) if model is ATET

The covariate mean and variance for treatment level ¢ are

f: (1) 77 and
= Owiw; {zi — fiz(1)}

where M, = Ziv I(t; = t)w;w;.

The kernel density is computed by kdensity for each covariate conditioned on each treatment
level using the raw covariate with iweights equal to w;w;.

Testing the propensity-score model specification

We estimate the probability of treatment conditioned on a set of covariates with a propensity-
score model. Imai and Ratkovic (2014) derive a test for whether the estimated propensity score
balances the covariates. The score equations for parameters of the propensity-score model define an
exactly identified generalized method of moments (GMM) estimator. Imai and Ratkovic (2014) use
the conditions imposed by mean balance as overidentifying conditions. A standard GMM test for
the validity of the overidentifying conditions is then a test for covariate balance. See [R] gmm for
a discussion of this overidentifying test, which is known as Hansen’s .J test in the econometrics
literature.

Here are the details about the score equations and the overidentifying balance conditions. Recall
from Methods and formulas of [TE] teffects aipw and Methods and formulas of [TE] stteffects ipwra,
we have the first-order condition of the treatment model

1 N
~ Z Stm,: (Zia 3) =0
N 1=1

For a two-level treatment-effects model with conditional treatment ¢ and control to, the score is

I(t;= Z) op(zit,y) I(t; =to) Op (ziﬁiv)
p(zit,y) OV 1—p(zi,t,7) 2

Stm,i(zia ’Y) =

=7
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The score reduces to

S (2 a)—l I(t:i=1) —p(21,7) ]373(%%)
tm,? (2] p(Zi,i’Y) {1 *p(Zi,ftv,’Y)} 87’

v=Y
The corresponding covariate balancing moment conditions are

Wi (Z: _ I(ti:?)_p(zi’?”y) Z;
) L@@wuw@ﬁﬂJl

for the POM and ATE models. For the ATET model with conditional treatment ¢, we multiply by
p(zi,t,7y) and scale by N/N:

w52, = N {I(ti =1) —p~(zz',t~7’7) }Zi

N? 1_p(zlat77)

We stack the moment conditions

N
1 Stm,i(zi77)
gMZﬂ-Z{ }
N i=1 Wim,i (Zia PY)
1 N
N Z tm,i(zh PY)
i=1
The overidentified GMM estimator is then
3 = argming N gim(Z,7)' Wi (Z,%) ™" gun(Z,7) (2)
where
Win(Z,7) ZET {8tm.i(2,7) m.i(2.7)'}

=1

and the expectation is taken with respect to treatment distribution. The weight matrix Wy, (Z, ) is
computed explicitly (Imai and Ratkovic 2014), and (2), written as a maximization problem, is solved
using ml.

Finally, Hansen’s J statistic is evaluated at its minimum,
J= Ngtm(za %)I th(zva)_l gtm(za %)

and is asymptotically distributed chi-squared with degrees of freedom d,

N
~ 1 ~ ~
d = rank {thl (27 ’7)} — rank N Z ET {Stm,i(zi7 7) Stm,i (Zia ’Y)/}

i=1
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[TE] tebalance summarize — Covariate-balance summary statistics
[TE] tebalance overid — Test for covariate balance
[TE] tebalance density — Covariate balance density
[TE] tebalance box — Covariate balance box
[TE] teffects — Treatment-effects estimation for observational data

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
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Title

tebalance box — Covariate balance box

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description

tebalance box produces box plots that are used to check for balance in matched samples after
teffects nnmatch and teffects psmatch.

Quick start

Box plot of the propensity score from the last teffects psmatch command
tebalance box

Box plot of values of x1 in the treatment and control groups from raw data and the matched sample
from the last teffects nnmatch or teffects psmatch command

tebalance box x1

Menu

Statistics > Treatment effects > Balance > Graphs
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Syntax
Box plots for the propensity score

tebalance box [ , options]

Box plots for a covariate

tebalance box varname [ s options]

options Description
Main
boxlook_options graph box options controlling how the box looks
legending _options graph box options controlling how the variables are labeled
axis_options graph box options controlling how numerical y axis is labeled
title_and_other_options graph box options controlling titles, added text, aspect ratio, etc.
by_options suboptions inside by () controlling plots by raw and matched samples
Options
Main

boxlook_options are any of the options documented in boxlook_options in [G-2] graph box.
legending_options are any of the options documented in legending_options in [G-2] graph box.
axis_options are any of the options documented in axis_options in [G-2] graph box.

title_and_other_options are any of the options, except by (), documented in fitle_and_other_options
in [G-2] graph box. tebalance box uses by () to differentiate between raw and matched samples,
and some twoway_options will be repeated for by graph and might be better specified as byopts ().

by_options are any of the byopts documented in [G-3] by —option. byopts () generally affects the entire
graph, and some by_options may be better specified as twoway_options; see [G-3] twoway_options.

Remarks and examples

When the distribution of a covariate does not vary over the treatment levels, the covariate is said
to be balanced. tebalance box produces box plots of a covariate over treatment levels for the raw
data and for the matched sample produced by teffects. If the matched-sample box plots are the
same over the treatment levels, the covariate is balanced in the matched sample.

After teffects nnmatch and teffects psmatch,

. tebalance box varname [, options]

produces box plots to check whether varname is balanced.
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After teffects psmatch,
tebalance box [, opzions]

produces box plots to check whether the propensity score estimated by teffects is balanced.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction to
covariate balance and an overview of the implemented methods.

> Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatall), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatall fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139
AT Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Intervall
ATE

mbsmoke

(smoker

vs
nonsmoker) -235.1714  27.74409 -8.48 0.000 -289.5488 -180.794

We specified the option generate (matchv) to speed up the postestimation command that produces
density plots, as discussed in example 3 under Remarks and examples of [TE] tebalance. We do not
interpret the estimated effect produced by this preliminary model but rather check the specification.
Now we look at the box plots.
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. tebalance box mage

Balance plot of mage
Raw Matched
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The box plots for the matched sample are very similar. The medians, the 25th percentiles, and the
75th percentiles appear to be the same, although there may be some differences in the tails, the upper
adjacent values, the lower adjacent values, and the outliers. Matching on the estimated propensity
score appears to have balanced mage, except for the tails.

To get an idea of whether teffects psmatch balanced all the covariates, we look at the box
plots for the estimated propensity score.

. tebalance box

Balance plot of propensity scores
Raw Matched

{ MY

| veated [N control |

Propensity Score

The box plots indicate that teffects psmatch balanced the estimated propensity scores.
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Reference

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138-154.

Also see

[TE] tebalance — Check balance after teffects or stteffects estimation
[TE] teffects nnmatch — Nearest-neighbor matching
[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots



Title

tebalance density — Covariate balance density

Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description

tebalance density produces kernel density plots that are used to check for covariate balance after
estimation by a teffects inverse-probability-weighted estimator, a teffects matching estimator,
or an stteffects inverse-probability-weighted estimator.

Quick start

Kernel density plot of the propensity score after teffects psmatch
tebalance density

Kernel density plot of x1 after a teffects command or an stteffects command
tebalance density x1

As above, but rescale the kernel bandwidth by a factor of 2
tebalance density x1, bwidth(*2)

Menu

Statistics > Treatment effects > Balance > Graphs
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Syntax

Density plots for the propensity score

tebalance density [ s options]

Density plots for a covariate

tebalance density varname [ , options]

Options Description

Main
kernel (kernel) specify the kernel function; default is kernel (epanechnikov)
bwidth (x#) rescale default bandwidth

line#opts (line_options)
twoway_options

twoway line options for density line number #
any options other than by () documented in [G-3] twoway_options

byopts (byopts) how subgraphs are combined, labeled, etc.
kernel Description
triangle triangle kernel function; the default
epanechnikov Epanechnikov kernel function
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
Options
Main

kernel (kernel) specifies the kernel function for use in calculating the kernel density estimates. The
default kernel is the kernel (epanechnikov).

bwidth(*#) specifies the factor by which the default bandwidths are to be rescaled. A bandwidth
is the half-width of the kernel, the width of the density window around each point. Each kernel
density plot has its own bandwidth, and by default, each kernel density plot uses its own optimal
bandwidth; see [R] kdensity. bwidth() rescales each plot’s optimal bandwidth by the specified

amount.

line#opts (line_options) specifies the line pattern, width, color, and overall style of density line
number #. The line numbers are in the same order as the treatment levels specified in e (tlevels).

twoway—_options are any of the options documented in [G-3] twoway _options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving _option). tebalance density uses by () to differentiate between raw and weighted
or matched samples, and some twoway_options will be repeated for by graph and might be better

specified as byopts().
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byopts (by_option) is as documented in [G-3] by_option. byopts () affects how the subgraphs are
combined, labeled, etc. byopts () generally affects the entire graph, and some by_option may be
better specified as twoway_options; see [G-3] twoway_options.

Remarks and examples

When the distribution of a covariate does not vary over the treatment levels, the covariate is said to
be balanced. tebalance density produces kernel density plots of a covariate over treatment levels
for the raw data and the weighted or matched sample produced by teffects or stteffects. If
the weighted-sample or matched-sample kernel density plots of the covariate are the same over the
treatment levels, the covariate is balanced in the weighted or matched sample.

After all teffects commands except teffects ra, stteffects ipw, and stteffects ipwra,
tebalance density varname [, options]

produces kernel density plots to check whether varname is balanced.

After all teffects commands except teffects ra, teffects nnmatch, stteffects ipw, and
stteffects ipwra,

tebalance density [, options]

produces kernel density plots to check whether the propensity score estimated by teffects or
teffects is balanced. Our discussion of the use of tebalance density and interpretation of its
results for a covariate below also apply to a propensity score.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction to
covariate balance and an overview of the implemented methods. See [TE] stteffects intro for a
discussion of survival-time features.

> Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatall), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatall fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139
AI Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE

mbsmoke

(smoker

vs
nonsmoker) -235.1714  27.74409 -8.48 0.000 -289.5488 -180.794
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We specified the option generate (matchv) to speed up the postestimation command that produces
density plots, as discussed in example 3 under Remarks and examples in [TE] tebalance entry. We do
not interpret the estimated effect produced by this preliminary model but rather check the specification.

We begin by looking at the default density plots.

. tebalance density mage

Balance plot of mage
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The density plots for the matched sample are nearly indistinguishable, implying that matching on the
estimated propensity score balanced the covariates. The density plots are too jagged for presentation,
so we oversmooth them by scaling up the bandwidth used for each plot.

. tebalance density mage, bwidth(*1.5)

Balance plot of mage
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Option bwidth() rescales the default optimal bandwidths by the specified scale factor. Each of
the four density plots has its own sample size and optimal bandwidth. Rescaling each of the four

bandwidths by 1.5 produces smoother plots.
d
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Stored results

After teffects or stteffects fits a binary treatment, tebalance density stores the following

inr():

Scalars
r(bwc_adj) bandwidth for control in weighted or matched-adjusted sample
r(Nc_adj) observations on control in weighted or matched-adjusted sample
r(bwt_adj) bandwidth for treated in weighted or matched-adjusted sample
r(Nt_adj) observations on treated in weighted or matched-adjusted sample
r(bwc_raw) bandwidth for control in raw sample
r(Nc_raw) observations on control in raw sample
r (bwt_raw) bandwidth for treated in raw sample
r(Nt_raw) observations on treated in raw sample

Macros
r (kernel) name of kernel

After teffects or stteffects fits a multivalued treatment, tebalance density stores the
following in r():

Scalars
r (bw#_adj) bandwidth for treatment level # in weighted or matched-adjusted sample
r(N#_adj) observations on treatment level # in weighted or matched-adjusted sample
r (bw#_raw) bandwidth for treatment level # in raw sample
r (N#_raw) observations on treatment level # in raw sample

Macros
r(kernel) name of kernel

Reference

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138-154.

Also see

[TE] tebalance — Check balance after teffects or stteffects estimation
[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment
[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
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tebalance overid — Test for covariate balance

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

tebalance overid performs a test for covariate balance after estimation by a teffects inverse-
probability-weighted (IPW) estimator or an stteffects IPW estimator.

Quick start

Test for covariate balance after a teffects or an stteffects IPW estimator
tebalance overid

As above, but test for balance only in base covariates and exclude interaction terms
tebalance overid, bconly

Menu

Statistics > Treatment effects > Balance > Overidentification test
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Syntax

tebalance overid [, bconly nolog iterate(#)}

Options
Main

bconly specifies that only the base covariates be included in the test for balance. By default, the
powers and interactions specified by factor-variable notation in the teffects or stteffects
model are also included in the test for balance.

nolog suppresses the display of the optimization search log.

iterate(#) sets the maximum number of iterations to # in the generalized method of moments
estimator used to compute the test statistic.

Remarks and examples

When the distribution of a covariate is the same for all treatment levels, the covariate is said to
be balanced. tebalance overid performs a test to see whether the covariates are balanced after
teffects or stteffects. tebalance overid can be executed after teffects ipw, teffects
aipw, teffects ipwra, stteffects ipw, or stteffects ipwra, which use the inverse-probability
weights predicted by a treatment model to account for how treatment assignment depends on observed
covariates. If the treatment model is well specified, IPW functions of the covariates from the model
are balanced.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction
to covariate balance and an overview of the implemented methods. See [TE] stteffects intro for
survival-time discussion and examples.

> Example 1: Base covariates and interactions

This example illustrates the interpretation of the bconly option, which excludes powers and
interactions when factor variables are included in the propensity-score model.

We frequently use factor variables to include powers of, and interactions between, base covariates
in our specification of the propensity-score model. In example 1 under Remarks and examples in
[TE] tebalance, we rejected the null hypothesis of balance in a model using only base covariates but
not in the richer model that included power and interaction terms. By default, tebalance overid
tests whether the model balances the base covariates and the power-and-interaction covariates. When
option bconly is specified, tebalance overid tests whether the model balances the base covariates
only.

Using an extract from the data used by Cattaneo (2010), we use teffects ipw to estimate the effect
of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for
marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit
in the baby’s first trimester (prenatall), and whether this baby is the mother’s first child (fbaby).
In addition to the base covariates, we include the square of mage, an interaction between mage and
mmarried, and an interaction between mage and prenatall in the model for the propensity score.
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. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects ipw (bweight) (mbsmoke mmarried mage prenatall fbaby
> c.mage#(c.mage i.mmarried prenatall)), aequations

Iteration O: EE criterion = 9.365e-20
Iteration 1: EE criterion = 2.612e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
mbsmoke
(smoker
Vs
nonsmoker) -239.6875 26.43427 -9.07 0.000 -291.4977 -187.8773
POmean
mbsmoke
nonsmoker 3403.638 9.56792 355.73 0.000 3384.885 3422.39
TME1
mmarried .8522468 .462536 1.84 0.065 -.0543072 1.758801
mage .1742823 .0651039 2.68 0.007 .0466811 .3018836
prenatall .4018114 .4341762 0.93 0.355 -.4491584 1.252781
fbaby -.4824413 .0868982 -5.55 0.000 -.6527587 -.3121239
c.mage#
c.mage -.002515 .0012585 -2.00 0.046 -.0049817 -.0000483
mmarried#
c.mage
married -.0787984 .0175508 -4.49 0.000 -.1131973 -.0443996
prenatall#
c.mage
Yes -.0286228 .0176391 -1.62 0.105 -.0631948 .0059492
_cons -2.928851 .8409119 -3.48 0.000 -4.577008 -1.280694

We specified option aequations to see the parameter estimates for the coefficients in the
propensity-score model. There are eight coefficients, five on the base covariates (mmarried, mage,
fbaby, prenatall, and _cons) and three on the power-and-interaction covariates (c.mage#c .mage,
c.mage#l.mmarried, and c.mage#1.prenatall). Below we test whether the model balances all
eight covariates.
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. tebalance overid

Iteration O: criterion = .0602349
Iteration 1: criterion = .06172749 (backed up)
Iteration 2:  criterion = .06428588 (backed up)
Iteration 3: criterion = .06489623 (backed up)
Iteration 4: criterion = .06527284 (backed up)
Iteration 5: criterion = .06643426
Iteration 6: criterion = .07120383
Iteration 7: criterion = .07647097
Iteration 8: criterion = .07674915
Iteration 9: criterion = .07684127
Iteration 10: criterion = .07703321
Iteration 11: criterion = .0776508
Iteration 12: criterion = .07771863
Iteration 13: criterion = .07773156
Iteration 14: criterion = .07773561
Iteration 15: criterion = .07774891
Iteration 16: criterion = .07775314
Iteration 17: criterion = .07775324
Iteration 18: criterion = .07775325
Iteration 19: criterion = .07775325
Iteration 20: criterion = .07775325
Iteration 21: criterion = .07775325
Iteration 22: criterion = .07775325

Overidentification test for covariate balance
HO: Covariates are balanced:

chi2(8) = 11.8612
Prob > chi2 = 0.1575

We cannot reject the null hypothesis that the IPW model balanced all eight covariates.

Below we specify option bconly to test whether the IPW model balanced the five base covariates
only.

. tebalance overid, bconly

Iteration O: criterion = .1079977
Iteration 1: criterion = .10800825 (backed up)
Iteration 2: criterion = .10844177 (backed up)
Iteration 3: criterion = .10851228 (backed up)
Iteration 4: criterion = .10860856 (backed up)
Iteration 5: criterion = .10907494
Iteration 6: criterion = .11009793
Iteration 7: criterion = .11164037
Iteration 8: criterion = .11260665
Iteration 9: criterion = .11286445
Iteration 10: criterion = .11331466
Iteration 11: criterion = .11333969
Iteration 12: criterion = .11335601
Iteration 13: criterion = .11335696
Iteration 14: criterion = .11335696
Iteration 15: criterion = .11335696

Overidentification test for covariate balance
HO: Covariates are balanced:

chi2(5) = 7.82169
Prob > chi2 = 0.1663

We cannot reject the null hypothesis that the IPW model balanced the five base covariates.

Each test has a justification.
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In a model-based approach, the Imai and Ratkovic (2014) test checks whether the propensity
score is correctly specified. We include all eight covariates because they must all be balanced, if the
propensity-score model is correctly specified.

A conditional-independence approach can be used to justify only including the base covariates in
the test. In this approach, the propensity-score model need only balance the base covariates. Powers
and interactions of the base covariates are included to get a propensity-score model that balances the
base covariates, but balance of these higher-order terms is more than what needs to be checked.

In large samples, both tests should have nominal coverage under the null hypothesis that the
propensity-score model is correctly specified. Under the alternative that the propensity-score model
is misspecified, including all the covariates should yield a test with higher power.

The test that includes all the covariates is the default.

Stored results

tebalance overid stores the following in r():

Scalars
r(p) p-value
r(df) overidentifying constraints, test degrees of freedom
r(chi2) chi-squared statistic
References

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138-154.

Imai, K., and M. Ratkovic. 2014. Covariate balancing propensity score. Journal of the Royal Statistical Society, Series
B 76: 243-263.

Also see

[TE] tebalance — Check balance after teffects or stteffects estimation
[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment
[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data



Title

tebalance summarize — Covariate-balance summary statistics

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description

tebalance summarize reports diagnostic statistics that are used to check for covariate balance
over treatment groups after estimation by a teffects inverse-probability-weighted (IPW) estimator,
a teffects matching estimator, or an stteffects IPW estimator.

Quick start

Raw and weighted standardized differences and variance ratios of all covariates from the most recently
estimated teffects model or stteffects model

tebalance summarize

As above, but report statistics only for covariates x1 and x2

tebalance summarize x1 x2

Baseline means and variances for treated and control groups

tebalance summarize, baseline

Menu

Statistics > Treatment effects > Balance > Summaries
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Syntax

tebalance summarize [varlist] [, baseline]

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

Option
Main

baseline specifies that tebalance summarize report means and variances by treatment level.

Remarks and examples

When the distribution of a covariate is the same for all treatment levels, the covariate is said to
be balanced. tebalance summarize reports diagnostic statistics to check for covariate balance after
teffects or stteffects. tebalance summarize can be executed after all teffects estimators
with the exception of teffects ra and executed after stteffects ipw and stteffects ipwra.

We recommend that you read [TE] tebalance before proceeding; it provides an introduction
to covariate balance and an overview of the implemented methods. See [TE] stteffects intro for
survival-time discussion and examples.

> Example 1: Checking covariate balance after psmatch

Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate
the effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight),
controlling for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal
doctor’s visit in the baby’s first trimester (prenatall), and whether this baby is the mother’s first
child (fbaby).

. use http://www.stata-press.com/data/r14/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatall fbaby),
> generate(matchv)

Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139
AI Robust
bweight Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ATE
mbsmoke
(smoker
vs
nonsmoker) -235.1714  27.74409 -8.48 0.000 -289.5488 -180.794




186 tebalance summarize — Covariate-balance summary statistics

We specified the option generate (matchv) to speed up the postestimation commands that compute
balance statistics, as discussed in example 3 under Remarks and examples in [TE] tebalance. We do
not interpret the estimated effect produced by this preliminary model but rather check the specification.

We begin by looking at the standardized differences and variance ratios for the raw data and the
matched sample.
. tebalance summarize

Covariate balance summary

Raw Matched

Number of obs = 4,642 9,284

Treated obs = 864 4,642

Control obs = 3,778 4,642

Standardized differences Variance ratio

Raw Matched Raw Matched

mmarried -.5953009 .0014107 1.335944 .9987659
mage -.300179 -.0120277 .8818025 .9952916
prenatall -.3242695 .0333609 1.496155 .9491524
fbaby -.1663271 -.0117326 .9430944 .9969095

The matched sample results indicate that matching on the estimated propensity score balanced the
covariates. The standardized differences are all close to zero, and the variance ratios are all close to
one. This inference is informal because we do not have standard errors for these statistics.

We may also wish to see the baseline summary statistics.

. tebalance summarize, baseline

Covariate balance summary

Raw Matched
Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Means Variances
Control Treated Control Treated
mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429
prenatall .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

While we rely on the standardized differences for conclusions about balance in the unmatched
sample from this output, the baseline means and variances give us some idea of the scale of the
differences.

d

2> Example 2: Multivalued treatments

In the multivalued-treatment case, tebalance summarize produces output grouped by treatment
level. In the Cattaneo (2010) extract, the variable msmoke is an ordered categorical variable specifying
the number of cigarettes smoked. We begin by tabulating msmoke.
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. tabulate msmoke

cigarettes

smoked

during
pregnancy Freq. Percent Cum.
0 daily 3,778 81.39 81.39
1-5 daily 200 4.31 85.70
6-10 daily 337 7.26 92.96
11+ daily 327 7.04 100.00

Total 4,642 100.00

All the treatment groups have significantly smaller numbers of observations than the control group
of not smoking. Still, each group has at least 200 observations. We continue by quietly fitting a

candidate IPW model and reporting the baseline summaries.

. quietly teffects ipw (bweight) (msmoke mmarried mage prenatall fbaby)

. tebalance summarize, baseline

Covariate balance summary

Observations
Treatment Raw Weighted
0 daily 3,778 1,164.8
1-5 daily = 200 ,164.4
6-10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0
Means Variances
Control Treated Control Treated
1-5 daily
mmarried .7514558 .455 .1868194 .2492211
mage 26.81048 24.64 31.87141 31.44764
prenatall .8268925 .695 .1431792 .2130402
fbaby .4531498 .48 .2478707 .2508543
6-10 daily
mmarried .7514558 .4480712 .1868194 .2480394
mage 26.81048 25.06231 31.87141 27.07051
prenatall .8268925 .6795252 .1431792 .2184188
fbaby .4531498 .3827893 .2478707 .2369648
11+ daily
mmarried .7514558 .5107034 .1868194 .250652
mage 26.81048 25.59633 31.87141 26.93471
prenatall .8268925 .6972477 .1431792 .2117409
fbaby .4531498 .293578 .2478707 .2080261

The results for the control level of 0 daily are repeated for the treatment group. These results give
a sense of the scale of imbalance in the raw data. Now we compute the balance statistics.
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. tebalance summarize

Covariate balance summary

Observations
Treatment Raw Weighted
0 daily = 3,778 1,164.8
1-5 daily = 200 1,164.4
6-10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0
Standardized differences Variance ratio
Raw Weighted Raw  Weighted
1-5 daily
mmarried -.634909 -.0016208 1.334021 1.001406
mage -.3857482 -.0219656 .9867038 .9905584
prenatall -.312519 -.0012611 1.487927 1.001898
fbaby .063769 .0422102 1.012037 1.008631
6-10 daily
mmarried -.6506304 -.0108454 1.327696 1.009331
mage -.3220222 -.0836571 .8493666 .7984901
prenatall -.3465797 -.0100232 1.525493 1.015051
fbaby -.1429048 .0268118 .9560018 1.005899
11+ daily
mmarried -.5147672 -.0212969 1.34168 1.018136
mage -.2239116 -.0636951 .8451058 .8468934
prenatall -.3077549 -.0380744 1.478852 1.056645
fbaby -.3342243 .0155427 .8392526 1.003598

These results indicate that the IPW estimator probably did not fully balance the covariates (the variance
ratios for mage at the daily levels of 6-10 cigarettes and 11-plus cigarettes are not close to 1). At
this point, we would use a richer model and see whether it balanced the covariates.

Note that we cannot use tebalance overid, because it has not been implemented for multivalued
treatments.

N

Stored results

tebalance summarize stores the following in r():

Matrices
r(size) number of observations in the raw and matched or weighted samples
r(table) table of covariate statistics
Reference

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138-154.
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Also see

[TE] tebalance — Check balance after teffects or stteffects estimation

[TE] teffects aipw — Augmented inverse-probability weighting

[TE] teffects ipw — Inverse-probability weighting

[TE] teffects ipwra — Inverse-probability-weighted regression adjustment

[TE] teffects nnmatch — Nearest-neighbor matching

[TE] teffects psmatch — Propensity-score matching

[TE] teffects overlap — Overlap plots

[TE] stteffects intro — Introduction to treatment effects for observational survival-time data
[TE] stteffects ipw — Survival-time inverse-probability weighting

[TE] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment



Title

teffects — Treatment-effects estimation for observational data

Description Syntax Also see

Description

teffects estimates potential-outcome means (POMs), average treatment effects (ATEs), and average
treatment effects on the treated (ATETs) using observational data. Regression-adjustment, inverse-
probability-weighting, and matching estimators are provided, as are doubly robust methods that combine
regression adjustment and inverse-probability weighting. teffects overlap plots the estimated
densities of the probability of getting each treatment level.

The outcomes can be continuous, binary, count, fractional, or nonnegative. The treatment model
can be binary, or it can be multinomial, allowing for multivalued treatments.

For a brief description and example of each estimator, see Remarks and examples in [TE] teffects

intro.
Syntax
teffects subcommand ... [ s Op[iOl’lS]
subcommand Description
aipw augmented inverse-probability weighting
ipw inverse-probability weighting
ipwra inverse-probability-weighted regression adjustment
nnmatch nearest-neighbor matching
overlap overlap plots
psmatch propensity-score matching
ra regression adjustment
Also see

[TE] teffects intro — Introduction to treatment effects for observational data
[TE] teffects intro advanced — Advanced introduction to treatment effects for observational data

[TE] teffects multivalued — Multivalued treatment effects
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teffects intro — Introduction to treatment effects for observational data

Description Remarks and examples Reference Also see

Description

This entry provides a nontechnical introduction to treatment-effects estimators and the teffects
command in Stata. Advanced users may want to instead read [TE] teffects intro advanced or skip to
the individual commands’ entries.

The teffects command estimates average treatment effects (ATEs), average treatment effects
among treated subjects (ATETS), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment
(IPWRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score
or nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary
or multivalued.

Remarks and examples

This entry presents a nontechnical overview of treatment-effects estimators for those who are new
to the subject of treatment-effects estimation or are at least new to Stata’s facilities for estimating
treatment effects. More advanced users may want to instead read [TE] teffects intro advanced or
skip to the individual commands’ entries.

Remarks are presented under the following headings:

Introduction

Defining treatment effects

Estimating treatment effects
Regression adjustment
Inverse-probability weighting
Doubly robust combinations of RA and IPW
Matching

Caveats and assumptions

A quick tour of the estimators
Regression adjustment
Inverse-probability weighting
Inverse-probability-weighted regression adjustment
Augmented inverse-probability weighting
Nearest-neighbor matching
Propensity-score matching

Video examples
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Introduction

Suppose we have observed a sample of subjects, some of whom received a treatment and the rest
of whom did not. As the name suggests, in most applications, the “subjects” are indeed people. A
“treatment” could indeed be a medical treatment such as a new drug regimen or surgical procedure. In
social science applications, a treatment could be participation in a job-training program or inclusion in
a classroom or school in which a new pedagogical method is being used. However, not all applications
use individuals as the subjects. For example, a policy analyst might be interested in examining the
impact of an experimental program in which a national agency held a lottery to award only some
local governments the resources needed to implement the program. Here the subjects are the local
governments, and treatment refers to whether a local government received the resources needed to
implement the program.

We would like to know if a treatment has an effect on an outcome Y. The outcome could be
the cholesterol level of a patient taking either an existing statin or a new experimental drug, or the
outcome could be the wage offered to a person who either did or did not participate in a job-training
program. In an ideal world, we would observe Y when a subject is treated (which we denote as
Y1), and we would observe Y when the same subject is not treated (which we denote as Yj). We
would be careful to make both observations under identical conditions so that the only difference is
the presence or absence of the treatment. We could then average the difference between Y7 and Yj
across all the subjects in our dataset to obtain a measure of the average impact of the treatment.

Unfortunately, this ideal experiment is almost never available in observational data because it is
not possible to observe a specific subject having received the treatment and having not received the
treatment. When the outcome is the birthweight of a specific baby and the treatment is the mother
smoking while pregnant, it is impossible to observe the baby’s birthweight under both treatments of
the mother smoking and the mother not smoking.

A classic solution to this problem is to randomize the treatment. High costs or ethical issues rule
out this solution in many observational datasets. For example, we could not ask a random selection
of pregnant women to smoke.

The defining characteristic of observational data is that treatment status is not randomized. Moreover,
that implies that the outcome and treatment are not necessarily independent. The goal of the estimators
implemented by teffects is to utilize covariates to make treatment and outcome independent once
we condition on those covariates.

The treatment-effect estimators implemented by teffects allow us to estimate the efficacy of
treatments using observational data. The rest of this entry discusses these treatment-effect estimators
at an introductory level. For a more technical introduction, see [TE] teffects intro advanced.

Defining treatment effects

We introduce treatment effects more formally by using the potential-outcomes framework, which
is also known as the counterfactual framework. What is a potential outcome? Consider a subject
that did not receive treatment so that we observe Y. What would Y7 be for that same subject if it
were exposed to treatment? We call Y; the potential outcome or counterfactual for that subject. For
a subject that did receive treatment, we observe Y7, so Yy would be the counterfactual outcome for
that subject. We can view this as a missing-data problem, and treatment-effect methods can account
for that problem.

Treatment-effect estimators allow us to estimate three parameters. The potential-outcome means
(POMs) are the means of Y7 and Yj in the population. The average treatment effect (ATE) is the mean
of the difference (Y7 — Yp). Finally, the average treatment effect on the treated (ATET) is the mean
of the difference (Y7 — Yp) among the subjects that actually receive the treatment.
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To develop our intuition, suppose we have observed a sample of patients, some of whom received a
medication to reduce their blood pressure. Figure 1 plots each of our patient’s systolic blood pressures
as a function of weight. We use the color green to indicate patients who did not receive the drug and
blue to indicate patients who did receive the drug.

Effect of Drug on Blood Pressure
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Figure 1

A remarkable feature of our data is that the average blood pressure of patients not taking the drug
is 160, and the average blood pressure of patients taking the drug is also 160. Can we therefore
conclude that taking the drug has no impact on blood pressure? The answer is no.

Because this is observational data, we could not randomly assign who would receive the drug
and who would not. As a result, treatment status could be related to covariates that also affect blood
pressure. Heavier patients were more likely to be prescribed the medication, and blood pressure is
correlated with weight. The difference in sample means does not estimate the true average treatment
effect, because blood pressure depends on weight and weight is correlated with the treatment.

Suppose that we did in fact observe both potential outcomes for all patients. In figure 2, we
continue to use solid dots for our observed data points, and we introduce hollow dots to represent
the counterfactual outcomes. That is, the green hollow dots represent the blood pressures we would
measure if only our treated patients had not taken the drug, and the blue hollow dots represent the
blood pressures we would measure if only our untreated patients had taken the drug. The green
and blue dashed lines represent the untreated and treated POMs, respectively. That is, the green line
represents the mean of all the green dots, and the blue line represents the mean of all the blue dots.
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Effect of Drug on Blood Pressure
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Figure 2

If we did have the data represented by the hollow dots, then we could say that the average treatment
effect is the difference between the mean of all the green dots and the mean of all the blue dots. In
this ideal scenario, there are no missing data on the other potential outcome, and we have all the
data we need to use the difference in means to estimate the ATE.

Looking at figure 2, we can see why a difference in means using only the solid dots does not
estimate the ATE. Using only the solid green dots underestimates the average blood pressure for
untreated individuals, and using only the solid blue dots overestimates the average blood pressure for
treated individuals.

Estimating an ATE is essentially a missing-data problem. When covariates that affect the potential
outcomes are related to treatment, we cannot use a difference in sample means, because the missing
data are informative.

The treatment-effect estimators implemented in teffects allow for covariates like weight to
be related to the potential outcomes and the treatment. Essentially, the estimators implemented by
teffects utilize covariates to fill in the hollow circles or otherwise account for how the missing
data depend on covariates that affect the potential outcomes.

Estimating treatment effects

We cannot estimate the ATE by simply taking the difference between the sample means for the treated
and untreated subjects, because there are covariates that are related to the potential outcomes and the
treatment. The estimators implemented by teffects require us to specify enough of these covariates
so that after we condition on these covariates, any remaining influences on the treatment are not
related to the potential outcomes. teffects implements several different estimators to accomplish this,
including regression adjustment (RA), inverse-probability weighting (IPW), “doubly robust” methods
that combine elements of RA and IPW, and matching methods. Here we introduce the methods by
using intuition and simple examples.

See [TE] teffects intro advanced for a more technical introduction, and see the individual commands’
entries for estimator-specific details.
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Regression adjustment

The RA method extends the idea of using sample means to estimate treatment effects by using a
regression model to predict potential outcomes adjusted for covariates. In the examples here, we use
linear regression, but the teffects ra command provides you with the flexibility to use logistic,
probit, and heteroskedastic probit regression models for binary outcomes as well as Poisson regression
for nonnegative outcomes; see [TE] teffects ra for more information.

bweightex.dta is a hypothetical dataset based on Cattaneo (2010) that we have created to
illustrate treatment-effects estimators using graphs. The subjects in this dataset are women who were
pregnant, some of whom smoked during the pregnancy. The outcome variable is the birthweight of the
baby, and we want to know whether smoking during pregnancy affects the birthweight. The dataset
also contains other demographic variables that we will use later.

Figure 3 illustrates the relationship between birthweight and smoking status as a function of the
mother’s age:

Birthweight by Mother’'s Age
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We see that smokers tend to be older than nonsmokers and that birthweight depends on smoking.
Therefore, the difference between the sample means of birthweights of babies born to smokers and
nonsmokers will not estimate the true average treatment effect.

We also still have the same problem as in the previous section: we do not observe the counterfactual
birthweights of babies. Suppose, however, that we did. In figure 4, we use solid points to represent
observed birthweights and the colors green to represent nonsmokers and blue to represent smokers.
The hollow points represent the counterfactual birthweights. The hollow blue points represent the
birthweights of babies that we would observe if only our young nonsmoking mothers had instead
smoked during their pregnancies. Similarly, the hollow green points represent the birthweights of
babies that we would observe if only our older smoking mothers had instead not smoked during their
pregnancies.
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Figure 4 suggests a way to estimate the potential outcomes for each mother:

Observed (solid) and Unobserved (hollow) Outcomes

Nonsmokers
Smokers

Birthweight
[ X ]
[ 1]
00O 00 e ee ee
o °
o oe oo e eo0
® oo a0
oce [ Jolu }
o0 ®@e 0 ©
® e O oo
o0
°

oo
oo
(o)
o
(1]
o)
®0
°

Mother’s age

Figure 4

We could fit a linear regression of birthweight on mother’s age by using the observed birthweights
for nonsmokers, and we could do likewise for smokers. The following graph includes these two
regression lines:

Regression Lines for the Observations
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Figure 5

Figure 5 illustrates the principle behind the RA method. We use the green regression line to predict
each baby’s birthweight assuming the mother did not smoke, and we use the blue regression line to
predict each baby’s birthweight assuming the mother did smoke. The treatment effect of smoking for
a mother of a particular age is the vertical difference between the green and blue regression lines.

The three parameters we mentioned in the introduction are now easy to estimate. For each mother,
we obtain two values, say, bwg and bw;, representing our predictions of her baby’s birthweight
assuming the mother did not or did smoke, respectively. The means of these variables represent the
untreated and treated POMs. The ATE is the sample mean of the difference (bw; — bwy), and the ATET
is the sample mean of that difference computed using only the mothers who in fact did smoke during
pregnancy.
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Adding the circles highlights the fact that the average age is higher for smokers than for nonsmokers.
Even though the blue and green lines have different slopes, if the average age was the same for
smokers and nonsmokers, a difference in the sample means of birthweights could still estimate the
true ATE.

Figure 5 lets us address one more issue. Users who are versed in regression analysis may be
inclined to estimate the effect of smoking using a regression model for birthweight as a function
of smoking and the mother’s age. We clearly see in figure 5 that regression lines for smokers and
nonsmokers have different slopes—the effect of age on birthweight is not the same for smokers and
nonsmokers. In regression analysis, we would therefore include an interaction term between smoking
and age. The RA method fits separate regression lines for smokers and nonsmokers, which also handles
these differential effects of age on smoking.

Inverse-probability weighting

As we remarked in our discussion of the RA method, we cannot simply use the sample mean
birthweights of babies born to smokers and nonsmokers to estimate the effect of smoking. If we did
that, we would conflate the negative effect of smoking with the positive effect of age and the positive
relationship between age and smoking. IPW is a treatment-effects estimator that uses weighted means
rather than simple unweighted means to disentangle the effects of treatment and other confounders
like age.

The concept underlying IPW can be gleaned from figure 2, where, as you will recall, the hollow
points represent counterfactual outcomes. As we demonstrated in Defining treatment effects, we could
estimate the average treatment effect if we knew the means of all the nonsmoking outcomes and the
means of all the smoking outcomes. In the context of figure 4, we need the mean of all the green
points, both solid and hollow, and the mean of all the blue.

If we could observe all of these points, then the ATE would be the difference between those two
means. However, the outcomes illustrated by the hollow circles are unobserved. IPW estimators view
the hollow circles as missing data and use weights to correct the estimates of the treated and untreated
sample means for the missing data. If we calculate the mean nonsmoking birthweight using just the
solid green points, that mean is biased downward because we are ignoring the hollow green points,
which correspond to higher birthweights.

In IPW, we apply more weight to the solid green points corresponding to older mothers and less
weight to those corresponding to younger mothers. Using this weighting scheme will pull up the
estimated mean birthweight of babies born to nonsmoking mothers to estimate the true mean of all
nonsmoking outcomes. The method for obtaining the mean smoking birthweight is virtually the same:
we need to apply more weight to the younger smoking mothers than to the older smoking mothers
to better approximate the true mean of all smoking outcomes.

Where do these weights for the weighted means come from? As the name implies, IPW uses the
inverse (reciprocal) of the probability of being in the observed treatment group. These probabilities
are obtained by modeling the observed treatment as a function of subject characteristics that determine
treatment group. In our exposition of the RA method, we focused solely on the mother’s age and
smoking status as determinants of each baby’s birthweight. To make the results comparable, we will
use the same model in this example.
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We first fit a logistic model of the mother’s smoking status, mbsmoke, as a function of the mother’s
age (mage):

. use http://www.stata-press.com/data/r14/bweightex
(Hypothetical birthweight data)

. logistic mbsmoke mage

Logistic regression Number of obs = 60
LR chi2(1) = 30.45

Prob > chi2 = 0.0000

Log likelihood = -26.362201 Pseudo R2 = 0.3661
mbsmoke | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
mage 1.631606 .21316 3.75 0.000 1.263022 2.107754

_cons 7.76e-06 .0000243 -3.76  0.000 1.69e-08 .0035718

Next, we compute the inverse-probability weights, which we will store in a variable called ps. In
the IPW method, for subjects who did receive treatment, the weight is equal to the reciprocal of the
predicted probability of treatment. For subjects who did not receive treatment, the weight is equal to
the reciprocal of the predicted probability of not receiving treatment; the probability of not receiving
treatment is just one minus the probability of receiving treatment:

. predict ps
(option pr assumed; Pr(mbsmoke))

. replace ps = 1/ps if mbsmoke==
(30 real changes made)

. replace ps = 1/(1-ps) if mbsmoke==
(30 real changes made)
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Figure 6

Figure 6 replicates figure 3 with one twist. Rather than making all the points the same size, we
have made the size of the points proportional to the IPW variable ps. Notice that the largest blue
points correspond to the youngest smoking mothers in our sample, so they will receive the most
weight when we compute the weighted mean birthweight of babies born to smoking mothers, just
as we explained we wanted to do. Similarly, the green points corresponding to older nonsmoking
mothers are larger, representing larger weights.
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There is a caveat to the IPW estimator. When we fit our logistic or probit model to obtain the
predicted probabilities, it is possible that some of the predictions will be close to zero. Because the
IPW is the reciprocal of that probability, the weight becomes arbitrarily large as the probability goes to
zero. In those cases, the IPW can become unstable. We can improve the estimated IPW by developing
a more accurate treatment model. For example, in our dataset, we have other variables such as marital
status and the education level of the baby’s father that may also help predict whether the mother
smoked during pregnancy. We excluded these variables for simplicity, but in a real analysis, we would
want to use all relevant data.

This phenomenon of unstable IPWs is related to the concept of overlap, which means that every
subject must have a strictly positive probability of obtaining treatment. We remarked that in our
sample, we had few young mothers who smoked. As should be clear from figure 6, the overlap
assumption is likely to be violated—young mothers do not appear to have a positive probability of
being smokers. We would want to check this assumption before proceeding with an IPW analysis.
See [TE] teffects overlap and [TE] teffects intro advanced for more information about overlap.

Another limitation of the IPW estimator is that we are using weighted means to estimate the POMs
and ATE. Thus, unlike the RA estimator, we cannot obtain subject-level predictions of the treatment
effects or potential outcomes, because we do not have the two regression lines that we can use to
predict outcomes for each subject.

Doubly robust combinations of RA and IPW

You may have noticed a clear distinction between the RA and IPW estimators. In the case of RA, we
built linear regression models to predict the outcomes (birthweights) of each subject but said nothing
about how treatment (smoking) arises. In the case of IPW, we built a logistic regression model to
predict treatment status but did not build a formal model of the outcome. Doubly robust estimators
combine the outcome modeling strategy of RA and the treatment modeling strategy of IPW. These
estimators have a remarkable property: although they require us to build two models, we only need to
specify one of the two models correctly. If we misspecify the treatment model but correctly specify
the outcome model, we still obtain correct estimates of the treatment effect. If we correctly specify
the treatment model but misspecify the outcome model, we again will obtain correct estimates of the
treatment effect.

Stata’s teffects command implements two doubly robust estimators, the augmented inverse-
probability-weighted (AIPW) estimator and the inverse-probability-weighted regression-adjustment
(IPWRA) estimator. These estimators combine elements of RA and IPW to be more robust to misspec-
ification.

The AIPW estimator is an IPW estimator that includes an augmentation term that corrects the
estimator when the treatment model is misspecified. When the treatment model is correctly specified,
the augmentation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not
perform well when the predicted treatment probabilities are too close to zero or one.

The IPWRA estimator is an RA estimator that uses estimated inverse-probability weights to correct
the estimator when the regression function is misspecified. When the regression function is correctly
specified, the weights do not affect the consistency of the estimator.
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Matching

Matching estimators are based on the idea of comparing the outcomes of subjects that are as
similar as possible with the sole exception of their treatment status. In our birthweight and smoking
example, we could select a mother who smokes and select a mother of the same age who does not
smoke and compare the birthweights of their infants. The data of each mother serve as the potential
outcome for the other mother.

For a single covariate such as age, identifying a pair of comparable mothers is not difficult. If we
have a second covariate that is categorical, such as race, we might still be able to identify pairs of
mothers who are the same age and of the same race assuming our dataset is large enough. However,
once we consider covariates that are measured on continuous scales or allow for more than a few
discrete ones, then finding identical matches is a challenge. The solution is to use what is called a
similarity measure, which is a statistic that measures how “close” two observations are. teffects
offers two methods to find comparable observations based on similarity measures: nearest-neighbor
matching and propensity-score matching.

Nearest-neighbor matching (NNM) is accomplished by calculating the “distance” between pairs
of observations with regard to a set of covariates and then “matching” each subject to comparable
observations that are closest to it. For example, suppose we have a variable that records each subject’s
annual income to the penny. Say one subject who received treatment had an income of $69,234.21.
The likelihood that our dataset has an untreated subject who also earned $69,234.21 is nil. However,
we can determine the difference between each untreated subject’s income and our treated subject’s
income, then match our treated subject with the untreated subjects whose income differences are
smallest. Measuring the distance between subjects when we have multiple covariates is no challenge.
By default, teffects uses what is known as the Mahalanobis distance, which is really nothing
more than the Pythagorean theorem adapted to handle the fact that covariates may be correlated and
measured on different scales.

NNM does not use a formal model for either the outcome or the treatment status, but this flexibility
comes at a price. When matching on more than one continuous covariate, the NNM estimator must be
augmented with a bias-correction term. teffects nnmatch uses a linear function of the covariates
specified in the biasadj () option to remove the large-sample bias.

Propensity-score matching (PSM) is an alternative to NNM. PSM matches on the estimated predicted
probabilities of treatment, known as the propensity scores. PSM does not require bias correction,
because it uses a model for the treatment. If the treatment model is reasonably well specified, PSM
will perform at least as well as NNM; see [TE] teffects intro advanced.

Caveats and assumptions

To use the estimators implemented in teffects, we must make several assumptions about the
process that generated our data. Different estimators and statistics may require slightly more or slightly
less restrictive assumptions and may exhibit varying degrees of robustness to departures from these
assumptions, but in general, all the estimators require some form of the following three assumptions.

The independent and identically distributed (i.i.d.) sampling assumption ensures that the outcome
and treatment status of each individual are unrelated to the outcome and treatment status of all the
other individuals in the population. Correlated data arising from hierarchical or longitudinal study
designs do not meet this assumption.

The conditional-independence (CI) assumption means once we control for all observable variables,
the potential outcomes are independent of treatment assignment. The easiest way to understand the
CI assumption is to understand when it is violated. In our birthweight example, suppose mothers
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who did not smoke were more health conscious and consumed better prenatal diets than those who
did smoke. Unless we explicitly controlled for health awareness or diet, our model would violate
the CI assumption: the mother’s decision to smoke or not smoke would not be independent of the
baby’s birthweight. If we did not control for health awareness, we would overstate the negative
impact of smoking on birthweight. Babies born to mothers who smoke weigh less than babies born to
nonsmoking mothers not just because of the effects of cigarettes but also because of poorer prenatal
diets.

In a study examining the effect of a job-training program, the CI assumption requires that there
not be any unobserved factors such as ambition or work ethic that influence both whether a person
enrolls in the program and the wage received upon completion. To use the methods implemented by
the teffects estimators, we must have variables in our dataset that allow us to control for those
types of factors.

We mentioned the third assumption, overlap, in our discussions of IPW. More formally, the
overlap assumption states that each individual have a positive probability of receiving treatment. In
our birthweight example, we noted that there were no observations on young smokers and older
nonsmokers. Perhaps we just have an unlucky sample, but to accurately assess the impact of treatment
using these methods, we must have overlap to accurately estimate the counterfactual birthweights.
In the context of matching estimators, overlap essentially means that we can actually match treated
subjects with similar nontreated subjects.

A quick tour of the estimators

The teffects command implements six estimators of treatment effects. We introduce each one
by showing the basic syntax one would use to apply them to our birthweight example. See each
command’s entry for more information.

Regression adjustment

teffects ra implements the RA estimator. We estimate the effect of a mother’s smoking behavior
(mbsmoke) on the birthweight of her child (bweight), controlling for marital status (mmarried), the
mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s first trimester
(prenatall), and whether this baby is the mother’s first child (fbaby). We use linear regression
(the default) to model bweight:

. use http://www.stata-press.com/data/r14/cattaneo2
. teffects ra (bweight mmarried mage prenatall fbaby) (mbsmoke)

Inverse-probability weighting

teffects ipw implements the IPW estimator. Here we estimate the effect of smoking by using a
probit model to predict the mother’s smoking behavior as a function of marital status, the mother’s
age, and indicators for first-trimester doctor’s visits and firstborn status:

. teffects ipw (bweight) (mbsmoke mmarried mage prenatall fbaby, probit)
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Inverse-probability-weighted regression adjustment

teffects ipwra implements the IPWRA estimator. We model the outcome, birthweight, as a
linear function of marital status, the mother’s age, and indicators for first-trimester doctor’s visits and
firstborn status. We use a logistic model (the default) to predict the mother’s smoking behavior, using
the same covariates as explanatory variables:

. teffects ipwra (bweight mmarried mage prenatall fbaby) ///
(mbsmoke mmarried mage prenatall fbaby)

Augmented inverse-probability weighting
teffects aipw implements the AIPW estimator. Here we use the same outcome- and treatment-
model specifications as we did with the IPWRA estimator:

. teffects aipw (bweight mmarried mage prenatall fbaby) ///
(mbsmoke mmarried mage prenatall fbaby)

Nearest-neighbor matching

teffects nnmatch implements the NNM estimator. In this example, we match treated and untreated
subjects based on marital status, the mother’s age, the father’s age, and indicators for first-trimester
doctor’s visits and firstborn status. We use the Mahalanobis distance based on the mother’s and
father’s ages to find matches. We use exact matching on the other three variables to enforce the
requirement that treated subjects are matched with untreated subjects who have the same marital status
and indicators for first-trimester doctor’s visits and firstborn statuses. Because we are matching on
two continuous covariates, we request that teffects nnmatch include a bias-correction term based
on those two covariates:

. teffects nnmatch (bweight mage fage) (mbsmoke), ///
ematch(prenatall mmarried fbaby) biasadj(mage fage)

Propensity-score matching

teffects psmatch implements the PSM estimator. Here we model the propensity score using a
probit model, incorporating marital status, the mother’s age, and indicators for first-trimester doctor’s
visits and firstborn status as covariates:

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatall fbaby, probit)

Video examples

Introduction to treatment effects in Stata, part 1

Introduction to treatment effects in Stata, part 2

Reference

Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal
of Econometrics 155: 138-154.


http://www.youtube.com/watch?v=p578jxAPJT4&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=v4l3F3BrtlQ

teffects intro — Introduction to treatment effects for observational data 203

Also see

[TE] teffects — Treatment-effects estimation for observational data
[TE] teffects intro advanced — Advanced introduction to treatment effects for observational data

[TE] teffects multivalued — Multivalued treatment effects
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Description

This entry provides a technical overview of treatment-effects estimators and their implementation
in Stata. Those who are new to treatment-effects estimation may want to instead see [TE] teffects
intro.

The teffects command estimates average treatment effects (ATEs), average treatment effects
among treated subjects (ATETS), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights
(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment
(IPWRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score
or nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary
or multivalued.

Remarks and examples

This entry presents a technical overview of treatment-effects estimators and their implementation
in Stata. Users who are new to treatment-effects estimators for observational data should instead read
[TE] teffects intro.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
The potential-outcome model
Assumptions needed for estimation
The CI assumption
The overlap assumption
The i.i.d. assumption
Comparing the ATE and ATET
Overview of treatment-effect estimators
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
Nearest-neighbor matching estimators
Propensity-score matching estimators
Choosing among estimators
Model choice

204
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Introduction

The teffects commands estimate treatment effects from observed data. A treatment effect is the
change in an outcome caused by a subject, often an individual, getting one treatment instead of another.
We cannot estimate individual-level treatment effects, because we only observe each individual getting
one or another treatment.

Potential-outcome models provide a solution to this missing-data problem and allow us to estimate
the distribution of individual-level treatment effects. A potential-outcome model specifies the potential
outcomes that each individual would obtain under each treatment level, the treatment assignment
process, and the dependence of the potential outcomes on the treatment assignment process.

When the potential outcomes do not depend on the treatment levels, after conditioning on covariates,
regression estimators, inverse-probability-weighted estimators, and matching estimators are commonly
used.

What we call the potential-outcome model is also known as the Rubin causal model and the
counterfactual model. See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman
and Navarro-Lozano (2004); Imbens (2004); Cameron and Trivedi (2005, chap. 2.7); Imbens and
Wooldridge (2009); and Wooldridge (2010, chap. 21) for more detailed discussions.

Defining treatment effects

Three parameters are often used to measure treatment effects: the average treatment effect (ATE),
the average treatment effect on the treated (ATET), and the potential-outcome means (POMs). In this
section, we define each of these terms and introduce the notation and parameters used in the rest of
our discussion.

In the binary-treatment case, the two potential outcomes for each individual are yo; and y14; Yos
is the outcome that would be obtained if ¢ does not get the treatment, and yy; is the outcome that
would be obtained if 7 gets the treatment. yo; and y;; are realizations of the random variables g
and y;. Throughout this entry, ¢ subscripts denote realizations of the corresponding unsubscripted
random variables. We do not discuss multivalued treatments here, because doing so only increases the
number of parameters and notation required and detracts from the essential points; see [TE] teffects
multivalued for information about multivalued treatments.

The parameters of interest summarize the distribution of the unobservable individual-level treatment
effect y; — yo. In defining the parameters, ¢ denotes a random treatment, ¢; denotes the treatment
received by individual 4, ¢ = 1 is the treatment level, and ¢ = 0 is the control level. Given this
notation, we can now define our parameters of interest.

ATE The ATE is the average effect of the treatment in the population:

ATE = E(y1 — 4o)

POM The POM for treatment level ¢ is the average potential outcome for that treatment level:

POM; = E(yt)

ATET The ATET is the average treatment effect among those that receive the treatment:

ATET = E(y1 — yo[t = 1)

For an illustration of these concepts, see Defining treatment effects in [TE] teffects intro.
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The potential-outcome model

Next we specify a potential-outcome model that serves as a touchstone for the rest of our discussion.
The model described here generates data in which y; is the observed outcome variable, ¢; is the
treatment variable, X; is a vector of covariates that affect the outcome, and w; is a vector of covariates
that affect the treatment assignment. x; and w; may have elements in common.

This potential-outcome model specifies that the observed outcome variable y is yo when ¢ = 0
and that y is y; when ¢t = 1. Algebraically, we say that

y= 1=ty + 1ty
The functional forms for yo and y; are

Yo =X'By + €o (1)
n=xB +e (2)

where 3, and 3, are coefficients to be estimated, and €y and €; are error terms that are not related to
x or w. This potential-outcome model separates each potential outcome into a predictable component,
x3,, and an unobservable error term, ¢;.

The treatment assignment process is

Lif wy+n>0
t= 3)
0 otherwise

where ~ is a coefficient vector, and 7) is an unobservable error term that is not related to either x or
w. The treatment assignment process is also separated into a predictable component, w'~y, and an
unobservable error term, 7.

We emphasize six points about this model:

1. The observed data from this model contain y;, t;, w;, and x;. The data do not reveal both g,
and yy; for any given .

2. The model for ¢ determines how the data on yp and y; are missing.

3. The model separates the potential outcomes and treatment assignment into observable and
unobservable components.

4. Whether 7 is independent of the vector (€g, €1) is essential in specifying the set of available
estimators.

5. The coefficient vectors 3, B;, and ~ are auxiliary parameters. We use estimates of these
coefficient vectors to estimate the ATE, the POMs, and the ATET.

6. For notational simplicity, we represented Yo and y; as linear functions. In practice, we can use
other functional forms.

In specifying this potential-outcome model, we explicitly showed the functional forms for the
potential outcomes and the treatment assignment process. To ease subsequent discussions, we refer
to the set of functional forms for the potential outcomes as the “outcome model”, and we refer to
the treatment assignment process as the “treatment model”.
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Assumptions needed for estimation

As with any type of estimator, we must make some assumptions to use treatment-effects estimators.
The particular assumptions we need for each estimator implemented by teffects and for each effect
parameter vary, but some version of each of the following is required.

CI The conditional-independence CI assumption restricts the dependence between the treatment
model and the potential outcomes.

Overlap The overlap assumption ensures that each individual could receive any treatment level.

i.i.d. The independent and identically distributed (i.i.d.) sampling assumption ensures that the
potential outcomes and the treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all other individuals in the population.

We now discuss each assumption in detail.

The Cl assumption

After conditioning on covariates, when no unobservable variable affects both treatment assignment
and the potential outcomes, the potential outcomes are conditionally independent of the treatment.
In epidemiological jargon, there are no unmeasured confounders. In econometric jargon, we have
selection on observables. If we observe enough covariates, the potential outcomes may indeed be
conditionally independent of the treatment.

Intuitively, the CI assumption says that only the covariates x affect both the treatment and the
potential outcomes. Any other factors that affect the treatment must be independent of the potential
outcomes, and any other factors that affect the potential outcomes must be independent of the treatment.
Formally, the CI assumption states that, conditional on covariates x, the treatment ¢ is independent of
the vector of potential outcomes (yo,y1)’.

The CI assumption allows us to estimate the effects by regression-adjustment (RA) methods, inverse-
probability-weighting (IPW) methods, methods that combine RA and IPW concepts, and matching
methods. The data only reveal information about E(yo|x, w,t = 0) and E(y1|x,w,t = 1), but we
are interested in an average of E(yo|x, w) and F(y1|x, W), where X represents the outcome covariates
and w the treatment-assignment covariates. The CI assumption allows us to estimate E(yo|x, w)
and E(y;|x, w) directly from the observations for which E(yo|x, w,t = 0) and E(y|x, w,t = 1),
respectively.

For our potential-outcome model presented in (1) through (3), the CI assumption can be viewed as a
set of restrictions on the covariance matrix of the error terms. Suppose that the vector of unobservables
(€0, €1,m) is normally distributed

€0 0 U% £010001  Prno0o
€1 ~ N 0 s | PO10001 O'% Pni01 (4)
n 0 Pno00o Py101 1

where o is the standard deviation of €g, pg; is the correlation between €y and €1, o is the standard
deviation of €1, p,o is the correlation between €, and €p, and p,1 is the correlation between ¢,
and €;. As is standard in the normally distributed latent-variable specification of a binary-dependent
variable, we normalize the variance of €, to 1.
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CI specifies that p,o = p,;1 = 0 so that we can write (4) as

€0 0 o5 po1ooor O
€1 ~ N 0 y P010001 0'% 0
. 0 0 0 1

Writing the covariance matrix this way makes clear what we mean by conditional independence:
unobserved shocks that affect whether a subject is treated do not have any effect on the potential
outcomes, and unobserved shocks that affect a potential outcome do not affect treatment.

The command teffects implements estimators that require the CI assumption. See [TE] etregress
and [TE] etpoisson for commands that handle two cases in which the CI assumption is replaced by
precise specifications of the joint dependence among the unobservables. Brown and Mergoupis (2011)
discuss the itreatreg command that extends [TE] etregress.

The CI assumption is also known as unconfoundedness and selection-on-observables in the literature.
See Rosenbaum and Rubin (1983); Heckman (1997); Heckman and Navarro-Lozano (2004); Cameron
and Trivedi (2005, sec. 25.2.1); Tsiatis (2006, sec. 13.3); Angrist and Pischke (2009, chap. 3); Imbens
and Wooldridge (2009); and Wooldridge (2010, sec. 21.3). Some discussions with Stata commands can
be found in Becker and Caliendo (2007), Nichols (2007), and Daniel, De Stavola, and Cousens (2011).

Q Technical note

In fact, full CI is stronger than what we need to estimate the ATE, the ATET, or the POMs.
For the estimators implemented in teffects, we only need a conditional mean independence
(cMmI) assumption. Intuitively, the CMI assumption says that after accounting for the covariates x;,
the treatment does not affect the conditional mean of each potential outcome. Formally, the CMI
requires that E(yo|x,t) = E(yo|x) and that E(y1|x,t) = E(y1|x). The CMI assumption allows the
conditional variance to depend on the treatment, while the CI assumption does not.

The CI assumption implies the CMI assumption, but not vice versa.

See Wooldridge (2010, sec. 21.2 and 21.3) for an excellent introduction to this topic, and see
Cattaneo, Drukker, and Holland (2013) for some discussion of the multiple treatment case.
Q

The overlap assumption

The overlap assumption requires that each individual have a positive probability of receiving each
treatment level. Formally, the overlap assumption requires that for each possible x in the population
and each treatment level £, 0 < Pr(t = ﬂx) < 1. Rosenbaum and Rubin (1983) call the combination
of the CI and overlap assumptions strong ignorability; see also Abadie and Imbens (2006, 237-238)
and Imbens and Wooldridge (2009).

The i.i.d. assumption

The third of the three assumptions listed above is the i.i.d. assumption; it is the standard assumption
of having an i.i.d. sample from the population. In potential-outcome models, i.i.d. sampling implies
that the potential outcomes and treatment status of each individual are unrelated to the potential
outcomes and treatment statuses of all the other individuals in the population. Li.d. sampling rules out
interactions among the individuals. For instance, models of vaccinations in epidemiology and general
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equilibrium effects in economics violate the independence assumption. This third assumption is a part
of what is known as the stable unit treatment value assumption (SUTVA); see Wooldridge (2010, 905)
and Imbens and Wooldridge (2009).

Comparing the ATE and ATET

When comparing the ATE and the ATET, two points should be mentioned.

First, the assumptions required to estimate the ATET are less restrictive than the assumptions
required to estimate the ATE. Estimating the ATET requires a weaker form of the CI assumption and
a weaker version of the overlap assumption.

To estimate the ATE under CI, we require that the unobservables in the treatment model be
conditionally independent of the unobservables in both potential outcomes. In contrast, we can estimate
the ATET under CI when the unobservables in the treatment model are conditionally independent of
just the control-level potential outcome; see Wooldridge (2010, 906-912).

Although the ATE version of overlap requires that all covariate patterns have a positive probability
of being allocated to each treatment state, we can estimate the ATET when only the covariate patterns
for which someone is treated have a positive probability of being allocated to each treatment state.
This weaker overlap assumption can be important in some studies. For example, Heckman (1997)
discusses how the ATET makes sense in job-training programs for which many types of individuals
have zero chance of signing up. See also Wooldridge (2010, 911-913).

Second, the ATET reduces to the ATE when the mean of the covariates among the treated is the
same as the mean of the covariates in the population and when the average contribution from the
unobservables for the participants is zero.

Overview of treatment-effect estimators

We can classify the estimators implemented by teffects into five categories: 1) estimators
based on a model for the outcome variable; 2) estimators based on a model for treatment assignment;
3) estimators based on models for both the outcome variable and the treatment assignment; 4) estimators
that match on covariates; and 5) estimators that match on predicted probabilities of treatment. Within
each category of estimator, there is a variety of choices about the functional forms for the models.

Because there are several categories of estimators, the user must decide whether to model the
outcomes, the probability of treatment, or both. Under correct model specification, using an outcome
model and a model for the probability of treatment will produce more efficient estimates. Surprisingly,
some of the estimators that use both models only require that one of the two be correctly specified
to consistently estimate the effects of interest, a property known as the double-robust property.

With the exception of using a matching estimator with a single continuous covariate, some choice
of functional forms is required. There are two aspects one must consider when choosing the functional
form for the outcome or treatment assignment. First, one must select the functional form for the
conditional mean or conditional probability; depending on the variable being modeled, a linear, a binary
choice, or an exponential model may be appropriate. Second, one must determine the appropriate
polynomials of the covariates to include in the model. teffects offers a wide variety of options
to specify different functional form choices for the conditional mean and conditional probability
models. The factor variable notation in Stata allows us to easily specify the desired polynomial in
the covariates.

We now provide some intuition behind each type of estimator.
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RA estimators

RA estimators use means of predicted outcomes for each treatment level to estimate each POM.
ATEs and ATETs are differences in estimated POMs.

The CI assumption implies that we can estimate F(yo|x) and E(y;|x) directly from the observations
for which ¢ = 0 and ¢ = 1, respectively. Regression adjustment fits separate regressions for each
treatment level and uses averages of the predicted outcomes over all the data to estimate the POMs.
The estimated ATEs are differences in the estimated POMs. The estimated ATETs are averages of the
predicted outcomes over the treated observations.

RA is a venerable estimator. See Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25);
Wooldridge (2010, chap. 21); and Vittinghoff, Glidden, Shiboski, and McCulloch (2012, chap. 9).
The usefulness of RA has been periodically questioned in the literature because it relies on specifying
functional forms for the conditional means and because it requires having sufficient observations of
each covariate pattern in each treatment level; see Rubin (1973) for an early salvo. Our experience
is that RA is an exceptionally useful base-case estimator. We describe its relative advantages and
disadvantages in the course of covering other estimators.

IPW estimators

IPW estimators use weighted averages of the observed outcome variable to estimate means of
the potential outcomes. The weights account for the missing data inherent in the potential-outcome
framework. Each weight is the inverse of the estimated probability that an individual receives a
treatment level. Outcomes of individuals who receive a likely treatment get a weight close to one.
Outcomes of individuals who receive an unlikely treatment get a weight larger than one, potentially
much larger.

IPW estimators model the probability of treatment without any assumptions about the functional
form for the outcome model. In contrast, RA estimators model the outcome without any assumptions
about the functional form for the probability of treatment model.

IPW estimators become extremely unstable as the overlap assumption gets close to being violated.
When the overlap assumption is nearly violated, some of the inverse-probability weights become very
large, IPW estimators produce erratic estimates, and the large-sample distribution provides a poor
approximation to the finite-sample distribution of 