STATA MULTIPLE-IMPUTATION
REFERENCE MANUAL

RELEASE 14

7)" \
o)

A Stata Press Publication
StataCorp LLC
College Station, Texas

E\?’\ ® Copyright (¢) 1985-2015 StataCorp LLC
:’J"’"\(N[Al rights reserved
A Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-160-9
ISBN-13: 978-1-59718-160-0

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATQ and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LLC.

Contents

intro substantive, Introduction to multiple-imputation analysis
INITO ettt e Introduction to mi
eStimationveuvnirnenenen... Estimation commands for use with mi estimate
miadd Add imputations from another mi dataset
Mi apPeNd .ot e Append mi data
ML CONVEIT .« v vttt e ettt et e et e e e et e e e Change style of mi data
INE COPY « ottt ettt e e et e e e e e e e Copy mi flongsep data
mi describe ... Describe mi data
0V S N Erase mi datasets
Mi eSHMALE ...ttt Estimation using multiple imputations
mi estimate using Estimation using previously saved estimation results
mi estimate postestimation Postestimation tools for mi estimate
Mi EXPANA .ot e Expand mi data
I EXPOTE + v vttt e ettt et e e e e e e e Export mi data
MI EXPOT ICE + ot ottt e ettt e e et e e et Export mi data to ice format
mi export nhanesl Export mi data to NHANES format
mi extractouiiiiiiiin... Extract original or imputed data from mi data
M AMPOTE Lottt ettt e e e e e e Import data into mi
mi import flong L Import flong-like data into mi
mi import flongsep ... Import flongsep-like data into mi
MiAMPOIE 1CE .« ot ottt ettt e et e e Import ice-format data into mi
mi import nhanesl Import NHANES-format data into mi
miimport wide Import wide-like data into mi
M AMPULE .ottt et e e e Impute missing values
mi impute chained Impute missing values using chained equations
mi impute intregotn it Impute using interval regression
mi impute logit Impute using logistic regression
mi impute mlogit Impute using multinomial logistic regression
mi impute MONOtONEvv v veneneneenenan.n Impute missing values in monotone data
miimpute mvn i Impute using multivariate normal regression
mi impute nbreg Impute using negative binomial regression
mi impute ologit, Impute using ordered logistic regression
mi impute pmmiinininninenan.. Impute using predictive mean matching
Mi IMPULE POISSON . e vt vttt et e e ee e eeenen Impute using Poisson regression
Mi IMPULE TEETESS .« v v v v e ettt e et ie e eeeeeenen Impute using linear regression
mi iMpute trunCregvvit et Impute using truncated regression
mi impute usermethod User-defined imputation methods
I INEIZE « v vttt et et et e e et e e e e e e e e Merge mi data
mi misstable Tabulate pattern of missing values
MI PASSIVE « vt ettt et Generate/replace and register passive variables
mi predict Obtain multiple-imputation predictions
ML PLACE .+ v vt ittt e e e et Load parameter-trace file into Stata
MI TENAIME .+ o\ vttt ettt ettt e e e e e e e e e e e Rename variable
mi replacel Replace original data
I TESCE ottt et et e e e e e Reset imputed or passive variables
M TEShAPE . . ot e Reshape mi data

15
22

25
28
31
34
36
40
4]
70
79
81
83
85
87
90
92
95
98
102
106
111
114
139
167
176
182
188
205
232
238
243
249
254
260
266
281
285
287
292
306
309
312
314
317

ii Contents

miselect Programmer’s alternative to mi extract
L SEL &ttt et e e e Declare multiple-imputation data
mi StSplit ... Stsplit and stjoin mi data
M EESE ottt e e Test hypotheses after mi estimate
MiUPdate . ..ot Ensure that mi data are consistent
Mi Varyingo.venenennnnenennnnnn. Identify variables that vary across imputations
10 (< [Execute command(s) on individual imputations
mi XXXSEt .o Declare mi data to be svy, st, ts, xt, etc.
noupdate OPLioNttt e The noupdate option
Sy S e e Dataset styles
technical Details for programmers
WOTKHIOW . L Suggested workflow
GlOSSATY .ottt

Subject and author INAEXttt

319
321
325
328
337
340
343
346

348
350
358
370

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:
[GSM] Getting Started with Stata for Mac

[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[D] Stata Data Management Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[1] Stata Glossary and Index

[M] Mata Reference Manual

Title

intro substantive — Introduction to multiple-imputation analysis

Description Remarks and examples References Also see

Description

Missing data arise frequently. Various procedures have been suggested in the literature over the
last several decades to deal with missing data (for example, Anderson [1957]; Hartley and Hocking
[1971]; Rubin [1972, 1987]; and Dempster, Laird, and Rubin [1977]). The technique of multiple
imputation, which originated in early 1970 in application to survey nonresponse (Rubin 1976), has
gained popularity increasingly over the years as indicated by literature (for example, Rubin [1976,
1987, 1996]; Little [1992]; Meng [1994]; Schafer [1997]; van Buuren, Boshuizen, and Knook [1999];
Little and Rubin [2002]; Carlin et al. [2003]; Royston [2004, 2005a, 2005b, 2007, 2009]; Reiter and
Raghunathan [2007]; Carlin, Galati, and Royston [2008]; Royston, Carlin, and White [2009]; White,
Royston, and Wood [2011]; and Carpenter and Kenward [2013]).

This entry presents a general introduction to multiple imputation and describes relevant statistical
terminology used throughout the manual. The discussion here, as well as other statistical entries in
this manual, is based on the concepts developed in Rubin (1987) and Schafer (1997).

Remarks and examples

Remarks are presented under the following headings:

Motivating example

What is multiple imputation?

Theory underlying multiple imputation
How large should M be?
Assumptions about missing data
Patterns of missing data

Proper imputation methods

Analysis of multiply imputed data

A brief introduction to MI using Stata
Summary

We will use the following definitions and notation.

An imputation represents one set of plausible values for missing data, and so multiple imputations
represent multiple sets of plausible values. With a slight abuse of the terminology, we will use the
term imputation to mean the data where missing values are replaced with one set of plausible values.

We use M to refer to the number of imputations and m to refer to each individual imputation;
that is, m = 1 means the first imputation, m = 2 means the second imputation, and so on.

Motivating example

Consider a fictional case—control study examining a relationship between smoking and heart attacks.

2 intro substantive — Introduction to multiple-imputation analysis

. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. describe

Contains data from http://www.stata-press.com/data/r14/mheart0.dta

obs: 154 Fictional heart attack data;
bmi missing
vars: 9 19 Jun 2014 10:50
size: 2,310
storage display value
variable name type format label variable label
attack byte %9.0g Outcome (heart attack)
smokes byte %9.0g Current smoker
age float %9.0g Age, in years
bmi float %9.0g Body Mass Index, kg/m"2
female byte %9.0g Gender
hsgrad byte %9.0g High school graduate
marstatus byte %9.0g mar Marital status: single, married,
divorced
alcohol byte %24.0g alc Alcohol consumption: none, <2
drinks/day, >=2 drinks/day
hightar byte %9.0g Smokes high tar cigarettes
Sorted by:

In addition to the primary variables attack and smokes, the dataset contains information about
subjects’ ages, body mass indexes (BMIs), genders, educational statuses, marital statuses, alcohol
consumptions, and the types of cigarettes smoked (low/high tar).

We will use logistic regression to study the relationship between attack, recording heart attacks,
and smokes:

. logit attack smokes age bmi hsgrad female

Iteration O: log likelihood = -91.359017
Iteration 1: log likelihood = -79.374749
Iteration 2: log likelihood = -79.342218
Iteration 3: log likelihood = -79.34221
Logistic regression Number of obs = 132
LR chi2(5) = 24.03
Prob > chi2 = 0.0002
Log likelihood = -79.34221 Pseudo R2 = 0.1315
attack Coef . Std. Err. z P>|z| [95% Conf. Intervall
smokes 1.544053 .3998329 3.86 0.000 .7603945 2.327711
age .026112 .017042 1.53 0.125 -.0072898 .0595137
bmi .1129938 .0500061 2.26 0.024 .0149837 .211004
hsgrad .4048251 .4446019 0.91 0.363 -.4665786 1.276229
female .2255301 .4527558 0.50 0.618 -.6618549 1.1129156
_cons -5.408398 1.810603 -2.99 0.003 -8.957115 -1.85968

The above analysis used 132 observations out of the available 154 because some of the covariates
contain missing values. Let’s examine the data for missing values, something we could have done
first:

intro substantive — Introduction to multiple-imputation analysis 3

. misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
bmi 22 132 132 17.22643 38.24214

We discover that bmi is missing in 22 observations. Our analysis ignored the information about the
other covariates in these 22 observations. Can we somehow preserve this information in the analysis?
The answer is yes, and one solution is to use multiple imputation.

What is multiple imputation?

Multiple imputation (MI) is a flexible, simulation-based statistical technique for handling missing
data. Multiple imputation consists of three steps:

1. Imputation step. M imputations (completed datasets) are generated under some chosen
imputation model.

2. Completed-data analysis (estimation) step. The desired analysis is performed separately on
each imputation m = 1, ..., M. This is called completed-data analysis and is the primary
analysis to be performed once missing data have been imputed.

3. Pooling step. The results obtained from M completed-data analyses are combined into a
single multiple-imputation result.

The completed-data analysis step and the pooling step can be combined and thought of generally
as the analysis step.

MI as a missing-data technique has two appealing main features: 1) the ability to perform a
wide variety of completed-data analyses using existing statistical methods; and 2) separation of the
imputation step from the analysis step. We discuss these two features in more detail in what follows.

Among other commonly used missing-data techniques that allow a variety of completed-data
analyses are complete-case analysis or listwise (casewise) deletion, available-case analysis, and single-
imputation methods. Although these procedures share one of MI’s appealing properties, they lack
some of MI’s statistical properties.

For example, listwise deletion discards all observations with missing values and thus all information
contained in the nonmissing values of these observations. With a large number of missing observations,
this may lead to results that will be less efficient (larger standard errors, wider confidence intervals,
less power) than MI results. In situations when the remaining complete cases are not representative
of the population of interest, listwise deletion may also lead to biased parameter estimates.

In our opening logistic analysis of heart attacks, we used listwise deletion. The effect of age
was not statistically significant based on the reduced sample. The MI analysis of these data (see A
brief introduction to MI using Stata below) will reveal the statistical significance of age by using all
available observations after imputing missing values for BMI.

Unlike listwise deletion, single-imputation methods do not discard missing values. They treat the
imputed values as known in the analysis. This underestimates the variance of the estimates and so
overstates precision and results in confidence intervals and significance tests that are too optimistic.
MI rectifies this problem by creating multiple imputations and taking into account the sampling
variability due to the missing data (between-imputation variability). See Little and Rubin (2002) and
Allison (2001), among others, for a more detailed comparison of the methods.

4 intro substantive — Introduction to multiple-imputation analysis

The independence of the imputation step from the analysis step is the property MI shares with
other imputation methods. The imputation step fills in missing values. The analysis step provides
inference about multiply imputed results and does not require any information about the missing-data
aspect of the problem.

The separation of the two steps allows different individuals, a data collector/imputer and a
data analyst, to perform these steps independently of one another. The advantage is that the data
collector/imputer usually has access to more information about the data than may be disclosed to the
data analyst and thus can create more accurate imputations. The data analyst can use the imputed
data released by the data collector in a number of different analyses. Of course, it is crucial that the
imputer make the imputation model as general as possible to accommodate a wide variety of analyses
that the data analyst might choose to perform; see Proper imputation methods below for details.

In our heart attack example, the imputer would create multiple imputations of missing values of
BMI using, for example, a linear regression method, and then release the resulting data to the analyst.
The analyst could then analyze these multiply imputed data using an ordinary logistic regression.
That is, no adjustment is needed to the analysis model itself to account for missing BMI—the pooling
portion of the analysis will account for the increased variability because of imputed missing data.

Theory underlying multiple imputation

MI was derived using the Bayesian paradigm yet was proved to be statistically valid from the
frequentist (randomization-based) perspective. We use the definition from Rubin (1996) of statistical
validity that implies approximately unbiased point estimates and implies confidence intervals achieving
their nominal coverages when averaged over the randomization distributions induced by the known
sampling and the posited missing-data mechanisms.

To explain the role the Bayesian and frequentist concepts play in MI, we need to consider the MI
procedure in more detail. MI requires specification of two models—the imputation model and the
analysis model. The imputation model is the model used to create imputations in the imputation step.
The analysii model is the completed-data model used during the analysis step to obtain completed-data
estinges, Q, of parameters of interest, (), and the estimate, U, of sampling variability associated
with Q. During the pooling step, the individual completed-data estimates (@, U) are combined into

(Qw, T') to form one repeated-imputation inference. The statistical validity of the repeated-imputation
inference is of interest.

Consider the case when both the imputation model and the analysis model are the same Bayesian
models. Then the repeated imputations (multiple imputations) are repeated draws from the posterior
predictive cgstribution of the missing data under a posited Bayesian model. The combined parameter
estimates, (Q1, and their associated sampling variance estimate, 7' = W + B, are the approximations
to the posterior mean and variance of (). Here W represents the within-imputation variability (average
of the completed-data variance estimates, U), and B represents the between-imputation variability
(variance estimate of @MI over repeated imputations). Provided that the posterior mean and variance
are adequate summaries of the posterior distribution, the repeated-imputation inference based on
these combined estimates can be justified either from a purely Bayesian standpoint or from a purely
frequentist standpoint. Thus a Bayesian apparatus is used to create imputations and also underlies the
rules for combining parameter estimates.

In reality, the analysis model is rarely the same as the imputation model, and neither of them is an
explicit Bayesian model. Repeated-imputation inference is still statistically valid in those cases. The
rigorous justification is given in chapters 3 and 4 of Rubin (1987) from the frequentist perspective.
Below we briefly summarize the conditions under which the repeated-imputation inference from the
pooling step is statistically valid; also see Rubin (1987, 117-119) for more detail.

intro substantive — Introduction to multiple-imputation analysis 5

The repeated-imputation inference is statistically valid if 1) the multiple imputations from the
imputation step are proper (see Proper imputation methods below) and 2) the completed-data inference

based on (Q,U) from the analysis step is randomization valid. Completed-data inference based on

(Q,U) is randomization valid if Q ~ N{Q, Var(Q)} and U is a consistent estimate of Var(Q)
over the distribution of the sampling mechanism.

The randomization validity of MI was derived under the assumption of an infinite number of
imputations. In practice, however, the number of imputations tends to be small and so the finite-
M properties of the MI estimators must be explored. Rubin (1987) derives the fundamental result
underlying the MI inference based on a finite M. We restate it below for a scalar Q:

T]\7[1/2(Q - QM) ~ tl/M

where Q) is the average of M completed-data estimates of Q, Thy = W + (1 4+ 1/M)B, and t,,,
is a Student’s ¢ distribution with degrees of freedom v, that depend on the number of imputations
and rates of missing information (or the fraction of information missing because of nonresponse that
measures the influence of the missing data on parameter estimates). Later, Li, Raghunathan, and
Rubin (1991b) derived an improved procedure for multiple testing, and Barnard and Rubin (1999)
and Reiter (2007) extended the MI inference to account for small samples. For computation details,
see Methods and formulas in [MI] mi estimate.

How large should M be?

The theory underlying the validity of MI relies on an infinite number of imputations, M. The
procedure is also known to have good statistical properties with finite M, but what values of M
should we use in practice? Rubin (1987, 114) answers this question: the asymptotic relative efficiency
(RE) of the MI procedure with finite M compared with infinite M is roughly 90% with only two
imputations for a missing-information rate as high as 50%.

Most literature (for example, Rubin [1987] and van Buuren, Boshuizen, and Knook [1999]) suggests
that M = 5 (corresponding to RE of 95% for 50% of information missing) should be sufficient to
obtain valid inference. In general, however, the actual number of imputations necessary for MI to
perform satisfactorily depends not only on the amount of information missing due to nonresponse but
also on the analysis model and the data. Some analyses may require M to be 50 or more to obtain
stable results (Kenward and Carpenter 2007; Horton and Lipsitz 2001).

Literature with formal recommendations on how to choose M is very sparse. Royston (2004),
Royston, Carlin, and White (2009), and White, Royston, and Wood (2011) discuss the impact of the
number of imputations on the precision of estimates and suggest ways of determining the required
number of imputations by evaluating the sampling error of the MI estimates.

Because it is computationally feasible to obtain more imputations, we recommend using at least
20 imputations to reduce the sampling error due to imputations.

Assumptions about missing data

The theory underlying MI methodology makes no assumption about the missing-data mechanism.
However, many imputation methods (including those provided by Stata) require that the missing-
data mechanism be ignorable. Before we discuss the ignorability conditions, consider the following
definitions.

6 intro substantive — Introduction to multiple-imputation analysis

Missing data are said to be missing completely at random (MCAR) if the probability that data are
missing does not depend on observed or unobserved data. Under MCAR, the missing-data values are a
simple random sample of all data values, and so any analysis that discards the missing values remains
consistent, albeit perhaps inefficient.

Consider a hypothetical longitudinal study comparing different blood-pressure treatments. Suppose
that the follow-up blood-pressure measurements were not collected from some subjects because they
moved to a different area. These missing blood-pressure measurements can be viewed as MCAR as
long as subjects’ decisions to move were unrelated to any item in the study.

Missing data are said to be missing at random (MAR) if the probability that data are missing does
not depend on unobserved data but may depend on observed data. Under MAR, the missing-data values
do not contain any additional information given observed data about the missing-data mechanism.
Note that MCAR can be viewed as a particular case of MAR. When missing data are MAR, listwise
deletion may lead to biased results.

Suppose that some subjects decided to leave the study because of severe side effects from the
assigned treatment of a high dosage of a medicine. Here it is unlikely that missing blood-pressure
measurements are MCAR because the subjects who received a higher dosage of the medicine are more
likely to suffer severe side effects than those who received a lower dosage and thus are more likely
to drop out of the study. Missing blood-pressure measurements depend on the dosage of the received
treatment and therefore are MAR.

On the other hand, if the subjects are withdrawn from the study for ethical reasons because
of extremely high blood pressures, missing blood-pressure measurements would not be MAR. The
measurements for the subjects with very high blood pressures will be missing and thus the reason
for drop out will depend on the missing blood pressures. This type of missing-data mechanism is
called missing not at random (MNAR). For such missing data, the reasons for its missingness must be
accounted for in the model to obtain valid results.

Model parameters are said to be distinct from a Bayesian standpoint if their joint prior distribution
can be factorized into independent marginal prior distributions.

The missing-data mechanism is said to be ignorable if missing data are MAR and the parameters
of the data model and the parameters of the missing-data mechanism are distinct (Rubin 1976).

The ignorability assumption makes it possible to ignore the process that causes missing data in the
imputation model—something not possible with MNAR—which simplifies the imputation step while
still ensuring correct inference. The provided imputation methods assume that missing data are MAR.

In practice, it is difficult to test the ignorability assumption formally because the MAR mechanism
can be distinguished from the MNAR mechanism only through the missing data that are not observed.
Thus careful consideration is necessary before accepting this assumption. If in doubt, sensitivity
analysis—analysis repeated under various missing-data models—needs to be performed to verify the
stability of inference. In the context of MI, sensitivity analysis can be performed by modifying the
imputation step to accommodate the nonignorable missing-data mechanism (for example, Kenward
and Carpenter [2007] and van Buuren, Boshuizen, and Knook [1999]).

Patterns of missing data

Another issue we need to consider related to missing data is a pattern of missingness (or missing-data
pattern).

Consider an N x p data matrix ¥ = (Y1,Y2,...,Y,)" with p variables and N observations.
Consider a permutation of column indices (i1, 42, ..., %p) such that Y;, is at least as observed as Y;,,

which is at least as observed as Y;,, and so on. In other words, Y;, has missing values in the same

intro substantive — Introduction to multiple-imputation analysis 7

observations (and possibly more) as Y;,, Y;, has missing values (and possibly more) in the same
observations as Y;,, and so on. If such a permutation exists, then the pattern of missingness in Y is
said to be monotone. If the pattern of missingness is not monotone, it is assumed to be arbitrary.

For example, consider the following indicator matrix recording the missing pattern in Y:

Ry =

—= = O =

1
1
1
1

oo o

where Rij is 1 if variable Y; is observed (complete) in observation 4 and O otherwise. We can see
that Y has a monotone-missing pattern if we interchange the first and the third columns of R;. In
fact, if we also rearrange the rows such that

R =

_ == =
O ==
SO O

then the monotonicity of missing values becomes even more evident. An example of a nonmonotone
missing-value pattern is

==
o O =

Ry =

—_ O = =

0 0

There is no ordering of the first two columns of Rg such that the missing values in one column imply
missing values in the other column.

Why is it important to consider the monotone missing-value pattern? A monotone-missing pattern
greatly simplifies the imputation task. Under a monotone-missing pattern, a multivariate imputation
task can be formulated as a sequence of independent univariate (conditional) imputation tasks, which
allows the creation of a flexible imputation model; see [MI] mi impute monotone for details, and
see Rubin (1987, 174) for more technical conditions under which such a formulation is applicable.

Proper imputation methods

As we mentioned earlier, a key concept underlying the randomization-based evaluations of the
repeated-imputation inference is proper multiple imputation.

A multiple-imputation method is said to be proper if it produces proper multiple imputations,
which we are about to define. Rubin (1987, 118-119) gives a full technical definition for proper
multiple imputations. Ignoring the more technical definition, Rubin (1996) states the following main
conditions. The multiple imputations are said to be proper if

1. MI estimates (Qyp are asymptotically normal with mean () and a consistent variance—
covariance estimate B.

2. The within-imputation variance estimate W is a consistent estimate of the variance—covariance
estimate U with variability of a lower order than Var(Qwr).

The above statements assume a large number of imputations and the randomization distribution
induced by the missing-data mechanism.

8 intro substantive — Introduction to multiple-imputation analysis

In general, it is difficult to determine if an imputation method is proper using the above definition.
Rubin (1987, sec. 4.3) and Binder and Sun (1996) describe several examples of proper and improper
imputation methods. Rubin (1987, 125-127) recommends drawing imputations from a Bayesian
posterior predictive distribution (or an appropriate approximation to it) of missing values under the
chosen model for the data and the missing-data mechanism. The chosen imputation model must also
be appropriate for the completed-data statistics likely to be used at the analysis stage. Schafer (1997,
145) points out that from a practical standpoint, it is more important that the chosen imputation model
performs well over the repeated samples than that it be technically proper. This can be checked via
simulation.

With the exception of predictive mean matching and chained equations, the imputation methods
available in Stata obtain imputations by simulating from a Bayesian posterior predictive distribution
of the missing data (or its approximation) under the conventional (or chosen) prior distribution; see
Imputation methods in [MI] mi impute for details. To ensure that the multiple imputations are proper,
you must choose an appropriate imputation model, which we briefly discuss next.

The imputation model must include all predictors relevant to the missing-data mechanism, and it
must preserve all data characteristics likely to be explored at the analysis stage. For example, if the
analysis model explores a correlation between two variables, then omitting either of those variables
from the imputation model will lead to estimates of the correlation biased toward zero. Another
common mistake that may lead to biased estimates is when an outcome variable of the analysis model
is not used in the imputation model. In the survey context, all structural variables such as sampling
weights, strata, and cluster identifiers (or at least main strata and main clusters) need to be included
in the imputation model.

In general, any predictors involved in the definition of the completed-data estimators and the
sampling design should be included in the imputation model. If you intend to use the multiply
imputed data in an analysis involving a wide range of completed-data estimators, you should include
as many variables as possible.

Using our heart attack data, if we were to release the multiply imputed version of it for general
analyses, we would have included all available covariates as predictors in the regression model used
to impute BMI and not only the subset of covariates (heart attacks, smoking status, age, gender, and
educational status) used in our specific data analysis.

The severity of the effect of a misspecified imputation model will typically depend on the amount of
imputed data relative to the observed data—a small number of observations with improperly imputed
values may not affect the inference greatly if there is a large number of observations with complete
data.

For more details about imputation modeling, see Rubin (1996), Schafer (1997, 139-144), Schafer
and Olsen (1998), Allison (2001), Schafer and Graham (2002), Kenward and Carpenter (2007),
Graham (2009), and White, Royston, and Wood (2011), among others. For imputation modeling of
large surveys, see, for example, Schafer, Khare, and Ezzati-Rice (1993) and Ezzati-Rice et al. (1995).

Analysis of multiply imputed data

Once we have multiply imputed data, we perform our primary analysis on each completed dataset
and then use Rubin’s combination rules to form one set of results. Assuming that the underlying
imputation model is properly specified (see, for example, Abayomi, Gelman, and Levy [2008] and
Gelman et al. [2005] for multiple-imputation diagnostics), we can choose from a variety of statistical
methods. For example, the methods can include maximum likelihood methods, survey methods,
nonparametric methods, and any other method appropriate for the type of data we have.

intro substantive — Introduction to multiple-imputation analysis 9

Each of the methods have certain concepts associated with them. For example, maximum likelihood
methods use a likelihood function, whereas a deviance is associated with generalized linear models.
While these concepts are well defined within each individual completed-data analysis, they may not
have a clear interpretation when the individual analyses are combined in the pooling step. (Only in
the special case when the imputation and analysis models are compatible Bayesian models can the
estimated parameters be viewed as approximations to the mode of the posterior distribution.)

As a result, various statistical (postestimation) procedures based on these concepts, such as
likelihood-ratio tests, goodness-of-fit tests, etc., are not directly applicable to MI results. Instead,
their “MI” versions are being studied in the literature (Li et al. 1991a; Meng and Rubin 1992).
Another concept that is not uniquely defined within MI is that of prediction; see Carlin, Galati, and
Royston (2008) and White, Royston, and Wood (2011) for one definition.

Donald Bruce Rubin (1943-) was born in Washington, DC. He entered Princeton intending
to become a physicist but ended up majoring in psychology. He entered Harvard intending
to continue as a psychologist, but in the event, gained further degrees in computer science
and statistics. After periods at the Educational Testing Service and the University of Chicago,
Rubin returned to Harvard in 1984. He has had many visiting appointments and has carried out
extensive consultancy work. Rubin has long been a leader in research on causal inference in
experiments and observational studies, and problems of nonresponse and missing data. Among
many major contributions is his formalization of the expectation-maximization algorithm with
Arthur Dempster and Nan Laird. Rubin’s work ranges over a wide variety of sciences and is
often Bayesian in style. Rubin was elected a member of the National Academy of Sciences in
2010.

A brief introduction to Ml using Stata

Stata offers full support for MI analysis from the imputation step to the pooling step.

The imputation step can be performed for one variable or multiple variables. A number of
imputation methods, including flexible methods accommodating variables of different types and an
iterative Markov chain Monte Carlo method based on multivariate normal, are available; see [MI] mi
impute for details.

The analysis and pooling steps are combined into one step and performed by mi estimate;
see [MI] mi estimate. You can fit many commonly used models and obtain combined estimates
of coefficients (or transformed coefficients) (see [MI] estimation for a list of supported estimation
commands), or you can create your own estimation command and use it with the mi estimate prefix.

In addition to the conventional estimation steps, Stata facilitates many data-manipulation routines
for managing your multiply imputed data and verifying its integrity over the imputations; see [MI] intro
for a full list of commands.

As a short demonstration of mi, let’s analyze the heart attack data introduced earlier using MI; see
[MI] workflow for more thorough guidelines.

The goals are 1) to fill in missing values of bmi using, for example, a linear regression imputation
method (mi impute regress) to obtain multiply imputed data and 2) to analyze the multiply imputed
data using logistic regression, which we will do using mi estimate. Before we can accomplish these
two steps, we need to prepare the data so they can be used with mi. First, we declare the data to be
mi data:

10 intro substantive — Introduction to multiple-imputation analysis

. use http://www.stata-press.com/data/r14/mheart0
(Fictional heart attack data; bmi missing)

. mi set mlong

We choose to use the data in the marginal long style (mlong) because it is a memory-efficient style;
see [MI] styles for details.

To use mi impute, we must first register imputation variables. In general, we recommend that you
register all variables relevant to the analysis as imputed, passive, or regular with mi register
(see [MI] mi set), especially if you plan on doing any data management of your multiply imputed
data.

. mi register imputed bmi
(22 m=0 obs. now marked as incomplete)
. mi register regular attack smokes age hsgrad female

We are now ready to use mi impute. To lessen the simulation (Monte Carlo) error, we arbi-
trarily choose to create 20 imputations (add (20) option). We also specify the rseed() option for
reproducibility:

. mi impute regress bmi attack smokes age hsgrad female, add(20) rseed(2232)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

From the output, we see that all 22 incomplete values of bmi were successfully imputed. You may
want to examine your imputations to verify that nothing abnormal occurred during imputation. For
example, as a quick check, we can compare main descriptive statistics from some imputations (say,
the first and the last one) to those from the observed data. We use mi xeq (see [MI] mi xeq) to
execute Stata’s summarize command on the original data (m = 0), the first imputation (m = 1),
and the last imputation (m = 20):

. mi xeq 0 1 20: summarize bmi

m=0 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 132 25.24136 4.027137 17.22643 38.24214
m=1 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 154 25.28134 3.969649 17.22643 38.24214
m=20 data:
-> summarize bmi
Variable Obs Mean Std. Dev. Min Max
bmi 154 25.30992 4.05665 16.44644 38.24214

The summary statistics of the imputed datasets look reasonable.

intro substantive — Introduction to multiple-imputation analysis 11

We now fit the logistic regression using the mi estimate prefix command:

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0611
Largest FMI = 0.2518
DF adjustment: Large sample DF: min = 311.30
avg = 116,139.89
max = 252,553.06
Model F test: Equal FMI F(5,19590.7) = 3.52
Within VCE type: 0IM Prob > F = 0.0035
attack Coef. Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.222431 .3608138 3.39 0.001 .5152409 1.92962
age .0358403 .0154631 2.32 0.020 .0055329 .0661476
bmi .1094125 .0518803 2.11 0.036 .0073322 .2114929
hsgrad .1740094 .4055789 0.43 0.668 -.6209156 .9689344
female -.0985455 .4191946 -0.24 0.814 -.9201594 . 7230684
_cons -5.625926 1.782136 -3.16 0.002 -9.124984 -2.126867

Compared with the earlier logit analysis (using listwise deletion), we detect the significance of age,
whose effect was apparently disguised by the missing data. See [MI] mi estimate for details.

We will be using variations of these data throughout the mi documentation.

Summary

e MI is a simulation-based procedure. Its purpose is not to re-create the individual missing
values as close as possible to the true ones but to handle missing data in a way resulting in
valid statistical inference (Rubin 1987, 1996).

e MI yields valid inference if 1) the imputation method is proper with respect to the posited
missing-data mechanism (see Proper imputation methods above) and 2) completed-data
analysis is valid in the absence of missing data.

e A small number of imputations (5 to 20) may be sufficient when fractions of missing data
are low. High fractions of missing data as well as particular data structures may require up
to 100 (or more) imputations. Whenever feasible to do so, we recommend that you vary the
number of imputations to see if this affects your results.

e With a small number of imputations, the reference distribution for the MI inference is
Student’s ¢ (or F' in multiple-hypothesis testing). The residual degrees of freedom depend
on M and the rates of missing information and thus are different for each parameter of
interest.

e With a large number of imputations, the reference distribution for MI inference is approximately
normal (or x2 in multiple-hypothesis testing).

e When the imputer’s model is more restrictive than the analyst’s model, the MI inference can
be invalid if the imputer’s assumptions are not true. On the other hand, when the analyst’s
model is more restrictive than the imputer’s model, the MI results will be valid but somewhat
conservative if the analyst’s assumptions are true. If the analyst’s assumptions are false, the
results can be biased; see, for example, Schafer (1997) for details.

12 intro substantive — Introduction to multiple-imputation analysis

e MI is relatively robust to departures from the correct specification of the imputation model,
provided the rates of missing information are low and the correct completed-data model is
used in the analysis.

e Certain concepts, for example, likelihood and deviance, do not have clear interpretation
within the MI framework. As such, various statistical (postestimation) procedures based on
these concepts (for example, likelihood-ratio tests, goodness-of-fit tests) are not directly
applicable to MI results.

References

Abayomi, K. A., A. Gelman, and M. Levy. 2008. Diagnostics for multivariate imputations. Journal of the Royal
Statistical Society, Series C 57: 273-291.

Allison, P. D. 2001. Missing Data. Thousand Oaks, CA: Sage.

Anderson, T. W. 1957. Maximum likelihood estimates for a multivariate normal distribution when some observations
are missing. Journal of the American Statistical Association 52: 200-203.

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York:
Springer.

——. 2001. Conditionally specified distributions: An introduction. Statistical Science 16: 249-274.

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Binder, D. A., and W. Sun. 1996. Frequency valid multiple imputation for surveys with a complex design. Proceedings
of the Survey Research Methods Section, American Statistical Association 281-286.

Carlin, J. B., J. C. Galati, and P. Royston. 2008. A new framework for managing and analyzing multiply imputed
data in Stata. Stata Journal 8: 49-67.

Carlin, J. B., N. Li, P. Greenwood, and C. Coffey. 2003. Tools for analyzing multiple imputed datasets. Stata Journal
3: 226-244.

Carpenter, J. R., and M. G. Kenward. 2013. Multiple Imputation and its Application. Chichester, UK: Wiley.

Dardanoni, V., G. De Luca, S. Modica, and F. Peracchi. 2012. A generalized missing-indicator approach to regression
with imputed covariates. Stata Journal 12: 575-604.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B 39: 1-38.

Ezzati-Rice, T. M., W. Johnson, M. Khare, R. J. A. Little, D. B. Rubin, and J. L. Schafer. 1995. A simulation study
to evaluate the performance of model-based multiple imputations in NCHS health examination surveys. Proceedings
of the Annual Research Conference, 257-266. U.S. Bureau of the Census: Washington, DC.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian Data Analysis.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science
7: 457-472.

Gelman, A., I. Van Mechelen, G. Verbeke, D. F. Heitjan, and M. Meulders. 2005. Multiple imputation for model
checking: Completed-data plots with missing and latent data. Biometrics 61: 74-85.

Graham, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60:
549-576.

Hartley, H. O., and R. R. Hocking. 1971. The analysis of incomplete data (with discussion). Biometrics 27: 783-823.

Horton, N. J., and K. P. Kleinman. 2007. Much ado about nothing: A comparison of missing data methods and
software to fit incomplete data regression models. American Statistician 61: 79-90.

Horton, N. J., and S. R. Lipsitz. 2001. Multiple imputation in practice: Comparison of software packages for regression
models with missing variables. American Statistician 55: 244-254.

Jenkins, S. P, R. V. Burkhauser, S. Feng, and J. Larrimore. 2011. Measuring inequality using censored data: a
multiple-imputation approach to estimation and inference. Journal of the Royal Statistical Society, Series A 174:
63-81.

http://www.stata-journal.com/sjpdf.html?articlenum=st0139
http://www.stata-journal.com/sjpdf.html?articlenum=st0139
http://www.stata-journal.com/sjpdf.html?articlenum=st0042
http://www.stata.com/bookstore/multiple-imputation-and-its-application
http://www.stata-journal.com/article.html?article=st0273
http://www.stata-journal.com/article.html?article=st0273

intro substantive — Introduction to multiple-imputation analysis 13

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives. Statistical Methods in Medical
Research 16: 199-218.

Lee, K. J., and J. B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus
multivariate normal imputation. American Journal of Epidemiology 171: 624-632.

Li, C. 2013. Little’s test of missing completely at random. Stata Journal 13: 795-809.
Li, F, and F. Mealli. 2014. A conversation with Donald B. Rubin. Statistical Science 29: 439-457.
Li, K.-H. 1988. Imputation using Markov chains. Journal of Statistical Computation and Simulation 30: 57-79.

Li, K.-H., X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991a. Significance levels from repeated p-values with
multiply-imputed data. Statistica Sinica 1: 65-92.

Li, K.-H., T. E. Raghunathan, and D. B. Rubin. 1991b. Large-sample significance levels from multiply imputed data
using moment-based statistics and an F reference distribution. Journal of the American Statistical Association 86:
1065-1073.

Little, R. J. A. 1988. Missing-data adjustments in large surveys. Journal of Business and Economic Statistics 6:
287-296.

——. 1992. Regression with missing X’s: A review. Journal of the American Statistical Association 87: 1227-1237.
Little, R. J. A., and D. B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. Hoboken, NJ: Wiley.

Marchenko, Y. V., and J. P. Reiter. 2009. Improved degrees of freedom for multivariate significance tests obtained
from multiply imputed, small-sample data. Stata Journal 9: 388-397.

Meng, X.-L. 1994. Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical
Science 9: 538-573.

Meng, X.-L., and D. B. Rubin. 1992. Performing likelihood ratio tests with multiply-imputed data sets. Biometrika
79: 103-111.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

——. 2008. Multiple imputation when records used for imputation are not used or disseminated for analysis. Biometrika
95: 933-946.

Reiter, J. P, and T. E. Raghunathan. 2007. The multiple adaptations of multiple imputation. Journal of the American
Statistical Association 102: 1462-1471.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Royston, P, J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values: New features for mim. Stata
Journal 9: 252-264.

Rubin, D. B. 1972. A non-iterative algorithm for least squares estimation of missing values in any analysis of variance
design. Journal of the Royal Statistical Society, Series C 21: 136-141.

——. 1976. Inference and missing data. Biometrika 63: 581-592.

——. 1986. Statistical matching using file concatenation with adjusted weights and multiple imputations. Journal of
Business and Economic Statistics 4: 87-94.

——. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
——. 1996. Multiple imputation after 18+ years. Journal of the American Statistical Association 91: 473-489.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

http://www.stata-journal.com/article.html?article=st0318
http://www.stata-journal.com/sjpdf.html?articlenum=st0170
http://www.stata-journal.com/sjpdf.html?articlenum=st0170
http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4
http://www.stata-journal.com/sjpdf.html?articlenum=st0139_1

14 intro substantive — Introduction to multiple-imputation analysis

Schafer, J. L., and J. W. Graham. 2002. Missing data: Our view of the state of the art. Psychological Methods 7:
147-177.

Schafer, J. L., M. Khare, and T. M. Ezzati-Rice. 1993. Multiple imputation of missing data in NHANES IIL
Proceedings of the Annual Research Conference, 459-487. U.S. Bureau of the Census: Washington, DC.

Schafer, J. L., and M. K. Olsen. 1998. Multiple imputation for multivariate missing-data problems: A data analyst’s
perspective. Multivariate Behavioral Research 33: 545-571.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

Tanner, M. A., and W. H. Wong. 1987. The calculation of posterior distributions by data augmentation (with discussion).
Journal of the American Statistical Association 82: 528-550.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional specification
in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049-1064.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] intro — Introduction to mi
[MI] estimation — Estimation commands for use with mi estimate
[MI] mi estimate — Estimation using multiple imputations
[MI] mi impute — Impute missing values
[MI] workflow — Suggested workflow
[MI] Glossary

Title

intro — Introduction to mi

Description Remarks and examples Acknowledgments Also see

Description

The mi suite of commands deals with multiple-imputation data, abbreviated as mi data. To
become familiar with mi as quickly as possible, do the following:

1. See A simple example under Remarks and examples below.
2. If you have data that require imputing, see [MI] mi set and [MI] mi impute.
3. Alternatively, if you have already imputed data, see [MI] mi import.

4. To fit your model, see [MI] mi estimate.

To create mi data from original data

mi set declare data to be mi data

mi register register imputed, passive, or regular variables
mi unregister unregister previously registered variables

mi unset return data to unset status (rarely used)

See Summary below for a summary of mi data and these commands.
See [MI] Glossary for a definition of terms.

To import data that already have imputations for the missing values (do not mi set the data)

mi import import mi data
mi export export mi data to non-Stata application

Once data are mi set or mi imported

mi query query whether and how mi set

mi describe describe mi data

mi varying identify variables that vary over m
mi misstable tabulate missing values

mi passive create passive variable and register it

15

16

intro — Introduction to mi

To

perform estimation on mi data

mi
mi
mi
mi
mi
mi
mi

impute impute missing values

estimate perform and combine estimation on m > 0
ptrace check stability of MCMC

test perform tests on coefficients
testtransform perform tests on transformed coefficients
predict obtain linear predictions

predictnl obtain nonlinear predictions

To stset, svyset, tsset, or xtset any mi data that were not set at the time they were mi set
mi fvset fvset for mi data

mi svyset svyset for mi data

mi xtset xtset for mi data

mi tsset tsset for mi data

mi stset stset for mi data

mi streset streset for mi data

mi st st for mi data

To perform data management on mi data

mi rename rename variable

mi append append for mi data

mi merge merge for mi data

mi expand expand for mi data

mi reshape reshape for mi data

mi stsplit stsplit for mi data

mi stjoin stjoin for mi data

mi add add imputations from one mi dataset to another
To perform data management for which no mi prefix command exists

mi extract extract m = 0 data

mi

perform data management the usual way
replace0 replace m = 0 data in mi data

intro — Introduction to mi

17

To perform the same data management or data-reporting command(s) on m =0, m =1, ...

mi xeq: ... execute commandson m =0, m=1,m=2,.... m=M
mi xeq #: ... execute commands on m = #
mixeq## ...t ... execute commands on specified values of m

Useful utility commands

mi convert convert mi data from one style to another

mi extract # extract m = # from mi data

mi select # programmer’s command similar to mi extract
mi copy copy mi data

mi erase erase files containing mi data

mi update verify/make mi data consistent

mi reset reset imputed or passive variable

For programmers interested in extending mi

[MI] technical Detail for programmers

Summary of styles

There are four styles or formats in which mi data are stored: flongsep, flong, mlong, and wide.

1. Flongsep: m =0, m =1, ..., m = M are each separate .dta datasets. If m = 0 data are

stored in pat.dta, then m = 1 data are stored in _1_pat.dta, m = 2 in _2_pat.dta,
and so on. Flongsep stands for full long and separate.

. Flong: m =0, m =1, ..., m = M are stored in one dataset with _.N = N + M x N

observations, where N is the number of observations in m = 0. Flong stands for full long.

. Mlong: m =0, m =1, ..., m = M are stored in one dataset with _N = N + M xn

observations, where n is the number of incomplete observations in m = 0. Mlong stands
for marginal long.

. Wide: m=0,m=1, ..., m= M are stored in one dataset with _/N = N observations.

Each imputed and passive variable has M additional variables associated with it. If variable
bp contains the values in m = 0, then values for m = 1 are contained in variable _1_bp,
values for m = 2 in _2_bp, and so on. Wide stands for wide.

See style in [MI] Glossary and see [MI] styles for examples. See [MI] technical for programmer’s
details.

18 intro — Introduction to mi

Summary

1. mi data may be stored in one of four formats—flongsep, flong, mlong, and wide—known
as styles. Descriptions are provided in Summary of styles directly above.

2. mi data contain M imputations numbered m = 1, 2, ..., M, and contain m = 0, the
original data with missing values.

3. Each variable in mi data is registered as imputed, passive, or regular, or it is unregistered.
a. Unregistered variables are mostly treated like regular variables.

b. Regular variables usually do not contain missing, or if they do, the missing values
are not imputed in m > 0.

c. Imputed variables contain missing in m = 0, and those values are imputed, or are
to be imputed, in m > 0.

d. Passive variables are algebraic combinations of imputed, regular, or other passive
variables.

4. If an imputed variable contains a value greater than . in m = 0—it contains .a, .b, ...,
.z—then that value is considered a hard missing and the missing value persists in m > 0.

See [MI] Glossary for a more thorough description of terms used throughout this manual.

Remarks and examples

Remarks are presented under the following headings:

A simple example
Suggested reading order
What’s new

A simple example

We are about to type six commands:

. use http://www.stata-press.com/data/r14/mheart5 (1)
. mi set mlong (2)
. mi register imputed age bmi (3)
. set seed 29390 (4)
. mi impute mvn age bmi = attack smokes hsgrad female, add(10) (5)
. mi estimate: logistic attack smokes age bmi hsgrad female (6)

The story is that we want to fit

. logistic attack smokes age bmi hsgrad female

but the age and bmi variables contain missing values. Fitting the model by typing logistic ...
would ignore some of the information in our data. Multiple imputation (MI) attempts to recover that
information. The method imputes M values to fill in each of the missing values. After that, statistics
are performed on the M imputed datasets separately and the results combined. The goal is to obtain
better estimates of parameters and their standard errors.

intro — Introduction tomi 19

In the solution shown above,
1. We load the data.
2. We set our data for use with mi.
3. We inform mi which variables contain missing values for which we want to impute values.
4

. We impute values in command 5; we prefer that our results be reproducible, so we set the
random-number seed in command 4. This step is optional.

5. We create M = 10 imputations for each missing value in the variables we registered in
command 3.

6. We fit the desired model separately on each of the 10 imputed datasets and combine the
results.

The results of running the six-command solution are
. webuse mheartb
(Fictional heart attack data)
. mi set mlong

. mi register imputed age bmi
(28 m=0 obs. now marked as incomplete)

. set seed 29390
. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

20 intro — Introduction to mi

. mi estimate: logistic attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 10
Logistic regression Number of obs = 154
Average RVI = 0.0835

Largest FMI = 0.2642

DF adjustment: Large sample DF: min = 139.75
avg = 19,591.87

max = 67,578.07

Model F test: Equal FMI F(5, 4836.6) = 3.32
Within VCE type: 0IM Prob > F = 0.0054
attack Coef . Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.187152 .3623514 3.28 0.001 .4768502 1.897453

age .0315179 .0163884 1.92 0.055 -.0006696 .0637055

bmi .1090419 .0516554 2.11 0.037 .0069434 .2111404

hsgrad .1712372 .4054594 0.42 0.673 -.623472 .9659464
female -.065744 .4156809 0.16 0.874 -.8804781 . 7489901

_cons -5.369962 1.863821 2.88 0.005 -9.054895 -1.685029

Note that the output from the last command,

. mi estimate: logistic attack smokes age bmi hsgrad female

reported coefficients rather than odds ratios, which logistic would usually report. That is because
the estimation command is not logistic, it is mi estimate, and mi estimate happened to use

logistic to obtain results that mi estimate combined into its own estimation results.

mi estimate by default displays coefficients. If we now wanted to see odds ratios, we could type

. mi estimate, or

(output showing odds ratios would appear)

Note carefully: We replay results by typing mi estimate, not by typing logistic. If we had

wanted to see the odds ratios from the outset, we would have typed

. mi estimate, or: logistic attack smokes age bmi hsgrad female

Suggested reading order

The order of suggested reading of this manual is

[MI] intro substantive

[MI] intro
[MI] Glossary
[MI] workflow

[MI] mi set
[MI] mi import
[MI] mi describe

[MI] mi misstable

[MI] mi impute
[MI] mi estimate

[MI] mi estimate postestimation

[MI] styles
[MI] mi convert
[MI] mi update

intro — Introduction to mi 21

[MI] mi rename
[MI] mi copy
[MI] mi erase
[MI] mi XXXset

[MI] mi extract
[MI] mi replace0

[MI] mi append
[MI] mi add
[MI] mi merge
[MI] mi reshape
[MI] mi stsplit
[MI] mi varying

Programmers will want to see [MI] technical.

What’s new

For a complete list of all the new features in Stata 14, see [U] 1.3 What’s new.

Acknowledgments

We thank Jerry (Jerome) Reiter of the Department of Statistical Science at Duke University;
Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book
Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model; and Ian White of the
MRC Biostatistics Unit, London, for their comments and assistance in the development of mi. We also
thank for their comments James Carpenter of the London School of Hygiene and Tropical Medicine
and Jonathan Sterne of the School of Social and Community Medicine at the University of Bristol,
UK, and coeditor of the Stata Press book Meta-Analysis in Stata: An Updated Collection from the
Stata Journal.

Previous and still ongoing work on multiple imputation in Stata influenced the design of mi.
For their past and current contributions, we thank Patrick Royston and Ian White again for ice;
John Carlin and John Galati, both of the Murdoch Children’s Research Institute and University of
Melbourne, and Patrick Royston and Ian White (yet again) for mim; John Galati for inorm; and
Rodrigo Alfaro of the Banco Central de Chile for mira.

Also see
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] Glossary
[MiI] styles — Dataset styles
[MI] workflow — Suggested workflow
[U] 1.3 What’s new

http://www.stata-press.com/books/fpsaus.html
http://www.stata-press.com/books/mais.html
http://www.stata-press.com/books/mais.html

Title

estimation — Estimation commands for use with mi estimate

Description Also see

Description
Multiple-imputation data analysis in Stata is similar to standard data analysis. The standard syntax
applies, but you need to remember the following for MI data analysis:
1. The data must be declared as mi data.

If you already have multiply imputed data (saved in Stata format), use mi import to import
it into mi; see [MI] mi import.

If you do not have multiply imputed data, use mi set (see [MI] mi set) to declare your
original data to be mi data and use mi impute (see [MI] mi impute) to fill in missing values.

2. After you have declared mi data, commands such as svyset, stset, and xtset cannot be
used. Instead use mi svyset to declare survey data, use mi stset to declare survival data,
and use mi xtset to declare panel data. See [MI] mi XXXset.

3. Prefix the estimation commands with mi estimate: (see [MI] mi estimate).

The following estimation commands support the mi estimate prefix.

Command Entry Description

Linear regression models

regress [R] regress Linear regression
cnsreg [R] cnsreg Constrained linear regression
mvreg [MV] mvreg Multivariate regression

Binary-response regression models

logistic [R] logistic Logistic regression, reporting odds ratios
logit [R] logit Logistic regression, reporting coefficients
probit [R] probit Probit regression

cloglog [R] cloglog Complementary log-log regression
binreg [R] binreg GLM for the binomial family

Count-response regression models

poisson [R] poisson Poisson regression
nbreg [R] nbreg Negative binomial regression
gnbreg [R] nbreg Generalized negative binomial regression

Ordinal-response regression models

ologit [R] ologit Ordered logistic regression
oprobit [R] oprobit Ordered probit regression
Categorical-response regression models
mlogit [R] mlogit Multinomial (polytomous) logistic regression
mprobit [R] mprobit Multinomial probit regression
clogit [R] clogit Conditional (fixed-effects) logistic regression

22

estimation — Estimation commands for use with mi estimate 23

Fractional-response regression models
fracreg [R] fracreg

Quantile regression models

qreg [R] gqreg
iqreg [R] gqreg
sqreg [R] qreg
bsqreg [R] qreg
Survival regression models
stcox [ST] stcox
streg [ST] streg
stcrreg [ST] sterreg
Other regression models
glm [R] glm
areg [R] areg
rreg [R] rreg
cpoisson [R] cpoisson
truncreg [R] truncreg
Descriptive statistics
mean [R] mean
proportion [R] proportion
ratio [R] ratio
total [R] total
Panel-data models
xtreg [XT] xtreg
xtrc [XT] xtre
xtlogit [XT] xtlogit
xtprobit [XT] xtprobit
xtcloglog [XT] xtcloglog
xtpoisson [XT] xtpoisson
xtnbreg [XT] xtnbreg
xtgee [XT] xtgee

Multilevel mixed-effects models

meqgrlogit [ME] meqrlogit
meqgrpoisson [ME] meqrpoisson
mixed [ME] mixed

Survey regression models
svy: [SVY] svy

Fractional response regression

Quantile regression

Interquantile range regression
Simultaneous-quantile regression
Bootstrapped quantile regression

Cox proportional hazards model
Parametric survival models
Competing-risks regression

Generalized linear models

Linear regression with a large dummy-variable set
Robust regression

Censored Poisson regression

Truncated regression

Estimate means
Estimate proportions
Estimate ratios
Estimate totals

Fixed-, between- and random-effects, and
population-averaged linear models

Random-coefficients regression

Fixed-effects, random-effects, and population-averaged
logit models

Random-effects and population-averaged probit models

Random-effects and population-averaged cloglog models

Fixed-effects, random-effects, and population-averaged
Poisson models

Fixed-effects, random-effects, and population-averaged
negative binomial models

Fit population-averaged panel-data models by using GEE

Multilevel mixed-effects logistic regression
(QR decomposition)

Multilevel mixed-effects Poisson regression
(QR decomposition)

Multilevel mixed-effects linear regression

Estimation commands for survey data (excluding
commands that are not listed above)

24 estimation — Estimation commands for use with mi estimate

Also see

[MI] mi estimate — Estimation using multiple imputations

[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] mi import — Import data into mi

[MI] mi impute — Impute missing values

[MI] mi set — Declare multiple-imputation data

[MI] workflow — Suggested workflow

[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

Title

mi add — Add imputations from another mi dataset

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description

mi add adds the imputations from the using dataset on disk to the end of the master dataset in
memory.

Menu

Statistics > Multiple imputation

Syntax

mi add varlist using filename [, options]

options Description
assert (master) assert all observations found in master
assert (match) assert all observations found in master and in using
noupdate see [MI] noupdate option
Notes:
1. Jargon:

match variables = varlist, variables on which match performed
master = data in memory
using = data on disk (filename)

2. Master must be mi set.
3. Using must be mi set.

4. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Options
assert (results) specifies how observations are expected to match. If results are not as you expect,
an error message will be issued and the master data left unchanged.

assert (master) specifies that you expect a match for every observation in the master, although
there may be extra observations in the using that mi add is to ignore.

assert (match) specifies that you expect every observation in the master to match an observation
in the using and vice versa.

25

26 mi add — Add imputations from another mi dataset

The default is that the master may have observations that are missing from the using and vice
versa. Only observations in common are used by mi add.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples

Think of the result produced by mi add as being

Result Source

m = m = 0 from master
m=1 m = 1 from master
m=2 m = 2 from master

m = Mmnaster m = Mpaster from master
m = Muaster + 1 m = 1 from using

m = Mmaster + 2 m = 2 from using

m = Mmuaster + Musing m = Mysing from using

That is, the original data in the master remain unchanged. All that happens is the imputed data from
the using are added to the end of the master as additional imputations.

For instance, say you discover that you and a coworker have been working on the same data. You
have added M = 20 imputations to your data. Your coworker has separately added M = 17. To
combine the data, type something like

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)

The only thing changed in your data is M. If your coworker’s data have additional variables, they
are ignored. If your coworker has variables registered differently from how you have them registered,
that is ignored. If your coworker has not yet registered as imputed a variable that you have registered
as imputed, that is noted in the output. You might see

. use mydata

. mi add patientid using karensdata
(17 imputations added; M=37)
(imputed variable grade not found in using data;
added imputations contain m=0 values for that variable)

mi add — Add imputations from another mi dataset 27

Stored results
mi add stores the following in r():

Scalars
r(m) number of added imputations
r(unmatched_m) number of unmatched master observations
r(unmatched_u) number of unmatched using observations

Macros
r(imputed_f) variables for which imputed found
r (imputed_nf) variables for which imputed not found

Also see
[MI] intro — Introduction to mi
[MI] mi append — Append mi data

[MI] mi merge — Merge mi data

Title

mi append — Append mi data

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description

mi append is append for mi data; see [D] append for a description of appending datasets.

Menu

Statistics > Multiple imputation

Syntax
mi append using filename [, options]
options Description
generate (newvar) create newvar; 0 = master, 1 = using
nolabel do not copy value labels from using
nonotes do not copy notes from using
force string <+ numeric not type mismatch error
noupdate see [MI] noupdate option
Notes:
1. Jargon:

master = data in memory
using = data on disk (filename)

2. Master must be mi set; using may be mi set.

3. mi append is logically equivalent to append; see [D] append. The resulting data have
M = max(Mmaster; Musing), not their sum. See [MI] mi add to append imputations
holding m = 0O constant.

4. mi append syntactically differs from append in that multiple using files may not be specified
and the keep (varlist) option is not allowed.

5. filename must be enclosed in double quotes if filename contains blanks or other special
characters.

Options

generate (newvar) specifies that new variable newvar be created containing 0 for observations from
the master and 1 for observations from the using.

28

mi append — Append mi data 29

nolabel prevents copying the value-label definitions from the using data to the master. Even if you
do not specify this option, label definitions from the using never replace those of the master.

nonotes prevents any notes in the using from being incorporated into the master; see [D] notes.

force allows string variables to be appended to numeric variables and vice versa. The results of
such type mismatches are, of course, missing values. Default behavior is to issue an error message
rather than append datasets with such violently differing types.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples

Use mi append when you would use append if the data were not mi.
Remarks are presented under the following headings:

Adding new observations

Adding new observations and imputations

Adding new observations and imputations, M unequal
Treatment of registered variables

Adding new observations

Assume that file mymi.dta contains data on three-quarters of the patients in the ICU. The data
are mi set and M = 5. File remaining.dta arrives containing the remaining patients. The data
are not mi set. To combine the datasets, you type

. use mymi, clear

. mi append using remaining

The original mi data had M = 5 imputations, and so do the resulting data. If the new data contain
no missing values of the imputed variables, you are ready to go. Otherwise, you will need to impute
values for the new data.

Adding new observations and imputations

Assume that file westwing.dta contains data on patients in the west wing of the ICU. File
eastwing.dta contains data on patients in the east wing of the ICU. Both datasets are mi set with
M = 5. You originally intended to analyze the datasets separately, but you now wish to combine
them. You type

. use westwing, clear

. mi append using eastwing

The original data had M = 5 imputations, and so do the resulting data.
The data for m = 0O are the result of running an ordinary append on the two m = 0 datasets.

The data for m = 1 are also the result of running an ordinary append, this time on the two m = 1
datasets. Thus the result is a combination of observations of westwing.dta and eastwing.dta
in the same way that m = 0 is. Imputations for observations that previously existed are obtained
from westwing.dta, and imputations for the newly appended observations are obtained from
eastwing.dta.

30 mi append — Append mi data

Adding new observations and imputations, M unequal

Consider the same situation as above, but this time assume M = 5 in westwing.dta and M =4
in eastwing.dta. The combined result will still have M = 5. Imputed values in m = 5 will be
missing for imputed variables from observations in westwing.dta.

Treatment of registered variables

It is possible that the two datasets will have variables registered inconsistently.

Variables registered as imputed in either dataset will be registered as imputed in the final result
regardless of how they were registered (or unregistered) in the other dataset.

Barring that, variables registered as passive in either dataset will be registered as passive in the
final result.

Barring that, variables registered as regular in either dataset will be registered as regular in the
final result.

Stored results

mi append stores the following in r():

Scalars
r(N_master) number of observations in m=0 in master
r(N_using) number of observations in m=0 in using
r(M_master) number of imputations (M) in master
r(M_using) number of imputations (M) in using

Macros
r(newvars) new variables added

Thus values in the resulting data are
N =# of observations in m = 0
=r(N_master) + r(N_using)

k = # of variables
= k_master + ¢ :word count ‘r(newvars)’’

M = # of imputations
=max (r (M_master), r(M_using))

Also see
[MI] intro — Introduction to mi
[D] append — Append datasets
[MI] mi add — Add imputations from another mi dataset

[MI] mi merge — Merge mi data

Title

mi convert — Change style of mi data

Description Menu Syntax Options
Remarks and examples Also see

Description

mi convert converts mi data from one style to another.

Menu

Statistics > Multiple imputation

Syntax
mi convert wide [, options]
mi convert mlong [, options]
mi convert flong [, Options]

mi convert flongsep name [, options]

options Description

clear okay to convert if data not saved

noupdate see [MI] noupdate option
Options

clear specifies that it is okay to convert the data even if the data have not been saved to disk since
they were last changed.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Using mi convert as a convenience tool
Converting from flongsep
Converting to flongsep

31

32 mi convert — Change style of mi data

Using mi convert as a convenience tool

Some tasks are easier in one style than another. mi convert allows you to switch to the more
convenient style. It would not be unreasonable for a snippet of a session to read
. mi convert wide
. drop if sex=="male"
. mi convert mlong, clear
. replace age2 = age”2
This user is obviously exploiting his or her knowledge of [MI] styles. The official way to do the
above would be

. drop if sex=="male"
. mi update

. mi passive: replace age2 = age~2

It does not matter which approach you choose.

Converting from flongsep

If you have flongsep data, it is worth finding out whether you can convert it to one of the other
styles. The other styles are more convenient than flongsep, and mi commands run faster on them.
With your flongsep data in memory, type

. mi convert mlong

The result will be either success or an insufficient-memory error.
If you wish, you can make a crude guess as to how much memory is required as follows:

1. Use your flongsep data. Type mi describe. Write down M, the number of imputations,
and write down the number of complete observations, which we will call N, and the number
of incomplete observations, which we will call n.

2. With your flongsep data still in memory, type memory. Write down the sum of the numbers
reported as “data” and “overhead” under the “used” column. We will call this sum S for
size.

3. Calculate T = S + M xSx(n/N). T is an approximation of the memory your mi data
would consume in the mlong style. To that, we need to add a bit to account for extra memory
used by Stata commands and for variables or observations you might want to add. How
much to add is always debatable. For large datasets, add 10% or 5 MB, whichever is smaller.

For instance, you might have

M 30
N = 10,000
n 1,500
S = 8,040,000 = 8 MB

and thus we would calculate 7' = 8 + 30x8 x (1500/10000) = 44 MB, to which we would
add another 4 or 5 MB, to obtain 48 or 49 MB.

mi convert — Change style of mi data 33

Converting to flongsep

Note that mi convert’s syntax for converting to flongsep is
mi convert flongsep name

You must specify a name, and that name will become the basis for the names of the datasets
that comprise the collection of flongsep data. Data for m = 0 will be stored in name.dta; data for
m =1, in _1_name.dta; data for m = 2, in _2_name .dta; and so on. The files will be stored in
the current directory; see the pwd command in [D] cd.

If you are going to use flongsep data, see Advice for using flongsep in [MI] styles. Also see
[MI] mi copy and [MI] mi erase.

Also see

[MI] intro — Introduction to mi

[MI] styles — Dataset styles

Title

mi copy — Copy mi flongsep data

Description Menu Syntax Option
Remarks and examples Also see

Description
mi copy newname copies flongsep data in memory to newname and sets it so that you are working
with that copy. newname may not be specified with the .dta suffix.

In detail, mi copy newname 1) completes saving the flongsep data to its current name if
that is necessary; 2) copies the data to newname.dta, _1_newname.dta, _2_newname.dta, ...,
_M _newname .dta; and 3) tells mi that you are now working with newname .dta in memory.

mi copy can also be used with wide, mlong, or flong data, although there is no reason you would
want to do so. The data are not saved to the original filename as flongsep data would be, but otherwise
actions are the same: the data in memory are copied to newname .dta, and newname .dta is loaded
into memory.

Menu

Statistics > Multiple imputation

Syntax

mi copy newname [, replace]

Option

replace specifies that it is okay to overwrite newname .dta, _1_newname .dta, _2_newname .dta,
..., if they already exist.

Remarks and examples

In Stata, one usually works with a copy of the data in memory. Changes you make to the data
are not saved in the underlying disk file until and unless you explicitly save your data. That is not
true when working with flongsep data.

Flongsep data are a matched set of datasets, one containing m = 0, another containing m = 1,
and so on. You work with one of them in memory, namely, m = 0, but as you work, the other
datasets are automatically updated; as you make changes, the datasets on disk change.

Therefore, it is best to work with a copy of your flongsep data and then periodically save the data
to the real files, thus mimicking how you work with ordinary Stata datasets. mi copy is for just that
purpose. After loading your flongsep data, type, for example,

. use myflongsep

34

mi copy — Copy mi flongsep data 35

and immediately make a copy,

. mi copy newname

You are now working with the same data but under a new name. Your original data are safe.

When you reach a point where you would ordinarily save your data, whether under the original
name or a different one, type

. mi copy original_name_or_different_name, replace

. use newname

Later, when you are done with newname, you can erase it by typing

. mi erase newname

Concerning erasure, you will discover that mi erase will not let you erase the files when you
have one of the files to be erased in memory. Then you will have to type

. mi erase newname, clear
See [MI] mi erase for more information.

For more information on flongsep data, see Advice for using flongsep in [MI] styles.

Also see
[MI] intro — Introduction to mi
[MI] mi erase — Erase mi datasets

[MI] styles — Dataset styles

Title

mi describe — Describe mi data

Description Menu Syntax Options
Remarks and examples Stored results Also see

Description

mi query reports whether the data in memory are mi data and, if they are, reports the style in
which they are set.

mi describe provides a more detailed report on mi data.

Menu

Statistics > Multiple imputation

Syntax

mi query

mi describe [, describe_options]

describe_options Description
detail show missing-value counts for m =1, m =2, ...
noupdate see [MI] noupdate option
Options
detail reports the number of missing values in m =1, m =2, ..., m = M in the imputed and

passive variables, along with the number of missing values in m = 0.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

mi query
mi describe

36

mi describe — Describe mi data 37

mi query

mi query without mi data in memory reports

. mi query
(data not mi set)

With mi data in memory, you see something like

. mi query
data mi set wide, M = 15
last mi update 03nov2014 15:30:20, approximately 5 minutes ago

mi query does not burden you with unnecessary information. It mentions when mi update was
last run because you should run it periodically; see [MI] mi update.

mi describe

mi describe more fully describes mi data:

. mi describe

Style: mlong
last mi update 03nov2014 15:30:20, approximately 2 minutes ago

Obs.: complete 90
incomplete 10 (M = 20 imputations)
total 100

Vars.: imputed: 2; smokes(10) age(5)
passive: 1; agesq(5)
regular: 0O
system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)

mi describe lists the style of the data, the number of complete and incomplete observations, M
(the number of imputations), the registered variables, and the number of missing values in m = 0 of
the imputed and passive variables. In the output, the line

Vars.: imputed: 2; smokes(10) age(5)

means that the smokes variable contains 10 missing values in m = 0 and that age contains 5. Those
values are soft missings and thus eligible to be imputed. If one of smokes’ missing values in m = 0
were hard, the line would read

Vars.: imputed: 2; smokes(9+1) age(5)

mi describe reports information about m = 0. To obtain information about all m’s, use mi
describe, detail:

38 mi describe — Describe mi data

. mi describe, detail

Style: mlong
last mi update 03nov2014 15:30:20, approximately 3 minutes ago

Obs.: complete 90
incomplete 10 (M = 20 imputations)
total 100

Vars.: imputed: 2; smokes(10; 20%0) age(5; 20%0)
passive: 1; agesq(5; 20%0)
regular: 0O
system: 3; _mi_m _mi_id _mi_miss

(there are 3 unregistered variables; gender race chd)

In this example, all imputed values are nonmissing. We can see that from
Vars.: imputed: 2; smokes(10; 20%0) age(5; 20%0)

Note the 20*0 after the semicolons. That is the number of missing values in m =1, m =2, ...,
m = 20. In the smokes variable, there are 10 missing values in m = 0, then 0 in m = 1, then 0 in
m = 2, and so on. If m = 17 had two missing imputed values, the line would read

Vars.: imputed: 2; smokes(10; 16%0, 2, 3*0) age(5; 20%0)

16%0, 2, 3*0 means that for m =1, m =2, ..., m = 20, the first 16 have 0 missing values, the
next has 2, and the last 3 have 0.

If smokes had 9 4+ 1 missing values rather than 10—that is, 9 soft missing values plus 1 hard
missing rather than all 10 being soft missing—and all 9 soft missings were filled in, the line would
read

Vars.: imputed: 2; smokes(9+1; 20%0) age(5; 20%0)

The 20 imputations are shown as having no soft missing values. It goes without saying that they
have 1 hard missing. Think of 20%0 as meaning 20* (0+1).

If smokes had 9 + 1 missing values and two of the soft missings in m = 18 were still missing,
the line would read

Vars.: imputed: 2; smokes(9+1; 16%0, 2, 3*0) age(5; 20%0)

Stored results

mi query stores the following in r():

Scalars
r(update) seconds since last mi update
r (m) m if r(style)=="flongsep"
r(M) M if r(style)!="flongsep"
Macros
r(style) style
r (name) name if r(style)=="flongsep"

Note that mi query issues a return code of 0 even if the data are not mi. In that case, r(style) is

Xt}

mi describe — Describe mi data

39

Scalars

r(update)

r(N)
r(N_incomplete)
r(N_complete)
r(M)

Macros

r(style)
r(ivars)
r(_O_miss_ivars)
r(_O_hard_ivars)
r(pvars)
r(_O_miss_pvars)
r(rvars)

mi describe stores the following in r():

seconds since last mi update

number of observations in m=0

number of incomplete observations in m=0
number of complete observations in m=0
M

style

names of imputed variables

#=. in each r(ivars) in m=0
#>. in each r(ivars) in m=0
names of passive variables

#>. in each r(pvars) in m=0
names of regular variables

If the detail option is specified, for each m, m =1, 2, ..., M, also stored are

Macros
r(—m-_miss_ivars) #=. in each r(ivars) in m
r(_m_miss_pvars) #>. in each r(pvars) in m

Also see

[MI] intro — Introduction to mi

Title

mi erase — Erase mi datasets

Description Menu Syntax Option
Remarks and examples Also see

Description

mi erase erases mi .dta datasets.

Menu

Statistics > Multiple imputation

Syntax

mi erase name [, clear]

Option

clear specifies that it is okay to erase the files even if one of the files is currently in memory. If
clear is specified, the data are dropped from memory and the files are erased.

Remarks and examples

Stata’s ordinary erase (see [D] erase) is not sufficient for erasing mi datasets because an mi
dataset might be flongsep, in which case the single name would refer to a collection of files, one
containing ™m = 0, another containing m = 1, and so on. mi erase deletes all the files associated
with mi dataset name .dta, which is to say, it erases name.dta, —_1_name.dta, _2_name.dta, and
SO on:

. mi erase mysep
(files mysep.dta, _1_mysep.dta _2_mysep.dta _3_mysep.dta erased)

Also see
[MI] intro — Introduction to mi
[MI] mi copy — Copy mi flongsep data
[MI] styles — Dataset styles

40

Title

mi estimate — Estimation using multiple imputations

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Description

mi estimate: estimation_command runs estimation_command on the imputed mi data, and adjusts
coefficients and standard errors for the variability between imputations according to the combination
rules by Rubin (1987).

Menu

Statistics > Multiple imputation

Syntax
Compute MI estimates of coefficients by fitting estimation command to mi data

mi estimate [, options] : estimation_command . . .

Compute MI estimates of transformed coefficients by fitting estimation command to mi data

mi estimate [spec] [, options] : estimation_command . ..

where spec may be one or more terms of the form ([name:] exp). exp is any function of the
parameter estimates allowed by nlcom; see [R] nlcom.

M

42 mi estimate — Estimation using multiple imputations

options

Description

Options
nimputations (#)

imputations (numlist)
mcerror

ufmitest

nosmall

saving (miestﬁle[, replace])

Tables
[@] citable

dftable
vartable

table _options
display_options

Reporting
level (#)
dots
noisily

trace

nogroup
me_options

Advanced
esample (newvar)

errorok

esampvaryok
cmdok

coeflegend
nowarning
eform_option
post
noupdate

specify number of imputations to use; default is to use all
existing imputations

specify which imputations to use

compute Monte Carlo error estimates

perform unrestricted FMI model test

do not apply small-sample correction to degrees of freedom

save individual estimation results to miestfile . ster

suppress/display standard estimation table containing
parameter-specific confidence intervals; default is citable

display degrees-of-freedom table; dftable implies nocitable

display variance information about estimates; vartable
implies citable

control table output

control columns and column formats, row spacing, display of
omitted variables and base and empty cells, and factor-variable
labeling

set confidence level; default is 1level (95)
display dots as estimations are performed

display any output from estimation_command (and from nlcom
if transformations specified)

trace estimation_command (and nlcom if transformations
specified); implies noisily

suppress summary about groups displayed for xt commands

control output from mixed-effects commands

store estimation sample in variable newvar; available only in the
flong and flongsep styles

allow estimation even when estimation_command (or nlcom)
errors out; such imputations are discarded from the analysis

allow estimation when estimation sample varies across imputations

allow estimation when estimation_command is not one of the
supported estimation commands

display legend instead of statistics

suppress the warning about varying estimation samples
display coefficient table in exponentiated form

post estimated coefficients and VCE to e(b) and e (V)
do not perform mi update; see [MI] noupdate option

You must mi set your data before using mi estimate; see [MI] mi set.
coeflegend, nowarning, eform_option, post, and noupdate do not appear in the dialog box.

mi estimate — Estimation using multiple imputations 43

table_options Description

noheader suppress table header(s)

notable suppress table(s)

nocoef suppress table output related to coefficients

nocmdlegend suppress command legend that appears in the presence of transformed
coefficients when nocoef is used

notrcoef suppress table output related to transformed coefficients

nolegend suppress table legend(s)

nocnsreport do not display constraints

See [MI] mi estimate postestimation for features available after estimation. mi estimate is its
own estimation command. The postestimation features for mi estimate do not include by default
the postestimation features for estimation_command. To replay results, type mi estimate without
arguments.

Options

nimputations (#) specifies that the first # imputations be used; # must be M., < # < M, where
Mpin = 3 if mcerror is specified and M ,;, = 2, otherwise. The default is to use all imputations,
M. Only one of nimputations() or imputations() may be specified.

imputations (numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers. If mcerror is specified, numlist must contain at least three
numbers. Only one of nimputations() or imputations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the MCE computation
requires at least three imputations.

If 1level() is specified during estimation, MCE estimates are obtained for confidence intervals
using the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform_option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.
mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.

44 mi estimate — Estimation using multiple imputations

nosmall specifies that no small-sample correction be made to the degrees of freedom. The small-
sample correction is made by default to estimation commands that account for small samples. If
the command stores residual degrees of freedom in e (df _r), individual tests of coefficients (and
transformed coefficients) use the small-sample correction of Barnard and Rubin (1999) and the
overall model test uses the small-sample correction of Reiter (2007). If the command does not
store residual degrees of freedom, the large-sample test is used and the nosmall option has no
effect.

saving (miestﬁle[, replace]) saves estimation results from each model fit in miestfile.ster. The
replace suboption specifies to overwrite miestfile.ster if it exists. miestfile.ster can later be
used by mi estimate using (see [MI] mi estimate using) to obtain MI estimates of coefficients
or of transformed coefficients without refitting the completed-data models. This file is written in
the format used by estimates use; see [R] estimates save.

All table options below may be specified at estimation time or when redisplaying previously estimated
results. Table options must be specified as options to mi estimate, not to estimation_command.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence interval table.

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table_options control the appearance of all displayed table output:
noheader suppresses all header information from the output. The table output is still displayed.
notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the specified command line, estima-
tion_command, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.
nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fmt),
and sformat (%fmt); see [R] estimation options.

mi estimate — Estimation using multiple imputations 45

Reporting

Reporting options must be specified as options to mi estimate and not as options to estima-
tion_command.

level (#); see [R] estimation options.

dots specifies that dots be displayed as estimations are successfully completed. An x is displayed
if the estimation_command returns an error, if the model fails to converge, or if nlcom fails to
estimate one of the transformed coefficients specified in spec.

noisily specifies that any output from estimation_command and nlcom, used to obtain the estimates
of transformed coefficients if transformations are specified, be displayed.

trace traces the execution of estimation_command and traces nlcom if transformations are specified.
trace implies noisily.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands; see the list of commands under Panel-data models in [MI] estimation.

me_options: stddeviations, variance, noretable, nofetable, and estmetric. These options
are relevant only with the mixed-effects commands meqrlogit (see [ME] meqrlogit), meqrpoisson
(see [ME] meqrpoisson), and mixed (see [ME] mixed). See the corresponding mixed-effects
commands for more information. The stddeviations option is the default with mi estimate.
The estmetric option is implied when vartable or dftable is used.

Advanced

esample (newvar) creates newvar containing e (sample). This option is useful to identify which
observations were used in the estimation, especially when the estimation sample varies across
imputations (see Potential problems that can arise when using mi estimate for details). newvar is
zero in the original data (m = 0) and in any imputations (/m > 0) in which the estimation failed
or that were not used in the computation. esample () may be specified only if the data are flong
or flongsep; see [MI] mi convert to convert to one of those styles. The variable created will be
super varying and therefore must not be registered; see [MI] mi varying for more explanation.
The saved estimation sample newvar may be used later with mi extract (see [MI] mi extract)
to set the estimation sample.

errorok specifies that estimations that fail be skipped and the combined results be based on the
successful individual estimation results. The default is that mi estimate stops if an individual
estimation fails. If errorok is specified with saving(), all estimation results, including failed,
are saved to a file.

esampvaryok allows estimation to continue even if the estimation sample varies across imputations.
mi estimate stops if the estimation sample varies. If esampvaryok is specified, results from all
imputations are used to compute MI estimates and a warning message is displayed at the bottom
of the table. Also see the esample() option. See Potential problems that can arise when using
mi estimate for more information.

cmdok allows unsupported estimation commands to be used with mi estimate; see [MI] estimation
for a list of supported estimation commands. Alternatively, if you want mi estimate to work
with your estimation command, add the property mi to the program properties; see [P] program
properties.

The following options are available with mi estimate but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.

46 mi estimate — Estimation using multiple imputations

nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate for details.

eform_option; see [R] eform_option. Regardless of the estimation_command specified, mi estimate
reports results in the coefficient metric under which the combination rules are applied. You may
use the appropriate eform_option to redisplay results in exponentiated form, if desired. If dftable
is also specified, the reported degrees of freedom and percentage increases in standard errors are
not adjusted and correspond to the original coefficient metric.

post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation_command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is seldom used.

Remarks and examples

mi estimate requires that imputations be already formed; see [MI] mi impute. To import existing
multiply imputed data, see [MI] mi import.

Remarks are presented under the following headings:
Using mi estimate
Example 1: Completed-data logistic analysis
Example 2: Completed-data linear regression analysis
Example 3: Completed-data survival analysis
Example 4: Panel data and multilevel models
Example 5: Estimating transformations
Example 6: Monte Carlo error estimates
Potential problems that can arise when using mi estimate

Using mi estimate

mi estimate estimates model parameters from multiply imputed data and adjusts coefficients and
standard errors for the variability between imputations. It runs the specified estimation_command on
each of the M imputed datasets to obtain the M completed-data estimates of coefficients and their
VCEs. It then computes MI estimates of coefficients and standard errors by applying combination rules
(Rubin 1987, 77) to the M completed-data estimates. See [MI] intro substantive for a discussion of
MI analysis and see Methods and formulas for computational details.

To use mi estimate, your data must contain at least two imputations. The basic syntax of mi
estimate is

. mi estimate: estimation_command . ..

estimation_command 1is any estimation command from the list of supported estimation commands;
see [MI] estimation.
If you wish to estimate on survey data, type

. mi estimate: svy: estimation_command . ..

If you want to vary the number of imputations or select which imputations to use in the computations,
use the nimputations() or the imputations() option, respectively.

. mi estimate, nimputations(9): estimation_command . . .

mi estimate — Estimation using multiple imputations 47

Doing so is useful to evaluate the stability of MI results. MCE estimates of the parameters are also
useful for determining the stability of MI results. You can use the mcerror option to obtain these
estimates. Your data must contain at least three imputations to use mcerror.

You can obtain more-detailed information about imputation results by specifying the dftable and
vartable options.

You can additionally obtain estimates of transformed coefficients by specifying expressions with
mi estimate; see Example 5: Estimating transformations for details.

When using mi estimate, keep in mind that
1. mi estimate is its own estimation command.

2. mi estimate uses different degrees of freedom for each estimated parameter when computing
its significance level and confidence interval.

3. mi estimate reports results in the coefficient metric under which combination rules are
applied regardless of the default reporting metric of the specified estimation_command. Use
eform_option with mi estimate to report results in the exponentiated metric, if you wish.
For example, mi estimate: logistic reports coefficients and not odds ratios as logistic.
To obtain odds ratios, you must specify the or option with mi estimate:

. mi estimate, or: logistic ...

4. mi estimate has its own reporting options and does not respect command-specific reporting
options. The reporting options specified with estimation_command affect only the output of
the command that is displayed when mi estimate’s noisily option is specified. Specify
mi estimate’s options immediately after the mi estimate command:

. mi estimate, options: estimation_command . ..

Example 1: Completed-data logistic analysis

Recall the logistic analysis of the heart attack data from [MI] intro substantive. The goal of the
analysis was to explore the relationship between heart attacks and smoking adjusted for other factors
such as age, body mass index (BMI), gender, and educational status. The original data contain missing
values of BMI. The listwise-deletion analysis on the original data determined that smoking and BMI
have significant impact on a heart attack. After imputing missing values of BMI, age was determined
to be a significant factor as well. See A brief introduction to MI using Stata in [MI] intro substantive
for details. The data we used are stored in mheart1s20.dta.

Below we refit the logistic model using the imputed data. We also specify the dots option so that
dots will be displayed as estimations are completed.

48 mi estimate — Estimation using multiple imputations

. use http://www.stata-press.com/data/r14/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, dots: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312
Largest FMI = 0.1355
DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88
Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack Coef. Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692
hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .95156449
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
_cons -5.478143 1.685075 -3.25 0.001 -8.782394 -2.173892

The left header column reports information about the fitted MI model. The right header column
reports the number of imputations and the number of observations used, the average relative variance
increase (RVI) due to nonresponse, the largest fraction of missing information (FMI), a summary about
parameter-specific degrees of freedom (DF), and the overall model test that all coefficients, excluding
the constant, are equal to zero.

Notice first that mi estimate reports Student’s ¢ and F' statistics for inference although logit
would usually report Z and x? statistics.

mi estimate: logit is not logit. mi estimate uses Rubin’s combination rules to obtain the
estimates from multiply imputed data. The variability of the MI estimates consists of two components:
variability within imputations and variability between imputations. Therefore, the precision of the MI
estimates is governed not only by the number of observations in the sample but also by the number
of imputations. As such, even if the number of observations is large, if the number of imputations
is small and the FMI are not low, the reference distribution used for inference will deviate from the
normal distribution. Because in practice the number of imputations tends to be small, mi estimate
uses a reference ¢ distribution.

Returning to the output, average RVI reports the average relative increase (averaged over all
coefficients) in variance of the estimates because of the missing bmi values. A relative variance
increase is an increase in the variance of the estimate because of the loss of information about the
parameter due to nonresponse relative to the variance of the estimate with no information lost. The
closer this number is to zero, the less effect missing data have on the variance of the estimate. Note
that the reported RVI will be zero if you use mi estimate with the complete data or with missing
data that have not been imputed. In our case, average RVI is small: 0.0312.

Largest FMI reports the largest of all the FMI about coefficient estimates due to nonresponse.
This number can be used to get an idea of whether the specified number of imputations is sufficient
for the analysis. A rule of thumb is that M > 100 x FMI provides an adequate level of reproducibility
of MI analysis. In our example, the largest FMI is (.14 and the number of imputations, 20, exceeds
the required number of imputations: 14 (= 100 x 0.14) according to this rule.

mi estimate — Estimation using multiple imputations 49

The coefficient-specific degrees of freedom (DF) averaging 223,363 are large. They are large
because the MI degrees of freedom depends not only on the number of imputations but also on the
RVI due to nonresponse. Specifically, the degrees of freedom is inversely related to RVI. The closer
RVI is to zero, the larger the degrees of freedom regardless of the number of imputations.

To the left of the DF, we see that the degrees of freedom is obtained under a large-sample assumption.
The alternative is to use a small-sample adjustment. Whether the small-sample adjustment is applied
is determined by the type of the reference distribution used for inference by the specified estimation
command. For the commands that use a large-sample (normal) approximation for inference, a large-
sample approximation is used when computing the MI degrees of freedom. For the commands that
use a small-sample (Student’s t) approximation for inference, a small-sample approximation is used
when computing the MI degrees of freedom. See Methods and formulas for details. As we already
mentioned, logit assumes large samples for inference, and thus the MI degrees of freedom is
computed assuming a large sample.

The model F' test rejects the hypothesis that all coefficients are equal to zero and thus rules out a
constant-only model for heart attacks. By default, the model test uses the assumption that the fractions
of missing information of all coefficients are equal (as noted by Equal FMI to the left). Although this
assumption may not be supported by the data, it is used to circumvent the difficulties arising with
the estimation of the between-imputation variance matrix based on a small number of imputations.
See Methods and formulas and [MI] mi test for details.

mi estimate also reports the type of variance estimation used by the estimation command to
compute variance estimates in the individual completed-data analysis. These completed-data variance
estimates are then used to compute the within-imputation variance. In our example, the observed-
information-matrix (OIM) method, the default variance-estimation method used by maximum likelihood
estimation, is used to compute completed-data VCEs. This is labeled as Within VCE type: OIM in
the output.

Finally, mi estimate reports a coefficient table containing the combined estimates. Unlike all
other Stata estimation commands, the reported significance levels and confidence intervals in this table
are based on degrees of freedom that is specific to each coefficient. Remember that the degrees of
freedom depends on the relative variance increases and thus on how much information is lost about
the estimated parameter because of missing data. How much information is lost is specific to each
parameter and so is the degrees of freedom.

As we already saw, a summary of the coefficient-specific degrees of freedom (minimum, average,
and maximum) was reported in the header. We can obtain a table containing coefficient-specific
degrees of freedom by replaying the results with the dftable option:

50 mi estimate — Estimation using multiple imputations

. mi estimate, dftable

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56

max = 493,335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
% Increase

attack Coef. Std. Err. t P>|t| DF Std. Err.
smokes 1.198595 .3578195 3.35 0.001 320019.4 0.39

age .0360159 .0154399 2.33 0.020 493335.9 0.31

bmi .1039416 .0476136 2.18 0.029 1060.4 7.45

hsgrad .1578992 .4049257 0.39 0.697 165126.7 0.54
female -.1067433 .4164735 -0.26 0.798 358078.3 0.37

_cons -5.478143 1.685075 -3.25 0.001 2554.8 4.61

Notice that we type mi estimate to replay the results, not logit.

The header information remains the same. In particular, degrees of freedom ranges from 1,060
to 493,336 and averages 223,363. In the table output, the columns for the confidence intervals are
replaced with the DF and % Increase Std. Err. columns. We now see that the smallest degrees of
freedom corresponds to the coefficient for bmi. We should have anticipated this because bmi is the
only variable containing missing values in this example. The largest degrees of freedom is observed
for the coefficient for age, which suggests that the loss of information due to nonresponse is the
smallest for the estimation of this coefficient.

The last column displays as a percentage the increase in standard errors of the parameters due to
nonresponse. We observe a 7% increase in the standard error for the coefficient of bmi and a 5%
increase in the standard error for the constant. Increases in standard errors of other coefficients are
negligible.

In this example, we displayed a degrees-of-freedom table on replay by specifying the dftable

option. We could also obtain this table if we specified this option at estimation time. Alternatively,
if desired, we could display both tables by specifying the citable and dftable options together.

We can obtain more detail about imputation results by specifying the vartable option. We specify
this option on replay and also use the nocitable option to suppress the default confidence interval
table:

. mi estimate, vartable nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression

Variance information

Imputation variance Relative

Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615
age .000237 1.4e-06 .000238 .006245 .00621 .99969
bmi .001964 .000289 .002267 .154545 .135487 .993271
hsgrad .162206 .001675 .163965 .010843 .010739 .999463
female .172187 .001203 .17345 .007338 .00729 .999636
_cons 2.5946 .233211 2.83948 .094377 .086953 .995671

mi estimate — Estimation using multiple imputations 51

The first three columns of the table provide the variance information specific to each parameter. As
we already discussed, MI variance contains two sources of variation: within imputation and between
imputation. The first two columns provide estimates for the within-imputation and between-imputation
variances. The third column is a total variance that is the sum of the two variances plus an adjustment
for using a finite number of imputations. The next two columns are individual RVIs and fractions of
missing information (FMIs) due to nonresponse. The last column records relative efficiencies for using
a finite number of imputations (20 in our example) versus the theoretically optimal infinite number
of imputations.

We notice that the coefficient for age has the smallest within-imputation and between-imputation
variances. The between-imputation variability is very small relative to the within-imputation variability,
which is why age had such a large estimate of the degrees of freedom we observed earlier.
Correspondingly, this coefficient has the smallest values for RVI and FMI. As expected, the coefficient
for bmi has the highest RVI and FML

The reported relative efficiencies are high for all coefficient estimates, with the smallest relative
efficiency, again, corresponding to bmi. These estimates, however, are only approximations and thus
should not be used exclusively to determine the required number of imputations. See Royston, Carlin,
and White (2009) and White, Royston, and Wood (2011) for other ways of determining a suitable
number of imputations.

Example 2: Completed-data linear regression analysis

Recall the data on house resale prices from example 3 of [MI] mi impute mvn. We use the imputed
data stored in mhouses1993s30.dta to examine the relationship of various predictors on price via
linear regression:

. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, ni(5): regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 117
Average RVI = 0.0685

Largest FMI = 0.2075

Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg 85.22

max = 104.79

Model F test: Equal FMI F(7, 103.9) = 67.50
Within VCE type: OLS Prob > F 0.0000
price Coef. Std. Err. t P>|t] [95% Conf. Intervall

tax .6631356 .122443 5.42 0.000 .4195447 .9067265

sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718

age -.0395402 1.613185 0.02 0.981 -3.28205 3.202969
nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323

ne 4.069381 36.94491 0.11 0.913 -69.4355 77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 1.78 0.078 -150.7152 8.207084

_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

By default, mi estimate uses all available imputations in the analysis. For the purpose of illustration,
we use only the first 5 imputations out of the available 30 by specifying the nimputations(5)
option, which we abbreviated as ni(5).

52 mi estimate — Estimation using multiple imputations

Compared with the output from the previous example, an additional result, Complete DF, is
reported. Also notice that the adjustment for the degrees of freedom is now labeled as Small sample.
Remember that mi estimate determines what adjustment to use based on the reference distribution
used for inference by the specified estimation command.

regress uses a reference ¢ distribution with 117 — 8 = 109 residual degrees of freedom. Thus a
small-sample adjustment is used by mi estimate for the MI degrees of freedom.

Complete DF contains the degrees of freedom used for inference with complete data. It corresponds
to the completed-data residual degrees of freedom stored by the command in e(df_r). In most
applications, the completed-data residual degrees of freedom will be the same, and so Complete DF
will correspond to the complete degrees of freedom, the degrees of freedom that would have been
used for inference if the data were complete. In the case when the completed-data residual degrees of
freedom varies across imputations (as may happen when the estimation sample varies; see Potential
problems that can arise when using mi estimate), Complete DF reports the smallest of them.

In our example, all completed-data residual degrees of freedom are equal, and Complete DF is
equal to 109, the completed-data residual degrees of freedom obtained from regress. mi estimate
uses the complete degrees of freedom to adjust the MI degrees of freedom for a small sample (Barnard
and Rubin 1999).

Example 3: Completed-data survival analysis

Consider survival data on 48 participants in a cancer drug trial. The dataset contains information
about participants’ ages, treatments received (drug or placebo), times to death measured in months,
and a censoring indicator. The data are described in more detail in Cox regression with censored data
of [ST] stcox. We consider a version of these data containing missing values for age. The imputed
data are saved in mdrugtrs25.dta:

. use http://www.stata-press.com/data/r14/mdrugtrs25
(Patient Survival in Drug Trial)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 40
incomplete 8 (M = 25 imputations)
total 48

Vars.: imputed: ; age(8)

1
passive: O
regular: 3; studytime died drug

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

The dataset contains 25 imputations for 8 missing values of age. Missing values were imputed
following guidelines in White and Royston (2009).

We analyze these data using stcox with mi estimate. These data have not yet been stset,
so we use mi stset (see [MI] mi XXXset) to set them and then perform the analysis using mi
estimate: stcox:

mi estimate — Estimation using multiple imputations 53

. mi stset studytime, failure(died)

failure event:
time interval:
exit on or before:

obs.

died != 0 & died < .
(0, studytime]
failure

48 total observations
0 exclusions
48 observations remaining, representing
31 failures in single-record/single-failure data
744 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 39
. mi estimate, dots: stcox drug age
Imputations (25):
......... 10.........20..... done
Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48
Average RVI = 0.1059
Largest FMI = 0.1567
DF adjustment: Large sample DF: min 998.63
avg = 11,621.53
max 22,244 .42
Model F test: Equal FMI F(2, 4448.6) = 13.43
Within VCE type: 0IM Prob > F = 0.0000
_t Coef. Std. Err. t P>t [95% Conf. Intervall
drug -2.204572 .4589047 -4.80 0.000 -3.104057 -1.305086
age .1242711 .040261 3.09 0.002 .0452652 .2032771

Notice that mi estimate displays the results in the coefficient metric and not in the hazard-ratio
metric. By default, mi estimate reports results in the metric under which the combination rules
were applied. To obtain the results as hazard ratios, we can use the hr option with mi estimate:

. mi estimate, hr

Multiple-imputation estimates Imputations = 25
Cox regression: Breslow method for ties Number of obs = 48
Average RVI = 0.1059

Largest FMI = 0.1567

DF adjustment: Large sample DF: min = 998.63
avg = 11,621.53

max = 22,244.42

Model F test: Equal FMI F(2, 4448.6) = 13.43
Within VCE type: 0IM Prob > F 0.0000
_t | Haz. Ratio Std. Err. t P>|t| [95% Conf. Intervall

drug .1102977 .0506161 -4.80 0.000 .0448668 .2711491

age 1.132323 .0455885 3.09 0.002 1.046305 1.225412

We obtain results similar to those from the corresponding example in [ST] stcox.
We specified the hr option above on replay. We can also specify it at estimation time:

. mi estimate, hr: stcox drug age
(output omitted)

54 mi estimate — Estimation using multiple imputations

Notice that the hr option must be specified with mi estimate to obtain hazard ratios. Specifying it
with the command itself,

. mi estimate: stcox drug age, hr
(output omitted)

will not affect the output from mi estimate but only that of the command, stcox. You see stcox’s
output only if you specify mi estimate’s noisily option.

See Cleves, Gould, and Marchenko (2016, sec. 9.6) for more information on Cox regression with
multiply imputed data.

Example 4: Panel data and multilevel models

We have data on the math scores of students in their third and fifth years of education. There are
887 students from 48 schools in inner London; see Mortimore et al. (1988) for more information
on the study. We would like to fit a random-effects model to the fifth-year score, math5, on the
third-year score, math3, using a random effect at the school level.

We created a version of the data that contains missing values for math3 and then performed
imputation following guidelines from the Stata FAQ “How can I account for clustering when creating
imputations with mi impute?”’; see http://www.stata.com/support/fags/stat/impute_cluster.html. The
resulting imputed data are saved in mjsps5.dta:

. use http://www.stata-press.com/data/ri14/mjspsb, clear
(LEA Junior School Project data (Mortimore et al., 1988) with missing values)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 705
incomplete 182 (M = 5 imputations)
total 887

Vars.: imputed: ; math3(182)

1
passive: 0
regular: 2; school mathb

system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are five imputations for 182 missing values of the third-year score, math3. Variable math3
is an imputed variable, whereas variable math5 and variable school, recording school identifiers,
are complete and are registered as regular.

Our random-effects model includes only a random intercept, the school effect, so we can use the
xtreg command, or more specifically mi estimate: xtreg, for our primary analysis.

Without imputed data, to use xtreg or any other panel-data command, we must first declare data
to be panel (xt) data by using xtset. With imputed data, we should use the mi xtset command
instead. We declare school as our panel variable:

. mi xtset school
panel variable: school (unbalanced)

http://www.stata.com/support/faqs/stat/impute_cluster.html

mi estimate — Estimation using multiple imputations 55

Next we use mi estimate: xtreg to regress the fifth-year math score on the third-year score.

. mi estimate: xtreg math5 math3

Multiple-imputation estimates Imputations = 5

Random-effects GLS regression Number of obs = 887

Group variable: school Number of groups = 48
Obs per group:

min = 5

avg = 18.5

max = 62

Average RVI = 0.0595

Largest FMI = 0.1071

DF adjustment: Large sample DF: min = 381.40

avg = 85,771.71

max = 171,162.01

Model F test: Equal FMI F(1, 381.4) = 305.71

Within VCE type: Conventional Prob > F = 0.0000

mathb Coef . Std. Err. t P>|t| [95% Conf. Intervall

math3 .6101277 .0348951 17.48 0.000 .5415168 .6787385

_cons 30.48295 .3576417 85.23 0.000 29.78198 31.18392

sigma_u 2.0684286
sigma_e 5.3206673
rho .13128791 (fraction of variance due to u_i)

Note: sigma_u and sigma_e are combined in the original metric.

Third-year math scores are positively associated with fifth-year math scores. Because we use a
random-effects model, the coefficient on math3 is for comparison of students from the same school
or from different schools.

In the above results, multiple-imputation estimates of variance components sigma_u and sigma_e
are obtained by applying Rubin’s combination rules to the completed-data estimates in the original,
standard deviation metric.

Alternatively, we can use the mixed command to fit our two-level random-effects model and to
obtain variance-component estimates of the school effect. mixed can be used to fit more complicated
multilevel models; see [ME] mixed for details.

We fit a two-level linear model with mi estimate: mixed and specify school as our second-level
variable. mixed does not require prior declaration of the data, so we do not need to use mi xtset
with mi estimate: mixed:

56 mi estimate — Estimation using multiple imputations

. mi estimate: mixed math5 math3 || school: , reml
Multiple-imputation estimates Imputations = 5
Mixed-effects REML regression Number of obs = 887
Group variable: school Number of groups = 48
Obs per group:
min = 5
avg = 18.5
max = 62
Average RVI = 0.0574
Largest FMI = 0.1079
DF adjustment: Large sample DF: min = 376.05
avg = 44,112.02
max = 167,428.86
Model F test: Equal FMI F(C 1, 376.0) = 305.41
Prob > F = 0.0000
mathb Coef . Std. Err. t P>|t| [95% Conf. Intervall
math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708
_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522
Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall
school: Identity
sd(_cons) 2.033826 .3069989 1.512894 2.734129
sd(Residual) 5.321503 .1355669 5.061821 5.594508

The estimated coefficients, random-effects standard deviations, and other statistics are similar to those
from mi estimate: xtreg. Unlike mi estimate: xtreg, the mi estimate: mixed command
combines variance components in the estimation metric described in [ME] mixed and then back-
transforms the estimates to display results in the original metric. In our example, the reported standard
deviations are exponentiated multiple-imputation estimates of the log standard-deviations.

mi estimate — Estimation using multiple imputations 57

The random-effects parameters are displayed as standard deviations. We can display variances
instead by replaying the mi estimate command with the variance option:

. mi estimate, variance

Multiple-imputation estimates Imputations = 5

Mixed-effects REML regression Number of obs = 887

Group variable: school Number of groups = 48
Obs per group:

min = 5

avg = 18.5

max = 62

Average RVI = 0.0574

Largest FMI = 0.1079

DF adjustment: Large sample DF: min = 376.05

avg = 44,112.02

max = 167,428.86

Model F test: Equal FMI F(C 1, 376.0) = 305.41

Prob > F = 0.0000

mathb Coef. Std. Err. t P>t [95% Conf. Intervall

math3 .6100335 .0349069 17.48 0.000 .5413963 .6786708

_cons 30.48217 .3536049 86.20 0.000 29.78911 31.17522

Random-effects Parameters Estimate Std. Err. [95% Conf. Intervall

school: Identity
var (_cons) 4.136447 1.248765 2.288848 7.475462

var (Residual) 28.3184 1.442839 25.62204 31.29852

Although the random-effects parameters are now displayed as variances, they are still combined and
stored in the log—standard-deviation metric.

Example 5: Estimating transformations

Stata estimation commands usually support 1incom and nlcom (see [R] lincom and [R] nlcom) to
obtain estimates of the transformed coefficients after estimation by using the delta method. Because
MI estimates based on a small number of imputations may not yield a valid VCE, this approach is not
generally viable. Also, transformations applied to the combined coefficients are only asymptotically
equivalent to the combined transformed coefficients. With a small number of imputations, these two
ways of obtaining transformed coefficients can differ significantly.

Thus mi estimate provides its own way of combining transformed coefficients. You need to use
mi estimate’s method for both linear and nonlinear combinations of coefficients. We are about to
demonstrate how to use the method using the ratio of coefficients as an example, but what we are
about to do would be equally necessary if we wanted to obtain the difference in two coefficients.

For the purpose of illustration, suppose that we want to estimate the ratio of the coefficients, say,
age and sqft from example 2. We can do this by typing

58 mi estimate — Estimation using multiple imputations

. use http://www.stata-press.com/data/r14/mhouses1993s30

(Albuquerque Home Prices Feb15-Apr30, 1993)
. mi estimate (ratio: _blagel/_blsqft]):

> regress price tax sqft age nfeatures ne custom corner

Multiple-imputation estimates Imputations = 30

Linear regression Number of obs = 117

Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12

avg = 94.02

max = 105.51

Model F test: Equal FMI F(7, 106.5) = 67.18

Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818

corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI = 0.2899

Largest FMI = 0.2316

Complete DF = 109

DF adjustment: Small sample DF: min = 72.51

avg = 72.51

Within VCE type: oLs max = 72.51
ratio: _blagel/_blsqft]

price Coef. Std. Err. t P>t [95% Conf. Intervall

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

We use the nlcom syntax to specify the transformation: (ratio: _b[agel/_b[sqft]) defines the
transformation and its name is ratio. All transformations must be specified following mi estimate
and before the colon, and must be bound in parentheses.

A separate table containing the estimate of the ratio is displayed following the estimates of
coefficients. If desired, we can suppress the table containing the estimates of coefficients by specifying
the nocoef option. The header reports the average RVI due to nonresponse, the largest FMI, and the
summaries of the degrees of freedom specific to the estimated transformations. Because we specified
only one transformation, the minimum, average, and maximum degrees of freedom are the same.

They correspond to the individual degrees of freedom for ratio.

See [MI] mi test for an example of linear transformation.

mi estimate — Estimation using multiple imputations 59

Example 6: Monte Carlo error estimates

Multiple imputation is a stochastic procedure. Each time we reimpute our data, we get different
sets of imputations because of the randomness of the imputation step, and therefore we get different
multiple-imputation estimates. However, we want to be able to reproduce MI results. Of course, we
can always set the random-number seed to ensure reproducibility by obtaining the same imputed
values. However, what if we use a different seed? Would we not want our results to be similar
regardless of what seed we use? This leads us to a notion we call statistical reproducibility—we
want results to be similar across repeated uses of the same imputation procedure; that is, we want to
minimize the simulation error associated with our results.

To assess the level of simulation error, White, Royston, and Wood (2011) propose to use a Monte
Carlo error of the MI results, defined as the standard deviation of the results across repeated runs
of the same imputation procedure using the same data. The authors suggest evaluating Monte Carlo
error estimates not only for parameter estimates but also for other statistics, including p-values and
confidence intervals, as well as MI statistics including RVI and FMI.

Clearly, as the number of imputations increases, the simulation error decreases. Consider the total
Ml variance T' = U + B+ B/M of a single parameter, where U is the within-imputation variance and
B is the between-imputation variance; see Methods and formulas for details. The term B/M reflects
the increase in variance due to using a finite number of imputations, and its square root defines the
Monte Carlo error associated with a single parameter. In general, Monte Carlo error estimates are
obtained by applying a jackknife procedure to MI results. That is, an MCE estimate of an MI statistic
is the standard error of the mean of the pseudovalues for that statistic, computed by omitting one
imputation at a time; see [R] jackknife for technical details.

Consider our heart attack data analysis from example 1. Let’s compute Monte Carlo error estimates
of MI results. To obtain MCE estimates, we specify the mcerror option during estimation:

60 mi estimate — Estimation using multiple imputations

. use http://www.stata-press.com/data/r14/mheart1s20
(Fictional heart attack data; bmi missing)

. mi estimate, dots mcerror: logit attack smokes age bmi hsgrad female

Imputations (20):

......... 10.........20 done
Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312
Largest FMI = 0.1355
DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56
max = 493,335.88
Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack Coef. Std. Err. t P>|t| [95% Conf. Intervall
smokes 1.198595 .3578195 3.35 0.001 .4972789 1.899911
.0068541 .0008562 0.01 0.000 .0056572 .0082212
age .0360159 .0154399 2.33 0.020 .0057541 .0662776
.0002654 .0000351 0.01 0.001 .0002319 .0003108
bmi .1039416 .0476136 2.18 0.029 .010514 .1973692
.0038014 .0008904 0.09 0.006 .0039928 .0044049
hsgrad .1578992 .4049257 0.39 0.697 -.6357464 .9515449
.0091517 .0010209 0.02 0.016 .0086215 .0100602
female -.1067433 .4164735 -0.26 0.798 -.9230191 .7095326
.0077566 .0009279 0.02 0.015 .006985 .0088408
_cons -5.478143 1.685075 -3.26 0.001 -8.782394 -2.173892
.1079841 .0248274 0.07 0.000 .1310618 .1050817

Note: Values

As the note describes, MCE estimates are displayed beneath parameter estimates. Following practical
guidelines from White, Royston, and Wood (2011), MCE estimates of coefficients should be less than
10% of the standard errors of the coefficients; MCE estimates of test statistics should be approximately
0.1; and MCE estimates of p-values should be approximately 0.01 when the true p-value is 0.05 and
0.02 when the true p-value is 0.1. Our results based on 20 imputations satisfy these conditions, so

displayed beneath estimates are Monte Carlo error estimates.

we can be reasonably sure about the statistical reproducibility of our results.

We can also see Monte Carlo error estimates for other MI statistics reported by the vartable
option. To redisplay Monte Carlo error estimates, we use the mcerror option upon replay. We also

suppress the coefficient table by using the nocitable option.

mi estimate — Estimation using multiple imputations 61

. mi estimate, vartable mcerror nocitable

Multiple-imputation estimates Imputations = 20
Logistic regression

Variance information

Imputation variance Relative

Within Between Total RVI FMI efficiency

smokes .127048 .00094 .128035 .007765 .007711 .999615
.000559 .000211 .000613 .001744 .00172 .00009

age .000237 1.4e-06 .000238 .006245 .00621 .99969
8.6e-07 4.6e-07 1.1e-06 .002054 .002033 .000107

bmi .001964 .000289 .002267 .154545 .135487 .993271
.000026 .000077 .000085 .04134 .031986 .00166

hsgrad .162206 .001675 .163965 .010843 .010739 .999463
.000521 .000552 .000827 .003579 .003516 .000185

female .172187 .001203 .17345 .007338 .00729 .999636
.000614 .000297 .000773 .001811 .001788 .000094

_cons 2.5946 .233211 2.83948 .094377 .086953 .995671
.029651 .070081 .083436 .028332 .024216 .001263

Note: Values displayed beneath estimates are Monte Carlo error estimates.

MCE estimates of all statistics are small.

What if we want to see MCE estimates of odds ratios? We know that we can use the or option on
replay to redisplay results as odds ratios. However, using this option in combination with mcerror
upon replay will not display MCE estimates of odds ratios:

. mi estimate, or mcerror

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56

max = 493,335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack | Odds Ratio Std. Err. t P>|t] [95% Conf. Intervall
smokes 3.315455 1.186334 3.35 0.001 1.644241 6.685298

age 1.036672 .0160061 2.33 0.020 1.005771 1.068523

bmi 1.109536 .052829 2.18 0.029 1.010569 1.218194

hsgrad 1.171048 .4741875 0.39 0.697 .5295401 2.589707
female .8987564 .3743082 -0.26 0.798 .3973177 2.033041

_cons .0041771 .0070387 -3.25 0.001 .0001534 .1137342

Note: Monte Carlo error estimates are not available for exponentiated
coefficients.

The same applies to a combination of the level() and mcerror options specified on replay to
try to display MCE estimates of confidence intervals for a confidence level other than the one used
during estimation.

62 mi estimate — Estimation using multiple imputations

To compute MCE estimates for odds ratios in addition to coefficients, you need to specify the
or option in combination with mcerror during estimation. Similarly, to compute MCE estimates for
confidence intervals with a specific confidence level, you need to specify the level() option in
combination with mcerror during estimation. Otherwise, MCE estimates of 95% confidence intervals
are computed.

. mi estimate, mcerror or level(90): logit attack smokes age bmi hsgrad female

Multiple-imputation estimates Imputations = 20
Logistic regression Number of obs = 154
Average RVI = 0.0312

Largest FMI = 0.1355

DF adjustment: Large sample DF: min = 1,060.38
avg = 223,362.56

max = 493,335.88

Model F test: Equal FMI F(5,71379.3) = 3.59
Within VCE type: 0IM Prob > F = 0.0030
attack | Odds Ratio Std. Err. t P>|t] [90% Conf. Intervall
smokes 3.315455 1.186334 3.35 0.001 1.840491 5.97245
.0227267 .0104806 0.01 0.000 .0107398 .0477351

age 1.036672 .0160061 2.33 0.020 1.010676 1.063337

.0002752 .000039 0.01 0.001 .0002388 .0003221

bmi 1.109536 .052829 2.18 0.029 1.025885 1.200007

.0042178 .001033 0.09 0.006 .0040064 .0051089

hsgrad 1.171048 .4741875 0.39 0.697 .6016087 2.279478
.0107188 .0049031 0.02 0.016 .0052248 .02254

female .8987564 .3743082 -0.26 0.798 .4530363 1.782998
.0069686 .00341 0.02 0.015 .0032087 .0154128

_cons .0041771 .0070387 -3.25 0.001 .000261 .0668412
.0004519 .0007338 0.07 0.000 .0000336 .0068716

Note: Values displayed beneath estimates are Monte Carlo error estimates.

Similarly to the MCE estimates for coefficients, the MCE estimates for odds ratios are within acceptable
limits.

If you wish to obtain Monte Carlo error estimates of confidence intervals for a number of different
confidence levels, a more computationally efficient way of doing so is to use mi estimate using
(see [MI] mi estimate using).

First, use mi estimate to save individual estimation results from a model to an estimation file:
. mi estimate, saving(miest): ...
Then use mi estimate using to obtain MCE estimates for different confidence intervals,

. mi estimate using miest, mcerror level(90) ...
. mi estimate using miest, mcerror level(80) ...

or for odds ratios,

. mi estimate using miest, mcerror or ...

without refitting the model.

mi estimate — Estimation using multiple imputations 63

Potential problems that can arise when using mi estimate

There are two problems that can arise when using mi estimate:
1. The estimation sample varies across imputations.
2. Different covariates are omitted across the imputations.

mi estimate watches for and issues an error message if either of these problems occur. Below we
explain how each can arise and what to do about it. If you see one of these messages, be glad
that mi estimate mentioned the problem, because otherwise, it might have gone undetected. A
varying-estimation sample may result in biased or inefficient estimates. Different covariates being
omitted always results in the combined results being biased.

If the first problem arises, mi estimate issues the error message “estimation sample varies between
m = # and m = #”. mi estimate expects that when it runs the estimation command on the first
imputation, on the second, and so on, the estimation command will use the same observations in each
imputation. mi estimate does not just count, it watches which observations are used.

Perhaps the difference is due to a past mistake, such as not having imputed all the missing values.
Perhaps you even corrupted your mi data so that the imputed variable is missing in some imputations
and not in others.

Another reason the error can arise is because you specified an if condition based on imputed or
passive variables. mi estimate considers this a mistake but, if this is your intent, you can reissue
the mi estimate command and include the esampvaryok option.

Finally, it is possible that the varying observations are merely a characteristic of the estimator
when combined with the two different imputed datasets. In this case, just as in the previous one, you
can reissue mi estimate with the esampvaryok option.

The easy way to diagnose why you got this error is to use mi xeq (see [MI] mi xeq) to run the
estimation command separately on the two imputations mentioned in the error message. Alternatively,
you can rerun the mi estimate command immediately with the esampvaryok option and with the
esample (varname) option, which will create in new variable varname the e (sample) from each of
the individual estimations. If you use the second approach, you must first mi convert your data to
flong or flongsep if they are not recorded in that style already; see [MI] mi convert for details.

The second problem we mentioned concerns omitted variables as opposed to omitted observations.
mi estimate reports that “omitted variables vary” and goes on to mention the two imputations
between which the variation was detected.

This can be caused when you include factor variables but did not specify base categories. It was
the base categories that differed in the two imputations. That could happen if you specified i.group.
By default, Stata chooses to omit the most frequent category. If group were imputed or passive, then
the most frequent category could vary between two imputations. The solution is to specify the base
category for yourself by typing, for instance, b2.group; see [U] 11.4.3 Factor variables.

There are other possible causes. Varying omitted variables 1) includes different variables being
omitted in the two imputations and 2) includes no variables being omitted in one imputation and, in
the other, one or more variables being omitted.

When different variables are being omitted, it is usually caused by collinearity, and one of the
variables needs to be dropped from the model. Variables x1 and x2 are collinear; sometimes the
estimation command is choosing to omit x1 and other times, x2. The solution is that you choose
which to omit by removing it from your model.

If no variables were omitted in one of the imputations, the problem is more difficult to explain.
Say that you included i.group in your model, the base category remained the same for the two

64 mi estimate — Estimation using multiple imputations

imputations, but in one of the imputations, no one is observed in group 3, and thus no coefficient for
group 3 could be estimated. You choices are to accept that you cannot estimate a group 3 coefficient
and combine group 3 with, say, group 4, or to drop all imputations in which there is no one in group
3. If you want to drop imputations 3, 9, and 12, you type mi set m —-= (3,9,12); see [MI] mi set.

Q Technical note

As we already mentioned, mi estimate obtains MI estimates by using the combination rules to
pool results from the specified command executed separately on each imputation. As such, certain
concepts (for example, likelihood function) and most postestimation tools specific to the command
may not be applicable to the MI estimates; see Analysis of multiply imputed data in [MI] intro
substantive. MI estimates may not even have a valid variance—covariance matrix associated with
them when the number of imputations is smaller than the number of estimated parameters. For these
reasons, the system matrices e(b) and e(V) are not set by mi estimate. If desired, you can save
the MI estimates and their variance—covariance estimates in e(b) and e (V) by specifying the post
option. See [MI] mi estimate postestimation for postestimation tools available after mi estimate.

a
Stored results
mi estimate stores the following in e():
Scalars
e(df _avg[_Q]_mi) average degrees of freedom
e(df _c_mi) complete degrees of freedom (if originally stored by estimation_command in e (df _r))
e (df max[_Q]_mi) maximum degrees of freedom
e(df _min[_Q]_mi) minimum degrees of freedom
e(df _m_mi) MI model test denominator (residual) degrees of freedom
e(df _r_mi) MI model test numerator (model) degrees of freedom
e(esampvary_mi) varying-estimation sample flag (0 or 1)
e(F_mi) model test F statistic
e(k_exp_mi) number of expressions (transformed coefficients)
e(M_mi) number of imputations
e(N_mi) number of observations (minimum, if varies)
e(N_min_mi) minimum number of observations
e(N_max_mi) maximum number of observations
e(N_g_mi) number of groups
e(g_min_mi) smallest group size
e(g_avg_mi) average group size
e(g_max_mi) largest group size
e(p_mi) MI model test p-value
e(cilevel_mi) confidence level used to compute Monte Carlo error estimates of confidence intervals
e(fmi_max[_Q]_mi) largest FMI
e(rvi_avg[_Q]_mi) average RVI
e(rvi_avg_F_mi) average RVI associated with the residual degrees of freedom for model test

e(ufmi_mi) 1 if unrestricted FMI model test is performed, O if equal FMI model test is performed

mi estimate — Estimation using multiple imputations

65

Macros
e(mi)
e(cmdline_mi)
e(prefix_mi)
e(cmd_mi)
e(cmd)
e(title_mi)
e(wvce_mi)
e(modeltest_mi)
e(dfadjust_mi)
e(expnames_mi)
e(exp#_mi)
e(rc_mi)
e(m_mi)
e(m_est_mi)
e(names_vvl_mi)
e(names_vvm_mi)

e(names_vvs_mi)

Matrices
e(b)
e(V)
e(Cns)

e(N_g_mi)
e(g_min_mi)
e(g—_avg-mi)
e(g_max_mi)

e (b[-Q]-mi)
e(V[-Q]mi)
e(Cns_mi)

e (W[-Q]mi)
e(B[-Q]-mi)
e(re[_Q]_mi)
e(rvi[_Q]-mi)
e(fmi[_Q]—mi)
e(df[_Q]_mi)
e(pise[-Q]-mi)
e (vs_names_vs_mi)

mi

command as typed

mi estimate

name of estimation_command

mi estimate (equals e(cmd_mi) when post is used)
“Multiple-imputation estimates”

title used to label within-imputation variance in the table header

title used to label the model test in the table header

title used to label the degrees-of-freedom adjustment in the table header
names of expressions specified in spec

expressions of the transformed coefficients specified in spec

return codes for each imputation

specified imputation numbers

imputation numbers used in the computation

command-specific e() macro names that contents varied across imputations

command-specific e() matrix names that values varied across imputations
(excluding b, V, and Cns)

command-specific e() scalar names that values varied across imputations

MI estimates of coefficients (equals e(b_mi), stored only if post is used)

variance—covariance matrix (equals e(V_mi), stored only if post is used)

constraint matrix (for constrained estimation only; equals e (Cns_mi),
stored only if post is used)

group counts

group-size minimums

group-size averages

group-size maximums

MI estimates of coefficients (or transformed coefficients)

variance—covariance matrix (total variance)

constraint matrix (for constrained estimation only)

within-imputation variance matrix

between-imputation variance matrix

parameter-specific relative efficiencies

parameter-specific RVIs

parameter-specific FMIs

parameter-specific degrees of freedom

parameter-specific percentages increase in standard errors

values of command-specific e() scalar vs_names that varied across imputations

vs_names include (but are not restricted to) df _r, N, N_strata, N_psu, N_pop, N_sub, N_postrata,
N_stdize, N_subpop, N_over, and converged.

Results N_g_mi, g_min_mi, g_avg mi, and g_max_mi are stored for panel-data models only. The
results are stored as matrices for mixed-effects models and as scalars for other panel-data models.

If transformations are specified, the corresponding estimation results are stored with the _Q_mi suffix,

as described above.

Command-specific e() results that remain constant across imputations are also stored. Command-
specific results that vary from imputation to imputation are posted as missing, and their
names are stored in the corresponding macros e(names_vvl_mi), e(names_vvm_mi), and
e(names_vvs_mi). For some command-specific e() scalars (see vs_names above), their values
from each imputation are stored in a corresponding matrix with the _vs_mi suffix.

Methods and formulas

Let q define a column vector of parameters of interest. For example, q may be a vector of

coefficients (or functions of coefficients) from a regression model. Let {(q;, U;):i=1,2,..., M}

66 mi estimate — Estimation using multiple imputations

be the completed-data estimates of q and the respective variance—covariance estimates from M
imputed datasets.

The MI estimate of q is
M
ady = i z; qdi
1=

The variance—covariance estimate (VCE) of q;, (total variance) is

— 1
T=U+(1+—)B
+ (+M)

where U = Zf\il U, /M is the within-imputation variance—covariance matrix and B = Zﬁ\il(qi -
Ay)(a; —qQyy)' /(M — 1) is the between-imputation variance—covariance matrix.

Methods and formulas are presented under the following headings:

Univariate case
Multivariate case

Univariate case

Let Q, Q. B, U, and T correspond to the scalar analogues of the above formulas. Univariate
inferences are based on the approximation

T72(Q —Qu) ~ t (1)
where ¢,, denotes a Student’s ¢ distribution with v degrees of freedom, which depends on the number of

imputations, M, and the increase in variance of estimates due to missing data. Under the large-sample
assumption with respect to complete data, the degrees of freedom is

Viarge = (M — 1) (1 + i)Q (2)

where .
1+M~)B
U
is an RVI due to missing data. Under the small-sample assumption, the degrees of freedom is
1 1\
Vgmall = (+ =) (4)
Vlarge Vobs

where Ugpg = ve(ve +1)(1 =)/ (ve+3), vy = (14+1/M)B/T, and v, are the complete degrees of
freedom, the degrees of freedom used for inference when data are complete (Barnard and Rubin 1999).

The small-sample adjustment (4) is applied to the degrees of freedom v when the specified command
stores the residual degrees of freedom in e(df_r). This number of degrees of freedom is used as
the complete degrees of freedom, v, in the computation. (If e (df _r) varies across imputations, the
smallest is used in the computation, resulting in conservative inference.) If e (df _r) is not set by the
specified command or if the nosmall option is specified, then (2) is used to compute the degrees of
freedom, v.

mi estimate — Estimation using multiple imputations 67

Parameter-specific significance levels, confidence intervals, and degrees of freedom as reported by
mi estimate are computed using the formulas above.
The percentage of standard-error increase due to missing data, as reported by mi estimate,
—1/2
dftable, is computed as {(T/U) /2 1} x 100%.

The FMIs due to missing data and relative efficiencies reported by mi estimate, vartable are
computed as follows.

In the large-sample case, the fraction of information about () missing due to nonresponse (Ru-
bin 1987, 77) is
7+ 2/(Marge +3)
r+1
where the RVI, r, is defined in (3). In the small-sample case, the fraction of information about ()
missing due to nonresponse (Barnard and Rubin 1999, 953) is

A=

)\(Vsmall) U
A=1— Sfsmall) =
T

)‘(VC)
where A\(u) = (u+1)/(u+ 3).

The relative (variance) efficiency of using M imputations versus the infinite number of imputations
is RE= (1 + \/M)~! (Rubin 1987, 114).

Also see Rubin (1987, 76-77) and Schafer (1997, 109-111) for details.

Multivariate case

The approximation (1) can be generalized to the multivariate case:

(@—ay)T (@ —au) [k~ Frn (5)

where Fj,, denotes an F' distribution with & = rank(7") numerator degrees of freedom and v

denominator degrees of freedom defined as in (2), where the RVI, 7, is replaced with the average RVI,
Tave-

Fave = (1 + 1/M)te(BU ') /k

The approximation (5) is inadequate with a small number of imputations because the between-
imputation variance, B, cannot be estimated reliably based on small M. Moreover, when M is smaller
than the number of estimated parameters, B does not have a full rank. As such, the total variance,
T, may not be a valid variance—covariance matrix for q,,.

One solution is to assume that the between-imputation and within-imputation matrices are pro-
portional, that is B = A x U (Rubin 1987, 78). This assumption implies that FMIs of all estimated
parameters are equal. Under this assumption, approximation (5) becomes

(14 7ave) M@ — @)U (a—ay)'/k ~ Fr, (6)

where k& = rank(U) and v, is computed as described in Li et al. (1991, 1067).
Also see Rubin (1987, 77-78) and Schafer (1997, 112-114) for details.

We refer to (6) as an equal FMI test and to (5) as the unrestricted FMI test. By default, mi
estimate uses the approximation (6) for the model test. If the ufmitest option is specified, it uses
the approximation (5) for the model test.

68 mi estimate — Estimation using multiple imputations

Similar to the univariate case, the degrees of freedom v, and v are adjusted for small samples
when the command stores the completed-data residual degrees of freedom in e(df_r).

In the small-sample case, the degrees of freedom v, is computed as described in Reiter (2007)
(in the rare case, when k(M — 1) < 4, v, = (k + 1)v1/2, where vy is the degrees of freedom
from Barnard and Rubin [1999]). In the small-sample case, the degrees of freedom v is computed as
described in Barnard and Rubin (1999) and Marchenko and Reiter (2009).

Acknowledgments

The mi estimate command was inspired by the user-written command mim by John Carlin
and John Galati, both of the Murdoch Children’s Research Institute and University of Melbourne;
Patrick Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book
Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model; and Ian White of the
MRC Biostatistics Unit, London. We greatly appreciate the authors for their extensive body of work
in Stata in the multiple-imputation area.

References

Aloisio, K. M., N. Micali, S. A. Swanson, A. Field, and N. J. Horton. 2014. Analysis of partially observed clustered
data using generalized estimating equations and multiple imputation. Stata Journal 14: 863-883.

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Cleves, M. A., W. W. Gould, and Y. V. Marchenko. 2016. An Introduction to Survival Analysis Using Stata. Rev. 3
ed. College Station, TX: Stata Press.

Li, K.-H., X.-L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. Significance levels from repeated p-values with
multiply-imputed data. Statistica Sinica 1: 65-92.

Marchenko, Y. V., and J. P. Reiter. 2009. Improved degrees of freedom for multivariate significance tests obtained
from multiply imputed, small-sample data. Stata Journal 9: 388-397.

Mortimore, P., P. Sammons, L. Stoll, D. Lewis, and R. Ecob. 1988. School Matters. Berkeley, CA: University of
California Press.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

Royston, P, J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values: New features for mim. Stata
Journal 9: 252-264.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

Wagstaff, D. A., and O. Harel. 2011. A closer examination of three small-sample approximations to the multiple-
imputation degrees of freedom. Stata Journal 11: 403-419.

White, I. R., and P. Royston. 2009. Imputing missing covariate values for the Cox model. Statistics in Medicine 28:
1982-1998.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

http://www.stata-press.com/books/fpsaus.html
http://www.stata-journal.com/article.html?article=st0363
http://www.stata-journal.com/article.html?article=st0363
http://www.stata-press.com/books/survival-analysis-stata-introduction/
http://www.stata-journal.com/sjpdf.html?articlenum=st0170
http://www.stata-journal.com/sjpdf.html?articlenum=st0170
http://www.stata-journal.com/sjpdf.html?articlenum=st0139_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0235
http://www.stata-journal.com/sjpdf.html?articlenum=st0235

mi estimate — Estimation using multiple imputations 69

Also see
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] mi estimate using — Estimation using previously saved estimation results
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

Title

mi estimate using — Estimation using previously saved estimation results

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see
Description
mi estimate using miestfile is for use after mi estimate, saving(miestfile) : It allows

obtaining multiple-imputation (MI) estimates, including standard errors and confidence intervals, for
transformed coefficients or the original coefficients, this time calculated on a subset of the imputations.
The transformation can be linear or nonlinear.

Menu

Statistics > Multiple imputation

Syntax
Compute MI estimates of coefficients using previously saved estimation results

mi estimate using miestfile [, options]

Compute MI estimates of transformed coefficients using previously saved estimation results

mi estimate [spec] using miestfile [, options]

where spec may be one or more terms of the form ([name:] exp). exp is any function of the
parameter estimates allowed by nlcom; see [R] nlcom.

miestfile .ster contains estimation results previously saved by mi estimate, saving(miestfile);
see [MI] mi estimate.

70

mi estimate using — Estimation using previously saved estimation results 71

options Description
Options
nimputations (#) specify number of imputations to use; default is to use all existing
imputations

imputations (numlist) specify which imputations to use
estimations (numlist) specify which estimation results to use

mcerror compute Monte Carlo error estimates
ufmitest perform unrestricted FMI model test
nosmall do not apply small-sample correction to degrees of freedom
Tables
[@] citable suppress/display standard estimation table containing
parameter-specific confidence intervals; default is citable
dftable display degrees-of-freedom table; dftable implies nocitable
vartable display variance information about estimates; vartable implies citable
table_options control table output
display_options control columns and column formats, row spacing, display of
omitted variables and base and empty cells, and factor-variable
labeling
Reporting
level (#) set confidence level; default is 1level (95)
dots display dots as estimations are performed
noisily display any output from nlcom if transformations are specified
trace trace nlcom if transformations are specified; implies noisily
replay replay command-specific results from each individual estimation in
miestfile . ster; implies noisily
cmdlegend display the command legend
nogroup suppress summary about groups displayed for xt commands
me_options control output from mixed-effects commands
Advanced
errorok allow estimation even when nlcom errors out in some imputations;

such imputations are discarded from the analysis

coeflegend display legend instead of statistics

nowarning suppress the warning about varying estimation samples

noerrnotes suppress error notes associated with failed estimation results in
miestfile . ster

showimputations show imputations saved in miestfile . ster

eform_option display coefficient table in exponentiated form

post post estimated coefficients and VCE to e(b) and e(V)

coeflegend, nowarning, noerrnotes, showimputations, eform_option, and post do not appear in the dialog

box.

72 mi estimate using — Estimation using previously saved estimation results

table_options Description

noheader suppress table header(s)

notable suppress table(s)

nocoef suppress table output related to coefficients

nocmdlegend suppress command legend that appears in the presence of
transformed coefficients when nocoef is used

notrcoef suppress table output related to transformed coefficients

nolegend suppress table legend(s)

nocnsreport do not display constraints

See [MI] mi estimate postestimation for features available after estimation. To replay results, type
mi estimate without arguments.

Options
__ [Options |

nimputations (#) specifies that the first # imputations be used; # must be M, < # < M, where
Min = 3 if mcerror is specified and M ,;, = 2, otherwise. The default is to use all imputations,
M. Only one of nimputations(), imputations(), or estimations() may be specified.

imputations (numlist) specifies which imputations to use. The default is to use all of them. numlist
must contain at least two numbers corresponding to the imputations saved in miestfile.ster.
If mcerror is specified, numlist must contain at least three numbers. You can use the show-
imputations option to display imputations currently saved in miestfile.ster. Only one of
nimputations(), imputations(), or estimations() may be specified.

estimations (numlist) does the same thing as imputations (numlist), but this time the imputations
are numbered differently. Say that miestfile . ster was created by mi estimate and mi estimate
was told to limit itself to imputations 1, 3, 5, and 9. With imputations(), the imputations are
still numbered 1, 3, 5, and 9. With estimations (), they are numbered 1, 2, 3, and 4. Usually,
one does not specify a subset of imputations when using mi estimate, and so usually, the
imputations() and estimations() options are identical. The specified numlist must contain
at least two numbers. If mcerror is specified, numlist must contain at least three numbers. Only
one of nimputations(), imputations(), or estimations() may be specified.

mcerror specifies to compute Monte Carlo error (MCE) estimates for the results displayed in the
estimation, degrees-of-freedom, and variance-information tables. MCE estimates reflect variability
of MI results across repeated uses of the same imputation procedure and are useful for determining
an adequate number of imputations to obtain stable MI results; see White, Royston, and Wood (2011)
for details and guidelines.

MCE estimates are obtained by applying the jackknife procedure to multiple-imputation results.
That is, the jackknife pseudovalues of MI results are obtained by omitting one imputation at a
time; see [R] jackknife for details about the jackknife procedure. As such, the Monte Carlo error
computation requires at least three imputations.

If level() is specified during estimation, MCE estimates are obtained for confidence intervals
with the specified confidence level instead of using the default 95% confidence level. If any of
the options described in [R] eform_option is specified during estimation, MCE estimates for the
coefficients, standard errors, and confidence intervals in the exponentiated form are also computed.

mi estimate using — Estimation using previously saved estimation results 73

mcerror can also be used upon replay to display MCE estimates. Otherwise, MCE estimates are
not reported upon replay even if they were previously computed.

ufmitest specifies that the unrestricted fraction missing information (FMI) model test be used. The
default test performed assumes equal fractions of information missing due to nonresponse for all
coefficients. This is equivalent to the assumption that the between-imputation and within-imputation
variances are proportional. The unrestricted test may be preferable when this assumption is suspect
provided the number of imputations is large relative to the number of estimated coefficients.

nosmall specifies that no small-sample correction be made to the degrees of freedom. By default,
individual tests of coefficients (and transformed coefficients) use the small-sample correction
of Barnard and Rubin (1999), and the overall model test uses the small-sample correction of
Reiter (2007).

All table options below may be specified at estimation time or when redisplaying previously estimated
results.

citable and nocitable specify whether the standard estimation table containing parameter-specific
confidence intervals is displayed. The default is citable. nocitable can be used with vartable
to suppress the confidence interval table.

dftable displays a table containing parameter-specific degrees of freedom and percentages of increase
in standard errors due to nonresponse. dftable implies nocitable.

vartable displays a table reporting variance information about MI estimates. The table contains
estimates of within-imputation variances, between-imputation variances, total variances, relative
increases in variance due to nonresponse, fractions of information about parameter estimates missing
due to nonresponse, and relative efficiencies for using finite M rather than a hypothetically infinite
number of imputations. vartable implies citable.

table_options control the appearance of all displayed table output:
noheader suppresses all header information from the output. The table output is still displayed.
notable suppresses all tables from the output. The header information is still displayed.

nocoef suppresses the display of tables containing coefficient estimates. This option affects the
table output produced by citable, dftable, and vartable.

nocmdlegend suppresses the table legend showing the command line, used to produce results in
miestfile . ster, from the output. This legend appears above the tables containing transformed
coefficients (or above the variance-information table if vartable is used) when nocoef is
specified.

notrcoef suppresses the display of tables containing estimates of transformed coefficients (if
specified). This option affects the table output produced by citable, dftable, and vartable.

nolegend suppresses all table legends from the output.
nocnsreport; see [R] estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
and sformat (%fmt); see [R] estimation options.

Reporting

level (#); see [R] estimation options.

74 mi estimate using — Estimation using previously saved estimation results

dots specifies that dots be displayed as estimations of transformed coefficients are successfully
completed. An x is displayed if nlcom fails to estimate one of the transformed coefficients
specified in spec. This option is relevant only if transformations are specified.

noisily specifies that any output from nlcom, used to obtain the estimates of transformed coefficients,
be displayed. This option is relevant only if transformations are specified.

trace traces the execution of nlcom. trace implies noisily and is relevant only if transformations
are specified.

replay replays estimation results from miestfile.ster, previously saved by mi estimate, sav-
ing (miestfile) . This option implies noisily.

cmdlegend requests that the command line corresponding to the estimation command used to produce
the estimation results saved in miestfile .ster be displayed. cmdlegend may be specified at run
time or when redisplaying results.

nogroup suppresses the display of group summary information (number of groups, average group
size, minimum, and maximum) as well as other command-specific information displayed for xt
commands.

me_options: stddeviations, variance, noretable, nofetable, and estmetric. These options
are relevant only with the mixed-effects commands meqrlogit (see [ME] meqrlogit), meqrpoisson
(see [ME] meqrpoisson), and mixed (see [ME] mixed). See the corresponding mixed-effects
commands for more information. The stddeviations option is the default with mi estimate
using. The estmetric option is implied when vartable or dftable is used.

Advanced

errorok specifies that estimations of transformed coefficients that fail be skipped and the combined
results be based on the successful estimation results. The default is that mi estimate stops if an
individual estimation fails. If the miestfile . ster file contains failed estimation results, mi estimate
using does not error out; it issues notes about which estimation results failed and discards these
estimation results in the computation. You can use the noerrnotes option to suppress the display
of the notes.

The following options are available with mi estimate using but are not shown in the dialog box:

coeflegend; see [R] estimation options. coeflegend implies nocitable and cannot be combined
with citable or dftable.

nowarning suppresses the warning message at the bottom of table output that occurs if the estimation
sample varies and esampvaryok is specified. See Potential problems that can arise when using
mi estimate in [MI] mi estimate for details.

noerrnotes suppresses notes about failed estimation results. These notes appear when miestfile . ster
contains estimation results, previously saved by mi estimate, saving (miestfile), from imputations
for which the estimation command used with mi estimate failed to estimate parameters.

showimputations displays imputation numbers corresponding to the estimation results saved in
miestfile . ster. showimputations may be specified at run time or when redisplaying results.

eform_option; see [R] eform_option. mi estimate using reports results in the coefficient metric
under which the combination rules are applied. You may use the appropriate eform_option to
redisplay results in exponentiated form, if desired. If dftable is also specified, the reported
degrees of freedom and percentage increases in standard errors are not adjusted and correspond to
the original coefficient metric.

mi estimate using — Estimation using previously saved estimation results 75

post requests that MI estimates of coefficients and their respective VCEs be posted in the usual way.
This allows the use of estimation_command-specific postestimation tools with MI estimates. There
are issues; see Using the command-specific postestimation tools in [MI] mi estimate postestimation.
post may be specified at estimation time or when redisplaying previously estimated results.

Remarks and examples

mi estimate using is convenient when refitting models using mi estimate would be tedious or
time consuming. In such cases, you can perform estimation once and save the uncombined, individual
results by specifying mi estimate’s saving(miestfile) option. After that, you can repeatedly use
mi estimate using miestfile to estimate linear and nonlinear transformations of coefficients or to
obtain MI estimates using a subset of saved imputations.

mi estimate using performs the pooling step of the MI procedure; see [MI] intro substantive.
That is, it combines completed-data estimates from the miestfile.ster file by applying Rubin’s
combination rules (Rubin 1987, 77).

> Example 1
Recall the analysis of house resale prices from Example 2: Completed-data linear regression
analysis in [MI] mi estimate:

. use http://www.stata-press.com/data/r14/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, saving(miest): regress price tax sqft age nfeatures ne custom

> corner
Multiple-imputation estimates Imputations = 30
Linear regression Number of obs = 117
Average RVI = 0.0648
Largest FMI = 0.2533
Complete DF = 109
DF adjustment: Small sample DF: min = 69.12
avg = 94.02
max = 105.51
Model F test: Equal FMI F(7, 106.5) = 67.18
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>t [95% Conf. Intervall
tax .6768015 .1241568 5.45 0.000 .4301777 .9234253
sqft .2118129 .069177 3.06 0.003 .0745091 .3491168
age .2471445 1.653669 0.15 0.882 -3.051732 3.546021
nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623
ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215
custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818
corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972
_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

In the above, we use the saving() option to save the individual completed-data estimates from a
regression analysis in Stata estimation file miest.ster. We can now use mi estimate using to
recombine the first 5 imputations, and ignore the remaining 25, without reestimation:

76 mi estimate using — Estimation using previously saved estimation results

. mi estimate using miest, ni(5)

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 117
Average RVI = 0.0685

Largest FMI = 0.2075

Complete DF = 109

DF adjustment: Small sample DF: min = 48.59
avg = 85.22

max = 104.79

Model F test: Equal FMI F(C 7, 103.9) = 67.50
Within VCE type: OLS Prob > F = 0.0000
price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6631356 .122443 5.42 0.000 .4195447 .9067265

sqft .2185884 .0670182 3.26 0.002 .0856051 .3515718

age -.0395402 1.613185 -0.02 0.981 -3.28205 3.202969
nfeatures 8.735622 13.42251 0.65 0.517 -18.01198 35.48323

ne 4.069381 36.94491 0.11 0.913 -69.4355 77.57426

custom 130.4925 42.93286 3.04 0.003 45.36257 215.6225
corner -71.25406 40.06697 -1.78 0.078 -150.7152 8.207084

_cons 130.2002 70.38012 1.85 0.068 -9.624642 270.025

We obtain results identical to those shown in the example in [MI] mi estimate.

We can also obtain estimates of transformed coefficients without refitting the models to the imputed
dataset. Recall the example from Example 5: Estimating transformations in [MI] mi estimate, where
we estimated the ratio of the coefficients for age and sqft. We can obtain the same results by using
the following:

mi estimate using — Estimation using previously saved estimation results 77

. mi estimate (ratio: _bl[agel/_b[sqft]) using miest

Multiple-imputation estimates Imputations = 30

Linear regression Number of obs = 117

Average RVI = 0.0648

Largest FMI = 0.2533

Complete DF = 109

DF adjustment: Small sample DF: min = 69.12

avg = 94.02

max = 105.51

Model F test: Equal FMI F(7, 106.5) = 67.18

Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>t [95% Conf. Intervall

tax .6768015 .1241568 5.45 0.000 .4301777 .9234253

sqft .2118129 .069177 3.06 0.003 .0745091 .3491168

age .2471445 1.653669 0.15 0.882 -3.051732 3.546021

nfeatures 9.288033 13.30469 0.70 0.487 -17.12017 35.69623

ne 2.518996 36.99365 0.07 0.946 -70.90416 75.94215

custom 134.2193 43.29755 3.10 0.002 48.35674 220.0818

corner -68.58686 39.9488 -1.72 0.089 -147.7934 10.61972

_cons 123.9118 71.05816 1.74 0.085 -17.19932 265.0229

Transformations Average RVI = 0.2899

Largest FMI = 0.2316

Complete DF = 109

DF adjustment: Small sample DF: min = 72.51

avg = 72.51

Within VCE type: OLS max = 72.51
ratio: _bl[agel/_b[sqft]

price Coef. Std. Err. t P>t [95% Conf. Intervall]

ratio 1.44401 8.217266 0.18 0.861 -14.93485 17.82287

The results are the same as in the example in [MI] mi estimate.

For more examples, see [MI] mi test.

Stored results

See Stored results in [MI] mi estimate.

Methods and formulas

See Methods and formulas in [MI] mi estimate.

78 mi estimate using — Estimation using previously saved estimation results

References

Barnard, J., and D. B. Rubin. 1999. Small-sample degrees of freedom with multiple imputation. Biometrika 86:
948-955.

Reiter, J. P. 2007. Small-sample degrees of freedom for multi-component significance tests with multiple imputation
for missing data. Biometrika 94: 502-508.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi estimate — Estimation using multiple imputations
[MI] mi estimate postestimation — Postestimation tools for mi estimate
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

Title

mi estimate postestimation — Postestimation tools for mi estimate

Postestimation commands Remarks and examples Also see

Postestimation commands

The following postestimation commands are available after mi estimate and mi estimate using:

Command Description

mi test perform tests on coefficients

mi testtransform perform tests on transformed coefficients
mi predict obtain linear predictions

mi predictnl obtain nonlinear predictions

See [MI] mi test and [MI] mi predict.

Remarks and examples

After estimation by mi estimate: estimation_command, in general, you may not use the standard
postestimation commands such as test, testnl, or predict; nor may you use estimation_command-
specific postestimation commands such as estat. As we have mentioned often, mi estimate is its
own estimation command, and the postestimation commands available after mi estimate (and mi
estimate using) are listed in the table above.

Using the command-specific postestimation tools

After mi estimate: estimation_command, you may not use estimation_command’s postestimation
features. More correctly, you may not use them unless you specify mi estimate’s post option:

. mi estimate, post: estimation_command ...

Specifying post causes many statistical issues, so do not be casual about specifying it.

First, the MI estimate of the VCE is poor unless the number of imputations, M, is sufficiently large.
How large is uncertain, but you should not be thinking M = 20 rather than M = 5; you should be
thinking of M in the hundreds. What is statistically true is that, asymptotically in M (and in the
number of observations, V), the MI estimated coefficients approach normality and the VCE becomes
well estimated.

Second, there are substantive issues about what is meant by estimation_command’s prediction
after MI estimation that you are going to have to resolve for yourself. There is no one estimation
sample. There are M of them, and as we have just argued, M is large. Do not expect postestimation
commands that depend on predicted values such as margins, lroc, and the like, to produce correct
results, if they produce results at all.

Which brings us to the third point. Even when you specify mi estimate’s post option, mi
estimate still does not post everything the estimation command expects to see. It does not post
likelihood values, for instance, because there is no counterpart after MI estimation. Thus, you should
be prepared to see unexpected and inelegant error messages if you use a postestimation command
that depends on an unestimated and unposted result.

79

80 mi estimate postestimation — Postestimation tools for mi estimate

All of which is to say that if you specify the post option, you have a responsibility beyond the
usual to ensure the validity of any statistical results.

Also see
[MI] mi predict — Obtain multiple-imputation predictions
[MI] mi test — Test hypotheses after mi estimate
[MI] mi estimate — Estimation using multiple imputations
[MI] mi estimate using — Estimation using previously saved estimation results
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

Title

mi expand — Expand mi data

Description Syntax Menu Options
Remarks and examples Also see

Description

mi expand is expand (see [D] expand) for mi data. The syntax is identical to expand except
that in range is not allowed and the noupdate option is allowed.

mi expand exp replaces each observation in the dataset with n copies of the observation, where
n is equal to the required expression rounded to the nearest integer. If the expression is less than 1
or equal to missing, it is interpreted as if it were 1, meaning that the observation is retained but not
duplicated.

Syntax
mi expand [=]exp [t_'f] [, options]
options Description
generate (newvar) create newvar; 0 = original, 1 = expanded
noupdate see [MI] noupdate option
Menu

Statistics > Multiple imputation

Options

generate (newvar) creates new variable newvar containing O if the observation originally appeared
in the dataset and 1 if the observation is a duplication.

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option.

Remarks and examples

mi expand amounts to performing expand on m = 0, then duplicating the result on m = 1,
m =2, ..., m = M, and then combining the result back into mi format. Thus if the requested
expansion specified by exp is a function of an imputed, passive, varying, or super-varying variable,
then it is the values of the variable in m = 0 that will be used to produce the result for m = 1,
m=2,..., m= M, too.

81

82 mi expand — Expand mi data

Also see

[MI] intro — Introduction to mi

[D] expand — Duplicate observations

Title

mi export — Export mi data

Description Syntax Remarks and examples References Also see

Description
Use mi export nhanes1 to export data in the format used by the National Health and Nutrition
Examination Survey.

Use mi export ice to export data in the format used by ice (Royston 2004, 2005a, 2005b, 2007,
2009).

If and when other standards develop for recording multiple-imputation data, other mi export
subcommands will be added.

Syntax
mi export nhanesl ...
mi export ice ...

See [MI] mi export nhanesl and [MI] mi export ice.

Remarks and examples

If you wish to send data to other Stata users, ignore mi export and just send them your mi
dataset(s).

To send data to users of other packages, however, you will have to negotiate the format you will
use. The easiest way to send data to non—Stata users is probably to mi convert (see [MI] mi convert)
your data to flongsep and then use outfile (see [D] outfile) or export delimited (see [D] import
delimited). Also see [U] 21 Entering and importing data.

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

83

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

84 mi export — Export mi data

Also see

[MI] intro — Introduction to mi
[MI] mi export nhanesl — Export mi data to NHANES format

[MI] mi export ice — Export mi data to ice format

Title

mi export ice — Export mi data to ice format

Description Menu Syntax Option
Remarks and examples References Also see

Description

mi export ice converts the mi data in memory to ice format. See Royston (2004, 2005a, 2005b,
2007, 2009) for a description of ice.

Menu

Statistics > Multiple imputation

Syntax

mi export ice [, clear}

Option

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk.

Remarks and examples

mi export ice is the inverse of mi import ice (see [MI] mi import ice). Below we use mi
export ice to convert miproto.dta to ice format. miproto.dta happens to be in wide form, but
that is irrelevant.

. use http://www.stata-press.com/data/r14/miproto
(mi prototype)
. mi describe

Style: wide
last mi update 03nov2014 12:01:25, 4 days ago
Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2
Vars.: imputed: ; b(1)

1
passive: 1; c(1)
regular: 1; a
system: 1; _mi_miss

(there are no unregistered variables)

. list
a b c _1.b _2_b _1.c _2_c _mi_miss
1 1 2 3 2 2 3 3 0
2 4 4.5 5.5 8.5 9.5 1

85

86 mi export ice — Export mi data to ice format

. mi export ice

. list, separator(2)

a b [¢ _mj _mi
1 1 2 3 0 1
2 4 0 2
3 1 2 3 1 1
4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see
[MI] intro — Introduction to mi
[MI] mi export — Export mi data

[MI] mi import ice — Import ice-format data into mi

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi export nhanes1 — Export mi data to NHANES format

Description Menu Syntax Options
Remarks and examples Also see

Description

mi export nhanesl writes the mi data in memory to disk files in nhanesl format. The files will
be named filenamestub .dta, filenamestubl.dta, filenamestub2.dta, and so on. In addition to the
variables in the original mi data, new variable seqn will be added to record the sequence number.
After using mi export nhanesl, you can use outfile (see [D] outfile) or export delimited
(see [D] import delimited) to convert the resulting .dta files into a format suitable for sending to a
non-Stata user. Also see [U] 21 Entering and importing data.

mi export nhanes1 leaves the data in memory unchanged.

Menu

Statistics > Multiple imputation

Syntax

mi export nhanesl filenamestub [, options odd_options]

options Description

replace okay to replace existing files
uppercase uppercase prefix and suffix
passiveok include passive variables
odd_options Description

nacode (#) not applicable code; default is O
obscode (#) observed code; default is 1
impcode (#) imputed code; default is 2

impprefix ("string" "string") variable prefix; default is "" ""
impsuffix ("string" "string") variable suffix; default is "if" "mi"

Note: The odd_options are not specified unless you want to create results that are nhanesl-like but not really nhanesl
format.

Options
replace indicates that it is okay to overwrite existing files.

87

88 mi export nhanes1 — Export mi data to NHANES format

uppercase specifies that the new sequence variable SEQN and the variable suffixes IF and MI be in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that SEQN be created in uppercase along with all prefixes and
suffixes.)

passiveok specifies that passive variables are to be written as if they were imputed variables. The
default is to issue an error if passive variables exist in the original data.

nacode (#), obscode (#), and impcode (#) are optional and are never specified when reading true
nhanes| data. The default nacode(0) obscode(1) impcode(2) corresponds to the nhanesl
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix ("string" "string") and impsuffix("string" "string") are optional and are never spec-

ified when reading true nhanesl data. The default impprefix("" "") impsuffix("if" "mi")
corresponds to the nhanes1 definition. These options allow setting different prefixes and suffixes.

Remarks and examples

mi export nhanesl is the inverse of mi import nhanes1; see [MI] mi import nhanesl for a
description of the nhanesl format.

Below we use mi export nhanesl to convert miproto.dta to nhanesl format. miproto.dta
happens to be in wide form, but that is irrelevant.
. use http://www.stata-press.com/data/r14/miproto
(mi prototype)

. mi describe

Style: wide
last mi update 03nov2014 12:01:25, 4 days ago
Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2
Vars.: imputed: 1; b(1)
passive: 1; c(1)
regular: 1; a
system: 1; _mi_miss
(there are no unregistered variables)
. list
a b c 1ib _2Db _1_c _2_c _mi_miss
1 1 2 3 2 2 3 3
2 4 4.5 5.5 8.5 9.5 1

. mi export nhanesl mynh, passiveok replace
files mynh.dta mynhl.dta mynh2.dta created

mi export nhanes1 — Export mi data to NHANES format 89

. use mynh
(mi prototype)

. list

seqn a bif cif

e
e
e
e
e

. use mynhl
(mi prototype)

. list

seqn a bmi cmi

1 1 1 2 3
2 2 4 4.5 8.5
. use mynh2

(mi prototype)
. list

seqn a bmi cmi

1 1 1 2 3
2 2 4 5.5 9.5
Also see

[MI] intro — Introduction to mi
[MI] mi export — Export mi data

[MI] mi import nhanesl — Import NHANES-format data into mi

Title

mi extract — Extract original or imputed data from mi data

Description Menu Syntax Options
Remarks and examples Also see

Description

mi extract # replaces the data in memory with the data for m = #. The data are not mi set.

Menu

Statistics > Multiple imputation

Syntax

mi extract # [, options]

where 0 < # < M

options Description

clear okay to replace unsaved data in memory

esample(...) rarely specified option

esample (varname) ... syntax when # > 0

esample (varname #.) ... syntax when # =0; 1 < # < M
Options

clear specifies that it is okay to replace the data in memory even if the current data have not been
saved to disk.

esample (varname [#e]) is rarely specified. It is for use after mi estimate (see [MI] mi estimate)
when the esample (newvar) option was specified to store in newvar the e (sample) for m = 1,
m =2, ..., m = M. Tt is now desired to extract the data for one m and for e(sample) set
correspondingly.

mi extract #, esample (varname), # > 0, is the usual case in this unlikely event. One extracts
one of the imputation datasets and redefines e(sample) based on the e(sample) previously
stored for m = #.

The odd case is mi extract O, esample (varname #.), where #, > 0. One extracts the original
data but defines e (sample) based on the e(sample) previously stored for m = #,.

Specifying the esample () option changes the sort order of the data.

90

mi extract — Extract original or imputed data from mi data 91

Remarks and examples

If you wanted to give up on mi and just get your original data back, you could type

. mi extract O

You might do this if you wanted to send your original data to a coworker or you wanted to try a
different approach to dealing with the missing values in these data. Whatever the reason, the result
is that the original data replace the data in memory. The data are not mi set. Your original mi data
remain unchanged.

If you suspected there was something odd about the imputations in m = 3, you could type

. mi extract 3

You would then have a dataset in memory that looked just like your original, except the missing
values of the imputed and passive variables would be replaced with the imputed and passive values
from m = 3. The data are not mi set. Your original data remain unchanged.

Also see
[MI] intro — Introduction to mi

[MI] mi replace0) — Replace original data

Title

mi import — Import data into mi

Description Syntax Remarks and examples References Also see

Description

mi import imports into mi data that contain original data and imputed values.

Syntax

mi import nhanesl ...
mi import ice ...

mi import flong ...
mi import flongsep ...

mi import wide ...

See [MI] mi import nhanesl, [MI] mi import ice, [MI] mi import flong, [MI] mi import flongsep,
and [MI] mi import wide.

Remarks and examples

Remarks are presented under the following headings:
When to use which mi import command
Import data into Stata before importing into mi
Using mi import nhanesl, ice, flong, and flongsep

When to use which mi import command

mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition
Examination Survey (NHANES) produced by the National Center for Health Statistics of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes.htm.

mi import ice imports data recorded in the format used by ice (Royston 2004, 2005a, 2005b,
2007, 2009).

mi import flong and mi import flongsep import data that are in flong- and flongsep-like
format, which is to say, the data are repeated for m =0, m =1, ..., and m = M. mi import
flong imports data in which the information is contained in one file. mi import flongsep imports
data in which the information is recorded in a collection of files.

mi import wide imports data that are in wide-like format, where additional variables are used to
record the imputed values.

92

http://www.cdc.gov/nchs/nhanes.htm

mi import — Import data into mi 93

Import data into Stata before importing into mi

With the exception of mi import ice, you must import the data into Stata before you can use
mi import to import the data into mi. mi import ice is the exception only because the data are
already in Stata format. That is, mi import requires that the data be stored in Stata-format .dta
datasets. You perform the initial import into Stata by using any method described in [D] import.

Using mi import nhanes1, ice, flong, and flongsep

Import commands mi import nhanes1 and mi import flongsep produce an flongsep result; mi
import ice and mi import flong produce an flong result. You can use mi convert (see [MI] mi
convert) afterward to convert the result to another style, and we usually recommend that. Before
doing that, however, you need to examine the freshly imported data and verify that all imputed and
passive variables are registered correctly. If they are not registered correctly, you risk losing imputed
values.

To perform this verification, use the mi describe (see [MI] mi describe) and mi varying (see
[MI] mi varying) commands immediately after mi import:

. mi import
. mi describe
. mi varying
mi describe will list the registration status of the variables. mi varying will report the varying
and super-varying variables. Verify that all varying variables are registered as imputed or passive. If
one or more is not, register them now:
. mi register imputed forgottenvar
. mi register passive another_forgottenvar
There is no statistical distinction between imputed and passive variables, so you may register

variables about which you are unsure either way. If an unregistered variable is found to be varying
and you are convinced that is an error, register the variable as regular:

. mi register regular variable_in_error

Next, if mi varying reports that your data contain any super-varying variables, determine whether
the variables are due to errors in the source data or really are intended to be super varying. If they
are errors, register the variables as imputed, passive, or regular, as appropriate. Leave any intended
super-varying variables unregistered, however, and make a note to yourself: never convert these data
to the wide or mlong styles. Data with super-varying variables can be stored only in the flong and
flongsep styles.

Now run mi describe and mi varying again:
. mi describe
. mi varying
Ensure that you have registered variables correctly, and, if necessary, repeat the steps above to fix
any remaining problems.

After that, you may use mi convert to switch the data to a more convenient style. We generally
start with style wide:

. mi convert wide

94 mi import — Import data into mi

Do not switch to wide, however, if you have any super-varying variables. Try flong instead:
. mi convert flong

Whichever style you choose, if you get an insufficient-memory error, you will have to either
increase the amount of memory dedicated to Stata or use these data in the more inconvenient, but
perfectly workable, flongsep style. Concerning increasing memory, see Converting from flongsep in
[MI] mi convert. Concerning the workability of flongsep, see Advice for using flongsep in [MI] styles.

We said to perform the checks above before using mi convert. It is, however, safe to convert the
just-imported flongsep data to flong, perform the checks, and then convert to the desired form. The
checks will run more quickly if you convert to flong first.

You can vary how you perform the checks. The logic underlying our recommendations is as
follows:

e It is possible that you did not specify all the imputed and passive variables when you
imported the data, perhaps due to errors in the data’s documentation. It is also possible that
there are errors in the data that you imported. It is worth checking.

e Aslong as the imported data are recorded in the flongsep or flong style, unregistered variables
will appear exactly as they appeared in the original source. It is only when the data are
converted to the wide or mlong style that assumptions about the structure of the data are
exploited to save memory. Thus you need to perform checks before converting the data to
the more convenient wide or mlong style.

e If you find errors, you could go back and reimport the data correctly, but it is easier to use
mi register after the fact. When you type mi register you are not only informing mi
about how to deal with the variable but also asking mi register to examine the variable
and fix any problems given its new registration status.

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see

[MI] intro — Introduction to mi

[MI] mi import flong — Import flong-like data into mi

[MI] mi import flongsep — Import flongsep-like data into mi
[MI] mi import ice — Import ice-format data into mi

[MI] mi import nhanesl — Import NHANES-format data into mi
[MI] mi import wide — Import wide-like data into mi

[MI] styles — Dataset styles

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi import flong — Import flong-like data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description

mi import flong imports flong-like data, that is, data in whichm =0, m =1, ..., m =M
are all recorded in one .dta dataset.

mi import flong converts the data to mi flong style. The data are mi set.

Menu

Statistics > Multiple imputation

Syntax
mi import flong, required_options [true_options]

required_options Description

m (varname) name of variable containing m

id (varlist) identifying variable(s)

true_options Description

imputed (varlist) imputed variables to be registered

passive (varlist) passive variables to be registered

clear okay to replace unsaved data in memory
Options

m(varname) and id(varlist) are required. m(varname) specifies the variable that takes on values O,
1, ..., M, the variable that identifies observations correspondingtom =0, m =1, ..., m = M.
varname = 0 identifies the original data, varname = 1 identifies m = 1, and so on.

id (varlist) specifies the variable or variables that uniquely identify observations within m().

imputed (varlist) and passive (varlist) are truly optional options, although it would be unusual if
imputed () were not specified.

imputed (varlist) specifies the names of the imputed variables.
passive (varlist) specifies the names of the passive variables, if any.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import flong starts with flong-like data in memory and ends
with mi flong data in memory.

95

96 mi import flong — Import flong-like data into mi

Remarks and examples

The procedure to convert flong-like data to mi flong is this:
1. use the unset data.
2. Issue the mi import flong command.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.
4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style, such
as wide or mlong.
For instance, you have the following unset data:

. use http://www.stata-press.com/data/r14/ourunsetdata
(mi prototype)

. list, separator(2)

m subject a b [¢
1. 0 101 1 2 3
2. 0 102 4
3. 1 101 1 2 3
4. 1 102 4 4.5 8.5
5. 2 101 1 2 3
6. 2 102 4 5.5 9.5

You are told that these data contain the original data (m = 0) and two imputations (m = 1 and
m = 2), that variable b is imputed, and that variable c is passive and in fact equal to a + b. These
are the same data discussed in [MI] styles but in unset form.

The fact that these data are nicely sorted is irrelevant. To import these data, type
. mi import flong, m(m) id(subject) imputed(b) passive(c)
These data are short enough that we can list the result:

. list, separator(2)

m subject a b [¢ _mi_m _mi_id _mi_miss
1. 0 101 1 2 3 0 1 0
2. 0 102 4 . . 0 2 1
3. 1 101 1 2 3 1 1
4. 1 102 4 4.5 8.5 1 2
5. 2 101 1 2 3 2 1
6. 2 102 4 5.5 9.5 2 2

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

mi import flong — Import flong-like data into mi 97

. mi describe

Style: flong
last mi update 14nov2014 14:43:59, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: O
system: 3; _mi_m _mi_id _mi_miss
(there are 3 unregistered variables; m subject a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)

unregistered varying: (none)

*unregistered super/varying: (none)
unregistered super varying: m

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We discover that unregistered variable m is super varying (see [MI] Glossary). Here we no longer
need m, so we will drop the variable and rerun mi varying. We will find that there are no remaining
problems, so we will convert our data to our preferred wide style:

. drop m
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

. mi convert wide, clear

. list
subject a b c _mi_miss _1b _1_c _2.b _2_c
1. 1060 1 2 3 0 2 3 2 3
2. 102 4 . . 1 4.5 8.5 5.5 9.5
Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import flongsep — Import flongsep-like data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description

mi import flongsep imports flongsep-like data, that is, data in which m =0, m =1, ...,
m = M are each recorded in separate .dta datasets.

mi import flongsep converts the data to mi flongsep and mi sets the data.

Menu

Statistics > Multiple imputation

Syntax

mi import flongsep name, required_options [true_options]

where name is the name of the flongsep data to be created.

required_options Description
using(filenamelist) input filenames form =1, m =2, ...
id (varlist) identifying variable(s)

Note: use the input file for m=0 before issuing mi import flongsep.

true_options Description

imputed (varlist) imputed variables to be registered

passive (varlist) passive variables to be registered

clear okay to replace unsaved data in memory
Options

using(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m =2, ..., m = M. The dataset corresponding to m = 0 is not specified; it is to be in memory
at the time the mi import flongsep command is given.

The filenames might be specified as

using(dsl ds2 ds3 ds4 dsb)

98

mi import flongsep — Import flongsep-like data into mi 99

which states that m = 1 is in file ds1.dta, m = 2 is in file ds2.dta, ..., and m = 5 is in file
dsb.dta. Also, {#-#} is understood, so the above could just as well be specified as

using(ds{1-5})
The braced numeric range may appear anywhere in the name, and thus

using(ds{1-5}imp)
would mean that dslimp.dta, ds2imp.dta, ..., dsbimp.dta contain m =1, m = 2, ...,
m =S5.

Alternatively, a comma-separated list can appear inside the braces. Filenames dsfirstm.dta,
dssecondm.dta, ..., dsfifthm.dta can be specified as

using(ds{first,second,third,fourth,fifth}m)
Filenames can be specified with or without the .dta suffix and may be enclosed in quotes if they
contain special characters.

id(varlist) is required; it specifies the variable or variables that uniquely identify the observations
in each dataset. The coding must be the same across datasets.

imputed (varlist) and passive(varlist) are truly optional options, although it would be unusual if
imputed () were not specified.

imputed (varlist) specifies the names of the imputed variables.
passive (varlist) specifies the names of the passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk.

Remarks and examples

The procedure to convert flongsep-like data to mi flongsep is this:
1. use the dataset corresponding to m = 0.

2. Issue the mi import flongsep name command, where name is the name of the mi flongsep
data to be created.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

For instance, you have been given the unset datasets imorig.dta, im1.dta, and im2.dta. You
are told that these datasets contain the original data and two imputations, that variable b is imputed,
and that variable c is passive and in fact equal to a + b. Here are the datasets:

. use http://www.stata-press.com/data/r14/imorig
. list

subject a b c

e

101 1 2 3
2. 102 4

100 mi import flongsep — Import flongsep-like data into mi

. use http://www.stata-press.com/data/r14/imil

. list
subject a b c
1. 101 1 2 3
2. 102 4 4.5 8.5
. save iml

file iml.dta saved

. use http://www.stata-press.com/data/r14/im2

. list

subject a

e

101 1
2. 102 4

b c
2 3
5.5 9.5

These are the same data discussed in [MI] styles but in unset form.

The fact that these datasets are nicely sorted is irrelevant. To import these datasets, you type

. use http://www.stata-press.com/data/r14/imorig

. mi import flongsep mymi, using(iml im2) id(subject) imputed(b) passive(c)

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are

registered correctly:

. mi describe

Style: flongsep mymi
last mi update 14nov2014 14:43:59, O seconds ago

Obs.: complete

incomplete

total
Vars.: imputed:

passive:

regular:

system:

1
1 (M = 2 imputations)
2

1; b(1)

1; c(1)

0

2; _mi_id _mi_miss

(there are 2 unregistered variables; subject a)

. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying:
unregistered varying:
*unregistered super/varying:
unregistered super varying:

(none)
(none)
(none)
(none)

* super/varying means super

varying but would be varying if registered as

imputed; variables vary only where equal to soft missing in m=0.

mi import flongsep — Import flongsep-like data into mi 101

mi varying reported no problems. We finally convert to our preferred wide style:
. mi convert wide, clear

. list

subject a b c _mi_miss 1_b 1_c 2_b 2_

e

101 1 2 3 0 2 3 2
2. 102 4 . . 1 4.5 8.5 5.5 9.5

We are done with the converted data in flongsep format, so we will erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import ice — Import ice-format data into mi

Description Menu Syntax Options
Remarks and examples References Also see
Description

mi import ice converts the data in memory to mi data, assuming the data in memory are in ice
format. See Royston (2004, 2005a, 2005b, 2007, 2009) for a description of ice.

mi import ice converts the data to mi style flong. The data are mi set.

Menu

Statistics > Multiple imputation

Syntax
mi import ice [s options]
options Description
automatic register variables automatically
imputed (varlist) imputed variables to be registered
passive (varlist) passive variables to be registered
clear okay to replace unsaved data
Options

automatic determines the identity of the imputed variables automatically. Use of this option is
recommended.

imputed (varlist) specifies the names of the imputed variables. This option may be used with
automatic, in which case automatic is taken to mean automatically determine the identity of
imputed variables in addition to the imputed() variables specified. It is difficult to imagine why
one would want to do this.

passive (varlist) specifies the names of the passive variables. This option may be used with auto-
matic and usefully so. automatic cannot distinguish imputed variables from passive variables,
so it assumes all variables that vary are imputed. passive () allows you to specify the subset of
varying variables that are passive.

Concerning the above options: If none are specified, all variables are left unregistered in the result.
You can then use mi varying to determine the varying variables and use mi register to register
them appropriately; see [MI] mi varying and [MI] mi set. If you follow this approach, remember to
register imputed variables before registering passive variables.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk. Remember, mi import ice starts with ice data in memory and ends
with mi data in memory.

102

mi import ice — Import ice-format data into mi 103

Remarks and examples

The procedure to convert ice data to mi flong is
1. use the ice data.

2. Issue the mi import ice command, preferably with the automatic option and perhaps
with the passive() option, too, although it really does not matter if passive variables are
registered as imputed, so long as they are registered.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide or mlong.

For instance, you have the following ice data:

. use http://www.stata-press.com/data/ri4/icedata
. list, separator(2)

_mj _mi a b c
1 0 1 1 2 3
2 0 2 4
3 1 1 1 2 3
4 1 2 4 4.5 8.5
5 2 1 1 2 3
6 2 2 4 5.5 9.5

—mj and _mi are ice system variables. These data contain the original data and two imputations.
Variable b is imputed, and variable c is passive and in fact equal to a 4+ b. These are the same data
discussed in [MiI] styles but in ice format.

The fact that these data are nicely sorted is irrelevant. To import these data, you type

. mi import ice, automatic
(1 m=0 obs. now marked as incomplete)

although it would be even better if you typed

. mi import ice, automatic passive(c)
(1 m=0 obs. now marked as incomplete)

With the first command, both b and c will be registered as imputed. With the second, c will
instead be registered as passive. Whether c is registered as imputed or passive makes no difference
statistically.

104 mi import ice — Import ice-format data into mi

These data are short enough that we can list the result:

. list, separator(2)

a b c _mi_m _mi_id _mi_miss
1 1 2 3 0 1 0
2 4 0 2 1
3 1 2 3 1 1
4 4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep
of [MI] mi import, which are to run mi describe and mi varying to verify that variables are
registered correctly:

. mi describe

Style: flong
last mi update 14nov2014 14:44:00, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed:

1; b(1)
passive: 1; c(1)
regular: O
system: 3; _mi_m _mi_id _mi_miss
(there is one unregistered variable; a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

We find that there are no remaining problems, so we convert our data to our preferred wide style:

. mi convert wide, clear

. list
a b c _mi_miss _1.b _1.c _2_b _2_c
1 1 2 3 0 2 3 2 3
2 1 4.5 8.5 5.5 9.5

mi import ice — Import ice-format data into mi 105

References

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

—— 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi import nhanes1 — Import NHANES-format data into mi

Description Menu Syntax Options
Remarks and examples Also see

Description

mi import nhanes1 imports data recorded in the format used by the National Health and Nutrition
Examination Survey (NHANES) produced by the National Center for Health Statistics (NCHS) of the U.S.
Centers for Disease Control and Prevention (CDC); see http://www.cdc.gov/nchs/nhanes/nh3data.htm.

Menu

Statistics > Multiple imputation

Syntax

mi import nhanesl name, required_options [true_options odd_options]

where name is the name of the flongsep data to be created.

required_options Description
using(filenamelist) input filenames form =1, m =2, ...
id (varlist) identifying variable(s)

Note: use the input file for m=0 before issuing mi import nhanesi.

true_options Description

uppercase prefix and suffix in uppercase

clear okay to replace unsaved data in memory
odd_options Description

nacode (#) not applicable code; default is O
obscode (#) observed code; default is 1

impcode (#) imputed code; default is 2

impprefix ("string" "string") variable prefix; default is "" ""
impsuffix ("string" "string") variable suffix; default is "if" "mi"

Note: The odd—_options are not specified unless you need to import data that are nhanesl-like but not really nhanesl
format.

106

http://www.cdc.gov/nchs/nhanes/nh3data.htm

mi import nhanes1 — Import NHANES-format data into mi 107

Options
using/(filenamelist) is required; it specifies the names of the .dta datasets containing m = 1,
m =2, ..., m = M. The dataset corresponding to m = 0 is not specified; it is to be in memory

at the time the mi import nhanesl command is given.

The filenames might be specified as
using(nhl nh2 nh3 nh4 nh5)

which states that m = 1 is in file nhl.dta, m = 2 is in file nh2.dta, ..., and m = 5 is in file
nh5.dta. Also, {#-#2} is understood, so the files could just as well be specified as

using(nh{1-5})
The braced numeric range may appear anywhere in the name, and thus
using(nh{1-5}imp)

would mean that nhlimp.dta, nh2imp.dta, ..., nhbimp.dta contain m =1, m = 2, ...,
m =35.

Alternatively, a comma-separated list can appear inside the braces. Filenames nhfirstm.dta,
nhsecondm.dta, ..., nhfifthm.dta can be specified as

using(nh{first,second,third,fourth,fifth}m)

Filenames can be specified with or without the .dta suffix and must be enclosed in quotes if they
contain special characters.

id(varlist) is required and is usually specified as id(seqn) or id(SEQN) depending on whether
your variable names are in lowercase or uppercase. id() specifies the variable or variables that
uniquely identify the observations in each dataset. Per the nhanesl standard, the variable should
be named seqn or SEQN.

uppercase is optional; it specifies that the variable suffixes IF and MI of the nhanes1 standard are in
uppercase. The default is lowercase. (More correctly, when generalizing beyond nhanes1 format,
the uppercase option specifies that all prefixes and suffixes are in uppercase.)

nacode (#), obscode (#), and impcode (#) are optional and are never specified when reading true
nhanes1 data. The defaults nacode (0), obscode (1), and impcode (2) correspond to the nhanes1
definition. These options allow changing the codes for not applicable, observed, and imputed.

impprefix ("string" "string") and impsuffix("string" "string") are optional and are never spec-

ified when reading true nhanesl data. The defaults impprefix("" "") and impsuffix("if"
"mi") correspond to the nhanesl definition. These options allow setting different prefixes and
suffixes.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were saved to disk. Remember, mi import nhanes1 starts with the first of the NHANES data in
memory and ends with mi data in memory.

Remarks and examples

Remarks are presented under the following headings:

Description of the nhanesl format
Importing nhanes! data

108 mi import nhanes1 — Import NHANES-format data into mi

Description of the nhanes1 format

Nhanesl is not really an official format; it is the format used for a particular dataset distributed
by NCHS. Because there currently are no official or even informal standards for multiple-imputation
data, perhaps the method used by the NCHS for NHANES will catch on, so we named it nhanesl. We
included the 1 on the end of the name in case the format is modified.

Data in nhanes1 format consist of a collection of M + 1 separate files. The first file contains the
original data. The remaining M files contain the imputed values for m =1, m =2, ..., m = M.

The first file contains a variable named seqn containing a sequence number. The file also contains
other variables that comprise the nonimputed variables. Imputed variables, however, have their names
suffixed with IF, standing for imputation flag, and those variables contain 1s, 2s, and 0s. 1 means that
the value of the variable in that observation was observed, 2 means that the value was missing, and
0 means not applicable. Think of 0 as being equivalent to hard missing. The value is not observed
for good reason and therefore was not imputed.

The remaining M files contain seqn and the imputed variables themselves. In these files, unobserved
values are imputed. This time, imputed variable names are suffixed with MI.

Here is an example:

. use http://www.stata-press.com/data/r14/nhorig
. list

seqn a DbIF cIF

The above is the first of the M + 1 datasets. The seqn variable is the sequence number. The
a variable is a regular variable; we know that because the name does not end in IF. The b and c
variables are imputed, and this dataset contains their imputation flags. Both variables are observed in
the first observation and unobserved in the second.

Here is the corresponding dataset for m = 1:

. use http://www.stata-press.com/data/r14/nhil
. list

seqn bMI cMI

1 1 2 3
2 2 4.5 8.5
. save nhl

file nhl.dta saved

This dataset states that in m = 1, b is equal to 2 and 4.5 and c is equal to 3 and 8.5.

We are about to show you the dataset for m = 2. Even before looking at it, however, we know
that 1) it will have two observations; 2) it will have the seqn variable containing 1 and 2; 3) it will
have two more variables named bMI and cMI; and 4) bMI will be equal to 2 and cMI will be equal
to 3 in observations corresponding to seqn = 1. We know the last because in the first dataset, we
learned that b and ¢ were observed in seqn = 1.

mi import nhanes1 — Import NHANES-format data into mi 109

. use http://www.stata-press.com/data/r14/nh2
. list

seqgn a bMI cMI

[ure
[ure
[y
[N
N
w

. save nh2
file nh2.dta saved

Importing nhanes1 data

The procedure to import nhanes! data is this:
1. use the dataset corresponding to m = 0; see [D] use.

2. Issue mi import nhanesl name ..., where name is the name of the mi flongsep dataset
to be created.

3. Perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of [MI] mi
import.

4. Use mi convert (see [MI] mi convert) to convert the data to a more convenient style such
as wide, mlong, or flong.

To import the nhorig.dta, nhl.dta, and nh2.dta datasets described in the section above, we
will specify mi import nhanesl’s uppercase option because the suffixes were in uppercase. We
type

. use http://www.stata-press.com/data/r14/nhorig

. mi import nhanesl mymi, using(nhl nh2) id(seqn) uppercase

The lack of any error message means that we have successfully converted nhanesl-format
files nhorig.dta, nhl.dta, and nh2.dta to mi flongsep files mymi.dta, _1_mymi.dta, and
_2_mymi.dta.

We will now perform the checks outlined in Using mi import nhanesl, ice, flong, and flongsep of
[MI] mi import, which are to run mi describe and mi varying (see [MI] mi describe and [MI] mi
varying) to verify that variables are registered correctly:

. mi describe

Style: flongsep mymi
last mi update 14nov2014 14:44:00, O seconds ago

Obs.: complete 1
incomplete 1 (M = 2 imputations)
total 2

Vars.: imputed: 2; b(1) c(1)
passive: O
regular: O
system: 2; _mi_id _mi_miss

(there are 2 unregistered variables; seqn a)

110 mi import nhanes1 — Import NHANES-format data into mi

. mi varying

Possible problem variable names

imputed nonvarying: (none)

passive nonvarying: (none)
unregistered varying: (none)
*unregistered super/varying: (none)
unregistered super varying: (none)

* super/varying means super varying but would be varying if registered as
imputed; variables vary only where equal to soft missing in m=0.

mi varying reported no problems.

We finally convert to style flong, although in real life we would choose styles mlong or wide. We
are choosing flong because it is more readable:

. mi convert flong, clear

. list, separator(2)

seqn a b ¢ _mi_id _mi_miss _mi_m
1. 1 1 2 3 1 0 0
2. 2 14 . . 2 1 0
3 1 1 2 3 1 1
4 2 14 4.5 8.5 2 1
5 1 1 2 3 1 2
6 2 14 5.5 9.5 2 2

The flong data are in memory. We are done with the converted data in flongsep format, so we
erase the files:

. mi erase mymi
(files mymi.dta _1_mymi.dta _2_mymi.dta erased)

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi import wide — Import wide-like data into mi

Description Menu Syntax Options
Remarks and examples Also see
Description
mi import wide imports wide-like data, that is, data in which m =0, m =1, ..., m =M

values of imputed and passive variables are recorded in separate variables.

mi import wide converts the data to mi wide style and mi sets the data.

Menu

Statistics > Multiple imputation

Syntax
mi import wide [s options]
options Description
imputed (mvlist) imputed variables
passive (mvlist) passive variables
dupsok allow variable to be posted repeatedly
drop drop imputed and passive after posting
clear okay to replace unsaved data in memory

See description of options below for definition of mvlist.

Options
imputed (mvlist) and passive (mvlist) specify the imputed and passive variables.

For instance, if the data had two imputed variables, x and y; x and y contained the m = 0 values;
the corresponding m = 1, m = 2, and m = 3 values of x were in x1, x2, and x3; and the
corresponding values of y were in y1, y2, and y3, then the imputed() option would be specified
as

imputed(x=x1 x2 x3 y=yl y2 y3)

If variable y2 were missing from the data, you would specify
imputed(x=x1 x2 x3 y=yl . y3)

The same number of imputations must be specified for each variable.

dupsok specifies that it is okay if you specify the same variable name for two different imputations.
This would be an odd thing to do, but if you specify dupsok, then you can specify

imputed(x=x1 x1 x3 y=yl y2 y3)

Without the dupsok option, the above would be treated as an error.

111

112 mi import wide — Import wide-like data into mi

drop specifies that the original variables containing values for m = 1, m =2, ..., m = M are to be
dropped from the data once mi import wide has recorded the values. This option is recommended.

clear specifies that it is okay to replace the data in memory even if they have changed since they
were last saved to disk.

Remarks and examples

The procedure to convert wide-like data to mi wide style is this:
1. use the unset data; see [D] use.

2. Issue the mi import wide command.

3. Use mi describe (see [MI] mi describe) and mi varying (see [MI] mi varying) to verify
that the result is as you anticipated.

4. Optionally, use mi convert (see [MI] mi convert) to convert the data to what you consider
a more convenient style.

For instance, you have been given unset dataset wi.dta and have been told that it contains variables
a, b, and c; that variable b is imputed and contains m = 0 values; that variables b1 and b2 contain
the m = 1 and m = 2 values; that variable c is passive (equal to a 4 b) and contains m = 0 values;
and that variables c1 and c2 contain the corresponding m = 1 and m = 2 values. Here are the data:
. use http://www.stata-press.com/data/ri4/wi
(mi prototype)
. list

These are the same data discussed in [MI] styles. To import these data, type

. mi import wide, imputed(b=bl b2 c=cl c2) drop

These data are short enough that we can list the result:

. list
a b c _mi_miss _1.b _2_b _1.c _2_c
1. 1 2 3 0 2 2 3 3
2 4 1 4.5 5.5 8.5 9.5

mi import wide — Import wide-like data into mi

113

Returning to the procedure, we run mi describe and mi varying on the result:

. mi describe

Style: wide

last mi update 14nov2014 14:44:00, O seconds ago
Obs.: complete 1

incomplete 1 (M = 2 imputations)

total 2

Vars.: imputed: 2; b(1) c(1)
passive: O
regular: O
system: 1; _mi_miss
(there is one unregistered variable; a)
. mi varying

Possible problem variable names

imputed nonvarying: (none)
passive nonvarying: (none)

Perhaps you would prefer seeing these data in flong style:

. mi convert flong, clear

. list, separator(2)

a b [_mi_miss _mi_m _mi_id
1 1 2 3 0 0 1
2 4 1 0 2
3 1 2 3 1 1
4 4.5 8.5 1 2
5 1 2 3 2 1
6 4 5.5 9.5 2 2

Also see

[MI] intro — Introduction to mi

[MI] mi import — Import data into mi

Title

mi impute — Impute missing values

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute fills in missing values (.) of a single variable or of multiple variables using the
specified method. The available methods (by variable type and missing-data pattern) are summarized
in the tables below.

Single imputation variable (univariate imputation)

Pattern Type Imputation method
continuous regress, pmm,

truncreg, intreg

always monotone binary logit
categorical ologit, mlogit

count poisson, nbreg

Multiple imputation variables (multivariate imputation)

Pattern Type Imputation method

monotone missing mixture monotone
arbitrary missing mixture chained
arbitrary missing continuous mvn

The suggested reading order of mi

[MI] mi impute
[MI] mi impute
[MI] mi impute
[MI] mi impute
[MI] mi impute
[MI] mi impute
[MI] mi impute
[MI] mi impute

[MI] mi impute

[MI] mi impute

[MI] mi impute
[MI] mi impute

[MI] mi

regress
pmm
truncreg
intreg
logit
ologit
mlogit
poisson

nbreg

monotone
chained

mvn

impute usermethod

impute’s subentries

114

is

mi impute — Impute missing values 115

Menu

Statistics > Multiple imputation

Syntax
mi impute method ... [, impute_options . ..]
method Description
Univariate
regress linear regression for a continuous variable
pmm predictive mean matching for a continuous variable
truncreg truncated regression for a continuous variable with a restricted range
intreg interval regression for a continuous partially observed (censored) variable
logit logistic regression for a binary variable
ologit ordered logistic regression for an ordinal variable
mlogit multinomial logistic regression for a nominal variable
poisson Poisson regression for a count variable
nbreg negative binomial regression for an overdispersed count variable
Multivariate
monotone sequential imputation using a monotone-missing pattern
chained sequential imputation using chained equations
mvn multivariate normal regression

User-defined

usermethod user-defined imputation methods
impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float
by(varlist[, byopts]) impute separately on each group formed by varlist (not allowed with
usermethod)
Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update (not allowed with usermethod); see

[MI] noupdate option

116 mi impute — Impute missing values

*add (#) is required when no imputations exist; add(#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.
You must mi set your data before using mi impute; see [MI] mi set.

Options

Main

add (#) specifies the number of imputations to add to the mi data. This option is required if there
are no imputations in the data. If imputations exist, then add () is optional. The total number of
imputations cannot exceed 1,000.

replace specifies to replace existing imputed values with new ones. One of replace or add () must
be specified when mi data already have imputations.

rseed (#) sets the random-number seed. This option can be used to reproduce results. rseed (#) is
equivalent to typing set seed # prior to calling mi impute; see [R] set seed.

double specifies that the imputed values be stored as doubles. By default, they are stored as floats.
mi impute makes this distinction only when necessary. For example, if the logit method is used,
the imputed values are stored as bytes.

by(varlist[, byopts]) specifies that imputation be performed separately for each by-group. By-
groups are identified by equal values of the variables in varlist in the original data (m = 0).
Missing categories in varlist are omitted, unless the missing suboption is specified within by ().
Imputed and passive variables may not be specified within by (). This option is not allowed with
user-defined imputation methods, usermethod.

byopts are missing, noreport, nolegend, and nostop.

missing specifies that missing categories in varlist are not omitted.
noreport suppresses reporting of intermediate information about each group.

nolegend suppresses the display of group legends that appear before the imputation table
when long group descriptions are encountered.

nostop specifies to proceed with imputation when imputation fails in some groups. By default,
mi impute terminates with error when this happens.

Reporting

dots specifies to display dots as imputations are successfully completed. An x is displayed if any of
the specified imputation variables still have missing values.

noisily specifies that intermediate output from mi impute be displayed.

nolegend suppresses the display of all legends that appear before the imputation table.

Advanced

force specifies to proceed with imputation even when missing imputed values are encountered. By
default, mi impute terminates with error if missing imputed values are encountered.

The following option is available with mi impute but is not shown in the dialog box:

noupdate in some cases suppresses the automatic mi update this command might perform; see
[MI] noupdate option. This option is rarely used and is not allowed with user-defined imputation
methods, usermethod.

mi impute — Impute missing values 117

Remarks and examples

Remarks are presented under the following headings:

Imputation methods
Imputation modeling
Model building
Outcome variables
Transformations
Categorical variables
The issue of perfect prediction during imputation of categorical data
Convergence of iterative methods
Imputation diagnostics
Using mi impute
Univariate imputation
Multivariate imputation
Imputing on subsamples
Conditional imputation
Imputation and estimation samples
Imputing transformations of incomplete variables

Imputation methods

mi impute supports both univariate and multivariate imputation under the missing at random
assumption (see Assumptions about missing data under Remarks and examples in [MI] intro sub-
stantive).

Univariate imputation is used to impute a single variable. It can be used repeatedly to impute
multiple variables only when the variables are independent and will be used in separate analyses. To
impute a single variable, you can choose from the following methods: regress, pmm, truncreg,
intreg, logit, ologit, mlogit, poisson, and nbreg; see [MI] mi impute regress, [MI] mi impute
pmm, [MI] mi impute truncreg, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute ologit,
[MI] mi impute mlogit, [MI] mi impute poisson, and [MI] mi impute nbreg.

For a continuous variable, either regress or pmm can be used (for example, Rubin [1987] and
Schenker and Taylor [1996]). For a continuous variable with a restricted range, a truncated variable,
either pmm or truncreg (Raghunathan et al. 2001) can be used. For a continuous partially observed
or censored variable, intreg can be used (Royston 2007). For a binary variable, logit can be
used (Rubin 1987). For a categorical variable, ologit can be used to impute missing categories
if they are ordered, and mlogit can be used to impute missing categories if they are unordered
(Raghunathan et al. 2001). For a count variable, either poisson (Raghunathan et al. 2001) or nbreg
(Royston 2009), in the presence of overdispersion, is often suggested. Also see van Buuren (2007)
for a detailed list of univariate imputation methods.

Theory dictates that multiple variables usually must be imputed simultaneously, and that requires
using a multivariate imputation method. The choice of an imputation method in this case also depends
on the pattern of missing values.

If variables follow a monotone-missing pattern (see Patterns of missing data under Remarks and
examples in [MI] intro substantive), they can be imputed sequentially using univariate conditional
distributions, which is implemented in the monotone method (see [MI] mi impute monotone). A
separate univariate imputation model can be specified for each imputation variable, which allows
simultaneous imputation of variables of different types (Rubin 1987).

When a pattern of missing values is arbitrary, iterative methods are used to fill in missing values.
The mvn method (see [MI] mi impute mvn) uses multivariate normal data augmentation to impute
missing values of continuous imputation variables (Schafer 1997). Allison (2001), for example, also
discusses how to use this method to impute binary and categorical variables.

118 mi impute — Impute missing values

Another multivariate imputation method that accommodates arbitrary missing-value patterns is mul-
tivariate imputation using chained equations (MICE), also known as imputation using fully conditional
specifications (van Buuren, Boshuizen, and Knook 1999) and as sequential regression multivariate im-
putation (Raghunathan et al. 2001) in the literature. The MICE method is implemented in the chained
method (see [MI] mi impute chained) and uses a Gibbs-like algorithm to impute multiple variables
sequentially using univariate fully conditional specifications. Despite a lack of rigorous theoretical
justification, the flexibility of MICE has made it one of the most popular choices used in practice.

For a recent comparison of MICE and multivariate normal imputation, see Lee and Carlin (2010).

Imputation modeling

As discussed in [MI] intro substantive, imputation modeling is important to obtain proper im-
putations. Imputation modeling is not confined to the specification of an imputation method and an
imputation model. It also requires careful consideration of how to handle complex data structures,
such as survey or longitudinal data, and how to preserve existing relationships in the data during
the imputation step. Rubin (1987), Meng (1994), Schafer (1997), Allison (2001), Royston (2007),
Graham (2009), White, Royston, and Wood (2011), and others provide guidelines about imputation
modeling. We summarize some of them below.

As with any statistical procedure, choosing an appropriate imputation approach is an art, and the
choice should ultimately be determined by your data and research objectives. Regardless of which
imputation approach you decide to pursue, it is good practice to check that your imputations are
sensible before performing primary data analysis (see Imputation diagnostics) and to perform sensitivity
analysis (for example, Kenward and Carpenter [2007]).

Model building

Perhaps the most important component of imputation modeling is the construction of an imputation
model that preserves all the main characteristics of the observed data. This includes the following:

1. Use as many predictors as possible in the model to avoid making incorrect assumptions
about the relationships between the variables. Omitting key predictors from the imputation
model may lead to biased estimates for these predictors in the analysis. On the other hand,
including insignificant predictors will result in less efficient yet still statistically valid results.

2. Include design variables representing the structure of the data in your imputation model. For
example, sampling weights, strata and cluster identifiers of survey data, repeated-measures
identifiers of longitudinal data must be included in the imputation model.

3. Specify the correct functional form of an imputation model. For example, include interactions
of variables (or impute missing values separately using different subsamples; see Imputing
on subsamples) to preserve higher-order dependencies.

The imputation model must be compatible with any model that can be used for the analysis. If
variable X is to be included in the analysis model, it should also be used in the imputation model.
If the analysis model estimates a correlation of X; and X5, then both variables should be present in
the imputation model. Accordingly, the outcome variable should always be present in the imputation
model. Also, in addition to all the variables that may be used in the analysis model, you should
include any auxiliary variables that may contain information about missing data. This will make
the MAR assumption more plausible and will improve the quality of the imputed values. For more
information about congeniality between the imputation and complete-data models, see Meng (1994).

mi impute — Impute missing values 119

As we mentioned above, it is important to specify the correct functional form of an imputation
model to obtain proper imputations. The failure to accommodate such model features as interactions
and nonlinearities during imputation may lead to severely biased results. There is no definitive
recommendation for the best way to incorporate various functional forms into the imputation model.
Currently, two main approaches are the joint modeling of all functional terms and modeling using
passive variables (variables derived from imputation variables) also known as passive imputation. The
joint modeling approach simply treats all functional terms as separate variables and imputes them
together with the underlying imputation variables using a multivariate model, often a multivariate
normal model. On the other hand, passive imputation—available within the MICE framework—fills in
only the underlying imputation variables and computes the respective functional terms from the imputed
variables, maintaining functional dependencies between the imputed and derived variables. The joint
modeling approach imposes a rather stringent assumption of multivariate normality for possibly
highly nonlinear terms and does not recognize functional dependencies between the imputed and
derived variables. The naive application of passive imputation, however, may omit certain functional
relationships and thus lead to biased results. So, careful consideration for the specification of each
conditional model is important. See White, Royston, and Wood (2011) for more details and some
guidelines.

Outcome variables

Imputing outcome variables receive special attention in the literature because of the controversy
about whether they should be imputed. As we already mentioned, it is important to include the outcome
variable in the imputation model to obtain valid results. But what if the outcome variable itself has
missing values? Should it be imputed? Should missing values be discarded from the analysis? There
is no definitive answer to this question. The answer ultimately comes down to whether the specified
imputation model describes the missing data adequately. When the percentage of missing values is
low, using an incorrect imputation model may have little effect on the resulting repeated-imputation
inference. With a large fraction of missing observations, a misspecified imputation model may distort
the observed relationship between the outcome and predictor variables. In general, with large fractions
of missing observations on any variable, the imputed values have more influence on the results, and
thus more careful consideration of the imputation probability model is needed.

Transformations

Although the choice of an imputation method may not have significant impact on the results with
low fractions of missing data, it may with larger fractions. A number of different imputation methods
are available to model various types of imputation variables: continuous, categorical, count, and so
on. However, in practice, these methods in no way cover all possible distributions that imputation
variables may have. Often, the imputation variables can be transformed to the scale appropriate for an
imputation method. For example, a log transformation (or, more generally, a Box—Cox transformation)
can be used for highly skewed continuous variables to make them suitable for imputation using the
linear regression method. If desired, the imputed values can be transformed back after the imputation.
Transformations are useful when a variable has a restricted range. For instance, a preimputation
logit transformation and a postimputation inverse-logit transformation can be used to ensure that the
imputed values are between O and 1.

It is important to remember that although the choice of a transformation is often determined based
on the variable of interest alone, it is the conditional distribution of that variable given other predictors
that is being modeled, and so the transformation must be suitable for it.

120 mi impute — Impute missing values

Categorical variables

To impute one categorical variable, you can use one of the categorical imputation methods: logistic,
ordered logistic, or multinomial logistic regressions (see [MI] mi impute logit, [MI] mi impute ologit,
or [MI] mi impute mlogit). These methods can also be used to impute multiple categorical variables
with a monotone missing-data pattern using monotone imputation (see [MI] mi impute monotone) and
with an arbitrary missing-data pattern using MICE (see [MI] mi impute chained). Also, for multiple
categorical variables with only two categories (binary or dummy variables), a multivariate normal
approach (see [MI] mi impute mvn) can be used to impute missing values and then, if needed, the
imputed values can be rounded to O if the value is smaller than 0.5, or 1 otherwise. For categorical
variables with more than two categories, Allison (2001) describes how to use the normal model to
impute missing values.

The issue of perfect prediction during imputation of categorical data

Perfect prediction (or separation—for example, see Albert and Anderson [1984]) occurs often in
the analysis of categorical data. The issue of perfect prediction is inherent to the discrete nature of
categorical data and arises in the presence of covariate patterns for which outcomes of a categorical
variable can be predicted almost perfectly. Perfect prediction usually leads to infinite coefficients
with infinite standard errors and often causes numerical instability during estimation. This issue is
often resolved by discarding the observations corresponding to offending covariate patterns as well as
the independent variables perfectly predicting outcomes during estimation; see, for example, Model
identification in [R] logit.

Perfect prediction is even more likely to arise during imputation because imputation models, per
imputation modeling guidelines, tend to include many variables and thus may include many categorical
variables. Perfect prediction may arise when variables are imputed using one of these imputation
methods: logit, ologit, or mlogit.

Let’s discuss how perfect prediction affects imputation. Recall that to obtain proper imputations
(Proper imputation methods in [MI] intro substantive), imputed values must be simulated from
the posterior predictive distribution of missing data given observed data. The categorical imputation
methods achieve this by first drawing a new set of regression coefficients from a normal distribution (a
large-sample approximation to their posterior distribution) with mean and variance determined by the
maximum likelihood estimates of the coefficients from the observed data and their variance—covariance
matrix. The imputed values are then obtained using the new set of coefficients; see Methods and
formulas in the method-specific manual entries for details.

In the presence of perfect prediction, very large estimates of coefficients and their standard errors
arise during estimation. As a result, new coefficients, drawn from the corresponding asymptotic normal
distribution, will either be large and positive or large and negative. As such, missing values—say,
of a binary imputation variable—may all be imputed as ones in some imputations and may all be
imputed as zeros in other imputations. This will clearly bias the multiple-imputation estimate of the
proportion of ones (or zeros) in the sample of perfectly predicted cases.

To eliminate the issue of perfect prediction during imputation, we cannot, unfortunately, drop
observations and variables when estimating model parameters as is normally done during estimation
using, for example, the logit command. Doing so would violate one of the main requirements of
imputation modeling: all variables and cases that may be used during primary, completed-data analysis
must be included in the imputation model. So, what can you do?

mi impute — Impute missing values 121

When perfect prediction is detected, mi impute issues an error message:

. mi impute logit x1 z1 z2 ..., ..

mi impute logit: perfect predlctor(s) detected
Variables that perfectly predict an outcome were detected when logit
executed on the observed data. First, specify mi impute’s option noisily
to identify the problem covariates. Then either remove perfect predictors
from the model or specify mi impute logit’s option augment to perform
augmented regression; see The issue of perfect prediction during imputation
of categorical data in [MI] mi impute for details.

r(498);

You have two alternatives at this point.

You can fit the specified imputation model to the observed data using the corresponding command
(in our example, logit) to identify the observations and variables causing perfect prediction in your
data. Depending on the research objective and specifics of the data collection process, it may be
reasonable to omit the offending covariate patterns and perfect predictors from your analysis. If you
do so, you must carefully document which observations and variables were removed and adjust your
inferential conclusions accordingly. Once offending instances are removed, you can proceed with
imputation followed by your primary data analysis. Make sure that the instances you removed from
the imputation model are not used in your further analysis.

The above approach may be difficult to pursue when imputing a large number of variables, among
which are many categorical variables. Another option is to handle perfect prediction directly during
imputation via the augment option, which is available for all categorical imputation methods: logit,
ologit, and mlogit.

mi impute ..., augment ... implements an augmented-regression approach, an ad hoc but
computationally convenient approach suggested by White, Daniel, and Royston (2010). According to
this approach, a few extra observations with small weights are added to the data during estimation of
model parameters in a way that prevents perfect prediction. See White, Daniel, and Royston (2010)
for simulation results and computational details.

Convergence of iterative methods

When the missing-value pattern is arbitrary, iterative Markov chain Monte Carlo (MCMC-like)
imputation methods are used to simulate imputed values from the posterior predictive distribution of
the missing data given the observed data; also see Multivariate imputation. In this case, the resulting
sequences (chains) of simulated parameters or imputed values should be examined to verify the
convergence of the algorithm. The modeling task may be influenced by the convergence process of
the algorithm given the data. For example, a different prior distribution for the model parameters may
be needed with mi impute mvn when some aspects of the model cannot be estimated because of the
sparseness of the missing data.

Markov chain simulation is often done in one of two ways: subsampling a single chain or running
multiple independent chains. Subsampling a chain involves running a single chain for a prespecified
number of iterations 7', discarding the first b iterations until the chain reaches stationarity (the
burn-in period) and sampling the chain each kth iteration to produce a final sequence of independent
draws {X b) X (b+k) X (b+2k) } from the target distribution. The number of between iterations
k is chosen such that draws X() and X (%) are approximately independent. Alternatively, one
can obtain independent draws by running multiple independent chains using different starting values
{X6@Y .t =0,1,...}, i = 1,2,..., and discarding the first b iterations of each to obtain a final
sample {X(l’b), X (2:0) X (3:b) } from the target distribution.

122 mi impute — Impute missing values

mi impute mvn subsamples the chain, whereas mi impute chained runs multiple independent
chains; see [MI] mi impute mvn and [MI] mi impute chained for details on how to monitor convergence
of each method.

Imputation diagnostics

After imputation, it is important to examine the sensibility of the obtained imputed values. If any
abnormalities are detected, the imputation model must be revised. Diagnostics for imputations is still
an ongoing research topic, but two general recommendations are to check model fit of the specified
imputation model to the observed data and to compare distributions of the imputed and observed
data. To check model fit of an imputation model to the observed data, you can use any standard
postestimation tools usually used with that type of model. Also see, for example, [R] mfp to help
determine an appropriate functional form of the imputation model. The differences (if any) between
the distributions of the observed and of the imputed data should be plausible within the context of
your study. For more information, see for example, Gelman et al. (2005), Abayomi, Gelman, and
Levy (2008), Eddings and Marchenko (2012), and Marchenko and Eddings (2011) for how to perform
multiple-imputation diagnostics in Stata.

Using mi impute

To use mi impute, you first mi set your data; see [MI] mi set. Next you register all variables
whose missing values are to be imputed; see mi register in [MI] mi set.

mi impute has two main options: add () and replace. If you do not have imputations, use add ()
to create them. If you already have imputations, you have three choices:

1. Add new imputations to the existing ones by specifying the add () option.

2. Add new imputations and also replace the existing ones by specifying both the add() and
the replace options.

3. Replace existing imputed values by specifying the replace option.

add () is required if no imputations exist in the mi data, and either add() or replace must be
specified if imputations exist. See Univariate imputation for examples. Note that with replace, only
imputed values of the specified imputation variables within the specified subsample will be updated.

For reproducibility, use the rseed() option to set the random-number seed, or equivalently, set
the seed by using set seed immediately before calling mi impute. If you forget and still have mi
impute’s stored results in memory, you can retrieve the seed from the stored result r (rngstate);
see Stored results below.

By default, mi impute stores the imputed values using float precision. If you need more accuracy,
you can specify the double option. Depending on the mi data style, the type of the imputed variable
may change in the original data, m = 0. For example, if your data are in the mlong (or flong) style
and you are imputing a binary variable using the regression method, the type of the variable will
become float. If you are using the logistic method, the type of the variable may become byte even
if originally your variable was declared as float or int. mi impute will never demote a variable
if that would result in loss of precision.

Use the by (varlist) option to perform imputation separately on each group formed by varlist.
Specifying by () is equivalent to the repeated use of an if condition with mi impute to restrict
the imputation sample to each of the categories formed by varlist. Use the missing option within
by () to prevent mi impute from omitting missing categories in varlist. By default, mi impute
terminates with error if imputation fails in any of the groups; use by ()’s nostop option to proceed
with imputation. You may not specify imputation and passive variables within by ().

mi impute — Impute missing values 123

mi impute terminates with error if the imputation procedure results in missing imputed values.
This may happen if you include variables containing missing values as predictors in your imputation
model. If desired, you can override this behavior with the force option.

mi impute may change the sort order of the data.

Univariate imputation

Univariate imputation by itself has limited application in practice. The situations in which only one
variable needs to be imputed or in which multiple incomplete variables can be imputed independently
are rare in real-data applications. Univariate imputation is most useful when it is used as a building
block of sequential multivariate imputation methods; see Multivariate imputation. It is thus beneficial
to first become familiar with univariate imputation.

Consider the heart attack data in which bmi contains missing values, as described in A brief
introduction to MI using Stata of [MI] intro substantive. Here we use the already mi set version of
the data with a subset of covariates of interest:

. use http://www.stata-press.com/data/r14/mheartis0
(Fictional heart attack data; bmi missing)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 132
incomplete 22 (M = 0 imputations)
total 154

Vars.: imputed: 1; bmi(22)
passive: O
regular: b5; attack smokes age female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

According to mi describe, the mi data style is mlong, and the dataset contains no imputations and
22 incomplete observations. The only registered imputed variable is bmi containing the 22 missing
values. The other variables are registered as regular. See [MI] mi describe for details.

In the example in [MI] intro substantive, we used mi impute regress to impute missing values
of bmi. Let’s concentrate on the imputation step in more detail here:

. mi impute regress bmi attack smokes age female hsgrad, add(20)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

124 mi impute — Impute missing values

The above output is common to all imputation methods of mi impute. In the left column, mi
impute reports information about which imputation method was used and which imputations were
created or updated. The right column contains the total number of imputations, and how many of
them are new and how many are updated. The table contains the number of complete, incomplete, and
imputed observations, and the total number of observations in the imputation sample, per imputation
for each variable (see Imputation and estimation samples below). As indicated by the note, complete
and incomplete observations sum to the total number of observations. The imputed column reports
how many incomplete observations were actually imputed. This number represents the minimum
across all imputations used (m = 1 through m = 20 in our example).

In the above example, we used add (20) to create 20 new imputations. Suppose that we decided
that 20 is not enough and we want to add 30 more:

. mi impute regress bmi attack smokes age female hsgrad, add(30)

Univariate imputation Imputations = 50

Linear regression added = 30

Imputed: m=21 through m=50 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The table output is unchanged, but the header reports that total number of imputations is now 50.
Thirty new imputations (from m = 21 to m = 50) were added, and the existing 20 imputations were
left unchanged.

Suppose that we decide we want to impute bmi using the predictive mean matching (PMM)
imputation method instead of the regression method. We use mi impute pmm with five nearest
neighbors and specify the replace option to update all existing imputations with new ones:

. mi impute pmm bmi attack smokes age female hsgrad, replace knn(5)

Univariate imputation Imputations = 50
Predictive mean matching added = 0
Imputed: m=1 through m=50 updated = 50
Nearest neighbors = 5

Observations per m
Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports that all 50 existing imputations, from m = 1 to m = 50, are replaced with
new ones.

Later we decide to use more nearest neighbors with mi impute pmm and also add 15 more
imputations. We can do the latter by combining replace and add (). We specify replace to update
the existing imputations with imputations from PMM with ten nearest neighbors (knn(10)) and use
add(15) to add 15 more imputations.

mi impute — Impute missing values 125

. mi impute pmm bmi attack smokes age female hsgrad, add(15) replace knn(10) dots
Imputing m=1 through m=65:

......... 10.........20.........30.........40.........50.........60..... done
Univariate imputation Imputations = 65
Predictive mean matching added = 15
Imputed: m=1 through m=65 updated = 50
Nearest neighbors = 10

Observations per m

Variable Complete Incomplete Imputed Total
bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The header reports a total of 65 imputations, among which 15 are new and 50 are updated. In this
example, we also used the dots option to see the imputation progress. This option is useful with
larger datasets to monitor the imputation process.

See Imputing on subsamples for other usage of add() and replace.

Multivariate imputation

When imputing multiple variables, their missing-data pattern must first be considered. As we
briefly mentioned in Patterns of missing data in [MI] intro substantive, when a missing-data pattern
is monotone distinct, multiple variables can be imputed sequentially without iteration using univariate
conditional models (or monotone imputation). That is, a complicated multivariate imputation task can
be replaced with a sequence of simpler univariate imputation tasks; see [MI] mi impute monotone.

Monotone missing-data patterns rarely arise naturally in practice. As such, it is important to be able
to handle arbitrary missing-data patterns during imputation. Before we describe imputation methods
accommodating arbitrary missing-data patterns, we will first discuss the difficulties arising with such
patterns during imputation.

Monotone imputation is possible because variables can be ordered such that the complete observations
of a variable being imputed are also complete in all prior imputed variables used to predict it. This
means that the estimates of the parameters, which are obtained from complete data, do not depend
on any previously imputed values (see Rubin [1987] for details). With an arbitrary pattern of missing
data, such an ordering may not be possible because some variables may contain incomplete values in
observations for which other variables are complete (and vice versa), resulting in estimated parameters
being dependent on imputed values. The simultaneous imputation of multiple variables becomes more
challenging when missingness is nonmonotone.

Consider the following example. Variable X; is complete in observation 1 and missing in ob-
servation 2, and variable X5 is missing in observation 1 and complete in observation 2. We need
to impute the two variables simultaneously. Suppose that we impute variable Xo using previously
imputed variable X;. Observation 1, which contains an imputed value of X7, is used to estimate the
model parameters for X5. As a result, the model parameters are obtained by treating the imputed
value of X, as if it were true, thus ignoring the imputation variability in X;. To account for the
uncertainty in the imputed values during estimation, we need to iterate between the estimation step
and the imputation step until the estimates of the model parameters depend only on the observed data.

Two main approaches for multivariate imputation with arbitrary missing-data patterns are joint
modeling (JM) and fully conditional specification (FCS).

126 mi impute — Impute missing values

The JM approach assumes a genuine multivariate distribution for all imputation variables and
imputes missing values as draws from the resulting posterior predictive distribution of the missing
data given the observed data. The predictive distribution is often difficult to draw from directly, so the
imputed values are often obtained by approximating this distribution using one of the MCMC methods.
One such JM approach for continuous data is based on the multivariate normal distribution, the MVN
method (Schafer 1997). The MVN method is implemented in [MI] mi impute mvn and uses the data
augmentation MCMC method.

The FCS approach does not assume an explicit multivariate distribution for all imputation variables.
Instead, it provides a set of chained equations, that is, univariate conditional distributions of each
variable with fully conditional specifications of prediction equations. This approach is also known
as MICE (van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation
(SRML; Raghunathan et al. 2001). We will be using the terms MICE, FCS, and SRMI interchangeably
throughout the documentation. MICE is similar in spirit to the Gibbs sampler, a popular MCMC method
for simulating data from complicated multivariate distributions. Unlike the Gibbs sampler, however,
conditional specifications within the MICE method are not guaranteed to correspond to a genuine
multivariate distribution because MICE does not start from an explicit multivariate density. Regardless,
MICE remains one of the popular imputation methods in practice. The MICE method is implemented
in [MI] mi impute chained.

Currently, there is no definitive recommendation in the literature as to which approach, JM or FCS,
is preferable. The JM approach ensures that imputed values are drawn from a genuine multivariate
distribution, and it thus may be more attractive from a theoretical standpoint. However, except for
simpler cases such as a multivariate normal model for continuous data, it may not be feasible to
formulate a joint model for general data structures. In this regard, the FCS approach is more appealing
because it not only can accommodate mixtures of different types of variables, but also can preserve
some important characteristics often observed in real data, such as restrictions to subpopulations for
certain variables and range restrictions. The tradeoff for such flexibility is a current lack of theoretical
justification. See Lee and Carlin (2010) and references therein for more discussion about the two
approaches.

Consider the heart attack data in which both bmi and age contain missing values. Again we will
use data that have already been mi set.
. use http://www.stata-press.com/data/ri14/mheart5s0, clear
(Fictional heart attack data)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 126
incomplete 28 (M = 0 imputations)
total 154

Vars.: imputed: 2; bmi(28) age(12)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

There are 28 incomplete observations in the dataset. The bmi variable contains 28 missing values
and the age variable contains 12 missing values. Both bmi and age are registered as imputed. If
we assume that age and BMI are independent, we can impute each of them separately by using the
previously described univariate imputation methods. It is likely, however, that these variables are
related, and so we use multivariate imputation.

mi impute — Impute missing values 127

First, we examine missing-value patterns of the data.

. mi misstable patterns

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2
82% 1 1
10 1 0
8 0 O
100%

Variables are (1) age (2) bmi

From the output, 82% of observations are complete, 10% of observations contain missing values
for bmi, and 8% of observations have both bmi and age missing. We can see that the dataset has
a monotone-missing pattern (see [MI] intro substantive), that is, missing values of age are nested
within missing values of bmi. Another way to see if the pattern of missingness is monotone is to use
mi misstable nested ([MI] mi misstable):

. mi misstable nested
1. age(12) -> bmi(28)

Because the missing-data pattern is monotone, we can use mi impute monotone to impute missing
values of bmi and age simultaneously:

. mi impute monotone (regress) age bmi = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Without going into detail, mi impute monotone imputes missing values of multiple variables
by performing a sequence of independent univariate conditional imputations. In the above example,
the regression method is used to impute missing values of both variables. age is imputed first from
the observed variables attack, smokes, hsgrad, and female. Then bmi is imputed using the
imputed age variable in addition to other observed variables. The output is consistent with that of
the univariate imputation methods described earlier, with some additional information. See [MI] mi
impute monotone for details.

128 mi impute — Impute missing values

We can also impute missing values of bmi and age simultaneously using either mi impute mvn

. mi impute mvn age bmi = attack smokes hsgrad female, replace nolog

Multivariate imputation Imputations = 10
Multivariate normal regression added = 0
Imputed: m=1 through m=10 updated = 10
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

or mi impute chained
. mi impute chained (regress) age bmi = attack smokes hsgrad female, replace
note: missing-value pattern is monotone; no iteration performed

Conditional models (monotone):
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iterations

Multivariate imputation Imputations = 10
Chained equations added = 0
Imputed: m=1 through m=10 updated = 10
Initialization: monotone Iterations = 0

burn-in = 0

age: linear regression
bmi: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

Neither mi impute mvn nor mi impute chained requires the missing-data pattern to be monotone.
mi impute mvn iterates to produce imputations. When the data are monotone missing, however, no
iteration is required, and because mi impute monotone executes more quickly, it is preferred. mi
impute chained also iterates to produce imputations, unless the missing-data pattern is monotone.
However, mi impute monotone is still faster because it performs estimation only once on the original
data, whereas mi impute chained performs estimation on each imputation. Use mi impute mvn
and mi impute chained when there is an arbitrary missing-data pattern. See [MI] mi impute mvn
and [MI] mi impute chained for details.

mi impute — Impute missing values 129

Imputing on subsamples

Consider the earlier example of the univariate imputation of bmi. Suppose that we want to perform
imputation separately for females and males. Imputation on subsamples is useful when the imputation
model must accommodate the interaction effects (see, for example, Allison [2001]). For example, if
we want the effect of bmi on attack to vary by gender, we can perform imputation of bmi separately
for females and males.

We first show how to do it manually using if and the add() and replace options:

. use http://www.stata-press.com/data/ri4/mheart1s0, clear
(Fictional heart attack data; bmi missing)

. mi impute regress bmi attack smokes age hsgrad if female==1, add(20)
Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 33 5 5 38

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

. mi impute regress bmi attack smokes age hsgrad if female==0, replace
Univariate imputation Imputations = 20
Linear regression added = 0
Imputed: m=1 through m=20 updated = 20

Observations per m

Variable Complete Incomplete Imputed Total

bmi 99 17 17 116

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

First, we created 20 imputations and filled in the missing values of bmi for females by using
the corresponding subset of observations. Then we filled in the remaining missing values of bmi for
males in the existing imputations by using the subset of male observations. We will now be able to
include the interaction between bmi and female in our logistic model.

130 mi impute — Impute missing values

A much easier way to do the above is to use by ():
. use http://www.stata-press.com/data/r14/mheart1s0
(Fictional heart attack data; bmi missing)
. mi impute regress bmi attack smokes age hsgrad, add(20) by(female)
Performing setup for each by() group:
-> female = 0

-> female = 1

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0
Observations per m
by ()
Variable Complete Incomplete Imputed Total

female = 0

bmi 99 17 17 116
female = 1

bmi 33 5 5 38
Overall

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

Conditional imputation

Often in practice, some variables are defined only within what we call a conditional sample, a
subset of observations satisfying certain restrictions (Raghunathan et al. 2001, Royston 2009). For
example, the number of cigarettes smoked is relevant to smokers only, the number of pregnancies is
relevant to females only, etc. Outside the conditional sample, such variables are assumed to contain
soft missing values and a nonmissing constant value, further referred to as a conditional constant,
which represents a known value or an inadmissible value. We will refer to conditional imputation as
imputation of such variables. So, the task of conditional imputation is to impute missing values of a
variable within a conditional sample using only observations from that sample and to replace missing
values outside the conditional sample with a conditional constant.

In the previous section, we learned that we can specify an if condition with mi impute to restrict
imputation of variables to a subset of observations. Is this sufficient to accommodate conditional
imputation? To answer this question, let’s consider several examples.

We use our heart attack data as an example. Suppose that our only variable containing missing
values is hightar, the indicator for smoking high-tar cigarettes. We want to impute missing values
in hightar and use it among other predictors in the logistic analysis of heart attacks. Because
hightar is relevant to smokers only, we want to impute hightar using the subset of observations
with smokes==1.

Thus to impute hightar, we restrict our imputation sample to smokers:

. mi impute logit hightar attack age bmi ... if smokes==1,

mi impute — Impute missing values 131

Are we now ready to proceed with our primary logistic analysis of heart attacks? Not quite.
Recall that we wish to use all observations of hightar in our analysis. If hightar contains missing
values only in the conditional sample, smokes==1, we are finished. Otherwise, we need to replace
all remaining missing values outside the conditional sample, for smokes==0, with the conditional
constant, the nonmissing value of hightar in observations with smokes==0. In our example, this
value is zero, so our final step is

. mi xeq: replace hightar = 0 if smokes==

What if we have several imputation variables? Suppose now that age and bmi also contain missing
values. Without making any assumptions about a missing-data pattern, we use mi impute chained
to impute variables of different types: age, bmi, and hightar. We need to impute hightar for
smokes==1 but use the unrestricted sample to impute age and bmi. Can we still accomplish this by
specifying an if condition? The answer is yes, but we need to replace missing values of hightar for
smokes==0 before imputation to ensure that age and bmi are imputed properly, using all observations,
when hightar is used in their prediction equations:

. mi xXeq: replace hightar = 0 if smokes==
. mi impute chained (regress) bmi age (logit if smokes==1) hightar = ..., ...

It seems that we can get away with using if to perform conditional imputation. What is the catch?
So far, we assumed that smokes does not contain any missing values. Let’s see what happens if it
does.

Because hightar depends on smokes, we must first impute missing values of smokes before
we can impute missing values of hightar. As such, the set of observations for which smokes==
will vary from imputation to imputation and, in the case of mi impute chained, from iteration to
iteration. The replacement of missing values of hightar outside the conditional sample should be
performed each time a new set of imputed values is obtained for smokes, and thus must be directly
incorporated into the imputation procedure.

The answer to our earlier question about using an if condition to perform conditional imputation
is no, in general. To perform conditional imputation, use the conditional() option:

. mi imp chained (reg) bmi age (logit) smokes (logit, conditional(if smokes==1))
> hightar ...

Every univariate imputation method supports option conditional (). This option is most useful
within specifications of univariate methods when multiple variables are being imputed using mi
impute monotone or mi impute chained, as we showed above. Although in some cases, as we
saw earlier, specifying an if condition in combination with manual replacement of missing values
outside the conditional sample may produce equivalent results, such use should generally be avoided
and conditional() should be used instead.

When you specify option conditional(), mi impute performs checks necessary for proper
conditional imputation. For example, the imputed variable is verified to be constant outside the
conditional sample and an error message is issued if it is not:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): imputation variable not constant outside conditional sample;
hightar is not constant outside the subset identified by (smokes==1)

within the imputation sample. This may happen when missing values of
conditioning variables are not nested within missing values of hightar.
r(459);

132 mi impute — Impute missing values

mi impute also requires that missing values of all variables involved in conditional specifications
(restrictions)—that is, conditioning variables—be nested within missing values of the conditional
variable being imputed. If this does not hold true, mi impute issues an error message:

. mi impute logit hightar age bmi ..., conditional(if smokes==1)
conditional(): conditioning variables not nested;

conditioning variable smokes is not nested within hightar
r(459);

Because missing values of all conditioning variables are assumed to be nested within missing
values of a conditional variable, that conditional variable is not included in the prediction equations
of the corresponding conditioning variables.

As an example, let’s continue with our heart attack data, in which variables hightar and smokes
contain missing values, as do age and bmi:
. use http://www.stata-press.com/data/ri4/mheart7s0, clear
(Fictional heart attack data; bmi, age, hightar, and smokes missing)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)
total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(8) smokes(5)
passive: O
regular: 3; attack female hsgrad
system: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)
. mi misstable nested

1. smokes(5) -> hightar(8) -> bmi(24) -> age(30)

Our data are already mi set, so we proceed with imputation. According to mi misstable nested,
all imputation variables are monotone missing, so we use mi impute monotone for imputation. For
the purpose of illustration, we create only two imputations:

mi impute — Impute missing values 133

. mi impute monotone (regress) bmi age

> (logit, conditional(if smokes==1)) hightar
> (logit) smokes
> = attack hsgrad female, add(2)

Conditional models:
smokes: logit smokes attack hsgrad female
hightar: logit hightar i.smokes attack hsgrad female ,
conditional(if smokes==1)
bmi: regress bmi i.hightar i.smokes attack hsgrad female
age: regress age bmi i.hightar i.smokes attack hsgrad female

note: 1.smokes omitted because of collinearity

Multivariate imputation Imputations = 2
Monotone method added = 2
Imputed: m=1 through m=2 updated = 0
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0O
bmi: linear regression
age: linear regression
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 146 8 8 154
smokes 149 5 5 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

For each variable that was imputed conditionally, mi impute reports the conditional value used to
replace all missing observations outside the conditional sample in a legend about conditional imputation.
In our example, all missing values of hightar outside smokes==1 are replaced with zero. The reported
numbers of complete, incomplete, and imputed observations for hightar correspond to the entire
imputation sample (see Imputation and estimation samples) and not only to the conditional sample.
For example, there are 146 complete and 8 incomplete observations of hightar in the combined
sample of smokers and nonsmokers. The minimum number of imputed values across imputations is 8,
so all incomplete observations of hightar were filled in—either imputed directly or replaced with a
conditional value—in both imputations. Because smokes is being imputed, the numbers of incomplete
and imputed observations of hightar for smokers and nonsmokers will vary across imputations.

You can accommodate more complicated restrictions or skip patterns, which often arise with
questionnaire data, by specifying more elaborate restrictions within conditional () or by specifying
the conditional() option with other variables. For example, suppose that the information about
cigarette tar level (hightar) was collected only for heavy smokers, identified by an indicator variable
heavysmoker. The heavysmoker variable contains missing values and needs to be imputed before
hightar can be imputed. To impute heavysmoker, we need to restrict our sample to smokers only.
Then to impute hightar, we need to use only heavy smokers among all smokers. We can do so as
follows:

. mi impute chained (logit) smokes /17
(logit, conditional(if smokes==1)) heavysmoker ///
(logit, conditional(if smokes==1 & heavysmoker==1)) ///

hightar ...

134 mi impute — Impute missing values

Imputation and estimation samples

Rubin (1987, 160-166) describes the imputation process as three tasks: modeling, estimation,
and imputation. We concentrate on the latter two tasks here. The posterior distribution of the model
parameters is estimated during the estimation task. This posterior distribution is used in the imputation
task to simulate the parameters of the posterior predictive distribution of the missing data from which an
imputed value is drawn. Accordingly, mi impute distinguishes between two main samples: imputation
and estimation.

The imputation sample is determined by the imputation variables used in the imputation task. It
is comprised of all observations for which the imputation variables contain no hard missing values
(or no extended missing values). In other words, the imputation sample consists of the complete and
incomplete observations as identified by the specified imputation variables. The estimation sample is
comprised of all observations used by the model fit to the observed data during the estimation task.

For example,

. use http://www.stata-press.com/data/r14/mheartis0, clear
(Fictional heart attack data; bmi missing)
. mi impute regress bmi attack smokes age hsgrad female, add(1l) noisily

Running regress on observed data:

Source SS df MS Number of obs = 132

F(5, 126) = 1.24

Model 99.5998228 5 19.9199646 Prob > F = 0.2946

Residual 2024.93667 126 16.070926 R-squared = 0.0469

Adj R-squared = 0.0091

Total 2124.5365 131 16.2178358 Root MSE = 4.0089

bmi Coef . Std. Err. t P>|t| [95% Conf. Intervall

attack 1.71356 .7515229 2.28 0.024 .2263179 3.200801

smokes -.5153181 .761685 -0.68 0.500 -2.02267 .9920341

age -.033553 .0305745 -1.10 0.275 -.0940591 .026953

hsgrad -.4674308 .8112327 -0.58 0.566 -2.072836 1.137975

female -.3072767 .8074763 -0.38 0.704 -1.905249 1.290695

_cons 26.96559 1.884309 14.31 0.000 23.2366 30.69458
Univariate imputation Imputations = 1
Linear regression added = 1
Imputed: m=1 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

bmi 132 22 22 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The imputation sample contains 154 observations and the estimation sample contains 132 observations
(from the regression output). The estimation task of mi impute regress consists of fitting a linear
regression of bmi on other variables to the observed data. We specified the noisily option to see
results from the estimation task. Usually, the number of complete observations in the imputation
sample (132 in this example) will be equal to the number of observations used in the estimation.
Sometimes, however, observations may be dropped from the estimation—for example, if independent
variables contain missing values. In this case, the number of complete observations in the imputation

mi impute — Impute missing values 135

sample and the number of observations used in the estimation will be different, and the following
note will appear following the table output:

Note: Right-hand-side variables (or weights) have missing values;
model parameters estimated using listwise deletion.

You should evaluate such cases to verify that results are as expected.

In general, missing values in independent variables (or in a weighting variable) do not affect
the imputation sample but they may lead to missing imputed values. In the above example, if age
contained missing values in incomplete observations of bmi, the linear prediction for those observations
would have been missing and thus the resulting imputed values would have been missing, too.

Imputing on subsamples, or in other words, using an if condition with mi impute, restricts
both imputation and estimation samples to include only observations satisfying the if condition.
Conditional imputation (the conditional () option), on the other hand, affects only the estimation
sample. All values, within and outside of a conditional sample, except extended missing values, are
included in the imputation sample. With conditional imputation, the reported number of complete
observations will almost always be different from the number of observations in the estimation sample,
unless the conditional sample coincides with the imputation sample. In the case of observations being
dropped from a conditional sample during estimation, a note as shown above will appear following
the table output.

Imputing transformations of incomplete variables

Continuing with the univariate example above, say that we discover that the distribution of bmi
is skewed to the right, and thus we decide to impute bmi on the logarithmic scale instead of the
original one. We can do this by creating a new variable, 1nbmi, and imputing it instead of bmi.

What we will do is create 1nbmi, register it as imputed, impute it, and then create bmi as a passive
variable based on the formula bmi = exp(lnbmi).

We need to be careful when we create Inbmi to get its missing values right. mi respects two kinds
of missing values, called soft and hard missing. Soft missing values are missing values eligible for
imputation. Hard missing values are missing values that are to remain missing even in the imputed
data. Soft missing are recorded as ordinary missing (.), and hard missing are recorded as any of
extended missing (.a—.z).

The issue here is that missing values could arise because of our application of the transform
1nbmi = In(bmi). In the case of the In() transform, missing values will be created whenever
bmi < 0. (In general, transformations leading to undefined values should be avoided so that all
available observed data are used during imputation.) Body mass index does not contain such values,
but let’s pretend it did. Here is what we would do:

1. Create 1nbmi = In(bmi).

2. Replace 1nbmi to contain .z in observations for which 1nbmi contains missing but bmi
does not.

3. Register 1nbmi as an imputed variable and impute it.
4. Create passive variable newbmi = exp(lnbmi).
5. Replace newbmi equal to bmi in observations for which newbmi is missing and bmi is not.

Alternatively, to avoid creating hard missing values in step 2, we could consider a different
transformation; see, for example, [R] Inskew0.

136 mi impute — Impute missing values

As we said, for 1nbmi = In(bmi) we need not perform all the steps above because bmi > 0. In
the bmi case, all we need to do is

1. Create 1nbmi = In(bmi).
2. Register 1nbmi as an imputed variable and impute it.
3. Create passive variable newbmi = exp(lnbmi).

If all we wanted to do was impute 1nbmi = ln(bmi) and, from that point on, just work with
1nbmi, we would perform only the first two steps of the three-step procedure.

All that said, we are going to perform the five-step procedure because it will always work. We
will continue from where we left off in the last example, so we will discard our previous imputation
efforts by typing mi set M = 0. (Instead of typing mi set M = 0, we could just as easily begin by
typing use http://www.stata-press.com/data/r14/mheart1s0.)

. mi set M=0 // start again

. mi unregister bmi // we do not impute bmi
. generate lnbmi = 1ln(bmi) // create lnbmi

. replace lnbmi = .z if lnbmi==. & bmi!=.

. mi register imputed lnbmi
. mi impute regress lnbmi attack smokes age hsgrad female, add(5)
. mi passive: generate newbmi = exp(lnbmi)

. mi passive: replace newbmi = bmi if bmi!=.

The important thing about the above is the mechanical definition of an imputed variable. An
imputed variable is a variable we actually impute, not a variable we desire to impute. In this case, we
imputed 1nbmi and derived bmi from it. Thus the variable we desired to impute became, mechanically,
a passive variable.

Stored results

mi impute stores the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r (method) name of imputation method

r(ivars) names of imputation variables

r(rngstate) random-number state used

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group (per variable)

r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)

Also see Stored results in the method-specific manual entries for additional stored results.

mi impute — Impute missing values 137

Methods and formulas

All imputation methods (except predictive mean matching) are based on simulating from a Bayesian
(approximate) posterior predictive distribution of missing data. Univariate imputation methods and the
sequential monotone method use noniterative techniques for simulating from the posterior predictive
distribution of missing data. The imputation method based on multivariate normal regression uses an
iterative MCMC technique to simulate from the posterior predictive distribution of missing data. The
MICE method uses a Gibbs-like algorithm to obtain imputed values.

See Methods and formulas in the method-specific manual entries for details.

Herman Otto Hartley (1912-1980) was born in Germany as Herman Otto Hirschfeld and
immigrated to England in 1934 after completing his PhD in mathematics at Berlin University. He
completed a second PhD in mathematical statistics under John Wishart at Cambridge in 1940 and
went on to hold positions at Harper Adams Agricultural College, Scientific Computing Services
(London), University College (London), Iowa State College, Texas A&M University, and Duke
University. Among other awards he received and distinguished titles he held, Professor Hartley
served as the president of the American Statistical Association in 1979. Known affectionately
as HOH by almost all who knew him, he founded the Institute of Statistics, later to become the
Department of Statistics, at Texas A&M University. His contributions to statistical computing
are particularly notable considering the available equipment at the time. Professor Hartley is
best known for his two-volume Biometrika Tables for Statisticians (jointly written with Egon
Pearson) and for his fundamental contributions to sampling theory, missing-data methodology,
variance-component estimation, and computational statistics.

References

Abayomi, K. A., A. Gelman, and M. Levy. 2008. Diagnostics for multivariate imputations. Journal of the Royal
Statistical Society, Series C 57: 273-291.

Albert, A., and J. A. Anderson. 1984. On the existence of maximum likelihood estimates in logistic regression models.
Biometrika 71: 1-10.

Allison, P. D. 2001. Missing Data. Thousand Oaks, CA: Sage.

Aloisio, K. M., N. Micali, S. A. Swanson, A. Field, and N. J. Horton. 2014. Analysis of partially observed clustered
data using generalized estimating equations and multiple imputation. Stata Journal 14: 863-883.

Bartlett, J. W., and T. P. Morris. 2015. Multiple imputation of covariates by substantive-model compatible fully
conditional specification. Stata Journal 15: 437-456.

Eddings, W. D., and Y. V. Marchenko. 2012. Diagnostics for multiple imputation in Stata. Stata Journal 12: 353-367.

Gelman, A., I. Van Mechelen, G. Verbeke, D. F. Heitjan, and M. Meulders. 2005. Multiple imputation for model
checking: Completed-data plots with missing and latent data. Biometrics 61: 74-85.

Graham, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60:
549-576.

Kenward, M. G., and J. R. Carpenter. 2007. Multiple imputation: Current perspectives. Statistical Methods in Medical
Research 16: 199-218.

Lee, K. J., and J. B. Carlin. 2010. Multiple imputation for missing data: Fully conditional specification versus
multivariate normal imputation. American Journal of Epidemiology 171: 624-632.

Marchenko, Y. V., and W. D. Eddings. 2011. A note on how to perform multiple-imputation diagnostics in Stata.
http://www.stata.com/users/ymarchenko/midiagnote.pdf.

Meng, X.-L. 1994. Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical
Science 9: 538-573.

http://www.stata.com/giftshop/bookmarks/series3/hartley/
http://www.stata-journal.com/article.html?article=st0363
http://www.stata-journal.com/article.html?article=st0363
http://www.stata-journal.com/article.html?article=st0387
http://www.stata-journal.com/article.html?article=st0387
http://www.stata-journal.com/article.html?article=st0263
http://www.stata.com/users/ymarchenko/midiagnote.pdf

138 mi impute — Impute missing values

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

Schenker, N., and J. M. G. Taylor. 1996. Partially parametric techniques for multiple imputation. Computational
Statistics & Data Analysis 22: 425-446.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] Glossary

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi impute chained — Impute missing values using chained equations

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Acknowledgments
References Also see

Description

mi impute chained fills in missing values in multiple variables iteratively by using chained
equations, a sequence of univariate imputation methods with fully conditional specification (FCS)
of prediction equations. It accommodates arbitrary missing-value patterns. You can perform separate
imputations on different subsets of the data by specifying the by () option. You can also account for
frequency, analytic (with continuous variables only), importance, and sampling weights.

Menu

Statistics > Multiple imputation

Syntax
Detault specification of prediction equations, basic syntax

mi impute chained (uvmethod) ivars [= indepvars] [Zf} [weight} [, impute_options options]

Default specification of prediction equations, full syntax

mi impute chained lhs [= indepvars] [zf} [weighz] [, impute_options options}

Custom specification of prediction equations

mi impute chained lhsc [= ina’epvars] [lf] [weight} [, impute_options ()pti()ns]

where lhs is lhs_spec [lhs_spec [..]] and lhs_spec is
(uvmethod [lf] [, uvspec_options]) ivars
lhsc is lhsc_spec [lhsc_spec [..] } and lhsc_spec is

(uvmethod [l_'f] [, include (xspec) omit (varlist) noimputed uvspec_options]) ivars

ivars (or newivar if uvmethod is intreg) are the names of the imputation variables.

uvspec_options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

The include(), omit(), and noimputed options allow you to customize the default prediction
equations.

139

140 mi impute chained — Impute missing values using chained equations

uvmethod Description

regress linear regression for a continuous variable; [MI] mi impute regress

pmm predictive mean matching for a continuous variable;
[MI] mi impute pmm

truncreg truncated regression for a continuous variable with a restricted range;
[MI] mi impute truncreg

intreg interval regression for a continuous partially observed (censored) variable;
[MI] mi impute intreg

logit logistic regression for a binary variable; [MI] mi impute logit

ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit

mlogit multinomial logistic regression for a nominal variable;

- [MI] mi impute mlogit

poisson Poisson regression for a count variable; [MI] mi impute poisson

nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

impute_options

Description

Main

*add (#)

*replace
rseed (#)
double

by(varlist[, byopts])

Reporting
dots
noisily
nolegend

Advanced
force

noupdate

specify number of imputations to add; required when no imputations exist
replace imputed values in existing imputations
specify random-number seed

store imputed values in double precision; the default is to store them
as float

impute separately on each group formed by varlist

display dots as imputations are performed
display intermediate output
suppress all table legends

proceed with imputation, even when missing imputed values are
encountered

do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.

noupdate does not appear in the dialog box.

mi impute chained — Impute missing values using chained equations 141

options Description
MICE options
burnin (#) specify number of iterations for the burn-in period;
default is burnin(10)
chainonly perform chained iterations for the length of the burn-in period
without creating imputations in the data
augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables
noimputed do not include imputation variables in any prediction equation
bootstrap estimate model parameters using sampling with replacement
savetrace(...) save summaries of imputed values from each iteration in filename .dta
Reporting
dryrun show conditional specifications without imputing data
report show report about each conditional specification
chaindots display dots as chained iterations are performed
showevery (#) display intermediate results from every #th iteration
showiter (numlist) display intermediate results from every iteration in numlist
Advanced
orderasis impute variables in the specified order
nomonotone impute using chained equations even when variables follow a
monotone-missing pattern; default is to use monotone method
nomonotonechk do not check whether variables follow a monotone-missing pattern

You must mi set your data before using mi impute chained; see [MI] mi set.
You must mi register ivars as imputed before using mi impute chained; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see
[U] 11.1.6 weight.

Options

Main

add (), replace, rseed(), double, by (); see [MI] mi impute.

The following options appear on a Specification dialog that appears when you click on the Create ...
button on the Main tab. The include(), omit (), and noimputed options allow you to customize
the default prediction equations.

include (xspec) specifies that xspec be included in prediction equations of all imputation variables
corresponding to the current left-hand-side specification /hsc_spec. xspec includes complete vari-
ables and expressions of imputation variables bound in parentheses. If the noimputed option is
specified within lhsc_spec or with mi impute chained, then xspec may also include imputation
variables. xspec may contain factor variables; see [U] 11.4.3 Factor variables.

omit (varlist) specifies that varlist be omitted from the prediction equations of all imputation variables
corresponding to the current left-hand-side specification lhsc_spec. varlist may include complete
variables or imputation variables. varlist may contain factor variables; see [U] 11.4.3 Factor
variables. In omit (), you should list variables to be omitted exactly as they appear in the

142 mi impute chained — Impute missing values using chained equations

prediction equation (abbreviations are allowed). For example, if variable x1 is listed as a factor
variable, use omit (i.x1) to omit it from the prediction equation.

noimputed specifies that no imputation variables automatically be included in prediction equations
of imputation variables corresponding to the current uvmethod.

uvspec_options are options specified within each univariate imputation method, wuvmethod.
uvspec_options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed. This option is useful in combination with the showevery (#) or showiter (numlist)
option to display results from a particular univariate imputation model for specific iterations.

MICE options

burnin(#) specifies the number of iterations for the burn-in period for each chain (one chain per
imputation). The default is burnin (10). This option specifies the number of iterations necessary
for a chain to reach approximate stationarity or, equivalently, to converge to a stationary distribution.
The required length of the burn-in period will depend on the starting values used and the missing-
data patterns observed in the data. It is important to examine the chain for convergence to determine
an adequate length of the burn-in period prior to obtaining imputations; see Convergence of MICE.
The provided default is what current literature recommends. However, you are responsible for
determining that sufficient iterations are performed.

chainonly specifies that mi impute chained perform chained iterations for the length of the burn-in
period and then stop. This option is useful in combination with savetrace() to examine the
convergence of the method prior to imputation. No imputations are created when chainonly is
specified, so add() or replace is not required with mi impute chained, chainonly and they
are ignored if specified.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights. This option is equivalent to specifying augment within univariate specifications
of all categorical imputation methods: logit, ologit, and mlogit.

noimputed specifies that no imputation variables automatically be included in any of the prediction
equations. This option is seldom used. This option is convenient if you wish to use different sets
of imputation variables in all prediction equations. It is equivalent to specifying noimputed within
all univariate specifications.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

savetrace(ﬁlename[, traceopts}) specifies to save the means and standard deviations of imputed
values from each iteration to a Stata dataset called filename.dta. If the file already exists, the

mi impute chained — Impute missing values using chained equations 143

replace suboption specifies to overwrite the existing file. savetrace() is useful for monitoring
convergence of the chained algorithm. This option cannot be combined with by ().

traceopts are replace, double, and detail.
replace indicates that filename.dta be overwritten if it exists.

double specifies that the variables be stored as doubles, meaning 8-byte reals. By default,
they are stored as floats, meaning 4-byte reals. See [D] data types.

detail specifies that additional summaries of imputed values including the smallest and the
largest values and the 25th, 50th, and 75th percentiles are saved in filename .dta.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends that include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional () is used within univariate specifications, and
group legends when by () is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

chaindots specifies that all chained iterations be displayed as dots. An x is displayed for every
failed iteration.

showevery (#) specifies that intermediate regression output be displayed for every #th iteration.
This option requires noisily. If noisily is specified with mi impute chained, then the output
from the specified iterations is displayed for all univariate conditional models. If noisily is used
within a univariate specification, then the output from the corresponding univariate model from
the specified iterations is displayed.

showiter (numlist) specifies that intermediate regression output be displayed for each iteration in
numlist. This option requires noisily. If noisily is specified with mi impute chained, then the
output from the specified iterations is displayed for all univariate conditional models. If noisily
is used within a univariate specification, then the output from the corresponding univariate model
from the specified iterations is displayed.

Advanced

force; see [MI] mi impute.

orderasis requests that the variables be imputed in the specified order. By default, variables are
imputed in order from the most observed to the least observed.

nomonotone, a rarely used option, specifies not to use monotone imputation and to proceed with
chained iterations even when imputation variables follow a monotone-missing pattern. mi impute
chained checks whether imputation variables have a monotone missing-data pattern and, if they
do, imputes them using the monotone method (without iteration). If nomonotone is used, mi
impute chained imputes variables iteratively even if variables are monotone-missing.

nomonotonechk specifies not to check whether imputation variables follow a monotone-missing
pattern. By default, mi impute chained checks whether imputation variables have a monotone

144 mi impute chained — Impute missing values using chained equations

missing-data pattern and, if they do, imputes them using the monotone method (without iteration).
If nomonotonechk is used, mi impute chained does not check the missing-data pattern and
imputes variables iteratively even if variables are monotone-missing. Once imputation variables are
established to have an arbitrary missing-data pattern, this option may be used to avoid potentially
time-consuming checks; the monotonicity check may be time consuming when a large number of
variables is being imputed.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Multivariate imputation using chained equations
Compatibility of conditionals

Convergence of MICE

First use

Using mi impute chained

Default prediction equations

Custom prediction equations

Link between mi impute chained and mi impute monotone
Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Multivariate imputation using chained equations

When a missing-data structure is monotone distinct, multiple variables can be imputed sequentially
without iteration by using univariate conditional models (see [MI] mi impute monotone). Such
monotone imputation is impossible with arbitrary missing-data patterns, and simultaneous imputation
of multiple variables in such cases requires iteration. We described the impact of an arbitrary missing-
data pattern on multivariate imputation and two common imputation approaches used in such cases, the
multivariate normal method and multivariate imputation using chained equations (MICE), in Multivariate
imputation in [MI] mi impute. In this entry, we describe MICE, also known as imputation using FCS
(van Buuren, Boshuizen, and Knook 1999) or sequential regression multivariate imputation (SRMI;
Raghunathan et al. 2001), in more detail. We use the terms MICE, FCS, and SRMI interchangeably
throughout the documentation.

MICE is similar to monotone imputation in the sense that it is also based on a series of univariate
imputation models. Unlike monotone imputation, MICE uses FCSs of prediction equations (chained
equations) and requires iteration. Iteration is needed to account for possible dependence of the estimated
model parameters on the imputed data when a missing-data structure is not monotone distinct.

The general idea behind MICE is to impute multiple variables iteratively via a sequence of univariate
imputation models, one for each imputation variable, with fully conditional specifications of prediction
equations: all variables except the one being imputed are included in a prediction equation. Formally,
for imputation variables X, Xo,..., X, and complete predictors (independent variables) Z, this
procedure can be described as follows. Imputed values are drawn from

mi impute chained — Impute missing values using chained equations 145

X~ g (Xalxg? X, 2 ¢)
X~ ga (Xl XY XG0, XD, 20 6)

Xét+1) ~ gp(Xp‘Xl(t-i_l)v X2(t+1)7 e 7X(t+1) Z7 d)p)

p—1

for iterations ¢ = 0,1,...,7T until convergence at ¢ = 7', where ¢j are the corresponding model

parameters with a uniform prior. The univariate imputation models, g;(-), can each be of a different
type (normal, logistic, etc.), as is appropriate for imputing X ;.

Fully conditional specifications (1) are similar to the Gibbs sampling algorithm (Geman and
Geman 1984; Gelfand and Smith 1990), one of the MCMC methods for simulating from complicated
multivariate distributions. In fact, in certain cases these specifications do correspond to a genuine Gibbs
sampler. For example, when all X;’s are continuous and all g;(-)’s are normal linear regressions with
constant variances, then (1) corresponds to a Gibbs sampler based on a multivariate normal distribution
with a uniform prior for model parameters. Such correspondence does not hold in general because
unlike the Gibbs sampler, the conditional densities {g;(-), j = 1,2,...,p} may not correspond
to any multivariate joint conditional distribution of X;, Xs,..., X, given Z (Arnold, Castillo, and
Sarabia 2001). This issue is known as incompatibility of conditionals (for example, Arnold, Castillo,
and Sarabia [1999]). When conditionals are not compatible, the MICE procedure may not converge
to any stationary distribution, which can raise concerns about its validity as a principled statistical
method; see Compatibility of conditionals and Convergence of MICE for more details.

Despite the lack of a general theoretical justification, MICE is very popular in practice. Its popularity
is mainly due to the tremendous flexibility it offers for imputing various types of data arising in
observational studies. Similarly to monotone imputation, the variable-by-variable specification of MICE
allows practitioners to simultaneously impute variables of different types by choosing from several
univariate imputation methods appropriate for each variable. Being able to specify a separate model
for each variable provides an imputer with great flexibility in incorporating certain characteristics
specific to each variable. For example, we can use predictive mean matching ([MI] mi impute pmm)
or truncated regression ([MI] mi impute truncreg) to impute a variable with a restricted range. We
can impute variables defined on a subsample using only observations in that subsample while using the
entire sample to impute other variables; see Conditional imputation in [MI] mi impute for details. For
more information about multivariate imputation using chained equations, see van Buuren, Boshuizen,
and Knook (1999); Raghunathan et al. (2001); van Buuren et al. (2006); van Buuren (2007); White,
Royston, and Wood (2011); and Royston (2004, 2005a, 2005b, 2007, 2009), among others.

The specification of a conditional imputation model g;(-) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification (of prediction equations) in which the identities
of the complete explanatory variables are the same across all prediction equations, and the custom
specification in which the identities are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all imputation variables except the one being imputed. Under the custom
specification, each prediction equation may include a subset of the predictors that would be used under
the default specification. The custom specification also allows expressions of imputation variables in
prediction equations.

Model (1) corresponds to the default specification. For example, consider imputation variables
X1, X2, and X3 and complete predictors Z; and Z5. Under the default specification, the individual
prediction equations are determined as follows. The most observed variable—say, X;—is predicted
from X5, X3, Z1, and Z5. The next most observed variable—say, Xo—is predicted from X3, Z1,

146 mi impute chained — Impute missing values using chained equations

Zs, and previously imputed X;. The least observed variable, X3, is predicted from Z;, Zs, and
previously imputed X; and X5. (A constant is included in all prediction equations, by default.) We
use the following notation to refer to the above sequence of prediction equations (imputation sequence):
XX 1,21, 2y — Xo|X 9,21, Zy — X3|X_3, 21, Zs, where X_; denotes all imputed or to-
be-imputed variables except X;.

A sequence such as X1|X_1,7Z7 = Xo|X_2,721,Z5 — X3|X_3,Z2 would correspond to a
custom specification. Here X is assumed to be conditionally independent of Z5 given X _; and Z,
and X3 is assumed to be conditionally independent of Z; given X _3 and Z5.

Compatibility of conditionals

A concern with MICE is its lack of a formal theoretical justification. Its theoretical weakness is
possible incompatibility of fully conditional specifications (1). As we briefly mentioned earlier, it is
possible to specify a set of full conditionals with MICE for which no multivariate distribution exists
(for example, van Buuren et al. [2006] and van Buuren [2007]). In such a case, the validity of MICE
as a statistical procedure is questionable.

The impact of incompatibility of conditional specifications in practice is still under investigation.
For example, van Buuren et al. (2006) performed several simulations to investigate the consequences
of strongly incompatible specifications on multiple-imputation (MI) results in a simple setting and
found very little impact of it on estimated parameters. The effect of incompatible conditionals on the
quality of imputations and final MI inference in general is not yet known. Of course, if a joint model
is of main scientific interest, then incompatibility of conditionals poses a problem. In the discussion
of Arnold, Castillo, and Sarabia (2001), Andrew Gelman and Trivellore Raghunathan mention that
the existence of an underlying joint distribution may be less important within the imputation context
than the ability to incorporate the unique features of the data.

For more information about the compatibility of conditional specifications, see Arnold, Castillo,
and Sarabia (2001); van Buuren (2007); and Arnold, Castillo, and Sarabia (1999) and references
therein.

Convergence of MICE

MICE is an iterative method and is similar in spirit to the Gibbs sampler, an MCMC method.

Similarly to MCMC methods, MICE builds a sequence of draws {Xgﬁ) t=1,2,.. .}, a chain, and
iterates until this chain reaches a stationary distribution. So as with any MCMC method, monitoring
convergence is important with MICE.

MICE performs simulation by running multiple independent chains (see Convergence of iterative
methods in [MI] mi impute). To assess convergence of multiple chains, we need to examine the
stationarity of each chain by the end of the specified burn-in period b. In practice, convergence
of MICE is often examined visually. Trace plots—plots of summaries of the distribution (means,
standard deviations, quantiles, etc.) of imputed values against iteration numbers—are used to examine
stationarity of the chain. Long-term trends in trace plots are indicative of slow convergence to
stationarity. A suitable value for the burn-in period b can be inferred from a trace plot as the earliest
iteration after which each chain does not exhibit a visible trend and the fluctuations in values become
more regular. When the initial values are close to the mode of the target posterior distribution (when
one exists), b will generally be small. When the initial values are far off in the tails of the posterior
distribution, the initial number of iterations b will generally be larger.

mi impute chained — Impute missing values using chained equations 147

The number of iterations necessary for MICE to converge depends on, among other things, the
fractions of missing information and initial values. The higher the fractions of missing information and
the farther the initial values are from the mode of the posterior predictive distribution of missing data,
the slower the convergence, and thus the larger the number of iterations required. Current literature
suggests that in many practical applications a low number of burn-in iterations, somewhere between
5 and 20 iterations, is usually sufficient for convergence (for example, van Buuren [2007]). In any
case, examination of the data and missing-data patterns is highly recommended when investigating
convergence of MICE.

The convergence of MICE may not be achieved when specified conditional models are incompatible,
as described in Compatibility of conditionals. The simulation draws will depend on the order in which
variables are imputed and on the chosen length of the burn-in period. It is important to evaluate the
quality of imputations (see Imputation diagnostics in [MI] mi impute) to determine the impact of
incompatibility on MI analysis.

First use

Before we describe various uses of mi impute chained, let’s look at a simple example first.

Consider the heart attack data example examining the relationship between heart attacks and
smoking from Multivariate imputation of [MI] mi impute, where the age and bmi variables contain
missing values. In another version of the dataset, bmi and age have a nonmonotone missing-data
pattern, and thus monotone imputation is not possible:

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)
. mi misstable patterns, frequency

Missing-value patterns
(1 means complete)

Pattern
Frequency 1 2
118 11
24 1 0
8 0 1
4 0 0
154

Variables are (1) age (2) bmi

mi impute chained does not require missing data to be monotone, so we can use it to impute
missing values of age and bmi in this dataset. We use the same model specification as before:

148 mi impute chained — Impute missing values using chained equations

. mi impute chained (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Performing chained iteratiomns ...

Multivariate imputation Imputations = 10
Chained equations added = 10
Imputed: m=1 through m=10 updated = 0
Initialization: monotone Iterations = 100
burn-in = 10

bmi: linear regression

age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

As before, 10 imputations are created (the add (10) option). The linear regression imputation method
(regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and female
variables are used as complete predictors (independent variables).

mi impute chained reports the conditional specifications used to impute each variable and the
order in which they were imputed. By default, mi impute chained imputes variables in order from
the most observed to the least observed. In our example, age has the least number of missing values
and so is imputed first, even though we listed bmi before age in the command specification.

With the default specification, mi impute chained builds appropriate FCSs automatically using
the supplied imputation variables and complete predictors, specified as right-hand-side variables. The
default prediction equation for age includes bmi and all the complete predictors, and the default
prediction equation for bmi includes age and all the complete predictors.

The main header and table output were described in detail in [MI] mi impute. The information
specific to mi impute chained includes the type of initialization, the burn-in period, and the number
of iterations. By default, mi impute chained uses 10 burn-in iterations (also referred to as cycles in
the literature) before drawing imputed values. The total number of iterations performed by mi impute
chained to obtain 10 imputations is 100. Also, similarly to mi impute monotone, the additional
information above the table includes the legend describing what univariate imputation method was
used to impute each variable. (If desired, this legend may be suppressed by specifying the nolegend
option.)

Using mi impute chained
Below we summarize general capabilities of mi impute chained.

1. mi impute chained offers two main syntaxes—one using the default prediction equations
and the other allowing customization of prediction equations. We will refer to the two
syntaxes as default and custom, respectively. We describe the two syntaxes in detail in the
next two sections.

mi impute chained — Impute missing values using chained equations 149

2. mi impute chained allows specification of a global (outer) if condition,

. mi impute chained ... if exp ...

and equation-specific (inner) if conditions,

. mi impute chained ... (... if exp ...) ...
A global if is applied to all equations. You may combine global and equation-specific if
conditions:

. mi impute chained ... (... if exp ...) ... if exp ...

3. mi impute chained allows specification of global weights, which are applied to all equations:
. mi impute chained ... [weighs]l ...
4. mi impute chained uses fully specified prediction equations by default. Customize prediction
equations by including or omitting desired terms:
. mi imp chain (... , include(z3) ...) (..., omit(zl) ...) ...
5. mi impute chained automatically includes appropriate imputation variables in prediction

equations. Use a global noimputed option to prevent inclusion of imputation variables in
all prediction equations:

. mi impute chained ..., noimputed ...

Or use an equation-specific noimputed option to prevent inclusion of imputation variables
in only some prediction equations:

. mi impute chained ... (..., noimputed ...) ...

As we mentioned earlier, mi impute chained is an iterative imputation method. By default, it
performs 10 burn-in iterations for each imputation before drawing the final set of imputed values.
The number of iterations is determined by the length of the burn-in period after which a random
sequence (chain) is assumed to converge to its stationary distribution. The provided default may not
be applicable to all situations, so you can use the burnin() option to modify it.

Use the chainonly and savetrace() options to determine the appropriate burn-in period. For
example,

. mi impute chained ..., burnin(100) chainonly savetrace(impstats) ...
saves summaries of imputed values from 100 iterations for each of the imputation variables to

impstats.dta without proceeding to impute data. You can apply techniques from Convergence of
MICE to the data in impstats.dta to determine an adequate burn-in period.

Use a combination of the dryrun and report options to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute chained first using hypothetical
situations and then using real examples.

Default prediction equations

We showed in First use an example of mi impute chained with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

150 mi impute chained — Impute missing values using chained equations

By default, mi impute chained imputes missing values by using the default prediction equations.
It builds the corresponding univariate imputation models based on the supplied information: uvmethod,
the imputation method; ivars, the imputation variables; and indepvars, the complete predictors or
independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values and are ordered from the
most observed to the least observed. We want to impute these variables, and we decide to use the
same univariate imputation method, say, linear regression, for all. We can do this by typing

. mi impute chained (regress) x1 x2 x3 ...

The above command corresponds to the first syntax diagram of mi impute chained: uvmethod
is regress and ivars is x1 x2 x3. Relating the above to the model notation used in (1), g1, g2,
g3 represent linear regression imputation models and the prediction sequence is X1|Xs2, X3 —
)(2|)(1,)(3 —)(3')(1,)(2.

By default, mi impute chained imputes variables in order from the most observed to the least
observed, regardless of the order in which variables were specified. For example, we can list imputation
variables in the reverse order,

. mi impute chained (regress) x3 x2 x1 ...

and mi impute chained will still impute x1 first, x2 second, and x3 last. You can use the orderasis
option to instruct mi impute chained to perform imputation of variables in the specified order.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do so by typing

. mi impute chained (regress) x1 x2 x3 = z1 z2 ...

Now indepvars is z1 z2 and the prediction sequence is X1|Xs, X3, Z1, Z2 — Xo| X1, X3, Z1, 22 —
X3| X1, X5, Z1, Zs. Independent variables are included in the prediction equations of all univariate
models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute chained (regress) x1 x2 (pmm, knn(5)) x3 =zl z2 ...

The above corresponds to the second syntax diagram of mi impute chained, a generalization of
the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has
two specifications: (regress) x1 x2 and (pmm, knn(5)) x3. In previous examples, we had only
one left-hand-side specification, lhs_spec— (regress) x1 x2 x3. (The number of left-hand-side
specifications does not necessarily correspond to the number of univariate models; the latter is
determined by the number of imputation variables.) In this example, x1 and x2 are imputed using
linear regression, and x3 is imputed using predictive mean matching with five nearest neighbors
specified in pmm’s option knn (). All method-specific options must be specified within the parentheses
surrounding the method.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. The corresponding syntax is

. mi impute chained (regress) x1 (regress if zl1==1) x2 (pmm, knn(5))
>x3 =12z12z2 ...

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute chained (regress) x1 (regress if zl==1) x2 (pmm, knn(5))
> x3 =zl z2 if z3==

mi impute chained — Impute missing values using chained equations 151

In the above, restrictions included only complete variables. When restrictions include imputation
variables, you should use the conditional() option instead of an if condition; see Conditional
imputation in [MI] mi impute. Suppose that we need to impute x2 using only observations for which
x1 is positive, provided that missing values of x1 are nested within missing values of x2. We can do
this by typing

. mi impute chained (regress) x1 (regress, cond(if x1>0)) x2 (pmm, knn(5)) x3
>=2z1 22 ...

When any imputation variable is imputed using a categorical method (logit, ologit, or mlogit),
mi impute chained automatically includes it as a factor variable in the prediction equations of other
imputation variables. Suppose that x1 is a categorical variable and is imputed using the multinomial
logistic method:

. mi impute chained (mlogit) x1 (regress) x2 x3 ...
The above will result in the prediction sequence Xi|Xo, X3 — Xo|i. X, X35 — X3]i.X4, Xo
where i.X; denotes the factors of X7.

If you wish to include a factor variable as continuous in prediction equations, you can use the
ascontinuous option within the specification of the univariate imputation method for that variable:

. mi impute chained (mlogit, ascontinuous) x1 (regress) x2 x3 ...

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in

the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute chained (mlogit, augment) x1 (regress) x2 x3 ...

Alternatively, you can use the augment option with mi impute chained to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute chained (mlogit) x1 (logit) x2 (regress) x3 ..., augment ...
The above is equivalent to specifying augment within each specification of a univariate categorical
imputation method:

. mi impute chained (mlogit, augment) x1 (logit, augment) x2 (regress) x3 ...

Custom prediction equations

In the previous section, we considered various uses of mi impute chained with default prediction
equations. Often, however, you may want to use different prediction equations for some or even all
imputation variables. We can easily modify the above specifications to accommodate this.

Let’s consider situations in which we want to use different sets of complete variables for some
imputation variables first. Recall our following hypothetical example:

. mi impute chained (regress) x1 x2 x3 = z1 z2 ... (M1)

Suppose that we want to omit z2 from the prediction equation for x3. To accommodate this, we
need to include two separate specifications: one for x1 and x2 and one for x3:

. mi impute chained (regress) x1 x2 (regress, omit(z2)) x3 =zl z2 ...

152 mi impute chained — Impute missing values using chained equations

The above corresponds to the custom specification, the third syntax diagram, of mi impute
chained. As before, we list all the complete variables indepvars to be included in all prediction
equations to the right of the = sign. So, indepvars is still z1 z2. The prediction equation for x3,
however, omits variable z2, specified within the omit () option. The prediction sequence for the
above speciﬁcation is X1|X2, X3, Zl; Zoy — X2|X1, X3, Zl7 Zoy — X3|X1, XQ, 7.

Alternatively, we could have achieved the above by including variable z1 in all prediction equations,
as a right-hand-side specification indepvars, and using the include () option to add variable z2 to
the prediction equations of x1 and x2:

. mi impute chained (regress, include(z2)) x1 x2 (regress) x3 =zl ...

You may also want to modify the sets of imputation variables to be included in prediction equations.
By default, mi impute chained automatically includes the appropriate fully conditional specifications
of imputation variables in all prediction equations.

Suppose that in addition to different sets of complete predictors, we assume that X; and X5 are
conditionally independent given X3, which implies that prediction equations for x1 and x2 include
only x3 and not each other. We can accommodate this with the command

. mi impute chained (regress, include(x3 z2) noimputed) x1 x2 (regress) ///
x3 =1z1 ...

which corresponds to the prediction sequence X1|Xs, Z1, Zo — X3|X3, 21, Z2 — X3|X1, Xo, Z1.
The above is also equivalent to the command

. mi impute chained (regress, omit(xl x2)) x1 x2 (regress, omit(z2)) ///
x3 =2z12z2 ...

There are other equivalent ways of achieving the above custom specifications by using various
combinations of include (), omit (), and noimputed. The most convenient specification will depend
on your particular structure of the prediction equations. You can also combine these options within
the same univariate specification.

It is important to realize that equivalent syntaxes may produce different (yet equivalent with
stable imputation models) sequences of imputed values when they have different ordering of variables
in prediction equations. mi impute chained builds prediction equations as follows. Appropriate
imputation variables are included first, unless the noimputed option is specified. By default, imputation
variables are included in order from the most observed to the least observed. If the orderasis option
is used, the variables are included in the specified order. Next, terms specified in the include ()
option are included in the listed order. Then right-hand-side variables (indepvars) are included in the
listed order. Finally, variables listed in the omit () option are removed from the prediction equation.
When you specify omit (), it is important to specify variables as they are included in the prediction
equation; if x1 is included as a factor variable, omit (i.x1) should be used.

You can also include functions of imputation variables in prediction equations with the custom
specification of mi impute chained. As we discussed in Model building in [MI] mi impute, there
are two ways to do that. You can include functions of imputation variables as separate imputation
variables directly in your imputation model or you can impute them passively using mi impute
chained.

mi impute chained — Impute missing values using chained equations 153

For example, using model (M1), suppose that we would like to include the interaction between
x1 and x2 in the conditional model for x3:

. mi impute chained (regress) x1 x2 ///
(regress, include((x1%*x2))) x3 ///
=zl z2 ...

The expression x1*x2, specified in the include () option, is enclosed in parentheses.
We also could have typed
. mi impute chained (regress, include((x1*x2))) x1 x2 x3 = z1 z2 ...
and mi impute chained would appropriately include the interaction term X7 X5 only in the prediction
equation of X3.

You can include any other expressions of imputation variables in include() within any of the
left-hand-side specifications. Just remember to enclose such expressions in parentheses.

All the examples we considered in Default prediction equations are also applicable to mi impute
chained with custom prediction equations. For example, to restrict imputation of x2 to observations
where z1==1 in one of our earlier examples, we can type

. mi impute chained (reg) x1 (reg if zl==1) x2 (reg, omit(z2)) x3 =zl z2 ...

Link between mi impute chained and mi impute monotone

Similarly to mi impute monotone (see [MI] mi impute monotone), mi impute chained uses a
sequence of univariate imputation models to impute variables. So the use of mi impute chained is
very similar to that of mi impute monotone except:

1. mi impute chained does not require that the specified imputation variables follow a
monotone-missing pattern.

2. mi impute chained requires iteration to accommodate arbitrary missing-data patterns.

3. mi impute chained, by default, uses FCSs of the prediction equations where all specified
complete variables and all imputation variables except the one being imputed are included
in prediction equations.

4. mi impute chained provides an alternative way of specifying custom prediction equations
to accommodate FCS of imputation variables.

When a missing-value pattern is monotone, mi impute chained defaults to the monotone method
(unless nomonotone is specified) and produces the same results as mi impute monotone. However,
using mi impute monotone in this case is faster because it performs the estimation step only once,
on the original data, whereas mi impute chained performs estimation on every chained iteration.

The best approach to follow is

1. Check the missing-data pattern using misstable nested (or mi misstable nested if the
data are already mi set; see [R] misstable or [MI] mi misstable) first.

2. If the missing-data pattern is monotone, use mi impute monotone to impute variables. If
the missing-data pattern is not monotone, use mi impute chained to impute variables.

It is worth mentioning the difference between the documented custom syntaxes of mi impute
chained and mi impute monotone.

154 mi impute chained — Impute missing values using chained equations

With monotone imputation, variables are imputed in a particular, monotone-missing order and
prediction equations are built in a particular way: previously imputed variables are added sequentially to
the prediction equations of other imputation variables. So when building custom prediction equations,
it is easier to construct one equation at a time in the order of the monotone missing pattern. As such,
the custom syntax of mi impute monotone, as documented in [MI] mi impute monotone, requires
full specification of a separate conditional model for each imputation variable in the monotone-missing
order.

Imputation using chained equations does not require specific ordering in which variables must be
imputed, although imputing variables in order from the most observed to the least observed usually
leads to faster convergence. Also, because all imputation variables except the one being imputed are
included in prediction equations, it does not matter in what order prediction equations are specified.
The custom syntax of mi impute chained reflects this.

Examples

For the purpose of illustration, we use five imputations in our examples.

> Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute bmi using predictive mean
matching with, say, three nearest neighbors instead of linear regression, we could type
. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> add(5)
Conditional models:

age: regress age bmi attack smokes hsgrad female

bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching

age: linear regression
Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

As shown previously, mi impute chained imputed age first and bmi second, because age is the
variable with the fewest missing values.

4

mi impute chained — Impute missing values using chained equations 155

> Example 2: Convergence of MICE

In Convergence of MICE, we described ways to assess convergence of the MICE algorithm.
Continuing our previous example, let’s investigate the trends in the summaries of imputed values of
age and bmi over iterations.

Following the recommendation from Using mi impute chained, we use a combination of chainonly
and savetrace() to perform chained iterations without creating imputations in the data and save
summaries of imputed values to the new dataset impstats.dta. We perform 100 iterations and
specify a random-number seed for reproducibility:

. use http://www.stata-press.com/data/r14/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad female,
> chainonly burnin(100) savetrace(impstats) rseed(1359)

Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes hsgrad female , knn(3)

Performing chained iteratioms ...

Note: No imputation performed.

By default, means and standard deviations of imputed values for each imputation variable are
saved along with iteration and imputation numbers (imputation number is always 0 when chainonly
is used):

. use impstats
(Summaries of imputed values from -mi impute chained-)
. describe

Contains data from impstats.dta

obs: 101 Summaries of imputed values
from -mi impute chained-
vars: 6 14 Nov 2014 14:44
size: 1,818
storage display value
variable name type format label variable label
iter byte %12.0g Iteration numbers
m byte %12.0g Imputation numbers
age_mean float %9.0g Mean of age
age_sd float %9.0g Std. Dev. of age
bmi_mean float %9.0g Mean of bmi
bmi_sd float %9.0g Std. Dev. of bmi
Sorted by:

We use the time-series command tsline (see [TS] tsline) to plot summaries of imputed values
with respect to the iteration number. We first use tsset to set iter as the “time” variable and then
use tsline to obtain trace plots. We create trace plots for all variables and combine them in one
graph using graph combine:

. tsset iter

time variable: iter, 0 to 100
delta: 1 unit

. tsline bmi_mean, name(grl) nodraw
. tsline bmi_sd, name(gr2) nodraw
. tsline age_mean, name(gr3) nodraw

. tsline age_sd, name(gr4) nodraw

156 mi impute chained — Impute missing values using chained equations

. graph combine grl gr2 gr3 gr4, title(Trace plots of summaries of imputed values)
> rows(2)

Trace plots of summaries of imputed values

Mean of bmi
23 24 25 26 27 28

Std. Dev. of bmi
25 3 35 4 45 5

T T T T T T T T T
20 40 60 80 100 0 20 40 60 80 100
Iteration numbers Iteration numbers

o

65
L

60
L
20
L

Mean of age
55
|
Std. Dev. of age

50
L

15

10
L

5
L
5
L

20 40 60 8 160 6 20 40 60 8 160
Iteration numbers Iteration numbers

o

The trace plots show no apparent trends in the summaries of the imputed values, so the default
number of burn-in iterations, 10, seems adequate. Although a low number of burn-in iterations may
be sufficient in some applications, there are situations when larger numbers are required (for example,
van Buuren [2007]).

It is also useful to look at several chains, each obtained using a different set of initial values, to
check convergence and stability of the algorithm.

Let’s look at three separate chains. The easiest way to do this is to use the add () option instead of
chainonly to create three imputations. Remember that mi impute chained starts a new chain for
each imputation, so a different set of initial values is used for each imputation. When savetrace ()
is specified, mi impute chained saves summaries of imputed values for each imputation.

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. quietly mi impute chained (pmm, knn(3)) bmi (reg) age = attack smokes hsgrad
> female, add(3) burnin(100) savetrace(impstats, replace) rseed(1359)

The results are saved in a long form. If we want to overlay separate chains in one graph, we need
to convert our data to a wide form first—one variable per chain. We use the reshape command for
this (see [D] reshape):

. use impstats, clear
(Summaries of imputed values from -mi impute chained-)

. reshape wide *mean *sd, i(iter) j(m)
(note: j =12 3)

Data long -> wide

Number of obs. 303 -> 101

Number of variables 6 -> 13

j variable (3 values) m -> (dropped)

xij variables:
age_mean —> age_meanl age_mean2 age_mean3
bmi_mean -> bmi_meanl bmi_mean2 bmi_mean3

age_sd -> age_sdl age_sd2 age_sd3
bmi_sd -> bmi_sdl bmi_sd2 bmi_sd3

mi impute chained — Impute missing values using chained equations 157

We can now plot the three chains for, say, the mean of bmi using tsline:

. tsset iter
time variable: iter, O to 100
delta: 1 unit
. tsline bmi_meanl bmi_mean2 bmi_mean3, ytitle(Mean of bmi) yline(25.24)
> legend(rows(1) label(1l "Chain 1") label(2 "Chain 2") label(3 "Chain 3"))

@ |
N

27
L

26
L

ke bbb i
il w(1'»4 "’W" ,1,"\'; """’ 'u i 'l/'\"}'

Mean of bmi
1

25

24

23
L

T

0 20 40 60 80 100
Iteration numbers

Chain 1 Chain 2 Chain 3 |

There are no apparent trends in any of the chains. All three chains seem to oscillate around the
observed mean estimate of bmi of 25.24, providing some evidence of convergence of the algorithm.

d

158 mi impute chained — Impute missing values using chained equations

> Example 3: Custom prediction equations

Continuing example 1, we believe that there is no association between bmi and hsgrad conditional
on other predictors, so we want to use hsgrad to model only age and omit it from the model for
bmi:

. use http://www.stata-press.com/data/r14/mheart8s0
(Fictional heart attack data; arbitrary pattern)

. mi impute chained
> (pmm, knn(3) omit(hsgrad)) bmi
> (regress) age
> = attack smokes hsgrad female, add(5)
Conditional models:
age: regress age bmi attack smokes hsgrad female
bmi: pmm bmi age attack smokes female , knn(3)

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10

bmi: predictive mean matching

age: linear regression
Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All right-hand-side complete predictors (attack, smokes, and female) are used in both prediction
equations. The prediction equation for age additionally includes the hsgrad variable.

N

> Example 4: Imputing variables of different types

We now consider an mi set version of the heart attack data containing an indicator for smoking
high-tar cigarettes (variable hightar):

mi impute chained — Impute missing values using chained equations

159

. use http://www.stata-press.com/data/ri14/mheart9s0, clear

(Fictional heart attack data; bmi, age, and hightar missing; arbitrary pattern)

. mi describe

Style: mlong

last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 98
incomplete 56 (M = 0 imputations)
total 154

Vars.: imputed: 3; bmi(24) age(30) hightar(12)

passive: O

regular: 4; attack smokes female hsgrad

system: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)
. mi misstable nested

1. hightar(12)
2. bmi(24)
3. age(30)

According to mi describe, there are no imputations, three registered imputed variables (age, bmi,
and hightar), and four registered regular variables. mi misstable nested reports that missing

values of the three imputation variables are not nested.

The hightar variable is a binary variable, so we choose the logistic method to impute its values
(see [MI] mi impute logit). Because hightar records whether a subject smokes high-tar cigarettes,
we use only those who smoke to impute its missing values. As such, including smokes as a predictor

of hightar is redundant, so we omit this variable from the prediction equation for hightar:

mi impute chained
(pmm, knn(3) omit(hsgrad)) bmi
(regress) age
(logit if smokes==1, omit(smokes)) hightar

VvV V V V.

Conditional models:

= attack smokes hsgrad female, add(5)

hightar: logit hightar bmi age attack hsgrad female if smokes==
bmi: pmm bmi i.hightar age attack smokes female , knn(3)
age: regress age i.hightar bmi attack smokes hsgrad female
Performing chained iteratioms ...
Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
bmi: predictive mean matching
age: linear regression
hightar: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 52 12 12 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

160 mi impute chained — Impute missing values using chained equations

From the output, we see that all incomplete values of each of the variables are imputed in all
imputations. Because we restricted the imputation sample of hightar to smokers, the total number
of observations reported for hightar is 64 and not 154. mi impute chained also automatically
included the binary variable hightar as a factor variable in prediction equations for age and bmi
because we used logit to impute it.

As we described in Conditional imputation, you should be careful when using an if statement
for imputing variables conditionally on other variables. It was safe to use if here, because smokes
did not contain missing values and there were no missing values of hightar for the subjects who
do not smoke.

4

> Example 5: Conditional imputation

Continuing example 4, suppose now that the smokes variable also contains missing values:
. use http://www.stata-press.com/data/r14/mheart10s0, clear
(Fict. heart attack data; bmi, age, hightar, & smokes missing; arbitrary pattern)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 92
incomplete 62 (M = 0 imputations)
total 154

Vars.: imputed: 4; bmi(24) age(30) hightar(19) smokes(14)
passive: O
regular: 3; attack female hsgrad
system: 3; _mi_m _mi_id _mi_miss
(there are no unregistered variables)
. mi misstable nested

1. smokes(14) -> hightar(19)
2. bmi(24)
3. age(30)

The smokes variable is now registered as imputed and the three regular variables are now attack,
female, and hsgrad. mi misstable nested reports that although the missing-data pattern with
respect to all four imputation variables is not monotone, the missing-data pattern with respect to
smokes and hightar is monotone. Recall from Conditional imputation that one of the requirements
of conditional imputation is that missing values of all conditioning variables (smokes) are nested
within missing values of the conditional variable (hightar). So this requirement is satisfied in our
data.

Because smokes contains missing values, we cannot use an if condition to restrict the imputation
sample of hightar to those who smoke. We must use the conditional() option. We use the
logistic method (see [MI] mi impute logit) to fill in missing values of smokes.

mi impute chained — Impute missing values using chained equations 161

mi impute chained

> (pmm, knn(3) omit(hsgrad)) bmi

> (regress) age

> (logit, cond(if smokes==1) omit(i.smokes)) hightar

> (logit) smokes

> = attack hsgrad female, add(5)

Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female ,
cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age attack female , knn(3)
age: regress age i.smokes i.hightar bmi attack hsgrad female

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0
bmi: predictive mean matching
age: linear regression
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observatiomns.)

With conditional imputation, a legend appears before the imputation table, reporting the conditional
constant, the value that was used to replace all incomplete values of an imputation variable outside
the conditional sample. The missing values of hightar in that sample were replaced with 0.

The smokes variable is imputed using logit and thus is included in prediction equations as a factor
variable, i.smokes. As such, we specified omit (i.smokes) to omit smokes from the prediction
equation for hightar.

Also notice that compared with imputation on a restricted subsample using an if condition,
the reported total number of observations in the imputation sample for hightar is still 154. All
incomplete observations, within and outside the conditional sample, are included in the imputation
sample during conditional imputation. So the reported numbers of complete, incomplete, and imputed
observations correspond with observations within and outside the conditional sample.

N

> Example 6: Including expressions of imputation variables

In Model building of [MI] mi impute, we described two ways of accommodating functional
relationships during imputation. Here we demonstrate a passive imputation approach that includes
expressions of imputation variables directly into the imputation model.

162 mi impute chained — Impute missing values using chained equations

Continuing example 5, suppose we assume that the conditional distribution of bmi exhibits some
curvature with respect to age. We want to include age~2 in the prediction equation for bmi. If the
relationship between bmi and age is indeed curvilinear, it would be unreasonable to assume that
the conditional distribution of age given bmi is linear. One possibility is to determine what the
relationship is between age and bmi given other predictors in the observed data (see, for example,
[R] mfp) and include the appropriate functional terms of bmi in the prediction equation for age.
Following White, Royston, and Wood (2011) to relax the linearity assumption, we use predictive
mean matching with, say, five nearest neighbors instead of linear regression to impute age:

mi impute chained

> (pmm, knn(3) omit(hsgrad) incl((age~2))) bmi

> (pmm, knn(5)) age

> (logit, cond(if smokes==1) omit(i.smokes)) hightar
> (logit) smokes
>

= attack hsgrad female, replace
Conditional models:
smokes: logit smokes bmi age attack hsgrad female
hightar: logit hightar bmi age attack hsgrad female ,
cond(if smokes==1)
bmi: pmm bmi i.smokes i.hightar age (age~2)
attack female , knn(3)
age: pmm age i.smokes i.hightar bmi attack hsgrad
female, knn(5)

Performing chained iteratioms ...

Multivariate imputation Imputations = 5
Chained equations added = 0
Imputed: m=1 through m=5 updated = 5
Initialization: monotone Iterations = 50
burn-in = 10
Conditional imputation:
hightar: incomplete out-of-sample obs. replaced with value 0O
bmi: predictive mean matching
age: predictive mean matching
hightar: logistic regression
smokes: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
bmi 130 24 24 154
age 124 30 30 154
hightar 135 19 19 154
smokes 140 14 14 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We included the expression term in parentheses in the include () option in the prediction equation
for bmi.

4

> Example 7: Imputing on subsamples

Suppose that in our primary logistic analysis of heart attacks, we are planning to investigate
various interaction effects with respect to gender. The female variable is complete, so the best way
to accommodate such interactions is to use the by () option to perform imputation separately for
females and males.

mi impute chained — Impute missing values using chained equations 163

We continue example 3. Before imputing missing values, let’s review our conditional specifications
for each group. We can use the dryrun option to see univariate conditional models that will be used
during imputation without actually imputing data:

. use http://www.stata-press.com/data/r14/mheart8s0, clear
(Fictional heart attack data; arbitrary pattern)

. mi impute chained

> (pmm, knn(3) omit(hsgrad)) bmi

> (regress) age

> = attack smokes hsgrad, by(female) dryrun

Performing setup for each by() group:

-> female = 0

Conditional models:
age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

-> female = 1

Conditional models:
age: regress age bmi attack smokes hsgrad
bmi: pmm bmi age attack smokes , knn(3)

Conditional specifications are as we expected, so we can proceed to imputation.

mi impute chained
(pmm, knn(3) omit(hsgrad)) bmi
(regress) age
= attack smokes hsgrad
, add(5) by(female, noreport) dots

VvV V V V.

-> female = 0

Performing chained iterationms:
imputing m=1 through m=5 done

-> female = 1

Performing chained iteratioms:

imputing m=1 through m=5 done
Multivariate imputation Imputations = 5
Chained equations added = 5
Imputed: m=1 through m=5 updated = 0
Initialization: monotone Iterations = 50
burn-in = 10
bmi: predictive mean matching
age: linear regression
Observations per m
by ()
Variable Complete Incomplete Imputed Total
female = 0
bmi 95 21 21 116
age 106 10 10 116
female = 1
bmi 31 7 7 38
age 36 2 2 38
Overall
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

164 mi impute chained — Impute missing values using chained equations

To avoid longer output, we specified the noreport option within by () to suppress information
about the setup and imputation steps that otherwise would have been reported for each group.

d
Stored results
mi impute chained stores the following in r():
Scalars
r (M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(k_ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(N_g) number of imputed groups (1 if by () is not specified)
Macros
r(method) name of imputation method (chained)
r(ivars) names of imputation variables
r (uvmethods) names of univariate imputation methods
r(init) type of initialization
r(rngstate) random-number state used
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group (per variable)
r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)
Methods and formulas
Let X1, X5,...,X, denote imputation variables ordered from the most observed to the least
observed and let Z denote the set of complete independent variables. (If X, X5, ..., X, are monotone-

missing and neither nomonotone nor nomonotonechk is used, then mi impute chained uses
monotone imputation; see Methods and formulas of [MI] mi impute monotone for details.)

With the default specification of prediction equations, the chained-equation algorithm proceeds as
follows. First, at iteration ¢ = 0, missing values are initialized using monotone imputation. That is,

missing values of XZ-(O), i =1,...,p, are simulated from conditional densities of the form
0 0 0
fZ(Xl|X£)7X§)avXq,(f)laZ701) (2)

where the conditional density f;(-) is determined according to the chosen univariate imputation method
and 6; is its corresponding set of parameters with uniform prior; see Methods and formulas of chosen
univariate imputation methods for details.

At iteration ¢, missing values of X; for all + = 1,...,p are simulated from full conditionals,
conditional densities of the form:

g(Xa X\ xP L x P XD XY, Z,6,) (3)

where again the conditional density g;(-) is determined according to the chosen univariate imputation
method and ¢, is its corresponding set of parameters with uniform prior.

mi impute chained — Impute missing values using chained equations 165

The algorithm iterates for a prespecified number of iterations b, ¢ = 1,...,b, and a final set of
imputed values is obtained from the last iteration. At each iteration, the imputation process consists
of steps 1-3 described in Methods and formulas of each respective univariate imputation method’s
manual entry.

Each imputation is obtained independently by repeating (2) and (3).

Conditional specifications in (2) and (3) correspond to the default specification of prediction
equations. With the custom specification, the sets of complete predictors Z = Z; and imputation
variables may differ across univariate specifications, and prediction equations may additionally include
functions of imputation variables.

X .

In summary, mi impute chained follows the steps below to fill in missing values in X1, ..., X,;:

)

1. mi impute chained first builds appropriate univariate imputation models using the supplied
information about imputation methods, imputation variables X, and complete predictors
Z. By default, fully conditional specification of prediction equations is used. The order in
which imputation variables are listed is ignored unless the orderasis option is used. By
default, mi impute chained imputes variables in order from the most observed to the least
observed.

2. Initialize missing values at ¢ = 0 using monotone imputation (2).

3. Perform the iterative procedure (3) for ¢t = 1,...,b, for the length of the burn-in period, to
obtain imputed values. At each iteration ¢,

3.1. Fit a univariate model for X; to the observed data to obtain the estimates of ¢,. See
step 1 in Methods and formulas of each respective univariate imputation method’s
manual entry for details.

3.2. Fill in missing values of X; according to the specified imputation model. See
step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

3.3. Repeat steps 3.1 and 3.2 for each imputation variable X;, ¢ = 1,...,p.
4. Repeat steps 2 and 3 to obtain M multiple imputations.

The iterative procedure (3) may not always correspond to a genuine simulation of imputed values from
their predictive distribution f(X,,|X,,Z) because the set of full conditionals {g; : i = 1,2,...,p}
may not correspond to this distribution or, in fact, to any proper multivariate distribution. The extent
to which this is a problem in practical applications is still an open research problem. Some limited
simulation studies reported only minimal effect of such incompatibility on final MI estimates (for
example, van Buuren et al. [2006]).

Acknowledgments

The mi impute chained command was inspired by the user-written command ice by Patrick
Royston of the MRC Clinical Trials Unit, London, and coauthor of the Stata Press book Flexible
Parametric Survival Analysis Using Stata: Beyond the Cox Model; and Ian White of the MRC
Biostatistics Unit, London. We are indebted to them for their extensive work in the multiple-imputation
area in Stata. We are also grateful to them for their comments and advice on mi impute chained.

http://www.stata-press.com/books/fpsaus.html
http://www.stata-press.com/books/fpsaus.html

166 mi impute chained — Impute missing values using chained equations

References

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York:
Springer.

——. 2001. Conditionally specified distributions: An introduction. Statistical Science 16: 249-274.

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based approaches to calculating marginal densities. Journal of
the American Statistical Association 85: 398-409.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721-741.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227-241.
——. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.
——. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5: 527-536.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. Fully conditional specification
in multivariate imputation. Journal of Statistical Computation and Simulation 76: 1049-1064.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

White, I. R., P. Royston, and A. M. Wood. 2011. Multiple imputation using chained equations: Issues and guidance
for practice. Statistics in Medicine 30: 377-399.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute monotone — Impute missing values in monotone data
[MI] mi impute mvn — Impute using multivariate normal regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis

[MI] Glossary

http://www.stata-journal.com/sjpdf.html?articlenum=st0067
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_2
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi impute intreg — Impute using interval regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas Reference
Also see

Description

mi impute intreg fills in missing values of a continuous partially observed (censored) variable
using an interval regression imputation method. You can perform separate imputations on different
subsets of the data by using the by () option. You can also account for analytic, frequency, importance,
and sampling weights.

Menu

Statistics > Multiple imputation

Syntax

mi impute intreg newivar [indepvars] [zf] [weight] [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float

by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

167

168 mi impute intreg — Impute using interval regression

options Description
Main
noconstant suppress constant term
*11 (varname) lower limit for interval censoring
*ul (varname) upper limit for interval censoring
offset (varname,) include varname, in model with coefficient constrained to 1
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement

Maximization

maximize_options control the maximization process; seldom used

*11() and ul() are required.

You must mi set your data before using mi impute intreg; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options
Main

noconstant; see [R] estimation options.

11 (varname) and ul (varname) specify variables containing the lower and upper limits for interval
censoring. You must specify both. Nonmissing observations with equal values in 11() and ul ()
are fully observed observations with missing values in both 11() and ul() are unobserved
(missing), and the remaining observations are partially observed (censored). Partially observed
cases are left-censored when 11() contains missing, right-censored when ul () contains missing,
and interval-censored when 11() <ul(). Fully observed cases are also known as point data; also
see Description in [R] intreg. In addition to newivar, mi impute intreg fills in unobserved
(missing) values of variables supplied in 11() and ul(); censored values remain unchanged.

add (), replace, rseed(), double, by(); see [MI] mi impute.
offset (varname,); see [R] estimation options.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

mi impute intreg — Impute using interval regression 169

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the interval
regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when
the conditional () option is specified and group legends that may appear when the by () option
is specified.

Maximization

maximize_options; see [R] intreg. These options are seldom used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:
Univariate imputation using interval regression

Using mi impute intreg
Example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using interval regression

The interval regression imputation method can be used to fill in missing values of a continuous
partially observed (censored) variable (Royston 2007). It is a parametric method that assumes an
underlying normal model for the partially observed imputed variable (given other predictors). This
method is based on the asymptotic approximation of the posterior predictive distribution of the missing
data.

Partially observed data arise when instead of observing an actual value, we observe the range
where that value can lie. Such data include interval-censored, left-censored, and right-censored data;
see [R] intreg for a more detailed discussion of censored data.

Do not confuse censoring with truncation. Truncated data are observed and are known to be in
a certain range. Censored data come from a mixture of a continuous distribution and point masses
at censoring limits. Truncated data come from a continuous truncated distribution. See the technical
note in Remarks and examples of [R] truncreg for details. Use mi impute truncreg (see [MI] mi
impute truncreg) to impute truncated data.

The imputation of censored data has certain unique characteristics. First, censored data are recorded
in two variables containing the lower and the upper interval-censoring limits. So technically, there are
two imputation variables. Second, in addition to complete observations (point data) and incomplete
observations (“truly” missing data), there are partially complete (censored) observations for which
only the lower and upper limits are known, not the values themselves. We can treat partially observed
cases as “missing” and impute them along with other completely unobserved data, provided we respect

170 mi impute intreg — Impute using interval regression

their observed limits during imputation. As a result, we will end up with a single imputed variable
where missing and partially observed cases are replaced with plausible values consistent with the
observed censoring limits. See Methods and formulas for technical details.

In what follows, when referring to missing data (or missing observations) we will mean completely
unobserved, truly missing data and when referring to incomplete data (or incomplete observations)
we will mean both censored and truly missing data.

Using mi impute intreg

To accommodate the above characteristics, mi impute intreg requires modifications to the
standard syntax of univariate imputation methods. First, mi impute intreg requires that variables
containing interval-censoring limits be specified in the 11() and ul () options; see the description of
11() and ul () in Options. Second, mi impute intreg requires you to specify a new variable name
newivar to store the resulting imputed values. mi impute intreg creates a new variable, newivar,
and registers it as imputed.

The values of newivar are determined by 11() and ul(). Observations of newivar for which
11() and ul() are different or for which both contain soft missing are set to soft missing (.) and
considered incomplete. Observations for which either 11() or ul() contains hard missing are set to
the extended missing value . a and, as usual, are omitted from imputation. The remaining observations,
corresponding to the observed point data, are complete.

After imputation, mi impute intreg stores imputed values in newivar. It also registers variables
in 11() and ul() as passive (see mi register in [MI] mi set), if they are not already registered
as passive, and replaces observations for which 11() and ul() both contain soft missing with the
corresponding imputed values. That is, only missing data are replaced in these variables; censored
data are not changed.

Later, you may decide to add more imputations or to revise your imputation model and replace
existing imputations with new ones. In such cases, you do not need to provide a new variable name.
You can reuse the name of the variable created previously by mi impute intreg. mi impute intreg
will check that the variable is registered as imputed and that it is consistent in the observed data
with the variables supplied in 11() and ul(). That is, the variable must have the same values as
11() and ul () in the observations where 11() and ul() are equal, and soft missing values in the
remaining observations. If 11() or ul () contain hard missing values, the variable must contain hard
missing values in the corresponding observations as well.

Example

We continue the example of imputing missing values of variable bmi from [MI] mi impute pmm.
The primary analysis of interest is the logistic model investigating the effect of smoking adjusted for
other predictors (including bmi) on heart attacks; see [MI] intro substantive for details.

mi impute intreg — Impute using interval regression 171

The bmi variable is not censored in the original data. For the purpose of illustration, we use a
version of the dataset in which the first three observations are censored:
. use http://www.stata-press.com/data/r14/mheartintreg
(Fictional heart attack data; BMI censored and missing)

. list lbmi ubmi in 1/10

1lbmi ubmi
1. . 22
2. 20 .
3. 30 31
4. 24.62917 24.62917
5. 22.52744 22.52744
6. 21.87975 21.87975
7. 17.77057 17.77057
8. . .
9. 23.47249 23.47249
10. 24.48916 24.48916

Rather than a single bmi variable, we have 1bmi and ubmi variables containing lower and upper
interval-censoring limits of BMI. The first observation is left-censored with an upper limit of 22, the
second observation is right-censored with a lower limit of 20, and the third observation is interval-
censored with the range [30, 31]. Observation 8, for which both 1bmi and ubmi are missing, is
missing.

Let’s impute censored BMI values:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20)
> 11(1bmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0
Limit: lower = 1bmi Number missing = 22
upper = ubmi Number censored = 3
interval = 1

left = 1

right = 1

Observations per m

Variable Complete Incomplete Imputed Total

newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

Following mi impute intreg, we provided a new variable name, newbmi, to contain imputed values.
Because newbmi did not exist we did not need to register it before using mi impute intreg. We
also specified the lower and upper interval-censoring limits in the 11() and ul() options. These
options are required with mi impute intreg.

mi impute intreg reported that 25 incomplete BMI values were imputed. Among these incomplete
observations, there are 22 missing observations and 3 censored observations (one interval-censored,
one left-censored, and one right-censored).

172 mi impute intreg — Impute using interval regression

Let’s describe our mi data:

. mi describe, detail

Style: mlong
last mi update 14nov2014 14:44:21, O seconds ago

Obs.: complete 129
incomplete 25 (M = 20 imputations)
total 154

Vars.: imputed: 1; newbmi(25; 20%0)
passive: 2; 1bmi(23; 20%1) ubmi(23; 20%1)
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are 5 unregistered variables)

We used the detail option to also see missing-value counts in the imputed data.

According to mi describe, the new variable newbmi is registered as imputed and contains 25
incomplete observations in the original data. It does not contain incomplete values in any of the 20
imputations. 1bmi and ubmi are registered as passive. Each of 1bmi and ubmi contains 23 incomplete
values in the original data and one incomplete value in each imputation. The 22 missing values for
1bmi and ubmi are imputed. The incomplete value for each of these variables that is not imputed
corresponds to a censored observation (left-censored observation 1 for lbmi and right-censored
observation 2 for ubmi). mi impute intreg replaces only missing observations of 1bmi and ubmi
with imputed data and leaves censored observations unchanged.

As described in Methods and formulas, missing observations are simulated from an unrestricted
normal distribution. So, the 22 imputed values may contain any value on the whole real line. This
may not be desirable because the BMI measure is positive and, in fact, has a limited range.

To restrict imputed values to a certain range, we may replace 1bmi and ubmi with lower and
upper limits in observations for which these variables are missing. For example, let’s restrict imputed
values to be between 17 and 39, consistent with the observed range of BMI.

. use http://www.stata-press.com/data/ri4/mheartintreg, clear
(Fictional heart attack data; BMI censored and missing)

. replace lbmi = 17 if lbmi==.
(23 real changes made)

. replace ubmi = 39 if ubmi==.
(23 real changes made)

. list 1lbmi ubmi in 1/10

1bmi ubmi
17 22
20 39
30 31

24.62917 24.62917
22.52744 22.52744

g wWN e

21.87975 21.87975
17.77057 17.77057

17 39
23.47249 23.47249
24.48916 24.48916

O © 0w N>

[ure

mi impute intreg — Impute using interval regression 173

We replace missing lower limits with 17 and missing upper limits with 39 and proceed with imputation:

. mi set mlong

. mi impute intreg newbmi attack smokes age hsgrad female, add(20)
> 11(1bmi) ul(ubmi)

Univariate imputation Imputations = 20
Interval regression added = 20
Imputed: m=1 through m=20 updated = 0
Limit: lower = 1lbmi Number missing = 0
upper = ubmi Number censored = 25
interval = 25

left = 0

right = 0

Observations per m

Variable Complete Incomplete Imputed Total

newbmi 129 25 25 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

All the incomplete observations are now interval-censored on [17, 39].
We can analyze these multiply imputed data using logistic regression with mi estimate:

. mi estimate: logit attack smokes age newbmi female hsgrad
(output omitted)

In [MI] mi impute truncreg, we used mi impute truncreg to accommodate a restricted range
of BMI during imputation. In the code above, we showed how to use mi impute intreg to ensure
that imputed values are within a specified range. Which one should be used?

The answer to this question depends on our belief about the distribution of the imputation variable.
If we believe that the underlying distribution of BMI is a normal distribution and we happened to only
observe values within a certain range, then mi impute intreg should be used to impute BMI. We
know, however, that BMI is positive and has an upper limit. As such, the assumption of a truncated
distribution for BMI is more plausible, in which case mi impute truncreg should be used to impute
its missing values.

174 mi impute intreg — Impute using interval regression

Stored results

mi impute intreg stores the following in r ():

Scalars
r (M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(N_miss) number of missing observations
r(N_cens) number of censored observations
r(N_lcens) number of left-censored observations
r(N_rcens) number of right-censored observations
r(N_intcens) number of interval-censored observations
r(k_ivars) number of imputed variables (always 1)
r(N_g) number of imputed groups (1 if by () is not specified)
Macros
r (method) name of imputation method (intreg)
r(ivars) names of imputation variables
r(1lname) name of variable containing lower interval-censoring limits
r(ulname) name of variable containing upper interval-censoring limits
r(rngstate) random-number state used
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a latent univariate variable x* = (z¥, 2%, ..., %)’ that follows a normal linear regression

w}'|z; ~ N(ziB,0°) (1)

where z; = (21, 22, - - . , 2iq)" records values of predictors of x* for observation 4, 3 is the ¢ X 1
vector of unknown regression coefficients, and 02 is the unknown scalar variance. (When a constant
is included in the model—the default—z;7 =1, 1 =1,...,n.)

Instead of x“, we observe (XH,Xul), where xz-l = x}ﬂ = xg for point (observed) data j € C;

x? = —oo and x;-‘l < 400 for left-censored data j € L; x;-l > —o0 and x‘;l = 400 for right-censored

data j € R; x? = —o0 and as‘;l = +oo for missing data j € M. Observations from subset C are

considered complete and the remaining observations are considered incomplete.

Let x = x" for observations in subset C, and let x contain missing values in the remaining
observations. We want to fill in missing values in x. Consider the partition of x = (x,,X,,’) into
ng X 1 and ny X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and n1 X ¢ submatrices.

mi impute intreg follows the steps below to fill in x;,:
1. Fit an interval regression to the interval-censored data (x'',x"') to obtain the maximum
- -~/ ~ . . .
likelihood estimates of parameters in (1), @ = (3, Ing)’, and their asymptotic sampling

variance, IAJ See [R] intreg for details.

2. Simulate new parameters, 0., from the large-sample normal approximation, N (6, U), to its
posterior distribution, assuming the noninformative prior Pr(80) o const.

mi impute intreg — Impute using interval regression 175

3. Let py; = 2}(3,. Obtain one set of imputed values, x. , by simulating from a truncated
normal model with the density

ul _ o, n_ ., \)!
Tt (@lz:) = 7¢’ (Mﬂ)) {‘1’ <H> -0 <H>} :
i %5 (om Oy oy

ol <z <2
for every incomplete observation ¢ ¢ C. For missing observations i € M, when :L’H —00
and x“l 400, the above density reduces to a normal density. Thus missing observations
are snnulated from the corresponding unrestricted normal distribution.

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} , x2 xM

sy X -

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data, Pr(x,,|X,, Z,), because 0, is drawn from the asymptotic approximation to its
posterior distribution.

If weights are specified, a weighted regression model is fit to the observed data in step 1 (see
—-1/2

[R] intreg for details). Also, in the case of aweights, o, is replaced with o, w
w; is the analytic weight for observation i.

in step 3, where

Reference

Royston, P. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute pmm — Impute using predictive mean matching
[MI] mi impute regress — Impute using linear regression
[MI] mi impute truncreg — Impute using truncated regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3

Title

mi impute logit — Impute using logistic regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute logit fills in missing values of a binary variable by using a logistic regression imputation
method. You can perform separate imputations on different subsets of the data by specifying the by ()
option. You can also account for frequency, importance, and sampling weights.

Menu

Statistics > Multiple imputation

Syntax

mi impute logit ivar [indepvars] [zf] [weight} [, impute_options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float

by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

176

mi impute logit — Impute using logistic regression 177

options Description
Main
noconstant suppress constant term
offset (varname) include varname in model with coefficient constrained to 1
augment perform augmented regression in the presence of perfect prediction
conditional (if) perform conditional imputation
bootstrap estimate model parameters using sampling with replacement
Maximization
maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute logit; see [MI] mi set.

You must mi register ivar as imputed before using mi impute logit; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options

Main

noconstant; see [R] estimation options.

add (), replace, rseed(), double, by(); see [MI|] mi impute.

offset (varname); see [R] estimation options.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,

an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights.

conditional (if) specifies that the imputation variable be imputed conditionally on observations

satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with

Reporting

replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the logistic

regression fit to the observed data be displayed. nolegend suppresses all legends that appear before
the imputation table. Such legends include a legend about conditional imputation that appears when

178 mi impute logit — Impute using logistic regression

the conditional () option is specified and group legends that may appear when the by () option
is specified.

Maximization

maximize—options; see [R] logit. These options are seldom used. difficult, technique(), gra-
dient, showstep, hessian, and showtolerance are not allowed when the augment option is
used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:
Univariate imputation using logistic regression
Using mi impute logit
Video example

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using logistic regression

The logistic regression imputation method can be used to fill in missing values of a binary variable
(for example, Rubin [1987]; Raghunathan et al. [2001]; and van Buuren [2007]). It is a parametric
method that assumes an underlying logistic model for the imputed variable (given other predictors).

Unlike the linear regression method, the logistic imputation method is based on the asymptotic ap-
proximation of the posterior predictive distribution of the missing data. The actual posterior distribution
of the logistic model parameters, 3, does not have a simple form under the common noninformative
prior distribution. Thus a large-sample normal approximation to the posterior distribution of 3 is used
instead. Rubin (1987, 169) points out that although the actual posterior distribution may be far from
normal (for example, when the number of observed cases is small or when the fraction of ones in the
observed data is close to zero or one), the use of the normal approximation is common in practice.

Using mi impute logit

Continuing our heart attack example from [MI] intro substantive and [MI] mi impute, suppose that
hsgrad, a binary variable recording whether subjects graduated from high school, contains missing
values:

mi impute logit — Impute using logistic regression 179

. use http://www.stata-press.com/data/r14/mheart2
(Fictional heart attack data; hsgrad missing)

. mi set mlong

. mi misstable summarize

Obs<.
Unique
Variable Obs=. Obs>. Obs<. values Min Max
hsgrad 18 136 2 0 1

Thus we want to impute missing values of hsgrad, because hsgrad was one of the predictors in
our logistic model (logit attack smokes age bmi female hsgrad). From our previous analysis
of the heart attack data, we recall that hsgrad was not a significant predictor. So, we could have
omitted hsgrad from the logistic model in the casewise-deletion analysis to avoid the reduction in
sample size, and then imputing hsgrad would not have been needed. In general, the imputer rarely
has such knowledge, and omitting hsgrad from the imputation model would prevent this predictor
from being used in later analysis by the analyst (see, for example, Imputation modeling in [MI] mi
impute). Thus we proceed with imputation.

We use mi impute logit to create 10 imputations of hsgrad:

. mi register imputed hsgrad
(18 m=0 obs. now marked as incomplete)

. mi impute logit hsgrad attack smokes age bmi female, add(10)

Univariate imputation Imputations = 10
Logistic regression added = 10
Imputed: m=1 through m=10 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

hsgrad 136 18 18 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

We can now use the imputed hsgrad in our analysis, for example,

. mi estimate: logit attack smokes age bmi female hsgrad
(output omitted)

Video example

Multiple imputation, part 3: Imputing a single binary variable with logistic regression

http://www.youtube.com/watch?v=QVvTpPx2LyU

180 mi impute logit — Impute using logistic regression

Stored results

mi impute logit stores the following in r():

Scalars

r(M total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(pp) 1 if perfect prediction detected, O otherwise

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r (method) name of imputation method (logit)

r(ivars) names of imputation variables

r(rngstate) random-number state used

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable x = (21,2, ...,%,)" that follows a logistic model

Pr(z; # 0|z;) = m .

where z; = (21,22, ..., 2iq) records values of predictors of x for observation ¢ and 3 is the
q % 1 vector of unknown regression coefficients. (When a constant is included in the model—the
default—z;; =1, 1 =1,...,n.)

x contains missing values that are to be filled in. Consider the partition of x = (x],x/,) into

ng X 1 and n; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X g and nq X g submatrices.

mi impute logit follows the steps below to fill in X,,:

1. Fit a logistic model (1) to the observed data (X,,Z,) to obtain the maximum likelihood

estimates, 3, and their asymptotic sampling variance, U.

o~ A~

2. Simulate new parameters, [3,, from the large-sample normal approximation, N (3, U), to its
posterior distribution assuming the noninformative prior Pr(3) o const.
1

m?

3. Obtain one set of imputed values, x,,,, by simulating from the logistic distribution:

Pr(z;, =1) = exp(z; B,)/{1+ exp(z; B,)}

for every missing observation %, .

2 M
e X -

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} , x
Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(x,,|x,,Z,) because 3, is drawn from the asymptotic approximation to its

posterior distribution.

mi impute logit — Impute using logistic regression 181

If weights are specified, a weighted logistic regression model is fit to the observed data in step 1
(see [R] logit for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see

[MI] mi impute — Impute missing values
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute mlogit — Impute using multinomial logistic regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute mlogit fills in missing values of a nominal variable by using the multinomial
(polytomous) logistic regression imputation method. You can perform separate imputations on different
subsets of the data by specifying the by () option. You can also account for frequency, importance,
and sampling weights.

Menu

Statistics > Multiple imputation

Syntax

mi impute mlogit ivar [indepvars} [{f] [weight} [, impute _options options]

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float

by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

182

mi impute mlogit — Impute using multinomial logistic regression 183

options Description
Main

noconstant suppress constant term

baseoutcome (#) specify value of ivar that will be the base outcome

augment perform augmented regression in the presence of perfect prediction

conditional (if) perform conditional imputation

bootstrap estimate model parameters using sampling with replacement
Maximization

maximize_options control the maximization process; seldom used

You must mi set your data before using mi impute mlogit; see [MI] mi set.

You must mi register ivar as imputed before using mi impute mlogit; see [MI] mi set.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Options
Main

noconstant; see [R] estimation options.
add (), replace, rseed(), double, by(); see [MI|] mi impute.

baseoutcome (#) specifies the value of ivar to be treated as the base outcome. The default is to
choose the most frequent outcome.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights.

conditional (if) specifies that the imputation variable be imputed conditionally on observations
satisfying exp; see [U] 11.1.3 if exp. That is, missing values in a conditional sample, the sample
identified by the exp expression, are imputed based only on data in that conditional sample.
Missing values outside the conditional sample are replaced with a conditional constant, the value
of the imputation variable in observations outside the conditional sample. As such, the imputation
variable is required to be constant outside the conditional sample. Also, if any conditioning variables
(variables involved in the conditional specification if exp) contain soft missing values (.), their
missing values must be nested within missing values of the imputation variables. See Conditional
imputation under Remarks and examples in [MI] mi impute.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from the multino-
mial logistic regression fit to the observed data be displayed. nolegend suppresses all legends that

184 mi impute mlogit — Impute using multinomial logistic regression

appear before the imputation table. Such legends include a legend about conditional imputation
that appears when the conditional() option is specified and group legends that may appear
when the by () option is specified.

Maximization

maximize_options; see [R] mlogit. These options are seldom used. difficult, technique(), gra-
dient, showstep, hessian, and showtolerance are not allowed when the augment option is
used.

Advanced

force; see [MI] mi impute.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Univariate imputation using multinomial logistic regression
Using mi impute mlogit

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Univariate imputation using multinomial logistic regression

The multinomial logistic regression imputation method can be used to fill in missing values of a
nomial variable (for example, Raghunathan et al. [2001] and van Buuren [2007]). It is a parametric
method that assumes an underlying multinomial logistic model for the imputed variable (given other
predictors). Similarly to the logistic imputation method, this method is based on the asymptotic
approximation of the posterior predictive distribution of the missing data.

Using mi impute mlogit

Consider the heart attack data introduced in [MI] intro substantive and discussed in [MI] mi impute.
Suppose that we want our logistic model of interest to also include information about marital status
(categorical variable marstatus)—logit attack smokes age bmi female hsgrad i.marstatus.

mi impute mlogit — Impute using multinomial logistic regression

185

We first tabulate values of marstatus:

. use http://www.stata-press.com/data/r14/mheart3
(Fictional heart attack data; marstatus missing)

. tabulate marstatus, missing

Marital
status:
single,
married,
divorced Freq. Percent Cum.
Single 53 34.42 34.42
Married 48 31.17 65.58
Divorced 46 29.87 95.45
7 4.55 100.00
Total 154 100.00

From the output, the marstatus variable has three unique categories and seven missing observations.
Because marstatus is a categorical variable, we use the multinomial logistic imputation method to

fill in its missing values.

We mi set the data, register marstatus as an imputed variable, and then create 10 imputations
by specifying the add(10) option with mi impute mlogit:

. mi set mlong

. mi register imputed marstatus
(7 m=0 obs. now marked as incomplete)

. mi impute mlogit marstatus attack smokes age bmi female

hsgrad, add(10)

Univariate imputation Imputations = 10

Multinomial logistic regression added = 10

Imputed: m=1 through m=10 updated = 0
Observations per m

Variable Complete Incomplete Imputed Total

marstatus 147 7 7 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

We can now analyze these multiply imputed data using logistic regression via mi estimate:

. mi estimate: logit attack smokes age bmi female hsgrad i.marstatus

(output omitted)

186 mi impute mlogit — Impute using multinomial logistic regression

Stored results

mi impute mlogit stores the following in r():

Scalars

r(M) total number of imputations

r(M_add) number of added imputations

r(M_update) number of updated imputations

r(k_ivars) number of imputed variables (always 1)

r(pp) 1 if perfect prediction detected, O otherwise

r(N_g) number of imputed groups (1 if by () is not specified)
Macros

r (method) name of imputation method (mlogit)

r(ivars) names of imputation variables

r(rngstate) random-number state used

r(by) names of variables specified within by ()
Matrices

r(N) number of observations in imputation sample in each group

r(N_complete) number of complete observations in imputation sample in each group
r(N_incomplete) number of incomplete observations in imputation sample in each group
r(N_imputed) number of imputed observations in imputation sample in each group

Methods and formulas

Consider a univariate variable X = (x1,2,...,x,) that contains K categories (without loss of
generality, let k = 1 be the base outcome) and follows a multinomial logistic model

Ve ! Jif k=1
L+ 3012, exp(zi8;)
Pr(z; = klz;) = exp(7.8,) (1)
AP k>
1+ 3012, exp(zi8))
where z; = (2i1, zi2, - - -, ziq)’ records values of predictors of x for observation ¢ and 3; is the g x 1
vector of unknown regression coefficients for outcome [= 2,..., K. (When a constant is included
in the model—the default—z;; =1, ¢ =1,...,n.)

X contains missing values that are to be filled in. Consider the partition of x = (x/,x/,,) into
no X 1 and ny; X 1 vectors containing the complete and the incomplete observations. Consider a
similar partition of Z = (Z,, Z,,) into ng X ¢ and n1 X ¢ submatrices.

mi impute mlogit follows the steps below to fill in X;,:
1. Fit a multinomial logistic model (1) to the observed data (x,,Z,) to obtain the maximum

o~ ~/ -~/
likelihood estimates, 3 = (83,,...,08k)’, and their asymptotic sampling variance, U.

2. Simulate new parameters, (3,, from the large-sample normal approximation, N (3, U), to its
posterior distribution assuming the noninformative prior Pr(3) o const.

3. Obtain one set of imputed values, x_. , by simulating from the multinomial logistic distribution:
one of K categories is randomly assigned to a missing category, i,,, using the cumulative
probabilities computed from (1) with 3, = 3,; and z; = z, .

4. Repeat steps 2 and 3 to obtain M sets of imputed values, x} , x2 ... ,X% .

Steps 2 and 3 above correspond to only approximate draws from the posterior predictive distribution
of the missing data Pr(x,,|x,,Z,) because 3, is drawn from the asymptotic approximation to its
posterior distribution.

mi impute mlogit — Impute using multinomial logistic regression 187

If weights are specified, a weighted multinomial logistic regression model is fit to the observed
data in step 1 (see [R] mlogit for details).

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

van Buuren, S. 2007. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical
Methods in Medical Research 16: 219-242.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute ologit — Impute using ordered logistic regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi

[MI] intro substantive — Introduction to multiple-imputation analysis

Title

mi impute monotone — Impute missing values in monotone data

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute monotone fills in missing values in multiple variables by using a sequence of
independent univariate conditional imputation methods. Variables to be imputed, ivars, must follow
a monotone-missing pattern (see [MI] intro substantive). You can perform separate imputations on
different subsets of the data by specifying the by () option. You can also account for frequency,
analytic (with continuous variables only), importance, and sampling weights.

Menu

Statistics > Multiple imputation

Syntax
Default specification of prediction equations, basic syntax

mi impute monotone (uvmethod) ivars [= indepvars] [lf] [weighz] [, impute_options options]

Detault specification of prediction equations, full syntax

mi impute monotone lhs [= indepvars] [lf] [weight] [, impute_options r)pti()ns]

Custom specification of prediction equations

mi impute monotone cmodels [lf} [weight} , custom [impute_options options]

where lhs is lhs_spec [lhs_spec [..]] and lhs_spec is
(uvmethod [zf] [, uvspec_options]) ivars

cmodels is (cond_spec) [(cond_spec) [..]] and a conditional specification, cond_spec, is
uvmethod ivar [rhs_spec] [lf] [, uvspec_options]

rhs_spec includes varlist and expressions of imputation variables bound in parentheses.

ivar(s) (or newivar if uvmethod is intreg) is the name(s) of the imputation variable(s).

uvspec_options are ascontinuous, noisily, and the method-specific options as described in the
manual entry for each univariate imputation method.

188

mi impute monotone — Impute missing values in monotone data 189

uvmethod Description

regress linear regression for a continuous variable; [MI] mi impute regress

pmm predictive mean matching for a continuous variable;
[MI] mi impute pmm

truncreg truncated regression for a continuous variable with a restricted range;
[MI] mi impute truncreg

intreg interval regression for a continuous partially observed (censored) variable;
[MI] mi impute intreg

logit logistic regression for a binary variable; [MI] mi impute logit

ologit ordered logistic regression for an ordinal variable; [MI] mi impute ologit

mlogit multinomial logistic regression for a nominal variable;

- [MI] mi impute mlogit

poisson Poisson regression for a count variable; [MI] mi impute poisson

nbreg negative binomial regression for an overdispersed count variable;

[MI] mi impute nbreg

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float

by(varlist[, byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

190 mi impute monotone — Impute missing values in monotone data

options Description
Main
*custom customize prediction equations of conditional specifications
augment perform augmented regression in the presence of perfect prediction for
all categorical imputation variables
bootstrap estimate model parameters using sampling with replacement
Reporting
dryrun show conditional specifications without imputing data
verbose show conditional specifications and impute data; implied when custom
prediction equations are not specified
report show report about each conditional specification
Advanced
nomonotonechk do not check whether variables follow a monotone-missing pattern

*custon is required when specifying customized prediction equations.

You must mi set your data before using mi impute monotone; see [MI] mi set.

You must mi register ivars as imputed before using mi impute monotone; see [MI] mi set.
indepvars and rhs_spec may contain factor variables; see [U] 11.4.3 Factor variables.

fweights, aweights (regress, pmm, truncreg, and intreg only), iweights, and pweights are allowed; see
[U] 11.1.6 weight.

Options

Main

custon is required to build customized prediction equations within the univariate conditional speci-
fications. Otherwise, the default specification of prediction equations is assumed.

add (), replace, rseed(), double, by (); see [MI] mi impute.

augment specifies that augmented regression be performed if perfect prediction is detected. By default,
an error is issued when perfect prediction is detected. The idea behind the augmented-regression
approach is to add a few observations with small weights to the data during estimation to avoid
perfect prediction. See The issue of perfect prediction during imputation of categorical data under
Remarks and examples in [MI] mi impute for more information. augment is not allowed with
importance weights. This option is equivalent to specifying augment within univariate specifications
of all categorical imputation methods.

bootstrap specifies that posterior estimates of model parameters be obtained using sampling with
replacement; that is, posterior estimates are estimated from a bootstrap sample. The default is to
sample the estimates from the posterior distribution of model parameters or from the large-sample
normal approximation of the posterior distribution. This option is useful when asymptotic normality
of parameter estimates is suspect. This option is equivalent to specifying bootstrap within all
univariate specifications.

The following options appear on a Specification dialog that appears when you click on the Create...
button on the Main tab.

uvspec_options are options specified within each univariate imputation method, wuvmethod.
uvspec—_options include ascontinuous, noisily, and the method-specific options as described
in the manual entry for each univariate imputation method.

mi impute monotone — Impute missing values in monotone data 191

ascontinuous specifies that categorical imputation variables corresponding to the current uvmethod
be included as continuous in all prediction equations. This option is only allowed when uvmethod
is logit, ologit, or mlogit.

noisily specifies that the output from the current univariate model fit to the observed data be
displayed.

Reporting

dots, noisily, nolegend; see [MI] mi impute. noisily specifies that the output from all univariate
conditional models fit to the observed data be displayed. nolegend suppresses all imputation table
legends which include a legend with the titles of the univariate imputation methods used, a legend
about conditional imputation when conditional() is used within univariate specifications, and
group legends when by () is specified.

dryrun specifies to show the conditional specifications that would be used to impute each vari-
able without actually imputing data. This option is recommended for checking specifications of
conditional models prior to imputation.

verbose specifies to show conditional specifications and impute data. verbose is implied when
custom prediction equations are not specified.

report specifies to show a report about each univariate conditional specification. This option, in
combination with dryrun, is recommended for checking specifications of conditional models prior
to imputation.

Advanced

force; see [MI] mi impute.

nomonotonechk specifies not to check that imputation variables follow a monotone-missing pattern.
This option may be used to avoid potentially time-consuming checks. The monotonicity check may
be time consuming when a large number of variables is being imputed. If you use nomonotonechk
with a custom specification, make sure that you list the univariate conditional specifications in the
order of monotonicity or you might obtain incorrect results.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Multivariate imputation when a missing-data pattern is monotone

First use

Using mi impute monotone

Default syntax of mi impute monotone

The alternative syntax of mi impute monotone—custom prediction equations
Examples of using default prediction equations

Examples of using custom prediction equations

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

192 mi impute monotone — Impute missing values in monotone data

Multivariate imputation when a missing-data pattern is monotone

When a pattern of missingness in multiple variables is monotone (or, more rigorously, when the
missingness-modeling structure is monotone distinct), a multivariate imputation can be replaced with
a set of conditional univariate imputations (Rubin 1987, 170-178). Let X, Xo,..., X, be ordered
such that if X; is missing, then Xs; is also missing, although X, may also be missing in other
observations; if Xo; is missing, then X3; is missing, although X3 may also be missing in other
observations; and so on. Then a simultaneous imputation of variables X, X, ..., X, according to
a model, fx(-), and complete predictors (independent variables), Z, is equivalent to the sequential
conditional imputation

XT ~ f1(X1]Z)
X35 ~ fa(Xo| XT,Z))

Xy~ fo(XplXT, X3, Z)

*

) p—1>

where for brevity we omit conditioning on the model parameters. The univariate conditional imputation

models f;(-) can each be of a different type (normal, logistic, etc.), as is appropriate for imputing
j .

The specification of a conditional imputation model f;(-) includes an imputation method and a
prediction equation relating an imputation variable to other explanatory variables. In what follows,
we distinguish between the default specification in which the identities of the complete explanatory
variables are the same for all imputed variables, and the custom specification in which the identities
are allowed to differ.

Under the default specification, prediction equations of each imputation variable include all complete
independent variables and all preceding imputation variables that have already been imputed. Under
the custom specification, each prediction equation may include a subset of the predictors that would
be used under the default specification. The custom specification implies nothing more than the
assumption of conditional independence between certain imputation variables and certain sets of
predictors.

Model (1) corresponds to the default specification. For example, consider imputation variables X1,
Xo, and X3, ordered from the most observed to the least observed, and complete predictors Z; and
Z5. Under the default specification, the individual prediction equations are determined as follows.
The most observed variable, X7, is predicted from Z; and Z5. The next most observed variable, Xo,
is predicted from Z;, Z5, and previously imputed X;. The least observed variable, X3, is predicted
from Z7, Z5, and previously imputed X; and X5. (A constant is included in all prediction equations,
by default.) We use the following notation to refer to the above sequence of prediction equations
(imputation sequence): X1|Z1, Zo — Xo| X1, Z1, Zo — X3|X1, X, Z1, Zs.

A sequence such as X1|Z) — Xo|X1, 721,72y — X3|X1,Z5 would correspond to a custom
specification. Here X is assumed to be independent of Zs given Z;, and X3 is assumed to be
independent of Z; and X9 given X; and Zs.

The monotone-distinct structure offers much flexibility in building a multivariate imputation model.
It simplifies the often intractable multivariate imputation task to a set of simpler univariate imputation
tasks. In addition, it accommodates imputation of a mixture of types of variables. So, what’s the catch?
The catch is that the pattern of missingness is rarely monotone in practice. There are types of data for
which a monotone-missing data pattern can occur naturally (for example, follow-up measurements).
Usually, however, this happens only by chance.

mi impute monotone — Impute missing values in monotone data 193

There are several ways to proceed if your data are not monotone missing. You can discard
the observations that violate the monotone-missing pattern, especially if there are very few such
observations. You can assume independence among the sets of variables to create independent
monotone patterns. For example, the missingness pattern for X, X5, X3, X4, X5 may not be
monotone, but it may be for X, X3 and for Xo, X4, X5. If it is reasonable to assume independence
between these two sets of variables, you can then impute each set separately by using monotone
imputation. Other alternatives are to use certain techniques to complete the missing-data pattern to
monotone (see, for example, Schafer 1997), to use an iterative sequential (fully conditional) imputation
(see [MI] mi impute chained; Royston 2005, 2007, 2009; van Buuren, Boshuizen, and Knook 1999;
Raghunathan et al. 2001), or to assume an explicit multivariate parametric model for the imputation
variables (see [MI] mi impute mvn; Schafer 1997). Also see Multivariate imputation of [MI] mi
impute for a general discussion of multivariate imputation.

Throughout this entry, we will assume that the considered imputation variables are monotone
missing.

First use
Before we describe various uses of mi impute monotone, let’s look at an example.

Consider the heart attack data examining the relationship between heart attack and smoking. The age
and bmi variables contain missing values and follow a monotone-missing pattern. Recall multivariate
imputation of bmi and age using mi impute monotone described in Multivariate imputation of
[MI] mi impute:

. use http://www.stata-press.com/data/r14/mheart5s0
(Fictional heart attack data)
. mi impute monotone (regress) bmi age = attack smokes hsgrad female, add(10)

Conditional models:
age: regress age attack smokes hsgrad female
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10

Monotone method added = 10

Imputed: m=1 through m=10 updated = 0
bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total

bmi 126 28 28 154

age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

The age and bmi variables have monotone missingness, and so mi impute monotone is used to
fill in missing values. Ten imputations are created (add (10) option). The linear regression imputation
method (regress) is used to impute both continuous variables. The attack, smokes, hsgrad, and
female variables are used as complete predictors (independent variables).

The conditional models legend shows that age (having the least number of missing values) is
imputed first using the regress method, even though we specified bmi before age on the mi impute
command. After that, bmi is imputed using the regress method and the previously imputed variable
age and the other predictors.

194 mi impute monotone — Impute missing values in monotone data

The header and table output were described in detail in [MI] mi impute. The additional information
above the imputation table is the legend describing what univariate imputation method was used to
impute each variable. (If desired, this legend may be suppressed by specifying the nolegend option.)

Using mi impute monotone

Below we summarize general capabilities of mi impute monotone.

1. mi impute monotone requires that the specified imputation variables follow a monotone-
missing pattern. If they do not, it will stop with an error:

. mi impute monotone x1 x2 ...

(1 m=0 obs. now marked as incomplete)

x1 x2: not monotone;
imputation variables must have a monotone-missing
structure; see mi misstable nested

r(459);

As indicated by the error message, we can use mi misstable nested to verify for ourselves
that the imputation variables are not monotone missing. We could also use other features of
mi misstable to investigate the pattern.

2. mi impute monotone offers two main syntaxes—one using the default prediction equations,

. mi impute monotone ...

and the other allowing customization of prediction equations,

. mi impute monotone ..., custom ...

We will refer to the two syntaxes as default and custom, respectively.
3. mi impute monotone allows specification of a global (outer) if condition,
. mi impute monotone ... if exp ...
and equation-specific (inner) if conditions,

. mi impute monotone ... (... if exp ...) ...

A global if is applied to all equations (conditional specifications). You may combine global
and equation-specific if conditions:

. mi impute monotone ... (... if exp ...) ... if exp ...

4. mi impute monotone allows specification of global weights, which are applied to all
equations,
. mi impute monotone ... [weighr] ...
Use a combination of options dryrun and report to check the specification of each univariate
imputation model prior to imputing data.

In the next two sections, we describe the use of mi impute monotone first using hypothetical
situations and then using real examples.

mi impute monotone — Impute missing values in monotone data 195

Default syntax of mi impute monotone

We showed in First use an example of mi impute monotone with default prediction equations
using the heart attack data. Here we provide more details about this default specification.

By default, mi impute monotone imputes missing values by using the full specification of
prediction equations. It builds the corresponding univariate conditional imputation models based on
the supplied information: uvmethod, the imputation method; ivars, the imputation variables; and
indepvars, the complete predictors or independent variables.

Suppose that continuous variables x1, x2, and x3 contain missing values with a monotone-missing
pattern. We want to impute these variables, and we decide to use the same univariate imputation
method, say, linear regression, for all. We can do this by typing

. mi impute monotone (regress) x1 x2 x3 ...

The above corresponds to the first syntax diagram of mi impute monotone: uvmethod is regress
and ivars is x1 x2 x3. Relating the above to the model notation used in (1), f1, f2, and f3 represent
linear regression imputation models and the prediction sequence is X1 — X5|X; — X3|X5, Xi.

If we have additional covariates containing no missing values (say, z1 and z2) that we want to
include in the imputation model, we can do it by typing

. mi impute monotone (regress) x1 x2 x3 = z1 z2 ...

Now indepvars is z1 z2 and the prediction sequence is X1|Z1,Z2 — Xo|X1,7Z1,Z —
X3|Xo,X1,7Z1,Z5. Independent variables are included in the prediction equations of all condi-
tional models.

Suppose that we want to use a different imputation method for one of the variables—we want to
impute x3 using predictive mean matching. We can do this by typing

. mi impute monotone (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 ...

The above corresponds to the second syntax diagram of mi impute monotone, a generalization
of the first that accommodates differing imputation methods. The right-hand side of the equation is
unchanged. z1 and z2 are included in all three prediction equations. The left-hand side now has two
specifications: (regress) x1 x2 and (pmm, knn(5)) x3. In previous examples, we had only one
left-hand-side specification, /hs_spec— (regress) x1 x2 x3. (Note that the number of left-hand-side
specifications does not necessarily correspond to the number of conditional models; the latter is
determined by the number of imputation variables.) In this example, x1 and x2 are imputed using
linear regression, and x3 is imputed using predictive mean matching with five nearest neighbors
specified in pmm’s option knn (). All method-specific options must be specified within the parentheses
surrounding the method:

. mi impute monotone (regress) x1 x2 (pmm, knn(5)) x3 = z1 z2 ...
Under the default specification, you can list imputation variables in any order and mi impute
monotone will determine the correct ordering that follows the monotone-missing pattern.

Suppose now we want to restrict the imputation sample for x2 to observations where z1 is one;
also see Imputing on subsamples of [MI] mi impute. The corresponding syntax is

. mi impute monotone (regress) xl1 (regress if zl==1) x2 (pmm, knn(5))
>x3 =12z12z2 ...

If, in addition to the above, we want to impute all variables using an overall subsample where z3
is one, we can specify the global if z3==1 condition:

. mi impute monotone (regress) x1 (regress if zl==1) x2 (pmm, knn(5))
> x3 =zl z2 if z3==

196 mi impute monotone — Impute missing values in monotone data

When any imputation variable is imputed using a categorical method, mi impute monotone
automatically includes it as a factor variable in the prediction equations of other imputation variables.
Suppose that x1 is a categorical variable and is imputed using the multinomial logistic method:

. mi impute monotone (mlogit) x1 (regress) x2 x3 ...

The above will result in the prediction sequence X7 — Xa|i.X; — X3|X2,1i.X; where i.X;
denotes the factors of X7.

If you wish to include factor variables as continuous in prediction equations, you can use the
ascontinuous option within a specification of the univariate imputation method for that variable:

. mi impute monotone (mlogit, ascontinuous) x1 (regress) x2 x3 ...

As we discussed in The issue of perfect prediction during imputation of categorical data of [MI] mi
impute, perfect prediction often occurs during imputation of categorical variables. One way of dealing
with it is to use the augmented-regression approach (White, Daniel, and Royston 2010), available
through the augment option. For example, if perfect prediction occurs during imputation of x1 in
the above, you can specify augment within the method specification of x1 to perform augmented
regression:

. mi impute monotone (mlogit, augment) x1 (regress) x2 x3 ...

Alternatively, you can use the augment option with mi impute monotone to perform augmented
regression for all categorical variables for which the issue of perfect prediction arises:

. mi impute monotone (mlogit) x1 (logit) x2 (regress) x3 ..., augment ...

The above command is equivalent to specifying augment within each specification of a univariate
categorical imputation method:

. mi impute monotone (mlogit, augment) x1 (logit, augment) x2 (regress) x3 ...

Also see Default prediction equations in [MI] mi impute chained for other uses of the default
syntax.

The alternative syntax of mi impute monotone—custom prediction equations

Consider the prediction sequence X; — Xa|X; — X3| X5, X1. Suppose that we want to predict
X3 from X rather than from X7 and X5. This could be achieved by simply imputing X; and X5
and then X3 given X separately because of the implied assumption that X3 and X are independent
given X ;. However, with a larger number of variables and more complicated prediction rules, separate
imputations may not be appealing. So customization of the prediction equations is a good alternative.

You customize prediction equations using the custom syntax (the third syntax) of mi impute
monotone. You must specify the custom option to notify mi impute monotone that you are
specifying custom prediction equations.

Under the custom syntax, you specify a separate conditional imputation model for each imputation
variable. The specification of a conditional model is the same as that for the chosen univariate
imputation method, but the entire model must be bound in parentheses, for example,

. mi impute monotone (regress x1)
(regress x2 x1)
(regress x3 x1)
, custom ...

mi impute monotone — Impute missing values in monotone data 197

Here we have three conditional specifications: (regress x1), (regress x2 x1), and (regress x3
x1). The corresponding prediction sequence is X7 — X2|X; — X3|X7. Prediction equations have
the syntax ivar [rhs_spec].

When specifying custom prediction equations, you are required to list the conditional models in
the correct order of missing monotonicity. mi impute monotone will issue an error if you are wrong:

mi impute monotone: incorrect equation order
equations must be listed in the monotone-missing order of the imputation
variables (from most observed to least observed); x2(2) -> x1(5) -> x3(10)
r(198);

If we have additional covariates z1 and z2 containing no missing values, we can include them in
the imputation model:

. mi impute monotone (regress x1 zl z2)
(regress x2 x1 z1 z2)
(regress x3 x1 zl1 z2), custom ...

To use the predictive mean matching method for x3, we simply change the method from regress
to pmm and specify, say, five nearest neighbors in pmm’s required option knn () in the last conditional
specification:

. mi impute monotone (regress x1 zl z2)
(regress x2 x1 zl1 z2)
(pmm x3 x1 z1 z2, knn(5)), custom ...

Under the custom syntax, you can also include expressions of previously imputed variables in
prediction equations. For example, if you want to model x3 using main and squared effects of x1
(ignoring predictors z1 and z2), you can type

. mi impute monotone (regress x1)
(regress x2 x1)
(pmm x3 x1 (x172), knn(5)), custom ...

Note that we bound the expression x172 in parentheses. Any expression may appear inside the
parentheses.

Similar to the default specification, we can include equation-specific ifs,

. mi impute monotone (regress x1)
(regress x2 x1 if zl==1)
(pmm x3 x1, knn(5)), custom ...

and we can specify a global if,

. mi impute monotone (regress x1 zl z2)
(regress x2 x1 z2 if zl==1)
(pmm x3 x1 z1 z2, knn(5))
if z3==1, custom ...

Suppose that one of the imputed variables is categorical. We can use the multinomial logistic
method to impute its values:
. mi impute monotone (mlogit x1)
(regress x2 i.x1)

(regress x3 i.x1)
, custom ...

Also see Link between mi impute chained and mi impute monotone in [MI] mi impute chained
for a discussion of custom syntaxes.

198 mi impute monotone — Impute missing values in monotone data

Examples of using default prediction equations

> Example 1: Different imputation methods

Recall the heart attack example from First use. If we wanted to impute age using predictive mean
matching instead of linear regression, we could type
. use http://www.stata-press.com/data/r14/mheart5s0, clear
(Fictional heart attack data)

. mi impute monotone (regress) bmi (pmm, knn(3)) age = attack smokes hsgrad
> female, add(10)
Conditional models:

age: pmm age attack smokes hsgrad female, knn(3)
bmi: regress bmi age attack smokes hsgrad female

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0

bmi: linear regression
age: predictive mean matching

Observations per m

Variable Complete Incomplete Imputed Total
bmi 126 28 28 154
age 142 12 12 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

As previously, we listed age and bmi in the reverse order here, and mi impute monotone determined
the correct order of missing monotonicity.

N

> Example 2: Imputing a variable on a subsample

Consider an mi set version of the heart attack data containing the indicator for smoking high-tar
cigarettes (variable hightar):
. use http://www.stata-press.com/data/r14/mheart6s0, clear
(Fictional heart attack data; bmi, age, and hightar missing)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 124
incomplete 30 (M = 0 imputations)
total 154

Vars.: imputed: 3; bmi(24) age(30) hightar(8)
passive: O
regular: 4; attack smokes female hsgrad
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

mi impute monotone — Impute missing values in monotone data 199

mi describe reports that there are no imputations, three registered imputed variables (hightar is
one of them), and four registered regular variables.

Next we use mi misstable nested to examine missing-data patterns in the data.

. mi misstable nested
1. hightar(8) -> bmi(24) -> age(30)

There is one monotone-missing pattern in the data. According to the output, missing values of
hightar are nested within bmi, whose missing values are nested within age. So hightar, bmi, and
age follow a monotone-missing pattern.

As before, to impute missing values of age and bmi, we use the regression method. The hightar
variable is a binary variable, so we choose the logistic method to fill in its values (see [MI] mi impute
logit). Because hightar records whether a subject smokes high-tar cigarettes, we use only those who
smoke to impute its missing values. (If there were any missing values of hightar for the subjects
who do not smoke, we would have replaced them with zeros.)

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, add(10)

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

note: smokes omitted because of collinearity

Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0
age: linear regression
bmi: linear regression
hightar: logistic regression
Observations per m
Variable Complete Incomplete Imputed Total
age 124 30 30 154
bmi 130 24 24 154
hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

mi impute monotone reports which univariate conditional model was used to impute each variable.
Because hightar has the least number of missing observations, it is imputed first using the specified
complete predictors and using only observations for smokers. From the output, all incomplete values
of each of the variables are imputed in all 10 imputations. Notice that because we restricted the
imputation sample of hightar to smokers, the total number of observations reported for hightar
is 64 and not 154.

It is safe to use the if restriction in the above because smokes does not contain any missing values
and hightar does not contain any missing values in observations with smokes==0. Otherwise, the
conditional() option should be used instead; see Conditional imputation of [MI] mi impute for
details.

4

200 mi impute monotone — Impute missing values in monotone data

Examples of using custom prediction equations

> Example 3: Using different sets of predictors within individual conditional models

Let’s take a closer look at the conditional model for hightar used in the above example:

hightar: logit hightar attack smokes hsgrad female if (smokes)

Notice that predictor smokes is redundant in this model because it is collinear with the constant
(included in the model by default) on the restricted sample of smokers. In fact, if we specify the
noisily option (noi for short) within the logit specification to see the estimation results, we will
notice that, as expected, smokes was omitted from the estimation model for hightar; that is, its
coefficient is zero.

. mi impute monotone (reg) age bmi (logit if smokes, noi) hightar
> = attack smokes hsgrad female, replace

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes, noisily
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

Running logit on observed data:

note: smokes omitted because of collinearity
Iteration O: log likelihood = -38.673263
Iteration 1: log likelihood = -38.455029
Iteration 2: log likelihood = -38.454991
Iteration 3: log likelihood = -38.454991

Logistic regression Number of obs = 56

LR chi2(3) = 0.44

Prob > chi2 = 0.9326

Log likelihood = -38.454991 Pseudo R2 = 0.0056

hightar Coef. Std. Err. z P>|z| [95% Conf. Intervall

attack .0773715 .5630513 0.14 0.891 -1.026189 1.180932

smokes 0 (omitted)

hsgrad -.1663937 .5977995 -0.28 0.781 -1.338059 1.005272

female -.3331926 .617736 -0.54 0.590 -1.543933 .8775477

_cons .0138334 .6263152 0.02 0.982 -1.213722 1.241389
Multivariate imputation Imputations = 10
Monotone method added = 0
Imputed: m=1 through m=10 updated = 10

age: linear regression
bmi: linear regression
hightar: logistic regression

Observations per m

Variable Complete Incomplete Imputed Total
age 124 30 30 154
bmi 130 24 24 154
hightar 56 8 8 64

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

mi impute monotone — Impute missing values in monotone data 201

Although mi impute handles collinearity problems for us automatically, we can eliminate redun-
dancy manually by removing smokes from the prediction equation for hightar. To do that, we need
to specify custom prediction equations.

As discussed in Using mi impute monotone, custom prediction equations are available with
mi impute monotone when the custom option is used. We also know that within this custom
specification, we must fully specify prediction equations within each conditional model and must
specify the conditional models in the monotone-missing order of the imputation variables.

Building such conditional models from scratch could be a tedious task except that we can use
mi impute monotone, dryrun to display the conditional models with default prediction equations
without performing the corresponding imputation:

. mi impute monotone (reg) age bmi (logit if smokes) hightar
> = attack smokes hsgrad female, dryrun

Conditional models:
hightar: logit hightar attack smokes hsgrad female if smokes
bmi: regress bmi i.hightar attack smokes hsgrad female
age: regress age bmi i.hightar attack smokes hsgrad female

We can use these default conditional specifications as the basis for writing our own customized
specifications. We will remove smokes from the predictor list for hightar:

. mi impute monotone (logit hightar attack hsgrad female if smokes)

> (regress bmi hightar attack smokes hsgrad female)

> (regress age bmi hightar attack smokes hsgrad female)

> , custom replace
Multivariate imputation Imputations = 10

Monotone method added = 0

Imputed: m=1 through m=10 updated = 10

hightar: logistic regression
bmi: linear regression
age: linear regression

Observations per m

Variable Complete Incomplete Imputed Total
hightar 56 8 8 64
bmi 130 24 24 154
age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

> Example 4: Including expressions of imputation variables in prediction equations

The distribution of bmi is slightly skewed. To take this into account, we can either use predictive
mean matching to impute bmi or impute bmi on a logarithmic scale. We choose to impute the log
of bmi here.

Following the steps described in Imputing transformations of incomplete variables of [MI] mi
impute, we create a new variable, 1nbmi, containing the log of bmi and register it as imputed. Here
we also reset the number of imputations to zero.

. mi set M=0
(10 imputations dropped; M = 0)

202 mi impute monotone — Impute missing values in monotone data

. mi unregister bmi

. generate lnbmi = 1ln(bmi)
(24 missing values generated)

. mi register imputed lnbmi

We are now ready to impute 1nbmi. However, although we are imputing the log of bmi, we want
to use bmi in the original scale when imputing age. To do that, we include exp(1lnbmi) in the
prediction equation for age. When including expressions in a custom specification, the expressions
must appear in parentheses:

. mi impute monotone (logit hightar attack hsgrad female if smokes)

> (regress lnbmi hightar attack smokes hsgrad female)
> (regress age (exp(lnbmi))
> hightar attack smokes hsgrad female)
> , custom add(10)
Multivariate imputation Imputations = 10
Monotone method added = 10
Imputed: m=1 through m=10 updated = 0
hightar: logistic regression
Inbmi: linear regression
age: linear regression
Observations per m
Variable Complete Incomplete Imputed Total
hightar 56 8 8 64
Inbmi 130 24 24 154
age 124 30 30 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationmns.)

If we also wanted to include a squared term for bmi in the conditional imputation model for age,
we would type

. mi impute monotone

> (logit hightar attack hsgrad female if smokes)

> (regress lnbmi hightar attack smokes hsgrad female)
> (regress age (exp(lnbmi)) (exp(lnbmi)~2) hightar attack smokes hsgrad female)
> , custom replace
(output omitted)

mi impute monotone — Impute missing values in monotone data 203

Stored results

mi impute monotone stores the following in r():

Scalars
r(M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(k_ivars) number of imputed variables
r(N_g) number of imputed groups (1 if by() is not specified)
Macros
r (method) name of imputation method (monotone)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r (uvmethods) names of univariate conditional imputation methods
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group (per variable)

r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)
r(N_imputed) number of imputed observations in imputation sample in each group (per variable)

Methods and formulas

Let x(;) = (i1, T2, - .., Tip) be the ith observation containing values of the imputation vari-
ables ordered from the most observed to the least observed to form a monotone-missing data
pattern. Let z¢;) = (zi1, zi2, - - -, Ziq) be the corresponding set of predictors of X(4)- Then, if the
missingness-modeling structure is monotone distinct (imputation variables have monotone missingness
and parameters of the conditional models are distinct as defined in Rubin [1987, 174]), the following
decomposition holds:

Ix(X0)|2), 0) = fi(wi1|zay, 01) f2(Ti2| 233y, Tin, 02) - - - fo(TiplZ (), Tin, Tiz,y - o Tip—1,6)p)

where the unknown parameters 61, . . ., 8, are distinct, that is, Pr(8) = 5’:1 Pr(6;). The monotone-
distinct structure ensures that the univariate conditional models f; do not depend on any unobserved
values of variable x; and the posterior distributions of €; do not involve the imputed values of the
previously filled-in variables x1,...,x;_1. See Rubin (1987, 174-178) for a rigorous justification of
the above decomposition.

The above allows substituting the imputation of X using the probability model fx(-) with a
sequence of univariate conditional imputations of x; using the probability models f;(-). Note that
f; can be any proper imputation model (for example, linear regression or logistic regression).

mi impute monotone follows the steps below to fill in missing values in X1,...,Xp:

1. If the custom option is not used, mi impute monotone first builds univariate conditional
models containing the default prediction equations using the supplied information about
imputation methods, imputation variables X, and complete predictors Z. The order in
which imputation variables are listed is irrelevant. The prediction equations are constructed
as follows. Complete predictors indepvars are included first. The imputation variables are
included next with each previously imputed variable added to the beginning of the prediction
equation previously used.

If the custom option is used, mi impute monotone uses the specified conditional models
in the order supplied. The conditional models must be listed in the monotone-missing order
of the corresponding imputation variables.

204 mi impute monotone — Impute missing values in monotone data

2. Fit univariate conditional models for each x; to the observed data to obtain the estimates
of 8;, 7 = 1,...,p. See step 1 in Methods and formulas of each respective univariate
imputation method’s manual entry for details.

3. Sequentially fill in missing values of x1,Xo,...,X, according to the specified imputation
model. See step 2 and step 3 in Methods and formulas of each respective univariate imputation
method’s manual entry for details.

4. Repeat step 3 to obtain M multiple imputations.

References

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. Solenberger. 2001. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology 27: 85-95.

Royston, P. 2005. Multiple imputation of missing values: Update. Stata Journal 5: 188-201.

——. 2007. Multiple imputation of missing values: Further update of ice, with an emphasis on interval censoring.
Stata Journal 7: 445-464.

——. 2009. Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9: 466-477.

Rubin, D. B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing blood pressure covariates
in survival analysis. Statistics in Medicine 18: 681-694.

White, I. R., R. M. Daniel, and P. Royston. 2010. Avoiding bias due to perfect prediction in multiple imputation of
incomplete categorical data. Computational Statistics & Data Analysis 54: 2267-2275.

Also see
[MI] mi impute — Impute missing values
[MI] mi impute chained — Impute missing values using chained equations
[MI] mi impute mvn — Impute using multivariate normal regression
[MI] mi estimate — Estimation using multiple imputations
[MI] intro — Introduction to mi
[MI] intro substantive — Introduction to multiple-imputation analysis
[MI] Glossary

http://www.stata-journal.com/sjpdf.html?articlenum=st0067_1
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_3
http://www.stata-journal.com/sjpdf.html?articlenum=st0067_4

Title

mi impute mvn — Impute using multivariate normal regression

Description Menu Syntax Options
Remarks and examples Stored results Methods and formulas References
Also see

Description

mi impute mvn fills in missing values of one or more continuous variables using multivariate normal
regression. It accommodates arbitrary missing-value patterns. You can perform separate imputations
on different subsets of the data by specifying the by () option. mi impute mvn uses an iterative
Markov chain Monte Carlo (MCMC) method to impute missing values. See Remarks and examples
for details.

Menu

Statistics > Multiple imputation

Syntax

mi impute mvn ivars [= indepvars] [if] [, impute_options options}

impute_options Description
Main
*add (#) specify number of imputations to add; required when no imputations exist
*replace replace imputed values in existing imputations
rseed (#) specify random-number seed
double store imputed values in double precision; the default is to store them
as float

by(varlist[) byopts]) impute separately on each group formed by varlist

Reporting
dots display dots as imputations are performed
noisily display intermediate output
nolegend suppress all table legends
Advanced
force proceed with imputation, even when missing imputed values are
encountered
noupdate do not perform mi update; see [MI] noupdate option

*add(#) is required when no imputations exist; add (#) or replace is required if imputations exist.
noupdate does not appear in the dialog box.

205

206 mi impute mvn — Impute using multivariate normal regression

options Description
Main
noconstant suppress constant term

MCMC options

burnin (#) specify number of iterations for the burn-in period;
default is burnin(100)
burnbetween (#) specify number of iterations between imputations;
default is burnbetween(100)
prior (prior_spec) specify a prior distribution; default is prior (uniform)
MConly perform MCMC for the length of the burn-in period without imputing
missing values
initmemce (init_memc) specify initial values for the MCMC procedure; default is
initmemc (em) using the EM estimates for initial values
wlfwgt (matname) specify weights for the worst linear function
savewlf (ﬁlename[y .- .]) save the worst linear function from each iteration in filename .dta
saveptrace (fname[, .- .}) save MCMC parameter estimates from each iteration in

fname . stptrace; see [MI] mi ptrace

Reporting

emlog display iteration log from EM

emoutput display intermediate output from EM estimation

mcmcdots display dots as MCMC iterations are performed

alldots display dots as intermediate iterations are performed

nolog do not display information about the EM or MCMC procedures
Advanced

emonly[(em_options)] perform EM estimation only

You must mi set your data before using mi impute mvn; see [MI] mi set.

You must mi register ivars as imputed before using mi impute mvn; see [MI] mi set.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

prior_spec Description

uniform use the uniform prior distribution; the default
jeffreys use the Jeffreys noninformative prior distribution
ridge, df (#) use a ridge prior distribution with degrees of freedom #
init_mcmc Description

em[s em_oplions] use EM to obtain starting values for MCMC; the default

initmatlist supply matrices containing initial values for MCMC

mi impute mvn — Impute using multivariate normal regression 207

em_options Description
iterate(#) specify the maximum number of iterations; default is iterate (100)
tolerance(#) specify tolerance for the changes in parameter estimates;

default is tolerance(le-5)
init (init_em) specify initial values for the EM algorithm; default is init (ac)
nolog do not show EM iteration log

saveptrace (fname[, e .}) save EM parameter estimates from each iteration in
fname . stptrace; see [MI] mi ptrace

init_em Description

ac use all available cases to obtain initial values for EM; the default
cc use only complete cases to obtain initial values for EM
initmatlist supply matrices containing initial values for EM

initmatlist is of the form initmat [initmat [..]]

initmat Description

betas (#| matname) specify coefficient vector; default is betas(0)

sds (# | matname) specify standard deviation vector; default is sds (1)
vars (# | matname) specify variance vector; default is vars (1)

corr (#| matname) specify correlation matrix; default is corr (0)

cov (matname) specify covariance matrix

In the above, # is understood to mean a vector containing all elements equal to #.

Options

Main

noconstant; see [R] estimation options.

add (), replace, rseed(), double, by (); see [MI] mi impute.

MCMC options

burnin (#) specifies the number of iterations for the initial burn-in period. The default is burnin (100).
This option specifies the number of iterations necessary for the MCMC to reach approximate
stationarity or, equivalently, to converge to a stationary distribution. The required length of the
burn-in period will depend on the starting values used and the missing-data patterns observed in
the data. It is important to examine the chain for convergence to determine an adequate length
of the burn-in period prior to obtaining imputations; see Convergence of the MCMC method and
examples 2 and 4. The provided default may be sufficient in many cases, but you are responsible
for determining that sufficient iterations are performed.

burnbetween (#) specifies a number of iterations of the MCMC to perform between imputations,
the purpose being to reduce correlation between sets of imputed values. The default is burnbe-
tween(100). As with burnin(), you are responsible for determining that sufficient iterations are
performed. See Convergence of the MCMC method and examples 2 and 4.

208 mi impute mvn — Impute using multivariate normal regression

prior (prior_spec) specifies a prior distribution to be used by the MCMC procedure. The default is
prior(uniform). The alternative prior distributions are useful when the default estimation of the
parameters using maximum likelihood becomes unstable (for example, estimates on the boundary
of the parameter space) and introducing some prior information about parameters stabilizes the
estimation.

prior_spec is
uniform| jeffreys|ridge, df (#)

uniform specifies the uniform (flat) prior distribution. Under this prior distribution, the posterior
distribution is proportional to the likelihood function and thus the estimate of the posterior
mode is the same as the maximum likelihood (ML) estimate.

jeffreys specifies the Jeffreys, noninformative prior distribution. This prior distribution can
be used when there is no strong prior knowledge about the model parameters.

ridge, df (#) specifies a ridge, informative prior distribution with the degrees of freedom
#. This prior introduces some information about the covariance matrix by smoothing the
off-diagonal elements (correlations) toward zero. The degrees of freedom, df (), which
may be noninteger, regulates the amount of smoothness—the larger this number, the closer
the correlations are to zero. A ridge prior is useful to stabilize inferences about the mean
parameters when the covariance matrix is poorly estimated, for example, when there are
insufficient observations to estimate correlations between some variables reliably because of
missing data, causing the estimated covariance matrix to become non—positive definite (see
Schafer [1997, 155-157] for details).

mcmconly specifies that mi impute mvn run the MCMC for the length of the burn-in period and
then stop. This option is useful in combination with savewlf () or saveptrace() to examine
the convergence of the MCMC prior to imputation. No imputation is performed when mcmconly
is specified, so add() or replace is not required with mi impute mvn, mcmconly, and they are
ignored if specified. The mcmconly option is not allowed with emonly.

initmemc () may be specified as initmcme (em [s em_options]) or initmemc (initmatlist) .

initmcmc () specifies initial values for the regression coefficients and covariance matrix of the
multivariate normal distribution to be used by the MCMC procedure. By default, initial values are
obtained from the EM algorithm, initmcmc (em).

initmcmc(em[, em_options}) specifies that the initial values for the MCMC procedure be obtained
from EM. You can control the EM estimation by specifying em_options. If the uniform prior is
used, the initial estimates correspond to the ML estimates computed using EM. Otherwise, the
initial values are the estimates of the posterior mode computed using EM.

em_options are

iterate(#) specifies the maximum number of EM iterations to perform. The default is
iterate(100).

tolerance(#) specifies the convergence tolerance for the EM algorithm. The default is
tolerance(le-5). Convergence is declared once the maximum of the relative changes
between two successive estimates of all model parameters is less than #.

init () may be specified as init(ac), init(cc), or init (matlist)

init () specifies initial values for the regression coefficients and covariance matrix of the

multivariate normal distribution to be used by the EM algorithm. init (ac) is the default.

init(ac) specifies that initial estimates be obtained using all available cases. The initial
values for regression coefficients are obtained from separate univariate regressions of

mi impute mvn — Impute using multivariate normal regression 209

each imputation variable on the independent variables. The corresponding estimates of
the residual mean-squared error are used as the initial values for the diagonal entries of
the covariance matrix (variances). The off-diagonal entries (correlations) are set to zero.

init (cc) specifies that initial estimates be obtained using only complete cases. The initial
values for regression coefficients and the covariance matrix are obtained from a multivariate
regression fit to the complete cases only.

init (initmatlist) specifies to use manually supplied initial values for the EM procedure
and syntactically is identical to memcinit (initmatlist), described below, except that you
specify init (initmatlist) .

nolog suppresses the EM iteration log when emonly or emoutput is used.

saveptrace (fname[s replace]) specifies to save the parameter trace log from the EM
algorithm to a file called fname . stptrace. If the file already exists, the replace suboption
specifies to overwrite the existing file. See [MI] mi ptrace for details about the saved file
and how to read it into Stata.

initmemc (initmatlist) , where initmatlist is
initmat [initmat [}]
specifies manually supplied initial values for the MCMC procedure.
initmat is
betas (# | mamame) specifies initial values for the regression coefficients. The default is
betas (0), implying a value of zero for all regression coefficients. If you specify betas (#),
then # will be used as the initial value for all regression coefficients. Alternatively, you
can specify the name of a Stata matrix, matname, containing values for each regression
coefficient. matname must be conformable with the dimensionality of the specified model.

That is, it can be one of the following dimensions: p X q, ¢ X p, 1 X pq, or pq X 1, where
p is the number of imputation variables and ¢ is the number of independent variables.

sds (# | matname) specifies initial values for the standard deviations (square roots of the
diagonal elements of the covariance matrix). The default is sds (1), which sets all standard
deviations and thus variances to one. If you specify sds(#), then the squared # will be
used as the initial value for all variances. Alternatively, you can specify the name of a
Stata matrix, matname, containing individual values. matname must be conformable with the
dimensionality of the specified model. That is, it can be one of the following dimensions:
1 X porpx1, where p is the number of imputation variables. This option cannot be combined
with cov() or vars(). The sds() option can be used in combination with corr() to
provide initial values for the covariance matrix.

vars (# | matname) specifies initial values for variances (diagonal elements of the covariance
matrix). The default is vars (1), which sets all variances to one. If you specify vars (#),
then # will be used as the initial value for all variances. Alternatively, you can specify the name
of a Stata matrix, matname, containing individual values. matname must be conformable
with the dimensionality of the specified model. That is, it can be one of the following
dimensions: 1 X p or p X 1, where p is the number of imputation variables. This option
cannot be combined with cov() or sds(). The vars() option can be used in combination
with corr () to provide initial values for the covariance matrix.

corr (#| matname) specifies initial values for the correlations (off-diagonal elements of the
correlation matrix). The default is corr (0), which sets all correlations and, thus, covariances
to zero. If you specify corr (#), then all correlation coefficients will be set to #. Alternatively,
you can specify the name of a Stata matrix, matname, containing individual values. matname

210 mi impute mvn — Impute using multivariate normal regression

can be a square p X p matrix with diagonal elements equal to one or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p + 1)/2, where
p is the number of imputation variables. This option cannot be combined with cov(). The
corr () option can be used in combination with sds() or vars() to provide initial values
for the covariance matrix.

cov (matname) specifies initial values for the covariance matrix. matname must contain the
name of a Stata matrix. matname can be a square p X p matrix or it can contain the
corresponding lower (upper) triangular matrix in a vector of dimension p(p + 1)/2, where
p is the number of imputation variables. This option cannot be combined with corr(),
sds(), or vars().

wlfwgt (matmame) specifies the weights (coefficients) to use when computing the worst linear function
(WLF). The coefficients must be saved in a Stata matrix, matname, of dimension 1 X d, where
d =pq+p(p+1)/2, pis the number of imputation variables, and ¢ is the number of predictors.
This option is useful when initial values from the EM estimation are supplied to data augmentation
(DA) as matrices. This option can also be used to obtain the estimates of linear functions other
than the default WLF. This option cannot be combined with by ().

savewlf (ﬁlename[, replace]) specifies to save the estimates of the WLF from each iteration of
MCMC to a Stata dataset called filename.dta. If the file already exists, the replace suboption
specifies to overwrite the existing file. This option is useful for monitoring convergence of the
MCMC. savewlf () is allowed with initmcmc (em), when the initial values are obtained using the
EM estimation, or with wlfwgt (). This option cannot be combined with by ().

saveptrace (fname[, replace]) specifies to save the parameter trace log from the MCMC to a file
called fname .stptrace. If the file already exists, the replace suboption specifies to overwrite
the existing file. See [MI] mi ptrace for details about the saved file and how to read it into Stata.
This option is useful for monitoring convergence of the MCMC. This option cannot be combined
with by ().

Reporting

dots, noisily, nolegend; see [MI] mi impute. Also, noisily is a synonym for emoutput.
nolegend suppresses group legends that may appear when the by() option is used. It is a
synonym for by(, nolegend).

emlog specifies that the EM iteration log be shown. The EM iteration log is not displayed unless
emonly or emoutput is specified.

emoutput specifies that the EM output be shown. This option is implied with emonly.
mcmcdots specifies to display all MCMC iterations as dots.

alldots specifies to display all intermediate iterations as dots in addition to the imputation dots.
These iterations include the EM iterations and the MCMC burn-in iterations. This option implies
mcmcdots.

nolog suppresses all output from EM or MCMC that is usually displayed by default.

Advanced

force; see [MI] mi impute.

emonly[(em_options)] specifies that mi impute mvn perform EM estimation and then stop. You can
control the EM process by specifying em—_options. This option is useful at the preliminary stage to
obtain insight about the length of the burn-in period as well as to choose a prior specification. No

mi impute mvn — Impute using multivariate normal regression 211

imputation is performed, so add() or replace is not required with mi impute mvn, emonly,
and they are ignored if specified. The emonly option is not allowed with mcmconly.

The following option is available with mi impute but is not shown in the dialog box:

noupdate; see [MI] noupdate option.

Remarks and examples

Remarks are presented under the following headings:

Incomplete continuous data with arbitrary pattern of missing values
Multivariate imputation using data augmentation

Convergence of the MCMC method

Using mi impute mvn

Examples

See [MI] mi impute for a general description and details about options common to all imputation
methods, impute_options. Also see [MI] workflow for general advice on working with mi.

Incomplete continuous data with arbitrary pattern of missing values

As we described in detail in Multivariate imputation in [MI] mi impute, imputation of multiple
variables with an arbitrary pattern of missing values is more challenging than when the missing-data
pattern is monotone.

One approach for dealing with an arbitrary missing-value pattern is to assume an explicit tractable
parametric model for the data and draw imputed values from the resulting distribution of the missing
data given observed data. One of the more popular parametric models is the Gaussian normal model; see
Rubin (1987) for other recommendations. Although a multivariate normal model is straightforward,
difficulty arises in the simulation from the corresponding, more complicated, distribution of the
missing data. One solution is to use one of the Bayesian iterative Markov chain Monte Carlo (MCMC)
procedures to approximate the distribution of missing data.

Multivariate imputation using data augmentation

mi impute mvn uses data augmentation (DA) —an iterative MCMC procedure—to generate imputed
values assuming an underlying multivariate normal model. For details about DA as a general MCMC
procedure, see Gelman et al. (2014), Tanner and Wong (1987), and Li (1988), among others. For
applications of DA to incomplete multivariate normal data, see, for example, Little and Rubin (2002)
and Schafer (1997). Below we briefly describe the idea behind DA; see Methods and formulas for
details.

Consider multivariate data X = (X,, X,,,), decomposed into the observed part X, and the missing
part X,,,, from a normal distribution Pr(X|0) = N(8,X), where 6 denotes the unknown model
parameters (regression coefficients 3 and unique elements of the covariance matrix X). The goal is
to replace missing values in X,,, with draws from the distribution (or the predictive distribution in
Bayesian terminology) of the missing data given observed data, Pr(X,,|X,). The actual predictive
distribution Pr(X,,,|X,) is difficult to draw from directly because of an underlying dependence on
the posterior distribution of the unknown parameters 6, Pr(0|X,).

212 mi impute mvn — Impute using multivariate normal regression

Originally, DA was used to approximate the posterior distribution of the model parameters, Pr(0|X,),
in Bayesian applications with incomplete data. The idea of DA is to augment the observed data, X,
with the latent (unobserved) data, X,,,, such that the conditional posterior distribution Pr(0|X,, X,,)
becomes more tractable and easier to simulate from. Then the procedure becomes as follows. For a
current O(t), draw XS:;H) from its conditional predictive distribution given the observed data and 6,
Pr(X,,|X,, 8®). Next draw 8¢*+Y) from its conditional posterior distribution given the augmented
data, Pr(O\XO,XSle)). Continue to iterate until the sequence {(X%),O(t)) ct=1,2,...}, an
MCMC sequence, converges to a stationary distribution Pr(0, X,,,|X,). This way a complicated task
of simulating from Pr(6|X,) is replaced by a sequence of simpler simulation tasks of iteratively
sampling from Pr(6|X,,X,,) and Pr(X,,|X,,). How is this procedure related to imputation?

The sequence {Xﬁ,? :t = 1,2,...} contains draws from an approximate predictive distribution

Pr(X,,|X,), and thus X5 are, in fact, imputations. The convergence of this procedure was
studied by Li (1988).

The functional forms of the conditional distributions Pr(8|X,,X,,) and Pr(X,,|X,,8) are
determined from the assumed distribution of the data, X, and a prior distribution for the model
parameters, 0, Pr(6). mi impute mvn assumes a normal distribution for the data and supports three
prior distributions: uniform, Jeffreys, and ridge.

The prior distributions are categorized into noninformative (or also vague, diffuse, flat, reference)
and informative prior distributions. The noninformative priors provide no extra information about
model parameters beyond that already contained in the data. These priors are recommended when
no strong prior knowledge is available about the parameters. Informative prior distributions are used
when there is some a priori knowledge about the distribution of the parameters. For example, prior
information about cancer mortality rates in a Poisson model can be assigned based on the available
worldwide estimate. The uniform and Jeffreys priors are noninformative priors. The ridge prior is an
informative prior.

The uniform prior assumes that all values of the parameters are equally probable. Under this prior
specification, the posterior distribution of the parameters is equivalent to the likelihood function,
and so the Bayesian and frequentist methods coincide. The Jeffreys prior is another widely used
noninformative prior distribution, and with small samples, it may be preferable to the uniform prior. A
ridge prior is often used when the estimated covariance matrix becomes singular (or nearly singular),
as may occur with sparse missing data if there are not enough observations to estimate reliably all
aspects of the covariance matrix. A ridge prior smooths the estimate of the covariance matrix toward
a diagonal structure depending on the chosen degrees of freedom; the larger the degrees of freedom,
the closer is the estimated covariance matrix to the diagonal matrix (see Schafer [1997, 155-157] for
details).

Convergence of the MCMC method

For a brief overview of convergence of MCMC, see Convergence of iterative methods in [MI] mi
impute.

The MCMC procedure DA is iterated until an MCMC sequence {(Xg@), O(t)) :t=1,2,...} converges
to a stationary distribution. Unlike maximum likelihood, EM, or other optimization-based procedures,
the DA procedure does not have a simple stopping rule that guarantees the convergence of the chain
to a stationary distribution. Thus the question of how long to iterate to achieve convergence arises. In
addition to determining convergence of MCMC, we must also investigate the serial dependence known
to exist among the MCMC draws to obtain independent imputations.

mi impute mvn — Impute using multivariate normal regression 213

Suppose that after an initial burn-in period, b, the sequence {(XSZH)) :t=1,2,...} (imputations)

can be regarded as an approximate sample from Pr(X,,,|X,). In general, this sample will not contain
independent observations because the successive iterates of the MCMC tend to be correlated. To achieve
independence among imputations, we can sample the chain. To do that, we need to determine the

number of iterations, k, such that X,(q? and ngfk) are approximately independent. Then imputations
can be obtained as the chain values of X,,, from iterations b,b + k,b + 2k, ..., b+ mk, where m

is the required number of imputations. In our definition, b is the number of iterations necessary for
the chain to achieve stationarity and k is the number of iterations between imputations necessary to
achieve independent values of the chain.

Before we proceed, we notice that from the properties of MCMC, the convergence of the chain
{(X,(fL),O(t)) it =1,2,...} to Pr(6,X,,|X,) is equivalent to the convergence of {(8%)): t =
1,2,...} to Pr(6|X,) or, alternatively, of {(Xfﬁ)) it =1,2,...} to Pr(X,,|X,). Because the
parameter series are usually of lower dimension, we examine convergence using the series of
parameter estimates rather than the series of imputations.

How to determine convergence and, in particular, to choose values for b and k, has received much
attention in the MCMC literature. In practice, convergence is often examined visually from the trace and
autocorrelation plots of the estimated parameters. Trace plots are plots of estimated parameters against
iteration numbers. Long-term trends in trace plots and high serial dependence in autocorrelation plots
are indicative of a slow convergence to stationarity. A value of b can be inferred from a trace plot as
the earliest iteration after which the chain does not exhibit a visible trend and the parameter series
stabilize, which is to say the fluctuations in values become more regular. A value of %k can be chosen
from autocorrelation plots as the lag k for which autocorrelations of all parameters decrease to zero.
When the initial values are close to the posterior mode, the initial number of iterations, b, and number
of iterations between imputations, k, will be similar. When the initial values are far off in the tails
of the posterior distribution, the initial number of iterations will generally be larger.

In practice, when the number of parameters in the model is large, it may not be feasible to monitor
the convergence of all the individual series. One solution is to find a function of the parameters that
would be the slowest to converge to stationarity. The convergence of the series for this function will
then be indicative of the convergence of other functions and, in particular, individual parameter series.
Schafer (1997, 129-131) suggests the worst linear function (WLF), the function corresponding to the
linear combination of the parameter estimates where the coefficients are chosen such that this function
has the highest asymptotic rate of missing information; see Methods and formulas for computational
details. He found that when the observed-data posterior distribution is nearly normal, this function
is among the slowest to approach stationarity. Thus we can determine b and k& by monitoring the
convergence of the WLF. When the observed-data posterior is not normal and some aspects of the
model are poorly estimated, the WLF may not be the slowest to converge. In such cases, we recommend
exploring convergence of other functions or of individual parameter series.

The number of iterations necessary for DA to converge depends on the rate of convergence of DA.
The rate of convergence of DA mainly depends on the fractions of missing information and initial
values. The higher the fractions of missing information and the farther the initial values are from the
posterior mode, the slower the convergence, and thus the larger the number of iterations required.
Initial values for the DA procedure can be obtained from the EM algorithm for incomplete data (for
example, Dempster, Laird, and Rubin [1977]). In addition, the number of iterations necessary for the
DA procedure to converge can be inferred based on the number of iterations that the EM algorithm
took to converge (Schafer 1997).

The convergence of the chain and the required number of iterations can be also inferred by running
multiple independent MCMC sequences using overdispersed initial values, that is, initial values from
a distribution with greater variability than that of the posterior distribution (Gelman and Rubin 1992;

214 mi impute mvn — Impute using multivariate normal regression

Schafer 1997, 126-128). Then the number of iterations can be taken to be the largest iteration number
for which the series in all the chains stabilize.

Although the graphical summaries described above are useful in checking convergence, they must
be used with caution. They can be deceptive in cases when the observed-data posterior has an odd
shape or has multiple modes, which may happen with small sample sizes or sparse missing data.
Examination of the data and missing-data patterns, as well as the behavior of the EM algorithm, are
highly recommended when investigating the MCMC convergence. How one checks for convergence
will be shown in examples 2 and 4.

Using mi impute mvn

mi impute mvn imputes missing data using DA, an iterative MCMC method, assuming the multivariate
normal distribution for the data. For the discussion of options, such as add() and replace, common
to all imputation methods, see [MI] mi impute. Here we focus on the options and functionality specific
to mi impute mvn.

The two main options are burnin() (which specifies the number of iterations necessary for
the MCMC to converge, b) and burnbetween() (which specifies the number of iterations between
imputations, k). We discussed how to choose these values in the previous section. By default, these
values are arbitrarily set to be 100 each.

You can choose from the three prior specifications. You can use prior (uniform) (the default) to
specify the uniform prior, prior (jeffreys) to specify the Jeffreys prior, or prior(ridge, df ())
to specify a ridge prior. You must also choose the degrees of freedom with a ridge prior.

For initial values, mi impute mvn uses the estimates from the EM algorithm for incomplete data
(initmeme (em)). When the uniform prior distribution is used, the estimates obtained from EM are
MLEs. Under other prior specifications, the estimates from EM correspond to the posterior mode of
the respective posterior distribution of the model parameters. Using the estimates from EM as initial
values in general accelerates the convergence of MCMC. To determine convergence, it may also be
useful to try different sets of initial values. You can do this by creating Stata matrices containing the
initial values and supplying them in the respective initmcmc () suboptions betas(), cov(), etc.

You can save the estimates of the WLF and parameter series from MCMC iterations by using the
savewlf () and saveptrace() options. These options are useful when examining convergence of
MCMC, as we will demonstrate in examples 2 and 4. You can use mi impute mvn to run the MCMC
without imputing the data if you specify the mcmconly option. This option is useful in combination
with savewlf() or saveptrace() when examining convergence of MCMC. When mcmconly is
specified, the DA procedure is performed for the number of iterations as specified in burnin() and
no imputations are performed.

You can also perform the EM estimation without MCMC iterations if you specify the emonly ()
option. This option is useful for detecting convergence problems prior to running MCMC. The number
of iterations EM takes to converge can be used as an approximation for the burn-in period. Also, slow
convergence of the EM algorithm can reveal problems with estimability of certain model parameters.

mi impute mvn — Impute using multivariate normal regression 215

Examples

> Example 1: Monotone-missing data

Recall the heart attack example from Multivariate imputation in [MI] mi impute, where we used
mi impute mvn to impute missing values for age and bmi that follow a monotone-missing pattern:
. use http://www.stata-press.com/data/r14/mheart5s0
(Fictional heart attack data)
. mi impute mvn age bmi = attack smokes hsgrad female, add(10)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 10
Multivariate normal regression added = 10
Imputed: m=1 through m=10 updated = 0
Prior: uniform Iterations = 1000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
age 142 12 12 154
bmi 126 28 28 154

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observationms.)

In the above, we omitted the nolog option that was present in the example in [MI] mi impute.

In addition to the output reported by all imputation methods, mi impute mvn also provides some
specific information.

As we previously explained, mi impute mvn uses an iterative MCMC technique to impute missing
values. The two phases of mi impute mvn are 1) obtaining initial values (unless supplied directly)
and 2) performing the MCMC procedure from which imputations are obtained. These two phases are
noted in the output header.

In this example, the initial values are obtained using the EM method (the default). We see from the
output that EM converged in seven iterations. A note displayed thereafter reports that 12 observations
contain missing values for both bmi and age and were omitted. The note is just explanatory and
should not cause you concern. Those 12 observations would contribute nothing to the likelihood
function even if they were included, although the algorithm would take longer to converge.

The estimates from EM are used as initial values for DA. The first part of the table header, containing
the information about the method used and the number of imputations, was described in detail in
[MI] mi impute. The second part of the table header is specific to mi impute mvn. From the output,
a total of 1,000 iterations of MCMC are performed. The first 100 iterations (the default) are used for
the burn-in period (burn-in = 100), the first imputation calculated from the last iteration; thereafter,
each subsequent imputation is calculated after performing another 100 iterations. The default uniform
prior is used for both the EM estimation and the MCMC procedure. Under this prior, the parameter
estimates obtained are MLEs.

4

216 mi impute mvn — Impute using multivariate normal regression

> Example 2: Checking convergence of MCMC

In example 1, the monotone missingness of age and bmi as well as the quick convergence of
EM suggest that the MCMC must converge rapidly. In fact, we know that under a monotone-missing
pattern, no iterations are needed to obtain imputed values (see [MI] mi impute monotone). Let’s
examine the convergence of the MCMC procedure for the above heart attack data, the point being to
see what quick convergence looks like.

As we discussed earlier, convergence is often assessed from the trace plots of the MCMC parameter
estimates. Because of a possibly large number of estimated parameters, this approach may be tedious.
Alternatively, we can plot the WLF for which the convergence is generally the slowest.

We use the savewlf (wlf) option to save estimates of the WLF to a Stata dataset called wlf.dta.
To examine the convergence of MCMC, we do not need imputation, and so we use the mcmconly option
to perform the MCMC procedure without subsequent imputation. We use a total of 1000 = 10 x 100
iterations (burnin (1000) option), corresponding to the length of the MCMC to obtain 10 imputations:

. mi impute mvn age bmi = attack smokes hsgrad female, mcmconly burnin(1000)
> rseed(2232) savewlf (wlf)

Performing EM optimization:
note: 12 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = -651.75868 at iteration 7

Performing MCMC data augmentation ...

Note: No imputation performed.

We also specified the rseed (2232) option so that we can reproduce our results.

The created dataset contains three variables: iter, m, and wlf. The iter variable records iterations
(the burn-in iterations are recorded as negative integers). The m variable records imputation numbers
to which the iteration sequence corresponds (m contains O if mcmconly is used). The wlf variable
records the WLF estimates.

. use wlf, clear
. describe

Contains data from wlf.dta

obs: 1,000

vars: 3 14 Nov 2014 14:44

size: 16,000

storage display value

variable name type format label variable label
iter long %12.0g
m long %12.0g
wlf double %10.0g

Sorted by:

We use the time-series commands tsline and ac (see [TS] tsline and [TS] corrgram) to plot the
estimates and autocorrelations of wlf with respect to the iteration number. We first use tsset to set
iter as the “time” variable and then use tsline to obtain a trace plot:

mi impute mvn — Impute using multivariate normal regression 217

. tsset iter
time variable: iter, -999 to O
delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)

0 .0001 .0002
1 1 1

Worst linear function

-.0001
1

- T T T T T T
''-1000 -800 -600 -400 -200 0
Burn—in period

0002

The graph shows no visible trend in the estimates of the WLF, just as we expected. Convergence of
MCMC by the 100th iteration should be assured. In fact, taking into account the declared convergence
of the EM algorithm in only seven iterations, we would be comfortable with using a much smaller
burn-in period of, say, 10 iterations.

We next examine the autocorrelation in the WLF to obtain an idea of how many iterations to use
between imputations to ensure their approximate independence:

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")

Worst linear function

0.20
1

0.10
1

Autocorrelations

0.00
1
—e
o
[2
-
—e
—e
—e
—e
—e
.
-—
—
-
—e
-
—e
—e
—e
-
_e

-0.10

From the graphical output, the autocorrelations die off quickly. This suggests that we can use a smaller
number, say, 10 or 20, rather than the default 100 iterations for the burn-between period.

4

218 mi impute mvn — Impute using multivariate normal regression

We considered an example with a monotone-missing pattern. mi impute mvn is designed to
accommodate arbitrary missing-data patterns, so let’s consider an example with them.

> Example 3: Arbitrary missing-data pattern

Consider data on house resale prices provided by the Albuquerque Board of Realtors and
distributed by the Data and Story Library. You can find a detailed description of the data at
http://lib.stat.cmu.edu/DASL/Stories/homeprice.html.

. use http://www.stata-press.com/data/r14/mhouses1993

(Albuquerque Home Prices Feb15-Apr30, 1993)

. describe

Contains data from http://www.stata-press.com/data/r14/mhouses1993.dta

obs: 117 Albuquerque Home Prices
Feb15-Apr30, 1993
vars: 8 19 Jun 2014 10:50
size: 1,287 (_dta has notes)
storage display value
variable name type format label variable label
price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age byte %10.0g Home age (years)
nfeatures byte %8.0g Number of certain features
ne byte %8.0g Located in northeast (largest
residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax int %10.0g Tax amount (dollars)
Sorted by:

The dataset includes eight variables. The primary variable of interest is price, and other variables
are used as its predictors.
We investigate the missing-data patterns of these data using misstable:

. misstable pattern

Missing-value patterns
(1 means complete)

Pattern
Percent 1 2
567% 11
35 1 0
7 o 0
2 o 1
100%
Variables are (1) tax (2) age
. misstable nested
1. tax(10)
2. age(49)

We see from the output only 56% of observations are complete; the remaining 44% contain missing
values of age or tax. The tax variable contains 10 missing values, and the age variable contains
49 missing values. misstable nested reports that missing values of age and tax are not nested
because there are two statements describing the missing-value pattern; see [R] misstable for details.

http://lib.stat.cmu.edu/DASL/Stories/homeprice.html

mi impute mvn — Impute using multivariate normal regression 219

Let’s use mi impute mvn to impute missing values of age and tax. Before we do that, a quick
examination of the data revealed that the distribution for age and tax are somewhat skewed. As
such, we choose to impute the variables on a log-transformed scale.

Following the steps as described in Imputing transformations of incomplete variables of [MI] mi
impute, we create new variables containing the log values,

. generate lnage = ln(age)
(49 missing values generated)

. generate lntax = ln(tax)
(10 missing values generated)

and register them as imputed variables,

. mi set mlong

. mi register imputed lnage lntax
(51 m=0 obs. now marked as incomplete)

. mi register regular price sqft nfeatures ne custom corner

We mi set our data as mlong and register the complete variables as regular. For the purpose of this
analysis, we leave passive variables age and tax unregistered. (Note that all missing values of the
created 1nage and lntax variables are eligible for imputation; see [MI] mi impute for details.)

We now use mi impute mvn to impute values of lnage and lntax:

. mi impute mvn lnage lntax = price sqft nfeatures ne custom corner, add(20)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation
variables missing

observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 20

Multivariate normal regression added = 20

Imputed: m=1 through m=20 updated = 0

Prior: uniform Iterations = 2000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
lnage 68 49 49 117
Intax 107 10 10 117

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

> Example 4: Checking convergence of MCMC

In the above example, we arbitrarily created 20 imputations. The output is similar to that of the
earlier example. Here the EM algorithm converges by the 48th iteration. This suggests that, again,
the default 100 iterations for the burn-in period should be sufficient for the convergence of MCMC.
Nevertheless, we choose to confirm this visually by repeating the steps from example 2.

220 miimpute mvn — Impute using multivariate normal regression

We run the MCMC for a total of 2,000 iterations (as would be necessary to obtain 20 imputations)
without imputing data and set the seed for reproducibility. We overwrite the existing wlf.dta file to
contain the new estimates of the WLF by specifying replace within savelwf ():

. mi impute mvn lnage lntax = price sqft nfeatures ne custom cornmer,
> mcmconly burnin(2000) rseed(23) savewlf (wlf, replace)

Performing EM optimization:
note: 8 observations omitted from EM estimation because of all imputation
variables missing
observed log likelihood = 112.1464 at iteration 48

Performing MCMC data augmentation ...

Note: No imputation performed.

We generate the same graphs as in example 2, this time using the new estimates of the WLF:

. use wlf, clear

. tsset iter
time variable: iter, -1999 to O
delta: 1 unit

. tsline wlf, ytitle(Worst linear function) xtitle(Burn-in period)

1 1

1

1.000e-06 2.000e-06 3.000e-0

Worst linear function

0
L

-1.000e-06
1

-2000 -1500 ~1000 -500 0
Burn—in period

mi impute mvn — Impute using multivariate normal regression 221

. ac wlf, title(Worst linear function) ytitle(Autocorrelations)
> ciopts(astyle(none)) note("")

Worst linear function

2
8l [W[ITTTTTTTTTTTTTTToo.‘l‘*.-'TTo-?!
(il = = &% g

Lag

Compared with the earlier graphs, the time-series graphs do not reveal any apparent trend, but
the autocorrelation dies out more slowly. The default values of 100 for the initial burn-in and
between-imputation iterations should be sufficient.

d

> Example 5: Alternative prior distribution

Consider some hypothetical data:
. use http://www.stata-press.com/data/r14/mvnexample0
(Fictional data for -mi impute mvn-)
. mi describe

Style: mlong
last mi update 03nov2014 12:01:25, 4 days ago

Obs.: complete 3
incomplete 17 (M = 0 imputations)
total 20

Vars.: imputed: 3; x1(16) x2(5) x3(17)
passive: O
regular: O
system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

Continuous normally distributed variables x1, x2, and x3 contain missing values. For illustration
purposes, we consider an extreme case when some variables (x1 and x3 here) contain only a few
complete observations.

We use mi impute mvn to impute missing values and create 30 imputations. Notice that in this
example, we do not have complete predictors, and so the right-hand-side specification is empty:

222 mi impute mvn — Impute using multivariate normal regression

. mi imp mvn x1-x3, add(30) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all
imputation variables missing
observed log likelihood = 6.5368927 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...

Iteration 145: variance-covariance matrix (Sigma) became not
positive definite posterior distribution is not proper

error occurred during imputation of x1 x2 x3 onm = 2
r(498);

mi impute mvn terminates with an error reporting that the estimated variance—covariance matrix
became non—positive definite. mi impute mvn terminated because the posterior predictive distribution
of missing data is not proper, but notice also that EM did not converge after the default 100 iterations.

There are two issues here. First, because EM did not converge after 100 iterations, we suspect that
the default 100 iterations used for the burn-in period may not be large enough for MCMC to converge.
Second, the observed missing-data pattern presents difficulties with estimating the covariance matrix
reliably, which leads to a non—positive-definite estimate during the MCMC iteration.

The first issue may be resolved by increasing the maximum number of iterations for EM by using
EM’s iterate() suboption. Convergence of EM, however, does not guarantee convergence of the
MCMC by the same number of iterations. For one, the convergence of EM is relative to the specified
tolerance, and more stringent conditions may lead to a nonconvergent result. As such, we recommend
that you always examine the obtained MCMC results.

The second issue is not surprising. Recall that x1 and x3 have very few complete observations. So
the aspects of the covariance structure involving those variables (for example, the covariance between
x1 and x2) are difficult to estimate reliably based on the information from the observed data only.
The default uniform prior may not be viable here.

One solution is to introduce prior information to stabilize the estimation of the covariance matrix.
We can do this by specifying a ridge prior using the prior () option. We introduce only a small
amount of information by using a degrees of freedom value of 0.1:

. mi imp mvn x1-x3, add(30) prior(ridge, df(0.1)) rseed(332247)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all imputation
variables missing
observed log posterior = -1.13422 at iteration 100
(EM did not converge)

Performing MCMC data augmentation ...

Multivariate imputation Imputations = 30
Multivariate normal regression added = 30
Imputed: m=1 through m=30 updated = 0
Prior: ridge, df=.1 Iterations = 3000
burn-in = 100
between = 100

Observations per m

Variable Complete Incomplete Imputed Total
x1 4 16 16 20
x2 15 5 5 20
x3 3 17 17 20

(complete + incomplete = total; imputed is the minimum across m

mi impute mvn — Impute using multivariate normal regression 223

of the number of filled-in observations.)

This appears to be enough to alleviate the problem of a non—positive-definite estimate of the covariance
matrix. Still, EM did not converge.

We will fix that and examine the resulting MCMC sequence. We will use the same random-number
seed and this time save the WLF. Rather than imputing the data as before, we will simply run the
MCMC for the same number of iterations it takes to obtain 30 imputations using the default settings,
namely, 30 x 100 = 3000.

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1))
> initmemc(em, iter(200) nolog) burnin(3000) savewlf(wlf, replace)
> rseed(332242)

Performing EM optimization:
note: 4 observations omitted from EM estimation because of all
imputation variables missing
observed log posterior = -1.1341806 at iteration 152

Performing MCMC data augmentation ...

Note: No imputation performed.

We increased the maximum number of iterations for the EM algorithm to 200; it converged in iteration
152.

We use the results from wlf.dta to obtain the trace and autocorrelation plots as we did in the
earlier examples:

Worst linear function

-3000 2000 ~1000 0
Burn-in period

224 mi impute mvn — Impute using multivariate normal regression

Worst linear function

o
@
o
3 |
o
1%2)
j=
2Q
%o’
g
g2
. N[
8 | ITTTTTTTTTTTTT!!.......---
o
o
N
? T T T T T
0 10 20 30 40
Lag

The serial correlation decreases slowly. There is no obvious trend in the WLF estimates, but we notice
high variability and several spikes, some distinctive. The high variability and spikes are not surprising
considering that certain model parameters could not be estimated reliably from the observed data and
considering that we did not introduce enough prior information to obtain less variable estimates; we
introduced only enough to achieve nonsingularity.

We could decrease the variability of the estimates by obtaining more data or introducing stronger
prior information. For example, we could increase the number of degrees of freedom with a ridge
prior to constrain the covariance matrix toward a diagonal structure:

. mi imp mvn x1-x3, replace prior(ridge, df(10)) burnin(300) rseed(332247)
(output omitted)

If we create and examine the trace plots and autocorrelations of the WLF under the new prior
specification, we find that variability of the estimates and serial dependence decrease greatly at a cost
of bias if the prior assumptions are false.

N

> Example 6: Saving all parameter series

The examples above used the WLF to monitor convergence of MCMC because in most applications
it is sufficient. Although the WLF series often behave as the worst-case scenario, exceptions exist in
practice. Sometimes, examining individual parameter series may be necessary.

We can save all parameter series from MCMC by using the saveptrace () option. These parameter
series are saved in a parameter-trace file, a special file with extension .stptrace. Although the
resulting file is not a Stata dataset, it can easily be loaded into Stata using mi ptrace use; see
[MI] mi ptrace for details.

Let’s look at several parameter series from the above example.

. use http://www.stata-press.com/data/r14/mvnexample0, clear

. mi imp mvn x1-x3, mcmconly prior(ridge, df(0.1)) initmcmc(em, iter(200) nolog)
> burnin(3000) rseed(332247) saveptrace(parms)

(output omitted)

We save all parameter series to a file called parms by using stptrace(parms).

mi impute mvn — Impute using multivariate normal regression 225

We first describe the contents of the parms file and then read it into Stata:

. mi ptrace describe parms

file parms.stptrace created on 14 Nov 2014 14:44 contains 3,000 records

(obs.) on
m 1 variable
iter 1 variable
bly, x] 3 variables (3 x 1)
vliy, yl 6 variables (3 x 3, symmetric)

where y and x are
yo (1) x1 (2) x2 (3) x3
x: (1) _cons

. mi ptrace use parms, clear

The output from mi ptrace describe reports that the file contains imputation numbers, iteration
numbers, estimates of three regression coefficients (b [x1, _cons], b[x2, _cons], and b[x3, _cons],
which are effectively the means of x1, x2, and x3), and estimates of six covariances (v[x1,x1],
v[x2,x1], v[x2,x2], and so on).

Because x1 and x3 contain the least number of complete observations, we examine the series
containing their variance and covariance estimates. We generate graphs separately for each series and
then combine them in one graph by using graph combine; see [G-2] graph combine.

. tsset iter
time variable: iter, -2999 to O
delta: 1 unit

. tsline v_ylyl, name(grl) nodraw ytitle(Var(x1l)) xtitle("") ylabel(#4)

. tsline v_y3yl, name(gr2) nodraw ytitle(Cov(x3,x1)) xtitle("") ylabel(#4)
. tsline v_y3y3, name(gr3) nodraw ytitle(Var(x3)) xtitle("") ylabel(#4)

. graph combine grl gr2 gr3, xcommon cols(1l) bititle(Iteration)

Var(x1)
0 100200300400

T T
—3000 —2000 —-1000 0

=
98 F
¢8 h
28 |
3 g
g
7L : : :
-3000 -2000 -1000 0

Var(x3)
0 100200800400
L

b WL

T T T
-3000 -2000 -1000 0

L
>

L
__

Iteration

We repeat the same for the autocorrelation graphs:
. ac v_ylyl, ytitle(Var(x1)) xtitle("") ciopts(astyle(none)) note("")
> name(grl, replace) nodraw ylabel (#4)

. ac v_y3yl, ytitle(Cov(x3,x1)) xtitle("") ciopts(astyle(none)) note("")
> name(gr2, replace) nodraw ylabel (#4)

. ac v_y3y3, ytitle(Var(x3)) xtitle("") ciopts(astyle(none)) note("")
> name(gr3, replace) nodraw ylabel (#4)

226 mi impute mvn — Impute using multivariate normal regression

. graph combine grl gr2 gr3, xcommon cols(1l) title(Autocorrelations) bltitle(Lag)

Autocorrelations

Var(x1)
0.00 0.50 1.00
|)

HHHHTTThnnu....................

0 10 20 30 40

Cov(x3,x1)
0.00 0.50 1.00
.

HI[HTHTTT?TH?Mvuuuu-..........

0 10 20 30 40

Var(x3)
0.00 0.50 1.00
.

HHHHTTTTTHHMHH...-..........--

0 10 20 30 40

Lag

We can see that the trace plot and autocorrelations corresponding to the variance of x1 resemble
the patterns of the earlier WLF estimates. We also notice that all series have high serial dependence
within the first 20 iterations.

Again, if we switch to using a ridge prior with 10 degrees of freedom and repeat the steps above,
the obtained trace plots will be more precise and more regular. The serial dependence in the series
will be lower.

d
Stored results
mi impute mvn stores the following in r():
Scalars
r(M) total number of imputations
r(M_add) number of added imputations
r(M_update) number of updated imputations
r(k_ivars) number of imputed variables
r(burnin) number of burn-in iterations
r(burnbetween) number of burn-between iterations
r(df _prior) prior degrees of freedom (stored only with prior(ridge))
r(N_em) number of observations used by EM (including omitted missing observations)
r(N_e_em) number of observations used by EM in estimation (excluding omitted missing observations)
r(N_mis_em) number of incomplete observations within the EM estimation sample
r(N_S_em) number of unique missing-value patterns
r(niter_em) number of iterations EM takes to converge
r(llobs_em) observed log likelihood (stored with prior (uniform))
r(lpobs_em) observed log posterior (stored with priors other than uniform)
r(converged_em) convergence flag for EM
r(emonly) 1 if performed EM estimation only, O otherwise
r (mcmconly) 1 if performed MCMC only without imputing data, O otherwise

r(N_g) number of imputed groups (1 if by () is not specified)

mi impute mvn — Impute using multivariate normal regression 227

Macros
r (method) name of imputation method (mvn)
r(ivars) names of imputation variables
r(rngstate) random-number state used
r(prior) prior distribution
r(init_mcmc) type of initial values (em or user)
r(ivarsorder) names of imputation variables in the order used in the computation
r(init_em) type of initial values used by EM (ac, cc, or user)
r(by) names of variables specified within by ()
Matrices
r(N) number of observations in imputation sample in each group (per variable)

r(N_complete) number of complete observations in imputation sample in each group (per variable)
r(N_incomplete) number of incomplete observations in imputation sample in each group (per variable)

r(N_imputed) number of imputed observations in imputation sample in each group (per variable)
r(Betal) initial values for regression coefficients used by DA

r(Sigma0) initial variance—covariance matrix used by DA

r(wlf_wgt) coefficients for the WLF (stored with initmcmc(em) or if wlfwgt() is used)
r(Beta_em) estimated regression coefficients from EM

r(Sigma_em) estimated variance—covariance matrix from EM

r(BetaO_em) initial values for regression coefficients used by EM

r(Sigmal_em) initial variance—covariance matrix used by EM

r(N_pat) minimum, average, and maximum numbers of observations per missing-value pattern

r(N_pat) and results with the _em suffix are stored only when the EM algorithm is used (with
emonly or initmcmc (em)).

Methods and formulas

Let x1,X3,...,Xxy be a random sample from a p-variate normal distribution recording values of
p imputation variables. Consider a multivariate normal regression

Xi:®/Zi+6i, Z:1,,N

where z; is a g X 1 vector of independent (complete) variables from observation ¢, ® is a ¢ X p
matrix of regression coefficients, and €; is a p X 1 vector of random errors from a p-variate normal
distribution with a zero mean vector and a p X p positive-definite covariance matrix Y. We refer to
® and ¥ as model parameters. Consider the partition x; = (Xi(m),Xi(o)) corresponding to missing
and observed values of imputation variables in observation ¢ for ¢ = 1,...,

Methods and formulas are presented under the following headings:

Data augmentation

Prior distribution

Initial values: EM algorithm
Worst linear function

Data augmentation

mi impute mvn uses data augmentation (DA) to fill in missing values in X; independently for each
observation ¢ = 1,..., N. Data augmentation consists of two steps, an I step (imputation step) and
a P step (posterior step), performed at each iteration t = 0,1,...,7T. At iteration ¢ of the I step,
missing values in x; are replaced with draws from the conditional posterior distribution of X;(,,,) given
observed data and current values of model parameters independently for each ¢ = 1,..., N. During
the P step, new values of model parameters are drawn from their conditional posterior distribution
given the observed data and the data imputed in the previous I step. Mathematically, this process can
be described as follows:

228 mi impute mvn — Impute using multivariate normal regression

I step:
<t o p (xi(m)\Zi,xi(o), e, E(t)) si=1...,N (1)

i(m)

P step:
E(t+1) ~ P <E|Z’Laxl(0)’xgz;‘;§))

et+) p <®|Zi;Xi(LD 2(t+1))

i(m)

(2)

The above two steps are repeated until the specified number of iterations, 7', is reached. The total
number of iterations, 7', is determined by the length of the initial burn-in period, b, and the number of

iterations between imputations, k. Specifically, T' = b+ M ¢y X k, where M ¢y, contains the number

of added and updated imputations. mi impute mvn saves imputed values x((l)) xngrz), e ,xﬁ%‘;“w)

as final imputations, where iteration t; = b+ (i — 1)k.

By default, mi impute mvn uses default values of 100 for b and k. These values may be adequate in
some applications and may be too low in others. In general, b and k£ must be determined based on the

properties of the observed Markov chain (XS}R, G)(l), 2(1)) , (Xg)7 (9(2), 2(2)) ,..., wWhere XSfl)

denotes all values imputed at iteration £. b must be large enough so that the above chain converges
to the stationary distribution P(X,,,®,X|Z,X,) by iteration ¢ = b. k must be large enough so
(t1) (t2)

that random draws (imputations) Xz(m), X(m)r -
of the MCMC method for more details.

The functional form of the conditional posterior distributions (1) and (2) depends on the distribution
of the data and a prior distribution of the model parameters. mi impute mvn assumes an improper
uniform prior distribution for ® and an inverted Wishart distribution (Mardia, Kent, and Bibby 1979,
85) W, (A, \) for ¥ under which the prior joint density function is

. are approximately independent. See Convergence

» 1
f(©,%) x \2|7(H2+1) exp (QtrAlﬁl)

Under the multivariate normal model and the above prior distribution, the I and P steps become
(Schafer 2008; Schafer 1997, 181-185) the following:

I step: XEE;? ~ Ny, (5,?0, ngl)m o) ,i=1,...,N
P step: »nt+) Wﬁl(Aff—H),)

vec <®(t+1)) ~ Npq {vec (@(Hl)) , 2 (Z’Z)*l}

where p; is the number of imputation variables containing missing values in observation ¢ and & is
the Kronecker product. Submatrices u() and Em)m o are the mean and variance of the conditional
normal distribution of X;(,,,) given X;(o) based on (X;(m), Xi(0)|Zi) ~ Ny (G)(t)’zi, E(t)). See, for
example, Mardia, Kent, and Bibby (1979, 63) for the corresponding formulas of the conditional mean
and variance of the multivariate normal distribution. The matrix @(t+1) = (Z'Z)'Z' XD s the
OLS estimate of the regression coefficients based on the augmented data X(*+1) = (XO,X%H))

from iteration ¢. The posterior cross-product matrix A&t“) and the posterior degrees of freedom A,
are defined as follows:

mi impute mvn — Impute using multivariate normal regression 229

A _ {14 () _ 26y goen Z(?)(Hl))}

and
AM=A+N—q

Prior distribution

As we already mentioned, mi impute mvn assumes an improper uniform prior distribution for ®
and an inverted Wishart distribution for ¥ under which the prior joint density function is

1
f(0,3) x \2|_(H5+1) exp (—QtrA_12_1)

Parameters of the inverted Wishart prior distribution, the prior cross-product matrix A, and the prior
degrees of freedom A are determined based on the requested prior distribution.

By default, mi impute mvn uses the uniform prior distribution under which A = —(p + 1) and
Al = 0, xp. Under the uniform prior, the log-likelihood and log-posterior functions are equivalent,
and so the ML estimates of the parameters are equal to the posterior mode.

Under the noninformative Jeffreys prior distribution, A\ = 0 and A~ = 0, .

Under a ridge prior distribution,) is equal to the user-specified value, and A~ = \X,, where the
diagonal matrix ¥, contains the diagonal elements of the estimate of the covariance matrix using all
available cases. The variances (diagonal estimates) are the estimates of the mean squared error from
regression of each imputation variable on the complete predictors. See Schafer (1997, 155-157) for
details. With A = 0, this prior specification reduces to the Jeffreys prior.

Initial values: EM algorithm

Initial values ©®©) and £(© for DA are obtained from the EM algorithm for the incomplete
multivariate normal data (for example, Dempster, Laird, and Rubin [1977], Little and Rubin [2002],
Schafer [1997]). The EM algorithm iterates betwee