
STATA DATA-MANAGEMENT
REFERENCE MANUAL

RELEASE 13

®

A Stata Press Publication
StataCorp LP
College Station, Texas

® Copyright c© 1985–2013 StataCorp LP
All rights reserved
Version 13

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-131-5
ISBN-13: 978-1-59718-131-0

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright c© 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, , Stata Press, Mata, , and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.

NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2013. Stata: Release 13 . Statistical Software. College Station, TX: StataCorp LP.

Contents

intro . Introduction to data management reference manual 1
data management . Introduction to data management commands 3

append . Append datasets 8
assert . Verify truth of claim 15

bcal . Business calendar file manipulation 19
by . Repeat Stata command on subsets of the data 25

cd . Change directory 28
cf . Compare two datasets 31
changeeol . Convert end-of-line characters of text file 34
checksum . Calculate checksum of file 36
clear . Clear memory 39
clonevar . Clone existing variable 42
codebook . Describe data contents 44
collapse . Make dataset of summary statistics 54
compare . Compare two variables 63
compress . Compress data in memory 65
contract . Make dataset of frequencies and percentages 67
copy . Copy file from disk or URL 70
corr2data . Create dataset with specified correlation structure 72
count . Count observations satisfying specified conditions 76
cross . Form every pairwise combination of two datasets 78

data types . Quick reference for data types 80
datasignature . Determine whether data have changed 82
datetime . Date and time values and variables 89
datetime business calendars . Business calendars 101
datetime business calendars creation . Business calendars creation 108
datetime display formats . Display formats for dates and times 118
datetime translation . String to numeric date translation functions 123
describe . Describe data in memory or in file 133
destring Convert string variables to numeric variables and vice versa 141
dir . Display filenames 150
drawnorm . Draw sample from multivariate normal distribution 152
drop . Drop variables or observations 156
ds . List variables matching name patterns or other characteristics 160
duplicates . Report, tag, or drop duplicate observations 165

edit . Browse or edit data with Data Editor 171
egen . Extensions to generate 176
encode . Encode string into numeric and vice versa 197
erase . Erase a disk file 204
expand . Duplicate observations 206
expandcl . Duplicate clustered observations 208
export . Overview of exporting data from Stata 211

filefilter . Convert text or binary patterns in a file 213

i

ii Contents

fillin . Rectangularize dataset 216
format . Set variables’ output format 218
functions . Functions 232

generate . Create or change contents of variable 294
gsort . Ascending and descending sort 299

hexdump . Display hexadecimal report on file 302

icd9 . ICD-9-CM diagnostic and procedure codes 308
import . Overview of importing data into Stata 321
import delimited . Import delimited text data 329
import excel . Import and export Excel files 338
import haver . Import data from Haver Analytics databases 344
import sasxport . Import and export datasets in SAS XPORT format 354
infile (fixed format) Read text data in fixed format with a dictionary 363
infile (free format) . Read unformatted text data 381
infix (fixed format) . Read text data in fixed format 390
input . Enter data from keyboard 398
inspect . Display simple summary of data’s attributes 405
ipolate . Linearly interpolate (extrapolate) values 408
isid . Check for unique identifiers 410

joinby . Form all pairwise combinations within groups 413

label . Manipulate labels 418
label language Labels for variables and values in multiple languages 427
labelbook . Label utilities 433
list . List values of variables 444
lookfor . Search for string in variable names and labels 453

memory . Memory management 455
merge . Merge datasets 461
missing values . Quick reference for missing values 482
mkdir . Create directory 483
mvencode . Change missing values to numeric values and vice versa 484

notes . Place notes in data 487

obs . Increase the number of observations in a dataset 492
odbc . Load, write, or view data from ODBC sources 493
order . Reorder variables in dataset 506
outfile . Export dataset in text format 510

pctile . Create variable containing percentiles 517
putmata . Put Stata variables into Mata and vice versa 528

range . Generate numerical range 540
recast . Change storage type of variable 543
recode . Recode categorical variables 545
rename . Rename variable 553
rename group . Rename groups of variables 555
reshape . Convert data from wide to long form and vice versa 565
rmdir . Remove directory 581

sample . Draw random sample 582

Contents iii

save . Save Stata dataset 586
separate . Create separate variables 591
shell . Temporarily invoke operating system 594
snapshot . Save and restore data snapshots 599
sort . Sort data 602
split . Split string variables into parts 607
stack . Stack data 611
statsby . Collect statistics for a command across a by list 616
sysuse . Use shipped dataset 625

type . Display contents of a file 628

use . Load Stata dataset 631

varmanage . Manage variable labels, formats, and other properties 634

webuse . Use dataset from Stata website 635

xmlsave . Export or import dataset in XML format 637
xpose . Interchange observations and variables 642

zipfile Compress and uncompress files and directories in zip archive format 645

Subject and author index . 647

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[D] Stata Data Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual
[TE] Stata Treatment-Effects Reference Manual:

Potential Outcomes/Counterfactual Outcomes
[I] Stata Glossary and Index

[M] Mata Reference Manual

v

Title

intro — Introduction to data management reference manual

Description Remarks and examples Also see

Description
This entry describes this manual and what has changed since Stata 12. See the next entry, [D] data

management, for an introduction to Stata’s data management capabilities.

Remarks and examples
This manual documents most of Stata’s data management features and is referred to as the

[D] manual. Some specialized data management features are documented in such subject-specific
reference manuals as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation
Modeling Reference Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata Survival Analysis
and Epidemiological Tables Reference Manual, and [XT] Stata Longitudinal-Data/Panel-Data Reference
Manual.

Following this entry, [D] data management provides an overview of data management in Stata and
of Stata’s data management commands. The other parts of this manual are arranged alphabetically.
If you are new to Stata’s data management features, we recommend that you read the following first:

[D] data management — Introduction to data management commands
[U] 12 Data
[U] 13 Functions and expressions
[U] 11.5 by varlist: construct
[U] 21 Entering and importing data
[U] 22 Combining datasets
[U] 23 Working with strings
[U] 25 Working with categorical data and factor variables
[U] 24 Working with dates and times
[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of
most Stata features, whereas this is a reference manual and provides details on the usage of specific
commands. You will get an overview of features for combining data from [U] 22 Combining datasets,
but the details of performing a match-merge (merging the records of two files by matching the records
on a common variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure
that you have the latest features, you should install the most recent official update; see [R] update.

1

2 intro — Introduction to data management reference manual

What’s new
For a complete list of all the new features in Stata 13, see [U] 1.3 What’s new.

Also see
[U] 1.3 What’s new
[R] intro — Introduction to base reference manual

Title

data management — Introduction to data management commands

Description Reference Also see

Description
This manual, called [D], documents Stata’s data management features. See Mitchell (2010) for

additional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,
merging, appending, and the like—but also to data reorganization because the statistical routines you
will use assume that the data are organized in a certain way. For example, statistical commands that
analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide
form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use Load Stata dataset
[D] save Save Stata dataset

[D] describe Describe data in memory or in file
[D] codebook Describe data contents
[D] inspect Display simple summary of data’s attributes
[D] count Count observations satisfying specified conditions
[D] data types Quick reference for data types
[D] missing values Quick reference for missing values
[D] datetime Date and time values and variables

[D] list List values of variables

[D] edit Browse or edit data with Data Editor
[D] varmanage Manage variable labels, formats, and other properties

[D] rename Rename variable
[D] format Set variables’ output format
[D] label Manipulate labels

You will need to create and drop variables, and here is how:

[D] generate Create or change contents of variable
[D] functions Functions
[D] egen Extensions to generate
[D] drop Drop variables or observations
[D] clear Clear memory

3

4 data management — Introduction to data management commands

For inputting or importing data, see

[D] use Load Stata dataset
[D] sysuse Use shipped dataset
[D] webuse Use dataset from Stata website

[D] input Enter data from keyboard
[D] import Overview of importing data into Stata
[D] import delimited Import and export delimited-text data
[D] import excel Import and export Excel files
[D] import haver Import data from Haver Analytics databases
[D] import sasxport Import and export datasets in SAS XPORT format
[D] infile (fixed format) Read text data in fixed format with a dictionary
[D] infile (free format) Read unformatted text data
[D] infix (fixed format) Read text data in fixed format

[D] odbc Load, write, or view data from ODBC sources
[D] xmlsave Export or import dataset in XML format

[D] hexdump Display hexadecimal report on file

[D] icd9 ICD-9-CM diagnostic and procedure codes

and for exporting data, see

[D] save Save Stata dataset
[D] export Overview of exporting data from Stata
[D] outfile Export dataset in text format
[D] import delimited Import and export delimited-text data
[D] import excel Import and export Excel files
[D] import sasxport Import and export datasets in SAS XPORT format
[D] odbc Load, write, or view data from ODBC sources

The ordering of variables and observations (sort order) can be important; see

[D] order Reorder variables in dataset
[D] sort Sort data
[D] gsort Ascending and descending sort

data management — Introduction to data management commands 5

To reorganize or combine data, see

[D] merge Merge datasets
[D] append Append datasets
[D] reshape Convert data from wide to long form and vice versa
[D] collapse Make dataset of summary statistics
[D] contract Make dataset of frequencies and percentages
[D] fillin Rectangularize dataset
[D] expand Duplicate observations
[D] expandcl Duplicate clustered observations
[D] stack Stack data
[D] joinby Form all pairwise combinations within groups
[D] xpose Interchange observations and variables
[D] cross Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that
beginners often overlook.

For random sampling, see

[D] sample Draw random sample
[D] drawnorm Draw sample from multivariate normal distribution

For file manipulation, see

[D] type Display contents of a file
[D] erase Erase a disk file
[D] copy Copy file from disk or URL

[D] cd Change directory
[D] dir Display filenames
[D] mkdir Create directory
[D] rmdir Remove directory

[D] cf Compare two datasets
[D] changeeol Convert end-of-line characters of text file
[D] filefilter Convert text or binary patterns in a file
[D] checksum Calculate checksum of file

[D] zipfile Compress and uncompress files and directories in zip archive
format

6 data management — Introduction to data management commands

The entries above are important. The rest are useful when you need them:

[D] datasignature Determine whether data have changed

[D] type Display contents of a file
[D] notes Place notes in data
[D] label language Labels for variables and values in multiple languages
[D] labelbook Label utilities

[D] encode Encode string into numeric and vice versa
[D] recode Recode categorical variables
[D] ipolate Linearly interpolate (extrapolate) values
[D] destring Convert string variables to numeric variables and vice versa
[D] mvencode Change missing values to numeric values and vice versa
[D] pctile Create variable containing percentiles
[D] range Generate numerical range

[D] by Repeat Stata command on subsets of the data
[D] statsby Collect statistics for a command across a by list

[D] compress Compress data in memory
[D] recast Change storage type of variable

[D] datetime display formats Display formats for dates and times
[D] datetime translation String to numeric date translation functions
[D] bcal Business calendar file manipulation
[D] datetime business calendars Business calendars
[D] datetime business calendars Business calendars creation

creation

data management — Introduction to data management commands 7

[D] assert Verify truth of claim
[D] clonevar Clone existing variable
[D] compare Compare two variables
[D] corr2data Create dataset with specified correlation structure
[D] ds List variables matching name patterns or other characteristics
[D] duplicates Report, tag, or drop duplicate observations
[D] isid Check for unique identifiers
[D] lookfor Search for string in variable names and labels
[D] memory Memory management
[D] putmata Put Stata variables into Mata and vice versa
[D] obs Increase the number of observations in a dataset
[D] rename group Rename groups of variables
[D] separate Create separate variables
[D] shell Temporarily invoke operating system
[D] snapshot Save and restore data snapshots
[D] split Split string variables into parts

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you
will find particularly useful.

Reference
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Also see
[D] intro — Introduction to data management reference manual

[R] intro — Introduction to base reference manual

http://www.stata-press.com/books/dmus.html

Title

append — Append datasets

Syntax Menu Description Options
Remarks and examples Also see

Syntax
append using filename

[
filename . . .

] [
, options

]
You may enclose filename in double quotes and must do so if filename contains blanks or other

special characters.

options Description

generate(newvar) newvar marks source of resulting observations
keep(varlist) keep specified variables from appending dataset(s)
nolabel do not copy value-label definitions from dataset(s) on disk
nonotes do not copy notes from dataset(s) on disk
force append string to numeric or numeric to string without error

Menu
Data > Combine datasets > Append datasets

Description
append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any

filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 22 Combining
datasets for a comparison of append, merge, and joinby.

Options
generate(newvar) specifies the name of a variable to be created that will mark the source of

observations. Observations from the master dataset (the data in memory before the append
command) will contain 0 for this variable. Observations from the first using dataset will contain 1
for this variable; observations from the second using dataset will contain 2 for this variable; and
so on.

keep(varlist) specifies the variables to be kept from the using dataset. If keep() is not specified,
all variables are kept.

The varlist in keep(varlist) differs from standard Stata varlists in two ways: variable names in
varlist may not be abbreviated, except by the use of wildcard characters, and you may not refer
to a range of variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset
in memory. Even if you do not specify this option, label definitions from the disk dataset never
replace definitions already in memory.

8

append — Append datasets 9

nonotes prevents notes in the using dataset from being incorporated into the result. The default is
to incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append
issues a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see

[D] save).

Example 1

We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,
contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

. use even
(6th through 8th even numbers)

. list

number even

1. 6 12
2. 7 14
3. 8 16

. use odd
(First five odd numbers)

. list

number odd

1. 1 1
2. 2 3
3. 3 5
4. 4 7
5. 5 9

We will append the even data to the end of the odd data. Because the odd data are already in
memory (we just used them above), we type append using even. The result is

10 append — Append datasets

. append using even

. list

number odd even

1. 1 1 .
2. 2 3 .
3. 3 5 .
4. 4 7 .
5. 5 9 .

6. 6 . 12
7. 7 . 14
8. 8 . 16

Because the number variable is in both datasets, the variable was extended with the new data
from the file even.dta. Because there is no variable called odd in the new data, the additional
observations on odd were forward-filled with missing (.). Because there is no variable called even
in the original data, the first observations on even were back-filled with missing.

Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

. use http://www.stata-press.com/data/r13/odd1
(First five odd numbers)

. describe

Contains data from http://www.stata-press.com/data/r13/odd1.dta
obs: 5 First five odd numbers
vars: 2 9 Jan 2013 08:41
size: 40

storage display value
variable name type format label variable label

odd float %9.0g Odd numbers
number float %9.0g

Sorted by: number

. describe using http://www.stata-press.com/data/r13/even

Contains data from http://www.stata-press.com/data/r13/even
obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2013 08:43
size: 27

storage display value
variable name type format label variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number

. append using http://www.stata-press.com/data/r13/even

append — Append datasets 11

. list

odd number even

1. 1 1 .
2. 3 2 .
3. 5 3 .
4. 7 4 .
5. 9 5 .

6. . 6 12
7. . 7 14
8. . 8 16

The results are the same as those in the first example.

When Stata appends two datasets, the definitions of the dataset in memory, called the master
dataset, override the definitions of the dataset on disk, called the using dataset. This extends to value
labels, variable labels, characteristics, and date–time stamps. If there are conflicts in numeric storage
types, the more precise storage type will be used regardless of whether this storage type was in the
master dataset or the using dataset. If a variable is stored as a string in one dataset that is longer
than in the other, the longer str# storage type will prevail. If a variable is stored as a strL in one
dataset and a str# in another dataset, the strL storage type will prevail.

Technical note
If a variable is a string in one dataset and numeric in the other, Stata issues an error message

unless the force option is specified. If force is specified, Stata issues a warning message before
appending the data. If the using dataset contains the string variable, the combined dataset will have
numeric missing values for the appended data on this variable; the contents of the string variable in
the using dataset are ignored. If the using dataset contains the numeric variable, the combined dataset
will have empty strings for the appended data on this variable; the contents of the numeric variable
in the using dataset are ignored.

Example 3

Because Stata has five numeric variable types—byte, int, long, float, and double—you may
attempt to append datasets containing variables with the same name but of different numeric types;
see [U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:
. describe using http://www.stata-press.com/data/r13/odd

Contains data from http://www.stata-press.com/data/r13/odd
obs: 5 First five odd numbers
vars: 2 9 Jan 2013 08:50
size: 60

storage display value
variable name type format label variable label

number float %9.0g
odd float %9.0g Odd numbers

Sorted by:

12 append — Append datasets

. describe using http://www.stata-press.com/data/r13/even

Contains data from http://www.stata-press.com/data/r13/even
obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2013 08:43
size: 27

storage display value
variable name type format label variable label

number byte %9.0g
even float %9.0g Even numbers

Sorted by: number

. describe using http://www.stata-press.com/data/r13/oddeven

Contains data from http://www.stata-press.com/data/r13/oddeven
obs: 8 First five odd numbers
vars: 3 9 Jan 2013 08:53
size: 128

storage display value
variable name type format label variable label

number float %9.0g
odd float %9.0g Odd numbers
even float %9.0g Even numbers

Sorted by:

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because
float is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as
a float. Had we instead appended odd.dta to even.dta, number would still have been stored as
a float:

. use http://www.stata-press.com/data/r13/even, clear
(6th through 8th even numbers)

. append using http://www.stata-press.com/data/r13/odd
number was byte now float

. describe

Contains data from http://www.stata-press.com/data/r13/even.dta
obs: 8 6th through 8th even numbers
vars: 3 9 Jan 2013 08:43
size: 96

storage display value
variable name type format label variable label

number float %9.0g
even float %9.0g Even numbers
odd float %9.0g Odd numbers

Sorted by:
Note: dataset has changed since last saved

append — Append datasets 13

Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously
given a label variable educ "Education Level" command so that the variable label associated
with educ is “Education Level”. We now append a dataset called newdata.dta, which also contains
a variable named educ, except that its variable label is “Ed. Lev”. After appending the two datasets,
the educ variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further
assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl.
Thus there is one definition of educlbl in memory and another (although perhaps equivalent) definition
in newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem
and sticks with the definition currently in memory, ignoring the definition in the disk file.

Technical note
When you append two datasets that both contain definitions of the same value label, the codings

may not be equivalent. That is why Stata warns you with a message like “label educlbl already
defined”. If you do not know that the two value labels are equivalent, you should convert the value-
labeled variables into string variables, append the data, and then construct a new coding. decode and
encode make this easy:

. use newdata, clear

. decode educ, gen(edstr)

. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)

. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in
the incoming file, whether or not there is a conflict. In practice, you will probably never want to do
this.

14 append — Append datasets

Example 6

Suppose that we have several datasets containing the populations of counties in various states. We
can use append to combine these datasets all at once and use the generate() option to create a
variable identifying from which dataset each observation originally came.

. use http://www.stata-press.com/data/r13/capop

. list

county pop

1. Los Angeles 9878554
2. Orange 2997033
3. Ventura 798364

. append using http://www.stata-press.com/data/r13/ilpop
> http://www.stata-press.com/data/r13/txpop, generate(state)

. label define statelab 0 "CA" 1 "IL" 2 "TX"

. label values state statelab

. list

county pop state

1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL

6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Also see
[D] cross — Form every pairwise combination of two datasets

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

[D] use — Load Stata dataset

[U] 22 Combining datasets

Title

assert — Verify truth of claim

Syntax Description Options Remarks and examples Also see

Syntax
assert exp

[
if
] [

in
] [

, rc0 null fast
]

by is allowed; see [D] by.

Description
assert verifies that exp is true. If it is true, the command produces no output. If it is not true,

assert informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error
messages and return codes.

Options
rc0 forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples
assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate

to look for evidence of errors in the dataset. These commands, however, require you to review the
output to spot the error. assert is useful because it tells Stata not only what to do but also what
you can expect to find. Groups of assertions are often combined in a do-file to certify data. If the
do-file runs all the way through without complaining, every assertion in the file is true.

. do myassert

. use trans, clear
(xplant data)

. assert sex=="m" | sex=="f"

. assert packs==0 if !smoker

. assert packs>0 if smoker

. sort patient date

. by patient: assert sex==sex[_n-1] if _n>1

. by patient: assert abs(bp-bp[_n-1]) < 20 if bp< . & bp[_n-1]< .

. by patient: assert died==0 if _n!=_N

. by patient: assert died==0 | died==1 if _n==_N

. by patient: assert n_xplant==0 | n_xplant==1 if _n==_N

. assert inval==int(inval)

.

.
end of do-file

15

16 assert — Verify truth of claim

Example 1

You receive data from Bob, a coworker. He has been working on the dataset for some time, and
it has now been delivered to you for analysis. Before analyzing the data, you (smartly) verify that
the data are as Bob claims. In Bob’s memo, he claims that 1) the dataset reflects the earnings of 522
employees, 2) the earnings are only for full-time employees, 3) the variable female is coded 1 for
female and 0 otherwise, and 4) the variable exp contains the number of years, or fraction thereof, on
the job. You assemble the following do-file:

use frombob, clear
assert _N==522
assert sal>=6000 & sal<=125000
assert female==1 | female==0
gen work=sum(female==1)
assert work[_N]>0
replace work=sum(female==0)
assert work[_N]>0
drop work
assert exp>=0 & exp<=40

Let’s go through these assertions one by one. After using the data, you assert that N equals 522.
Remember, N reflects the total number of observations in the dataset; see [U] 13.4 System variables
(variables). Bob said it was 522, so you check it. Bob’s second claim was that the data are for only
full-time employees. You know that everybody in your company makes a salary between $6,000 and
$125,000, so you check that the salary figures are within this range. Bob’s third assertion was that
the female variable was coded zero or one.

You add something more. You know that your company employs both males and females, so you
check that there are some of each. You create a variable called work equal to the running sum of
female observations and then verify that the last observation of this variable is greater than zero.
You then repeat the process for males and discard the work variable. Finally, you verify that the exp
variable is never negative and is never larger than 40.

You save the above file as check.do, and here is what happens when you run it:

. do check

. use frombob, clear
(5/21 data)

. assert _N==522

. assert sal>6000 & sal<=125000
14 contradictions in 522 observations
assertion is false
r(9);

end of do-file
r(9);

Everything went fine until you checked the salary variable, when Stata told you that there were 14
contradictions to your assertion and stopped the do-file. Seeing this, you now interactively summarize
the sal variable and discover that 14 people have missing salaries. You dash off a memo to Bob
asking him why these data are missing.

assert — Verify truth of claim 17

Example 2

Bob responds quickly. There was a mistake in reading the salaries for the consumer relations
division. He says it’s fixed. You believe him but check with your do-file again. This time you type
run instead of do, suppressing all the output:

. run check

. _

Even though you suppressed the output, if there had been any contradictions, the messages would
have printed. check.do ran fine, so all its assertions are true.

Technical note

assert is especially useful when you are processing large amounts of data in a do-file and wish to
verify that all is going as expected. The error here may not be in the data but in the do-file itself. For
instance, your do-file is rolling along, and it has just merged two datasets that it created by subsetting
some other data. If everything has gone right so far, every observation should have merged. Include
the line

assert _merge==3

to verify the correctness of the merge. If all the observations did not merge, the assertion will be
false, and your do-file will stop.

As another example, you are combining data from many sources, and you know that after the first
two datasets are combined, every individual’s sex should be defined. So, you include the line

assert sex< .

in your do-file. Experienced Stata users include many assertions in their do-files when they process
data.

Technical note

assert is smart in how it evaluates expressions. When you type something like assert N==522
or assert work[N]>0, assert knows that the expression needs to be evaluated only once. When
you type assert female==1 | female==0, assert knows that the expression needs to be evaluated
once for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is
evaluated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

18 assert — Verify truth of claim

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to
assert work>0.

Also see
[P] capture — Capture return code

[P] confirm — Argument verification

[U] 16 Do-files

Title

bcal — Business calendar file manipulation

Syntax Menu Description
Option for bcal check Options for bcal create Remarks and examples
Stored results Also see

Syntax

List business calendars used by the data in memory

bcal check
[

varlist
] [

, rc0
]

List filenames and directories of available business calendars

bcal dir
[

pattern
]

Describe the specified business calendar

bcal describe calname

Load the specified business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename
[

if
] [

in
]
, from(varname)

[
bcal create options

]
where

varlist is a list of variable names to be checked for whether they use business calendars. If not
specified, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and ?. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,
calname could be simple or %tbsimple.

filename is the name of the business calendar file created by bcal create.

19

20 bcal — Business calendar file manipulation

bcal create options Description

Main
∗from(varname) specify date variable for calendar
generate(newvar) generate newvar containing business dates
excludemissing(varlist

[
, any

]
) exclude observations with missing values in varlist

personal save calendar file in your PERSONAL directory
replace replace file if it already exists

Advanced

purpose(text) describe purpose of calendar
dateformat(ymd | ydm | myd | mdy | dym | dmy) specify date format in calendar file
range(fromdate todate) specify range of calendar
centerdate(date) specify center date of calendar
maxgap(#) specify maximum gap allowed; default is 10 days

∗from(varname) is required.

Menu
Data > Other utilities > Business calendar

Data > Variables Manager

Description
See [D] datetime business calendars for an introduction to business calendars and dates.

bcal check lists the business calendars used by the data in memory, if any.

bcal dir pattern lists filenames and directories of all available business calendars matching
pattern, or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically
when needed, and thus use of bcal load is never required. bcal load is used by programmers
writing their own business calendars. bcal load calname forces immediate loading of a business
calendar and displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Option for bcal check

� � �
Main �

rc0 specifies that bcal check is to exit without error (return 0) even if some calendars do not exist
or have errors. Programmers can then access the results bcal check stores in r() to get even
more details about the problems. If you wish to suppress bcal dir, precede the bcal check
command with capture and specify the rc0 option if you wish to access the r() results.

bcal — Business calendar file manipulation 21

Options for bcal create

� � �
Main �

from(varname) specifies the date variable used to create the business calendar. Gaps between dates
in varname define business holidays. The longest gap allowed can be set with the maxgap()
option. from() is required.

generate(newvar) specifies that newvar be created. newvar is a date variable in %tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing(varlist
[
, any

]
) specifies that the dates of observations with missing values in

varlist are business holidays. By default, the dates of observations with missing values in all
variables in varlist are holidays. The any suboption specifies that the dates of observations with
missing values in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be
used if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

� � �
Advanced �

purpose(text) specifies the purpose of the business calendar being created. text cannot exceed 63
characters.

dateformat(ymd | ydm | myd | mdy | dym | dmy) specifies the date format in the new business calendar.
The default is dateformat(ymd). dateformat() has nothing to do with how dates will look
when variables are formatted with %tbcalname; it specifies how dates are typed in the calendar
file.

range(fromdate todate) defines the date range of the calendar being created. fromdate and todate
should be in the format specified by the dateformat() option; if not specified, the default ymd
format is assumed.

centerdate(date) defines the center date of the new business calendar. If not specified, the earliest
date in the calendar is assumed. date should be in the format specified by the dateformat()
option; if not specified, the default ymd format is assumed.

maxgap(#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap(10).

Remarks and examples
bcal check reports on any %tb formats used by the data in memory:

. bcal check

%tbsimple: defined, used by variable
mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:

simple: C:\Program Files\Stata13\ado\base\s\simple.stbcal

22 bcal — Business calendar file manipulation

bcal describe reports on an individual calendar.

. bcal describe simple

Business calendar simple (format %tbsimple):

purpose: Example for manual

range: 01nov2012 30nov2012
18932 18961 in %td units

0 19 in %tbsimple units

center: 01nov2012
18932 in %td units

0 in %tbsimple units

omitted: 10 days
121.8 approx. days/year

included: 20 days
243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] datetime business calendars
creation.

bcal create creates a business calendar file from the current dataset and describes the new
calendar. For example, sp500.dta is a dataset installed with Stata that has daily records on the
S&P 500 stock market index in 2001. The dataset has observations only for days when trading took
place. A business calendar for stock trading in 2001 can be automatically created from this dataset
as follows:

. sysuse sp500
(S&P 500)

. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)

Business calendar sp500 (format %tbsp500):

purpose: S&P 500 for 2001

range: 02jan2001 31dec2001
14977 15340 in %td units

0 247 in %tbsp500 units

center: 02jan2001
14977 in %td units

0 in %tbsp500 units

omitted: 116 days
116.4 approx. days/year

included: 248 days
248.9 approx. days/year

Notes:

business calendar file sp500.stbcal saved

variable bizdate created; it contains business dates in %tbsp500 format

bcal — Business calendar file manipulation 23

The business calendar file created:

begin sp500.stbcal

* Business calendar "sp500" created by -bcal create-
* Created/replaced on 23 Oct 2012

version 13
purpose "S&P 500 for 2001"
dateformat ymd

range 2001jan02 2001dec31
centerdate 2001jan02

omit dayofweek (Sa Su)
omit date 2001jan15
omit date 2001feb19
omit date 2001apr13
omit date 2001may28
omit date 2001jul04
omit date 2001sep03
omit date 2001sep11
omit date 2001sep12
omit date 2001sep13
omit date 2001sep14
omit date 2001nov22
omit date 2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system
by specifying a path in filename. It is assumed that the directory where the file is to be saved
already exists. The pattern of filename should be

[
path

]
calname

[
.stbcal

]
. Here calname should

be without the %tb prefix; calname has to be a valid Stata name but limited to 10 characters. If path
is not specified, the file is saved in the current working directory. If the .stbcal extension is not
specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files
in the same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official
Stata directories, your site’s directory (SITE), your current working directory, your personal directory
(PERSONAL), and your directory for materials written by other users (PLUS). The option personal
specifies that the calendar file be saved in your PERSONAL directory, which ensures that the created
calendar can be easily found in future work.

Stored results
bcal check stores the following in r():

Macros
r(defined) business calendars used, stbcal-file exists, and file contains no errors
r(undefined) business calendars used, but no stbcal-files exist for them

Warning to programmers: Specify the rc0 option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has
errors; in such cases, the results are not stored.

24 bcal — Business calendar file manipulation

bcal describe and bcal create store the following in r():

Scalars
r(min date td) calendar’s minimum date in %td units
r(max date td) calendar’s maximum date in %td units
r(ctr date td) calendar’s zero date in %td units
r(min date tb) calendar’s minimum date in %tb units
r(max date tb) calendar’s maximum date in %tb units
r(omitted) total number of days omitted from calendar
r(included) total number of days included in calendar

Macros
r(name) pure calendar name (for example, nyse)
r(purpose) short description of calendar’s purpose

bcal load stores the same results in r() as bcal describe, except it does not store r(omitted)
and r(included).

Also see
[D] datetime — Date and time values and variables

[D] datetime business calendars — Business calendars

[D] datetime business calendars creation — Business calendars creation

Title

by — Repeat Stata command on subsets of the data

Syntax Description Options Remarks and examples
References Also see

Syntax

by varlist : stata cmd

bysort varlist : stata cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist1
[
(varlist2)

] [
, sort rc0

]
: stata cmd

bysort varlist1
[
(varlist2)

] [
, rc0

]
: stata cmd

Description
Most Stata commands allow the by prefix, which repeats the command for each group of observations

for which the values of the variables in varlist are the same. by without the sort option requires
that the data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax
diagram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed;
see [U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist1 (varlist2) syntax is of special use to programmers. It verifies that the data are sorted
by varlist1 varlist2 and then performs a by as if only varlist1 were specified. For instance,

by pid (time): gen growth = (bp - bp[n-1])/bp

performs the generate by values of pid but first verifies that the data are sorted by pid and time
within pid.

Options
sort specifies that if the data are not already sorted by varlist, by should sort them.

rc0 specifies that even if the stata cmd produces an error in one of the by-groups, then by is still
to run the stata cmd on the remaining by-groups. The default action is to stop when an error
occurs. rc0 is especially useful when stata cmd is an estimation command and some by-groups
have insufficient observations.

25

26 by — Repeat Stata command on subsets of the data

Remarks and examples

Example 1

. use http://www.stata-press.com/data/r13/autornd
(1978 Automobile Data)

. keep in 1/20
(54 observations deleted)

. by mpg: egen mean_w = mean(weight)
not sorted
r(5);

. sort mpg

. by mpg: egen mean_w = mean(weight)

. list

make weight mpg mean_w

1. Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. Chev. Impala 3500 15 3916.667
4. Buick Electra 4000 15 3916.667
5. Cad. Deville 4500 15 3916.667

6. Buick Riviera 4000 15 3916.667
7. Buick LeSabre 3500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9. Buick Skylark 3500 20 3350
10. Buick Century 3500 20 3350

11. AMC Spirit 2500 20 3350
12. AMC Concord 3000 20 3350
13. Buick Regal 3500 20 3350
14. Chev. Malibu 3000 20 3350
15. Chev. Nova 3500 20 3350

16. Cad. Seville 4500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Chev. Chevette 2000 30 2000
20. Dodge Colt 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort: egen
mean w = mean(weight) or bysort mpg: egen mean w = mean(weight) rather than the separate
sort; all would yield the same results.

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 27.2 The
by construct. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2010,
chap. 7).

Technical note

by repeats the stata cmd for each group defined by varlist. If stata cmd stores results, only the
results from the last group on which stata cmd executes will be stored.

by — Repeat Stata command on subsets of the data 27

References
Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Also see
[D] sort — Sort data

[D] statsby — Collect statistics for a command across a by list

[P] byable — Make programs byable

[P] foreach — Loop over items

[P] forvalues — Loop over consecutive values

[P] while — Looping

[U] 11.1.2 by varlist:
[U] 11.1.10 Prefix commands
[U] 11.4 varlists
[U] 11.5 by varlist: construct
[U] 27.2 The by construct

http://www.stata-journal.com/sjpdf.html?articlenum=pr0004
http://www.stata-press.com/books/dmus.html

Title

cd — Change directory

Syntax Description Remarks and examples Also see

Syntax
Stata for Windows

cd

cd
[
"
]
directory name

[
"
]

cd
[
"
]
drive:

[
"
]

cd
[
"
]
drive:directory name

[
"
]

pwd

Stata for Mac and Stata Unix

cd

cd
[
"
]
directory name

[
"
]

pwd

If your directory name contains embedded spaces, remember to enclose it in double quotes.

Description
Stata for Windows: cd changes the current working directory to the specified drive and directory.

pwd is equivalent to typing cd without arguments; both display the name of the current working
directory. Note: You can shell out to a DOS window; see [D] shell. However, typing !cd directory name
does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to
directory name or, if directory name is not specified, the home directory. pwd displays the path of
the current working directory.

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

28

cd — Change directory 29

Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory
specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.
You can always see what your working directory is by looking at the status bar at the bottom of the
Stata window.

Once you are in Stata, you can change your directory with the cd command.

. cd
c:\data

. cd city
c:\data\city

. cd d:
D:\

. cd kande
D:\kande

. cd "additional detail"
D:\kande\additional detail

. cd c:
C:\

. cd data\city
C:\data\city

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g

. cd ..
C:\a\b\c\d\e\f

. cd ...
C:\a\b\c\d

. cd
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then
cd "additional detail". The double quotes around “additional detail” are necessary because of
the space in the directory name. We could have changed to this directory in one command: cd
"d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the
cd .. syntax to move up one directory from where you are. The last two cd commands above let
you move up more than one directory: cd ... is shorthand for ‘cd ..\..’ and cd is shorthand
for ‘cd ..\..\..’. These shorthand cd commands are not limited to Stata; they will work in your
DOS windows under Windows as well.

Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command
language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is
foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current
folder (where Stata saves files and looks for files) by typing pwd. You can change the current folder
by using cd or by selecting File > Change Working Directory.... Stata’s cd understands ‘~’ as an
abbreviation for the home directory, so you can type things like cd ~/data.

30 cd — Change directory

. pwd
/Users/bill/proj

. cd "~/data/city"
/Users/bill/data/city

.

If you now wanted to change to "/Users/bill/data/city/ny", you could type cd ny. If you
wanted instead to change to "/Users/bill/data", you could type ‘cd ..’.

Stata for Unix
cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands

‘~’ as an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see
[U] 11.6 Filenaming conventions.

. pwd
/usr/bill/proj

. cd ~/data/city
/usr/bill/data/city

.

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted
instead to change to /usr/bill/data, you could type ‘cd ..’.

Also see
[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

cf — Compare two datasets

Syntax Menu Description Options
Remarks and examples Stored results Methods and formulas Acknowledgment
Reference Also see

Syntax

cf varlist using filename
[
, all verbose

]
Menu

Data > Data utilities > Compare two datasets

Description
cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables

in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.
Variable labels, value labels, notes, characteristics, etc., are not compared.

Options
all displays the result of the comparison for each variable in varlist. Unless all is specified, only

the results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples
cf produces messages having the following form:

varname: does not exist in using
varname: in master but in using
varname: mismatches
varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to
understand any differences before continuing:

. cf _all using mydata

.

31

32 cf — Compare two datasets

All the variables in the master dataset are in mydata.dta, and these variables are the same in both
datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear ratio
variables do not exist in mydata.dta.

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all
make: match
price: match
mpg: 2 mismatches

rep78: match
headroom: does not exist in using

trunk: match
weight: match
length: match
turn: match

displacement: does not exist in using
gear_ratio: does not exist in using

foreign: match
r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose
mpg: 2 mismatches

obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using

headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using

r(9);

This example shows us exactly which two observations for mpg differ, as well as the value stored
in each dataset.

Example 2

We want to compare a group of variables in the dataset in memory against the same group of
variables in mydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches

headroom: does not exist in using
r(9);

cf — Compare two datasets 33

Stored results
cf stores the following in r():

Macros
r(Nsum) number of differences

Methods and formulas
If you are using Small Stata, you may get the error “too many variables” when you stipulate all

and have many variables in your dataset. (This will not happen if you are using Stata/MP, Stata/SE,
or Stata/IC.) If this happens, you will have to perform the comparison with groups of variables. See
example 2 for details about how to do this.

Acknowledgment
Speed improvements in cf were based on code written by David Kantor.

Reference
Gleason, J. R. 1995. dm36: Comparing two Stata data sets. Stata Technical Bulletin 28: 10–13. Reprinted in Stata

Technical Bulletin Reprints, vol. 5, pp. 39–43. College Station, TX: Stata Press.

Also see
[D] compare — Compare two variables

http://www.stata.com/products/stb/journals/stb28.pdf

Title

changeeol — Convert end-of-line characters of text file

Syntax Description Options Remarks and examples Also see

Syntax
changeeol filename1 filename2, eol(platform)

[
options

]
filename1 and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the
filename contains embedded blanks.

options Description

∗eol(windows) convert to Windows-style end-of-line characters (\r\n)
∗eol(dos) synonym for eol(windows)
∗eol(unix) convert to Unix-style end-of-line characters (\n)
∗eol(mac) convert to Mac-style end-of-line characters (\n)
∗eol(classicmac) convert to classic Mac-style end-of-line characters (\r)
replace overwrite filename2
force force to convert filename1 to filename2 if filename1 is a binary file

∗eol() is required.

Description
changeeol converts text file filename1 to text file filename2 with the specified Win-

dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line charac-
ters from one type of file to another.

Options
eol(windows | dos | unix | mac | classicmac) specifies to which platform style filename2 is to be

converted. eol() is required.

replace specifies that filename2 be replaced if it already exists.

force specifies that filename1 be converted if it is a binary file.

Remarks and examples
changeeol uses hexdump to determine whether filename1 is ASCII or binary. If it is binary,

changeeol will refuse to convert it unless the force option is specified.

34

changeeol — Convert end-of-line characters of text file 35

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)

Unix:

. changeeol orig.txt newcopy.txt, eol(unix)

Mac:

. changeeol orig.txt newcopy.txt, eol(mac)

Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see
[D] filefilter — Convert text or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

Title

checksum — Calculate checksum of file

Syntax Description Options Remarks and examples
Stored results Also see

Syntax

checksum filename
[
, options

]
set checksum

{
on | off

} [
, permanently

]
options Description

save save output to filename.sum; default is to display a report
replace may overwrite filename.sum; use with save

saving(filename2
[
, replace

]
) save output to filename2; alternative to save

Description

checksum creates filename.sum files for later use by Stata when it reads files over a network.
These optional files are used to reduce the chances of corrupted files going undetected. Whenever
Stata reads file filename.suffix over a network, whether by use, net, update, etc., it also looks for
filename.sum. If Stata finds that file, Stata reads it and uses its contents to verify that the first file
was received without error. If there are errors, Stata informs the user that the file could not be read.

set checksum on tells Stata to verify that files downloaded over a network have been received
without error.

set checksum off, which is the default, tells Stata to bypass the file verification.

Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the
file size in bytes. checksum produces the same results as the Unix cksum command. Comparing the
checksum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and
cksum commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used
by Unix’s sum. In some Unix operating systems, there is no cksum command, and the more robust
algorithm is obtained by specifying an option with sum.

36

checksum — Calculate checksum of file 37

Options
save saves the output of the checksum command to the text file filename.sum. The default is to

display a report but not create a file.

replace is for use with save; it permits Stata to overwrite an existing filename.sum file.

saving(filename2
[
, replace

]
) is an alternative to save. It saves the output in the specified

filename. You must supply a file extension if you want one, because none is assumed.

permanently specifies that, in addition to making the change right now, the checksum setting be
remembered and become the default setting when you invoke Stata.

Remarks and examples

Example 1

Say that you wish to put a dataset on your homepage so that colleagues can use it over the Internet
by typing

. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by
the Internet are small, you wish to guard against that. The solution is to create the checksum file
named mydata.sum and place that on your homepage. Your colleagues need type nothing different,
but now Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata
file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

Example 2

Let’s use checksum on the auto dataset that is shipped with Stata. We will load the dataset and
save it to our current directory.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. save auto
file auto.dta saved

. checksum auto.dta
Checksum for auto.dta = 2694850408, size = 6442

38 checksum — Calculate checksum of file

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 6442 2694850408

The first number is the version number (possibly used for future releases). The second number is
the file’s size in bytes, which can be used with the checksum value to ensure that the file transferred
without corruption. The third number is the checksum value. Although two different files can have
the same checksum value, two files with the same checksum value almost certainly could not have
the same file size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file
transmission error occurred during a web download. If you want to verify that your own data are
unchanged, using datasignature is better; see [D] datasignature.

Stored results
checksum stores the following in r():

Scalars
r(version) checksum version number
r(filelen) length of file in bytes
r(checksum) checksum value

Also see
[D] use — Load Stata dataset

[R] net — Install and manage user-written additions from the Internet

[D] datasignature — Determine whether data have changed

Title

clear — Clear memory

Syntax Description Remarks and examples Also see

Syntax
clear

clear
[
mata | results | matrix | programs | ado

]
clear

[
all | *

]
Description

clear, by itself, removes data and value labels from memory and is equivalent to typing

. version 13

. drop _all (see [D] drop)

. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. version 13

. mata: mata clear (see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. version 13

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does
not eliminate Mata matrices from memory. clear matrix is equivalent to typing

. version 13

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)

. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. version 13

. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs
defined interactively or by do-files). It is equivalent to typing

. version 13

. program drop _allado (see [P] program)

39

40 clear — Clear memory

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars,
constraints, clusters, stored results, sersets, and Mata functions and objects from memory. They also
close all open files and postfiles, clear the class system, close any open Graph windows and dialog
boxes, drop all programs from memory, and reset all timers to zero. They are equivalent to typing

. version 13

. drop _all (see [D] drop)

. label drop _all (see [D] label)

. matrix drop _all (see [P] matrix utility)

. scalar drop _all (see [P] scalar)

. constraint drop _all (see [R] constraint)

. cluster drop _all (see [MV] cluster utility)

. file close _all (see [P] file)

. postutil clear (see [P] postfile)

. _return drop _all (see [P] _return)

. discard (see [P] discard)

. program drop _all (see [P] program)

. timer clear (see [P] timer)

. mata: mata clear (see [M-3] mata clear)

Remarks and examples
You can clear the entire dataset without affecting macros and programs by typing clear. You can

also type clear all. This command has the same result as clear by itself but also clears matrices,
scalars, constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and
programs; closes all open files and postfiles; closes all open Graph windows and dialog boxes; and
resets all timers to zero.

Example 1

We load the bpwide dataset to correct a mistake in the data.

. use http://www.stata-press.com/data/r13/bpwide
(fictional blood pressure data)

. list in 1/5

patient sex agegrp bp_bef~e bp_after

1. 1 Male 30-45 143 153
2. 2 Male 30-45 163 170
3. 3 Male 30-45 153 168
4. 4 Male 30-45 153 142
5. 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp after in observation 4. It is easiest
to begin again.

. clear

. use http://www.stata-press.com/data/r13/bpwide
(fictional blood pressure data)

clear — Clear memory 41

Also see
[D] drop — Drop variables or observations

[P] discard — Drop automatically loaded programs

[U] 11 Language syntax
[U] 13 Functions and expressions

Title

clonevar — Clone existing variable

Syntax Menu Description Remarks and examples
Acknowledgments Also see

Syntax
clonevar newvar = varname

[
if
] [

in
]

Menu
Data > Create or change data > Other variable-creation commands > Clone existing variable

Description
clonevar generates newvar as an exact copy of an existing variable, varname, with the same

storage type, values, and display format as varname. varname’s variable label, value labels, notes,
and characteristics will also be copied.

Remarks and examples
clonevar has various possible uses. Programmers may desire that a temporary variable appear

to the user exactly like an existing variable. Interactively, you might want a slightly modified copy
of an original variable, so the natural starting point is a clone of the original.

Example 1

We have a dataset containing information on modes of travel. These data contain a variable named
mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

. use http://www.stata-press.com/data/r13/travel

. describe mode

storage display value
variable name type format label variable label

mode byte %8.0g travel travel mode alternatives

. label list travel
travel:

1 air
2 train
3 bus
4 car

To create an identical variable identifying only observations that contain air or train, we could use
clonevar with an if qualifier.

. clonevar airtrain = mode if mode == 1 | mode == 2
(420 missing values generated)

42

clonevar — Clone existing variable 43

. describe mode airtrain

storage display value
variable name type format label variable label

mode byte %8.0g travel travel mode alternatives
airtrain byte %8.0g travel travel mode alternatives

. list mode airtrain in 1/5

mode airtrain

1. air air
2. train train
3. bus .
4. car .
5. air air

The new airtrain variable has the same storage type, display format, value label, and variable
label as mode. If mode had any characteristics or notes attached to it, they would have been applied
to the new airtrain variable, too. The only differences in the two variables are their names and
values for bus and car.

Technical note
The if qualifier used with the clonevar command in example 1 referred to the values of mode

as 1 and 2. Had we wanted to refer to the values by their associated value labels, we could have
typed

. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel

For more details, see [U] 13.10 Label values.

Acknowledgments
clonevar was written by Nicholas J. Cox of the Department of Geography at Durham University,

UK, and coeditor of the Stata Journal, who in turn thanks Michael Blasnik of M. Blasnik & Associates
and Ken Higbee of StataCorp for very helpful comments on a precursor of this command.

Also see
[D] generate — Create or change contents of variable

[D] separate — Create separate variables

http://www.stata-journal.com/

Title

codebook — Describe data contents

Syntax Menu Description Options
Remarks and examples Stored results References Also see

Syntax
codebook

[
varlist

] [
if
] [

in
] [

, options
]

options Description

Options

all print complete report without missing values
header print dataset name and last saved date
notes print any notes attached to variables
mv report pattern of missing values
tabulate(#) set tables/summary statistics threshold; default is tabulate(9)

problems report potential problems in dataset
detail display detailed report on the variables; only with problems

compact display compact report on the variables
dots display a dot for each variable processed; only with compact

Languages

languages
[
(namelist)

]
use with multilingual datasets; see [D] label language for details

Menu
Data > Describe data > Describe data contents (codebook)

Description

codebook examines the variable names, labels, and data to produce a codebook describing the
dataset.

Options

� � �
Options �

all is equivalent to specifying the header and notes options. It provides a complete report, which
excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset
was last saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a
CPU-intensive task.

44

codebook — Describe data contents 45

tabulate(#) specifies the number of unique values of the variables to use to determine whether a
variable is categorical or continuous. Missing values are not included in this count. The default is
9; when there are more than nine unique values, the variable is classified as continuous. Extended
missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been
diagnosed:

• Variables that are labeled with an undefined value label

• Incompletely value-labeled variables

• Variables that are constant, including always missing

• Leading, trailing, and embedded spaces in string variables

• Embedded binary 0 (\0) in string variables

• Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.

detail may be specified only with the problems option. It specifies that the detailed report on the
variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

� � �
Languages �

languages
[
(namelist)

]
is for use with multilingual datasets; see [D] label language. It indicates

that the codebook pertains to the languages in namelist or to all defined languages if no such
list is specified as an argument to languages(). The output of codebook lists the data label
and variable labels in these languages and which value labels are attached to variables in these
languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide
details in which language problems occur. We advise you to rerun codebook for problematic
variables; specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages(), all output, including the
problem report, is shown in the “active” language.

Remarks and examples
codebook, without arguments, is most usefully combined with log to produce a printed listing

for enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—log files.
codebook is, however, also useful interactively, because you can specify one or a few variables.

Example 1

codebook examines the data in producing its results. For variables that codebook thinks are
continuous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th
percentiles. For variables that it thinks are categorical, it presents a tabulation. In part, codebook
makes this determination by counting the number of unique values of the variable. If the number is
nine or fewer, codebook reports a tabulation; otherwise, it reports summary statistics.

46 codebook — Describe data contents

codebook distinguishes the standard missing values (.) and the extended missing values (.a
through .z, denoted by .*). If extended missing values are found, codebook reports the number
of distinct missing value codes that occurred in that variable. Missing values are ignored with the
tabulate option when determining whether a variable is treated as continuous or categorical.

. use http://www.stata-press.com/data/r13/educ3
(ccdb46, 52-54)

. codebook fips division, all

Dataset: http://www.stata-press.com/data/r13/educ3.dta
Last saved: 6 Mar 2013 22:20

Label: ccdb46, 52-54
Number of variables: 42

Number of observations: 956
Size: 145,312 bytes ignoring labels, etc.

_dta:
1. confirmed data with steve on 7/22

fips state/place code

type: numeric (long)

range: [10060,560050] units: 1
unique values: 956 missing .: 0/956

mean: 256495
std. dev: 156998

percentiles: 10% 25% 50% 75% 90%
61462 120426 252848 391360 482530

division Census Division

type: numeric (int)
label: division

range: [1,9] units: 1
unique values: 9 missing .: 4/956

unique mv codes: 2 missing .*: 2/956

tabulation: Freq. Numeric Label
69 1 N. Eng.
97 2 Mid Atl
202 3 E.N.C.
78 4 W.N.C.
115 5 S. Atl.
46 6 E.S.C.
89 7 W.S.C.
59 8 Mountain
195 9 Pacific
4 .
2 .a

Because division has nine unique nonmissing values, codebook reported a tabulation. If divi-
sion had contained one more unique nonmissing value, codebook would have switched to reporting
summary statistics, unless we had included the tabulate(#) option.

codebook — Describe data contents 47

Example 2

The mv option is useful. It instructs codebook to search the data to determine patterns of missing
values. Different kinds of missing values are not distinguished in the patterns.

. use http://www.stata-press.com/data/r13/citytemp
(City Temperature Data)

. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days

type: numeric (int)

range: [0,4389] units: 1
unique values: 438 missing .: 3/956

mean: 1240.41
std. dev: 937.668

percentiles: 10% 25% 50% 75% 90%
411 615 940 1566 2761

missing values: heatdd==mv <-> cooldd==mv
tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

heatdd Heating degree days

type: numeric (int)

range: [0,10816] units: 1
unique values: 471 missing .: 3/956

mean: 4425.53
std. dev: 2199.6

percentiles: 10% 25% 50% 75% 90%
1510 2460 4950 6232 6919

missing values: cooldd==mv <-> heatdd==mv
tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

tempjan Average January temperature

type: numeric (float)

range: [2.2,72.6] units: .1
unique values: 310 missing .: 2/956

mean: 35.749
std. dev: 14.1881

percentiles: 10% 25% 50% 75% 90%
20.2 25.1 31.3 47.8 55.1

missing values: tempjuly==mv <-> tempjan==mv

48 codebook — Describe data contents

tempjuly Average July temperature

type: numeric (float)

range: [58.1,93.6] units: .1
unique values: 196 missing .: 2/956

mean: 75.0538
std. dev: 5.49504

percentiles: 10% 25% 50% 75% 90%
68.8 71.8 74.25 78.7 82.3

missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for
cooldd and heatdd. In both cases, the correspondence is indicated with “<->”.

For cooldd, codebook also states that “tempjan==mv --> cooldd==mv”. The one-way arrow
means that a missing tempjan value implies a missing cooldd value but that a missing cooldd
value does not necessarily imply a missing tempjan value.

Another feature of codebook—this one for numeric variables—is that it can determine the units
of the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1,
meaning that temperature is recorded to tenths of a degree. codebook handles precision considerations
in making this determination (tempjan and tempjuly are floats; see [U] 13.11 Precision and
problems therein). If we had a variable in our dataset recorded in 100s (for example, 21,500 or
36,800), codebook would have reported the units as 100. If we had a variable that took on only
values divisible by 5 (5, 10, 15, etc.), codebook would have reported the units as 5.

Example 3

We can use the label language command (see [D] label language) and the label command (see
[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. label language en, rename
(language default renamed en)

. label language de, new
(language de now current language)

. label data "1978 Automobile Daten"

. label variable foreign "Art Auto"

. label values foreign origin_de

. label define origin_de 0 "Innen" 1 "Ausländish"

codebook — Describe data contents 49

. codebook foreign

foreign Art Auto

type: numeric (byte)
label: origin_de

range: [0,1] units: 1
unique values: 2 missing .: 0/74

tabulation: Freq. Numeric Label
52 0 Innen
22 1 Ausländish

. codebook foreign, languages(en de)

foreign in en: Car type
in de: Art Auto

type: numeric (byte)
label in en: origin
label in de: origin_de

range: [0,1] units: 1
unique values: 2 missing .: 0/74

tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausländish

With the languages() option, the value labels are shown in the specified active and available
languages.

Example 4

codebook, compact summarizes the variables in your dataset, including variable labels. It is an
alternative to the summarize command.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. codebook, compact

Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and Model
price 74 74 6165.257 3291 15906 Price
mpg 74 21 21.2973 12 41 Mileage (mpg)
rep78 69 5 3.405797 1 5 Repair Record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)
trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (lbs.)
length 74 47 187.9324 142 233 Length (in.)
turn 74 18 39.64865 31 51 Turn Circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear Ratio
foreign 74 2 .2972973 0 1 Car type

50 codebook — Describe data contents

. summarize

Variable Obs Mean Std. Dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41

rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 .8459948 1.5 5

trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51

displacement 74 197.2973 91.83722 79 425

gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,
for instance, for a string variable or for a numeric variable taking on many labeled values, it reports
a few examples instead.

. use http://www.stata-press.com/data/r13/funnyvar

. codebook name

name (unlabeled)

type: string (str5), but longest is str3

unique values: 10 missing "": 0/10

examples: "1 0"
"3"
"5"
"7"

warning: variable has embedded blanks

codebook is also on the lookout for common problems that might cause you to make errors when
dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and
embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded
blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname
is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined
incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2
to “female”) or that the variable was defined incorrectly (for example, a variable gender with three
values). codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each
variable but reports only the potential problems in the data.

codebook — Describe data contents 51

. codebook, problems

Potential problems in dataset http://www.stata-press.com/data/r13/funnyvar.dta

potential problem variables

constant (or all missing) vars human planet
vars with nonexisting label educ
incompletely labeled vars gender

str# vars that may be compressed name address city country planet
string vars with leading blanks city country
string vars with trailing blanks planet
string vars with embedded blanks name address

string vars with embedded \0 mugshot
noninteger-valued date vars birthdate

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

• Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always
missing, are often superfluous. Such variables, however, may also indicate problems.
For instance, variables that are always missing may occur when importing data with
an incorrect input specification. Such variables may also occur if you generate a new
variable for a subset of the data, selected with an expression that is false for all
observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant
variable, be sure to compress the variable to use minimal storage.

• Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.
A problem may arise if variables are linked to value labels that are not yet defined or
if an incorrect value label name was used.

Advice: Attach the correct value label, or label define the value label. See [D] label.

• Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no
mapping is provided for some values of the variable. An example is a variable with
values 0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an
error, either in the data or in the value label.

Advice: Change either the data or the value label.

• String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] data
types. For instance, the storage type str20 indicates that 20 bytes are used per
observation. If the declared storage type exceeds your requirements, memory and disk
space is wasted.

Advice: Use compress to store the data as compactly as possible.

• String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables
but are probably side effects from importing the data or from data manipulation. Spurious

52 codebook — Describe data contents

leading and trailing spaces force Stata to use more memory than required. In addition,
manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing

replace s = trim(s)

See [D] functions.

• String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they
indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.

• String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\0) are allowed; however, caution should be
used when working with them as some commands and functions may only work with
the plain-text portion of a binary string, ignoring anything after the first binary 0.

Advice: Be aware of binary strings in your data and whether you are manipulating them
in a way that is only appropriate with plain-text values.

• Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work
with noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a
variable are the consequence of roundoff error, you may want to round the variable to
the nearest integer.

replace time = round(time)

Of course, more problems not reported by codebook are possible. These might include

• Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually
be interpreted as numbers. Stata can do much more with numerical data than with
string data. Moreover, string representation usually makes less efficient use of computer
resources. destring will convert string variables to numeric.

A string variable may contain a “field” with numeric information. An example is an
address variable that contains the street name followed by the house number. The Stata
string functions can extract the relevant substring.

• Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that
take only a limited number of distinct values are an inefficient storage method. Use
value-labeled numeric values instead. These are easily created with encode.

• Duplicate observations

See [D] duplicates.

codebook — Describe data contents 53

• Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss()
egen function:

egen nobs = rownonmiss(varlist)

drop if nobs==0

Specify all for varlist if only observations that are always missing should be dropped.

Stored results
codebook stores the following lists of variables with potential problems in r():

Macros
r(cons) constant (or missing)
r(labelnotfound) undefined value labeled
r(notlabeled) value labeled but with unlabeled categories
r(str type) compressible
r(str leading) leading blanks
r(str trailing) trailing blanks
r(str embedded) embedded blanks
r(str embedded0) embedded binary 0 (\0)
r(realdate) noninteger dates

References
Cox, N. J. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557–568.

. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] inspect — Display simple summary of data’s attributes

[D] labelbook — Label utilities

[D] notes — Place notes in data

[D] split — Split string variables into parts

[U] 15 Saving and printing output—log files

http://www.stata-journal.com/sjpdf.html?articlenum=dm0042
http://www.stata-journal.com/sjpdf.html?articlenum=up0036
http://www.stata-press.com/books/wdaus.html

Title

collapse — Make dataset of summary statistics

Syntax Menu Description Options
Remarks and examples Acknowledgment Also see

Syntax
collapse clist

[
if
] [

in
] [

weight
] [

, options
]

where clist is either[
(stat)

]
varlist

[[
(stat)

]
. . .
][

(stat)
]

target var=varname
[
target var=varname . . .

] [[
(stat)

]
. . .
]

or any combination of the varlist and target var forms, and stat is one of

mean means (default) sum sums
median medians rawsum sums, ignoring optionally specified weight
p1 1st percentile except observations with a weight of
p2 2nd percentile zero are excluded
. . . 3rd–49th percentiles count number of nonmissing observations
p50 50th percentile (same as median) percent percentage of nonmissing observations
. . . 51st–97th percentiles max maximums
p98 98th percentile min minimums
p99 99th percentile iqr interquartile range
sd standard deviations first first value
semean standard error of the mean last last value

(sd/sqrt(n)) firstnm first nonmissing value
sebinomial standard error of the mean, binomial lastnm last nonmissing value

(sqrt(p(1-p)/n))
sepoisson standard error of the mean, Poisson

(sqrt(mean))

If stat is not specified, mean is assumed.

options Description

Options

by(varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations

fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights

may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean,
sebinomial, or sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:
. collapse age educ income, by(state)

. collapse (mean) age educ (median) income, by(state)

. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number], by(year)

54

collapse — Make dataset of summary statistics 55

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians, etc.

Description
collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must

refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Options

� � �
Options �

by(varlist) specifies the groups over which the means, etc., are to be calculated. If this option is
not specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer
to either string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each
calculated statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is
intended for use by programmers.

Remarks and examples
collapse takes the dataset in memory and creates a new dataset containing summary statistics

of the original data. collapse adds meaningful variable labels to the variables in this new dataset.
Because the syntax diagram for collapse makes using it appear more complicated than it is,
collapse is best explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights
A final example

Introductory examples

Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:

56 collapse — Make dataset of summary statistics

. use http://www.stata-press.com/data/r13/college

. describe

Contains data from http://www.stata-press.com/data/r13/college.dta
obs: 12
vars: 4 3 Jan 2013 12:05
size: 120

storage display value
variable name type format label variable label

gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3

= junior, 4 = senior
number int %9.0g number of students

Sorted by: year

. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type

. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not
have to type (mean) to specify that we want the mean because the mean is reported by default.

. use http://www.stata-press.com/data/r13/college, clear

. collapse gpa hour [fw=number], by(year)

. list

year gpa hour

1. 1 2.788889 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want
the median of gpa and hour to be stored as variables medgpa and medhour, respectively.

collapse — Make dataset of summary statistics 57

. use http://www.stata-press.com/data/r13/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list

year gpa hour medgpa medhour

1. 1 2.788889 29.44444 2.8 29
2. 2 2.991667 31.83333 2.9 30
3. 3 3.233333 32.11111 3.3 33
4. 4 3.257143 31.71428 3.4 32

Here we want to create a dataset containing a count of gpa and hour and the minimums of
gpa and hour. The minimums of gpa and hour will be stored as variables mingpa and minhour,
respectively.

. use http://www.stata-press.com/data/r13/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list

year gpa hour mingpa minhour

1. 1 18 18 2.1 28
2. 2 12 12 2.5 29
3. 3 9 9 2.2 30
4. 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use http://www.stata-press.com/data/r13/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. list, sep(4)

gpa hour year number

1. 3.2 30 1 3
2. . 34 1 2
3. . 28 1 9
4. . 30 1 4

5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4

9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse
uses all observations on hour for year = 1, even though gpa is missing for observations 1–3.

58 collapse — Make dataset of summary statistics

. collapse gpa hour [fw=num], by(year)

. list

year gpa hour

1. 1 3.2 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

If we repeat this process but specify the cw option, collapse ignores all observations that have
missing values.

. use http://www.stata-press.com/data/r13/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. collapse (mean) gpa hour [fw=num], by(year) cw

. list

year gpa hour

1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Example 2

We have individual-level data from a census in which each observation is a person. Among other
variables, the dataset contains the numeric variables age, educ, and income and the string variable
state. We want to create a 50-observation dataset containing the means of age, education, and
income for each state.

. collapse age educ income, by(state)

The resulting dataset contains means because collapse assumes that we want means if we do not
specify otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed
. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we
could have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one
variable containing the median of income—medinc. Because we typed (median) medinc=income,
Stata knew to find the median for income and to store those in a variable named medinc. This
renaming convention is necessary in this example because a variable named income containing the
mean is also being created.

collapse — Make dataset of summary statistics 59

Variablewise or casewise deletion

Example 3

Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only
15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we
want summary statistics for age and income, collapse will, by default, use all 25,000 observations
when calculating the summary statistics for age. If we prefer that collapse use only the 15,000
observations for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects
only the sum, count, sd, semean, and sebinomial statistics.

Let j index observations and i index by-groups. Here are the definitions for count and sum with
weights:

count:
unweighted: Ni, the number of observations in group i
aweight: Ni, the number of observations in group i
fweight, iweight, pweight:

∑
wj , the sum of the weights over observations in

group i
sum:

unweighted:
∑
xj , the sum of xj over observations in group i

aweight:
∑
vjxj over observations in group i; vj = weights

normalized to sum to Ni
fweight, iweight, pweight:

∑
wjxj over observations in group i

When the by() option is not specified, the entire dataset is treated as one group.

The sd statistic with weights returns the square root of the bias-corrected variance, which is
based on the factor

√
Ni/(Ni − 1), where Ni is the number of observations. Statistics sd, semean,

sebinomial, and sepoisson are not allowed with pweighted data. Otherwise, the statistic is
changed by the weights through the computation of the weighted count, as outlined above.

For instance, consider a case in which there are 25 observations in the dataset and a weighting
variable that sums to 57. In the unweighted case, the weight is not specified, and the count is 25.
In the analytically weighted case, the count is still 25; the scale of the weight is irrelevant. In the
frequency-weighted case, however, the count is 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with
zero weight will not be included in the sum.

60 collapse — Make dataset of summary statistics

Example 4

Using our same census data, suppose that instead of starting with individual-level data and
aggregating to the state level, we started with state-level data and wanted to aggregate to the region
level. Also assume that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total
population, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total
population and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=pop], by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-
weighted sum of pop. Specifying (count) age would have worked as well as (count) pop
because count merely counts the number of nonmissing observations. The counts here, however, are
frequency-weighted and equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores
the weights and sums only the specified variable, with one exception: observations with zero weight
will not be included in the sum. rawsum would have worked as the solution to all three cases.

A final example

Example 5

We have census data containing information on each state’s median age, marriage rate, and divorce
rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

collapse — Make dataset of summary statistics 61

. use http://www.stata-press.com/data/r13/census5, clear
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r13/census5.dta
obs: 50 1980 Census data by state
vars: 7 6 Apr 2013 15:43
size: 1,700

storage display value
variable name type format label variable label

state str14 %14s State
state2 str2 %-2s Two-letter state abbreviation
region int %8.0g cenreg Census region
pop long %10.0g Population
median_age float %9.2f Median age
marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region

. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop], by(region)

. list

region median~e marria~e divorc~e avgmrate avgdrate

1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464

. describe

Contains data
obs: 4 1980 Census data by state
vars: 6
size: 88

storage display value
variable name type format label variable label

region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: dataset has changed since last saved

Acknowledgment
We thank David Roodman for writing collapse2, which inspired several features in collapse.

62 collapse — Make dataset of summary statistics

Also see
[D] contract — Make dataset of frequencies and percentages

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list

[R] summarize — Summary statistics

Title

compare — Compare two variables

Syntax Menu Description Remarks and examples Also see

Syntax
compare varname1 varname2

[
if
] [

in
]

by is allowed; see [D] by.

Menu
Data > Data utilities > Compare two variables

Description
compare reports the differences and similarities between varname1 and varname2.

Remarks and examples

Example 1

One of the more useful accountings made by compare is the pattern of missing values:

. use http://www.stata-press.com/data/r13/fullauto
(Automobile Models)

. compare rep77 rep78

difference
count minimum average maximum

rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1

jointly defined 66 -3 -.2121212 1
rep77 missing only 3
jointly missing 5

total 74

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in
3 more observations.

63

64 compare — Compare two variables

Technical note
compare may be used with numeric variables, string variables, or both. When used with string

variables, the summary of the differences (minimum, average, maximum) is not reported. When used
with string and numeric variables, the breakdown by <, =, and > is also suppressed.

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

compress — Compress data in memory

Syntax Menu Description Option Remarks and examples Also see

Syntax
compress

[
varlist

] [
, nocoalesce

]
Menu

Data > Data utilities > Optimize variable storage

Description
compress attempts to reduce the amount of memory used by your data.

Option
nocoalesce specifies that compress not try to find duplicate values within stall variables in an

attempt to save memory. If nocoalesce is not specified, compress must sort the data by each
strL variable, which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to longs, ints, or bytes
floats to ints or bytes
longs to ints or bytes
ints to bytes
str#s to shorter str#s
strLs to str#s

See [D] data types for an explanation of these storage types.

Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable
takes on the same value in multiple observations, compress can link those values to a single memory
location to save memory. To check for this, compress must sort the data on each strL variable.
You can use the nocoalesce option to tell compress not to take the time to perform this check.
If compress does check whether it can coalesce strL values, it will do whichever saves more
memory—coalescing strL values or demoting a strL to a str#—or it will do nothing if it cannot
save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress
never makes a mistake, results in loss of precision, or hacks off strings.

65

66 compress — Compress data in memory

Example 1

If you do not specify a varlist, compress considers demoting all the variables in your dataset, so
typing compress by itself is usually enough:

. use http://www.stata-press.com/data/r13/compxmp2
(1978 Automobile Data)

. compress
mpg was float now byte
price was long now int
yenprice was double now long
weight was double now int
make was str26 now str17
prodcode was strL now str6
(5,983 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress
again results in

. compress
(0 bytes saved)

Also see
[D] data types — Quick reference for data types

[D] recast — Change storage type of variable

Title

contract — Make dataset of frequencies and percentages

Syntax Menu Description Options
Remarks and examples Acknowledgments Reference Also see

Syntax
contract varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

Options

freq(newvar) name of frequency variable; default is freq

cfreq(newvar) create cumulative frequency variable
percent(newvar) create percentage variable
cpercent(newvar) create cumulative percentage variable
float generate percentage variables as type float

format(format) display format for new percentage variables; default is format(%8.2f)

zero include combinations with frequency zero
nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Menu
Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

Description
contract replaces the dataset in memory with a new dataset consisting of all combinations of

varlist that exist in the data and a new variable that contains the frequency of each combination.

Options

� � �
Options �

freq(newvar) specifies a name for the frequency variable. If not specified, freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent(newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent(newvar) specifies a name for the cumulative percentage variable. If not specified, no
cumulative percentage variable is created.

67

68 contract — Make dataset of frequencies and percentages

float specifies that the percentage variables specified by percent() and cpercent() will be
generated as variables of type float. If float is not specified, these variables will be generated
as variables of type double. All generated variables are compressed to the smallest storage type
possible without loss of precision; see [D] compress.

format(format) specifies a display format for the generated percentage variables specified by
percent() and cpercent(). If format() is not specified, these variables will have the display
format %8.2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in varlist be dropped. If
nomiss is not specified, all observations possible are used.

Remarks and examples
contract takes the dataset in memory and creates a new dataset containing all combinations of

varlist that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have
identical values on one or more variables will be replaced by one such observation, together with the
frequency of the corresponding set of values. For example, in certain generalized linear models, the
frequency of some combination of values is the response variable, so you would need to produce that
response variable. The set of covariate values associated with each frequency is sometimes called a
covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because
the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

Example 1

Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which
takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use http://www.stata-press.com/data/r13/auto2
(1978 Automobile Data)

. contract rep78 foreign

. list

rep78 foreign _freq

1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9

6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. . Domestic 4
10. . Foreign 1

By default, contract uses the variable name freq for the new variable that contains the
frequencies. If freq is in use, you will be reminded to specify a new variable name via the freq()
option.

contract — Make dataset of frequencies and percentages 69

Specifying the zero option requests that combinations with frequency zero also be listed.

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. contract rep78 foreign, zero

. list

rep78 foreign _freq

1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27

6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2
10. Excellent Foreign 9

11. . Domestic 4
12. . Foreign 1

Acknowledgments
contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham

University, UK, and coeditor of the Stata Journal. The cfreq(), percent(), cpercent(), float,
and format() options were written by Roger Newson of the Imperial College London.

Reference
Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2–3. Reprinted in Stata

Technical Bulletin Reprints, vol. 8, pp. 20–21. College Station, TX: Stata Press.

Also see
[D] expand — Duplicate observations

[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

http://www.stata-journal.com/
http://www.stata.com/products/stb/journals/stb44.pdf

Title

copy — Copy file from disk or URL

Syntax Description Options Remarks and examples Also see

Syntax
copy filename1 filename2

[
, options

]
filename1 may be a filename or a URL. filename2 may be the name of a file or a directory. If filename2

is a directory name, filename1 will be copied to that directory. filename2 may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the
filename contains embedded blanks.

options Description

public make filename2 readable by all
text interpret filename1 as text file and translate to native text format

replace may overwrite filename2

replace does not appear in the dialog box.

Description
copy copies filename1 to filename2.

Options
public specifies that filename2 be readable by everyone; otherwise, the file will be created according

to the default permissions of your operating system.

text specifies that filename1 be interpreted as a text file and be translated to the native form of text
files on your computer. Computers differ on how end-of-line is recorded: Unix systems record one
line-feed character, Windows computers record a carriage-return/line-feed combination, and Mac
computers record just a carriage return. text specifies that filename1 be examined to determine how
it has end-of-line recorded and that the line-end characters be switched to whatever is appropriate
for your computer when the copy is made.

There is no reason to specify text when copying a file already on your computer to a different
location because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you
specify text, the copy will be useless. Most word processors produce binary files, not text files.
The term text, as it is used here, specifies a particular ASCII way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no
reason to translate end-of-line characters on that score. You specify text because you may want
to look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filename2 be replaced if it already exists.

70

copy — Copy file from disk or URL 71

Remarks and examples
Examples:

Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ..\mydir\doc.txt document\doc.tex

. copy http://www.stata.com/examples/simple.dta simple.dta

. copy http://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ../mydir/doc.txt document/doc.tex

. copy http://www.stata.com/examples/simple.dta simple.dta

. copy http://www.stata.com/examples/simple.txt simple.txt, text

Also see
[D] cd — Change directory

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

corr2data — Create dataset with specified correlation structure

Syntax Menu Description Options
Remarks and examples Methods and formulas Reference Also see

Syntax
corr2data newvarlist

[
, options

]
options Description

Main

clear replace the current dataset
double generate variable type as double; default is float

n(#) # of observations to be generated; default is current number
sds(vector) standard deviations of generated variables
corr(matrix | vector) correlation matrix
cov(matrix | vector) covariance matrix
cstorage(full) correlation/covariance structure is stored as a symmetric k×k matrix
cstorage(lower) correlation/covariance structure is stored as a lower triangular matrix
cstorage(upper) correlation/covariance structure is stored as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite
means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Menu
Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

Description
corr2data adds new variables with specified covariance (correlation) structure to the existing

dataset or creates a new dataset with a specified covariance (correlation) structure. Singular covariance
(correlation) structures are permitted. The purpose of this is to allow you to perform analyses from
summary statistics (correlations/covariances and maybe the means) when these summary statistics are
all you know and summary statistics are sufficient to obtain results. For example, these summary
statistics are sufficient for performing analysis of t tests, variance, principal components, regression,
and factor analysis. The recommended process is

. clear (clear memory)

. corr2data ..., n(#) cov(...) ... (create artificial data)

. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

72

corr2data — Create dataset with specified correlation structure 73

The data created by corr2data are artificial; they are not the original data, and it is not a sample
from an underlying population with the summary statistics specified. See [D] drawnorm if you want
to generate a random sample. In a sample, the summary statistics will differ from the population
values and will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all
that is known are summary statistics and those summary statistics are sufficient for the analysis at
hand. The artificial data tricks the analysis command into producing the desired result. The analysis
command, being by assumption only a function of the summary statistics, extracts from the artificial
data the summary statistics, which are the same summary statistics you specified, and then makes its
calculation based on those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can
generate different artificial datasets by using different seeds of the random-number generator (see the
seed() option below) and compare the results, which should be the same within rounding error.

Options

� � �
Main �

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has
not been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

n(#) specifies the number of observations to be generated; the default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
corr2data adds the new variables to the existing dataset; otherwise, corr2data replaces the
dataset in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric k×k
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . Ck1 Ck2 . . . Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12 C13 . . . C1k C22 C23 . . .C2k . . . C(k−1k−1) C(k−1k) Ckk

74 corr2data — Create dataset with specified correlation structure

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or cstor-
age(upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples
corr2data is designed to enable analyses of correlation (covariance) matrices by commands

that expect variables rather than a correlation (covariance) matrix. corr2data creates variables with
exactly the correlation (covariance) that you want to analyze. Apart from means and covariances, all
aspects of the data are meaningless. Only analyses that depend on the correlations (covariances) and
means produce meaningful results. Thus you may perform a paired t test ([R] ttest) or an ordinary
regression analysis ([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and
not on other aspects of the data, you can generate different datasets, each having the same summary
statistics but other different aspects, by specifying the seed() option. If the statistical results differ
beyond what is attributable to roundoff error, then using corr2data is inappropriate.

Example 1

We first run a regression using the auto dataset.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774.4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954

Adj R-squared = 0.8925
Total 44094178.4 73 604029.841 Root MSE = 254.85

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means
and covariance matrices of weight, length, and trunk, and we want to do the same regression
again. The matrix of means is

corr2data — Create dataset with specified correlation structure 75

. mat list M

M[1,3]
weight length trunk

_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. mat list V

symmetric V[3,3]
weight length trunk

weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation
structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482773.3 2 19741386.6 Prob > F = 0.0000
Residual 4611402.75 71 64949.3345 R-squared = 0.8954

Adj R-squared = 0.8925
Total 44094176 73 604029.809 Root MSE = 254.85

x Coef. Std. Err. t P>|t| [95% Conf. Interval]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204
z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847

The results from the regression based on the generated data are the same as those based on the real
data.

Methods and formulas
Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,

zero-correlated dataset. The second step is to apply the desired correlation structure and the means
to the zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix
A and any vector of variables X, Var(A′X) = A′Var(X)A.

Reference
Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications

to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Also see
[D] data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101

Title

count — Count observations satisfying specified conditions

Syntax Menu Description Remarks and examples
Stored results References Also see

Syntax

count
[

if
] [

in
]

by is allowed; see [D] by.

Menu
Data > Data utilities > Count observations satisfying condition

Description
count counts the number of observations that satisfy the specified conditions. If no conditions are

specified, count displays the number of observations in the data.

Remarks and examples
count may strike you as an almost useless command, but it can be one of Stata’s handiest.

Example 1

How many times have you obtained a statistical result and then asked yourself how it was possible?
You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?”
or “Is sex ever equal to 3?” count can quickly answer those questions:

. use http://www.stata-press.com/data/r13/countxmpl
(1980 Census data by state)

. count
641

. count if income<0
0

. count if sex==3
1

. by division: count if sex==3

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

76

count — Count observations satisfying specified conditions 77

We have 641 observations. income is never negative. sex, however, takes on the value 3 once.
When we decompose the count by division, we see that it takes on that odd value in the Pacific
division.

Stored results
count stores the following in r():

Scalars
r(N) number of observations

References
Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571–581.

. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117–130.

. 2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440–443.

Also see
[R] tabulate oneway — One-way table of frequencies

http://www.stata-journal.com/sjpdf.html?articlenum=dm0033
http://www.stata-journal.com/sjpdf.html?articlenum=pr0029
http://www.stata-journal.com/sjpdf.html?articlenum=pr0033

Title

cross — Form every pairwise combination of two datasets

Syntax Menu Description Remarks and examples
References Also see

Syntax

cross using filename

Menu
Data > Combine datasets > Form every pairwise combination of two datasets

Description
cross forms every pairwise combination of the data in memory with the data in filename. If

filename is specified without a suffix, .dta is assumed.

Remarks and examples
This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the
data in memory is merged with every observation of filename, followed by the second, and so on.
Thus the result will have N1N2 observations, where N1 and N2 are the number of observations in
memory and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only
the values of the data in memory.

Example 1

We wish to form a dataset containing all combinations of three age categories and two sexes to
serve as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

. input str6 sex

sex
1. male
2. female
3. end

. save sex
file sex.dta saved

. drop _all

. input agecat

agecat
1. 20
2. 30
3. 40
4. end

. cross using sex

78

cross — Form every pairwise combination of two datasets 79

. list

agecat sex

1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female

6. 40 female

References
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147–148.

Also see
[D] append — Append datasets

[D] fillin — Rectangularize dataset

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

[D] save — Save Stata dataset

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0020

Title

data types — Quick reference for data types

Description Remarks and examples Also see

Description
This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks and examples

Closest to 0
Storage type Minimum Maximum without being 0 Bytes

byte −127 100 ±1 1
int −32,767 32,740 ±1 2
long −2,147,483,647 2,147,483,620 ±1 4
float −1.70141173319× 1038 1.70141173319× 1038 ±10−38 4
double −8.9884656743× 10307 8.9884656743× 10307 ±10−323 8

Precision for float is 3.795× 10−8.
Precision for double is 1.414× 10−16.

String Maximum
storage type length Bytes

str1 1 1
str2 2 2
.
.
.
str2045 2045 2045
strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes
used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte,
int, and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, str1, str2, str3, . . . , str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths,
up to 2000000000 characters, and can even hold binary data containing embedded \0 characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If
you have a string variable that has maximum length 6, it would waste memory to store it as a str20.
Similarly, if you have an integer variable, it would be a waste to store it as a double.

80

data types — Quick reference for data types 81

Precision of numeric storage types

floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus,
1234567 can be stored perfectly as a float, as can 1234567e+20. The number 123456789, however,
would be rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers
are integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles
have 16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has
no perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is
stored as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger
than 1. Stata, however, performs all calculations in double precision. If you were to store 0.1 in a
float called x and then ask, say, list if x==.1, there would be nothing in the list. The .1 that
you just typed was converted to double, with 16 digits of accuracy (.100000000000000014. . .), and
that number is never equal to 0.1 stored with float accuracy.

One solution is to type list if x==float(.1). The float() function rounds its argument to
float accuracy; see [D] functions. The other alternative would be store your data as double, but this
is probably a waste of memory. Few people have data that is accurate to 1 part in 10 to the 7th.
Among the exceptions are banks, who keep records accurate to the penny on amounts of billions
of dollars. If you are dealing with such financial data, store your dollar amounts as doubles. See
float().

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] encode — Encode string into numeric and vice versa

[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types
[U] 12.4 Strings
[U] 12.5 Formats: Controlling how data are displayed
[U] 13.11 Precision and problems therein

Title

datasignature — Determine whether data have changed

Syntax Menu Description
Options Remarks and examples Stored results
Methods and formulas Reference Also see

Syntax

datasignature

datasignature set
[
, reset

]
datasignature confirm

[
, strict

]
datasignature report

datasignature set, saving(filename
[
, replace

]
)
[
reset

]
datasignature confirm using filename

[
, strict

]
datasignature report using filename

datasignature clear

Menu
Data > Other utilities > Manage data signature

Description
These commands calculate, display, save, and verify checksums of the data, which taken together

form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597.
That signature is a function of the values of the variables and their names, and thus the signature can
be used later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset.
You should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirm displays an error message and returns a nonzero
return code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

82

datasignature — Determine whether data have changed 83

In the above, the signature is stored in the dataset and accessed from it. The signature can also
be stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition
to storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one
stored in filename.

datasignature report using filename displays a full report comparing the current signature
with the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in
memory.

Options
reset is used with datasignature set. It specifies that even though you have previously set a

signature, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the
signatures match, you also wish to require that the variables be in the same order and that no new
variables have been added to the dataset. (If any variables were dropped, the signatures would not
match.)

saving(filename
[
, replace

]
) is used with datasignature set. It specifies that, in addition to

storing the signature in the dataset, you want a copy of the signature saved in a separate file.
If filename is specified without a suffix, .dtasig is assumed. The replace suboption allows
filename to be replaced if it already exists.

Remarks and examples
Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files
Interpreting data signatures
The logic of data signatures

Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the
same dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish
to guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish
to verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that
others have not changed it.

84 datasignature — Determine whether data have changed

Example 1: Verification at a distance

You load the data and type

. datasignature
74:12(71728):3831085005:1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself

You load the data and type

. datasignature set
74:12(71728):3831085005:1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2013 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2013 14:24, except 2 variables have been added)

You can find out more by typing

. datasignature report
(data signature set on Monday 19feb2013 14:24)

Data signature summary

1. Previous data signature 74:12(71728):3831085005:1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)
dropped variables 0

resulting # of variables 14

(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set
data signature already set -- specify option reset

r(110)

. datasignature set, reset
74:14(113906):1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the
signature that would be calculated today on the basis of the same variables in their original order, and
3) the signature that would be calculated today on the basis of all the variables and in their current
order.

datasignature confirm knew that new variables had been added because signature 1 was equal
to signature 2. If some variables had been dropped, however, datasignature confirm would not
be able to determine whether the remaining variables had changed.

datasignature — Determine whether data have changed 85

Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify
that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could
change both your data and the signature and might even do that in a desire to be helpful. The solution
is to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728):3831085005:1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and
compare the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2013 15:05)

By the way, the signature is a function of the following:

• The number of observations and number of variables in the data

• The values of the variables

• The names of the variables

• The order in which the variables occur in the dataset

• The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data.
You wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate,
private file on your computer,

. datasignature set, saving(private)
74:12(71728):3831085005:1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2013 11:22)

Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2013 15:05

r(9);

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be
stopped if the data have changed.

86 datasignature — Determine whether data have changed

You may want to specify the strict option. strict adds two more requirements: that the
variables be in the same order and that no new variables have been added. Without strict, these
are not considered errors:

. datasignature confirm
(data unchanged since 19feb2013 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2013 15:05, but order of variables has changed)

r(9);

and

. datasignature confirm
(data unchanged since 19feb2013 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2013 15:22, except 1 variable has been added)

r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirm imme-
diately after loading each dataset is a good idea. This way, you have a permanent record that you
can use for comparison.

Interpreting data signatures

An example signature is 74:12(71728):3831085005:1395876116. The components are

1. 74, the number of observations;

2. 12, the number of variables;

3. 71728, a checksum function of the variable names and the order in which they occur; and

4. 3831085005 and 1395876116, checksum functions of the values of the variables, calculated
two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that
datasets containing similar values will have equal signatures. There are two data checksums, but do
not read too much into that. If either data checksum changes, even just a little, the data have changed.
Whether the change in the checksum is large or small—or in one, the other, or both—signifies
nothing.

The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one
mappings of the data onto the integers. Let’s consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 25638184 such datasets or,
equivalently, 2305472. The first checksum has 248 possible values, and it can be proven that those
values are equally distributed over the 2305472 datasets. Thus there are 2305472/248−1 = 2305424−1
datasets that have the same first checksum value as auto.dta. The same can be said for the second
checksum. It would be difficult to prove, but we believe that the two checksums are conditionally
independent, being based on different bit shifts and bit shuffles of the same data. Of the 2305424 − 1
datasets that have the same first checksum as auto.dta, the second checksum should be equally
distributed over them. Thus there are about 2305376 − 1 datasets with the same first and second
checksums as auto.dta.

datasignature — Determine whether data have changed 87

Now let’s consider those 2305376 − 1 other datasets. Most of them look nothing like auto.dta.
The checksum formulas guarantee that a change of one variable in 1 observation will lead to a change
in the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee
it in other cases. When it is not guaranteed, the change cannot be subtle—“Chevrolet” will have to
change to binary junk, or a double-precision 1 to −6.476678983751e+301, and so on. The change
will be easily detected if you summarize your data and just glance at the minimums and maximums.
If the data look at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one
variable in 1 observation and make an offsetting change in another observation so that, taken together,
they will go undetected? You can fool one of the checksums, but fooling both of them simultaneously
will prove difficult. The basic rule is that the more changes you make, the easier it is to create a
dataset with the same checksums as auto.dta, but by the time you’ve done that, the data will look
nothing like auto.dta.

Stored results
datasignature without arguments and datasignature set store the following in r():
Macros

r(datasignature) the signature

datasignature confirm stores the following in r():
Scalars

r(k added) number of variables added
Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r():
Scalars

r(datetime) %tc date–time when set
r(changed) . if r(k dropped) 6= 0, otherwise

0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, 0 if not reordered,

. if r(k added) 6= 0 | r(k dropped) 6= 0
r(k original) number of original variables
r(k added) number of added variables
r(k dropped) number of dropped variables

Macros
r(origdatasignature) original signature
r(curdatasignature) current signature on same variables, if it can be calculated
r(fulldatasignature) current full-data signature
r(varsadded) variable names added
r(varsdropped) variable names dropped

datasignature clear stores nothing in r() but does clear it.

datasignature set stores the signature in the following characteristics:
Characteristic

dta[datasignature si] signature
dta[datasignature dt] %tc date–time when set in %21x format
dta[datasignature vl1] part 1, original variables
dta[datasignature vl2] part 2, original variables, if necessary

etc.

88 datasignature — Determine whether data have changed

To access the original variables stored in dta[datasignature vl1], etc., from an ado-file,
code

mata: ado_fromlchar("vars", _dta", "datasignature_vl")

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas
datasignature is implemented using datasignature; see [P] datasignature.

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428–429.

Also see
[P] datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

http://www.stata-journal.com/sjpdf.html?articlenum=dm0024

Title

datetime — Date and time values and variables

Syntax Description Remarks and examples References Also see

Syntax
Syntax is presented under the following headings:

Types of dates and their human readable forms (HRFs)
Stata internal form (SIF)
HRF-to-SIF conversion functions
Displaying SIFs in HRF
Building SIFs from components
SIF-to-SIF conversion
Extracting time-of-day components from SIFs
Extracting date components from SIFs
Conveniently typing SIF values
Obtaining and working with durations
Using dates and times from other software

Also see

[D] datetime translation String to numeric date translation functions
[D] datetime display formats Display formats for dates and times

Types of dates and their human readable forms (HRFs)

Date type Examples of HRFs

datetime 20jan2010 09:15:22.120

date 20jan2010, 20/01/2010, . . .

weekly date 2010w3
monthly date 2010m1
quarterly date 2010q1
half-yearly date 2010h1
yearly date 2010

The styles of the HRFs in the table above are merely examples. Perhaps you prefer 2010.01.20;
Jan. 20, 2010; 2010-1; etc.

With the exception of yearly dates, HRFs are usually stored in string variables. If you are reading
raw data, read the HRFs into strings.

HRFs are not especially useful except for reading by humans, and thus Stata provides another way
of recording dates called Stata internal form (SIF). You can convert HRF dates to SIF.

89

90 datetime — Date and time values and variables

Stata internal form (SIF)

The numeric values in the table below are equivalent to the string values in the table in the previous
section.

SIF type Examples in SIF Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)
weekly date 2,601 weeks since 1960w1
monthly date 600 months since 1960m1
quarterly date 200 quarters since 1960q1
half-yearly date 100 half-years since 1960h1
yearly date 2010 years since 0000

* SIF datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two SIF datetime encodings in [D] datetime translation.

SIF values are stored as regular Stata numeric variables.

You can convert HRFs into SIFs by using HRF-to-SIF conversion functions; see the next section,
called HRF-to-SIF conversion functions.

You can make the numeric SIF readable by placing the appropriate %fmt on the numeric variable;
see Displaying SIFs in HRF, below.

You can convert from one SIF type to another by using SIF-to-SIF conversion functions; see
SIF-to-SIF conversion, below.

SIF dates are convenient because you can subtract them to obtain time between dates, for example,

datetime2 − datetime1= milliseconds between datetime1 and datetime2
(divide by 1,000 to obtain seconds)

date2 − date1 = days between date1 and date2

week2 − week1 = weeks between week1 and week2

month2 − month1 = months between month1 and month2

half2 − half1 = half-years between half1 and half2

year2 − year1 = years between year1 and year2

datetime — Date and time values and variables 91

In the remaining text, we will use the following notation:

tc: a Stata double variable containing SIF datetime/c values
tC: a Stata double variable containing SIF datetime/C values

td: a Stata variable containing SIF date values

tw: a Stata variable containing SIF weekly date values
tm: a Stata variable containing SIF monthly date values
tq: a Stata variable containing SIF quarterly date values
th: a Stata variable containing SIF half-yearly date values
ty: a Stata variable containing SIF yearly date values

HRF-to-SIF conversion functions

Function to convert
SIF type HRF to SIF Note

datetime/c tc = clock(HRFstr, mask) tc must be double

datetime/C tC = Clock(HRFstr, mask) tC must be double

date td = date(HRFstr, mask) td may be float or long

weekly date tw = weekly(HRFstr, mask) tw may be float or int
monthly date tm = monthly(HRFstr, mask) tm may be float or int
quarterly date tq = quarterly(HRFstr, mask) tq may be float or int
half-yearly date th = halfyearly(HRFstr, mask) th may be float or int
yearly date ty = yearly(HRFstr, mask) ty may be float or int

Warning: To prevent loss of precision, datetime SIFs must be stored as doubles.

Examples:

1. You have datetimes stored in the string variable mystr, an example being “2010.07.12
14:32”. To convert to SIF datetime/c, you type

. gen double eventtime = clock(mystr, "YMDhm")

The mask "YMDhm" specifies the order of the datetime components. In this case, they are
year, month, day, hour, and minute.

2. You have datetimes stored in mystr, an example being “2010.07.12 14:32:12”. You type

. gen double eventtime = clock(mystr, "YMDhms")

Mask element s specifies seconds. In example 1, there were no seconds; in this example,
there are.

3. You have datetimes stored in mystr, an example being “2010 Jul 12 14:32”. You type

. gen double eventtime = clock(mystr, "YMDhm")

This is the same command that you typed in example 1. In the mask, you specify the order
of the components; Stata figures out the style for itself. In example 1, months were numeric.
In this example, they are spelled out (and happen to be abbreviated).

92 datetime — Date and time values and variables

4. You have datetimes stored in mystr, an example being “July 12, 2010 2:32 PM”. You
type

. gen double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without
periods.

5. You have datetimes stored in mystr, an example being “7-12-10 14.32”. The 2-digit year
is to be interpreted as being prefixed with 20. You type

. gen double eventtime = clock(mystr, "MD20Yhm")

6. You have datetimes stored in mystr, an example being “14:32 on 7/12/2010”. You type

. gen double eventtime = clock(mystr, "hm#MDY")

The # sign between m and M means, “ignore one thing between minute and month”, which
in this case is the word “on”. Had you omitted the # from the mask, the new variable
eventtime would have contained missing values.

7. You have a date stored in mystr, an example being “22/7/2010”. In this case, you want
to create an SIF date instead of a datetime. You type

. gen eventdate = date(mystr, "DMY")

Typing

. gen double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

See [D] datetime translation for more information about the HRF-to-SIF conversion functions.

Displaying SIFs in HRF

Display format to
SIF type present SIF in HRF

datetime/c %tc

datetime/C %tC

date %td

weekly date %tw

monthly date %tm

quarterly date %tq

half-yearly date %th

yearly date %ty

The display formats above are the simplest forms of each of the SIFs. You can control how each
type of SIF date is displayed; see [D] datetime display formats.

datetime — Date and time values and variables 93

Examples:

1. You have datetimes stored in string variable mystr, an example being “2010.07.12 14:32”.
To convert to SIF datetime/c and make the new variable readable when displayed, you type

. gen double eventtime = clock(mystr, "YMDhm")

. format eventtime %tc

2. You have a date stored in mystr, an example being “22/7/2010”. To convert to an SIF date
and make the new variable readable when displayed, you type

. gen eventdate = date(mystr, "DMY")

. format eventdate %td

Building SIFs from components

Function to build
SIF type from components

datetime/c tc = mdyhms(M, D, Y, h, m, s)
tc = dhms(td, h, m, s)
tc = hms(h, m, s)

datetime/C tC = Cmdyhms(M, D, Y, h, m, s)
tC = Cdhms(td, h, m, s)
tC = Chms(h, m, s)

date td = mdy(M, D, Y)

weekly date tw = yw(Y, W)

monthly date tm = ym(Y, M)

quarterly date tq = yq(Y, Q)
half-yearly date th = yh(Y, H)

yearly date ty = y(Y)

Warning: SIFs for datetimes must be stored as doubles.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date
component in numeric form. To convert to SIF date, you type

. gen eventdate = mdy(mo, da, yr)

. format eventdate %td

2. Your dataset has two numeric variables, mo and yr. To convert to SIF date corresponding to
the first day of the month, you type

. gen eventdate = mdy(mo, 1, yr)

. format eventdate %td

3. Your dataset has two numeric variables, da and yr, and one string variable, month,
containing the spelled-out month. In this case, do not use the building-from-component
functions. Instead, construct a new string variable containing the HRF and then convert the
string using the HRF-to-SIF conversion functions:

. gen str work = month + " " + string(da) + " " + string(yr)

. gen eventdate = date(work, "MDY")

. format eventdate %td

94 datetime — Date and time values and variables

SIF-to-SIF conversion

To:
From: datetime/c datetime/C date
datetime/c tC = Cofc(tc) td = dofc(tc)
datetime/C tc = cofC(tC) td = dofC(tC)
date tc = cofd(td) tC = Cofd(td)
weekly td = dofw(tw)
monthly td = dofm(tm)
quarterly td = dofq(tq)
half-yearly td = dofh(th)
yearly td = dofy(ty)

To:
From: weekly monthly quarterly
date tw = wofd(td) tm = mofd(td) tq = qofd(td)

To:
From: half-yearly yearly
date th = hofd(td) ty = yofd(td)

To convert between missing entries, use two functions, going through date or datetime as appropriate.
For example, quarterly of monthly is tq = qofd(dofm(tm)).

Examples:

1. You have the SIF datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. gen eventdate = dofc(eventtime)

. format eventdate %td

2. You have the SIF date variable eventdate and wish to create the new SIF datetime/c variable
eventtime from it. You type

. gen double eventtime = cofd(eventdate)

. format eventtime %tc

The time components of the new variable will be set to the default 00:00:00.000.

3. You have the SIF quarterly variable eventqtr and wish to create the new SIF date variable
eventdate from it. You type

. gen eventdate = dofq(eventqtr)

. format eventdate %tq

The new variable, eventdate, will contain 01jan dates for quarter 1, 01apr dates for
quarter 2, 01jul dates for quarter 3, and 01oct dates for quarter 4.

4. You have the SIF datetime/c variable admittime and wish to create the new SIF quarterly
variable admitqtr from it. You type

. gen admitqtr = qofd(dofc(admittime))

. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

datetime — Date and time values and variables 95

Extracting time-of-day components from SIFs

Desired component Function Example

hour of day hh(tc) or hhC(tC) 14
minutes of day mm(tc) or mmC(tC) 42
seconds of day ss(tc) or ssC(tC) 57.123

Notes:
0 ≤ hh(tc) ≤ 23, 0 ≤ hhC(tC) ≤ 23
0 ≤ mm(tc) ≤ 59, 0 ≤ mmC(tC) ≤ 59
0 ≤ ss(tc) < 60, 0 ≤ ssC(tC) < 61 (sic)

Example:

1. You have the SIF datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. gen admithour = hh(admittime) + mm(admittime)/60 + ss(admittime)/3600

Extracting date components from SIFs

Desired component Function Example*

calendar year year(td) 2013
calendar month month(td) 7
calendar day day(td) 5

day of week dow(td) 2
(0=Sunday)

Julian day of year doy(td) 186
(1=first day)

week within year week(td) 27
(1=first week)

quarter within year quarter(td) 3
(1=first quarter)

half within year halfyear(td) 2
(1=first half)

* All examples are with td=mdy(7,5,2013).
All functions require an SIF date as an argument. To extract components from other SIFs,

use the appropriate SIF-to-SIF conversion function to convert to an SIF date, for example,
quarter(dofq(tq)).

Examples:

1. You wish to obtain the day of week Sunday, Monday, . . . , corresponding to the SIF date
variable eventdate. You type

. gen day_of_week = dow(eventdate)

The new variable, day of week, contains 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

96 datetime — Date and time values and variables

2. You wish to obtain the day of week Sunday, Monday, . . . , corresponding to the SIF datetime/c
variable eventtime. You type

. gen day_of_week = dow(dofc(eventtime))

3. You have the SIF date variable evdate and wish to create the new SIF date variable evdate r
from it. evdate r will contain the same date as evdate but rounded back to the first of
the month. You type

. gen evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month() and year()
and used the build-from-components function mdy().

Conveniently typing SIF values

You can type SIF values by just typing the number, such as 16,237 or 1,402,920,000,000, as in

. gen before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)

. drop if admittedon < 1402920000000

Easier to type is

. gen before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)

. drop if admittedon < tc(15jun2004 12:00:00)

You can type SIF date values by typing the date inside td(), as in td(15jun2004).

You can type SIF datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td() and tc() are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The SIF pseudofunctions and their expected component order are

Desired SIF type Pseudofunction

datetime/c tc([day-month-year] hh:mm[:ss [.sss]])

datetime/C tC([day-month-year] hh:mm[:ss [.sss]])

date td(day-month-year)

weekly date tw(year-week)

monthly date tm(year-month)

quarterly date tq(year-quarter)

half-yearly date th(year-half)

yearly date none necessary; just type year

The day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. gen six_hrs_later = eventtime + tc(6:00)

datetime — Date and time values and variables 97

Obtaining and working with durations

SIF values are simply durations from 1960. SIF datetime/c values record the number of milliseconds
from 1jan1960 00:00:00; SIF date values record the number of days from 1jan1960, and so on.

To obtain the time between two SIF variables—the duration—subtract them:

. gen days_employed = curdate - hiredate

. gen double ms_inside = discharge_time - admit_time

To obtain a new SIF that is equal to an old SIF before or after some amount of time, just add or
subtract the desired durations:

. gen lastdate = hiredate + days_employed

. format lastdate %td

. gen double admit_time = discharge_time - ms_inside

. format admit_time %tc

Remember to use the units of the SIF variables. SIF dates are in terms of days, SIF weekly dates
are in terms of weeks, etc., and SIF datetimes are in terms of milliseconds. Concerning milliseconds,
it is often easier to use different units and conversion functions to convert to milliseconds:

. gen hours_inside = hours(discharge_time - admit_time)

. gen admit_time = discharge_time - msofhours(hours_inside)

. format admit_time %tc

Function hours() converts milliseconds to hours. Function msofhours() converts hours to
milliseconds. The millisecond conversion functions are

Function Purpose

hours(ms) convert milliseconds to hours; returns ms/(60× 60× 1000)

minutes(ms) convert milliseconds to minutes; returns ms/(60× 1000)

seconds(ms) convert milliseconds to seconds; returns ms/1000

msofhours(h) convert hours to milliseconds; returns h× 60× 60× 1000

msofminutes(m) convert minutes to milliseconds; returns m× 60× 1000

msofseconds(s) convert seconds to milliseconds; returns s× 1000

If you plan on using returned values to add to or subtract from a datetime SIF, be sure they are
stored as doubles.

Using dates and times from other software

Most software stores dates and times numerically as durations from some sentinel date in specified
units, but they differ on the sentinel date and the units. If you have imported data, it is usually
possible to adjust the numeric date and datetime values to SIF.

98 datetime — Date and time values and variables

Converting SAS dates:

SAS provides dates measured as the number of days since 01jan1960. This is the same coding
as used by Stata:

. gen statadate = sasdate

. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (sastime*1000)

. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported
into Stata as doubles.

Converting SPSS dates:

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (spsstime*1000) + tc(14oct1582 00:00)

. format statatime %tc

To convert to SIF date, type

. gen statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))

. format statadate %td

Converting R dates:

R stores dates as days since 01jan1970. To convert to SIF date, type

. gen statadate = rdate - td(01jan1970)

. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds since 01jan1970 00:00:00. To convert
to SIF datetime/C, type

. gen double statatime = rtime - tC(01jan1970 00:00)

. format statatime %tC

To convert to SIF datetime/c, type

. gen double statatime = cofC(rtime - tC(01jan1970 00:00))

. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see
Why there are two SIF datetime encodings and Advice on using datetime/c and datetime/C,
both in [D] datetime translation.

Converting Excel dates:

If you have data in an Excel format file, you may want to use the import excel command.
If the Excel file contains numerically encoded dates, import excel will read those dates and
properly code them in SIF. You do not need to perform any conversion after importing your
data with import excel.

On the other hand, if you copy and paste a spreadsheet into Stata’s editor, dates and datetimes
are pasted as strings in HRF. The discussion below concerns converting such HRF datetime
strings to SIF numeric values.

datetime — Date and time values and variables 99

Excel has used different date systems across operating systems. Excel for Windows used the
“1900 Date System”. Excel for Mac used the “1904 Date System”. More recently, Excel has
been standardizing on the 1900 Date System on all operating systems.

Regardless of operating system, Excel can use either encoding. See
http://support.microsoft.com/kb/214330 for instructions on converting workbooks between date
systems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900-Date-System dates:

For dates on or after 01mar1900, Excel stores dates as days since 30dec1899. To convert to a
Stata date,

. gen statadate = exceldate + td(30dec1899)

. format statadate %td

Excel can store dates between 01jan1900 and 28feb1900, but the formula above will not handle
those two months. See http://www.cpearson.com/excel/datetime.htm for more information.

For datetimes on or after 01mar1900 00:00:00, Excel stores datetimes as days plus fraction of
day since 30dec1899 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(30dec1899))*86400)*1000

. format statatime %tc

Converting Excel 1904-Date-System dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a
Stata date,

. gen statadate = exceldate + td(01jan1904)

. format statadate %td

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus fraction of
day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(01jan1904))*86400)*1000

. format statatime %tc

Converting OpenOffice dates:

OpenOffice uses the Excel 1900 Date System described above.

Converting Unix time:

Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata
datetime,

. generate double statatime = unixtime + mdyhms(1,1,1970,0,0,0)

To convert to a Stata date,

. generate statadate = dofc(unixtime + mdyhms(1,1,1970,0,0,0))

Description
Syntax above provides a complete overview of Stata’s date and time values. Also see [D] datetime

translation and [D] datetime display formats for additional information.

http://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm

100 datetime — Date and time values and variables

Remarks and examples
The best way to learn about Stata’s date and time functions is to experiment with them using the

display command; see [P] display.

. display date("5-12-1998", "MDY")
14011

. display %td date("5-12-1998", "MDY")
12may1998

. display clock("5-12-1998 11:15", "MDY hm")
1.211e+12

. display %20.0gc clock("5-12-1998 11:15", "MDY hm")
1,210,590,900,000

. display %tc clock("5-12-1998 11:15", "MDY hm")
12may1998 11:15:00

With display, you can specify a format in front of the expression to specify how the result is to
be formatted.

References
Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682–685.

. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565–569.

Dyck, A. 2011. Working with Unix timestamps in Stata. Statabytes.
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/.

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/.

Also see
[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

[D] datetime translation — String to numeric date translation functions

http://www.stata-journal.com/article.html?article=dm0052
http://www.stata-journal.com/article.html?article=dm0065
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Title

datetime business calendars — Business calendars

Syntax Description Remarks and examples Also see

Syntax
Apply business calendar format

format varlist %tbcalname

Apply detailed date format with business calendar format

format varlist %tbcalname
[
:datetime-specifiers

]
Convert between business dates and regular dates

{ generate | replace } bdate = bofd("calname", regulardate)

{ generate | replace } regulardate = dofb(bdate, "calname")

File calname.stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.
Business calendars are regular calendars with some dates crossed out:

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30

A date that appears on the business calendar is called a business date. 11nov2011 is a business
date. 12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011

28nov2011− 1 = 23nov2011

Stata’s lead and lag operators work the same way.

2. Business calendars are named.
Assume that the above business calendar is named simple.

101

102 datetime business calendars — Business calendars

3. Business calendars are defined in files named calname.stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the
SSC, or written yourself. Calendars can also be created automatically from the current dataset with
the bcal create command; see [D] bcal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir;
see [D] bcal.

4. Datetime format.
The date format associated with the business calendar named simple is %tbsimple, which is to
say % + t + b + calname.

% it is a format
t it is a datetime
b it is based on a business calendar
calname the calendar’s name

5. Format variables the usual way.
You format variables to have business calendar formats just as you format any variable, using the
format command.

. format mydate %tbsimple

specifies that existing variable mydate contains values according to the business calendar named
simple. See [D] format.
You may format variables %tbcalname regardless of whether the corresponding stbcal-file exists.
If it does not exist, the underlying numeric values will be displayed in a %g format.

6. Detailed date formats.
You may include detailed datetime format specifiers by placing a colon and the detail specifiers
after the calendar’s name.

. format mydate %tbsimple:CCYY.NN.DD

would display 21nov2011 as 2011.11.21. See [D] datetime display formats for detailed datetime
format specifiers.

7. Reading business dates.
To read files containing business dates, ignore the business date aspect and read the files as if
they contained regular dates. Convert and format those dates as %td; see HRF-to-SIF conversion
functions in [D] datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd("simple", regulardate)

. format mydate %tbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the %tbsimple date format to the new variable mydate so that it
will display correctly.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.
For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on
the regular calendar. If the data contained 12nov2011, that would be an error. Function bofd()
returns missing when the date does not appear on the specified calendar.

datetime business calendars — Business calendars 103

8. More on conversion.
There are only two functions specific to business dates, bofd() and dofb(). Their definitions are

bdate = bofd("calname”, regulardate)
regulardate = dofb(bdate, "calname")

bofd() returns missing if regulardate is missing or does not appear on the specified business
calendar. dofb() returns missing if bdate contains missing.

9. Obtaining day of week, etc.
You obtain day of week, etc., by converting business dates to regular dates and then using the
standard functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, "calname"))

See Extracting date components from SIFs in [D] datetime for the other extraction functions.

10. Stbcal-files.
The stbcal-file for simple, the calendar shown below,

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30

is

begin simple.stbcal

*! version 1.0.0
* simple.stbcal

version 13
purpose "Example for manual"
dateformat dmy

range 01nov2011 30nov2011
centerdate 01nov2011

omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates
to be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25nov2011

to read

omit dowinmonth +4 Th of Nov and +1

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after
that (+1), too. See [D] datetime business calendars creation.

104 datetime business calendars — Business calendars

Description
Stata provides user-definable business calendars.

Remarks and examples
See [D] datetime for an introduction to Stata’s date and time features.

Below we work through an example from start to finish.

Remarks are presented under the following headings:
Step 1: Read the data, date as string
Step 2: Convert date variable to %td date
Step 3: Convert %td date to %tb date
Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted
Key feature: Extracting components from %tb dates
Key feature: Merging on dates

Step 1: Read the data, date as string

File bcal simple.raw on our website provides data, including a date variable, that is to be
interpreted according to the business calendar simple shown under Syntax above.

. type http://www.stata-press.com/data/r13/bcal_simple.raw
11/4/11 51
11/7/11 9
11/18/11 12
11/21/11 4
11/23/11 17
11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string
variable:

. infile str10 sdate float x using http://www.stata-press.com/data/r13/bcal_simple
(6 observations read)

. list

sdate x

1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17

6. 11/28/11 22

Step 2: Convert date variable to %td date

Now we create a Stata internal form (SIF) %td format date from the string date:
. generate rdate = date(sdate, "MD20Y")

. format rdate %td

See HRF-to-SIF conversion functions in [D] datetime. We verify that the conversion went well
and drop the string variable of the date:

datetime business calendars — Business calendars 105

. list

sdate x rdate

1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011

6. 11/28/11 22 28nov2011

. drop sdate

Step 3: Convert %td date to %tb date

We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax
above.

. generate mydate = bofd("simple", rdate)

. format mydate %tbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assert would have responded, “assertion is false”. Nonetheless, we will list the data to show you
that the conversion went well. We would usually drop the %td encoding of the date, but we want it
to demonstrate a feature below.

. list

x rdate mydate

1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011

6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:
. format rdate mydate %9.0g // remove date formats

. list

x rdate mydate

1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16

6. 22 18959 17

106 datetime business calendars — Business calendars

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern
yourself with the encoding. If you were curious, you could learn more about the encoding used by
%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate

. format mydate %tbsimple

Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011

28nov2011− 1 = 23nov2011

That is true:

. generate tomorrow = mydate + 1

. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

x mydate tomorrow yesterday

1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011

6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L.varname and F.varname work similarly.

Key feature: Extracting components from %tb dates

You extract components such as day of week, month, day, and year from business dates using the
same extraction functions you use with Stata’s regular %td dates, namely, dow(), month(), day(),
and year(), and you use function dofb() to convert business dates to regular dates. Below we add
day of week to our data, list the data, and then drop the new variable:

datetime business calendars — Business calendars 107

. generate dow = dow(dofb(mydate, "simple"))

. list

x mydate dow

1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21nov2011 1
5. 17 23nov2011 3

6. 22 28nov2011 1

. drop dow

See Extracting date components from SIFs in [D] datetime.

Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing
regular dates, say, on economic conditions, and you want to merge them. To do that, you create a
regular date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, "simple")

. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see
[D] bcal — Business calendar file manipulation

[D] datetime business calendars creation — Business calendars creation

[D] datetime — Date and time values and variables

Title

datetime business calendars creation — Business calendars creation

Syntax Description Remarks and examples Also see

Syntax
Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname.stbcal, which contains the following:

* comments

version version of stata

purpose "text"

dateformat { ymd | ydm | myd | mdy | dym | dmy }

range date date

centerdate date[
from { date | . } to { date | . }

]
omit . . .

[
if
]

. . .

. . .

where

omit . . . may be

omit date pdate
[
and pmlist

]
omit dayofweek dowlist

omit dowinmonth pm# dow
[
of monthlist

] [
and pmlist

][
if
]

may be

if restriction
[
& restriction . . .

]
restriction is one of

dow(dowlist)
month(monthlist)
year(yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.

pdate is a date or it is a date with character * substituted where the year would usually
appear. If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013;
or it can be 12apr*, 12-4-*, or 12.4.*. 12apr* means the 12th of April across all
years.

dow is a day of week, in English. It may be abbreviated to as few as 2 characters, and
capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

108

datetime business calendars creation — Business calendars creation 109

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.
Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to
the minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap,
may, 6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in
parentheses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

year is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.
Examples: 2013, (2013), (2013 2014).

pm# is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm#
appears in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow
in the month. omit dowinmonth +1 Th means the first Thursday of the month. omit
dowinmonth -1 Th means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.
Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist
allowed at the end of omit date and omit dowinmonth, and it specifies additional dates
to be omitted. and +1 means and the day after. and -1 means and the day before.

Description
Stata provides user-definable business calendars. Business calendars are provided by StataCorp and

by other users, and you can write your own. You can also create a business calendar automatically
from the current dataset with the bcal create command; see [D] bcal. This entry concerns writing
your own business calendars.

See [D] datetime business calendars for an introduction to business calendars.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Concepts
The preliminary commands
The omit commands: from/to and if
The omit commands: and
The omit commands: omit date
The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files
How to debug stbcal-files
Ideas for calendars that may not occur to you

110 datetime business calendars creation — Business calendars creation

Introduction

A business calendar is a regular calendar with some dates crossed out, such as

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30

The purpose of the stbcal-file is to

1. Specify the range of dates covered by the calendar.

2. Specify the particular date that will be encoded as date 0.

3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

begin example 1.stbcal

version 13
range 01nov2011 30nov2011
centerdate 01nov2011
omit date 5nov2011
omit date 6nov2011
omit date 12nov2011
omit date 13nov2011
omit date 19nov2011
omit date 20nov2011
omit date 24nov2011
omit date 25nov2011
omit date 26nov2011
omit date 27nov2011

end example 1.stbcal

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays
and Sundays:

begin example 2.stbcal

version 13
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end example 2.stbcal

In this particular calendar, we are omitting 24nov2011 and 25nov2011 because of the American
Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many
businesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

datetime business calendars creation — Business calendars creation 111

begin example 3.stbcal

version 13
range 01nov2011 30nov2011
centerdate 01nov2011
omit dayofweek (Sa Su)
omit dowinmonth +4 Th of Nov and +1

end example 3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because
it covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts

You are required to specify four things in an stbcal-file:

1. the version of Stata being used,

2. the range of the calendar,

3. the center date of the calendar, and

4. the dates to be omitted.

Version.
You specify the version of Stata to ensure forward compatibility with future versions of Stata. If
your calendar starts with the line version stataversion, future versions of Stata will know
how to interpret the file even if the definition of the stbcal-file language has greatly changed.

Range.
A calendar is defined over a specific range of dates, and you must explicitly state what that range
is. When you or others use your calendar, dates outside the range will be considered invalid, which
usually means that they will be treated as missing values.

Center date.
Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then
57 − 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous
statement works just as well if we substitute −12,739 for 57, and thus the particular values do
not matter except that we must agree upon what values we wish to standardize because we will
be storing these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to
the middle of your calendar. It means the date that corresponds to the center of integers, which is
to say, 0. You must choose a date within the range as the standard. The particular date you choose
does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar
uses 01jan1960, but that date will probably not be available to you because the center date must
be a date on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future.
Today, you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes.
Later, you need to expand the range, say back to 1970 or forward to 2030, or both. When you
update your calendar, do not change the center date. This way, your new calendar will be backward
compatible with your previous one.

Omitted dates.
Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be
omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.
Rules change, so learn about the from/to prefix that can be used in front of omit commands.
You can code things like

112 datetime business calendars creation — Business calendars creation

from 01jan1960 to 31dec1968: omit . . .
from 01jan1979 to .: omit . . .

When specifying from/to, . for the first date is synonymous with the opening date of the range.
. for the second date is synonymous with the closing date.

The preliminary commands

Stbcal-files should begin with these commands:

version version of stata
purpose "text"
dateformat { ymd | ydm | myd | mdy | dym | dmy }
range date date
centerdate date

version version of stata
At the time of this writing, you would specify version 13. Better still, type command version
in Stata to discover the version of Stata you are currently using. Specify that version, and be sure
to look at the documentation so that you use the modern syntax correctly.

purpose "text"
This command is optional. The purpose of purpose is not to make comments in your file. If you
want comments, include those with a * in front. The purpose sets the text that bcal describe
calname will display.

dateformat { ymd | ydm | myd | mdy | dym | dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has
nothing to do with how dates will look when variables are formatted with %tbcalname. This
command specifies how you are typing dates in this stbcal-file on the subsequent commands.
Specify the format that you find convenient.

range date date
The date range was discussed in Concepts. You must specify it.

centerdate date
The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if

An stbcal-file usually contains multiple omit commands. The omit commands have the syntax[
from { date | . } to { date | . }:

]
omit . . .

[
if
]

That is, an omit command may optionally be preceded by from/to and may optionally contain
an if at the end.

When you do not specify from/to, results are the same as if you specified

from . to .: omit . . .

That is, the omit command applies to all dates from the beginning to the end of the range. In
Introduction, we showed the command

omit dowinmonth +4 Th of Nov and +1

datetime business calendars creation — Business calendars creation 113

Our sample calendar covered only the month of November, but imagine that it covered a longer period
and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving
holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars
multiple times and for multiple reasons, and the result is still the same as if the dates were omitted
only once.

The optional if also determines when the omit statement is operational. Let’s think about the
Christmas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be
coded

omit date 24dec*
omit date 25dec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25dec*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and
25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December
if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the
holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays
are Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25dec* is one of
the specified days of the week. If 25dec* is not one of those days, the omit statement is ignored
for that year. Our focus here is on the if clause. We will explain about the and clause in the next
section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is
convenient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and
2012. You could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

or

omit date 25dec* and +1 if dow(Mo) & year(2007 2008 2009 2010)
omit date . . . if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

114 datetime business calendars creation — Business calendars creation

The omit commands: and
The other common piece of syntax that shows up on omit commands is and pmlist. We used it

above in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The
extra days are specified as how many days they are from the date being referred to. Please excuse
the inelegant “date being referred to”, but sometimes the date being referred to is implied rather than
stated explicitly. For this problem, however, the date being referred to is 25dec across a number of
years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line

omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line

omit date 25dec* and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 25dec is Sunday. The line

omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.

Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if
the year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last
Wednesday of November and December.

The omit commands: omit date
The full syntax of omit date is[

from { date | . } to { date | . }:
]
omit date pdate

[
and pmlist

] [
if
]

You may omit specific dates,

omit date 25dec2010

or you may omit the same date across years:

omit date 25dec*

datetime business calendars creation — Business calendars creation 115

The omit commands: omit dayofweek

The full syntax of omit dayofweek is[
from { date | . } to { date | . }:

]
omit dayofweek dowlist

[
if
]

The specified days of week (Monday, Tuesday, . . .) are omitted.

The omit commands: omit dowinmonth
The full syntax of omit dowinmonth is[

from { date | . } to { date | . }:
]
omit pm# dow

[
of monthlist

] [
and pmlist

] [
if
]

dowinmonth stands for day of week in month and refers to days such as the first Monday, second
Monday, . . . , next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo,
. . . , -2 Mo, and -1 Mo.

Creating stbcal-files with bcal create

Business calendars can be obtained from your Stata installation or from other Stata users. You can
also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in
qualifiers, as well as the excludemissing() option. You can also edit business calendars created with
bcal create or obtained from other sources. It is advisable to use bcal load or bcal describe
to verify that a business calendar is well constructed and remains so after editing.

See [D] bcal for more information on bcal create.

Where to place stbcal-files

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks
for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written
by other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Stata13\
BASE: C:\Program Files\Stata12\ado\base\
SITE: C:\Program Files\Stata13\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\
OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using
net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime,
even at inopportune moments, no output is produced. If there are errors in the file, no mention is
made of the problem, and thereafter Stata simply acts as if it had never found the file, which is to
say, variables with %tbcalname formats are displayed in %g format.

116 datetime business calendars creation — Business calendars creation

You can tell Stata to load a calendar file right now and to show you the output, including error
messages. Type

. bcal load calname

It does not matter where calname.stbcal is stored, Stata will find it. It does not matter whether
Stata has already loaded calname.stbcal, either secretly or because you previously instructed the
file be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you

Business calendars obviously are not restricted to businesses, and neither do they have to be
restricted to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could
code

begin mondays.stbcal

version 13

purpose "Mondays only"
range 04jan1960 06jan2020
centerdate 04jan1960

omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the 1st and 15th of every month. You could
code

begin smnth.stbcal

version 13

purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960

omit date 2jan*
omit date 3jan*
.
.
omit date 14jan*
omit date 16jan*
.
.
omit date 31jan*
omit date 2feb*
.
.

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on
01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal

version 13

Purpose "%td centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal

datetime business calendars creation — Business calendars creation 117

Also see
[D] bcal — Business calendar file manipulation

[D] datetime business calendars — Business calendars

[D] datetime — Date and time values and variables

Title

datetime display formats — Display formats for dates and times

Syntax Description Remarks and examples Also see

Syntax
The formats for displaying Stata internal form (SIF) dates and times in human readable form (HRF)

are

Display format to
SIF type present SIF in HRF

datetime/c %tc
[

details
]

datetime/C %tC
[

details
]

date %td
[

details
]

weekly date %tw
[

details
]

monthly date %tm
[

details
]

quarterly date %tq
[

details
]

half-yearly date %th
[

details
]

yearly date %ty
[

details
]

The optional details allows you to control how results appear and is composed of a sequence of
the following codes:

Code Meaning Output

CC century-1 01–99
cc century-1 1–99
YY 2-digit year 00–99
yy 2-digit year 0–99

JJJ day within year 001–366
jjj day within year 1–366

Mon month Jan, Feb, . . . , Dec
Month month January, February, . . . , December
mon month jan, feb, . . . , dec
month month january, february, . . . , december
NN month 01–12
nn month 1–12

DD day within month 01–31
dd day within month 1–31

118

datetime display formats — Display formats for dates and times 119

DAYNAME day of week Sunday, Monday, . . . (aligned)
Dayname day of week Sunday, Monday, . . . (unaligned)
Day day of week Sun, Mon, . . .
Da day of week Su, Mo, . . .
day day of week sun, mon, . . .
da day of week su, mo, . . .

h half 1–2
q quarter 1–4
WW week 01–52
ww week 1–52

HH hour 00–23
Hh hour 00–12
hH hour 0–23
hh hour 0–12

MM minute 00–59
mm minute 0–59

SS second 00–60 (sic, due to leap seconds)
ss second 0–60 (sic, due to leap seconds)
.s tenths .0–.9
.ss hundredths .00–.99
.sss thousandths .000–.999

am show am or pm am or pm
a.m. show a.m. or p.m. a.m. or p.m.
AM show AM or PM AM or PM
A.M. show A.M. or P.M. A.M. or P.M.

. display period .
, display comma ,
: display colon :
- display hyphen -

display space
/ display slash /
\ display backslash \
!c display character c

+ separator (see note)

Note: + displays nothing; it may be used to separate one code from the next to make the format
more readable. + is never necessary. For instance, %tchh:MM+am and %tchh:MMam have the
same meaning, as does %tc+hh+:+MM+am.

120 datetime display formats — Display formats for dates and times

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format

%tC %tCDDmonCCYY HH:MM:SS

%tc %tcDDmonCCYY HH:MM:SS

%td %tdDDmonCCYY

%tw %twCCYY!www

%tm %tmCCYY!mnn

%tq %tqCCYY!qq

%th %thCCYY!hh

%ty %tyCCYY

That is, typing

. format mytimevar %tc

has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY HH:MM:SS is interpreted as

% t c DDmonCCYY HH:MM:SS

| | | |
all formats it is a variable formatting codes
start with % datetime format coded in specify how to

milliseconds display value

Description

Stata stores dates and times numerically in one of the eight SIFs. An SIF might be 18,282 or
even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as 20jan2010
(%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than
20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010
15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20
15:15:30 2010.

See [D] datetime for an introduction to Stata’s dates and times.

datetime display formats — Display formats for dates and times 121

Remarks and examples
Remarks are presented under the following headings:

Specifying display formats
Times are truncated, not rounded, when displayed

Specifying display formats

Rather than using the default format 20jan2010, you could display the SIF date variable in one of
these formats:

2010.01.20
January 20, 2010
1/20/10

Likewise, rather than displaying the SIF datetime/c variable in the default format 20jan2010 15:15:30,
you could display it in one of these formats:

2010.01.20 15:15
January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010

Here is how to do it:

1. 2010.01.20
format mytdvar %tdCCYY.NN.DD

2. January 20, 2010
format mytdvar %tdMonth dd, CCYY

3. 1/20/10
format mytdvar %tdnn/dd/YY

4. 2010.01.20 15:15
format mytcvar %tcCCYY.NN.DD HH:MM

5. January 20, 2010 3:15 pm
format mytcvar %tcMonth dd, CCYY hh:MM am
Code am at the end indicates that am or pm should be displayed, as appropriate.

6. Wed Jan 20 15:15:30 2010
format mytcvar %tcDay Mon DD HH:MM:SS CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin
with %tc. It is important that you specify the opening correctly—namely, as % + t + third character.
The third character indicates the particular SIF encoding type, which is to say, how the numeric value
is to be interpreted. You specify %tc. . . for datetime/c variables, %tC. . . for datetime/C, %td. . . for
date, and so on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds;
15:15:30.000 is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

%tcDDmonCCYY HH:MM:SS.sss

or

%tCDDmonCCYY HH:MM:SS.sss

as appropriate.

122 datetime display formats — Display formats for dates and times

Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that
are displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32
right up until the instant that it becomes 11:33.

Also see
[D] datetime — Date and time values and variables

[D] datetime business calendars — Business calendars

[D] datetime translation — String to numeric date translation functions

Title

datetime translation — String to numeric date translation functions

Syntax Description Remarks and examples Also see

Syntax
The string-to-numeric date and time translation functions are

Desired SIF type String-to-numeric translation function

datetime/c clock(HRFstr, mask [, topyear])

datetime/C Clock(HRFstr, mask [, topyear])

date date(HRFstr, mask [, topyear])

weekly date weekly(HRFstr, mask [, topyear])

monthly date monthly(HRFstr, mask [, topyear])

quarterly date quarterly(HRFstr, mask [, topyear])

half-yearly date halfyearly(HRFstr, mask [, topyear])

yearly date yearly(HRFstr, mask [, topyear])

where

HRFstr is the string value (HRF) to be translated,

topyear is described in Working with two-digit years, below,

and mask specifies the order of the date and time components and is a string composed of a
sequence of these elements:

Code Meaning

M month
D day within month

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

h hour of day

m minutes within hour
s seconds within minute

ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have
no significance.

123

124 datetime translation — String to numeric date translation functions

Examples of masks include

"MDY" HRFstr contains month, day, and year, in that order.

"MD19Y" means the same as "MDY" except that HRFstr may contain two-digit years, and
when it does, they are to be treated as if they are 4-digit years beginning with
19.

"MDYhms" HRFstr contains month, day, year, hour, minute, and second, in that order.

"MDY hms" means the same as "MDYhms"; the blank has no meaning.

"MDY#hms" means that one element between the year and the hour is to be ignored. For
example, HRFstr contains values like "1-1-2010 at 15:23:17" or values like
"1-1-2010 at 3:23:17 PM".

Description
These functions translate dates and times recorded as strings containing human readable form

(HRF) to the desired Stata internal form (SIF). See [D] datetime for an introduction to Stata’s date
and time features.

Also see Using dates and times from other software in [D] datetime.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Specifying the mask
How the HRF-to-SIF functions interpret the mask
Working with two-digit years
Working with incomplete dates and times
Translating run-together dates, such as 20060125
Valid times
The clock() and Clock() functions
Why there are two SIF datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred
The date() function
The other translation functions

Introduction

The HRF-to-SIF translation functions are used to translate string HRF dates, such as “08/12/06”,
“12-8-2006”, “12 Aug 06”, “12aug2006 14:23”, and “12 aug06 2:23 pm”, to SIF. The HRF-to-SIF
translation functions are typically used after importing or reading data. You read the date information
into string variables and then the HRF-to-SIF functions translate the string into something Stata can
use, namely, an SIF numeric variable.

You use generate to create the SIF variables. The translation functions are used in the expressions,
such as

. generate double time_admitted = clock(time_admitted_str, "DMYhms")

. format time_admitted %tc

. generate date_hired = date(date_hired_str, "MDY")

. format date_hired %td

datetime translation — String to numeric date translation functions 125

Every translation function—such as clock() and date() above—requires these two arguments:

1. the HRFstr specifying the string to be translated

2. the mask specifying the order in which the date and time components appear in HRFstr

Notes:

1. You choose the translation function clock(), Clock(), date(), . . . according to the type
of SIF value you want returned.

2. You specify the mask according to the contents of HRFstr.

Usually, you will want to translate an HRFstr containing “2006.08.13 14:23” to an SIF datetime/c
or datetime/C value and translate an HRFstr containing “2006.08.13” to an SIF date value. If you
wish, however, it can be the other way around. In that case, the detailed string would translate to
an SIF date value corresponding to just the date part, 13aug2006, and the less detailed string would
translate to an SIF datetime value corresponding to 13aug2006 00:00:00.000.

Specifying the mask

An argument mask is a string specifying the order of the date and time components in HRFstr.
Examples of HRF date strings and the mask required to translate them include the following:

HRFstr Corresponding mask

01dec2006 14:22 "DMYhm"

01-12-2006 14.22 "DMYhm"

1dec2006 14:22 "DMYhm"

1-12-2006 14:22 "DMYhm"

01dec06 14:22 "DM20Yhm"

01-12-06 14.22 "DM20Yhm"

December 1, 2006 14:22 "MDYhm"

2006 Dec 01 14:22 "YMDhm"

2006-12-01 14:22 "YMDhm"

2006-12-01 14:22:43 "YMDhms"

2006-12-01 14:22:43.2 "YMDhms"

2006-12-01 14:22:43.21 "YMDhms"

2006-12-01 14:22:43.213 "YMDhms"

2006-12-01 2:22:43.213 pm "YMDhms" (see note 1)
2006-12-01 2:22:43.213 pm. "YMDhms"

2006-12-01 2:22:43.213 p.m. "YMDhms"

2006-12-01 2:22:43.213 P.M. "YMDhms"

20061201 1422 "YMDhm"

14:22 "hm" (see note 2)
2006-12-01 "YMD"

Fri Dec 01 14:22:43 CST 2006 "#MDhms#Y"

126 datetime translation — String to numeric date translation functions

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you
include code h, the HRF-to-SIF functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in HRFstr. If that is a subset of
what the selected SIF type could record, the remaining elements are set to their defaults.
clock("14:22", "hm") produces 01jan1960 14:22:00 and clock("2006-12-01", "YMD")
produces 01dec2006 00:00:00. date("jan 2006", "MY") produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus you can
type

. generate double admit = clock(admitstr, "#MDhms#Y")

or type

. generate double admit = clock(admitstr, "# MD hms # Y")

and which one you use makes no difference.

How the HRF-to-SIF functions interpret the mask

The HRF-to-SIF functions apply the following rules when interpreting HRFstr:

1. For each HRF string to be translated, remove all punctuation except for the period separating
seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation
with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.

3. Interpret the resulting elements according to mask.

For instance, consider the string

01dec2006 14:22

Under rule 1, the string becomes

01dec2006 14 22

Under rule 2, the string becomes

01 dec 2006 14 22

Finally, the HRF-to-SIF functions apply rule 3. If the mask is "DMYhm", then the functions interpret
“01” as the day, “dec” as the month, and so on.

Or consider the string

Wed Dec 01 14:22:43 CST 2006

Under rule 1, the string becomes

Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "#MDhms#Y",
the translation function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest
of string is to be ignored. Consider translating the string

Wed Dec 01 14 22 43 CST 2006 patient 42

datetime translation — String to numeric date translation functions 127

The mask code that previously worked when “patient 42” was not part of the string, "#MDhms#Y",
will result in a missing value in this case. The functions are careful in the translation, and if the whole
string is not used, they return missing. If you end the mask in #, however, the functions ignore the
rest of the string. Changing the mask from "#MDhms#Y" to "#MDhms#Y#" will produce the desired
result.

Working with two-digit years

Consider translating the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00.
The translation functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read
by specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would
specify the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the
first year as being in 2006 and the second year as being in 1998. That is the purpose of the optional
argument topyear:

clock(string, mask
[
, topyear

]
)

When you specify topyear, you are stating that when years in string are two digits, the full year
is to be obtained by finding the largest year that does not exceed topyear. Thus you could code

. generate double timestamp = clock(timestr, "DMYhm", 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The
two-digit year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times

The translation functions do not require that every component of the date and time be specified.

Translating 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.

Translating 14:22 with mask "hm" results in 01jan1960 14:22:00.

Translating 11-2006 with mask "MY" results in 01nov2006 00:00:00.

The default for a component, if not specified in the mask, is

Code Default (if not specified)

M 01
D 01
Y 1960

h 00
m 00
s 00

Thus if you have data recording “14:22”, meaning a duration of 14 hours and 22 minutes or the
time 14:22 each day, you can translate it with clock(HRFstr, "hm"). See Obtaining and working
with durations in [D] datetime.

128 datetime translation — String to numeric date translation functions

Translating run-together dates, such as 20060125

The translation functions will translate dates and times that are run together, such as 20060125,
060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not have to do anything special
to translate them:

. display %d date("20060125", "YMD")
25jan2006

. display %td date("060125", "20YMD")
25jan2006

. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15

In a data context, you could type

. gen startdate = date(startdatestr, "YMD")

. gen double starttime = clock(starttimestr, "YMDhms")

Remember to read the original date into a string. If you mistakenly read the date as numeric,
the best advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be
rounded unless they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur,
you can convert the variable from numeric to string by using the string() function, which comes
in one- and two-argument forms. You will need the two-argument form:

. gen str startdatestr = string(startdatedouble, "%10.0g")

. gen str starttimestr = string(starttimedouble, "%16.0g")

If you omitted the format, string() would produce 2.01e+07 for 20060125 and 2.01e+13 for
20060125110215. The format we used had a width that was 2 characters larger than the length of
the integer number, although using a too-wide format does no harm.

Valid times
27:62:90 is an invalid time. If you try to convert 27:62:90 to a datetime value, you will obtain a

missing value.

24:00:00 is also invalid. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 ≤ hh < 24, 0 ≤ mm < 60, and 0 ≤ ss < 60, although
sometimes 60 is allowed. 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. 31dec2005
23:59:60 includes an inserted leap second.

30dec2005 23:59:60 is invalid in both datetime encodings. 30dec2005 23:59:60 did not include an
inserted leap second. A correct datetime would be 31dec2005 00:00:00.

The clock() and Clock() functions

Stata provides two separate datetime encodings that we call SIF datetime/c and SIF datetime/C
and that others would call “times assuming 86,400 seconds per day” and “times adjusted for leap
seconds” or, equivalently, UTC times.

The syntax of the two functions is the same:

clock(HRFstr, mask
[
, topyear

]
)

Clock(HRFstr, mask
[
, topyear

]
)

datetime translation — String to numeric date translation functions 129

Function Clock() is nearly identical to function clock(), except that Clock() returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23nov2010 = 1,606,132,800,000 in datetime/c

= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010.
Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997
23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

Why there are two SIF datetime encodings

Stata provides two different datetime encodings, SIF datetime/c and SIF datetime/C.

SIF datetime/c assumes that there are 24 × 60 × 60 × 1000 ms per day, just as an atomic clock
does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus
provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a
fancy way of saying that the measurements are based on looking at the sun. The sun should be at
its highest point at noon, right? So however you might have kept track of time—by falling grains
of sand or a wound-up spring—you would have periodically reset your clock and then gone about
your business. In olden times, it was understood that the 60 seconds per minute, 60 minutes per hour,
and 24 hours per day were theoretical goals that no mechanical device could reproduce accurately.
These days, we have more formal definitions for measurements of time. One second is 9,192,631,770
periods of the radiation corresponding to the transition between two levels of the ground state of
cesium 133. Obviously, we have better equipment than the ancients, so problem solved, right? Wrong.
There are two problems: the formal definition of a second is just a little too short to use for accurately
calculating the length of a day, and the Earth’s rotation is slowing down.

As a result, since 1972, leap seconds have been added to atomic clocks once or twice a year to
keep time measurements in synchronization with Earth’s rotation. Unlike leap years, however, there
is no formula for predicting when leap seconds will occur. Earth may be on average slowing down,
but there is a large random component to that. As a result, leap seconds are determined by committee
and announced 6 months before they are inserted. Leap seconds are added, if necessary, on the end
of the day on June 30 and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand
that leap seconds are every bit as real as every other second of the year. Once a leap second is
inserted, it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as GMT and UTC.

GMT is the old Greenwich Mean Time that is based on astronomical observation. GMT has been
replaced by UTC.

UTC stands for coordinated universal time. It is measured by atomic clocks and is occasionally
corrected for leap seconds. UTC is derived from two other times, UT1 and TAI. UT1 is the mean solar
time, with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic
time on which UTC is based. TAI is a statistical combination of various atomic chronometers and even
it has not ticked uniformly over its history; see http://www.ucolick.org/∼sla/leapsecs/timescales.html
and especially http://www.ucolick.org/∼sla/leapsecs/dutc.html#TAI.

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing.
UNK is based on a recent time observation, probably UTC, and it just assumes that there are 86,400
seconds per day after that.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

130 datetime translation — String to numeric date translation functions

The UNK standard is adequate for many purposes, and when using it you will want to use SIF
datetime/c rather than the leap second–adjusted datetime/C encoding. If you are using computer-
timestamped data, however, you need to find out whether the timestamping system accounted for
leap-second adjustment. Problems can arise even if you do not care about losing or gaining a second
here and there.

For instance, you may import from other systems timestamp values recorded in the number of
milliseconds that have passed since some agreed upon date. You may do this, but if you choose the
wrong encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more
recent times will be off by 24 seconds.

To avoid such problems, you may decide to import and export data by using HRF such as “Fri
Aug 18 14:05:36 CDT 2010”. This method has advantages, but for datetime/C (UTC) encoding, times
such as 23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it
with datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th
second, Clock() verifies that the time is one of the official leap seconds. Thus when translating from
printable forms, try assuming datetime/c and check the result for missing values. If there are none,
then you can assume your use of datetime/c was valid. If there are missing values and they are due
to leap seconds and not some other error, however, you must use datetime/C Clock() to translate
the HRF. After that, if you still want to work in datetime/c units, use function cofC() to translate
datetime/C values into datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way.
The inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the
duration between dates, you must subtract the two time values involved. The other difficulty has to
do with dealing with dates in the future. Under the datetime/C (UTC) encoding, there is no set value
for any date more than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:

1. datetime/C, also known as UTC, which accounts for leap seconds

2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day)

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them.
Stata handles either situation. Here is our advice:

• If you obtain data from a system that accounts for leap seconds, import using Stata’s
datetime/C encoding.

a. If you later need to export data to a system that does not account for leap seconds,
use Stata’s cofC() function to translate time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if
necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the
second level (minute, hour, etc.), create a datetime/c variable from the datetime/C
variable (generate double tctime = cofC(tCtime)) and tsset that, specifying
the appropriate delta() if necessary. You must do that because in a datetime/C
variable, there are not necessarily 60 seconds in a minute; some minutes have 61
seconds.

datetime translation — String to numeric date translation functions 131

• If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use
Stata’s Cofc() function to translate time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate
delta().

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work
with. You can always use datetime/c if

• you do not mind having up to 1 second of error and

• you do not import or export numerical values (clock ticks) from other systems that are using
leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five
days from one date is not simply a matter of adding 5 × 24 × 60 × 60 × 1000 ms. You
might need to add another 1,000 ms. Three hundred sixty-five days from now might require
adding 1,000 or 2,000 ms. The longer the span, the more you might have to add. The best
way to add durations to datetime/C variables is to extract the components, add to them, and
then reconstruct from the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not
know what the datetime/C value of 25dec2026 00:00:00 will be because every year along the
way, the International Earth Rotation Reference Systems Service (IERS) will twice announce
whether a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be
transitory only if the rocks land back on Earth, so you need to throw them really hard. We know
what you are thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file
is updated periodically (see [R] update; the file is updated when you update all), and Stata’s
datetime/C functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function

The syntax of the date() function is

date(string, mask
[
, topyear

]
)

The date() function is identical to clock() except that date() returns an SIF date value rather
than a datetime value. The date() function is the same as dofc(clock()).

daily() is a synonym for date().

132 datetime translation — String to numeric date translation functions

The other translation functions
The other translation functions are

SIF type HRF-to-SIF translation function

weekly date weekly(HRFstr, mask [, topyear])

monthly date monthly(HRFstr, mask [, topyear])

quarterly date quarterly(HRFstr, mask [, topyear])

half-yearly date halfyearly(HRFstr, mask [, topyear])

HRFstr is the value to be translated.
mask specifies the order of the components.
topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions translates a pair of numbers: weekly() translates a year and a week number
(1–52), monthly() translates a year and a month number (1–12), quarterly() translates a year
and a quarter number (1–4), and halfyearly() translates a year and a half number (1–2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx

20Y 2-digit year to be interpreted as 20xx

W week number (weekly() only)

M month number (monthly() only)

Q quarter number (quarterly() only)

H half-year number (halfyearly() only)

The pair of numbers to be translated must be separated by a space or punctuation.
No extra characters are allowed.

Also see
[D] datetime — Date and time values and variables

[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

Title

describe — Describe data in memory or in file

Syntax Menu
Description Options to describe data in memory
Options to describe data in file Remarks and examples
Stored results References
Also see

Syntax

Describe data in memory

describe
[

varlist
] [

, memory options
]

Describe data in file

describe
[

varlist
]
using filename

[
, file options

]
memory options Description

simple display only variable names
short display only general information
fullnames do not abbreviate variable names
numbers display variable number along with name
replace make dataset, not written report, of description
clear for use with replace

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

file options Description

short display only general information
simple display only variable names

varlist store r(varlist) and r(sortlist) in addition to usual stored results;
programmer’s option

varlist does not appear in the dialog box.

Menu
Data > Describe data > Describe data in memory or in a file

133

134 describe — Describe data in memory or in file

Description
describe produces a summary of the dataset in memory or of the data stored in a Stata-format

dataset.

For a compact listing of variable names, use describe, simple.

Options to describe data in memory
simple displays only the variable names in a compact format. simple may not be combined with

other options.

short suppresses the specific information for each variable. Only the general information (number
of observations, number of variables, size, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present
an abbreviation when the variable name is longer than 15 characters. describe using always
shows the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers
is specified, variable names are abbreviated when the name is longer than eight characters. The
numbers and fullnames options may not be specified together. numbers may not be specified
with describe using.

replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information
that the report would have presented. Each observation of the new data describes a variable in the
original data; see describe, replace below.

clear may be specified only when replace is specified. clear specifies that the data in memory
be cleared and replaced with the description information, even if the original data have not been
saved to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the
dataset. r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in file
short suppresses the specific information for each variable. Only the general information (number

of observations, number of variables, size, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with
other options.

describe — Describe data in memory or in file 135

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r(varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the
dataset. r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables
in a dataset for their names to be stored in r(varlist), given the current maximum length of
macros, as determined by set maxvar. Should that occur, describe using will issue the error
message “too many variables”, r(103).

Remarks and examples
Remarks are presented under the following headings:

describe
describe, replace

describe

If describe is typed with no operands, the contents of the dataset currently in memory are
described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First,
you cannot abbreviate variable names; that is, you have to type displacement rather than displ.
However, you can use the abbreviation character (~) to indicate abbreviations, for example, displ~.
Second, you may not refer to a range of variables; specifying price-trunk is considered an error.

Example 1

The basic description includes some general information on the number of variables and observations,
along with a description of every variable in the dataset:

. use http://www.stata-press.com/data/r13/states
(State data)

. describe, numbers

Contains data from http://www.stata-press.com/data/r13/states.dta
obs: 50 State data
vars: 5 3 Jan 2013 15:17
size: 1,100 (_dta has notes)

variable storage display value
name type format label variable label

1. state str8 %9s
2. region int %8.0g reg Census Region
3. median~e float %9.0g Median Age
4. marria~e long %12.0g Marriages per 100,000
5. divorc~e long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations
on 5 variables. The dataset is labeled “State data” and was last modified on January 3, 2013, at
15:17 (3:17 p.m.). The “ dta has notes” message indicates that a note is attached to the dataset; see
[U] 12.7 Notes attached to data.

136 describe — Describe data in memory or in file

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable
has associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median~e, is stored as a float, has a display format of
%9.0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc~e are both stored as longs and have display formats of %12.0g. These last
two variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is
variable 2 in this dataset.

Example 2

To view the full variable names, we could omit the numbers option and specify the fullnames
option.

. describe, fullnames

Contains data from http://www.stata-press.com/data/r13/states.dta
obs: 50 State data
vars: 5 3 Jan 2013 15:17
size: 1,100 (_dta has notes)

storage display value
variable name type format label variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names
because the longest variable name is 13 characters. Omitting the numbers option results in 15-character
variable names being displayed.

Technical note
The describe listing above also shows that the size of the dataset is 1,100. If you are curious,

(8 + 2 + 4 + 4 + 4)× 50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and
long, respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the
dataset.

describe — Describe data in memory or in file 137

Example 3

If we specify the short option, only general information about the data is presented:

. describe, short

Contains data from http://www.stata-press.com/data/r13/states.dta
obs: 50 State data
vars: 5 3 Jan 2013 15:17
size: 1,100

Sorted by: region

If we specify a varlist, only the variables in that varlist are described.

Example 4

Let’s change datasets. The describe varlist command is particularly useful when combined with
the ‘*’ wildcard character. For instance, we can describe all the variables whose names start with
pop by typing describe pop*:

. use http://www.stata-press.com/data/r13/census
(1980 Census data by state)

. describe pop*

storage display value
variable name type format label variable label

pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region pop18p

storage display value
variable name type format label variable label

state str14 %-14s State
region int %-8.0g cenreg Census region
pop18p long %12.0gc Pop, 18 and older

Typing describe using filename describes the data stored in filename. If an extension is not
specified, .dta is assumed.

138 describe — Describe data in memory or in file

Example 5

We can describe the contents of states.dta without disturbing the data that we currently have
in memory by typing

. describe using http://www.stata-press.com/data/r13/states

Contains data State data
obs: 50 3 Jan 2013 15:17
vars: 5
size: 1,300

storage display value
variable name type format label variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe, replace

describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describe without the replace
option. Rather than producing a written report, describe, replace produces a new dataset that
contains the same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe
(report appears; data in memory unchanged)

. list
(visual proof that data are unchanged)

. describe, replace
(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the
original data. The new variables are

1. position, a variable containing the numeric position of the original variable (1, 2, 3, . . .).

2. name, a variable containing the name of the original variable, such as "make", "price",
"mpg",

3. type, a variable containing the storage type of the original variable, such as "str18",
"int", "float",

4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to 0 if it
was string.

5. format, a variable containing the display format of the original variable, such as "%-18s",
"%8.0gc",

describe — Describe data in memory or in file 139

6. vallab, a variable containing the name of the value label associated with the original
variable, if any.

7. varlab, a variable containing the variable label of the original variable, such as "Make and
Model", "Price", "Mileage (mpg)",

In addition, the data contain the following characteristics:

dta[d filename], the name of the file containing the original data.

dta[d filedate], the date and time the file was written.

dta[d N], the number of observations in the original data.

dta[d sortedby], the variables on which the original data were sorted, if any.

Stored results
describe stores the following in r():

Scalars
r(N) number of observations
r(k) number of variables
r(width) width of dataset
r(changed) flag indicating data have changed since last saved

Macros
r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace stores nothing in r().

References
Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7–8. Reprinted in Stata

Technical Bulletin Reprints, vol. 9, pp. 26–27. College Station, TX: Stata Press.

. 2001. dm67.1: Enhancements to numbers of missing and present values. Stata Technical Bulletin 60: 2–3.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 7–9. College Station, TX: Stata Press.

. 2003. Software Updates: Numbers of present and missing values. Stata Journal 3: 449.

. 2005. Software Updates: Numbers of present and missing values. Stata Journal 5: 607.

Gleason, J. R. 1998. dm61: A tool for exploring Stata datasets (Windows and Macintosh only). Stata Technical Bulletin
45: 2–5. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 22–27. College Station, TX: Stata Press.

. 1999. dm61.1: Update to varxplor. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=up0005
http://www.stata-journal.com/sjpdf.html?articlenum=up0013
http://www.stata.com/products/stb/journals/stb45.pdf
http://www.stata.com/products/stb/journals/stb51.pdf

140 describe — Describe data in memory or in file

Also see
[D] ds — List variables matching name patterns or other characteristics

[D] varmanage — Manage variable labels, formats, and other properties

[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable

[SVY] svydescribe — Describe survey data

[U] 6 Managing memory

Title

destring — Convert string variables to numeric variables and vice versa

Syntax Menu Description
Options for destring Options for tostring Remarks and examples
Acknowledgment References Also see

Syntax
Convert string variables to numeric variables

destring
[

varlist
]
,
{
generate(newvarlist) | replace

} [
destring options

]
Convert numeric variables to string variables

tostring varlist ,
{
generate(newvarlist) | replace

} [
tostring options

]
destring options Description

∗generate(newvarlist) generate newvar1, . . . , newvark for each variable in varlist
∗replace replace string variables in varlist with numeric variables
ignore("chars") remove specified nonnumeric characters
force convert nonnumeric strings to missing values
float generate numeric variables as type float

percent convert percent variables to fractional form
dpcomma convert variables with commas as decimals to period-decimal format

∗ Either generate(newvarlist) or replace is required.

tostring options Description

∗generate(newvarlist) generate newvar1, . . . , newvark for each variable in varlist
∗replace replace numeric variables in varlist with string variables
force force conversion ignoring information loss
format(format) convert using specified format
usedisplayformat convert using display format

∗ Either generate(newvarlist) or replace is required.

Menu
destring

Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring

Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to
string

141

142 destring — Convert string variables to numeric variables and vice versa

Description

destring converts variables in varlist from string to numeric. If varlist is not specified, destring
will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both
empty strings “ ” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, . . . , “.z” as
the extended missing values .a, .b, . . . , .z; see [U] 12.2.1 Missing values. destring also ignores
any leading or trailing spaces so that, for example, “ ” is equivalent to “ ” and “ . ” is equivalent to
“.”.

tostring converts variables in varlist from numeric to string. The most compact string format
possible is used. Variables in varlist that are already string will not be converted.

Options for destring

Either generate() or replace must be specified. With either option, if any string variable
contains nonnumeric characters not specified with ignore(), then no corresponding variable will be
generated, nor will that variable be replaced (unless force is specified).

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. If varlist is
not specified, destring attempts to generate a numeric variable for each variable in the dataset;
newvarlist must then contain the same number of new variable names as there are variables in the
dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to numeric variables. If varlist is not
specified, destring attempts to convert all variables from string to numeric. Any variable labels
or characteristics will be retained.

ignore("chars") specifies nonnumeric characters to be removed. If any string variable contains any
nonnumeric characters other than those specified with ignore(), no action will take place for that
variable unless force is also specified. Note that to Stata the comma is a nonnumeric character;
see also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified
with ignore(), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] data types. destring attempts automatically to compress each new numeric
variable after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable
are divided by 100 to convert the values to fractional form. percent by itself implies that the
percent sign, “ % ”, is an argument to ignore(), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods
as decimal values.

Options for tostring

Either generate() or replace must be specified. If converting any numeric variable to string
would result in loss of information, no variable will be produced unless force is specified. For more
details, see force below.

destring — Convert string variables to numeric variables and vice versa 143

generate(newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. Any variable
labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels
or characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real(string(varname, "format")) is not
equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to
specify usedisplayformat or format(). In circumstance 2, value labels will be ignored in a
forced conversion. decode (see [D] encode) is the standard way to generate a string variable based
on value labels.

format(format) specifies that a numeric format be used as an argument to the string() function,
which controls the conversion of the numeric variable to string. For example, a format of %7.2f
specifies that numbers are to be rounded to two decimal places before conversion to string. See
Remarks and examples below and [D] functions and [D] format. format() cannot be specified
with usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using U.S. Social Security numbers or daily or other dates with
some %d or %t format assigned. usedisplayformat cannot be specified with format().

Remarks and examples
Remarks are presented under the following headings:

destring
tostring

destring

Example 1

We read in a dataset, but somehow all the variables were created as strings. The variables contain
no nonnumeric characters, and we want to convert them all from string to numeric data types.

. use http://www.stata-press.com/data/r13/destring1

. describe

Contains data from http://www.stata-press.com/data/r13/destring1.dta
obs: 10
vars: 5 3 Mar 2013 10:15
size: 200

storage display value
variable name type format label variable label

id str3 %9s
num str3 %9s
code str4 %9s
total str5 %9s
income str5 %9s

Sorted by:

144 destring — Convert string variables to numeric variables and vice versa

. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 555 890 6543 423 19234

. destring, replace
id has all characters numeric; replaced as int
num has all characters numeric; replaced as int
code has all characters numeric; replaced as int
total has all characters numeric; replaced as long
income has all characters numeric; replaced as long

. describe

Contains data from http://www.stata-press.com/data/r13/destring1.dta
obs: 10
vars: 5 3 Mar 2013 10:15
size: 140

storage display value
variable name type format label variable label

id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g

Sorted by:
Note: dataset has changed since last saved

. list

id num code total income

1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432

6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 555 890 6543 423 19234

destring — Convert string variables to numeric variables and vice versa 145

Example 2

Our dataset contains the variable date, which was accidentally recorded as a string because of
spaces after the year and month. We want to remove the spaces. destring will convert it to numeric
and remove the spaces.

. use http://www.stata-press.com/data/r13/destring2, clear

. describe date

storage display value
variable name type format label variable label

date str14 %10s

. list date

date

1. 1999 12 10
2. 2000 07 08
3. 1997 03 02
4. 1999 09 00
5. 1998 10 04

6. 2000 03 28
7. 2000 08 08
8. 1997 10 20
9. 1998 01 16
10. 1999 11 12

. destring date, replace ignore(" ")
date: characters space removed; replaced as long

. describe date

storage display value
variable name type format label variable label

date long %10.0g

. list date

date

1. 19991210
2. 20000708
3. 19970302
4. 19990900
5. 19981004

6. 20000328
7. 20000808
8. 19971020
9. 19980116
10. 19991112

Example 3

Our dataset contains the variables date, price, and percent. These variables were accidentally
read into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs.

146 destring — Convert string variables to numeric variables and vice versa

We want to remove all of these characters and create new variables for date, price, and percent
containing numeric values. After removing the percent sign, we want to convert the percent variable
to decimal form.

. use http://www.stata-press.com/data/r13/destring2, clear

. describe

Contains data from http://www.stata-press.com/data/r13/destring2.dta
obs: 10
vars: 3 3 Mar 2013 22:50
size: 280

storage display value
variable name type format label variable label

date str14 %10s
price str11 %11s
percent str3 %9s

Sorted by:

. list

date price percent

1. 1999 12 10 $2,343.68 34%
2. 2000 07 08 $7,233.44 86%
3. 1997 03 02 $12,442.89 12%
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%

6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 45%
10. 1999 11 12 $8,282.49 1%

. destring date price percent, generate(date2 price2 percent2) ignore("$,%")
> percent
date: characters space removed; date2 generated as long
price: characters $, removed; price2 generated as double
percent: characters % removed; percent2 generated as double

. describe

Contains data from http://www.stata-press.com/data/r13/destring2.dta
obs: 10
vars: 6 3 Mar 2013 22:50
size: 480

storage display value
variable name type format label variable label

date str14 %10s
date2 long %10.0g
price str11 %11s
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g

Sorted by:
Note: dataset has changed since last saved

destring — Convert string variables to numeric variables and vice versa 147

. list

date date2 price price2 percent percent2

1. 1999 12 10 19991210 $2,343.68 2343.68 34% .34
2. 2000 07 08 20000708 $7,233.44 7233.44 86% .86
3. 1997 03 02 19970302 $12,442.89 12442.89 12% .12
4. 1999 09 00 19990900 $233,325.31 233325.31 6% .06
5. 1998 10 04 19981004 $1,549.23 1549.23 76% .76

6. 2000 03 28 20000328 $23,517.03 23517.03 35% .35
7. 2000 08 08 20000808 $2.43 2.43 69% .69
8. 1997 10 20 19971020 $9,382.47 9382.47 32% .32
9. 1998 01 16 19980116 $289,209.32 289209.32 45% .45
10. 1999 11 12 19991112 $8,282.49 8282.49 1% .01

tostring

Conversion of numeric data to string equivalents can be problematic. Stata, like most software,
holds numeric data to finite precision and in binary form. See the discussion in [U] 13.11 Precision
and problems therein. If no format() is specified, tostring uses the format %12.0g. This format
is, in particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without
loss of precision.

However, users will often need to specify a format themselves, especially when the numeric data
have fractional parts and for some reason a conversion to string is required.

Example 4

Our dataset contains a string month variable and numeric year and day variables. We want to
convert the three variables to a %td date.

. use http://www.stata-press.com/data/r13/tostring, clear

. list

id month day year

1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001

6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001
10. 123456718 jul 3 2001

. tostring year day, replace
year was float now str4
day was float now str2

. generate date = month + "/" + day + "/" + year

. generate edate = date(date, "MDY")

. format edate %td

148 destring — Convert string variables to numeric variables and vice versa

. list

id month day year date edate

1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 17oct2001

6. 123456714 nov 15 2001 nov/15/2001 15nov2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001
10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics
Each time the destring or tostring commands are issued, an entry is made in the characteristics

list of each converted variable. You can type char list to view these characteristics.

After example 3, we could use char list to find out what characters were removed by the
destring command.

. char list
date2[destring]: Characters removed were: space
price2[destring]: Characters removed were: $,
percent2[destring]: Characters removed were: %

Acknowledgment
destring and tostring were originally written by Nicholas J. Cox of the Department of

Geography at Durham University, UK, and coeditor of the Stata Journal.

References
Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted

in Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

. 1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126–142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4–6.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34–37. College Station, TX: Stata Press.

Cox, N. J., and J. B. Wernow. 2000a. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8–12.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24–28. College Station, TX: Stata Press.

. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 28–29. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

http://www.stata-journal.com/
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata-journal.com/article.html?article=dm0054
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/article.html?article=dm0071

destring — Convert string variables to numeric variables and vice versa 149

Also see
[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] functions — Functions

[D] generate — Create or change contents of variable

[D] split — Split string variables into parts

Title

dir — Display filenames

Syntax Description Option Remarks and examples Also see

Syntax{
dir | ls

} [
"
][

filespec
][
"
] [

, wide
]

Note: Double quotes must be used to enclose filespec if the name contains spaces.

Description
dir and ls—they work the same way—list the names of files in the specified directory; the

names of the commands come from names popular on Unix and Windows computers. filespec may be
any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming conventions)
and may include ‘*’ to indicate any string of characters.

Option
wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir

command—it compresses the resulting listing by placing more than one filename on a line. Under
Unix, it produces the same effect as typing ls -F -C. Without the wide option, ls is equivalent
to typing ls -F -l.

Remarks and examples
Mac and Unix: The only difference between the Stata and Unix ls commands is that piping

through the more(1) or pg(1) filter is unnecessary—Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between
the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses
when the screen is full.

Example 1

The only real difference between the Stata dir and DOS and Unix equivalent commands is that
output never scrolls off the screen; Stata always pauses when the screen is full.

150

dir — Display filenames 151

If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/00 13:51 auto.dta
0.6k 8/04/00 10:40 cancer.dta
3.5k 7/06/98 17:06 census.dta
3.4k 1/25/98 9:20 hsng.dta
0.3k 1/26/98 16:54 kva.dta
0.7k 4/27/00 11:39 sysage.dta
0.5k 5/09/97 2:56 systolic.dta
10.3k 7/13/98 8:37 Household Survey.dta

You could also include the wide option:

. dir *.dta, wide
3.9k auto.dta 0.6k cancer.dta 3.5k census.dta
3.4k hsng.dta 0.3k kva.dta 0.7k sysage.dta
0.5k systolic.dta 10.3k Household Survey.dta

Unix users will find it more natural to type

. ls *.dta

-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

but they could type dir if they preferred. Mac users may also type either command.

. dir *.dta

-rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 p1.dta
-rw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

Technical note
There is an extended macro function named dir which allows you to obtain a list of files in a

macro for later processing. See Macro extended functions for filenames and file paths in [P] macro.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

drawnorm — Draw sample from multivariate normal distribution

Syntax Menu Description Options
Remarks and examples Methods and formulas References Also see

Syntax
drawnorm newvarlist

[
, options

]
options Description

Main

clear replace the current dataset
double generate variable type as double; default is float

n(#) # of observations to be generated; default is current number
sds(vector) standard deviations of generated variables
corr(matrix | vector) correlation matrix
cov(matrix | vector) covariance matrix
cstorage(full) correlation/covariance structure is stored as a symmetric k×k matrix
cstorage(lower) correlation/covariance structure is stored as a lower triangular matrix
cstorage(upper) correlation/covariance structure is stored as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite
means(vector) means of generated variables; default is means(0)

Options

seed(#) seed for random-number generator

Menu
Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution

Description
drawnorm draws a sample from a multivariate normal distribution with desired means and covariance

matrix. The default is orthogonal data with mean 0 and variance 1. The covariance matrix may be
singular. The values generated are a function of the current random-number seed or the number
specified with set seed(); see [R] set seed.

Options

� � �
Main �

clear specifies that the dataset in memory be replaced, even though the current dataset has not been
saved on disk.

152

drawnorm — Draw sample from multivariate normal distribution 153

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

n(#) specifies the number of observations to be generated. The default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
drawnorm adds the new variables to the existing dataset; otherwise, drawnorm replaces the data
in memory.

sds(vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr(matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cov(matrix | vector) specifies the covariance matrix. If neither cov() nor corr() is specified, the
default is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric k×k
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C21 C22 C31 C32 C33 . . . Ck1 Ck2 . . . Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12 C13 . . . C1k C22 C23 . . .C2k . . . C(k−1k−1) C(k−1k) Ckk

Specifying cstorage(full) is optional if the matrix is square. cstorage(lower) or cstor-
age(upper) is required for the vectorized storage methods. See Example 2: Storage modes for
correlation and covariance matrices.

forcepsd modifies the matrix C to be positive semidefinite (psd), and so be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means(vector) specifies the means of the generated variables. The default is means(0).

� � �
Options �

seed(#) specifies the initial value of the random-number seed used by the runiform() function.
The default is the current random-number seed. Specifying seed(#) is the same as typing set
seed # before issuing the drawnorm command.

154 drawnorm — Draw sample from multivariate normal distribution

Remarks and examples

Example 1

Suppose that we want to draw a sample of 1,000 observations from a normal distribution N(M,V),
where M is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5

. matrix V = (9, 5, 2 \ 5, 4, 1 \ 2, 1, 1)

. matrix list M

M[1,3]
c1 c2 c3

r1 5 -6 .5

. matrix list V

symmetric V[3,3]
c1 c2 c3

r1 9
r2 5 4
r3 2 1 1

. drawnorm x y z, n(1000) cov(V) means(M)
(obs 1000)

. summarize

Variable Obs Mean Std. Dev. Min Max

x 1000 5.001715 3.00608 -4.572042 13.66046
y 1000 -5.980279 2.004755 -12.08166 -.0963039
z 1000 .5271135 1.011095 -2.636946 4.102734

. correlate, cov
(obs=1000)

x y z

x 9.03652
y 5.04462 4.01904
z 2.10142 1.08773 1.02231

Technical note
The values generated by drawnorm are a function of the current random-number seed. To reproduce

the same dataset each time drawnorm is run with the same setup, specify the same seed number in
the seed() option.

Example 2: Storage modes for correlation and covariance matrices

The three storage modes for specifying the correlation or covariance matrix in corr2data and
drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4× 4 Stata matrix:

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000)

drawnorm — Draw sample from multivariate normal distribution 155

Elements within a row are separated by commas, and rows are separated by a backslash, \. We
use the input continuation operator /// for convenient multiline input; see [P] comments. In this
storage mode, we probably want to set the row and column names to the variable names:

. matrix rownames C = price trunk headroom rep78

. matrix colnames C = price trunk headroom rep78

This correlation structure can be entered more conveniently in one of the two vectorized storage
modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these
two storage modes differ only in the order in which the k(k + 1)/2 matrix elements are recorded.
The lower storage mode for C comprises a vector with 4(4 + 1)/2 = 10 elements, that is, a 1× 10
or 10× 1 Stata matrix, with one row or column,

. matrix C = (1.0000, ///
0.3232, 1.0000, ///
0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

. matrix C = (1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1)

C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is,
a 1× 10 or 10× 1 Stata matrix,

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///

1.0000, -0.1480, ///
1.0000)

or more compactly as

. matrix C = (1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1)

Methods and formulas
Results are asymptotic. The more observations generated, the closer the correlation matrix of the

dataset is to the desired correlation structure.

Let V = A′A be the desired covariance matrix and M be the desired mean matrix. We first
generate X, such that X ∼ N(0, I). Let Y = A′X + M, then Y ∼ N(M,V).

References
Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:

Not Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

Also see
[D] corr2data — Create dataset with specified correlation structure

[R] set seed — Specify initial value of random-number seed

http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/

Title

drop — Drop variables or observations

Syntax Menu Description
Remarks and examples Reference Also see

Syntax
Drop variables

drop varlist

Drop observations

drop if exp

Drop a range of observations

drop in range
[
if exp

]
Keep variables

keep varlist

Keep observations that satisfy specified condition

keep if exp

Keep a range of observations

keep in range
[
if exp

]
by is allowed with the second syntax of drop and the second syntax of keep; see [D] by.

Menu
Drop or keep variables

Data > Variables Manager

Drop or keep observations

Data > Create or change data > Drop or keep observations

Description
drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be
kept rather than the variables or observations to be deleted.

156

drop — Drop variables or observations 157

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot
read them back in again. You would need to go back to the original dataset and read it in again.
Instead of applying drop or keep for a subset analysis, consider using if or in to select subsets
temporarily. This is usually the best strategy. Alternatively, applying preserve followed in due course
by restore may be a good approach.

Remarks and examples
You can clear the entire dataset by typing drop all without affecting value labels, macros, and

programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

Example 1

We will systematically eliminate data until, at the end, no data are left in memory. We begin by
describing the data:

. use http://www.stata-press.com/data/r13/census11
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r13/census11.dta
obs: 50 1980 Census data by state
vars: 15 6 Apr 2013 15:43
size: 3,300

storage display value
variable name type format label variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
poplt5 long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g
dvcrate float %9.0g

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop pop*:

158 drop — Drop variables or observations

. drop pop*

. describe

Contains data from http://www.stata-press.com/data/r13/census11.dta
obs: 50 1980 Census data by state
vars: 9 6 Apr 2013 15:43
size: 2,100

storage display value
variable name type format label variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g
dvcrate float %9.0g

Sorted by: region
Note: dataset has changed since last saved

Let’s eliminate more variables and then eliminate observations:

. drop marriage divorce mrgrate dvcrate

. describe

Contains data from http://www.stata-press.com/data/r13/census11.dta
obs: 50 1980 Census data by state
vars: 5 6 Apr 2013 15:43
size: 1,300

storage display value
variable name type format label variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by: region
Note: dataset has changed since last saved

Next we will drop any observation for which medage is greater than 32.

. drop if medage>32
(3 observations deleted)

Let’s drop the first observation in each region:
. by region: drop if _n==1
(4 observations deleted)

Now we drop all but the last observation in each region:
. by region: drop if _n !=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)

drop — Drop variables or observations 159

Finally, let’s get rid of everything:

. drop _all

. describe
Contains data
obs: 0
vars: 0
size: 0
Sorted by:

Typing keep in 10/l is the same as typing drop in 1/9.

Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvar1
myvar2 is the same as typing drop followed by all the variables in the dataset except myvar1 and
myvar2.

Technical note

In addition to dropping variables and observations, drop all removes any business calendars;
see [D] datetime business calendars.

Reference
Cox, N. J. 2001. dm89: Dropping variables or observations with missing values. Stata Technical Bulletin 60: 7–8.

Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 44–46. College Station, TX: Stata Press.

Also see
[D] clear — Clear memory

[D] varmanage — Manage variable labels, formats, and other properties

[U] 11 Language syntax
[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb60.pdf

Title

ds — List variables matching name patterns or other characteristics

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgments References
Also see

Syntax

Simple syntax

ds
[
, alpha

]
Advanced syntax

ds
[

varlist
] [

, options
]

options Description

Main

not list variables not specified in varlist
alpha list variables in alphabetical order
detail display additional details
varwidth(#) display width for variable names; default is varwidth(12)

skip(#) gap between variables; default is skip(2)

Advanced

has(spec) describe subset that matches spec
not(spec) describe subset that does not match spec

insensitive perform case-insensitive pattern matching
indent(#) indent output; seldom used

insensitive and indent(#) are not shown in the dialog box.

spec Description

type typelist specified types
format patternlist display format matching patternlist
varlabel

[
patternlist

]
variable label or variable label matching patternlist

char
[

patternlist
]

characteristic or characteristic matching patternlist
vallabel

[
patternlist

]
value label or value label matching patternlist

160

ds — List variables matching name patterns or other characteristics 161

typelist used in has(type typelist) and not(type typelist) is a list of one or more types, each of
which may be numeric, string, str#, strL, byte, int, long, float, or double, or may be
a numlist such as 1/8 to mean “str1 str2 . . . str8”. Examples include

has(type int) is of type int
has(type byte int long) is of integer type
not(type int) is not of type int
not(type byte int long) is not of the integer types
has(type numeric) is a numeric variable
not(type string) is not a string (str# or strL) variable (same as above)
has(type 1/40) is str1, str2, . . . , str40
has(type str#) is str1, str2, . . . , str2045 but not strL
has(type strL) is of type strL but not str#
has(type numeric 1/2) is numeric or str1 or str2

patternlist used in, for instance, has(format patternlist), is a list of one or more patterns. A pattern
is the expected text with the addition of the characters * and ?. * indicates 0 or more characters
go here, and ? indicates exactly 1 character goes here. Examples include

has(format *f) format is %#.#f
has(format %t*) has time or date format
has(format %-*s) is a left-justified string
has(varl *weight*) variable label includes word weight
has(varl *weight* *Weight*) variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.

has(varl "*some phrase*") variable label has some phrase

If instead you used has(varl *some phrase*), then only variables having labels ending in some
or starting with phrase would be listed.

Menu
Data > Describe data > Compactly list variable names

Description
ds lists variable names of the dataset currently in memory in a compact or detailed format, and

lets you specify subsets of variables to be listed, either by name or by properties (for example, the
variables are numeric). In addition, ds leaves behind in r(varlist) the names of variables selected
so that you can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a
compact form.

162 ds — List variables matching name patterns or other characteristics

Options

� � �
Main �

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all
variables not starting with the letters pop be listed. The default is to list all the variables in the
dataset or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order.

detail specifies that detailed output identical to that of describe be produced. If detail is
specified, varwidth(), skip(), and indent() are ignored.

varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip(#) specifies the number of spaces between variable names, where all variable names are
assumed to be the length of the longest variable name; the default is skip(2).

� � �
Advanced �

has(spec) and not(spec) select from the dataset (or from varlist) the subset of variables that meet
or fail the specification spec. Selection may be made on the basis of storage type, variable label,
value label, display format, or characteristics. Only one not, has(), or not() option may be
specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all
string variables in the dataset, and typing ds pop*, has(type string) would list all string
variables whose names begin with the letters pop.

has(varlabel) selects variables with defined variable labels. has(varlabel *weight*) selects
variables with variable labels including the word “weight”. not(varlabel) would select all
variables with no variable labels.

has(vallabel) selects variables with defined value labels. has(vallabel yesno) selects vari-
ables whose value label is yesno. has(vallabel *no) selects variables whose value label ends
in the letters no.

has(format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in f, which presumably would
be all %#.#f, %0#.#f, and %-#.#f formats. has(format *f *fc) would select all ending in f
or fc. not(format %t* %-t*) would select all variables except those with date or time-series
formats.

has(char) selects all variables with defined characteristics. has(char problem) selects all
variables with a characteristic named problem.

The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the pattern in has() and not() be case insensitive.

indent(#) specifies the amount the lines are indented.

Remarks and examples
If ds is typed without any operands, then a compact list of the variable names for the data currently

in memory is displayed.

ds — List variables matching name patterns or other characteristics 163

Example 1

ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it
convenient even if you have considerably fewer variables.

. use http://www.stata-press.com/data/r13/educ3
(ccdb46, 52-54)

. ds
fips popcol medhhinc tlf emp clfbls z
crimes perhspls medfinc clf empmanuf clfuebls adjinc
pcrimes perclpls state clffem emptrade famnw perman
crimrate prcolhs division clfue empserv fam2w pertrade
pop25pls medage region empgovt osigind famwsamp perserv
pophspls perwhite dc empself osigindp pop18pls perother

Example 2

You might wonder why you would ever specify a varlist with this command. Remember that a
varlist understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varlists.

. ds p*
pcrimes pophspls perhspls prcolhs pop18pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv

. ds popcol-clfue
popcol perclpls medage medhhinc state region tlf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue

Example 3

Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let
ds display the variable names in alphabetical order.

. ds, alpha
adjinc crimes empmanuf famwsamp osigindp perserv pophspls
clf crimrate empself fips pcrimes pertrade prcolhs
clfbls dc empserv medage perclpls perwhite region
clffem division emptrade medfinc perhspls pop18pls state
clfue emp fam2w medhhinc perman pop25pls tlf
clfuebls empgovt famnw osigind perother popcol z

Stored results
ds stores the following in r():

Macros
r(varlist) the varlist of found variables

164 ds — List variables matching name patterns or other characteristics

Acknowledgments

ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the
Department of Geography at Durham University, UK, and coeditor of the Stata Journal. The purpose
was to include the selection options not, has(), and not(); to produce better-formatted output;
and to be faster. Cox thanks Richard Goldstein, William Gould, Kenneth Higbee, Jay Kaufman, Jean
Marie Linhart, and Fred Wolfe for their helpful suggestions on previous versions.

References
Cox, N. J. 2000. dm78: Describing variables in memory. Stata Technical Bulletin 56: 2–4. Reprinted in Stata Technical

Bulletin Reprints, vol. 10, pp. 15–17. College Station, TX: Stata Press.

. 2001. dm78.1: Describing variables in memory: Update to Stata 7. Stata Technical Bulletin 60: 3. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, p. 17. College Station, TX: Stata Press.

. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281–296.

. 2010b. Software Updates: Finding variables. Stata Journal 10: 691–692.

. 2012. Software Updates: Finding variables. Stata Journal 12: 167.

Weiss, M. 2008. Stata tip 66: ds—A hidden gem. Stata Journal 8: 448–449.

Also see
[D] cf — Compare two datasets

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] compress — Compress data in memory

[D] describe — Describe data in memory or in file

[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data

[D] order — Reorder variables in dataset

[D] rename — Rename variable

http://www.stata-journal.com/
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0048
http://www.stata-journal.com/sjpdf.html?articlenum=up0030
http://www.stata-journal.com/sjpdf.html?articlenum=up0035
http://www.stata-journal.com/sjpdf.html?articlenum=dm0040

Title

duplicates — Report, tag, or drop duplicate observations

Syntax Menu Description Options
Remarks and examples Acknowledgments References Also see

Syntax
Report duplicates

duplicates report
[

varlist
] [

if
] [

in
]

List one example for each group of duplicates

duplicates examples
[

varlist
] [

if
] [

in
] [

, options
]

List all duplicates

duplicates list
[

varlist
] [

if
] [

in
] [

, options
]

Tag duplicates

duplicates tag
[

varlist
] [

if
] [

in
]
, generate(newvar)

Drop duplicates

duplicates drop
[

if
] [

in
]

duplicates drop varlist
[

if
] [

in
]
, force

165

166 duplicates — Report, tag, or drop duplicate observations

options Description

Main

compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # characters; default is ab(8)

string(#) truncate string variables to # characters; default is string(10)

Options

table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header(#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator(#) draw a separator line every # lines; default is separator(5)

sepby(varlist) draw a separator line whenever varlist values change
nolabel display numeric codes rather than label values

Summary

mean
[
(varlist)

]
add line reporting the mean for each of the (specified) variables

sum
[
(varlist)

]
add line reporting the sum for each of the (specified) variables

N
[
(varlist)

]
add line reporting the number of nonmissing values for each of the

(specified) variables
labvar(varname) substitute Mean, Sum, or N for value of varname in last row of table

Advanced

constant
[
(varlist)

]
separate and list variables that are constant only once

notrim suppress string trimming
absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header
linesize(#) columns per line; default is linesize(79)

Menu
Data > Data utilities > Manage duplicate observations

Description
duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the

subcommand specified. Duplicates are observations with identical values either on all variables if no
varlist is specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and
indicating how many observations are “surplus” in the sense that they are the second (third, . . .) copy
of the first of each group of duplicates.

duplicates — Report, tag, or drop duplicate observations 167

duplicates examples lists one example for each group of duplicated observations. Each example
represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.
This will be 0 for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The
word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use
report, examples, list, or drop. The variable created by tag will have missing values for such
observations.

Options

Options are presented under the following headings:

Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

Options for duplicates examples and duplicates list

� � �
Main �

compress, nocompress, fast, abbreviate(#), string(#); see [D] list.

� � �
Options �

table, display, header, noheader, header(#), clean, divider, separator(#),
sepby(varlist), nolabel; see [D] list.

� � �
Summary �

mean
[
(varlist)

]
, sum

[
(varlist)

]
, N
[
(varlist)

]
, labvar(varname); see [D] list.

� � �
Advanced �

constant
[
(varlist)

]
, notrim, absolute, nodotz, subvarname, linesize(#); see [D] list.

Option for duplicates tag

generate(newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop

force specifies that observations duplicated with respect to a named varlist be dropped. The force
option is required when such a varlist is given as a reminder that information may be lost by
dropping observations, given that those observations may differ on any variable not included in
varlist.

168 duplicates — Report, tag, or drop duplicate observations

Remarks and examples

Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate
observations. In Stata terms, duplicates are observations with identical values, either on all variables if
no varlist is specified, or on a specified varlist; that is, 2 or more observations that are identical on all
specified variables form a group of duplicates. When the specified variables are a set of explanatory
variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in
pairs, and they might prefer a more literal term, although the most obvious replacement, “replicates”,
already has another statistical meaning. However, the looser term appears in practice to be much
more frequently used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations
might have been entered more than once into your dataset. In contrast, some researchers deliberately
enter a dataset twice. Each entry is a check on the other, and all observations should occur as identical
pairs, assuming that one or more variables identify unique records. If there is just one copy, or more
than two copies, there has been an error in data entry.

Or duplicate observations may also arise simply because some observations just happen to be
identical, which is especially likely with categorical variables or large datasets. In this second situation,
consider whether contract, which automatically produces a count of each distinct set of observations,
is more appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus
observations in the sense that no observation may be dropped without losing information about the
contents of observations. (Information will inevitably be lost on the frequency of such observations.
Again, if recording frequency is important to you, contract is the better command to use.)
Observations that are duplicated twice or more occur as copies, and in each case, all but one copy
may be considered surplus.

This command helps you produce a dataset, usually smaller than the original, in which each
observation is unique (literally, each occurs only once) and distinct (each differs from all the others).
If you are familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you
will know the uniq command, which removes duplicate adjacent lines from a file, usually as part of
a pipe.

Example 1

Suppose that we are given a dataset in which some observations are unique (no other observation
is identical on all variables) and other observations are duplicates (in each case, at least 1 other
observation exists that is identical). Imagine dropping all but 1 observation from each group of
duplicates, that is, dropping the surplus observations. Now all the observations are unique. This
example helps clarify the difference between 1) identifying unique observations before dropping
surplus copies and 2) identifying unique observations after dropping surplus copies (whether in truth
or merely in imagination). codebook (see [D] codebook) reports the number of unique values for
each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or
count shows that we have 202 observations in our dataset. We guess that we may have typed in 2
observations twice. duplicates report gives a quick report of the occurrence of duplicates:

duplicates — Report, tag, or drop duplicate observations 169

. use http://www.stata-press.com/data/r13/dupxmpl

. duplicates report

Duplicates in terms of all variables

copies observations surplus

1 198 0
2 4 2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur
as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which
observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list

Duplicates in terms of all variables

group: obs: id x y

1 42 42 0 2
1 43 42 0 2
2 145 144 4 4
2 146 144 4 4

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop

Duplicates in terms of all variables

(2 observations deleted)

The report, list, and drop subcommands of duplicates are perhaps the most useful, especially
for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long
to be manageable, especially as you see repetitions of the same data. duplicates examples gives
you a more compact listing in which each group of duplicates is represented by just 1 observation,
the first to occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable
containing the number of duplicates for each observation. Thus unique observations are tagged with
value 0, and all duplicate observations are tagged with values greater than 0. For checking double
data entry, in which you expect just one surplus copy for each individual record, you can generate a
tag variable and then look at observations with tag not equal to 1 because both unique observations
and groups with two or more surplus copies need inspection.

. duplicates tag, gen(tag)

Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data
Browser, use the following commands:

. duplicates tag, generate(newvar)

. browse if newvar > 0

See [D] edit for details on the browse command.

170 duplicates — Report, tag, or drop duplicate observations

Acknowledgments
duplicates was written by Nicholas J. Cox of the Department of Geography at Durham University,

UK, and coeditor of the Stata Journal, who in turn thanks Thomas Steichen of RJRT for ideas contributed
to an earlier jointly written program (Steichen and Cox 1998).

References
Jacobs, M. 1991. dm4: A duplicated value identification program. Stata Technical Bulletin 4: 5. Reprinted in Stata

Technical Bulletin Reprints, vol. 1, p. 30. College Station, TX: Stata Press.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin
41: 2–4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52–55. College Station, TX: Stata Press.

Wang, D. 2000. dm77: Removing duplicate observations in a dataset. Stata Technical Bulletin 54: 16–17. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 87–88. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] contract — Make dataset of frequencies and percentages

[D] edit — Browse or edit data with Data Editor

[D] isid — Check for unique identifiers

[D] list — List values of variables

http://www.stata-journal.com/
http://www.stata.com/products/stb/journals/stb4.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata.com/products/stb/journals/stb54.pdf

Title

edit — Browse or edit data with Data Editor

Syntax Menu Description Option
Remarks and examples References Also see

Syntax
Edit using Data Editor

edit
[

varlist
] [

if
] [

in
] [

, nolabel
]

Browse using Data Editor

browse
[

varlist
] [

if
] [

in
] [

, nolabel
]

Menu
edit

Data > Data Editor > Data Editor (Edit)

browse

Data > Data Editor > Data Editor (Browse)

Description
edit brings up a spreadsheet-style data editor for entering new data and editing existing data.

edit is a better alternative to input; see [D] input.
browse is similar to edit, except that modifications to the data by editing in the grid are not

permitted. browse is a convenient alternative to list; see [D] list.
See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.

This entry provides the technical details.

Option
nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to

be displayed for variables with value labels; see [D] label.

Remarks and examples
Remarks are presented under the following headings:

Modes
The current observation and current variable
Assigning value labels to variables
Changing values of existing cells
Adding new variables
Adding new observations
Copying and pasting
Logging changes
Advice

171

172 edit — Browse or edit data with Data Editor

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on
Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If
you specify a varlist, only the specified variables are displayed in the Editor. If you specify one or
both of in range and if exp, only the observations specified are displayed.

Modes
We will refer to the Data Editor in the singular with edit and browse referring to two of its

three modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed
by a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of
variables but include in range, if exp, or both, or if you filter the data from within the Editor.
A few of the Editor’s features are turned off, most notably, the ability to sort data and the ability
to paste data into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change
the Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby
changing data, is turned off, ensuring that the data cannot accidentally be changed. One feature
that is left on may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a
change to the dataset. On the other hand, if you enter using browse and specify in range or if
exp, sorting is not allowed. You can think of this as restricted-browse mode.

Actually, the Editor does not set its mode to filtered just because you specify an in range or if
exp. It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if
the in or if would actually cause some data to be omitted. For instance, typing edit if x>0 would
result in unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable
The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations

and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.
The observation (row) of the current cell is called the current observation. The variable (column) of
the current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed
in red, value labels are displayed in blue, and all other values are displayed in black. You can change
the colors for strings and value labels by right-clicking on the Data Editor window and selecting
Preferences....

Assigning value labels to variables

You can assign a value label to a nonstring variable by right-clicking any cell on the variable
column, choosing the Data > Value Labels menu, and selecting a value label from the Attach Value
Label to Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor
window and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish
these tasks by using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for
details.

edit — Browse or edit data with Data Editor 173

Changing values of existing cells

Make the cell you wish to change the current cell. Type the new value, and press Enter. When
updating string variables, do not type double quotes around the string. For variables that have a value
label, you can right-click on the cell to display a list of values for the value label. You can assign a
new value to the cell by selecting a value from the list.

Technical note

Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you
want to change the fourth observation to contain 22.5. The Data Editor will change the storage type
of the variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable
contains only missing values). This is intentional, as such a change could result in a loss of data and
is probably the result of a mistake.

Technical note
Stata can store long strings in the strL storage type. Although the strL type can hold very long

strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that
hold binary data may not be edited. For more information on storage types, see [D] data types.

Adding new variables

Go to the first empty column, and begin entering your data. The first entry that you make will
create the variable and determine whether that variable is numeric or string. The variable will be
given a name like var1, but you can rename it by using the Properties pane.

Technical note

Stata experts: The storage type will be determined automatically. If you type a number, the created
variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable,
be sure that your first entry cannot be interpreted as a number. A way to achieve this is to use
surrounding quotes so that "123" will be taken as the string "123", not the number 123. If you
want a numeric variable, do not worry about whether it is byte, int, float, etc. If a byte will
hold your first number but you need a float to hold your second number, the Editor will recast the
variable later.

Technical note
If you do not type in the first empty column but instead type in one to the right of it, the Editor

will create variables for all the intervening columns.

174 edit — Browse or edit data with Data Editor

Adding new observations

Go to the first empty row, and begin entering your data. As soon as you add one cell below the
last row of the dataset, an observation will be created.

Technical note

If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data
Editor will create observations for all the intervening rows.

Copying and pasting

You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other
cells to select a range of cells. If you want to select an entire column, click once on the variable
name at the top of that column. If you want to select an entire row, click once on the observation
number at the left of that row. You can hold down the mouse button after clicking and drag to select
multiple columns or rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the
selected data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of
each column by right-clicking on the Data Editor window, selecting Preferences..., and checking or
unchecking Include variable names on copy to Clipboard .

You can choose to copy either the value labels or the underlying numeric values associated with
the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking
or unchecking Copy value labels instead of numbers . For more information about value labels, see
[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you
can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you
wish to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata
will paste the data from the Clipboard into the Editor, overwriting any data below and to the right
of the cell you selected as the top left of the paste area. If the Data Editor is in filtered mode or in
browse mode, Paste will be disabled, meaning that you cannot paste into the Data Editor. You can
have more control over how data is pasted by selecting Paste Special....

Technical note
If you attempt to paste one or more string values into numeric variables, the original numeric

values will be left unchanged for those cells. Stata will display a message box to let you know that
this has happened: “You attempted to paste one or more string values into numeric variables. The
contents of these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data
Editor to make sure that you pasted into the area that you intended. We recommend that you take a
snapshot of your data before pasting into Stata’s Data Editor so that you can restore the data from
the snapshot if you make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read
about snapshots.

edit — Browse or edit data with Data Editor 175

Logging changes

When you use edit to enter new data or change existing data, you will find output in the Stata
Results window documenting the changes that you made. For example, a line of this output might be

. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging
your results, you will have a permanent record of what you did in the Editor.

Advice
• People who care about data integrity know that editors are dangerous—it is too easy to make

changes accidentally. Never use edit when you want to browse.

• Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and
need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other
than model and mpg. Furthermore, if you know that you need to change mpg only if it is missing,
you can reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

• Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this
feature—look at the log afterward, and verify that the changes you made are the changes you
wanted to make.

References
Brady, T. 1998. dm63: Dialog box window for browsing, editing, and entering observations. Stata Technical Bulletin

46: 2–6. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 28–34. College Station, TX: Stata Press.

. 2000. dm63.1: A new version of winshow for Stata 6. Stata Technical Bulletin 53: 3–5. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 15–19. College Station, TX: Stata Press.

Also see
[D] import — Overview of importing data into Stata

[D] input — Enter data from keyboard

[D] list — List values of variables

[D] save — Save Stata dataset

[GSM] 6 Using the Data Editor
[GSW] 6 Using the Data Editor
[GSU] 6 Using the Data Editor

http://www.stata.com/products/stb/journals/stb46.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

Title

egen — Extensions to generate

Syntax Menu Description Remarks and examples
Methods and formulas Acknowledgments References Also see

Syntax

egen
[

type
]

newvar = fcn(arguments)
[

if
] [

in
] [

, options
]

by is allowed with some of the egen functions, as noted below.

where depending on the fcn, arguments refers to an expression, varlist, or numlist, and the options
are also fcn dependent, and where fcn is

anycount(varlist), values(integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to 0 (not missing). Also see anyvalue(varname) and anymatch(varlist).

anymatch(varlist), values(integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in
a supplied numlist and 0 otherwise. Values for any observations excluded by either if or in
are set to 0 (not missing). Also see anyvalue(varname) and anycount(varlist).

anyvalue(varname) , values(integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any
integer value in a supplied numlist and is missing otherwise. Also see anymatch(varlist) and
anycount(varlist).

concat(varlist)
[
, format(% fmt) decode maxlength(#) punct(pchars)

]
may not be combined with by. It concatenates varlist to produce a string variable. Values of
string variables are unchanged. Values of numeric variables are converted to string, as is, or
are converted using a numeric format under the format(%fmt) option or decoded under the
decode option, in which case maxlength() may also be used to control the maximum label
length used. By default, variables are added end to end: punct(pchars) may be used to specify
punctuation, such as a space, punct(" "), or a comma, punct(,).

count(exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp.
Also see rownonmiss() and rowmiss().

cut(varname),
{
at(#,#,. . .,#) | group(#)

} [
icodes label

]
may not be combined with by. It creates a new categorical variable coded with the left-hand
ends of the grouping intervals specified in the at() option, which expects an ascending numlist.

at(#,#,. . .,#) supplies the breaks for the groups, in ascending order. The list of breakpoints
may be simply a list of numbers separated by commas but can also include the syntax a(b)c,
meaning from a to c in steps of size b. If no breaks are specified, the command expects the
group() option.

group(#) specifies the number of equal frequency grouping intervals to be used in the absence
of breaks. Specifying this option automatically invokes icodes.

176

egen — Extensions to generate 177

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the
intervals.

label requests that the integer-coded values of the grouped variable be labeled with the
left-hand ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff(varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in
varlist are not equal and 0 otherwise.

ends(strvar)
[
, punct(pchars) trim

[
head | last | tail

]]
may not be combined with by. It gives the first “word” or head (with the head option), the
last “word” (with the last option), or the remainder or tail (with the tail option) from string
variable strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one
space (“ ”).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it
does not occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”.
With punct(,), the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string
if a space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is
“frog”. With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the
empty string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that
of “frog” is "". With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

fill(numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or
complex repeating patterns. numlist must contain at least two numbers and may be specified
using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with fill().

group(varlist)
[
, missing label lname(name) truncate(num)

]
may not be combined with by. It creates one variable taking on values 1, 2, . . . for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of
the two. The order of the groups is that of the sort order of varlist. missing indicates that
missing values in varlist (either . or "") are to be treated like any other value when assigning
groups, instead of as missing values being assigned to the group missing. The label option
returns integers from 1 up according to the distinct groups of varlist in sorted order. The integers
are labeled with the values of varlist or the value labels, if they exist. lname() specifies the
name to be given to the value label created to hold the labels; lname() implies label. The
truncate() option truncates the values contributed to the label from each variable in varlist
to the length specified by the integer argument num. The truncate option cannot be used
without specifying the label option. The truncate option does not change the groups that
are formed; it changes only their labels.

iqr(exp) (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. Also see pctile().

kurt(varname) (allows by varlist:)
returns the kurtosis (within varlist) of varname.

mad(exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

178 egen — Extensions to generate

max(exp) (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp.

mdev(exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean(exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median(exp) (allows by varlist:)
creates a constant (within varlist) containing the median of exp. Also see pctile().

min(exp) (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp.

mode(varname)
[
, minmode maxmode nummode(integer) missing

]
(allows by varlist:)

produces the mode (within varlist) for varname, which may be numeric or string. The mode
is the value occurring most frequently. If two or more modes exist or if varname contains
all missing values, the mode produced will be a missing value. To avoid this, the minmode,
maxmode, or nummode() option may be used to specify choices for selecting among the multiple
modes, and the missing option will treat missing values as categories. minmode returns the
lowest value, and maxmode returns the highest value. nummode(#) will return the #th mode,
counting from the lowest up. Missing values are excluded from determination of the mode
unless missing is specified. Even so, the value of the mode is recorded for observations for
which the values of varname are missing unless they are explicitly excluded, that is, by if
varname < . or if varname != "".

mtr(year income)
may not be combined with by. It returns the U.S. marginal income tax rate for a married couple
with taxable income income in year year, where 1930 ≤ year ≤ 2013. year and income may
be specified as variable names or constants; for example, mtr(1993 faminc), mtr(surveyyr
28000), or mtr(surveyyr faminc). A blank or comma may be used to separate income from
year.

pc(exp)
[
, prop

]
(allows by varlist:)

returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp)
[
, p(#)

]
(allows by varlist:)

creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified,
50 is assumed, meaning medians. Also see median().

rank(exp)
[
, field | track | unique

]
(allows by varlist:)

creates ranks (within varlist) of exp; by default, equal observations are assigned the average
rank. The field option calculates the field rank of exp: the highest value is ranked 1, and there
is no correction for ties. That is, the field rank is 1 + the number of values that are higher.
The track option calculates the track rank of exp: the lowest value is ranked 1, and there is
no correction for ties. That is, the track rank is 1 + the number of values that are lower. The
unique option calculates the unique rank of exp: values are ranked 1, . . . , #, and values and
ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.

rowfirst(varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowlast(varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

egen — Extensions to generate 179

rowmax(varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set
to missing.

rowmean(varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values; for example, if three variables are specified and, in some observations, one of
the variables is missing, in those observations newvar will contain the mean of the two variables
that do exist. Other observations will contain the mean of all three variables. Where none of
the variables exist, newvar is set to missing.

rowmedian(varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. Also see rowpctile().

rowmin(varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).
If all values in varlist are missing for an observation, newvar is set to missing.

rowmiss(varlist)
may not be combined with by. It gives the number of missing values in varlist for each
observation (row).

rownonmiss(varlist)
[
, strok

]
may not be combined with by. It gives the number of nonmissing values in varlist for each
observation (row)—this is the value used by rowmean() for the denominator in the mean
calculation.

String variables may not be specified unless the strok option is also specified. If strok is
specified, string variables will be counted as containing missing values when they contain "".
Numeric variables will be counted as containing missing when their value is “≥ .”.

rowpctile(varlist)
[
, p(#)

]
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. If p() is not specified, p(50) is assumed, meaning medians. Also see
rowmedian().

rowsd(varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values.

rowtotal(varlist)
[
, missing

]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation,
newvar is set to missing.

sd(exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean().

seq()
[
, from(#) to(#) block(#)

]
(allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to() (the
default is the maximum number of values) in blocks (default size 1). If to() is less than
the maximum number, sequences restart at from(). Numbering may also be separate within
groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the
sort order of observations, following three rules: 1) observations excluded by if or in are not

180 egen — Extensions to generate

counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that
when called. No arguments are specified.

skew(varname) (allows by varlist:)
returns the skewness (within varlist) of varname.

std(exp) [, mean(#) std(#)]
may not be combined with by. It creates the standardized values of exp. The options specify
the desired mean and standard deviation. The default is mean(0) and std(1), producing a
variable with mean 0 and standard deviation 1.

tag(varlist)
[
, missing

]
may not be combined with by. It tags just 1 observation in each distinct group defined by
varlist. When all observations in a group have the same value for a summary variable calculated
for the group, it will be sufficient to use just one value for many purposes. The result will be
1 if the observation is tagged and never missing, and 0 otherwise. Values for any observations
excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced
by egen tag = tag(varlist), the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

total(exp)
[
, missing

]
(allows by varlist:)

creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing
is specified and all values in exp are missing, newvar is set to missing. Also see mean().

Menu
Data > Create or change data > Create new variable (extended)

Description
egen creates newvar of the optionally specified storage type equal to fcn(arguments). Here fcn()

is a function specifically written for egen, as documented below or as written by users. Only egen
functions may be used with egen, and conversely, only egen may be used to run egen functions.

Depending on fcn(), arguments, if present, refers to an expression, varlist, or a numlist, and the
options are similarly fcn dependent. Explicit subscripting (using N and n), which is commonly
used with generate, should not be used with egen; see [U] 13.7 Explicit subscripting.

Remarks and examples
Remarks are presented under the following headings:

Summary statistics
Generating patterns
Marking differences among variables
Ranks
Standardized variables
Row functions
Categorical and integer variables
String variables
U.S. marginal income tax rate

See Mitchell (2010) for numerous examples using egen.

egen — Extensions to generate 181

Summary statistics

The functions count(), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),
mode(), pc(), pctile(), sd(), skew(), and total() create variables containing summary statistics.
These functions take a by . . . : prefix and, if specified, calculate the summary statistics within each
by-group.

Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation
in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that,
for each patient, records the deviation from the average across all patients:

. use http://www.stata-press.com/data/r13/egenxmpl

. egen avg = mean(chol)

. generate deviation = chol - avg

Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our
dataset includes dcode, a hospital–patient diagnostic code, and los, the number of days that the
patient remained in the hospital. We wish to obtain the deviation in length of stay from the median
for all patients having the same diagnostic code:

. use http://www.stata-press.com/data/r13/egenxmpl2, clear

. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay

Technical note
Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()

function creates the running sum, whereas egen’s total() function creates a constant equal to the
overall sum; for example,

. clear

. set obs 5
obs was 0, now 5

. generate a = _n

. generate sum1=sum(a)

. egen sum2=total(a)

. list

a sum1 sum2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

182 egen — Extensions to generate

Technical note
The definitions and formulas used by these functions are the same as those used by summarize;

see [R] summarize. For comparison with summarize, mean() and sd() correspond to the mean and
standard deviation. total() is the numerator of the mean, and count() is its denominator. min()
and max() correspond to the minimum and maximum. median()—or, equally well, pctile() with
p(50)—is the median. pctile() with p(5) refers to the fifth percentile, and so on. iqr() is the
difference between the 75th and 25th percentiles.

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode() can be applied to variables of any type. Nevertheless, the modes
of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of
a graph of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. It is possible that missing is the most common value in a
variable (whether missing is defined by the period [.] or extended missing values [.a, .b, . . . , .z]
for numeric variables or the empty string [""] for string variables). However, missing values are by
default excluded from determination of modes. If you wish to include them, use the missing option.

In contrast, egen mode = mode(varname) allows the generation of nonmissing modes for obser-
vations for which varname is missing. This allows use of the mode as one simple means of imputing
categorical variables. If you want the mode to be missing whenever varname is missing, you can
specify if varname < . or if varname != "" or, most generally, if !missing(varname).

mad() and mdev() produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The
first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in
1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998)
and Wilcox (2003, 72–73).

Generating patterns

To create a sequence of numbers, simply “show” the fill() function how the sequence should
look. It must be a linear progression to produce the expected results. Stata does not understand
geometric progressions. To produce repeating patterns, you present fill() with the pattern twice in
the numlist.

Example 3: Sequences produced by fill()

Here are some examples of ascending and descending sequences produced by fill():

. clear

. set obs 12
obs was 0, now 12

. egen i=fill(1 2)

. egen w=fill(100 99)

. egen x=fill(22 17)

. egen y=fill(1 1 2 2)

. egen z=fill(8 8 8 7 7 7)

egen — Extensions to generate 183

. list, sep(4)

i w x y z

1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 7 2 7

5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6

9. 9 92 -18 5 6
10. 10 91 -23 5 5
11. 11 90 -28 6 5
12. 12 89 -33 6 5

Example 4: Patterns produced by fill()

Here are examples of patterns produced by fill():

. clear

. set obs 12
obs was 0, now 12

. egen a=fill(0 0 1 0 0 1)

. egen b=fill(1 3 8 1 3 8)

. egen c=fill(-3(3)6 -3(3)6)

. egen d=fill(10 20 to 50 10 20 to 50)

. list, sep(4)

a b c d

1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40

5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30

9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

184 egen — Extensions to generate

Example 5: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly
for quickly creating observation identifiers or automatically numbering levels of factors or categorical
variables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, whereas

. egen c = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), f(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), f(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e

1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3

5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2

9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

egen — Extensions to generate 185

All of these sequences could have been generated in one line with generate and with the use of
the int and mod functions. The variables b through e are obtained with

. gen b = 1 + int((_n - 1)/2)

. gen c = 1 + mod(_n - 1, 6)

. gen d = 10 + mod(_n - 1, 3)

. gen e = 3 - mod(_n - 1, 3)

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed
values.

In general, the sequences produced depend on the sort order of observations, following three rules:

1. observations excluded by if or in are not counted;

2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

The fill() and seq() functions are alternatives. In essence, fill() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that fill() can produce that seq() cannot, and vice versa. fill()
cannot be combined with if or in, in contrast to seq(), which can.

Marking differences among variables

Example 6: diff()

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:

. use http://www.stata-press.com/data/r13/egenxmpl3, clear

. egen byte differ = diff(inc*)

. list if differ==1

inc1 inc2 inc3 id differ

10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1

101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1

134. 26,233 26,233 26,133 234 1

Rather than typing diff(inc*), we could have typed diff(inc1 inc2 inc3).

186 egen — Extensions to generate

Ranks

Example 7: rank()

Most applications of rank() will be to one variable, but the argument exp can be more gen-
eral, namely, an expression. In particular, rank(-varname) reverses ranks from those obtained by
rank(varname).

The default ranking and those obtained by using one of the track, field, and unique options
differ principally in their treatment of ties. The default is to assign the same rank to tied values
such that the sum of the ranks is preserved. The track option assigns the same rank but resembles
the convention in track events; thus, if one person had the lowest time and three persons tied for
second-lowest time, their ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5.
The field option acts similarly except that the highest is assigned rank 1, as in field events in which
the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use
is assigning ranks for a graph of ordered values. See also group() for another kind of “ranking”.

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. keep in 1/10
(64 observations deleted)

. egen rank = rank(mpg)

. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique

. egen rank_ur = rank(-mpg), unique

. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur

1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6

6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 3
9. 22 8.5 2.5 2 8 9 2
10. 26 10 1 1 10 10 1

Standardized variables

Example 8: std()

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:

egen — Extensions to generate 187

. use http://www.stata-press.com/data/r13/states1, clear
(State data)

. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. Dev. Min Max

age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044

. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10−9 is the precision of
a float and is close enough to zero for all practical purposes. If we wanted, we could have typed
egen double stdage = std(age), making stdage a double-precision variable, and the mean would
have been 10−16. In any case, summarize also shows that the standard deviation is 1. correlate
shows that the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newage1 = std(age), std(2)

. egen newage2 = std(age), mean(2) std(4)

. egen newage3 = std(age), mean(2)

. summarize age newage1-newage3

Variable Obs Mean Std. Dev. Min Max

age 50 29.54 1.693445 24.2 34.7
newage1 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044

. correlate age newage1-newage3
(obs=50)

age newage1 newage2 newage3

age 1.0000
newage1 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

Row functions

Example 9: rowtotal()

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s
total() function creates a constant equal to the overall sum. egen’s rowtotal() function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all
values of exp or varlist are missing.

188 egen — Extensions to generate

. use http://www.stata-press.com/data/r13/egenxmpl4, clear

. egen hsum = rowtotal(a b c)

. generate vsum = sum(hsum)

. egen sum = total(hsum)

. list

a b c hsum vsum sum

1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63

Example 10: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean() function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile() returns the #th percentile of the vari-
ables specified in varlist. rowsd() creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean() calculation:

. use http://www.stata-press.com/data/r13/egenxmpl4, clear

. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c)

. list

a b c avg median pct25 std n

1. . 2 3 2.5 2.5 2 .7071068 2
2. 4 . 6 5 5 4 1.414214 2
3. 7 8 . 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

egen — Extensions to generate 189

Example 11: rowmiss()

rowmiss() returns k−rownonmiss(), where k is the number of variables specified. rowmiss()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use http://www.stata-press.com/data/r13/auto3, clear
(1978 Automobile Data)

. correlate price weight mpg
(obs=70)

price weight mpg

price 1.0000
weight 0.5309 1.0000

mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded !=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900 .
40. Olds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420 .

Example 12: rowmin(), rowmax(), rowfirst(), and rowlast()

rowmin(), rowmax(), rowfirst(), and rowlast() return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use http://www.stata-press.com/data/r13/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)

. egen max = rowmax(x y z)
(1 missing value generated)

. egen first = rowfirst(x y z)
(1 missing value generated)

. egen last = rowlast(x y z)
(1 missing value generated)

. list, sep(4)

x y z min max first last

1. -1 2 3 -1 3 -1 3
2. . -6 . -6 -6 -6 -6
3. 7 . -5 -5 7 7 -5
4.

5. 4 . . 4 4 4 4
6. . . 8 8 8 8 8
7. . 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

190 egen — Extensions to generate

Categorical and integer variables

Example 13: anyvalue(), anymatch(), and anycount()

anyvalue(), anymatch(), and anycount() are for categorical or other variables taking integer
values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist),
anyvalue() extracts the subset, leaving every other value missing; anymatch() defines an indicator
variable (1 if in subset, 0 otherwise); and anycount() counts occurrences of the subset across a set
of variables. Therefore, with just one variable, anymatch(varname) and anycount(varname) are
equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)

. generate byte ishirep = inlist(rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen
functions may be more convenient.

Example 14: group()

group() maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically
and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data
are 1, 2, 4, and 7, but we desire equally spaced numbers, as when the codes will be values on one
axis of a graph. group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age
groups 18–24, 25–40, 41–50, and 51 and above. Perhaps we created this coding using the recode()
function (see [U] 13.3 Functions and [U] 25 Working with categorical data and factor variables)
from another age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)

We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp)

egen — Extensions to generate 191

Example 15: group() with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to
use ir (see [ST] epitab) to create a Mantel–Haenszel weighted estimate of the incidence rate. ir,
however, allows only one variable to be specified in its by() option. We type

. use http://www.stata-press.com/data/r13/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning .
for numeric variables and "" for string variables), so missing values will be handled correctly. When
we list some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female .
7. Black . .

group() began by putting the data in the order of the grouping variables and then assigned the
numeric codes. Observations 6 and 7 were assigned to racesex==. because, in one case, race was
not known, and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2=group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2

1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black . 5

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist.

The label option produces a categorical variable with value labels. These value labels are either
the actual values of varname or any value labels of varname, if they exist. The values of varname
could be as long as those of one str2045 variable, but value labels may be no longer than 80
characters.

192 egen — Extensions to generate

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition
symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces
"software", and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space
or a comma. Given numeric variables n1 and n2,

. generate newstr = s1 + string(n1) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + " " + s2 + " " + s3

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.

Example 16: concat()

concat() allows us to do everything in one line concisely.

. egen newstr = concat(s1 n1 n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the
appropriate string data type is worked out within concat() by Stata’s automatic promotion. Moreover,

. egen newstr = concat(s1 s2 s3), p(" ")

specifies that spaces be used as separators. (The default is to have no separation of concatenated
strings.)

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(n1 n2), format(%9.3f) p(" ")

specifies the use of format %9.3f. This is equivalent to

. generate str1 newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [D] functions for more about string().

As a final flourish, the decode option instructs concat() to use value labels. With that option,
the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike
the decode command, however, concat() uses string(varname), not "", whenever values of
varname are not associated with value labels, and the format() option, whenever specified, applies
to this use of string().

Example 17: ends()

The ends(strvar) function is used for subdividing strings. The approach is to find specified
separators by using the strpos() string function and then to extract what is desired, which either
precedes or follows the separators, using the substr() string function.

egen — Extensions to generate 193

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows
the last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each
string and are not part of the strings.

head tail last

"frog" "frog" "" "frog"
"frog toad" "frog" "toad" "toad"

"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which
two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore,
you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing
"toad newt" in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general
definitions of the head, tail, and last options are therefore interpreted in terms of whatever
separator has been specified; that is, they are relative to the first or last occurrence of the separator
in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is
"Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in
this example, which may be trimmed with trim. The punctuation (here the comma, “,”) is discarded,
just as it is with one space.

pchars, the argument of punct(), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct(:;) would mean that words
are separated by a colon followed by a semicolon (that is, :;). It is not implied, in particular, that the
colon and semicolon are alternatives. To do that, you would have to modify the programs presented
here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings
were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname
coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von
Neumann, John" is no problem, if the comma is specified as a separator, but the last option is
not intelligent enough to handle "Walter de la Mare" properly. For that, the best advice is to use
programs specially written for person-name extraction, such as extrname (Gould 1993).

U.S. marginal income tax rate

mtr(year income) (Schmidt 1993, 1994) returns the U.S. marginal income tax rate for a married
couple with taxable income income in year year, where 1930 ≤ year ≤ 2013.

194 egen — Extensions to generate

Example 18: mtr()

Schmidt (1993) examines the change in the progressivity of the U.S. tax schedule over the period
from 1930 to 1990. As a measure of progressivity, he calculates the difference in the marginal tax
rates at the 75th and 25th percentiles of income, using a dataset of percentiles of taxable income
developed by Hakkio, Rush, and Schmidt (1996). (Certain aspects of the income distribution are
imputed in these data.) A subset of the data contains the following:

. describe

Contains data from income1.dta
obs: 61
vars: 4 12 Feb 2013 03:33
size: 1,020

storage display value
variable name type format label variable label

year float %9.0g Year
inc25 float %9.0g 25th percentile
inc50 float %9.0g 50th percentile
inc75 float %9.0g 75th percentile

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

year 61 1960 17.75293 1930 1990
inc25 61 6948.272 6891.921 819.4 27227.35
inc50 61 11645.15 11550.71 1373.29 45632.43
inc75 61 18166.43 18019.1 2142.33 71186.58

Given the series for income and the four-digit year, we can generate the marginal tax rates
corresponding to the 25th and 75th percentiles of income:

. egen mtr25 = mtr(year inc25)

. egen mtr75 = mtr(year inc75)

. summarize mtr25 mtr75

Variable Obs Mean Std. Dev. Min Max

mtr25 61 .1664898 .0677949 .01125 .23
mtr75 61 .2442053 .1148427 .01125 .424625

Methods and formulas
Stata users have written many extra functions for egen. Type net search egen to locate Internet

sources of programs.

Acknowledgments

The mtr() function of egen was written by Timothy J. Schmidt of the Federal Reserve Bank of
Kansas City.

egen — Extensions to generate 195

The cut() function was written by David Clayton of the Cambridge Institute for Medical Research
and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine (1999a, 1999b,
1999c).

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal.

References
Andrews, D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of

Location: Survey and Advances. Princeton: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156–189.

Clayton, D. G., and M. Hills. 1999a. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49:
6–7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 23–25. College Station, TX: Stata Press.

. 1999b. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 25. College Station, TX: Stata Press.

. 1999c. dm66.2: Update of cut to Stata 6. Stata Technical Bulletin 51: 2–3. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 25–26. College Station, TX: Stata Press.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9–17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 34–45. College Station, TX: Stata Press.

. 2000. dm70.1: Extensions to generate, extended: Corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press.

. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137–157.

Cox, N. J., and R. Goldstein. 1999a. dm72: Alternative ranking procedures. Stata Technical Bulletin 51: 5–7. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 48–51. College Station, TX: Stata Press.

. 1999b. dm72.1: Alternative ranking procedures: Update. Stata Technical Bulletin 52: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, p. 51. College Station, TX: Stata Press.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368–377.

Esman, R. M. 1998. dm55: Generating sequences and patterns of numeric data: An extension to egen. Stata Technical
Bulletin 43: 2–3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 4–5. College Station, TX: Stata Press.

Gould, W. W. 1993. dm13: Person name extraction. Stata Technical Bulletin 13: 6–11. Reprinted in Stata Technical
Bulletin Reprints, vol. 3, pp. 25–31. College Station, TX: Stata Press.

Hakkio, C. S., M. Rush, and T. J. Schmidt. 1996. The marginal income tax rate schedule from 1930 to 1990. Journal
of Monetary Economics 38: 117–138.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based
on Influence Functions. New York: Wiley.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375–392.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3–4. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 45–48. College Station, TX: Stata Press.

. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin 60: 3–4. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, pp. 39–41. College Station, TX: Stata Press.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata
Journal 13: 867–875.

Schmidt, T. J. 1993. sss1: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17–19. Reprinted
in Stata Technical Bulletin Reprints, vol. 3, pp. 197–200. College Station, TX: Stata Press.

. 1994. sss1.1: Updated U.S. marginal income tax rate function. Stata Technical Bulletin 22: 29. Reprinted in
Stata Technical Bulletin Reprints, vol. 4, p. 224. College Station, TX: Stata Press.

Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

http://www.stata-journal.com/
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=pr0046
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb13.pdf
http://www.stata-journal.com/article.html?article=st0265
http://www.stata-press.com/books/dmus.html
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/article.html?article=dm0073
http://www.stata.com/products/stb/journals/stb15.pdf
http://www.stata.com/products/stb/journals/stb22.pdf

196 egen — Extensions to generate

Also see
[D] collapse — Make dataset of summary statistics

[D] generate — Create or change contents of variable

[U] 13.3 Functions

Title

encode — Encode string into numeric and vice versa

Syntax Menu Description Options for encode
Options for decode Remarks and examples Reference Also see

Syntax
String variable to numeric variable

encode varname
[

if
] [

in
]
, generate(newvar)

[
label(name) noextend

]
Numeric variable to string variable

decode varname
[

if
] [

in
]
, generate(newvar)

[
maxlength(#)

]
Menu

encode

Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode

Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

Description

encode creates a new variable named newvar based on the string variable varname, creating, adding
to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode
if varname contains numbers that merely happen to be stored as strings; instead, use generate
newvar = real(varname) or destring; see [U] 23.2 Categorical string variables, String functions
in [D] functions, and [D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable
varname and its value label.

Options for encode

generate(newvar) is required and specifies the name of the variable to be created.

label(name) specifies the name of the value label to be created or used and added to if the named
value label already exists. If label() is not specified, encode uses the same name for the label
as it does for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are
not present in label(name). By default, any values not present in label(name) will be added
to that label.

197

198 encode — Encode string into numeric and vice versa

Options for decode

generate(newvar) is required and specifies the name of the variable to be created.

maxlength(#) specifies how many characters of the value label to retain; # must be between 1 and
2045. The default is maxlength(2045).

Remarks and examples
Remarks are presented under the following headings:

encode
decode

encode

encode is most useful in making string variables accessible to Stata’s statistical routines, most of
which can work only with numeric variables. encode is also useful in reducing the size of a dataset.
If you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536 (1,000 for Small Stata).
Each association in a value label maps a string of up to 2045 characters to a number. If your string
has entries longer than that, only the first 2045 characters are retained and are significant.

Example 1

We have a dataset on high blood pressure, and among the variables is sex, a string variable
containing either “male” or “female”. We wish to run a regression of high blood pressure on race, sex,
and age group. We type regress hbp race sex age grp and get the message “no observations”.

. use http://www.stata-press.com/data/r13/hbp2

. regress hbp sex race age_grp
no observations
r(2000);

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,
all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp

Source SS df MS Number of obs = 1121
F(3, 1117) = 15.15

Model 2.01013476 3 .67004492 Prob > F = 0.0000
Residual 49.3886164 1117 .044215413 R-squared = 0.0391

Adj R-squared = 0.0365
Total 51.3987511 1120 .045891742 Root MSE = .21027

hbp Coef. Std. Err. t P>|t| [95% Conf. Interval]

gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.0632584 -.0186322

age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

encode — Encode string into numeric and vice versa 199

encode looks at a string variable and makes an internal table of all the values it takes on, here
“male” and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1
becomes “female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a
1 where sex is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (""). It
creates a value label (also named gender) that records the mapping 1 ↔ female and 2 ↔ male.
Finally, encode labels the values of the new variable with the value label.

Example 2
It is difficult to distinguish the result of encode from the original string variable. For instance, in

our last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:
. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second
observation.

The difference does show, however, if we tell list to ignore the value labels and show how the
data really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2. .
3. male 2
4. male 2

We could also ask to see the underlying value label:
. label list gender
gender:

1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the
variable displays as “male” and “female”, just as the underlying string variable sex would.

Example 3
We can drastically reduce the size of our dataset by encoding strings and then discarding the

underlying string variable. We have a string variable, sex, that records each person’s sex as “male”
and “female”. Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes
only 1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the
encoded variable will take only 1,130 bytes.

200 encode — Encode string into numeric and vice versa

. use http://www.stata-press.com/data/r13/hbp2, clear

. describe

Contains data from http://www.stata-press.com/data/r13/hbp2.dta
obs: 1,130
vars: 7 3 Mar 2013 06:47
size: 24,860

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte %8.0g yn high blood pressure
sex str6 %9s

Sorted by:

. encode sex, generate(gender)

. list sex gender in 1/5

sex gender

1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
sex was long now byte
(3,390 bytes saved)

. describe

Contains data from http://www.stata-press.com/data/r13/hbp2.dta
obs: 1,130
vars: 7 3 Mar 2013 06:47
size: 19,210

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte %8.0g yn high blood pressure
sex byte %8.0g gender

Sorted by:
Note: dataset has changed since last saved

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

encode — Encode string into numeric and vice versa 201

Technical note
In the examples above, the value label did not exist before encode created it, because that is not

required. If the value label does exist, encode uses your encoding as far as it can and adds new
mappings for anything not found in your value label. For instance, if you wanted “female” to be
encoded as 0 rather than 1 (possibly for use in linear regression), you could type

. label define gender 0 "female"

. encode sex, gen(gender)

You can also specify the name of the value label. If you do not, the value label is assumed to have
the same name as the newly created variable. For instance,

. label define sexlbl 0 "female"

. encode sex, gen(gender) label(sexlbl)

decode
decode is used to convert numeric variables with associated value labels into true string variables.

Example 4

We have a numeric variable named female that records the values 0 and 1. female is associated
with a value label named sexlbl that says that 0 means male and 1 means female:

. use http://www.stata-press.com/data/r13/hbp3, clear

. describe female

storage display value
variable name type format label variable label

female byte %8.0g sexlbl

. label list sexlbl
sexlbl:

0 male
1 female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated
value label describing what the numeric codes mean, so if we tabulate the variable, for instance,
it appears to contain the strings “male” and “female”:

. tabulate female

female Freq. Percent Cum.

male 695 61.61 61.61
female 433 38.39 100.00

Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:
. decode female, gen(sex)

. describe sex
storage display value

variable name type format label variable label

sex str6 %9s

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear
indistinguishable:

202 encode — Encode string into numeric and vice versa

. list female sex in 1/4

female sex

1. female female
2. .
3. male male
4. male male

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex

1. 1 female
2. .
3. 0 male
4. 0 male

Example 5

decode is most useful in instances when we wish to match-merge two datasets on a variable that
has been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state)
takes on values such as “CA” and “NY”. The state variable was originally a string, but along the way
the variable was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for
state and the other an encoded variable or 2) although both are numeric, we are not certain that the
codings are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the
solution:

use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)
save first, replace (save the dataset)
use second (load the second dataset)
decode state, gen(st) (make a string variable)
drop state (discard the encoded variable)
sort st (sort on string)
merge 1:1 st using first (merge the data)

Reference
Schechter, C. B. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11: 321–322.

http://www.stata-journal.com/article.html?article=dm0057

encode — Encode string into numeric and vice versa 203

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels
[U] 23.2 Categorical string variables

Title

erase — Erase a disk file

Syntax Description Remarks and examples Also see

Syntax{
erase | rm

} [
"
]

filename
[
"
]

Note: Double quotes must be used to enclose filename if the name contains spaces.

Description
The erase command erases files stored on disk. rm is a synonym for erase for the convenience

of Mac and Unix users.

Stata for Mac users: erase is permanent; the file is not moved to the Trash but is immediately
removed from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is
immediately removed from the disk.

Remarks and examples
The only difference between Stata’s erase (rm) command and the DOS DEL or Unix rm(1) command

is that we may not specify groups of files. Stata requires that we erase files one at a time.

Mac users may prefer to discard files by dragging them to the Trash.

Windows users may prefer to discard files by dragging them to the Recycle Bin.

Example 1

Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,
and type, or, from the Unix perspective, cd, copy, ls, rm, mkdir, rmdir, and cat. These commands
are provided for Mac users, too. Stata users can also issue any operating system command by using
Stata’s shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate
it:

. erase mydata
file mydata not found
r(601);

. erase mydata.dta

.

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file
extension for you, it does not do so when you type erase. You must be explicit. Our second attempt
eliminated the file. Unix users could have typed rm mydata.dta if they preferred.

204

erase — Erase a disk file 205

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

expand — Duplicate observations

Syntax Menu Description Option
Remarks and examples Reference Also see

Syntax
expand

[
=
]
exp

[
if
] [

in
][
, generate(newvar)

]
Menu

Data > Create or change data > Other variable-transformation commands > Duplicate observations

Description
expand replaces each observation in the dataset with n copies of the observation, where n is equal

to the required expression rounded to the nearest integer. If the expression is less than 1 or equal to
missing, it is interpreted as if it were 1, and the observation is retained but not duplicated.

Option
generate(newvar) creates new variable newvar containing 0 if the observation originally appeared

in the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could
revert to the original observations by typing keep if newvar==0.

Remarks and examples

Example 1

expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for
reformatting data for survival analysis (see examples in [ST] epitab). Here is a silly use of expand:

. use http://www.stata-press.com/data/r13/expandxmpl

. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

. expand n
(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)

206

expand — Duplicate observations 207

. list

n x

1. -1 1
2. 0 2
3. 1 3
4. 2 4
5. 3 5

6. 2 4
7. 3 5
8. 3 5

The new observations are added to the end of the dataset. expand informed us that it created 3
observations. The first 3 observations were not replicated because n was less than or equal to 1. n is
2 in the fourth observation, so expand created one replication of this observation, bringing the total
number of observations of this type to 2. expand created two replications of observation 5 because
n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations
onto the end of the dataset, we could now undo the expansion by typing drop in 6/l.

Reference
Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217–219.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

http://www.stata-journal.com/article.html?article=dm0068

Title

expandcl — Duplicate clustered observations

Syntax Menu Description Options
Remarks and examples Also see

Syntax
expandcl

[
=
]
exp

[
if
] [

in
]
, cluster(varlist) generate(newvar)

Menu
Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations

Description
expandcl duplicates clusters of observations and generates a new variable that identifies the

clusters uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the
required expression rounded to the nearest integer. The expression is required to be constant within
cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the
cluster is retained but not duplicated.

Options
cluster(varlist) is required and specifies the variables that identify the clusters before expanding

the data.

generate(newvar) is required and stores unique identifiers for the duplicated clusters in newvar.
newvar will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

Example 1

We will show how expandcl works by using a small dataset with five clusters. In this dataset,
cl identifies the clusters, x contains a unique value for each observation, and n identifies how many
copies we want of each cluster.

208

expandcl — Duplicate clustered observations 209

. use http://www.stata-press.com/data/r13/expclxmpl

. list, sepby(cl)

cl x n

1. 10 1 -1
2. 10 2 -1

3. 20 3 0
4. 20 4 0

5. 30 5 1
6. 30 6 1

7. 40 7 2.7
8. 40 8 2.7

9. 50 9 3
10. 50 10 3

11. 60 11 .
12. 60 12 .

. expandcl n, generate(newcl) cluster(cl)
(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)
(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)
(8 observations created)

. sort newcl cl x

210 expandcl — Duplicate clustered observations

. list, sepby(newcl)

cl x n newcl

1. 10 1 -1 1
2. 10 2 -1 1

3. 20 3 0 2
4. 20 4 0 2

5. 30 5 1 3
6. 30 6 1 3

7. 40 7 2.7 4
8. 40 8 2.7 4

9. 40 7 2.7 5
10. 40 8 2.7 5

11. 40 7 2.7 6
12. 40 8 2.7 6

13. 50 9 3 7
14. 50 10 3 7

15. 50 9 3 8
16. 50 10 3 8

17. 50 9 3 9
18. 50 10 3 9

19. 60 11 . 10
20. 60 12 . 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the
total number of clusters of this type to 3. expandcl created two replications of cluster 50 because
n is 3. Finally, expandcl did not replicate the last cluster because n was missing.

Also see
[D] expand — Duplicate observations

[R] bsample — Sampling with replacement

Title

export — Overview of exporting data from Stata

Description Remarks and examples Also see

Description
This entry provides a quick reference for determining which method to use for exporting Stata

data from memory to other formats.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
export excel
export delimited
odbc
outfile
export sasxport
xmlsave

Summary of the different methods

export excel

◦ export excel creates Microsoft Excel worksheets in .xls and .xlsx files.

◦ Entire worksheets can be exported, or custom cell ranges can be overwritten.

◦ See [D] import excel.

export delimited

◦ export delimited creates comma-separated or tab-delimited files that many other programs can
read.

◦ A custom delimiter may also be specified.

◦ The first line of the file can optionally contain the names of the variables.

◦ See [D] import delimited.

odbc

◦ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for exporting data via the odbc command and can
write to any ODBC data source on your computer.

◦ See [D] odbc.

211

212 export — Overview of exporting data from Stata

outfile

◦ outfile creates text-format datasets.

◦ The data can be written in space-separated or comma-separated format.

◦ Alternatively, the data can be written in fixed-column format.

◦ See [D] outfile.

export sasxport

◦ export sasxport saves SAS XPORT Transport format files.

◦ export sasxport can also write value label information to a formats.xpf XPORT file.

◦ See [D] import sasxport.

xmlsave

◦ xmlsave writes extensible markup language (XML) files—highly adaptable text-format files derived
from the standard generalized markup language (SGML).

◦ xmlsave can write either an Excel-format XML or a Stata-format XML file.

◦ See [D] xmlsave.

Also see
[D] import delimited — Import delimited text data

[D] import excel — Import and export Excel files

[D] import sasxport — Import and export datasets in SAS XPORT format

[D] odbc — Load, write, or view data from ODBC sources

[D] outfile — Export dataset in text format

[D] xmlsave — Export or import dataset in XML format

[D] import — Overview of importing data into Stata

Title

filefilter — Convert text or binary patterns in a file

Syntax Description Options Remarks and examples
Stored results Reference Also see

Syntax

filefilter oldfile newfile ,{
from(oldpattern) to(newpattern) | ascii2ebcdic | ebcdic2ascii

} [
options

]
where oldpattern and newpattern for ASCII characters are

"string" or string

string := [char[char[char[. . .]]]]
char := regchar | code
regchar := ASCII 32–91, 93–128, 161–255; excludes ‘\’
code := \BS backslash

\r carriage return
\n newline
\t tab
\M Classic Mac EOL, or \r
\W Windows EOL, or \r\n
\U Unix or Mac OS X EOL, or \n
\LQ left single quote, ‘
\RQ right single quote, ’
\Q double quote, ”
\$ dollar sign, $
\###d 3-digit [0–9] decimal ASCII
\##h 2-digit [0–9, A–F] hexadecimal ASCII

options Description

∗from(oldpattern) find oldpattern to be replaced
∗to(newpattern) use newpattern to replace occurrences of from()
∗ascii2ebcdic convert file from ASCII to EBCDIC
∗ebcdic2ascii convert file from EBCDIC to ASCII
replace replace newfile if it already exists

∗ Both from(oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.

Description
filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found,

it is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written
to the new file.

213

214 filefilter — Convert text or binary patterns in a file

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.
filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII
characters are involved. In fact, converting end-of-line characters between Mac OS X, Classic Mac,
Windows, and Unix is convenient with the EOL codes.

Unicode is not directly supported at this time, but you can attempt to operate on a Unicode file by
breaking a 2-byte character into the corresponding two-character ASCII representation. However, this
goes beyond the original design of the command and is technically unsupported. If you attempt to use
filefilter in this manner, you might encounter problems with variable-length encoded Unicode.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the
pattern from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Options
from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic

or ebcdic2ascii is specified.

to(newpattern) specifies the pattern used to replace occurrences of from(). It is required unless
ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.
from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.
from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.

Remarks and examples

Convert Classic Mac-style EOL characters to Windows-style

. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (‘) characters to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\LQ) to("left quote")

Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\60h) to("left quote")

Convert the character with decimal code 96 to the string “left quote”

. filefilter auto1.csv auto2.csv, from(\096d) to("left quote")

Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character
100 followed by “Text” to an empty string (remove them from the file)

. filefilter file1.txt file2.txt, from("\6BhText\100dText") to("")

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

filefilter — Convert text or binary patterns in a file 215

Stored results
filefilter stores the following in r():

Scalars
r(occurrences) number of oldpattern found
r(bytes from) # of bytes represented by oldpattern
r(bytes to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290–292.

Also see
[P] file — Read and write ASCII text and binary files

[D] changeeol — Convert end-of-line characters of text file

[D] hexdump — Display hexadecimal report on file

http://www.stata-journal.com/sjpdf.html?articlenum=pr0039

Title

fillin — Rectangularize dataset

Syntax Menu Description Remarks and examples
References Also see

Syntax

fillin varlist

Menu
Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Description
fillin adds observations with missing data so that all interactions of varlist exist, thus making

a complete rectangularization of varlist. fillin also adds the variable fillin to the dataset.
fillin is 1 for observations created by using fillin and 0 for previously existing observations.

varlist may not contain strLs.

Remarks and examples

Example 1

We have data on something by sex, race, and age group. We suspect that some of the combinations
of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables
there are in the dataset set to missing. For example, rather than having a missing observation for
black females aged 20–24, we want to create an observation that contains missing values:

. use http://www.stata-press.com/data/r13/fillin1

. list

sex race age_gr~p x1 x2

1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. female black 30-34 39399 14.2

. fillin sex race age_group

216

fillin — Rectangularize dataset 217

. list, sepby(sex)

sex race age_gr~p x1 x2 _fillin

1. female white 20-24 20393 14.5 0
2. female white 25-29 . . 1
3. female white 30-34 . . 1
4. female black 20-24 . . 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0

7. male white 20-24 . . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 . . 1
10. male black 20-24 . . 1
11. male black 25-29 . . 1
12. male black 30-34 . . 1

References
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135–136.

Also see
[D] cross — Form every pairwise combination of two datasets

[D] expand — Duplicate observations

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0011

Title

format — Set variables’ output format

Syntax Menu Description Option
Remarks and examples References Also see

Syntax
Set formats

format varlist % fmt

format % fmt varlist

Set style of decimal point

set dp
{
comma | period

} [
, permanently

]
Display long formats

format
[

varlist
]

where % fmt can be a numerical, date, business calendar, or string format.

218

format — Set variables’ output format 219

Numerical % fmt Description Example

right-justified
%#.#g general %9.0g

%#.#f fixed %9.2f

%#.#e exponential %10.7e

%21x hexadecimal %21x

%16H binary, hilo %16H

%16L binary, lohi %16L

%8H binary, hilo %8H

%8L binary, lohi %8L

right-justified with commas
%#.#gc general %9.0gc

%#.#fc fixed %9.2fc

right-justified with leading zeros
%0#.#f fixed %09.2f

left-justified
%-#.#g general %-9.0g

%-#.#f fixed %-9.2f

%-#.#e exponential %-10.7e

left-justified with commas
%-#.#gc general %-9.0gc

%-#.#fc fixed %-9.2fc

You may substitute comma (,) for period (.) in any
of the above formats to make comma the decimal point. In
%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

date % fmt Description Example

right-justified
%tc date/time %tc

%tC date/time %tC

%td date %td

%tw week %tw

%tm month %tm

%tq quarter %tq

%th half-year %th

%ty year %ty

%tg generic %tg

left-justified
%-tc date/time %-tc

%-tC date/time %-tC

%-td date %-td

etc.

There are many variations allowed. See [D] datetime display formats.

220 format — Set variables’ output format

business calendar % fmt Description Example

%tbcalname a business %tbsimple[
:datetime-specifiers

]
calendar defined in
calname.stbcal

See [D] datetime business calendars.

string % fmt Description Example

right-justified
%#s string %15s

left-justified
%-#s string %-20s

centered
%~#s string %~12s

The centered format is for use with display only.

Menu
Data > Variables Manager

Description
format varlist % fmt and format % fmt varlist are the same commands. They set the display format

associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g

str# %#s
strL %9s

set dp sets the symbol that Stata uses to represent the decimal point. The default is period,
meaning that one and a half is displayed as 1.5.

format
[

varlist
]

displays the current formats associated with the variables. format by itself lists
all variables that have formats too long to be listed in their entirety by describe. format varlist
lists the formats for the specified variables regardless of their length. format * lists the formats for
all the variables.

Option

permanently specifies that, in addition to making the change right now, the dp setting be remembered
and become the default setting when you invoke Stata.

format — Set variables’ output format 221

Remarks and examples
Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats

The %f format
The %fc format
The %g format
The %gc format
The %e format
The %21x format
The %16H and %16L formats
The %8H and %8L formats
The %t format
The %s format

Other effects of formats
Displaying current formats

Setting formats

See [U] 12.5 Formats: Controlling how data are displayed for an explanation of % fmt. To review:
Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d
(or w,d for European format), where w and d stand for two integers. The first integer, w, specifies
the width of the format. The second integer, d, specifies the number of digits that are to follow the
decimal point; d must be less than w. Finally, a character denoting the format type (e, f, or g) is
appended. For example, %9.2f specifies the f format that is nine characters wide and has two digits
following the decimal point. For f and g, a c may also be suffixed to indicate comma formats. Other
“numeric” formats known collectively as the %t formats are used to display dates and times; see
[D] datetime display formats. String formats are denoted by %ws, where w indicates the width of
the format.

Example 1

We have census data by region and state on median age and population in 1980.

. use http://www.stata-press.com/data/r13/census10
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r13/census10.dta
obs: 50 1980 Census data by state
vars: 4 9 Apr 2013 08:05
size: 1,200

storage display value
variable name type format label variable label

state str14 %14s State
region int %8.0g cenreg Census region
pop long %11.0g Population
medage float %9.0g Median age

Sorted by:

222 format — Set variables’ output format

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

The state variable has a display format of %14s. To left-align the state data, we type

. format state %-14s

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached
value label. You do the same thing to left-align a numeric variable as you do a string variable: insert
a negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage

1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9

6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

format — Set variables’ output format 223

The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for
Stata to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage

1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9

6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the
data, the next time we use it, state will still be formatted as %-14s, region will still be formatted
as %-8.0g, etc.

224 format — Set variables’ output format

Example 2

Suppose that we have an employee identification variable, empid, and that we want to retain the
leading zeros when we list our data. format has a leading-zero option that allows this.

. use http://www.stata-press.com/data/r13/fmtxmpl

. describe empid

storage display value
variable name type format label variable label

empid float %9.0g

. list empid in 83/87

empid

83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f

. list empid in 83/87

empid

83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Technical note
The syntax of the format command allows a varlist and not just one variable name. Thus you

can attach the %9.2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

Example 3

We have employee data that includes hiredate and login and logout times. hiredate is stored
as a float, but we were careful to store login and logout as doubles. We need to attach a date
format to these three variables.

. use http://www.stata-press.com/data/r13/fmtxmpl2

. format hiredate login logout

variable name display format

hiredate %9.0g
login %10.0g
logout %10.0g

format — Set variables’ output format 225

. format login logout %tcDDmonCCYY_HH:MM:SS.ss

. list login logout in 1/5

login logout

1. 08nov2006 08:16:42.30 08nov2006 05:32:23.53
2. 08nov2006 08:07:20.53 08nov2006 05:57:13.40
3. 08nov2006 08:10:29.48 08nov2006 06:17:07.51
4. 08nov2006 08:30:02.19 08nov2006 05:42:23.17
5. 08nov2006 08:29:43.25 08nov2006 05:29:39.48

. format hiredate %td

. list hiredate in 1/5

hiredate

1. 24jan1986
2. 10mar1994
3. 29sep2006
4. 14apr2006
5. 03dec1999

We remember that the project manager requested that hire dates be presented in the same form as
they were previously.

. format hiredate %tdDD/NN/CCYY

. list hiredate in 1/5

hiredate

1. 24/01/1986
2. 10/03/1994
3. 29/09/2006
4. 14/04/2006
5. 03/12/1999

Setting European formats

Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be
written as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify
‘,’ rather than ‘.’ as follows:

. use http://www.stata-press.com/data/r13/census10
(1980 Census data by state)

. format pop %12,0gc

. format medage %9,2f

226 format — Set variables’ output format

. list in 1/8

state region pop medage

1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90

6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594.338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc (put the formats back as they were)

. format medage %9.2f

. set dp comma (tell Stata to use European format)

. list in 1/8
(same output appears as above)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make
a table, commas will be used instead of periods in the output:

. tabulate region [fw=pop]

Census
region Freq. Percent Cum.

NE 49.135.283 21,75 21,75
N Cntrl 58.865.670 26,06 47,81
South 74.734.029 33,08 80,89
West 43.172.490 19,11 100,00

Total 225.907.472 100,00

You can return to using periods by typing
. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by
list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need
to type one and a half, you must type 1.5 regardless of context.

Technical note
set dp comma makes drastic changes inside Stata, and we mention this because some older, user-

written programs may not be able to deal with those changes. If you are using an older, user-written
program, you might set dp comma only to find that the program does not work and instead presents
some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.

Even with set dp comma, you might still see some output with the decimal symbol shown as a
period rather than a comma. There are two places in Stata where Stata ignores set dp comma because
the features are generally used to produce what will be treated as input, and set dp comma does not
affect how Stata inputs numbers. First,

format — Set variables’ output format 227

local x = sqrt(2)

stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program
were to display ‘x’ as a string in the output, the period would be displayed. Most programs, however,
would use ‘x’ in subsequent calculations or, at the least, when the time came to display what was
in ‘x’, would display it as a number. They would code

display . . . ‘x’ . . .

and not
display . . . "‘x’" . . .

so the output would be
. . . 1,4142135 . . .

The other place where Stata ignores set dp comma is the string() function. If you type
. gen res = string(numvar)

new variable res will contain the string representation of numeric variable numvar, with the decimal
symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask
that string() use European format,

. gen res = string(numvar,"%9,0g")

then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The %f format

In %w.df, w is the total output width, including sign and decimal point, and d is the number of
digits to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as
----+----1--

5.14

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0f format displays as
----+----1--

5

%-w.df works the same way, except that the output is left-justified in the field. The number 5.139
in %-12.2f displays as

----+----1--
5.14

The %fc format

%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.
w records the total width of the result, including commas.

The number 5.139 in %12.2fc format displays as
----+----1--

5.14

228 format — Set variables’ output format

The number 5203.139 in %12.2fc format displays as

----+----1--
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0fc format
displays as

----+----1--
5,203

As with %f, a minus sign may be inserted to left justify the output. The number 5203.139 in
%-12.0fc format displays as

----+----1--
5,203

The %g format

In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format
the number of digits to be displayed to the right of the decimal point. If d 6= 0 is specified, then not
more than d digits will be displayed. As with %f, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal
point, and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12.0g format displays as

----+----1--
5.139

The number 5231371222.139 in %12.0g format displays as

----+----1--
5231371222

The number 52313712223.139 displays as

----+----1--
5.23137e+10

The number 0.0000029394 displays as

----+----1--
2.93940e-06

The %gc format

%w.dgc is %w.dg with commas. It works in the same way as the %g and %fc formats.

The %e format

%w.de displays numeric values in exponential format. w records the width of the format. d records
the number of digits to be shown after the decimal place. w should be greater than or equal to d+7
or, if 3-digit exponents are expected, d+8.

The number 5.139 in %12.4e format is

----+----1--
5.1390e+00

format — Set variables’ output format 229

The number 5.139× 10220 is

----+----1--
5.1390e+220

The %21x format

The %21x format is for those, typically programmers, who wish to analyze routines for numerical
roundoff error. There is no better way to look at numbers than how the computer actually records
them.

The number 5.139 in %21x format is

----+----1----+----2-
+1.48e5604189375X+002

The number 5.125 is

----+----1----+----2-
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers f and e. The interpretation is f× 2e.

The %16H and %16L formats

The %16H and %16L formats show the value in the IEEE floating point, double-precision form.
%16H shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-
significant-byte-first (lohi) form.

The number 5.139 in %16H is

----+----1----+-
40148e5604189375

The number 5.139 in %16L is

----+----1----+-
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal
dump of a binary file.

The %8H and %8L formats

%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.

The number 5.139 in %8H is

----+---
40a472b0

The number 5.139 in %8L is

----+---
b072a440

The %t format

The %t format displays numerical variables as dates and times. See [D] datetime display formats.

230 format — Set variables’ output format

The %s format

The %ws format displays a string in a right-justified field of width w. %-ws displays the string
left-justified.

“Mary Smith” in %16s format is

----+----1----+-
Mary Smith

“Mary Smith” in %-16s format is

----+----1----+-
Mary Smith

Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers
the string. “Mary Smith” in %~16s format is

----+----1----+-
Mary Smith

Other effects of formats

You have data on the age of employees, and you type summarize age to obtain the mean and
standard deviation. By default, Stata uses its default g format to provide as much precision as possible.

. use http://www.stata-press.com/data/r13/fmtxmpl

. summarize age

Variable Obs Mean Std. Dev. Min Max

age 204 30.18627 10.38067 18 66

If you attach a %9.2f format to the variable and specify the format option, Stata uses that
specification to format the results:

. format age %9.2f

. summarize age, format

Variable Obs Mean Std. Dev. Min Max

age 204 30.19 10.38 18.00 66.00

Displaying current formats

format varlist is not often used to display the formats associated with variables because using
describe (see [D] describe) is easier and provides more information. The exceptions are date
variables. Unless you use the default %tc, %tC, . . . formats (and most people do), the format specifier
itself can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss

Such formats are too long for describe to display, so it gives up. In such cases, you can use
format to display the format:

. format admittime

variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

format — Set variables’ output format 231

References
Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11:

126–142.

Gould, W. W. 2011a. How to read the %21x format. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/.

. 2011b. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255–268.

Also see
[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

[D] list — List values of variables

[D] varmanage — Manage variable labels, formats, and other properties

[P] display — Display strings and values of scalar expressions

[U] 12.5 Formats: Controlling how data are displayed
[U] 12.6 Dataset, variable, and value labels

http://www.stata-journal.com/article.html?article=dm0054
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://www.stata-journal.com/sjpdf.html?articlenum=pr0038

Title

functions — Functions

Description Acknowledgments References Also see

Description
This entry describes the functions allowed by Stata. For information on Mata functions, see

[M-4] intro.

A quick note about missing values: Stata denotes a numeric missing value by ., .a, .b, . . . ,
or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be
referred to by missing. If a numeric value x is missing, then x ≥ . is true. If a numeric value x is
not missing, then x < . is true.

Functions are listed under the following headings:

Mathematical functions
Probability distributions and density functions
Random-number functions
String functions
Programming functions
Date and time functions
Selecting time spans
Matrix functions returning a matrix
Matrix functions returning a scalar

Mathematical functions

abs(x)
Domain: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the absolute value of x.

acos(x)
Domain: −1 to 1
Range: 0 to π
Description: returns the radian value of the arccosine of x.

acosh(x)
Domain: 1 to 8.9e+307
Range: 0 to 709.77
Description: returns the inverse hyperbolic cosine of x, acosh(x) = ln(x+

√
x2 − 1).

asin(x)
Domain: −1 to 1
Range: −π/2 to π/2
Description: returns the radian value of the arcsine of x.

asinh(x)
Domain: −8.9e+307 to 8.9e+307
Range: −709.77 to 709.77
Description: returns the inverse hyperbolic sine of x, asinh(x) = ln(x+

√
x2 + 1).

232

functions — Functions 233

atan(x)
Domain: −8e+307 to 8e+307
Range: −π/2 to π/2
Description: returns the radian value of the arctangent of x.

atan2(y, x)
Domain y: −8e+307 to 8e+307
Domain x: −8e+307 to 8e+307
Range: −π to π
Description: returns the radian value of the arctangent of y/x, where the signs of the parameters

y and x are used to determine the quadrant of the answer.

atanh(x)
Domain: −1 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse hyperbolic tangent of x, atanh(x) = 1

2{ln(1 +x)− ln(1−x)}.

ceil(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the unique integer n such that n− 1 < x ≤ n.

returns x (not “.”) if x is missing, meaning that ceil(.a) = .a.

Also see floor(x), int(x), and round(x).

cloglog(x)
Domain: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the complementary log-log of x,

cloglog(x) = ln{−ln(1− x)}.

comb(n,k)
Domain n: integers 1 to 1e+305
Domain k: integers 0 to n
Range: 0 to 8e+307 and missing
Description: returns the combinatorial function n!/{k!(n− k)!}.

cos(x)
Domain: −1e+18 to 1e+18
Range: −1 to 1
Description: returns the cosine of x, where x is in radians.

cosh(x)
Domain: −709 to 709
Range: 1 to 4.11e+307
Description: returns the hyperbolic cosine of x, cosh(x) = {exp(x) + exp(−x)}/2.

digamma(x)
Domain: −1e+15 to 8e+307
Range: −8e+307 to 8e+307 and missing
Description: returns the digamma() function, d lnΓ(x)/dx. This is the derivative of lngamma(x).

The digamma(x) function is sometimes called the psi function, ψ(x).

234 functions — Functions

exp(x)
Domain: −8e+307 to 709
Range: 0 to 8e+307
Description: returns the exponential function ex. This function is the inverse of ln(x).

floor(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the unique integer n such that n ≤ x < n+ 1.

returns x (not “.”) if x is missing, meaning that floor(.a) = .a.

Also see ceil(x), int(x), and round(x).

int(x)
Domain: −8e+307 to 8e+307
Range: integers in −8e+307 to 8e+307
Description: returns the integer obtained by truncating x toward 0; thus,

int(5.2) = 5
int(-5.8) = −5

returns x (not “.”) if x is missing, meaning that int(.a) = .a.

One way to obtain the closest integer to x is int(x+sign(x)/2), which
simplifies to int(x+0.5) for x ≥ 0. However, use of the round() function is
preferred. Also see ceil(x), int(x), and round(x).

invcloglog(x)
Domain: −8e+307 to 8e+307
Range: 0 to 1 and missing
Description: returns the inverse of the complementary log-log function of x,

invcloglog(x) = 1− exp{−exp(x)}.

invlogit(x)
Domain: −8e+307 to 8e+307
Range: 0 to 1 and missing
Description: returns the inverse of the logit function of x,

invlogit(x) = exp(x)/{1 + exp(x)}.

ln(x)
Domain: 1e–323 to 8e+307
Range: −744 to 709
Description: returns the natural logarithm, ln(x). This function is the inverse of exp(x).

The logarithm of x in base b can be calculated via logb(x) = loga(x)/ loga(b).
Hence,

log5(x) = ln(x)/ln(5) = log(x)/log(5) = log10(x)/log10(5)
log2(x) = ln(x)/ln(2) = log(x)/log(2) = log10(x)/log10(2)

You can calculate logb(x) by using the formula that best suits your needs.

functions — Functions 235

lnfactorial(n)
Domain: integers 0 to 1e+305
Range: 0 to 8e+307
Description: returns the natural log of factorial = ln(n!).

To calculate n!, use round(exp(lnfactorial(n)),1) to ensure that the result is
an integer. Logs of factorials are generally more useful than the factorials themselves
because of overflow problems.

lngamma(x)
Domain: −2,147,483,648 to 1e+305 (excluding negative integers)
Range: −8e+307 to 8e+307
Description: returns ln{Γ(x)}. Here the gamma function, Γ(x), is defined by

Γ(x) =
∫∞

0
tx−1e−tdt. For integer values of x > 0, this is ln((x− 1)!).

lngamma(x) for x < 0 returns a number such that exp(lngamma(x)) is equal to
the absolute value of the gamma function, Γ(x). That is, lngamma(x) always returns
a real (not complex) result.

log(x)
Domain: 1e–323 to 8e+307
Range: −744 to 709
Description: returns the natural logarithm, ln(x), which is a synonym for ln(x). Also see ln(x)

for more information.

log10(x)
Domain: 1e–323 to 8e+307
Range: −323 to 308
Description: returns the base-10 logarithm of x.

logit(x)
Domain: 0 to 1 (exclusive)
Range: −8e+307 to 8e+307 and missing
Description: returns the log of the odds ratio of x,

logit(x) = ln {x/(1− x)}.

max(x1,x2,. . .,xn)
Domain x1: −8e+307 to 8e+307 and missing
Domain x2: −8e+307 to 8e+307 and missing
. . .
Domain xn: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the maximum value of x1, x2, . . . , xn. Unless all arguments are missing,

missing values are ignored.
max(2,10,.,7) = 10
max(.,.,.) = .

236 functions — Functions

min(x1,x2,. . .,xn)
Domain x1: −8e+307 to 8e+307 and missing
Domain x2: −8e+307 to 8e+307 and missing
. . .
Domain xn: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the minimum value of x1, x2, . . . , xn. Unless all arguments are missing,

missing values are ignored.
min(2,10,.,7) = 2
min(.,.,.) = .

mod(x,y)
Domain x: −8e+307 to 8e+307
Domain y: 0 to 8e+307
Range: 0 to 8e+307
Description: returns the modulus of x with respect to y.

mod(x, y) = x− y floor(x/y)
mod(x,0) = .

reldif(x,y)
Domain x: −8e+307 to 8e+307 and missing
Domain y: −8e+307 to 8e+307 and missing
Range: −8e+307 to 8e+307 and missing
Description: returns the “relative” difference |x− y|/(|y|+ 1).

returns 0 if both arguments are the same type of extended missing value.
returns missing if only one argument is missing or if the two arguments are

two different types of missing.

round(x,y) or round(x)
Domain x: −8e+307 to 8e+307
Domain y: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns x rounded in units of y or x rounded to the nearest integer if the argument

y is omitted.
returns x (not “.”) if x is missing, meaning that round(.a) = .a and

round(.a,y) = .a if y is not missing; if y is missing, then “.” is returned.

For y = 1, or with y omitted, this amounts to the closest integer to x; round(5.2,1)
is 5, as is round(4.8,1); round(-5.2,1) is −5, as is round(-4.8,1). The
rounding definition is generalized for y 6= 1. With y = 0.01, for instance, x is
rounded to two decimal places; round(sqrt(2),.01) is 1.41. y may also be larger
than 1; round(28,5) is 30, which is 28 rounded to the closest multiple of 5.
For y = 0, the function is defined as returning x unmodified. Also see
int(x), ceil(x), and floor(x).

sign(x)
Domain: −8e+307 to 8e+307 and missing
Range: −1, 0, 1 and missing
Description: returns the sign of x: −1 if x < 0, 0 if x = 0, 1 if x > 0, and missing

if x is missing.

functions — Functions 237

sin(x)
Domain: −1e+18 to 1e+18
Range: −1 to 1
Description: returns the sine of x, where x is in radians.

sinh(x)
Domain: −709 to 709
Range: −4.11e+307 to 4.11e+307
Description: returns the hyperbolic sine of x, sinh(x) = {exp(x)− exp(−x)}/2.

sqrt(x)
Domain: 0 to 8e+307
Range: 0 to 1e+154
Description: returns the square root of x.

sum(x)
Domain: all real numbers and missing
Range: −8e+307 to 8e+307 (excluding missing)
Description: returns the running sum of x, treating missing values as zero.

For example, following the command generate y=sum(x), the jth observation
on y contains the sum of the first through jth observations on x. See [D] egen for
an alternative sum function, total(), that produces a constant equal to the overall
sum.

tan(x)
Domain: −1e+18 to 1e+18
Range: −1e+17 to 1e+17 and missing
Description: returns the tangent of x, where x is in radians.

tanh(x)
Domain: −8e+307 to 8e+307
Range: −1 to 1 and missing
Description: returns the hyperbolic tangent of x,

tanh(x) = {exp(x)− exp(−x)}/{exp(x) + exp(−x)}.

trigamma(x)
Domain: −1e+15 to 8e+307
Range: 0 to 8e+307 and missing
Description: returns the second derivative of lngamma(x) = d2 lnΓ(x)/dx2. The trigamma()

function is the derivative of digammma(x).

trunc(x) is a synonym for int(x).

Technical note

The trigonometric functions are defined in terms of radians. There are 2π radians in a circle. If
you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may
convert degrees into radians by using the formula r = dπ/180, where d represents degrees and r
represents radians. Stata includes the built-in constant pi, equal to π to machine precision. Thus,
to calculate the sine of theta, where theta is measured in degrees, you could type

sin(theta* pi/180)

238 functions — Functions

atan() similarly returns radians, not degrees. The arccotangent can be obtained as

acot(x) = pi/2 - atan(x)

Probability distributions and density functions

The probability distributions and density functions are organized under the following headings:

Beta and noncentral beta distributions
Binomial distribution
Chi-squared and noncentral chi-squared distributions
Dunnett’s multiple range distribution
F and noncentral F distributions
Gamma distribution
Hypergeometric distribution
Negative binomial distribution
Normal (Gaussian), log of the normal, and binormal distributions
Poisson distribution
Student’s t and noncentral Student’s t distributions
Tukey’s Studentized range distribution

Beta and noncentral beta distributions

ibeta(a,b,x)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the cumulative beta distribution with shape parameters a and b defined by

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1 dt

returns 0 if x < 0.
returns 1 if x > 1.

ibeta() returns the regularized incomplete beta function, also known as the
incomplete beta function ratio. The incomplete beta function without
regularization is given by (gamma(a)*gamma(b)/gamma(a+b))*ibeta(a,b,x)
or, better when a or b might be large,
exp(lngamma(a)+lngamma(b)-lngamma(a+b))*ibeta(a,b,x).

Here is an example of the use of the regularized incomplete beta function.
Although Stata has a cumulative binomial function (see binomial()), the
probability that an event occurs k or fewer times in n trials, when the
probability of one event is p, can be evaluated as
cond(k==n,1,1-ibeta(k+1,n-k,p)). The reverse cumulative binomial
(the probability that an event occurs k or more times) can be evaluated
as cond(k==0,1,ibeta(k,n-k+1,p)). See Press et al. (2007, 270–273)
for a more complete description and for suggested uses for this function.

functions — Functions 239

betaden(a,b,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
Description: returns the probability density of the beta distribution,

betaden(a,b,x) =
xa−1(1− x)b−1∫∞

0
ta−1(1− t)b−1dt

=
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

where a and b are the shape parameters.
returns 0 if x < 0 or x > 1.

ibetatail(a,b,x)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) beta distribution with shape

parameters a and b defined by

ibetatail(a,b,x) = 1− ibeta(a,b,x) =

∫ 1

x

betaden(a,b,t) dt

returns 1 if x < 0.
returns 0 if x > 1.

ibetatail() is also known as the complement to the incomplete beta function
(ratio).

invibeta(a,b,p)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative beta distribution: if ibeta(a,b,x) = p,

then invibeta(a,b,p) = x.

invibetatail(a,b,p)
Domain a: 1e–10 to 1e+17
Domain b: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse reverse cumulative (upper tail or survivor) beta distribution:

if ibetatail(a,b,x) = p, then invibetatail(a,b,p) = x.

240 functions — Functions

nibeta(a,b,np,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 1
Description: returns the cumulative noncentral beta distribution

Ix(a, b, np) =

∞∑
j=0

e−np/2(np/2)j

Γ(j + 1)
Ix(a+ j, b)

where a and b are shape parameters, np is the noncentrality parameter, x is the
value of a beta random variable, and Ix(a, b) is the cumulative beta distribution,
ibeta().

returns 0 if x < 0.
returns 1 if x > 1.

nibeta(a,b,0,x)= ibeta(a,b,x), but ibeta() is the preferred function
to use for the central beta distribution. nibeta() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).

nbetaden(a,b,np,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain x: −8e+307 to 8e+307

Interesting domain is 0 ≤ x ≤ 1
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral beta distribution,

∞∑
j=0

e−np/2(np/2)j

Γ(j + 1)

{
Γ(a+ b+ j)

Γ(a+ j)Γ(b)
xa+j−1(1− x)b−1

}
where a and b are shape parameters, np is the noncentrality parameter, and
x is the value of a beta random variable.

returns 0 if x < 0 or x > 1.

nbetaden(a,b,0,x)= betaden(a,b,x), but betaden() is the preferred
function to use for the central beta distribution. nbetaden() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).

invnibeta(a,b,np,p)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 1
Description: returns the inverse cumulative noncentral beta distribution:

if nibeta(a,b,np,x) = p, then invibeta(a,b,np,p) = x.

functions — Functions 241

Binomial distribution

binomial(n,k,θ)
Domain n: 0 to 1e+17
Domain k: −8e+307 to 8e+307

Interesting domain is 0 ≤ k < n
Domain θ: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or fewer successes in floor(n) trials

when the probability of a success on one trial is θ.
returns 0 if k < 0.
returns 1 if k > n.

binomialp(n,k,p)
Domain n: 1 to 1e+6
Domain k: 0 to n
Domain p: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) successes in floor(n) trials when

the probability of a success on one trial is p.

binomialtail(n,k,θ)
Domain n: 0 to 1e+17
Domain k: −8e+307 to 8e+307

Interesting domain is 0 ≤ k < n
Domain θ: 0 to 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or more successes in floor(n) trials

when the probability of a success on one trial is θ.
returns 1 if k < 0.
returns 0 if k > n.

invbinomial(n,k,p)
Domain n: 1 to 1e+17
Domain k: 0 to n−1
Domain p: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the cumulative binomial; that is, it returns θ (θ = probability

of success on one trial) such that the probability of observing floor(k) or
fewer successes in floor(n) trials is p.

invbinomialtail(n,k,p)
Domain n: 1 to 1e+17
Domain k: 1 to n
Domain p: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the inverse of the right cumulative binomial; that is, it returns θ

(θ = probability of success on one trial) such that the probability of
observing floor(k) or more successes in floor(n) trials is p.

242 functions — Functions

Chi-squared and noncentral chi-squared distributions

chi2(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative χ2 distribution with df degrees of freedom.

chi2(df,x) = gammap(df/2,x/2).
returns 0 if x < 0.

chi2den(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the probability density of the chi-squared distribution with df

degrees of freedom. chi2den(df,x) = gammaden(df/2,2,0,x).
returns 0 if x < 0.

chi2tail(df,x)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) χ2 distribution with df degrees

of freedom. chi2tail(df,x) = 1− chi2(df,x).
returns 1 if x < 0.

invchi2(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse of chi2(): if chi2(df,x) = p, then invchi2(df,p) = x.

invchi2tail(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse of chi2tail(): if chi2tail(df,x) = p, then

invchi2tail(df,p) = x.

functions — Functions 243

nchi2(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative noncentral χ2 distribution,∫ x

0

e−t/2 e−np/2

2df/2

∞∑
j=0

tdf/2+j−1 npj

Γ(df/2 + j) 22j j!
dt

where df denotes the degrees of freedom, np is the noncentrality parameter,
and x is the value of χ2.

returns 0 if x < 0.

nchi2(df,0,x)= chi2(df,x), but chi2() is the preferred function to use for
the central χ2 distribution.

nchi2den(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the probability density of the noncentral χ2 distribution, where df denotes

the degrees of freedom, np is the noncentrality parameter, and x is the value
of the χ2.

returns 0 if x < 0.

nchi2den(df,0,x)= chi2den(df,x), but chi2den() is the preferred function
to use for the central χ2 distribution.

nchi2tail(df,np,x)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain x: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral χ2 distribution,

where df denotes the degrees of freedom, np is the noncentrality parameter,
and x is the value of the χ2.

returns 1 if x < 0.

invnchi2(df,np,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative noncentral χ2 distribution:

if nchi2(df,np,x) = p, then invnchi2(df,np,p) = x;
df must be an integer.

244 functions — Functions

invnchi2tail(df,np,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain np: 0 to 10,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral χ2

distribution: if nchi2tail(df,np,x) = p, then
invnchi2tail(df,np,p) = x.

npnchi2(df,x,p)
Domain df : 2e–10 to 1e+6 (may be nonintegral)
Domain x: 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 10,000
Description: returns the noncentrality parameter, np, for noncentral χ2:

if nchi2(df,np,x) = p, then npnchi2(df,x,p) = np.

Dunnett’s multiple range distribution

dunnettprob(k,df,x)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative multiple range distribution that is used in Dunnett’s

multiple-comparison method with k ranges and df degrees of freedom.
returns 0 if x < 0.

dunnettprob() is computed using an algorithm described in Miller (1981).

invdunnettprob(k,df,p)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain p: 0 to 1 (right exclusive)
Range: 0 to 8e+307
Description: returns the inverse cumulative multiple range distribution that is used in Dunnett’s

multiple-comparison method with k ranges and df degrees of freedom. If
dunnettprob(k,df,x) = p, then invdunnettprob(k,df,p) = x.

invdunnettprob() is computed using an algorithm described in Miller (1981).

functions — Functions 245� �
Charles William Dunnett (1921–2007) was a Canadian statistician best known for his work on
multiple-comparison procedures. He was born in Windsor, Ontario, and graduated in mathematics
and physics from McMaster University. After naval service in World War II, Dunnett’s career
included further graduate work, teaching, and research at Toronto, Columbia, the New York State
Maritime College, the Department of National Health and Welfare in Ottawa, Cornell, Lederle
Laboratories, and Aberdeen before he became Professor of Clinical Epidemiology and Biostatistics
at McMaster University in 1974. He was President and Gold Medalist of the Statistical Society of
Canada. Throughout his career, Dunnett took a keen interest in computing. According to Google
Scholar, his 1955 paper on comparing treatments with a control has been cited over 4,000 times.� �

F and noncentral F distributions

F(df1,df2,f)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the cumulative F distribution with df1 numerator and df2 denominator

degrees of freedom: F(df1,df2,f) =
∫ f

0
Fden(df1,df2,t) dt.

returns 0 if f < 0.

Fden(df1,df2,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 8e+307
Description: returns the probability density function of the F distribution with df1 numerator

and df2 denominator degrees of freedom:

Fden(df1,df2,f) =
Γ(df1+df2

2)

Γ(df12)Γ(df22)

(
df1

df2

) df1
2

· f
df1
2 −1

(
1 +

df1

df2
f

)− 1
2 (df1+df2)

returns 0 if f < 0.

Ftail(df1,df2,f)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) F distribution with df1

numerator and df2 denominator degrees of freedom.
Ftail(df1,df2,f) = 1− F(df1,df2,f).

returns 1 if f < 0.

246 functions — Functions

invF(df1,df2,p)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative F distribution: if F(df1,df2,f) = p,

then invF(df1,df2,p) = f .

invFtail(df1,df2,p)
Domain df1: 2e–10 to 2e+17 (may be nonintegral)
Domain df2: 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) F distribution:

if Ftail(df1,df2,f) = p, then invFtail(df1,df2,p) = f .

nF(df1,df2,np,f)
Domain df1: 2e–10 to 1e+8
Domain df2: 2e–10 to 1e+8
Domain np: 0 to 10,000
Domain f : −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative noncentral F distribution with df1 numerator and df2

denominator degrees of freedom and noncentrality parameter np.
nF(df1,df2,0,f) = F(df1,df2,f).

returns 0 if f < 0.

nF() is computed using nibeta() based on the relationship between the
noncentral beta and noncentral F distributions:
nF(df1,df2,np,f) = nibeta(df1/2,df2/2,np,df1 × f/((df1 × f) + df2)).

functions — Functions 247

nFden(df1,df2,np,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral F distribution with df1

numerator and df2 denominator degrees of freedom and noncentrality
parameter np.

returns 0 if f < 0.

nFden(df1,df2,0,f)= Fden(df1,df2,f), but Fden() is the preferred function
to use for the central F distribution.

Also, if F follows the noncentral F distribution with df1 and df2 degrees of
freedom and noncentrality parameter np, then

df1F

df2 + df1F

follows a noncentral beta distribution with shape parameters a = df1/2, b = df2/2,
and noncentrality parameter np, as given in nbetaden(). nFden() is computed
based on this relationship.

nFtail(df1,df2,np,f)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain f : −8e+307 to 8e+307

Interesting domain is f ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral F distribution with

df1 numerator and df2 denominator degrees of freedom and noncentrality
parameter np.

returns 1 if f < 0.

nFtail() is computed using nibeta() based on the relationship between the
noncentral beta and F distributions. See Johnson, Kotz, and Balakrishnan (1995) for
more details.

invnFtail(df1,df2,np,p)
Domain df1: 1e–323 to 8e+307 (may be nonintegral)
Domain df2: 1e–323 to 8e+307 (may be nonintegral)
Domain np: 0 to 1,000
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentralF distribution:

if nFtail(df1,df2,np,x) = p, then invnFtail(df1,df2,np,p) = x.

248 functions — Functions

npnF(df1,df2,f,p)
Domain df1: 2e–10 to 1e+6 (may be nonintegral)
Domain df2: 2e–10 to 1e+6 (may be nonintegral)
Domain f : 0 to 8e+307
Domain p: 0 to 1
Range: 0 to 1,000
Description: returns the noncentrality parameter, np, for the noncentral F :

if nF(df1,df2,np,f) = p, then npnF(df1,df2,f,p) = np.

Gamma distribution

gammap(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative gamma distribution with shape parameter a defined by

1

Γ(a)

∫ x

0

e−tta−1 dt

returns 0 if x < 0.

The cumulative Poisson (the probability of observing k or fewer events if the
expected is x) can be evaluated as 1-gammap(k+1,x). The reverse cumulative (the
probability of observing k or more events) can be evaluated as gammap(k,x). See
Press et al. (2007, 259–266) for a more complete description and for suggested uses
for this function.

gammap() is also known as the incomplete gamma function (ratio).

Probabilities for the three-parameter gamma distribution (see gammaden()) can
be calculated by shifting and scaling x; that is, gammap(a,(x− g)/b).

gammaden(a,b,g,x)
Domain a: 1e–323 to 8e+307
Domain b: 1e–323 to 8e+307
Domain g: −8e+307 to 8e+307
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ g
Range: 0 to 8e+307
Description: returns the probability density function of the gamma distribution defined by

1

Γ(a)ba
(x− g)a−1e−(x−g)/b

where a is the shape parameter, b is the scale parameter, and g is the
location parameter.

returns 0 if x < g.

functions — Functions 249

gammaptail(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) gamma distribution with shape

parameter a defined by

gammaptail(a,x) = 1− gammap(a,x) =

∫ ∞
x

gammaden(a,t) dt

returns 1 if x < 0.

gammaptail() is also known as the complement to the incomplete gamma function
(ratio).

invgammap(a,p)
Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative gamma distribution: if gammap(a,x) = p,

then invgammap(a,p) = x.

invgammaptail(a,p)
Domain a: 1e–10 to 1e+17
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) gamma distribution:

if gammaptail(a,x) = p, then invgammaptail(a,p) = x.

dgammapda(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −16 to 0
Description: returns ∂P (a,x)

∂a , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdada(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −0.02 to 4.77e+5
Description: returns ∂2P (a,x)

∂a2 , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

250 functions — Functions

dgammapdadx(a,x)
Domain a: 1e–7 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: −0.04 to 8e+307
Description: returns ∂2P (a,x)

∂a∂x , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdx(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 8e+307
Description: returns ∂P (a,x)

∂x , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

dgammapdxdx(a,x)
Domain a: 1e–10 to 1e+17
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1e+40
Description: returns ∂2P (a,x)

∂x2 , where P (a, x) = gammap(a,x).
returns 0 if x < 0.

Hypergeometric distribution

hypergeometric(N,K,n,k)
Domain N : 2 to 1e+5
Domain K: 1 to N−1
Domain n: 1 to N−1
Domain k: max(0,n−N +K) to min(K,n)
Range: 0 to 1
Description: returns the cumulative probability of the hypergeometric distribution. N is the

population size, K is the number of elements in the population that have the
attribute of interest, and n is the sample size. Returned is the probability
of observing k or fewer elements from a sample of size n that have
the attribute of interest.

hypergeometricp(N,K,n,k)
Domain N : 2 to 1e+5
Domain K: 1 to N−1
Domain n: 1 to N−1
Domain k: max(0,n−N +K) to min(K,n)
Range: 0 to 1 (right exclusive)
Description: returns the hypergeometric probability of k successes (where success is obtaining

an element with the attribute of interest) out of a sample of size n, from
a population of size N containing K elements that have the attribute of interest.

functions — Functions 251

Negative binomial distribution

nbinomial(n,k,p)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the cumulative probability of the negative binomial distribution. n can be

nonintegral. When n is an integer, nbinomial() returns the probability of
observing k or fewer failures before the nth success, when the probability of
a success on one trial is p.

The negative binomial distribution function is evaluated using the ibeta() function.

nbinomialp(n,k,p)
Domain n: 1e–10 to 1e+6 (can be nonintegral)
Domain k: 0 to 1e+10
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the negative binomial probability. When n is an integer, nbinomialp()

returns the probability of observing exactly floor(k) failures before
the nth success, when the probability of a success on one trial is p.

nbinomialtail(n,k,p)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (left exclusive)
Range: 0 to 1
Description: returns the reverse cumulative probability of the negative binomial distribution. When

n is an integer, nbinomialtail() returns the probability of observing k or
more failures before the nth success, when the probability of a success on one
trial is p.

The reverse negative binomial distribution function is evaluated using the
ibetatail() function.

invnbinomial(n,k,q)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 0 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 1
Description: returns the value of the negative binomial parameter, p, such that

q = nbinomial(n,k,p).

invnbinomial() is evaluated using invibeta().

252 functions — Functions

invnbinomialtail(n,k,q)
Domain n: 1e–10 to 1e+17 (can be nonintegral)
Domain k: 1 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 1 (exclusive)
Description: returns the value of the negative binomial parameter, p, such that

q = nbinomialtail(n,k,p).

invnbinomialtail() is evaluated using invibetatail().

Normal (Gaussian), log of the normal, and binormal distributions

binormal(h,k,ρ)
Domain h: −8e+307 to 8e+307
Domain k: −8e+307 to 8e+307
Domain ρ: −1 to 1
Range: 0 to 1
Description: returns the joint cumulative distribution Φ(h, k , ρ) of bivariate normal

with correlation ρ; cumulative over (−∞, h]× (−∞, k]:

Φ(h, k, ρ) =
1

2π
√

1− ρ2

∫ h

−∞

∫ k

−∞
exp

{
− 1

2(1− ρ2)

(
x2

1 − 2ρx1x2 + x2
2

)}
dx1 dx2

normal(z)
Domain: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative standard normal distribution.

normal(z) =
∫ z
−∞

1√
2π
e−x

2/2dx

normalden(z)
Domain: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the standard normal density, N(0, 1).

normalden(x,σ)
Domain x: −8e+307 to 8e+307
Domain σ: 1e–308 to 8e+307
Range: 0 to 8e+307
Description: returns the normal density with mean 0 and standard deviation σ:

normalden(x,1) = normalden(x) and
normalden(x,σ) = normalden(x/σ)/σ.

functions — Functions 253

normalden(x,µ,σ)
Domain x: −8e+307 to 8e+307
Domain µ: −8e+307 to 8e+307
Domain σ: 1e–308 to 8e+307
Range: 0 to 8e+307
Description: returns the normal density with mean µ and standard deviation σ, N(µ, σ2):

normalden(x,0,s) = normalden(x,s) and
normalden(x,µ,σ) = normalden((x− µ)/σ)/σ. In general,

normalden(z,µ,σ) =
1

σ
√

2π
e−

1
2

{
(z−µ)
σ

}2

invnormal(p)
Domain: 1e–323 to 1− 2−53

Range: −38.449394 to 8.2095362
Description: returns the inverse cumulative standard normal distribution:

if normal(z) = p, then invnormal(p) = z.

lnnormal(z)
Domain: −1e+99 to 8e+307
Range: −5e+197 to 0
Description: returns the natural logarithm of the cumulative standard normal distribution:

lnnormal(z) = ln
(∫ z

−∞

1√
2π
e−x

2/2dx

)
lnnormalden(z)

Domain: −1e+154 to 1e+154
Range: −5e+307 to −0.91893853 = lnnormalden(0)
Description: returns the natural logarithm of the standard normal density, N(0, 1).

lnnormalden(x,σ)
Domain x: −8e+307 to 8e+307
Domain σ: 1e–323 to 8e+307
Range: −5e+307 to 742.82799
Description: returns the natural logarithm of the normal density with mean 0 and standard deviation

σ: lnnormalden(x, 1) = lnnormalden(x) and
lnnormalden(x,σ) = lnnormalden(x/σ)− ln(σ).

lnnormalden(x,µ,σ)
Domain x: −8e+307 to 8e+307
Domain µ: −8e+307 to 8e+307
Domain σ: 1e–323 to 8e+307
Range: 1e–323 to 8e+307
Description: returns the natural logarithm of the normal density with mean µ and standard deviation

σ, N(µ, σ2): lnnormalden(x,0,s) = lnnormalden(x,s) and
lnnormalden(x,µ,σ) = lnnormalden((x− µ)/σ)− ln(σ). In general,

lnnormalden(z,µ,σ) = ln
[

1

σ
√

2π
e−

1
2

{
(z−µ)
σ

}2
]

254 functions — Functions

Poisson distribution

poisson(m,k)
Domain m: 1e–10 to 253 − 1
Domain k: 0 to 253 − 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or fewer outcomes that are distributed

as Poisson with mean m.

The Poisson distribution function is evaluated using the gammaptail() function.

poissonp(m,k)
Domain m: 1e–10 to 1e+8
Domain k: 0 to 1e+9
Range: 0 to 1
Description: returns the probability of observing floor(k) outcomes that are distributed as

Poisson with mean m.

The Poisson probability function is evaluated using the gammaden() function.

poissontail(m,k)
Domain m: 1e–10 to 253 − 1
Domain k: 0 to 253 − 1
Range: 0 to 1
Description: returns the probability of observing floor(k) or more outcomes that are distributed

as Poisson with mean m.

The reverse cumulative Poisson distribution function is evaluated using the gammap()
function.

invpoisson(k,p)
Domain k: 0 to 253 − 1
Domain p: 0 to 1 (exclusive)
Range: 1.110e–16 to 253

Description: returns the Poisson mean such that the cumulative Poisson distribution evaluated at
k is p: if poisson(m,k) = p, then invpoisson(k,p) = m.

The inverse Poisson distribution function is evaluated using the invgammaptail()
function.

invpoissontail(k,q)
Domain k: 0 to 253 − 1
Domain q: 0 to 1 (exclusive)
Range: 0 to 253 (left exclusive)
Description: returns the Poisson mean such that the reverse cumulative Poisson distribution

evaluated at k is q: if poissontail(m,k) = q, then
invpoissontail(k,q) = m.

The inverse of the reverse cumulative Poisson distribution function is evaluated
using the invgammap() function.

functions — Functions 255

Student’s t and noncentral Student’s t distributions

t(df,t)
Domain df : 2e+10 to 2e+17 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative Student’s t distribution with df degrees of freedom.

tden(df,t)
Domain df : 1e–323 to 8e+307(may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the probability density function of Student’s t distribution:

tden(df,t) =
Γ{(df + 1)/2}√
πdfΓ(df/2)

·
(
1 + t2/df)−(df+1)/2

ttail(df,t)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) Student’s t distribution;

it returns the probability T > t:

ttail(df,t) =

∫ ∞
t

Γ{(df + 1)/2}√
πdfΓ(df/2)

·
(
1 + x2/df)−(df+1)/2 dx

invt(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse cumulative Student’s t distribution:

if t(df,t) = p, then invt(df,p) = t.

invttail(df,p)
Domain df : 2e–10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: −8e+307 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) Student’s t distribution:

if ttail(df,t) = p, then invttail(df,p) = t.

nt(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the cumulative noncentral Student’s t distribution with df degrees of freedom

and noncentrality parameter np. nt(df,0,t) = t(df,t).

256 functions — Functions

ntden(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 0.39894 . . .
Description: returns the probability density function of the noncentral Student’s t distribution with

df degrees of freedom and noncentrality parameter np.

nttail(df,np,t)
Domain df : 1e–100 to 1e+10 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain t: −8e+307 to 8e+307
Range: 0 to 1
Description: returns the reverse cumulative (upper tail or survivor) noncentral

Student’s t distribution with df degrees of freedom and
noncentrality parameter np.

invnttail(df,np,p)
Domain df : 1 to 1e+6 (may be nonintegral)
Domain np: −1,000 to 1,000
Domain p: 0 to 1
Range: −8e+10 to 8e+10
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral

Student’s t distribution: if nttail(df,np,t) = p,
then invnttail(df,np,p) = t.

npnt(df,t,p)
Domain df : 1e–100 to 1e+8 (may be nonintegral)
Domain t: −8e+307 to 8e+307
Domain p: 0 to 1
Range: −1,000 to 1,000
Description: returns the noncentrality parameter, np, for the noncentral Student’s t distribution:

if nt(df,np,t) = p, then npnt(df,t,p) = np.

Tukey’s Studentized range distribution

tukeyprob(k,df,x)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain x: −8e+307 to 8e+307

Interesting domain is x ≥ 0
Range: 0 to 1
Description: returns the cumulative Tukey’s Studentized range distribution with k ranges and

df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s t.

returns 0 if x < 0.

tukeyprob() is computed using an algorithm described in Miller (1981).

functions — Functions 257

invtukeyprob(k,df,p)
Domain k: 2 to 1e+6
Domain df : 2 to 1e+6
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative Tukey’s Studentized range distribution with k ranges

and df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s t. If tukeyprob(k,df,x) = p, then
invtukeyprob(k,df,p) = x.

invtukeyprob() is computed using an algorithm described in Miller (1981).

Random-number functions

runiform()
Range: 0 to nearly 1 (0 to 1− 2−32)
Description: returns uniform random variates.

runiform() returns uniformly distributed random variates on the interval
[0, 1). runiform() takes no arguments, but the parentheses must be typed.
runiform() can be seeded with the set seed command; see the technical note at
the end of this subsection. (See Matrix functions for the related matuniform()
matrix function.)

To generate random variates over the interval [a, b), use
a+(b-a)*runiform().

To generate random integers over [a, b], use a+int((b-a+1)*runiform()).

rbeta(a,b)
Domain a: 0.05 to 1e+5
Domain b: 0.15 to 1e+5
Range: 0 to 1 (exclusive)
Description: returns beta(a,b) random variates, where a and b are the beta distribution shape

parameters.

Besides the standard methodology for generating random variates from a given
distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003),
Atkinson and Whittaker (1970, 1976), Devroye (1986), and
Schmeiser and Babu (1980).

258 functions — Functions

rbinomial(n,p)
Domain n: 1 to 1e+11
Domain p: 1e–8 to 1−1e–8
Range: 0 to n
Description: returns binomial(n,p) random variates, where n is the number of trials and p is the

success probability.

Besides the standard methodology for generating random variates from a given
distribution, rbinomial() uses the specialized algorithms of
Kachitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and
Kemp (1986).

rchi2(df)
Domain df : 2e–4 to 2e+8
Range: 0 to c(maxdouble)
Description: returns chi-squared, with df degrees of freedom, random variates.

rgamma(a,b)
Domain a: 1e–4 to 1e+8
Domain b: c(smallestdouble) to c(maxdouble)
Range: 0 to c(maxdouble)
Description: returns gamma(a,b) random variates, where a is the gamma shape parameter and b

is the scale parameter.

Methods for generating gamma variates are taken from Ahrens and Dieter (1974),
Best (1983), and Schmeiser and Lal (1980).

rhypergeometric(N,K,n)
Domain N : 2 to 1e+6
Domain K: 1 to N−1
Domain n: 1 to N−1
Range: max(0,n−N +K) to min(K,n)
Description: returns hypergeometric random variates. The distribution parameters are integer

valued, where N is the population size, K is the number of elements in
the population that have the attribute of interest, and n is the sample size.

Besides the standard methodology for generating random variates from a given
distribution, rhypergeometric() uses the specialized algorithms of
Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

rnbinomial(n,p)
Domain n: 1e–4 to 1e+5
Domain p: 1e–4 to 1−1e–4
Range: 0 to 253 − 1
Description: returns negative binomial random variates. If n is integer valued, rnbinomial()

returns the number of failures before the nth success, where the probability of
success on a single trial is p. n can also be nonintegral.

rnormal()
Range: c(mindouble) to c(maxdouble)
Description: returns standard normal (Gaussian) random variates, that is, variates from a normal

distribution with a mean of 0 and a standard deviation of 1.

functions — Functions 259

rnormal(m)
Domain m: c(mindouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)
Description: returns normal(m,1) (Gaussian) random variates, where m is the mean and the

standard deviation is 1.

rnormal(m,s)
Domain m: c(mindouble) to c(maxdouble)
Domain s: 0 to c(maxdouble)
Range: c(mindouble) to c(maxdouble)
Description: returns normal(m,s) (Gaussian) random variates, where m is the mean and s is the

standard deviation.

The methods for generating normal (Gaussian) random variates are taken from
Knuth (1998, 122–128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

rpoisson(m)
Domain m: 1e–6 to 1e+11
Range: 0 to 253 − 1
Description: returns Poisson(m) random variates, where m is the distribution mean.

Poisson variates are generated using the probability integral transform methods
of Kemp and Kemp (1990, 1991), as well as the method of Kachitvichyanukul (1982).

rt(df)
Domain df : 1 to 253 − 1
Range: c(mindouble) to c(maxdouble)
Description: returns Student’s t random variates, where df is the degrees of freedom.

Student’s t variates are generated using the method of Kinderman and Monahan
(1977, 1980).

Technical note

The uniform pseudorandom-number function, runiform(), is based on George Marsaglia’s
(G. Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-number generator KISS (keep it simple
stupid). The KISS generator is composed of two 32-bit pseudorandom-number generators and two
16-bit generators (combined to make one 32-bit generator). The four generators are defined by the
recursions

xn = 69069xn−1 + 1234567 mod 232 (1)

yn = yn−1(I + L13)(I +R17)(I + L5) (2)

zn = 65184
(
zn−1 mod 216

)
+ int

(
zn−1/2

16
)

(3)

wn = 63663
(
wn−1 mod 216

)
+ int

(
wn−1/2

16
)

(4)

In recursion (2), the 32-bit word yn is viewed as a 1 × 32 binary vector; L is the 32 × 32 matrix
that produces a left shift of one (L has 1s on the first left subdiagonal, 0s elsewhere); and R is L
transpose, affecting a right shift by one. In recursions (3) and (4), int(x) is the integer part of x.

260 functions — Functions

The KISS generator produces the 32-bit random number

Rn = xn + yn + zn + 216wn mod 232

runiform() takes the output from the KISS generator and divides it by 232 to produce a real number
on the interval [0, 1).

All the nonuniform random-number generators rely on uniform random numbers that are also
generated using this KISS algorithm.

The recursions (1)–(4) have, respectively, the periods

232 (1)

232 − 1 (2)

(65184 · 216 − 2)/2 ≈ 231 (3)

(63663 · 216 − 2)/2 ≈ 231 (4)

Thus the overall period for the KISS generator is

232 · (232 − 1) · (65184 · 215 − 1) · (63663 · 215 − 1) ≈ 2126

When Stata first comes up, it initializes the four recursions in KISS by using the seeds

x0 = 123456789 (1)

y0 = 521288629 (2)

z0 = 362436069 (3)

w0 = 2262615 (4)

Successive calls to runiform() then produce the sequence

R1

232
,
R2

232
,
R3

232
, . . .

Hence, runiform() gives the same sequence of random numbers in every Stata session (measured
from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers
(x, y, z, w), but you can reinitialize the seed by simply issuing the command

. set seed #

where # is any integer between 0 and 231 − 1, inclusive. When this command is issued, the initial
value x0 is set equal to #, and the other three recursions are restarted at the seeds y0, z0, and w0

given above. The first 100 random numbers are discarded, and successive calls to runiform() give
the sequence

R ′101

232
,
R ′102

232
,
R ′103

232
, . . .

functions — Functions 261

However, if the command

. set seed 123456789

is given, the first 100 random numbers are not discarded, and you get the same sequence of random
numbers that runiform() produces by default; also see [R] set seed.

Technical note
You may “capture” the current seed (x, y, z, w) by coding

. local curseed = "‘c(seed)’"

and, later in your code, reestablish that seed by coding

. set seed ‘curseed’

When the seed is set this way, the first 100 random numbers are not discarded.

c(seed) contains a 30-plus long character string similar to

X075bcd151f123bb5159a55e50022865746ad

The string contains an encoding of the four numbers (x, y, z, w) along with checksums and redundancy
to ensure that, at set seed time, it is valid.

String functions

Stata includes the following string functions. In the display below, s indicates a string subexpression
(a string literal, a string variable, or another string expression), n indicates a numeric subexpression
(a number, a numeric variable, or another numeric expression), and re indicates a regular expression
based on Henry Spencer’s NFA algorithms and this is nearly identical to the POSIX.2 standard.

abbrev(s,n)
Domain s: strings
Domain n: 5 to 32
Range: strings
Description: returns name s, abbreviated to n characters.

If any of the characters of s are a period, “.”, and n < 8, then the value of
n defaults to a value of 8. Otherwise, if n < 5, then n defaults to a value of 5.
If n is missing, abbrev() will return the entire string s. abbrev() is
typically used with variable names and variable names with factor-variable or
time-series operators (the period case). abbrev("displacement",8) is displa~t.

char(n)
Domain: integers 0 to 255
Range: ASCII characters
Description: returns the character corresponding to ASCII code n.

returns "" if n is not in the domain.

262 functions — Functions

indexnot(s1,s2)
Domain s1: strings (to be searched)
Domain s2: strings of individual characters (to search for)
Range: integers ≥ 0
Description: returns the position in s1 of the first character of s1 not found in s2, or 0

if all characters of s1 are found in s2.

itrim(s)
Domain: strings
Range: strings with no multiple, consecutive internal blanks
Description: returns s with multiple, consecutive internal blanks collapsed to one blank.

itrim("hello there") = "hello there"

length(s)
Domain: strings
Range: integers ≥ 0
Description: returns the length of s. length("ab") = 2

lower(s)
Domain: strings
Range: strings with lowercased characters
Description: returns the lowercased variant of s. lower("THIS") = "this"

ltrim(s)
Domain: strings
Range: strings without leading blanks
Description: returns s without leading blanks. ltrim(" this") = "this"

plural(n,s) or plural(n,s1,s2)
Domain n: real numbers
Domain s: strings
Domain s1: strings
Domain s2: strings
Range: strings
Description: returns the plural of s, or s1 in the 3-argument case, if n 6= ±1.

The plural is formed by adding “s” to s if you called plural(n,s). If
you called plural(n,s1,s2) and s2 begins with the character “+”, the plural
is formed by adding the remainder of s2 to s1. If s2 begins with the character
“-”, the plural is formed by subtracting the remainder of s2 from s1. If s2

begins with neither “+” nor “-”, then the plural is formed by returning s2.
returns s, or s1 in the 3-argument case, if n = ±1.

plural(1, "horse") = "horse"
plural(2, "horse") = "horses"
plural(2, "glass", "+es") = "glasses"
plural(1, "mouse", "mice") = "mouse"
plural(2, "mouse", "mice") = "mice"
plural(2, "abcdefg", "-efg") = "abcd"

functions — Functions 263

proper(s)
Domain: strings
Range: strings
Description: returns a string with the first letter capitalized, and capitalizes any other letters

immediately following characters that are not letters; all other
letters converted to lowercase.
proper("mR. joHn a. sMitH") = "Mr. John A. Smith"
proper("jack o’reilly") = "Jack O’Reilly"
proper("2-cent’s worth") = "2-Cent’S Worth"

real(s)
Domain: strings
Range: −8e+307 to 8e+307 and missing
Description: returns s converted to numeric, or returns missing.

real("5.2")+1 = 6.2
real("hello") = .

regexm(s,re)
Domain s: strings
Domain re: regular expression
Range: strings
Description: performs a match of a regular expression and evaluates to 1 if regular

expression re is satisfied by the string s, otherwise returns 0.
Regular expression syntax is based on Henry Spencer’s NFA algorithm,
and this is nearly identical to the POSIX.2 standard. s and re may not
contain binary 0 (\0).

regexr(s1,re,s2)
Domain s1: strings
Domain re: regular expression
Domain s2: strings
Range: strings
Description: replaces the first substring within s1 that matches re with s2 and returns

the resulting string. If s1 contains no substring that matches re, the unaltered
s1 is returned. s1 and the result of regexr() may be at most 1,100,000
characters long. s1, re, and s2 may not contain binary 0 (\0).

regexs(n)
Domain: 0 to 9
Range: strings
Description: returns subexpression n from a previous regexm() match, where

0 ≤ n < 10. Subexpression 0 is reserved for the entire string that
satisfied the regular expression. The returned subexpression may
be at most 1,100,000 characters long.

reverse(s)
Domain: strings
Range: reversed strings
Description: returns s reversed. reverse("hello") = "olleh"

264 functions — Functions

rtrim(s)
Domain: strings
Range: strings without trailing blanks
Description: returns s without trailing blanks. rtrim("this ") = "this"

soundex(s)
Domain: strings
Range: strings
Description: returns the soundex code for a string, s. The soundex code consists of a letter

followed by three numbers: the letter is the first letter of the name and the
numbers encode the remaining consonants. Similar sounding consonants are
encoded by the same number.

soundex("Ashcraft") = "A226"
soundex("Robert") = "R163"
soundex("Rupert") = "R163"

soundex nara(s)
Domain: strings
Range: strings
Description: returns the U.S. Census soundex code for a string, s. The soundex code consists

of a letter followed by three numbers: the letter is the first letter of the
name and the numbers encode the remaining consonants. Similar sounding
consonants are encoded by the same number.

soundex nara("Ashcraft") = "A261"

strcat(s1,s2)
Domain s1: strings
Domain s2: strings
Range: strings
Description: There is no strcat() function. Instead the addition operator is used to

concatenate strings:
"hello " + "world" = "hello world"
"a" + "b" = "ab"

strdup(s1,n)
Domain s1: strings
Domain n: nonnegative integers 0, 1, 2, . . .
Range: strings
Description: There is no strdup() function. Instead the multiplication operator is used to

create multiple copies of strings:
"hello" * 3 = "hellohellohello"
3 * "hello" = "hellohellohello"
0 * "hello" = ""
"hello" * 1 = "hello"

functions — Functions 265

string(n)
Domain: −8e+307 to 8e+307 and missing
Range: strings
Description: returns n converted to a string.

string(4)+"F" = "4F"
string(1234567) = "1234567"
string(12345678) = "1.23e+07"
string(.) = "."

string(n,s)
Domain n: −8e+307 to 8e+307 and missing
Domain s: strings containing % fmt numeric display format
Range: strings
Description: returns n converted to a string.

string(4,"%9.2f") = "4.00"
string(123456789,"%11.0g") = "123456789"
string(123456789,"%13.0gc") = "123,456,789"
string(0,"%td") = "01jan1960"
string(225,"%tq") = "2016q2"
string(225,"not a format") = ""

strlen(s) is a synonym for length(s).

strlower(x) is a synonym for lower(x).

strltrim(x) is a synonym for ltrim(x).

strmatch(s1,s2)
Domain s: strings
Range: 0 or 1
Description: returns 1 if s1 matches the pattern s2; otherwise, it returns 0.

strmatch("17.4","1??4") returns 1. In s2, "?" means that one character
goes here, and "*" means that zero or more characters go here. Also see
regexm(), regexr(), and regexs().

strofreal(n) is a synonym for string(n).

strofreal(n,s) is a synonym for string(n,s).

strpos(s1,s2)
Domain s1: strings (to be searched)
Domain s2: strings (to search for)
Range: integers ≥ 0
Description: returns the position in s1 at which s2 is first found; otherwise, it returns 0.

strpos("this","is") = 3
strpos("this","it") = 0

strproper(x) is a synonym for proper(x).

strreverse(x) is a synonym for reverse(x).

strrtrim(x) is a synonym for rtrim(x).

266 functions — Functions

strtoname(s,p)
Domain s: strings
Domain p: 0 or 1
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed

in a Stata name is converted to an underscore character, . If the first character
in s is a numeric character and p is not 0, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname("name",1) = "name"
strtoname("a name",1) = "a name"
strtoname("5",1) = " 5"
strtoname("5:30",1) = " 5 30"
strtoname("5",0) = "5"
strtoname("5:30",0) = "5 30"

strtoname(s)
Domain s: strings
Range: strings
Description: returns s translated into a Stata name. Each character in s that is not allowed

in a Stata name is converted to an underscore character, . If the first character
in s is a numeric character, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname("name") = "name"
strtoname("a name") = "a name"
strtoname("5") = " 5"
strtoname("5:30") = " 5 30"

strtrim(x) is a synonym for trim(x).

strupper(x) is a synonym for upper(x).

subinstr(s1,s2,s3,n)
Domain s1: strings (to be substituted into)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s1, where the first n occurrences in s1 of s2 have been replaced

with s3. If n is missing, all occurrences are replaced.
Also see regexm(), regexr(), and regexs().
subinstr("this is the day","is","X",1) = "thX is the day"
subinstr("this is the hour","is","X",2) = "thX X the hour"
subinstr("this is this","is","X",.) = "thX X thX"

functions — Functions 267

subinword(s1,s2,s3,n)
Domain s1: strings (to be substituted for)
Domain s2: strings (to be substituted from)
Domain s3: strings (to be substituted with)
Domain n: integers ≥ 0 and missing
Range: strings
Description: returns s1, where the first n occurrences in s1 of s2 as a word have

been replaced with s3. A word is defined as a space-separated token.
A token at the beginning or end of s1 is considered space-separated.
If n is missing, all occurrences are replaced.
Also see regexm(), regexr(), and regexs().

subinword("this is the day","is","X",1) = "this X the day"
subinword("this is the hour","is","X",.) = "this X the hour"
subinword("this is this","th","X",.) = "this is this"

substr(s,n1,n2)
Domain s: strings
Domain n1: integers ≥ 1 and ≤ −1
Domain n2: integers ≥ 1 and ≤ −1
Range: strings
Description: returns the substring of s, starting at column n1, for a length of n2.

If n1 < 0, n1 is interpreted as distance from the end of the string;
if n2 = . (missing), the remaining portion of the string is returned.

substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""

trim(s)
Domain: strings
Range: strings without leading or trailing blanks
Description: returns s without leading and trailing blanks; equivalent to

ltrim(rtrim(s)). trim(" this ") = "this"

upper(s)
Domain: strings
Range: strings with uppercased characters
Description: returns the uppercased variant of s. upper("this") = "THIS"

word(s, n)
Domain s: strings
Domain n: integers . . . ,−2,−1, 0, 1, 2, . . .
Range: strings
Description: returns the nth word in s. Positive numbers count words from the beginning of s,

and negative numbers count words from the end of s. (1 is the first word in s,
and -1 is the last word in s.) Returns missing ("") if n is missing.

268 functions — Functions

wordcount(s)
Domain: strings
Range: nonnegative integers 0, 1, 2, . . .
Description: returns the number of words in s. A word is a set of characters that start

and terminate with spaces, start with the beginning of the string,
or terminate with the end of the string.

Programming functions

autocode(x,n,x0,x1)
Domain x: −8e+307 to 8e+307
Domain n: integers 1 to 8e+307
Domain x0: −8e+307 to 8e+307
Domain x1: x0 to 8e+307
Range: x0 to x1

Description: partitions the interval from x0 to x1 into n equal-length intervals and
returns the upper bound of the interval that contains x. This function is an
automated version of recode() (see below).
See [U] 25 Working with categorical data and factor variables for an example.

The algorithm for autocode() is
if (n ≥ . |x0 ≥ . |x1 ≥ . |n ≤ 0 |x0 ≥ x1)

then return missing
if x ≥ ., then return x

otherwise
for i = 1 to n− 1

xmap = x0 + i ∗ (x1 − x0)/n
if x ≤ xmap then return xmap

end
otherwise

return x1

byteorder()
Range: 1 and 2
Description: returns 1 if your computer stores numbers by using a hilo byte order and evaluates

to 2 if your computer stores numbers by using a lohi byte order. Consider the
number 1 written as a 2-byte integer. On some computers (called hilo), it is
written as “00 01”, and on other computers (called lohi), it is written as
“01 00” (with the least significant byte written first). There are similar issues
for 4-byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles
byte-order differences for Stata-created files. Users need not be concerned about
this issue. Programmers producing customary binary files can use byteorder()
to determine the native byte ordering; see [P] file.

functions — Functions 269

c(name)
Domain: names
Range: real values, strings, and missing
Description: returns the value of the system or constant result c(name); see [P] creturn.

Referencing c(name) will return an error if the result does not exist.
returns a scalar if the result is scalar.
returns a string of the result containing the first 2,045 characters.

caller()
Range: 1 to 13
Description: returns version of the program or session that invoked the currently running program;

see [P] version. The current version at the time of this writing is 13, so 13
is the upper end of this range. If Stata 13.1 were the current version, 13.1 would
be the upper end of this range, and likewise, if Stata 14 were the current
version, 14 would be the upper end of this range. This is a function for use
by programmers.

chop(x, ε)
Domain x: −8e+307 to 8e+307
Domain ε: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns round(x) if abs(x− round(x)) < ε; otherwise, returns x.

returns x if x is missing.

clip(x,a,b)
Domain x: −8e+307 to 8e+307
Domain a: −8e+307 to 8e+307
Domain b: −8e+307 to 8e+307
Range: −8e+307 to 8e+307
Description: returns x if a < x < b, b if x ≥ b, a if x ≤ a, and missing if x is missing

or if a > b. If a or b is missing, this is interpreted as a = −∞
or b = +∞, respectively.

returns x if x is missing.

270 functions — Functions

cond(x,a,b,c) or cond(x,a,b)
Domain x: −8e+307 to 8e+307 and missing; 0⇒ false, otherwise interpreted as true
Domain a: numbers and strings
Domain b: numbers if a is a number; strings if a is a string
Domain c: numbers if a is a number; strings if a is a string
Range: a, b, and c
Description: returns a if x is true and nonmissing, b if x is false, and c if x is missing.

returns a if c is not specified and x evaluates to missing.

Note that expressions such as x > 2 will never evaluate to missing.

cond(x>2,50,70) returns 50 if x > 2 (includes x ≥ .)
cond(x>2,50,70) returns 70 if x ≤ 2

If you need a case for missing values in the above examples, try

cond(missing(x), ., cond(x>2,50,70)) returns . if x is missing ,
returns 50 if x > 2, and returns 70 if x ≤ 2

If the first argument is a scalar that may contain a missing value or a
variable containing missing values, the fourth argument has an effect.

cond(wage,1,0,.) returns 1 if wage is not zero and not missing
cond(wage,1,0,.) returns 0 if wage is zero
cond(wage,1,0,.) returns . if wage is missing

Caution: If the first argument to cond() is a logical expression, that is,
cond(x>2,50,70,.), the fourth argument is never reached.

e(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of stored result e(name);

see [U] 18.8 Accessing results calculated by other programs
e(name) = scalar missing if the stored result does not exist
e(name) = specified matrix if the stored result is a matrix
e(name) = scalar numeric value if the stored result is a scalar
e(name) = a string containing the first 2,045 characters

if the stored result is a string

e(sample)
Range: 0 and 1
Description: returns 1 if the observation is in the estimation sample and 0 otherwise.

epsdouble()
Range: a double-precision number close to 0
Description: returns the machine precision of a double-precision number. If d < epsdouble()

and (double) x = 1, then x+ d = (double) 1. This function takes no
arguments, but the parentheses must be included.

functions — Functions 271

epsfloat()
Range: a floating-point number close to 0
Description: returns the machine precision of a floating-point number. If d < epsfloat()

and (float) x = 1, then x+ d = (float) 1. This function takes no
arguments, but the parentheses must be included.

fileexists(f)
Domain: filenames
Range: 0 and 1
Description: returns 1 if the file specified by f exists; returns 0 otherwise.

If the file exists but is not readable, fileexists() will still return 1,
because it does exist. If the “file” is a directory, fileexists() will return 0.

fileread(f)
Domain: filenames
Range: strings
Description: returns the contents of the file specified by f .

If the file does not exist or an I/O error occurs while reading the file, then
“fileread() error #” is returned, where # is a standard Stata error return code.

filereaderror(f)
Domain: strings
Range: integers
Description: returns 0 or positive integer, said value having the interpretation of a return code.

It is used like this

. generate strL s = fileread(filename) if fileexists(filename)

. assert filereaderror(s)==0

or this

. generate strL s = fileread(filename) if fileexists(filename)

. generate rc = filereaderror(s)

That is, filereaderror(s) is used on the result returned by fileread(filename)
to determine whether an I/O error occurred.

In the example, we only fileread() files that fileexist(). That is not required.
If the file does not exist, that will be detected by filereaderror() as an error.
The way we showed the example, we did not want to read missing files as errors.
If we wanted to treat missing files as errors, we would have coded

. generate strL s = fileread(filename)

. assert filereaderror(s)==0

or

. generate strL s = fileread(filename)

. generate rc = filereaderror(s)

272 functions — Functions

filewrite(f,s
[
,r
]
)

Domain f : filenames
Domain s: strings
Domain r: integers 1 or 2
Range: integers
Description: writes the string specified by s to the file specified by f and returns the

number of bytes in the resulting file.

If the optional argument r is specified as 1, the file specified by f will be replaced
if it exists. If r is specified as 2, the file specified by f will be appended to if it
exists. Any other values of r are treated as if r were not specified; that is, f
will only be written to if it does not already exist.

When the file f is freshly created or is replaced, the value returned by filewrite()
is the number of bytes written to the file, strlen(s). If r is specified as 2, and
thus filewrite() is appending to an existing file, the value returned is the
total number of bytes in the resulting file; that is, the value is the sum of the
number of the bytes in the file as it existed before filewrite() was called
and the number of bytes newly written to it, strlen(s).

If the file exists and r is not specified as 1 or 2, or an error occurs while writing
to the file, then a negative number (#) is returned, where abs(#) is a standard
Stata error return code.

float(x)
Domain: −1e+38 to 1e+38
Range: −1e+38 to 1e+38
Description: returns the value of x rounded to float precision.

Although you may store your numeric variables as byte, int, long, float, or
double, Stata converts all numbers to double before performing any calculations.
Consequently, difficulties can arise in comparing numbers that have no finite binary
representation.

For example, if the variable x is stored as a float and contains the value 1.1
(a repeating “decimal” in binary), the expression x==1.1 will evaluate to false
because the literal 1.1 is the double representation of 1.1, which is different from
the float representation stored in x. (They differ by 2.384× 10−8.) The
expression x==float(1.1) will evaluate to true because the float() function
converts the literal 1.1 to its float representation before it is compared with x.
(See [U] 13.11 Precision and problems therein for more information.)

fmtwidth(fmtstr)
Range: strings
Description: returns the output length of the %fmt contained in fmtstr.

returns missing if fmtstr does not contain a valid %fmt. For example,
fmtwidth("%9.2f") returns 9 and fmtwidth("%tc") returns 18.

has eprop(name)
Domain: names
Range: 0 or 1
Description: returns 1 if name appears as a word in e(properties); otherwise, returns 0.

functions — Functions 273

inlist(z,a,b,. . .)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if z is a member of the remaining arguments; otherwise, returns 0.

All arguments must be reals or all must be strings. The number of
arguments is between 2 and 255 for reals and between 2 and 10 for strings.

inrange(z,a,b)
Domain: all reals or all strings
Range: 0 or 1
Description: returns 1 if it is known that a ≤ z ≤ b; otherwise, returns 0.

The following ordered rules apply:
z ≥ . returns 0.
a ≥ . and b = . returns 1.
a ≥ . returns 1 if z ≤ b; otherwise, it returns 0.
b ≥ . returns 1 if a ≤ z; otherwise, it returns 0.
Otherwise, 1 is returned if a ≤ z ≤ b.
If the arguments are strings, “.” is interpreted as "".

irecode(x,x1,x2,x3,. . .,xn)
Domain x: −8e+307 to 8e+307
Domain xi: −8e+307 to 8e+307
Range: nonnegative integers
Description: returns missing if x is missing or x1, . . . , xn is not weakly increasing.

returns 0 if x ≤ x1.
returns 1 if x1 < x ≤ x2.
returns 2 if x2 < x ≤ x3.
. . .
returns n if x > xn.

Also see autocode() and recode() for other styles of recode functions.

irecode(3, -10, -5, -3, -3, 0, 15, .) = 5

matrix(exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices; see scalar() function below.

maxbyte()
Range: one integer number
Description: returns the largest value that can be stored in storage type byte. This function

takes no arguments, but the parentheses must be included.

maxdouble()
Range: one double-precision number
Description: returns the largest value that can be stored in storage type double. This function

takes no arguments, but the parentheses must be included.

maxfloat()
Range: one floating-point number
Description: returns the largest value that can be stored in storage type float. This function

takes no arguments, but the parentheses must be included.

274 functions — Functions

maxint()
Range: one integer number
Description: returns the largest value that can be stored in storage type int. This function

takes no arguments, but the parentheses must be included.

maxlong()
Range: one integer number
Description: returns the largest value that can be stored in storage type long. This function

takes no arguments, but the parentheses must be included.

mi(x1,x2,. . .,xn) is a synonym for missing(x1,x2,. . .,xn).

minbyte()
Range: one integer number
Description: returns the smallest value that can be stored in storage type byte. This function

takes no arguments, but the parentheses must be included.

mindouble()
Range: one double-precision number
Description: returns the smallest value that can be stored in storage type double. This function

takes no arguments, but the parentheses must be included.

minfloat()
Range: one floating-point number
Description: returns the smallest value that can be stored in storage type float. This function

takes no arguments, but the parentheses must be included.

minint()
Range: one integer number
Description: returns the smallest value that can be stored in storage type int. This function

takes no arguments, but the parentheses must be included.

minlong()
Range: one integer number
Description: returns the smallest value that can be stored in storage type long. This function

takes no arguments, but the parentheses must be included.

missing(x1,x2,. . .,xn)
Domain xi: any string or numeric expression
Range: 0 and 1
Description: returns 1 if any xi evaluates to missing; otherwise, returns 0.

Stata has two concepts of missing values: a numeric missing value (., .a, .b,
. . . , .z) and a string missing value (""). missing() returns 1 (meaning true) if
any expression xi evaluates to missing. If x is numeric, missing(x) is equivalent
to x ≥ .. If x is string, missing(x) is equivalent to x=="".

functions — Functions 275

r(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the stored result r(name);

see [U] 18.8 Accessing results calculated by other programs
r(name) = scalar missing if the stored result does not exist
r(name) = specified matrix if the stored result is a matrix
r(name) = scalar numeric value if the stored result is a scalar

that can be interpreted as a number
r(name) = a string containing the first 2,045 characters

if the stored result is a string

recode(x,x1,x2,. . .,xn)
Domain x: −8e+307 to 8e+307 and missing
Domain x1: −8e+307 to 8e+307
Domain x2: x1 to 8e+307
. . .
Domain xn: xn−1 to 8e+307
Range: x1, x2, . . ., xn and missing
Description: returns missing if x1, . . . , xn is not weakly increasing.

returns x if x is missing.
returns x1 if x ≤ x1; x2 if x ≤ x2, . . .; otherwise,

xn if x > x1, x2, . . . , xn−1.
xi ≥ . is interpreted as xi = +∞.

Also see autocode() and irecode() for other styles of recode functions.

replay()
Range: integers 0 and 1, meaning false and true, respectively
Description: returns 1 if the first nonblank character of local macro ‘0’ is a comma,

or if ‘0’ is empty. This is a function for use by programmers writing
estimation commands; see [P] ereturn.

return(name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the to-be-stored result r(name);

see [P] return.
return(name) = scalar missing if the stored result does not exist
return(name) = specified matrix if the stored result is a matrix
return(name) = scalar numeric value if the stored result is a scalar
return(name) = a string containing the first 2,045 characters

if the stored result is a string

s(name)
Domain: names
Range: strings and missing
Description: returns the value of stored result s(name);

see [U] 18.8 Accessing results calculated by other programs
s(name) = . if the stored result does not exist
s(name) = a string containing the first 2,045 characters

if the stored result is a string

276 functions — Functions

scalar(exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices.

Names in expressions can refer to names of variables in the dataset, names of
matrices, or names of scalars. Matrices and scalars can have the same names as
variables in the dataset. If names conflict, Stata assumes that you are referring to the
name of the variable in the dataset.

matrix() and scalar() explicitly state that you are referring to matrices and
scalars. matrix() and scalar() are the same function; scalars and matrices may
not have the same names and so cannot be confused. Typing scalar(x) makes it
clear that you are referring to the scalar or matrix named x and not the variable
named x, should there happen to be a variable of that name.

smallestdouble()
Range: a double-precision number close to 0
Description: returns the smallest double-precision number greater than zero. If

0 < d < smallestdouble(), then d does not have full double
precision; these are called the denormalized numbers. This function
takes no arguments, but the parentheses must be included.

Date and time functions

Stata’s date and time functions are described with examples in [U] 24 Working with dates and
times and [D] datetime. What follows is a technical description. We use the following notation:

eb %tb business calendar date (days)
etc %tc encoded datetime (ms. since 01jan1960 00:00:00.000)
etC %tC encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
ed %td encoded date (days since 01jan1960)
ew %tw encoded weekly date (weeks since 1960w1)
em %tm encoded monthly date (months since 1960m1)
eq %tq encoded quarterly date (quarters since 1960q1)
eh %th encoded half-yearly date (half-years since 1960h1)
ey %ty encoded yearly date (years)
M month, 1–12
D day of month, 1–31
Y year, 0100–9999
h hour, 0–23
m minute, 0–59
s second, 0–59 or 60 if leap seconds
W week number, 1–52
Q quarter number, 1–4
H half-year number, 1 or 2

The date and time functions, where integer arguments are required, allow noninteger values and use
the floor() of the value.

functions — Functions 277

A Stata date-and-time (%t) variable is recorded as the milliseconds, days, weeks, etc., depending
upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable
dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based
on the Gregorian calendar, and values do not correspond to historical dates before Friday, 15oct1582.

bofd("cal",ed)
Domain cal: business calendar names and formats
Domain ed: %td as defined by business calendar named cal
Range: as defined by business calendar named cal
Description: returns the eb business date corresponding to ed.

Cdhms(ed,h,m,s)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to ed, h, m, s.

Chms(h,m,s)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to h, m, s on 01jan1960.

Clock(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to s1 based on s2 and Y .

Function Clock() works the same as function clock() except that Clock() returns
a leap second–adjusted %tC value rather than an unadjusted %tc value. Use
Clock() only if original time values have been adjusted for leap seconds.

278 functions — Functions

clock(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

s1 based on s2 and Y .

s1 contains the date, time, or both, recorded as a string, in virtually any
format. Months can be spelled out, abbreviated (to three characters), or indicated as
numbers; years can include or exclude the century; blanks and punctuation are allowed.

s2 is any permutation of M, D, [##]Y, h, m, and s, with their order defining the
order that month, day, year, hour, minute, and second occur (and whether they
occur) in s1. ##, if specified, indicates the default century for two-digit years in s1.
For instance, s2 = "MD19Y hm" would translate s1 = "11/15/91 21:14" as
15nov1991 21:14. The space in "MD19Y hm" was not significant and the string would
have translated just as well with "MD19Yhm".

Y provides an alternate way of handling two-digit years. Y specifies the largest
year that is to be returned when a two-digit year is encountered; see function date()
below. If neither ## nor Y is specified, clock() returns missing when it
encounters a two-digit year.

Cmdyhms(M,D,Y ,h,m,s)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

corresponding to M , D, Y , h, m, s.

Cofc(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

of etc (ms. without leap seconds since 01jan1960 00:00:00.000).

cofC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: returns the etc datetime (ms. without leap seconds since 01jan1960 00:00:00.000)

of etC (ms. with leap seconds since 01jan1960 00:00:00.000).

functions — Functions 279

Cofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: returns the etC datetime (ms. with leap seconds since 01jan1960 00:00:00.000)

of date ed at time 00:00:00.000.

cofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) of date ed at time

00:00:00.000.

daily(s1,s2

[
,Y
]
) is a synonym for date(s1,s2

[
,Y
]
).

date(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) and missing
Description: returns the ed date (days since 01jan1960) corresponding to s1 based on s2 and Y .

s1 contains the date, recorded as a string, in virtually any format. Months can
be spelled out, abbreviated (to three characters), or indicated as numbers; years can
include or exclude the century; blanks and punctuation are allowed.

s2 is any permutation of M, D, and [##]Y, with their order defining the order
that month, day, and year occur in s1. ##, if specified, indicates the default century
for two-digit years in s1. For instance, s2 = "MD19Y" would translate
s1 = "11/15/91" as 15nov1991.

Y provides an alternate way of handling two-digit years. When a two-digit year
is encountered, the largest year, topyear, that does not exceed Y is returned.

date("1/15/08","MDY",1999) = 15jan1908
date("1/15/08","MDY",2019) = 15jan2008

date("1/15/51","MDY",2000) = 15jan1951
date("1/15/50","MDY",2000) = 15jan1950
date("1/15/49","MDY",2000) = 15jan1949

date("1/15/01","MDY",2050) = 15jan2001
date("1/15/00","MDY",2050) = 15jan2000

If neither ## nor Y is specified, date() returns missing when it encounters
a two-digit year. See Working with two-digit years in [D] datetime translation
for more information.

day(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 31 and missing
Description: returns the numeric day of the month corresponding to ed.

280 functions — Functions

dhms(ed,h,m,s)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

ed, h, m, and s.

dofb(eb,"cal")
Domain eb: %tb as defined by business calendar named cal
Domain cal: business calendar names and formats
Range: as defined by business calendar named cal
Description: returns the ed datetime corresponding to eb.

dofC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: returns the ed date (days since 01jan1960) of datetime etC (ms. with leap

seconds since 01jan1960 00:00:00.000).

dofc(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: returns the ed date (days since 01jan1960) of datetime etc (ms. since 01jan1960

00:00:00.000).

dofh(eh)
Domain eh: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Range: %td dates 01jan0100 to 01jul9999 (integers −679,350 to 2,936,366)
Description: returns the ed date (days since 01jan1960) of the start of half-year eh.

dofm(em)
Domain em: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Range: %td dates 01jan0100 to 01dec9999 (integers −679,350 to 2,936,519)
Description: returns the ed date (days since 01jan1960) of the start of month em.

dofq(eq)
Domain eq: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Range: %td dates 01jan0100 to 01oct9999 (integers −679,350 to 2,936,458)
Description: returns the ed date (days since 01jan1960) of the start of quarter eq .

dofw(ew)
Domain ew: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Range: %td dates 01jan0100 to 24dec9999 (integers −679,350 to 2,936,542)
Description: returns the ed date (days since 01jan1960) of the start of week ew.

dofy(ey)
Domain ey: %ty dates 0100 to 9999 (integers 0100 to 9999)
Range: %td dates 01jan0100 to 01jan9999 (integers −679,350 to 2,936,185)
Description: returns the ed date (days since 01jan1960) of 01jan in year ey .

functions — Functions 281

dow(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 0 to 6 and missing
Description: returns the numeric day of the week corresponding to date ed;

0 = Sunday, 1 = Monday, . . . , 6 = Saturday.

doy(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 366 and missing
Description: returns the numeric day of the year corresponding to date ed.

halfyear(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1, 2, and missing
Description: returns the numeric half of the year corresponding to date ed.

halfyearly(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings "HY" and "YH"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079) and missing
Description: returns the eh half-yearly date (half-years since 1960h1) corresponding to s1 based

on s2 and Y ; Y specifies topyear; see date().

hh(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: integers 0 through 23, missing
Description: returns the hour corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

hhC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: integers 0 through 23, missing
Description: returns the hour corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

hms(h,m,s)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999

(integers 0 to 86,399,999 and missing)
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

h, m, s on 01jan1960.

hofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Description: returns the eh half-yearly date (half years since 1960h1) containing date ed.

hours(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/3,600,000.

282 functions — Functions

mdy(M,D,Y)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549) and missing
Description: returns the ed date (days since 01jan1960) corresponding to M , D, Y .

mdyhms(M,D,Y ,h,m,s)
Domain M : integers 1 to 12
Domain D: integers 1 to 31
Domain Y : integers 0100 to 9999 (but probably 1800 to 2100)
Domain h: integers 0 to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the etc datetime (ms. since 01jan1960 00:00:00.000) corresponding to

M , D, Y , h, m, s.

minutes(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/60,000.

mm(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

mmC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: integers 0 through 59, missing
Description: returns the minute corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

mofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Description: returns the em monthly date (months since 1960m1) containing date ed.

month(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 12 and missing
Description: returns the numeric month corresponding to date ed.

monthly(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings "MY" and "YM"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479) and missing
Description: returns the em monthly date (months since 1960m1) corresponding to s1 based on

s2 and Y ; Y specifies topyear; see date().

functions — Functions 283

msofhours(h)
Domain h: real; hours
Range: real and missing; milliseconds
Description: returns h× 3,600,000.

msofminutes(m)
Domain m: real; minutes
Range: real and missing; milliseconds
Description: returns m× 60,000.

msofseconds(s)
Domain s: real; seconds
Range: real and missing; milliseconds
Description: returns s× 1,000.

qofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Description: returns the eq quarterly date (quarters since 1960q1) containing date ed.

quarter(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 4 and missing
Description: returns the numeric quarter of the year corresponding to date ed.

quarterly(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings "QY" and "YQ"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159) and missing
Description: returns the eq quarterly date (quarters since 1960q1) corresponding to s1 based on

s2 and Y ; Y specifies topyear; see date().

seconds(ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms/1,000.

ss(etc)
Domain etc: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Range: real 0.000 through 59.999, missing
Description: returns the second corresponding to datetime etc (ms. since 01jan1960 00:00:00.000).

ssC(etC)
Domain etC : datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Range: real 0.000 through 60.999, missing
Description: returns the second corresponding to datetime etC (ms. with leap seconds since

01jan1960 00:00:00.000).

284 functions — Functions

tC(l)
Domain l: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to >253,717,919,999,999)
Description: convenience function to make typing dates and times in expressions easier;

same as tc(), except returns leap second–adjusted values; for example, typing
tc(29nov2007 9:15) is equivalent to typing 1511946900000, whereas
tC(29nov2007 9:15) is 1511946923000.

tc(l)
Domain l: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers −58,695,840,000,000 to 253,717,919,999,999)
Description: convenience function to make typing dates and times in expressions easier;

for example, typing tc(2jan1960 13:42) is equivalent to typing 135720000;
the date but not the time may be omitted, and then 01jan1960 is
assumed; the seconds portion of the time may be omitted and
is assumed to be 0.000; tc(11:02) is equivalent to typing 39720000.

td(l)
Domain l: date literal strings 01jan0100 to 31dec9999
Range: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Description: convenience function to make typing dates in expressions easier;

for example, typing td(2jan1960) is equivalent to typing 1.

th(l)
Domain l: half-year literal strings 0100h1 to 9999h2
Range: %th dates 0100h1 to 9999h2 (integers −3,720 to 16,079)
Description: convenience function to make typing half-yearly dates in expressions easier;

for example, typing th(1960h2) is equivalent to typing 1.

tm(l)
Domain l: month literal strings 0100m1 to 9999m12
Range: %tm dates 0100m1 to 9999m12 (integers −22,320 to 96,479)
Description: convenience function to make typing monthly dates in expressions easier;

for example, typing tm(1960m2) is equivalent to typing 1.

tq(l)
Domain l: quarter literal strings 0100q1 to 9999q4
Range: %tq dates 0100q1 to 9999q4 (integers −7,440 to 32,159)
Description: convenience function to make typing quarterly dates in expressions easier;

for example, typing tq(1960q2) is equivalent to typing 1.

tw(l)
Domain l: week literal strings 0100w1 to 9999w52
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Description: convenience function to make typing weekly dates in expressions easier;

for example, typing tw(1960w2) is equivalent to typing 1.

week(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 1 to 52 and missing
Description: returns the numeric week of the year corresponding to date ed, the

%td encoded date (days since 01jan1960). Note: The first week
of a year is the first 7-day period of the year.

functions — Functions 285

weekly(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: strings "WY" and "YW"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079) and missing
Description: returns the ew weekly date (weeks since 1960w1) corresponding to s1 based on s2

and Y ; Y specifies topyear; see date().

wofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %tw dates 0100w1 to 9999w52 (integers −96,720 to 418,079)
Description: returns the ew weekly date (weeks since 1960w1) containing date ed.

year(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: integers 0100 to 9999 (but probably 1800 to 2100)
Description: returns the numeric year corresponding to date ed.

yearly(s1,s2

[
,Y
]
)

Domain s1: strings
Domain s2: string "Y"; Y may be prefixed with ##
Domain Y : integers 1000 to 9998 (but probably 2001 to 2099)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999) and missing
Description: returns the ey yearly date (year) corresponding to s1 based on s2 and Y ;

Y specifies topyear; see date().

yh(Y ,H)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain H : integers 1, 2
Range: %th dates 1000h1 to 9999h2 (integers −1,920 to 16,079)
Description: returns the eh half-yearly date (half-years since 1960h1) corresponding to year Y ,

half-year H .

ym(Y ,M)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain M : integers 1 to 12
Range: %tm dates 1000m1 to 9999m12 (integers −11,520 to 96,479)
Description: returns the em monthly date (months since 1960m1) corresponding to year Y ,

month M .

yofd(ed)
Domain ed: %td dates 01jan0100 to 31dec9999 (integers −679,350 to 2,936,549)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999)
Description: returns the ey yearly date (year) containing date ed.

yq(Y ,Q)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain Q: integers 1 to 4
Range: %tq dates 1000q1 to 9999q4 (integers −3,840 to 32,159)
Description: returns the eq quarterly date (quarters since 1960q1) corresponding to year Y ,

quarter Q.

286 functions — Functions

yw(Y ,W)
Domain Y : integers 1000 to 9999 (but probably 1800 to 2100)
Domain W : integers 1 to 52
Range: %tw dates 1000w1 to 9999w52 (integers −49,920 to 418,079)
Description: returns the ew weekly date (weeks since 1960w1) corresponding to year Y ,

week W .

Selecting time spans

tin(d1,d2)
Domain d1: date or time literals recorded in units of t previously tsset
Domain d2: date or time literals recorded in units of t previously tsset
Range: 0 and 1, 1⇒ true
Description: true if d1 ≤ t ≤ d2, where t is the time variable previously tsset.

You must have previously tsset the data to use tin(); see [TS] tsset. When
you tsset the data, you specify a time variable, t, and the format on t states how
it is recorded. You type d1 and d2 according to that format.

If t has a %tc format, you could type tin(5jan1992 11:15, 14apr2002 12:25).

If t has a %td format, you could type tin(5jan1992, 14apr2002).

If t has a %tw format, you could type tin(1985w1, 2002w15).

If t has a %tm format, you could type tin(1985m1, 2002m4).

If t has a %tq format, you could type tin(1985q1, 2002q2).

If t has a %th format, you could type tin(1985h1, 2002h1).

If t has a %ty format, you could type tin(1985, 2002).

Otherwise, t is just a set of integers, and you could type tin(12, 38).

The details of the %t format do not matter. If your t is formatted %tdnn/dd/yy
so that 5jan1992 displays as 1/5/92, you would still type the date in day–month–year
order: tin(5jan1992, 14apr2002).

twithin(d1,d2)
Domain d1: date or time literals recorded in units of t previously tsset
Domain d2: date or time literals recorded in units of t previously tsset
Range: 0 and 1, 1⇒ true
Description: true if d1 < t < d2, where t is the time variable previously tsset;

see the tin() function above; twithin() is similar, except the range is
exclusive.

functions — Functions 287

Matrix functions returning a matrix

In addition to the functions listed below, see [P] matrix svd for singular value decomposi-
tion, [P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and [P] matrix
eigenvalues for eigenvalues of nonsymmetric matrices.

cholesky(M)
Domain: n× n, positive-definite, symmetric matrices
Range: n× n lower-triangular matrices
Description: returns the Cholesky decomposition of the matrix:

if R = cholesky(S), then RRT = S.
RT indicates the transpose of R.
Row and column names are obtained from M .

corr(M)
Domain: n× n symmetric variance matrices
Range: n× n symmetric correlation matrices
Description: returns the correlation matrix of the variance matrix.

Row and column names are obtained from M .

diag(v)
Domain: 1× n and n× 1 vectors
Range: n× n diagonal matrices
Description: returns the square, diagonal matrix created from the row or column vector.

Row and column names are obtained from the column names of M if M is
a row vector or from the row names of M if M is a column vector.

get(systemname)
Domain: existing names of system matrices
Range: matrices
Description: returns a copy of Stata internal system matrix systemname.

This function is included for backward compatibility with previous versions
of Stata.

hadamard(M,N)
Domain M : m× n matrices
Domain N : m× n matrices
Range: m× n matrices
Description: returns a matrix whose i, j element is M [i, j] ·N [i, j] (if M and N

are not the same size, this function reports a conformability error).

I(n)
Domain: real scalars 1 to matsize
Range: identity matrices
Description: returns an n× n identity matrix if n is an integer; otherwise, this function returns

the round(n)×round(n) identity matrix.

288 functions — Functions

inv(M)
Domain: n× n nonsingular matrices
Range: n× n matrices
Description: returns the inverse of the matrix M . If M is singular, this will result in an error.

The function invsym() should be used in preference to inv() because invsym()
is more accurate. The row names of the result are obtained from the column
names of M , and the column names of the result are obtained from the row names
of M .

invsym(M)
Domain: n× n symmetric matrices
Range: n× n symmetric matrices
Description: returns the inverse of M if M is positive definite. If M is not positive definite,

rows will be inverted until the diagonal terms are zero or negative; the rows and
columns corresponding to these terms will be set to 0, producing a g2 inverse.
The row names of the result are obtained from the column names of M ,
and the column names of the result are obtained from the row names of M .

J(r,c,z)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Domain z: scalars −8e+307 to 8e+307
Range: r × c matrices
Description: returns the r × c matrix containing elements z.

matuniform(r,c)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Range: r × c matrices
Description: returns the r × c matrices containing uniformly distributed pseudorandom numbers

on the interval [0, 1).

functions — Functions 289

nullmat(matname)
Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist
Description: nullmat() is for use with the row-join (,) and column-join (\) operators in

programming situations. Consider the following code fragment, which is an attempt
to create the vector (1, 2, 3, 4):

forvalues i = 1/4 {
mat v = (v, ‘i’)

}

The above program will not work because, the first time through the loop, v will not
yet exist, and thus forming (v, ‘i’) makes no sense. nullmat() relaxes that
restriction:

forvalues i = 1/4 {
mat v = (nullmat(v), ‘i’)

}

The nullmat() function informs Stata that if v does not exist, the function row-join
is to be generalized. Joining nothing with ‘i’ results in (‘i’). Thus the first time
through the loop, v = (1) is formed. The second time through, v does exist, so
v = (1, 2) is formed, and so on.

nullmat() can be used only with the , and \ operators.

sweep(M,i)
Domain M : n× n matrices
Domain i: integer scalars 1 to n
Range: n× n matrices
Description: returns matrix M with ith row/column swept. The row and column names of the

resultant matrix are obtained from M , except that the nth row and column
names are interchanged. If B = sweep(A,k), then

Bkk =
1

Akk

Bik = −Aik
Akk

, i 6= k

Bkj =
Akj
Akk

, j 6= k

Bij = Aij −
AikAkj
Akk

, i 6= k, j 6= k

vec(M)
Domain: matrices
Range: column vectors (n× 1 matrices)
Description: returns a column vector formed by listing the elements of M , starting

with the first column and proceeding column by column.

290 functions — Functions

vecdiag(M)
Domain: n× n matrices
Range: 1× n vectors
Description: returns the row vector containing the diagonal of matrix M .

vecdiag() is the opposite of diag(). The row name is
set to r1; the column names are obtained from the column names of M .

Matrix functions returning a scalar

colnumb(M,s)
Domain M : matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the column number of M associated with column name s.

returns missing if the column cannot be found.

colsof(M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of columns of M .

det(M)
Domain: n× n (square) matrices
Range: scalars −8e+307 to 8e+307
Description: returns the determinant of matrix M .

diag0cnt(M)
Domain: n× n (square) matrices
Range: integer scalars 0 to n
Description: returns the number of zeros on the diagonal of M .

el(s,i,j)
Domain s: strings containing matrix name
Domain i: scalars 1 to matsize
Domain j: scalars 1 to matsize
Range: scalars −8e+307 to 8e+307 and missing
Description: returns s[floor(i),floor(j)], the i, j element of the matrix named s.

returns missing if i or j are out of range or if matrix s does not exist.

issymmetric(M)
Domain M : matrices
Range: integers 0 and 1
Description: returns 1 if the matrix is symmetric; otherwise, returns 0.

matmissing(M)
Domain M : matrices
Range: integers 0 and 1
Description: returns 1 if any elements of the matrix are missing; otherwise, returns 0.

mreldif(X,Y)
Domain X: matrices
Domain Y : matrices with same number of rows and columns as X
Range: scalars −8e+307 to 8e+307
Description: returns the relative difference of X and Y , where the relative difference is

defined as maxi,j
(
|xij − yij |/(|yij |+ 1)

)
.

functions — Functions 291

rownumb(M,s)
Domain M : matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the row number of M associated with row name s.

returns missing if the row cannot be found.

rowsof(M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of rows of M .

trace(M)
Domain: n× n (square) matrices
Range: scalars −8e+307 to 8e+307
Description: returns the trace of matrix M .

Acknowledgments
We thank George Marsaglia of Florida State University for providing his KISS (keep it simple

stupid) random-number generator.

We thank John R. Gleason of Syracuse University (retired) for directing our attention to
Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experi-
ences about techniques with us, and for providing C code to make the calculations.� �

Jacques Salomon Hadamard (1865–1963) was born in Versailles, France. He studied at the Ecole
Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by
Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an
outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin,
and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he
held a series of prominent posts. In his later career, his interests extended from pure mathematics
toward mathematical physics. Hadamard produced papers and books in many different areas. He
campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of
France in 1940, he spent some time in the United States and then Great Britain.� �

References
Abramowitz, M., and I. A. Stegun, ed. 1968. Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables. 7th ed. Washington, DC: National Bureau of Standards.

Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson, and binomial
distributions. Computing 12: 223–246.

Atkinson, A. C., and J. C. Whittaker. 1970. Algorithm AS 134: The generation of beta random variables with one
parameter greater than and one parameter less than 1. Applied Statistics 28: 90–93.

. 1976. A switching algorithm for the generation of beta random variables with at least one parameter less than
1. Journal of the Royal Statistical Society, Series A 139: 462–467.

Best, D. J. 1983. A note on gamma variate generators with shape parameters less than unity. Computing 30: 185–188.

Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434–435.

Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446–447.

. 2004. Stata tip 6: Inserting awkward characters in the plot. Stata Journal 4: 95–96.

http://www.stata-journal.com/sjpdf.html?articlenum=pr0032
http://www.stata-journal.com/sjpdf.html?articlenum=dm0002
http://www.stata-journal.com/sjpdf.html?articlenum=dm0006

292 functions — Functions

. 2006. Stata tip 39: In a list or out? In a range or out? Stata Journal 6: 593–595.

. 2007. Stata tip 43: Remainders, selections, sequences, extractions: Uses of the modulus. Stata Journal 7:
143–145.

. 2011a. Stata tip 98: Counting substrings within strings. Stata Journal 11: 318–320.

. 2011b. Speaking Stata: Fun and fluency with functions. Stata Journal 11: 460–471.

Devroye, L. 1986. Non-uniform Random Variate Generation. New York: Springer.

Dunnett, C. W. 1955. A multiple comparison for comparing several treatments with a control. Journal of the American
Statistical Association 50: 1096–1121.

Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods. 2nd ed. New York: Springer.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 1. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/.

. 2012b. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog: Not
Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

. 2012c. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

. 2012d. Using Stata’s random-number generators, part 4: Details. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104–124.

Hilbe, J. M., and W. Linde-Zwirble. 1995. sg44: Random number generators. Stata Technical Bulletin 28: 20–21.
Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 118–121. College Station, TX: Stata Press.

. 1998. sg44.1: Correction to random number generators. Stata Technical Bulletin 41: 23. Reprinted in Stata
Technical Bulletin Reprints, vol. 7, p. 166. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, Vol. 2. 2nd ed. New York:
Wiley.

Kachitvichyanukul, V. 1982. Computer Generation of Poisson, Binomial, and Hypergeometric Random Variables. PhD
thesis, Purdue University.

Kachitvichyanukul, V., and B. W. Schmeiser. 1985. Computer generation of hypergeometric random variates. Journal
of Statistical Computation and Simulation 22: 127–145.

. 1988. Binomial random variate generation. Communications of the Association for Computing Machinery 31:
216–222.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond() function. Stata Journal 5:
413–420.

Kemp, A. W., and C. D. Kemp. 1990. A composition-search algorithm for low-parameter Poisson generation. Journal
of Statistical Computation and Simulation 35: 239–244.

Kemp, C. D. 1986. A modal method for generating binomial variates. Communications in Statistics—Theory and
Methods 15: 805–813.

Kemp, C. D., and A. W. Kemp. 1991. Poisson random variate generation. Applied Statistics 40: 143–158.

Kinderman, A. J., and J. F. Monahan. 1977. Computer generation of random variables using the ratio of uniform
deviates. ACM Transactions on Mathematical Software 3: 257–260.

. 1980. New methods for generating Student’s t and gamma variables. Computing 25: 369–377.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd ed. Reading, MA:
Addison–Wesley.

Lukácsy, K. 2011. Generating random samples from user-defined distributions. Stata Journal 11: 299–304.

Marsaglia, G., M. D. MacLaren, and T. A. Bray. 1964. A fast procedure for generating normal random variables.
Communications of the Association for Computing Machinery 7: 4–10.

http://www.stata-journal.com/sjpdf.html?articlenum=dm0026
http://www.stata-journal.com/sjpdf.html?articlenum=pr0031
http://www.stata-journal.com/article.html?article=dm0056
http://www.stata-journal.com/article.html?article=dm0058
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/07/18/using-statas-random-number-generators-part-1/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://blog.stata.com/2012/10/24/using-statas-random-number-generators-part-4-details/
http://www.stata-journal.com/sjpdf.html?articlenum=st0186
http://www.stata.com/products/stb/journals/stb28.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata-journal.com/article.html?article=dm0071
http://www.stata-journal.com/sjpdf.html?articlenum=pr0016
http://www.stata-journal.com/article.html?article=st0229

functions — Functions 293

Mazýa, V. G., and T. O. Shaposhnikova. 1998. Jacques Hadamard, A Universal mathematician. Providence, RI:
American Mathematical Society.

Miller, R. G., Jr. 1981. Simultaneous Statistical Inference. 2nd ed. New York: Springer.

Moore, R. J. 1982. Algorithm AS 187: Derivatives of the incomplete gamma integral. Applied Statistics 31: 330–335.

Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Posten, H. O. 1993. An effective algorithm for the noncentral beta distribution function. American Statistician 47:
129–131.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes: The Art of Scientific
Computing. 3rd ed. New York: Cambridge University Press.

Rising, W. R. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303–304.

Schmeiser, B. W., and A. J. G. Babu. 1980. Beta variate generation via exponential majorizing functions. Operations
Research 28: 917–926.

Schmeiser, B. W., and R. Lal. 1980. Squeeze methods for generating gamma variates. Journal of the American
Statistical Association 75: 679–682.

Tamhane, A. C. 2008. Eulogy to Charles Dunnett. Biometrical Journal 50: 636–637.

Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM
Transactions on Mathematical Software 3: 253–256.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640–642.

Wichura, M. J. 1988. Algorithm AS241: The percentage points of the normal distribution. Applied Statistics 37:
477–484.

Also see
[D] egen — Extensions to generate

[M-5] intro — Mata functions

[U] 13.3 Functions
[U] 14.8 Matrix functions

http://www.stata-journal.com/sjpdf.html?articlenum=dm0049
http://www.stata-journal.com/sjpdf.html?articlenum=st0181

Title

generate — Create or change contents of variable

Syntax Menu Description Options
Remarks and examples Methods and formulas References Also see

Syntax
Create new variable

generate
[

type
]

newvar
[
:lblname

]
=exp

[
if
] [

in
]

Replace contents of existing variable

replace oldvar =exp
[

if
] [

in
] [

, nopromote
]

Specify default storage type assigned to new variables

set type
{
float | double

} [
, permanently

]
where type is one of byte | int | long | float | double | str | str1 | str2 | . . . |
str2045.

See Description below for an explanation of str. For the other types, see [U] 12 Data.

by is allowed with generate and replace; see [D] by.

Menu
generate

Data > Create or change data > Create new variable

replace

Data > Create or change data > Change contents of variable

Description
generate creates a new variable. The values of the variable are specified by =exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a
string variable is created if the result is a string. In the latter case, if the string variable contains values
greater than 2,045 characters or contains values with a binary 0 (\0), a strL variable is created.
Otherwise, a str# variable is created, where # is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a strL or a str# variable is created using the same
rules as above.

294

generate — Create or change contents of variable 295

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by
generate) when the storage type is not explicitly specified.

Options
nopromote prevents replace from promoting the variable type to accommodate the change. For

instance, consider a variable stored as an integer type (byte, int, or long), and assume that
you replace some values with nonintegers. By default, replace changes the variable type to a
floating point (float or double) and thus correctly stores the changed values. Similarly, replace
promotes byte and int variables to longer integers (int and long) if the replacement value is an
integer but is too large in absolute value for the current storage type. replace promotes strings
to longer strings. nopromote prevents replace from doing this; instead, the replacement values
are truncated to fit into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

generate and replace
set type

generate and replace

generate and replace are used to create new variables and to modify the contents of existing
variables, respectively. Although the commands do the same thing, they have different names so that
you do not accidentally replace values in your data. Detailed descriptions of expressions are given in
[U] 13 Functions and expressions.

Also see [D] edit.

Example 1

We have a dataset containing the variable age2, which we have previously defined as age^2 (that
is, age2). We have changed some of the age data and now want to correct age2 to reflect the new
values:

. use http://www.stata-press.com/data/r13/genxmpl1
(Wages of women)

. generate age2=age^2
age2 already defined
r(110);

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We
could drop age2 and then re-generate it, or we could use the replace command:

. replace age2=age^2
(204 real changes made)

296 generate — Create or change contents of variable

When we use replace, we are informed of the number of actual changes made to the dataset.

You can explicitly specify the storage type of the new variable being created by putting the type,
such as byte, int, long, float, double, or str8, in front of the variable name. For example,
you could type generate double revenue = qty * price. Not specifying a type is equivalent
to specifying float if the variable is numeric, or, more correctly, it is equivalent to specifying the
default type set by the set type command; see below. If the variable is alphanumeric, not specifying
a type is equivalent to specifying str#, where # is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including “:lblname”
after the variable name. This is seldom done because you can always associate the value label later
by using the label values command; see [U] 12.6.3 Value labels.

Example 2

Among the variables in our dataset is name, which contains the first and last name of each person.
We wish to create a new variable called lastname, which we will then use to sort the data. name is
a string variable.

. use http://www.stata-press.com/data/r13/genxmpl2, clear

. list name

name

1. Johanna Roman
2. Dawn Mikulin
3. Malinda Vela
4. Kevin Crow
5. Zachary Bimslager

. generate lastname=word(name,2)

. describe

Contains data from http://www.stata-press.com/data/r13/genxmpl2.dta
obs: 5
vars: 2 18 Jan 2013 12:24
size: 130

storage display value
variable name type format label variable label

name str17 %17s
lastname str9 %9s

Sorted by:
Note: dataset has changed since last saved

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata
knew to create a str9 lastname variable, because the longest last name is Bimslager, which has
nine characters.

generate — Create or change contents of variable 297

Example 3

We wish to create a new variable, age2, that represents the variable age squared. We realize that
because age is an integer, age2 will also be an integer and will certainly be less than 32,740. We
therefore decide to store age2 as an int to conserve memory:

. use http://www.stata-press.com/data/r13/genxmpl3, clear

. generate int age2=age^2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating
the new variable, Stata informed us that nine missing values were generated. generate informs us
whenever it produces missing values.

See [U] 13 Functions and expressions and [U] 25 Working with categorical data and factor
variables for more information and examples. Also see [D] recode for a convenient way to recode
categorical variables.

Technical note

If you specify the if modifier or in range, the =exp is evaluated only for those observations that
meet the specified condition or are in the specified range (or both, if both if and in are specified).
The other observations of the new variable are set to missing:

. use http://www.stata-press.com/data/r13/genxmpl3, clear

. generate int age2=age^2 if age>30
(290 missing values generated)

Example 4

replace can be used to change just one value, as well as to make sweeping changes to our data.
For instance, say that we enter data on the first five odd and even positive integers and then discover
that we made a mistake:

. use http://www.stata-press.com/data/r13/genxmpl4, clear

. list

odd even

1. 1 2
2. 3 4
3. -8 6
4. 7 8
5. 9 10

The third observation is wrong; the value of odd should be 5, not −8. We can use replace to
correct the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

298 generate — Create or change contents of variable

set type

When you create a new numeric variable and do not specify the storage type for it, say, by typing
generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would
be made a double.

Methods and formulas
You can do anything with replace that you can do with generate. The only difference between

the commands is that replace requires that the variable already exist, whereas generate requires
that the variable be new. In fact, inside Stata, generate and replace have the same code. Because
Stata is an interactive system, we force a distinction between replacing existing values and generating
new ones so that you do not accidentally replace valuable data while thinking that you are creating
a new piece of information.

References
Gleason, J. R. 1997a. dm50: Defining variables and recording their definitions. Stata Technical Bulletin 40: 9–10.

Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 48–49. College Station, TX: Stata Press.

. 1997b. dm50.1: Update to defv. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, pp. 14–15. College Station, TX: Stata Press.

Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484–485.

Royston, P. 2013. cmpute: A tool to generate or replace a variable. Stata Journal 13: 862–866.

Weesie, J. 1997. dm43: Automatic recording of definitions. Stata Technical Bulletin 35: 6–7. Reprinted in Stata
Technical Bulletin Reprints, vol. 6, pp. 18–20. College Station, TX: Stata Press.

Also see
[D] compress — Compress data in memory

[D] corr2data — Create dataset with specified correlation structure

[D] drawnorm — Draw sample from multivariate normal distribution

[D] edit — Browse or edit data with Data Editor

[D] egen — Extensions to generate

[D] encode — Encode string into numeric and vice versa

[D] label — Manipulate labels

[D] recode — Recode categorical variables

[D] rename — Rename variable

[U] 12 Data
[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb40.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0008
http://www.stata-journal.com/article.html?article=dm0072
http://www.stata.com/products/stb/journals/stb35.pdf

Title

gsort — Ascending and descending sort

Syntax Menu Description Options
Remarks and examples Also see

Syntax
gsort [+ | -] varname

[
[+ | -] varname . . .

] [
, generate(newvar) mfirst

]
Menu

Data > Sort

Description

gsort arranges observations to be in ascending or descending order of the specified variables and
so differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the
name and are placed in descending order if - is typed.

Options
generate(newvar) creates newvar containing 1, 2, 3, . . . for each group denoted by the ordered

data. This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist:
construct and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples
gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general

varlist with gsort. For instance, sort alpha-gamma means to sort the data in ascending order of
alpha, within equal values of alpha; sort on the next variable in the dataset (presumably beta),
within equal values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort
alpha -gamma, meaning to sort the data in ascending order of alpha and, within equal values of
alpha, in descending order of gamma.

Example 1

The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10
lowest-priced cars in the data, we might type

. use http://www.stata-press.com/data/r13/auto

. gsort price

. list make price in 1/10

299

300 gsort — Ascending and descending sort

or, if we prefer,

. gsort +price

. list make price in 1/10

To list the 10 highest-priced cars in the data, we could type

. gsort -price

. list make price in 1/10

gsort can also be used with string variables. To list all the makes in reverse alphabetical order,
we might type

. gsort -make

. list make

Example 2

gsort can be used with multiple variables. Given a dataset on hospital patients with multiple
observations per patient, typing

. use http://www.stata-press.com/data/r13/bp3

. gsort id time

. list id time bp

lists each patient’s blood pressures in the order the measurements were taken. If we typed

. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Technical note
Say that we wished to attach to each patient’s records the lowest and highest blood pressures

observed during the hospital stay. The easier way to achieve this result is with egen’s min() and
max() functions:

. egen lo_bp = min(bp), by(id)

. egen hi_bp = max(bp), by(id)

See [D] egen. Here is how we could do it with gsort:

. use http://www.stata-press.com/data/r13/bp3, clear

. gsort id bp

. by id: gen lo_bp = bp[1]

. gsort id -bp

. by id: gen hi_bp = bp[1]

. list, sepby(id)

This works, even in the presence of missing values of bp, because such missing values are placed
last within arrangements, regardless of the direction of the sort.

gsort — Ascending and descending sort 301

Technical note
Assume that we have a dataset containing x for which we wish to obtain the forward and reverse

cumulatives. The forward cumulative is defined as F (X) = the fraction of observations such that
x ≤ X . Again let’s ignore the easier way to obtain the forward cumulative, which would be to use
Stata’s cumul command,

. set obs 100

. generate x = rnormal()

. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x

. by x: gen cum = _N if _n==1

. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort.
Next, for each observed value of x, we generated cum containing the number of observations that
take on that value (you can think of this as the discrete density). We summed the density, obtaining
the distribution, and finally normalized it to sum to 1.

The reverse cumulative G(X) is defined as the fraction of data such that x ≥ X . To obtain this,
we could try simply reversing the sort:

. gsort -x

. by x: gen rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second
line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To
remedy this problem, gsort’s generate() option will create a new grouping variable that is in
ascending order (thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines,
identical to that of the true sort variables:

. gsort -x, gen(revx)

. by revx: gen rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Also see
[D] sort — Sort data

Title

hexdump — Display hexadecimal report on file

Syntax Description Options
Remarks and examples Stored results Also see

Syntax
hexdump filename

[
, options

]
options Description

analyze display a report on the dump rather than the dump itself
tabulate display a full tabulation of the ASCII characters in the analyze report
noextended do not display printable extended ASCII characters
results store results containing the frequency with which each character code was

observed; programmer’s option
from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file

Description

hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Options
analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of the ASCII characters also be
presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in
the range 161–254 or, equivalently, 0xa1–0xfe. (hexdump does not display characters 128–160
and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store
r(c0), r(c1), . . . , r(c255), containing the frequency with which each character code was
observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the
first byte of the file, from(0).

to(#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the
end of the file.

302

hexdump — Display hexadecimal report on file 303

Remarks and examples

hexdump is useful when you are having difficulty reading a file with infile, infix, or import
delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think
it contains, or that it does contain the format you have been told, and looking at the file in text mode
is either not possible or not revealing enough.

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 0
Buick Regal 5189 20 3 0
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . 0
Merc. Zephyr 3291 20 3 0
Olds Starfire 4195 24 1 0
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310a 5657 589 35 5 1.VW
20 2053 6369 726f 6363 6f20 2020 2036 3835 Scirocco 685
30 3020 2032 3520 2034 2020 310a 4d65 7263 0 25 4 1.Merc

40 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 5265 6761 6c20 2020 2035 3138 3920 2032 Regal 5189 2
70 3020 2033 2020 300a 5657 2044 6965 7365 0 3 0.VW Diese

80 6c20 2020 2020 2035 3339 3720 2034 3120 l 5397 41
90 2035 2020 310a 506f 6e74 2e20 5068 6f65 5 1.Pont. Phoe
a0 6e69 7820 2034 3432 3420 2031 3920 202e nix 4424 19 .
b0 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

c0 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 300a 4f6c 6473 2053 7461 7266 6972 6520 0.Olds Starfire
e0 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
f0 424d 5720 3332 3069 2020 2020 2020 2039 BMW 320i 9
100 3733 3520 2032 3520 2034 2020 310a 735 25 4 1.

304 hexdump — Display hexadecimal report on file

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary 0 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 77
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270

Observed were:
\n blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i k l
n o p r s t u x y

Of the two forms of output, the second is often the more useful because it summarizes the file, and
the length of the summary is not a function of the length of the file. Here is the summary for a file
that is just over 4 MB long:

. hexdump bigfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196

Observed were:
\n \r blank . 0 1 2 3 4 5 6 7 8 9 B D M O P R S V W Z a b c d e f g h i
k l n o p r s t u x y

hexdump — Display hexadecimal report on file 305

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196

Observed were:
\0 ^C ^D ^G \n \r ^U blank & . 0 1 2 3 4 5 6 7 8 9 B D E M O P R S U V W
Z a b c d e f g h i k l n o p r s t u v x y } ~ E^A E^C E^I E^M E^P
ë é ö 255

In the above, the line length varies between 30 and 90 (we were told that each line would be 30
characters long). Also the file contains what hexdump, analyze labeled control characters. Finally,
hexdump, analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and
substituting 60 characters of binary junk. We would defy you to find the problem without using
hexdump, analyze. You would succeed, but only after much work. Remember, this file has 147,456
lines, and only two of them are bad. If you print 1,000 lines at random from the file, your chances
of listing the bad part are only 0.013472. To have a 50% chance of finding the bad lines, you would
have to list 52,000 lines, which is to say, review about 945 pages of output. On those 945 pages,
each line would need to be drawn at random. More likely, you would list lines in groups, and that
would greatly reduce your chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw
by using infile, it would complain, and here it would tell you exactly where it was complaining.
Still, at that point you might wonder whether the problem was with how you were using infile or
with the data. Moreover, our 60 bytes of binary junk experiment corresponds to transmission error.
If the problem were instead that the person who constructed the file constructed two of the lines
differently, infile might not complain, but later you would notice some odd values in your data
(because obviously you would review the summary statistics, right?). Here hexdump, analyze might
be the only way you could prove to yourself and others that the raw data need to be reconstructed.

306 hexdump — Display hexadecimal report on file

Technical note

In the full hexadecimal dump,

. hexdump myfile.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 310d 0a56 589 35 5 1..V
20 5720 5363 6972 6f63 636f 2020 2020 3638 W Scirocco 68
30 3530 2020 3235 2020 3420 2031 0d0a 4d65 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means
decimal 32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw
character

hex representation representation
address 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0 4461 7473 756e 2032 3130 2020 2020 2034 Datsun 210 4
10 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*

160 2020 2020 2020 0a56 5720 5363 6972 6f63 .VW Sciroc
170 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25

(output omitted)

The * in the address field indicates that the previous line is repeated until we get to hexadecimal
address 160 (decimal 352).

hexdump — Display hexadecimal report on file 307

Stored results
hexdump, analyze and hexdump, results store the following in r():

Scalars
r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks
r(tab) number of tab characters
r(comma) number of comma (,) characters
r(ctl) number of binary 0s; A–Z, excluding \r, \n, \t; DELs; and 128–159, 255
r(uc) number of A–Z
r(lc) number of a–z
r(digit) number of 0–9
r(special) number of printable special characters (!@#, etc.)
r(extended) number of printable extended characters (160–254)
r(filesize) number of characters
r(lmin) minimum line length
r(lmax) maximum line length
r(lnum) number of lines
r(eoleof) 1 if EOL at EOF, 0 otherwise
r(l1) length of 1st line
r(l2) length of 2nd line
r(l3) length of 3rd line
r(l4) length of 4th line
r(l5) length of 5th line
r(c0) number of binary 0s (results only)
r(c1) number of binary 1s (^A) (results only)
r(c2) number of binary 2s (^B) (results only)
.
r(c255) number of binary 255s (results only)

Macros
r(format) ASCII, EXTENDED ASCII, or BINARY

Also see
[D] filefilter — Convert text or binary patterns in a file

[D] type — Display contents of a file

Title

icd9 — ICD-9-CM diagnostic and procedure codes

Syntax Menu Description Options
Remarks and examples Stored results Reference

Syntax
Verify that variable contains defined codes

{icd9 | icd9p} check varname
[
, any list generate(newvar)

]
Verify and clean variable

{icd9 | icd9p} clean varname
[
, dots pad

]
Generate new variable from existing variable

{icd9 | icd9p} generate newvar = varname , main

{icd9 | icd9p} generate newvar = varname , description
[
long end

]
{icd9 | icd9p} generate newvar = varname , range(icd9rangelist)

Display code descriptions

{icd9 | icd9p} lookup icd9rangelist

Search for codes from descriptions

{icd9 | icd9p} search
[
"
]
text
[
"
] [[

"
]
text
[
"
]
. . .
] [

, or
]

Display ICD-9 code source

{icd9 | icd9p} query

where icd9rangelist is

icd9code (the particular code)
icd9code* (all codes starting with)
icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 E* 018.02. icd9codes must be typed with
leading zeros: 1 is an error; type 001 (diagnostic code) or 01 (procedure code).

icd9 is for use with ICD-9 diagnostic codes, and icd9p is for use with procedure codes. The two commands’ syntaxes
parallel each other.

308

icd9 — ICD-9-CM diagnostic and procedure codes 309

Menu
{icd9 | icd9p} check

Data > Other utilities > ICD9 utilities > Verify variable is valid

{icd9 | icd9p} clean

Data > Other utilities > ICD9 utilities > Clean and verify variable

{icd9 | icd9p} generate

Data > Other utilities > ICD9 utilities > Generate new variable from existing

{icd9 | icd9p} lookup

Data > Other utilities > ICD9 utilities > Display code descriptions

{icd9 | icd9p} search

Data > Other utilities > ICD9 utilities > Search for codes from descriptions

{icd9 | icd9p} query

Data > Other utilities > ICD9 utilities > Display ICD-9 code source

Description

icd9 and icd9p help when working with ICD-9-CM codes.

ICD-9 codes come in two forms: diagnostic codes and procedure codes. In this system, 001 (cholera)
and 941.45 (deep 3rd deg burn nose) are examples of diagnostic codes, although some people write (and
datasets record) 94145 rather than 941.45. Also, 01 (incise-excis brain/skull) and 55.01 (nephrotomy)
are examples of procedure codes, although some people write 5501 rather than 55.01. icd9 and
icd9p understand both ways of recording codes.

Important note: What constitutes a valid ICD-9 code changes over time. For the rest of this entry,
a defined code is any code that is either currently valid, was valid at some point since version V16
(effective October 1, 1998), or has meaning as a grouping of codes. Some examples would help. The
diagnosis code 001, though not valid on its own, is useful because it denotes cholera. It is kept as
a defined code whose description ends with an asterisk (*). The diagnosis code 645.01 was deleted
between versions V16 and V18. It remains as a defined code, and its description ends with a hash
mark (#).

icd9 and icd9p parallel each other; icd9 is for use with diagnostic codes, and icd9p is for use
with procedure codes.

icd9[p] check verifies that existing variable varname contains defined ICD-9 codes. If not, icd9[p]
check provides a full report on the problems. icd9[p] check is useful for tracking down problems
when any of the other icd9[p] commands tell you that the “variable does not contain ICD-9 codes”.
icd9[p] check verifies that each recorded code actually exists in the defined code list.

icd9[p] clean also verifies that existing variable varname contains valid ICD-9 codes, and, if it
does, icd9[p] clean modifies the variable to contain the codes in either of two standard formats.
All icd9[p] commands work equally well with cleaned or uncleaned codes. There are many ways
of writing the same ICD-9 code, and icd9[p] clean is designed to ensure consistency and to make
subsequent output look better.

310 icd9 — ICD-9-CM diagnostic and procedure codes

icd9[p] generate produces new variables based on existing variables containing (cleaned or
uncleaned) ICD-9 codes. icd9[p] generate, main produces newvar containing the main code.
icd9[p] generate, description produces newvar containing a textual description of the ICD-9
code. icd9[p] generate, range() produces numeric newvar containing 1 if varname records an
ICD-9 code in the range listed and 0 otherwise.

icd9[p] lookup and icd9[p] search are utility routines that are useful interactively. icd9[p]
lookup simply displays descriptions of the codes specified on the command line, so to find out what
diagnostic E913.1 means, you can type icd9 lookup e913.1. The data that you have in memory
are irrelevant—and remain unchanged—when you use icd9[p] lookup. icd9[p] search is similar
to icd9[p] lookup, except that it turns the problem around; icd9[p] search looks for relevant ICD-9
codes from the description given on the command line. For instance, you could type icd9 search
liver or icd9p search liver to obtain a list of codes containing the word “liver”.

icd9[p] query displays the identity of the source from which the ICD-9 codes were obtained and
the textual description that icd9[p] uses.

ICD-9 codes are commonly written in two ways: with and without periods. For instance, with
diagnostic codes, you can write 001, 86221, E8008, and V822, or you can write 001., 862.21, E800.8,
and V82.2. With procedure codes, you can write 01, 50, 502, and 5021, or 01., 50., 50.2, and 50.21.
The icd9[p] command does not care which syntax you use or even whether you are consistent. Case
also is irrelevant: v822, v82.2, V822, and V82.2 are all equivalent. Codes may be recorded with or
without leading and trailing blanks.

icd9[p] works with V32, V31, V30, V29, V28, V27, V26, V25, V24, V22, V21, V19, V18, and
V16 codes.

Options

Options are presented under the following headings:

Options for icd9[p] check
Options for icd9[p] clean
Options for icd9[p] generate
Option for icd9[p] search

Options for icd9[p] check

any tells icd9[p] check to verify that the codes fit the format of ICD-9 codes but not to check whether
the codes are actually defined. This makes icd9[p] check run faster. For instance, diagnostic code
230.52 (or 23052, if you prefer) looks valid, but there is no such ICD-9 code. Without the any
option, 230.52 would be flagged as an error. With any, 230.52 is not an error.

list reports any invalid codes that were found in the data by icd9[p] check. For example, 1, 1.1.1,
and perhaps 230.52, if any is not specified, are to be individually listed.

generate(newvar) specifies that icd9[p] check create new variable newvar containing, for each
observation, 0 if the code is defined and a number from 1 to 10 otherwise. The positive numbers
indicate the kind of problem and correspond to the listing produced by icd9[p] check. For instance,
10 means that the code could be valid, but it turns out not to be on the list of defined codes.

icd9 — ICD-9-CM diagnostic and procedure codes 311

Options for icd9[p] clean

dots specifies whether periods are to be included in the final format. Do you want the diagnostic
codes recorded, for instance, as 86221 or 862.21? Without the dots option, the 86221 format
would be used. With the dots option, the 862.21 format would be used.

pad specifies that the codes are to be padded with spaces, front and back, to make the codes line up
vertically in listings. Specifying pad makes the resulting codes look better when used with most
other Stata commands.

Options for icd9[p] generate

main, description, and range(icd9rangelist) specify what icd9[p] generate is to calculate.
varname always specifies a variable containing ICD-9 codes.

main specifies that the main code be extracted from the ICD-9 code. For procedure codes, the main
code is the first two characters. For diagnostic codes, the main code is usually the first three
or four characters (the characters before the dot if the code has dots). In any case, icd9[p]
generate does not care whether the code is padded with blanks in front or how strangely
it might be written; icd9[p] generate will find the main code and extract it. The resulting
variable is itself an ICD-9 code and may be used with the other icd9[p] subcommands. This
includes icd9[p] generate, main.

description creates newvar containing descriptions of the ICD-9 codes.

long is for use with description. It specifies that the new variable, in addition to containing
the text describing the code, contain the code, too. Without long, newvar in an observation might
contain “bronchus injury-closed”. With long, it would contain “862.21 bronchus injury-closed”.

end modifies long (specifying end implies long) and places the code at the end of the string:
“bronchus injury-closed 862.21”.

range(icd9rangelist) allows you to create indicator variables equal to 1 when the ICD-9 code is
in the inclusive range specified.

Option for icd9[p] search

or specifies that ICD-9 codes be searched for entries that contain any word specified after icd9[p]
search. The default is to list only entries that contain all the words specified.

Remarks and examples

Let’s begin with the diagnostic codes that icd9 processes. The format of an ICD-9 diagnostic code
is

[
blanks

]{
0–9,V,v

}{
0–9
}{

0–9
}[

.
][
0--9

[
0--9

]][
blanks

]
or [

blanks
]{
E,e
}{

0–9
}{

0–9
}{

0–9
}[

.
][
0--9

][
blanks

]

312 icd9 — ICD-9-CM diagnostic and procedure codes

icd9 can deal with ICD-9 diagnostic codes written in any of the ways that this format allows.
Items in square brackets are optional. The code might start with some number of blanks. Braces,

{}
,

indicate required items. The code then has a digit from 0 to 9, the letter V (uppercase or lowercase,
first line), or the letter E (uppercase or lowercase, second line). After that, it has two or more digits,
perhaps followed by a period, and then it may have up to two more digits (perhaps followed by more
blanks).

All the following codes meet the above definition:

001
001.

001
001.9

0019
86222
862.22
E800.2
e8002
V82
v82.2
V822

Meeting the above definition does not make the code valid. There are 133,100 possible codes meeting
the above definition, of which fewer than 20,000 are currently defined.

icd9 — ICD-9-CM diagnostic and procedure codes 313

Examples of currently defined diagnostic codes include

Code Description

001 cholera*
001.0 cholera d/t vib cholerae
001.1 cholera d/t vib el tor
001.9 cholera nos
. . .
999 complic medical care nec*
. . .
V01 communicable dis contact*
V01.0 cholera contact
V01.1 tuberculosis contact
V01.2 poliomyelitis contact
V01.3 smallpox contact
V01.4 rubella contact
V01.5 rabies contact
V01.6 venereal dis contact
V01.7 viral dis contact nec#
V01.71 varicella contact/exp
V01.79 viral dis contact nec
V01.8 communic dis contact nec#
V01.81 contact/exposure-anthrax
V01.82 exposure to sars
V01.83 e. coli contact/exp
V01.84 meningococcus contact
V01.89 communic dis contact nec
V01.9 communic dis contact nos
. . .
E800 rr collision nos*
E800.0 rr collision nos-employ
E800.1 rr coll nos-passenger
E800.2 rr coll nos-pedestrian
E800.3 rr coll nos-ped cyclist
E800.8 rr coll nos-person nec
E800.9 rr coll nos-person nos
. . .

The main code refers to the part of the code to the left of the period. 001, 002, . . . , 999; V01,
. . . , V82; and E800, . . . , E999 are main codes.

314 icd9 — ICD-9-CM diagnostic and procedure codes

The main code corresponding to a detailed code can be obtained by taking the part of the code
to the left of the period, except for codes beginning with 176, 764, 765, V29, and V69. Those main
codes are not defined, yet there are more detailed codes under them:

Code Description

176 CODE DOES NOT EXIST:
176.0 skin - kaposi’s sarcoma
176.1 sft tisue - kpsi’s srcma
. . .
764 CODE DOES NOT EXIST:
764.0 lt-for-dates w/o fet mal*
764.00 light-for-dates wtnos
. . .
765 CODE DOES NOT EXIST:
765.0 extreme immaturity*
765.00 extreme immatur wtnos
. . .
V29 CODE DOES NOT EXIST:
V29.0 nb obsrv suspct infect
V29.1 nb obsrv suspct neurlgcl
. . .
V69 CODE DOES NOT EXIST:
V69.0 lack of physical exercise
V69.1 inapprt diet eat habits
. . .

Our solution is to define five new codes:

Code Description

176 kaposi’s sarcoma (Stata)*
764 light-for-dates (Stata)*
765 immat & preterm (Stata)*
V29 nb suspct cnd (Stata)*
V69 lifestyle (Stata)*

Things are less confusing with respect to the procedure codes processed by icd9p. The format of
ICD-9 procedure codes is[

blanks
]{
0–9
}{

0–9
}[

.
][
0--9

[
0--9

]][
blanks

]
Thus there are 10,000 possible procedure codes, of which fewer than 5,000 are currently valid. The
first two digits represent the main code, of which 100 are feasible and 98 are currently used (00 and
17 are not used).

Descriptions

The description given for each of the codes is as found in the original source. The procedure
codes contain the addition of five new codes created by Stata. An asterisk on the end of a description
indicates that the corresponding ICD-9 diagnostic code has subcategories. A hash mark (#) at the end
of a description denotes a code that is not valid in the most current version but that was valid at
some time between version V16 and the present version.

icd9 — ICD-9-CM diagnostic and procedure codes 315

icd9[p] query reports the original source of the information on the codes:

. icd9 query

_dta:
1. ICD9 Diagnostic Code Mapping Data for use with Stata, History
2. V16
3. Dataset obtained 24aug1999 from http://www.hcfa.gov/stats/pufiles.htm,

file http://www.hcfa.gov/stats/icd9v16.exe
4. Codes 176, 764, 765, V29, and V69 defined by StataCorp: 176 [kaposi’s

sarcoma (Stata)*], 765 [immat & preterm (Stata)*], 764 [light-for-dates
(Stata)*], V29 [nb suspct cnd (Stata)*], V69 [lifestyle (Stata)*]

5. V18
(output omitted)
12. V19
13. Dataset obtained 3jan2002 from http://www.hcfa.gov/stats/pufiles.htm,

file http://www.hcfa.gov/stats/icd9v19.zip, file 9v19diag.txt
14. 27feb2002: V19 put into Stata distribution
(output omitted)

. icd9p query

_dta:
1. ICD9 Procedure Code Mapping Data for use with Stata, History
2. V16
3. Dataset obtained 24aug1999 from http://www.hcfa.gov/stats/pufiles.htm,

file http://www.hcfa.gov/stats/icd9v16.exe
4. V18
5. Dataset obtained 10may2001 from http://www.hcfa.gov/stats/pufiles.htm,

file http://www.hcfa.gov/stats/icd9v18.zip, file V18SURG.TXT
6. 11jun2001: V18 data put into Stata distribution
7. BETWEEN V16 and V18: 9 codes added: 3971 3979 4107 4108 4109 4697 6096

6097 9975
(output omitted)

Example 1

We have a dataset containing up to three diagnostic codes and up to two procedures on a sample
of 1,000 patients:

. use http://www.stata-press.com/data/r13/patients

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 65450 9383
2. 2 23v.6 37456 8383 17
3. 3 V10.02
4. 4 102.6 629
5. 5 861.01

6. 6 38601 2969 9337
7. 7 705 7309 8385
8. 8 v53.32 7878 951
9. 9 20200 7548 E8247 0479
10. 10 464.11 20197 4641

Do not try to make sense of these data because, in constructing this example, the diagnostic and
procedure codes were randomly selected.

316 icd9 — ICD-9-CM diagnostic and procedure codes

First, variable diag1 is recorded sloppily—sometimes the dot notation is used and sometimes not,
and sometimes there are leading blanks. That does not matter. We decide to begin by using icd9
clean to clean up this variable:

. icd9 clean diag1
diag1 contains invalid ICD-9 codes
r(459);

icd9 clean refused because there are invalid codes among the 1,000 observations. We can use icd9
check to find and flag the problem observations (or observation, as here):

. icd9 check diag1, gen(prob)

diag1 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 0
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9) 1
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (not 0-9) 0

10. Code not defined 0

Total 1

. list patid diag1 prob if prob

patid diag1 prob

2. 2 23v.6 7

Let’s assume that we go back to the patient records and determine that this should have been coded
230.6:

. replace diag1 = "230.6" if patid==2
(1 real change made)
. drop prob

We now try again to clean up the formatting of the variable:

. icd9 clean diag1
(643 changes made)

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 65450 9383
2. 2 2306 37456 8383 17
3. 3 V1002
4. 4 1026 629
5. 5 86101

6. 6 38601 2969 9337
7. 7 705 7309 8385
8. 8 V5332 7878 951
9. 9 20200 7548 E8247 0479
10. 10 46411 20197 4641

icd9 — ICD-9-CM diagnostic and procedure codes 317

Perhaps we prefer the dot notation. icd9 clean can be used again on diag1, and now we will clean
up diag2 and diag3:

. icd9 clean diag1, dots
(936 changes made)

. icd9 clean diag2, dots
(551 changes made)

. icd9 clean diag3, dots
(100 changes made)

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 654.50 9383
2. 2 230.6 374.56 8383 17
3. 3 V10.02
4. 4 102.6 629
5. 5 861.01

6. 6 386.01 296.9 9337
7. 7 705 7309 8385
8. 8 V53.32 7878 951
9. 9 202.00 754.8 E824.7 0479
10. 10 464.11 201.97 4641

We now turn to cleaning the procedure codes. We use icd9p (emphasis on the p) to clean these
codes:

. icd9p clean proc1, dots
(816 changes made)

. icd9p clean proc2, dots
(140 changes made)

. list in 1/10

patid diag1 diag2 diag3 proc1 proc2

1. 1 654.50 93.83
2. 2 230.6 374.56 83.83 17
3. 3 V10.02
4. 4 102.6 62.9
5. 5 861.01

6. 6 386.01 296.9 93.37
7. 7 705 73.09 83.85
8. 8 V53.32 78.78 95.1
9. 9 202.00 754.8 E824.7 04.79
10. 10 464.11 201.97 46.41

Both icd9 clean and icd9p clean verify only that the variable being cleaned follows the
construction rules for the code; it does not check that the code is itself valid. icd9[p] check does
that:

318 icd9 — ICD-9-CM diagnostic and procedure codes

. icd9p check proc1
(proc1 contains valid ICD-9 procedure codes; 168 missing values)

. icd9p check proc2

proc2 contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 0
4. Code too long 0
5. Invalid 1st char (not 0-9) 0
6. Invalid 2nd char (not 0-9) 0
7. Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0

10. Code not defined 1

Total 1

proc2 has an invalid code. We could find it by using icd9p check, generate(), just as we did
above with icd9 check, generate().

icd9[p] can create new variables containing textual descriptions of our diagnostic and procedure
codes:

. icd9 generate td1 = diag1, description

. sort patid

. list patid diag1 td1 in 1/10

patid diag1 td1

1. 1 654.50 cerv incompet preg-unsp
2. 2 230.6 ca in situ anus nos
3. 3 V10.02 hx-oral/pharynx malg nec
4. 4 102.6 yaws of bone & joint
5. 5 861.01 heart contusion-closed

6. 6 386.01 actv meniere,cochlvestib
7. 7 705 disorders of sweat gland*
8. 8 V53.32 ftng autmtc dfibrillator
9. 9 202.00 ndlr lym unsp xtrndl org
10. 10 464.11 ac tracheitis w obstruct

icd9[p] generate, description does not preserve the sort order of the data (and neither does
icd9[p] check, unless you specify the any option).

Procedure code proc2 had an invalid code. Even so, icd9p generate, description is willing
to create a textual description variable:

icd9 — ICD-9-CM diagnostic and procedure codes 319

. icd9p gen tp2 = proc2, description
(1 nonmissing value invalid and so could not be labeled)

. sort patid

. list patid proc2 tp2 in 1/10

patid proc2 tp2

1. 1
2. 2 17
3. 3
4. 4
5. 5

6. 6
7. 7 83.85 musc/tend lng change nec
8. 8 95.1 form & structur eye exam*
9. 9
10. 10

tp2 contains nothing when proc2 is 17 because 17 is not a valid procedure code.

icd9[p] generate can also create variables containing main codes:

. icd9 generate main1 = diag1, main

. list patid diag1 main1 in 1/10

patid diag1 main1

1. 1 654.50 654
2. 2 230.6 230
3. 3 V10.02 V10
4. 4 102.6 102
5. 5 861.01 861

6. 6 386.01 386
7. 7 705 705
8. 8 V53.32 V53
9. 9 202.00 202
10. 10 464.11 464

icd9p generate, main can similarly generate main procedure codes.

Sometimes we might merely be examining an observation:

. list diag* if patid==563

diag1 diag2 diag3

563. 526.4

320 icd9 — ICD-9-CM diagnostic and procedure codes

If we wondered what 526.4 was, we could type

. icd9 lookup 526.4

1 match found:
526.4 inflammation of jaw

icd9[p] lookup can list ranges of codes:

. icd9 lookup 526/526.99

15 matches found:
526 jaw diseases*
526.0 devel odontogenic cysts
526.1 fissural cysts of jaw
526.2 cysts of jaws nec
526.3 cent giant cell granulom
526.4 inflammation of jaw
526.5 alveolitis of jaw
526.61 perfor root canal space
526.62 endodontic overfill
526.63 endodontic underfill
526.69 periradicular path nec
526.8 other jaw diseases*
526.81 exostosis of jaw
526.89 jaw disease nec
526.9 jaw disease nos

The same result could be found by typing

. icd9 lookup 526*

icd9[p] search can find a code from the description:

. icd9 search jaw disease

4 matches found:
526 jaw diseases*
526.8 other jaw diseases*
526.89 jaw disease nec
526.9 jaw disease nos

Stored results
icd9 check and icd9p check store the following in r():

Scalars
r(e#) number of errors of type #
r(esum) total number of errors

icd9 clean and icd9p clean store the following in r():

Scalars
r(N) number of changes

Reference
Gould, W. W. 2000. dm76: ICD-9 diagnostic and procedure codes. Stata Technical Bulletin 54: 8–16. Reprinted in

Stata Technical Bulletin Reprints, vol. 9, pp. 77–87. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb54.pdf

Title

import — Overview of importing data into Stata

Description Remarks and examples Reference Also see

Description
This entry provides a quick reference for determining which method to use for reading non-Stata

data into memory. See [U] 21 Entering and importing data for more details.

Remarks and examples
Remarks are presented under the following headings:

Summary of the different methods
import excel
import delimited
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sasxport
import haver (Windows only)
xmluse

Examples
Video example

Summary of the different methods

import excel

◦ import excel reads worksheets from Microsoft Excel (.xls and .xlsx) files.

◦ Entire worksheets can be read, or custom cell ranges can be read.

◦ See [D] import excel.

import delimited

◦ import delimited reads text-delimited files.

◦ The data can be tab-separated or comma-separated. A custom delimiter may also be specified.

◦ An observation must be on only one line.

◦ The first line in the file can optionally contain the names of the variables.

◦ See [D] import delimited.

321

322 import — Overview of importing data into Stata

odbc

◦ ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for importing data via the odbc command and can
read from any ODBC data source on your computer.

◦ See [D] odbc.

infile (free format)—infile without a dictionary

◦ The data can be space-separated, tab-separated, or comma-separated.

◦ Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-
separated).

◦ An observation can be on more than one line, or there can even be multiple observations per line.

◦ See [D] infile (free format).

infix (fixed format)

◦ The data must be in fixed-column format.

◦ An observation can be on more than one line.

◦ infix has simpler syntax than infile (fixed format).

◦ See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

◦ The data may be in fixed-column format.

◦ An observation can be on more than one line.

◦ ASCII or EBCDIC data can be read.

◦ infile (fixed format) has the most capabilities for reading data.

◦ See [D] infile (fixed format).

import sasxport

◦ import sasxport reads SAS XPORT Transport format files.

◦ import sasxport will also read value label information from a formats.xpf XPORT file, if
available.

◦ See [D] import sasxport.

import haver (Windows only)

◦ import haver reads Haver Analytics (http://www.haver.com/) database files.

◦ See [D] import haver.

http://www.haver.com/

import — Overview of importing data into Stata 323

xmluse

◦ xmluse reads extensible markup language (XML) files—highly adaptable text-format files derived
from the standard generalized markup language (SGML).

◦ xmluse can read either an Excel-format XML or a Stata-format XML file into Stata.

◦ See [D] xmlsave.

Examples

Example 1: Tab-separated data

begin example1.raw
1 0 1 John Smith m
0 0 1 Paul Lin m
0 1 0 Jan Doe f
0 0 . Julie McDonald f

end example1.raw

contains tab-separated data. The type command with the showtabs option shows the tabs:

. type example1.raw, showtabs

1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
0<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

. import delimited a b c name gender using example1

Example 2: Comma-separated data

begin example2.raw
a,b,c,name,gender
1,0,1,John Smith,m
0,0,1,Paul Lin,m
0,1,0,Jan Doe,f
0,0,,Julie McDonald,f

end example2.raw

could be read in by

. import delimited using example2

Example 3: Tab-separated data with double-quoted strings

begin example3.raw
1 0 1 "John Smith" m
0 0 1 "Paul Lin" m
0 1 0 "Jan Doe" f
0 0 . "Julie McDonald" f

end example3.raw

324 import — Overview of importing data into Stata

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs

1<T>0<T>1<T>"John Smith"<T>m
0<T>0<T>1<T>"Paul Lin"<T>m
0<T>1<T>0<T>"Jan Doe"<T>f
0<T>0<T>.<T>"Julie McDonald"<T>f

It could be read in by

. infile byte (a b c) str15 name str1 gender using example3

or

. import delimited a b c name gender using example3

or

. infile using dict3

where the dictionary dict3.dct contains

begin dict3.dct
infile dictionary using example3 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict3.dct

Example 4: Space-separated data with double-quoted strings

begin example4.raw
1 0 1 "John Smith" m
0 0 1 "Paul Lin" m
0 1 0 "Jan Doe" f
0 0 . "Julie McDonald" f

end example4.raw

could be read in by

. infile byte (a b c) str15 name str1 gender using example4

or

. infile using dict4

where the dictionary dict4.dct contains

begin dict4.dct
infile dictionary using example4 {

byte a
byte b
byte c
str15 name
str1 gender

}
end dict4.dct

import — Overview of importing data into Stata 325

Example 5: Fixed-column format

begin example5.raw
101mJohn Smith
001mPaul Lin
010fJan Doe
00 fJulie McDonald

end example5.raw

could be read in by

. infix a 1 b 2 c 3 str gender 4 str name 5-19 using example5

or

. infix using dict5a

where dict5a.dct contains

begin dict5a.dct
infix dictionary using example5 {

a 1
b 2
c 3

str gender 4
str name 5-19

}
end dict5a.dct

or

. infile using dict5b

where dict5b.dct contains

begin dict5b.dct
infile dictionary using example5 {

byte a %1f
byte b %1f
byte c %1f
str1 gender %1s
str15 name %15s

}
end dict5b.dct

Example 6: Fixed-column format with headings

begin example6.raw
line 1 : a heading
There are a total of 4 lines of heading.
The next line contains a useful heading:
----+----1----+----2----+----3----+----4----+-
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 f Jan Doe
0 0 f Julie McDonald

end example6.raw

could be read in by

. infile using dict6a

326 import — Overview of importing data into Stata

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)

byte a
byte b

_column(17) byte c %1f
str1 gender

_column(33) str15 name %15s
}

end dict6a.dct

or could be read in by

. infix 5 first a 1 b 9 c 17 str gender 25 str name 33-46 using example6

or could be read in by

. infix using dict6b

where dict6b.dct contains

begin dict6b.dct
infix dictionary using example6 {
5 first

a 1
b 9
c 17

str gender 25
str name 33-46

}
end dict6b.dct

Example 7: Fixed-column format with observations spanning multiple lines

begin example7.raw
a b c gender name
1 0 1
m
John Smith
0 0 1
m
Paul Lin
0 1 0
f
Jan Doe
0 0
f
Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

import — Overview of importing data into Stata 327

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)

byte a
byte b
byte c

_line(2)
str1 gender

_line(3)
str15 name %15s

}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b

where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)

byte a "Question 1"
byte b "Question 2"
byte c "Question 3"

_line(2)
str1 gender "Gender of subject"

_line(3)
str15 name %15s

}
end dict7b.dct

infix could also read these data,

. infix 2 first 3 lines a 1 b 3 c 5 str gender 2:1 str name 3:1-15 using example7

or the data could be read in by

. infix using dict7c

where dict7c.dct contains

begin dict7c.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

str gender 2:1
str name 3:1-15

}
end dict7c.dct

or the data could be read in by

. infix using dict7d

328 import — Overview of importing data into Stata

where dict7d.dct contains

begin dict7d.dct
infix dictionary using example7 {
2 first

a 1
b 3
c 5

/
str gender 1

/
str name 1-15

}
end dict7d.dct

Video example

Copy/paste data from Excel into Stata

Reference
Dicle, M. F., and J. Levendis. 2011. Importing financial data. Stata Journal 11: 620–626.

Also see
[D] edit — Browse or edit data with Data Editor

[D] import delimited — Import delimited text data

[D] import excel — Import and export Excel files

[D] import haver — Import data from Haver Analytics databases

[D] import sasxport — Import and export datasets in SAS XPORT format

[D] infile (fixed format) — Read text data in fixed format with a dictionary

[D] infile (free format) — Read unformatted text data

[D] infix (fixed format) — Read text data in fixed format

[D] input — Enter data from keyboard

[D] odbc — Load, write, or view data from ODBC sources

[D] xmlsave — Export or import dataset in XML format

[D] export — Overview of exporting data from Stata

[U] 21 Entering and importing data

http://www.youtube.com/watch?v=iCvZ9pvPy-8
http://www.stata-journal.com/article.html?article=dm0061

Title

import delimited — Import delimited text data

Syntax Menu Description
Options for import delimited Options for export delimited Remarks and examples
Also see

Syntax

Load a delimited text file

import delimited
[
using

]
filename

[
, import delimited options

]
Rename specified variables from a delimited text file

import delimited extvarlist using filename
[
, import delimited options

]
Save data in memory to a delimited text file

export delimited
[
using

]
filename

[
if
] [

in
] [

, export delimited options
]

Save subset of variables in memory to a delimited text file

export delimited
[

varlist
]
using filename

[
if
] [

in
] [

, export delimited options
]

import delimited options Description

delimiters("chars"
[
, collapse | asstring

]
) use chars as delimiters

rowrange(
[

start
][
:end

]
) row range of data to load

colrange(
[

start
][
:end

]
) column range of data to load

varnames(# | nonames) treat row # of data as variable names or the
data do not have variable names

case(preserve | lower | upper) preserve the case or read variable names as
lowercase (the default) or uppercase

asdouble import all floating-point data as doubles
asfloat import all floating-point data as floats
clear replace data in memory
bindquotes(loose | strict | nobind) specify how to handle double quotes in data
stripquotes(yes | no | default) remove or keep double quotes in data
numericcols(numlist | all) force specified columns to be numeric
stringcols(numlist | all) force specified columns to be string
charset("charset") set the character set used for importing

ASCII text

extvarlist specifies variable names of imported columns.

329

330 import delimited — Import delimited text data

export delimited options Description

Main

delimiter("char" | tab) use char as delimiter
novarnames do not write variable names on the first line
nolabel output numeric values (not labels) of labeled

variables
quote always enclose strings in double quotes
replace overwrite existing filename

Menu
import delimited

File > Import > Text data (delimited, *.csv, ...)

export delimited

File > Export > Text data (delimited, *.csv, ...)

Description
import delimited reads into memory a text-delimited file from disk. Regardless of the program

that created the file, import delimited reads text (ASCII) files in which there is one observation
per line and the values are separated by commas, tabs, or some other delimiter. The first line of the
file can contain the variable names. import delimited reads your data if you type

. import delimited filename

Stata has other commands for importing data. If you are not sure that import delimited will
do what you are looking for, see [D] import and [U] 21 Entering and importing data.

export delimited, by default, writes data into a file in comma-separated (.csv) format. export
delimited also allows you to specify any separation character delimiter that you prefer.

If filename is specified without an extension, .csv is assumed for both import delimited and
export delimited. If filename contains embedded spaces, enclose it in double quotes.

Options for import delimited
delimiters("chars"

[
, collapse | asstring

]
) allows you to specify other separation characters.

For instance, if values in the file are separated by a semicolon, specify delimiters(";"). By
default, import delimited will check if the file is delimited by tabs or commas based on
the first line of data. Specify delimiters("\t") to use a tab character, or specify delim-
iters("whitespace") to use whitespace as a delimiter.

collapse forces import delimited to treat multiple consecutive delimiters as just one delimiter.

asstring forces import delimited to treat chars as one delimiter. By default, each character
in chars is treated as an individual delimiter.

rowrange(
[

start
][
:end

]
) specifies a range of rows within the data to load. start and end are

integer row numbers.

import delimited — Import delimited text data 331

colrange(
[

start
][
:end

]
) specifies a range of variables within the data to load. start and end are

integer column numbers.

varnames(# | nonames) specifies where or whether variable names are in the data. By default, import
delimited tries to determine whether the file includes variable names. import delimited
translates the names in the file to valid Stata variable names. The original names from the file are
stored unmodified as variable labels.

varnames(#) specifies that the variable names are in row # of the data; any data before row #
should not be imported.

varnames(nonames) specifies that the variable names are not in the data.

case(preserve | lower | upper) specifies the case of the variable names after import. The default
is case(lowercase).

asdouble imports floating-point data as type double. The default storage type of the imported
variables is determined by set type.

asfloat imports floating-point data as type float. The default storage type of the imported variables
is determined by set type.

clear specifies that it is okay to replace the data in memory, even though the current data have not
been saved to disk.

bindquotes(loose | strict | nobind) specifies how import delimited handles double quotes
in data. Specifying loose (the default) tells import delimited that it must have a matching
open and closed double quote on the same line of data. strict tells import delimited that
once it finds one double quote on a line of data, it should keep searching through the data for
the matching double quote even if that double quote is on another line. Specifying nobind tells
import delimited to ignore double quotes for binding.

stripquotes(yes | no | default) tells import delimited how to handle double quotes. yes
causes all double quotes to be stripped. no leaves double quotes in the data unchanged. default
automatically strips quotes that can be identified as binding quotes. default also will identify
two adjacent double quotes as a single double quote because some software encodes double quotes
that way.

numericcols(numlist | all) forces the data type of the column numbers in numlist to be numeric.
Specifying all will import all data as numeric.

stringcols(numlist | all) forces the data type of the column numbers in numlist to be string.
Specifying all will import all data as strings.

charset("charset") sets the character set used for importing ASCII text. Because the number
of characters in natural languages far exceeds the number of printable character codes in ASCII,
character sets allow more characters to be represented in ASCII to accommodate different languages.
The default is charset("latin1") (ISO-8859-1 encoding). Specify charset("mac") for files
containing Mac OS Roman encoding. Currently, only these two character sets are supported.

Options for export delimited

delimiter("char" | tab) allows you to specify other separation characters. For instance, if you
want the values in the file to be separated by a semicolon, specify delimiter(";"). The default
delimiter is a comma.

delimiter(tab) specifies that a tab character be used as the delimiter.

332 import delimited — Import delimited text data

novarnames specifies that variable names not be written in the first line of the file; the file is to
contain data values only.

nolabel specifies that the numeric values of labeled variables be written into the file rather than the
label associated with each value.

quote specifies that string variables always be enclosed in double quotes. The default is to only
double quote strings that contain spaces or the delimiter.

replace specifies that filename be replaced if it already exists.

Remarks and examples
Remarks are presented under the following headings:

import delimited
export delimited

import delimited

import delimited reads in text data where each data point is separated by a delimiter character.
The two most common types of text data to import are comma-space-value (.csv) text files and
tab-separated text files. import delimited can automatically detect either a comma or a tab as the
delimiter. To import your data, type

. import delimited filename

import delimited reads your data if

1. it can find the file; and

2. the file meets import delimited’s expectations as to its format.

If you type import delimited myfile, myfile.csv is read into Stata. If your file is called
myfile.txt, type import delimited using myfile.txt. If typing import delimited filename
does not produce the desired result, you may need to specify an option or try one of Stata’s other
import commands; see [D] import.

Example 1

We have a .csv data file on automobiles called auto.csv.

. copy http://www.stata.com/examples/auto.csv auto.csv

. type auto.csv
make,price,mpg,rep78,foreign
"AMC Concord",4099,22,3,"Domestic"
"AMC Pacer",4749,17,3,"Domestic"
"AMC Spirit",3799,22,,"Domestic"
"Buick Century",4816,20,3,"Domestic"
"Buick Electra",7827,15,4,"Domestic"
"Buick LeSabre",5788,18,3,"Domestic"
"Buick Opel",4453,26,,"Domestic"
"Buick Regal",5189,20,3,"Domestic"
"Buick Riviera",10372,16,3,"Domestic"
"Buick Skylark",4082,19,3,"Domestic"

This file was saved by a spreadsheet and can be read by typing

. import delimited auto

import delimited — Import delimited text data 333

To look at what we just loaded, type

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

These data contain a combination of string and numeric variables. import delimited will
determine the correct data type for each variable. You can also force the data type of a variable by
using the numericcols() or stringcols() option.

Example 2

import delimited allows you to read in a subset of the text data by using the rowrange() and
colrange() options. To read rows 2 through 5 of auto.csv, you need to specify rowrange(3:6)
because the first row of data contains the variable names.

. clear

. import delimited auto, rowrange(3:6)
(5 vars, 4 obs)

. list

make price mpg rep78 foreign

1. AMC Pacer 4749 17 3 Domestic
2. AMC Spirit 3799 22 . Domestic
3. Buick Century 4816 20 3 Domestic
4. Buick Electra 7827 15 4 Domestic

We used rowrange(3:6) instead of rowrange(2:5) because row 1 of the data contained the
variable names.

334 import delimited — Import delimited text data

To import the first three columns and last four rows of auto.csv, type

. clear

. import delimited auto, colrange(:3) rowrange(8)
(3 vars, 4 obs)

. list

make price mpg

1. Buick Opel 4453 26
2. Buick Regal 5189 20
3. Buick Riviera 10372 16
4. Buick Skylark 4082 19

Example 3

import delimited can handle delimiters other than commas and tabs. Suppose that you had the
auto.txt file.

. type auto.txt, showtabs
"AMC Concord" 4099 22 3 "Domestic"
"AMC Pacer" 4749 17 3 "Domestic"
"AMC Spirit" 3799 22 NA "Domestic"
"Buick Century" 4816 20 3 "Domestic"
"Buick Electra" 7827 15 4 "Domestic"
"Buick LeSabre" 5788 18 3 "Domestic"
"Buick Opel" 4453 26 NA "Domestic"
"Buick Regal" 5189 20 3 "Domestic"
"Buick Riviera" 10372 16 3 "Domestic"
"Buick Skylark" 4082 19 3 "Domestic"

We specified type’s showtabs option so that no tabs are shown. These data are not tab-delimited
or comma-delimited. If you use import delimited without any options, you will not get the results
you expect.

. clear

. import delimited auto.txt
(1 var, 10 obs)

When import delimited tries to read data that have no tabs or commas, it is fooled into
thinking that the data contain just one variable. You can use the delimiter() option to import the
data correctly. delimiter(" ") tells import delimited to use spaces (“ ”) as the delimiter, and
delimiter(, collapse) will treat multiple consecutive space delimiters as one delimiter.

import delimited — Import delimited text data 335

. clear

. import delimited auto.txt, delimiter(" ", collapse)
(5 vars, 10 obs)

. describe

Contains data
obs: 10
vars: 5
size: 260

storage display value
variable name type format label variable label

make str13 %13s
price int %8.0g
mpg byte %8.0g
rep78 str2 %9s
foreign str8 %9s

Sorted by:
Note: dataset has changed since last saved

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 NA Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 NA Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

The data that were loaded now contain the correct number of variables and observations. However,
the variable rep78 should be a numeric variable, but it was imported as a string because the value
NA was used for missing values. To force rep78 to have a numeric storage type, use the option
numericcols().

336 import delimited — Import delimited text data

. clear

. import delimited auto.txt, delim(" ", collapse) numericcols(4)
(5 vars, 10 obs)

. describe

Contains data
obs: 10
vars: 5
size: 250

storage display value
variable name type format label variable label

make str13 %13s
price int %8.0g
mpg byte %8.0g
rep78 byte %8.0g
foreign str8 %9s

Sorted by:
Note: dataset has changed since last saved

. list

make price mpg rep78 foreign

1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

export delimited

export delimited creates a comma-separated text file from the Stata dataset in memory. If your
goal is to send data to another Stata user, you could use export delimited, but it is better to send
a .dta dataset. This will work even if you use Stata for Windows and your colleague uses Stata for
Mac or Unix. All versions of Stata can read each other’s .dta files.

To view other methods for moving your data into other applications, see [D] export.

import delimited — Import delimited text data 337

Example 4

To save the data currently in memory into a specified .csv file, type

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. export delimited myauto
file myauto.csv saved

Example 5

You can also export a subset of the data in memory by typing

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. export delimited make mpg rep78 foreign in 1/10 using myauto
file myauto.csv already exists
r(602);

If the file already exists, you can use replace to write over it:

. export delimited make mpg rep78 foreign in 1/10 using myauto, replace

. type myauto.csv
make,mpg,rep78,foreign
AMC Concord,22,3,Domestic
AMC Pacer,17,3,Domestic
AMC Spirit,22,,Domestic
Buick Century,20,3,Domestic
Buick Electra,15,4,Domestic
Buick LeSabre,18,3,Domestic
Buick Opel,26,,Domestic
Buick Regal,20,3,Domestic
Buick Riviera,16,3,Domestic
Buick Skylark,19,3,Domestic

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

Title

import excel — Import and export Excel files

Syntax Menu Description
Options for import excel Options for export excel Remarks and examples
Stored results References Also see

Syntax

Load an Excel file

import excel
[
using

]
filename

[
, import excel options

]
Load subset of variables from an Excel file

import excel extvarlist using filename
[
, import excel options

]
Describe contents of an Excel file

import excel
[
using

]
filename, describe

Save data in memory to an Excel file

export excel
[
using

]
filename

[
if
] [

in
] [

, export excel options
]

Save subset of variables in memory to an Excel file

export excel
[

varlist
]
using filename

[
if
] [

in
] [

, export excel options
]

import excel options Description

sheet("sheetname") Excel worksheet to load
cellrange(

[
start

][
:end

]
) Excel cell range to load

firstrow treat first row of Excel data as variable names
case(preserve | lower | upper) preserve the case (the default) or read variable names

as lowercase or uppercase when using firstrow

allstring import all Excel data as strings
clear replace data in memory

locale("locale") specify the locale used by the workbook

locale() does not appear in the dialog box.

338

import excel — Import and export Excel files 339

export excel options Description

Main

sheet("sheetname") save to Excel worksheet
cell(start) start (upper-left) cell in Excel to begin saving to
sheetmodify modify Excel worksheet
sheetreplace replace Excel worksheet
firstrow(variables | varlabels) save variable names or variable labels to first row
nolabel export values instead of value labels
replace overwrite Excel file

Advanced

datestring("datetime format") save dates as strings with a datetime format
missing("repval") save missing values as repval

locale("locale") specify the locale used by the workbook

locale() does not appear in the dialog box.

extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the
following:

varname
varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns
A, B, C, and D from the Excel file auto.xlsx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns
A, B, and D from the Excel file auto.xlsx. Column C and any columns after D are skipped.

Menu
import excel

File > Import > Excel spreadsheet (*.xls;*.xlsx)

export excel

File > Export > Data to Excel spreadsheet (*.xls;*.xlsx)

Description

import excel loads an Excel file, also known as a workbook, into Stata. import excel filename,
describe lists available sheets and ranges of an Excel file. export excel saves data in memory
to an Excel file. Excel 1997/2003 (.xls) files and Excel 2007/2010 (.xlsx) files can be imported,
exported, and described using import excel, export excel, and import excel, describe.

import excel and export excel are supported on Windows, Mac, and Linux.

import excel and export excel look at the file extension, .xls or .xlsx, to determine which
Excel format to read or write.

For performance, import excel imposes a size limit of 40 MB for Excel 2007/2010 (.xlsx)
files. Be warned that importing large .xlsx files can severely affect your machine’s performance.

340 import excel — Import and export Excel files

import excel auto first looks for auto.xls and then looks for auto.xlsx if auto.xls is not
found in the current directory.

The default file extension for export excel is .xls if a file extension is not specified.

Options for import excel
sheet("sheetname") imports the worksheet named sheetname in the workbook. The default is to

import the first worksheet.

cellrange(
[

start
][
:end

]
) specifies a range of cells within the worksheet to load. start and end

are specified using standard Excel cell notation, for example, A1, BC2000, and C23.

firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This
option cannot be used with extvarlist. firstrow uses the first row of the cell range for variable
names if cellrange() is specified. import excel translates the names in the first row to valid
Stata variable names. The original names in the first row are stored unmodified as variable labels.

case(preserve | lower | upper) specifies the case of the variable names read when using the
firstrow option. The default is case(preserve), meaning to preserve the variable name case.

allstring forces import excel to import all Excel data as string data.

clear clears data in memory before loading data from the Excel workbook.

The following option is available with import excel but is not shown in the dialog box:

locale("locale") specifies the locale used by the workbook. You might need this option when
working with extended ASCII character sets.

Options for export excel

� � �
Main �

sheet("sheetname") saves to the worksheet named sheetname. If there is no worksheet named
sheetname in the workbook, a new sheet named sheetname is created. If this option is not
specified, the first worksheet of the workbook is used.

cell(start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default,
export excel saves starting in the first row and first column of the worksheet.

sheetmodify exports data to the worksheet without changing the cells outside the exported range.
sheetmodify cannot be combined with sheetreplace or replace.

sheetreplace clears the worksheet before the data are exported to it. sheetreplace cannot be
combined with sheetmodify or replace.

firstrow(variables | varlabels) specifies that the variable names or the variable labels be saved
in the first row in the Excel worksheet. The variable name is used if there is no variable label for
a given variable.

nolabel exports the underlying numeric values instead of the value labels.

replace overwrites an existing Excel workbook. replace cannot be combined with sheetmodify
or sheetreplace.

import excel — Import and export Excel files 341

� � �
Advanced �

datestring("datetime format") exports all datetime variables as strings formatted by date-
time format. See [D] datetime display formats.

missing("repval") exports missing values as repval. repval can be either string or numeric. Without
specifying this option, export excel exports the missing values as empty cells.

The following option is available with export excel but is not shown in the dialog box:

locale("locale") specifies the locale used by the workbook. You might need this option when
working with extended ASCII character sets.

Remarks and examples
To demonstrate the use of import excel and export excel, we will first load auto.dta and

export it as an Excel file named auto.xls:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. export excel auto, firstrow(variables)
file auto.xls saved

Now we can import from the auto.xls file we just created, telling Stata to clear the current data
from memory and to treat the first row of the worksheet in the Excel file as variable names:

. import excel auto.xls, firstrow clear

. describe

Contains data
obs: 74
vars: 12
size: 3,922

storage display value
variable name type format label variable label

make str17 %17s make
price int %10.0g price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78
headroom double %10.0g headroom
trunk byte %10.0g trunk
weight int %10.0g weight
length int %10.0g length
turn byte %10.0g turn
displacement int %10.0g displacement
gear_ratio double %10.0g gear_ratio
foreign str8 %9s foreign

Sorted by:
Note: dataset has changed since last saved

342 import excel — Import and export Excel files

We can also import a subrange of the cells in the Excel file:

. import excel auto.xls, cellrange(:D70) firstrow clear

. describe

Contains data
obs: 69
vars: 4
size: 1,449

storage display value
variable name type format label variable label

make str17 %17s make
price int %10.0g price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78

Sorted by:
Note: dataset has changed since last saved

Both .xls and .xlsx files are supported by import excel and export excel. If a file extension
is not specified with export excel, .xls is assumed, because this format is more common and is
compatible with more applications that also can read from Excel files. To save the data in memory
as a .xlsx file, specify the extension:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. export excel auto.xlsx
file auto.xlsx saved

To export a subset of variables and overwrite the existing auto.xls Excel file, specify a variable
list and the replace option:

. export excel make mpg weight using auto, replace
file auto.xls saved

Technical note: Excel data size limits

For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns.
The string size limit is 255 characters.

For an Excel .xlsx-type workbook, the worksheet size limits are 1,048,576 rows by 16,384
columns. The string size limit is 32,767 characters.

Technical note: Dates and times
Excel has two different date systems, the “1900 Date System” and the “1904 Date System”. Excel

stores a date and time as an integer representing the number of days since a start date plus a fraction
of a 24-hour day.

In the 1900 Date System, the start date is 00Jan1900; in the 1904 Date System, the start date is
01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan1900.
import excel translates 29feb1900 to 28feb1900 and 00Jan1900 to 31dec1899.

See Using dates and times from other software in [D] datetime for a discussion of the relationship
between Stata datetimes and Excel datetimes.

import excel — Import and export Excel files 343

Technical note: Mixed data types

Because Excel’s data type is cell based, import excel may encounter a column of cells with
mixed data types. In such a case, the following rules are used to determine the variable type in Stata
of the imported column.

• If the column contains at least one cell with nonnumerical text, the entire column is imported as
a string variable.

• If an all-numerical column contains at least one cell formatted as a date or time, the entire
column is imported as a Stata date or datetime variable. import excel imports the column as
a Stata date if all date cells in Excel are dates only; otherwise, a datetime is used.

Video example

Import Excel data into Stata

Stored results
import excel filename, describe stores the following in r():

Macros
r(N worksheet) number of worksheets in the Excel workbook
r(worksheet #) name of worksheet # in the Excel workbook
r(range #) available cell range for worksheet # in the Excel workbook

References
Crow, K. 2012. Using import excel with real world data. The Stata Blog: Not Elsewhere Classified.

http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699–718.

Also see
[D] datetime — Date and time values and variables

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

http://www.youtube.com/watch?v=N5ZFgzN2_7c
http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
http://www.stata-journal.com/article.html?article=dm0071

Title

import haver — Import data from Haver Analytics databases

Syntax Menu Description
Options for import haver Options for import haver, describe Option for set haverdir
Remarks and examples Stored results Acknowledgment
Also see

Syntax

Load Haver data

import haver seriesdblist
[
, import haver options

]
Load Haver data using a dataset that is loaded in memory

import haver, frommemory
[

import haver options
]

Describe contents of Haver database

import haver seriesdblist, describe
[

import haver describe options
]

Specify the directory where the Haver databases are stored

set haverdir "path"
[
, permanently

]
import haver options Description

fin(
[

datestring
]
,
[

datestring
]
) load data within specified date range

fwithin(
[

datestring
]
,
[

datestring
]
) same as fin() but exclude the end points of range

tvar(varname) create time variable varname
case(lower | upper) read variable names as lowercase or uppercase
hmissing(misval) record missing values as misval
aggmethod(strict | relaxed | force) set how temporal aggregation calculations deal with

missing data

frommemory load data using file in memory
clear clear data in memory before loading Haver database

frommemory and clear do not appear in the dialog box.

import haver describe options Description

∗describe describe contents of seriesdblist
detail list full series information table for each series
saving(filename

[
, verbose replace

]
) save series information to filename.dta

∗describe is required.

344

import haver — Import data from Haver Analytics databases 345

seriesdblist is one or more of the following:

dbfile
series@dbfile
(series series . . .)@dbfile

where dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series.
Wildcards ? and * are allowed in series. series and dbfile are not case sensitive.

Example: import haver gdp@usecon
Import series GDP from the USECON database.

Example: import haver gdp@usecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with c1 from the
IFS database.

Note: You must specify a path to the database if you did not use the set haverdir command.

Example: import haver gdp@"C:\data\usecon" c1*@"C:\data\ifs"

If you do not specify a path to the database and you did not set haverdir, then import haver
will look in the current working directory for the database.

Menu
File > Import > Haver Analytics database

Description

Haver Analytics (http://www.haver.com) provides economic and financial databases to which you
can purchase access. The import haver command allows you to use those databases with Stata.
The import haver command is provided only with Stata for Windows.

import haver seriesdblist loads data from one or more Haver databases into Stata’s memory.

import haver seriesdblist, describe describes the contents of one or more Haver databases.

If a database is specified without a suffix, then the suffix .dat is assumed.

Options for import haver

fin(
[

datestring
]
,
[

datestring
]
) specifies the date range of the data to be loaded. datestring must

adhere to the Stata default for the different frequencies. See [D] datetime display formats.
Examples are 23mar2012 (daily and weekly), 2000m1 (monthly), 2003q4 (quarterly), and 1998
(annual). fin(1jan1999, 31dec1999) would mean from and including 1 January 1999 through
31 December 1999. Note that weekly data must be specified as daily data because Haver-week
data are conceptually different than Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that
is lower than the one in which the data are stored, specify the dates in option fin() accordingly.
For example, to retrieve series that are stored in quarterly frequency into an annual dataset, you
can type fin(1980,2010).

fwithin(
[

datestring
]
,
[

datestring
]
) functions the same as fin() except that the endpoints of the

range will be excluded in the loaded data.

http://www.haver.com

346 import haver — Import data from Haver Analytics databases

tvar(varname) specifies the name of the time variable Stata will create. The default is tvar(time).
The tvar() variable is the name of the variable that you would use to tsset the data after
loading, although doing so is unnecessary because import haver automatically tssets the data
for you.

case(lower | upper) specifies the case of the variable names after import. The default is
case(lower).

hmissing(misval) specifies which of Stata’s 27 missing values (., .a, . . . , .z) to record when there
are missing values in the Haver database.

Two kinds of missing values occur in Haver databases. The first occurs when nothing is recorded
because the data do not span the entire range; these missing values are always stored as . by Stata.
The second occurs when Haver has recorded a Haver missing value; by default, these are stored as
. by Stata, but you can use hmissing() to specify that a different extended missing-value code
be used.

aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence
of missing observations. aggmethod(strict) is the default aggregation method.

Most Haver series of higher than annual frequency has an aggregation type that determines how
data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of
period (EOP). Each aggregation method behaves differently for each aggregation type.

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate
the data in an aggregation span to a single observation in the (lower) target frequency. For example,
1973m1–1973m3 is an aggregated span for quarterly aggregation to 1973q1.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span
is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;
otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated
span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data
point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;
otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data
point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.

import haver — Import data from Haver Analytics databases 347

The following options are available with import haver but are not shown in the dialog box:

frommemory specifies that each observation of the dataset in memory specifies the information for a
Haver series to be imported. The dataset in memory must contain variables named path, file,
and series. The observations in path specify paths to Haver databases, the observations in file
specify Haver databases, and the observations in series specify the series to import.

clear clears the data in memory before loading the Haver database.

Options for import haver, describe
describe describes the contents of one or more Haver databases.

detail specifies that a detailed report of all the information available on the variables be presented.

saving(filename
[
, verbose replace

]
) saves the series meta-information to a Stata dataset. By

default, the series meta-information is not displayed to the Results window, but you can use the
verbose option to display it.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

Option for set haverdir
permanently specifies that in addition to making the change right now, the haverdir setting be

remembered and become the default setting when you invoke Stata.

Remarks and examples
Remarks are presented under the following headings:

Installation
Setting the path to Haver databases
Download example Haver databases
Determining the contents of a Haver database
Loading a Haver database
Loading a Haver database from a describe file
Temporal aggregation
Daily data
Weekly data

Installation
Haver Analytics (http://www.haver.com) provides more than 200 economic and financial databases

in the form of .dat files to which you can purchase access. The import haver command provides
easy access to those databases from Stata. import haver is provided only with Stata for Windows.

Setting the path to Haver databases

If you want to retrieve data from Haver Analytics databases, you must discover the directory in
which the databases are stored. This will most likely be a network location. If you do not know the
directory, contact your technical support staff or Haver Analytics (http://www.haver.com). Once you
have determined the directory location—for example, H:\haver files—you can save it by using
the command

. set haverdir "H:\haver_files\", permanently

http://www.haver.com
http://www.haver.com

348 import haver — Import data from Haver Analytics databases

Using the permanently option will preserve the Haver directory information between Stata
sessions. Once the Haver directory is set, you can start retrieving data. For example, if you are
subscribing to the USECON database, you can type

. import haver gdp@usecon

to load the GDP series into Stata. If you did not use set haverdir, you would type

. import haver gdp@"H:\haver_files\usecon"

The directory path passed to set haverdir is saved in the creturn value c(haverdir). You
can view it by typing

. display "‘c(haverdir)’"

Download example Haver databases

There are three example Haver databases you can download to your working directory. Run the
copy commands below to download HAVERD, HAVERW, and HAVERMQA.

. copy http://www.stata.com/haver/HAVERD.DAT haverd.dat

. copy http://www.stata.com/haver/HAVERD.IDX haverd.idx

. copy http://www.stata.com/haver/HAVERW.DAT haverw.dat

. copy http://www.stata.com/haver/HAVERW.IDX haverw.idx

. copy http://www.stata.com/haver/HAVERMQA.DAT havermqa.dat

. copy http://www.stata.com/haver/HAVERMQA.IDX havermqa.idx

To use these files, you need to make sure your Haver directory is not set:

. set haverdir ""

Determining the contents of a Haver database

import haver seriesdblist, describe displays the contents of a Haver database. If no series is
specified, then all series are described.

. import haver haverd, describe

Dataset: haverd

Variable Description Time span Frequency Source

FXTWB Nominal Broad Trade-W.. 03jan2005-02mar2012 Daily FRB
FXTWM Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB
FXTWOTP Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB

Summary

number of series described: 3
series not found: 0

Above we describe the Haver database haverd.dat, which we already have on our computer and
in our current directory.

By default, each line of the output corresponds to one Haver series. Specifying detail displays
more information about each series, and specifying seriesname@ allows us to restrict the output to
the series that interests us:

import haver — Import data from Haver Analytics databases 349

. import haver FXTWB@haverd, describe detail

FXTWB Nominal Broad Trade-Weighted Exchange Value of the US$ (1/97=100)

Frequency: Daily Time span: 03jan2005-02mar2012
Number of Observations: 1870 Date Modified: 07mar2012 11:27:33
Aggregation Type: AVG Decimal Precision: 4
Difference Type: 0 Magnitude: 0
Data Type: INDEX Group: R03
Primary Geography Code: 111 Secondary Geography Code:
Source: FRB Source Description: Federal Reserv..

Summary

number of series described: 1
series not found: 0

You can describe multiple Haver databases with one command:

. import haver haverd haverw, describe
(output omitted)

To restrict the output to the series that interest us for each database, you could type

. import haver (FXTWB FXTWOTP)@haverd FARVSN@haverw, describe
(output omitted)

Loading a Haver database

import haver seriesdblist loads Haver databases. If no series is specified, then all series are
loaded.

. import haver haverd, clear

Summary

Haver data retrieval: 10 Dec 2012 11:41:18
of series requested: 3
of database(s) used: 1 (HAVERD)
All series have been successfully retrieved

Frequency

highest Haver frequency: Daily
lowest Haver frequency: Daily

frequency of Stata dataset: Daily

The table produced by import haver seriesdblist displays a summary of the loaded data, frequency
information about the loaded data, series that could not be loaded because of errors, and notes about
the data.

350 import haver — Import data from Haver Analytics databases

The dataset now contains a time variable and three variables retrieved from the HAVERD database:
. describe

Contains data
obs: 1,870
vars: 4
size: 59,840

storage display value
variable name type format label variable label

time double %td
fxtwb_haverd double %10.0g Nominal Broad Trade-Weighted

Exchange Value of the US$
(1/97=100)

fxtwm_haverd double %10.0g Nominal Trade-Weighted Exch Value
of US$ vs Major Currencies
(3/73=100)

fxtwotp_haverd double %10.0g Nominal Trade-Weighted Exchange
Value of US$ vs OITP (1/97=100)

Sorted by: time
Note: dataset has changed since last saved

Haver databases include the following meta-information about each variable:
HaverDB database name
Series series name
DateTimeMod date/time the series was last modified
Frequency frequency of series (from daily to annual) as it is stored in the Haver database
Magnitude magnitude of the data
DecPrecision number of decimals to which the variable is recorded
DifType relevant within Haver software only: if =1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, EOP)
DataType type of data (e.g., ratio, index, US$, %)
Group Haver series group to which the variable belongs
Geography1 primary geography code
Geography2 secondary geography code
StartDate data start date
EndDate data end date
Source Haver code associated with the source for the data
SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).
Those characteristics can be viewed using char list:

. char list fxtwb_haverd[]
fxtwb_haverd[HaverDB]: HAVERD
fxtwb_haverd[Series]: FXTWB
fxtwb_haverd[DateTimeMod]: 07mar2012 11:27:33
fxtwb_haverd[Frequency]: Daily
fxtwb_haverd[Magnitude]: 0
fxtwb_haverd[DecPrecision]: 4
fxtwb_haverd[DifType]: 0
fxtwb_haverd[AggType]: AVG
fxtwb_haverd[DataType]: INDEX
fxtwb_haverd[Group]: R03
fxtwb_haverd[Geography1]: 111
fxtwb_haverd[StartDate]: 03jan2005
fxtwb_haverd[EndDate]: 02mar2012
fxtwb_haverd[Source]: FRB
fxtwb_haverd[SourceDescription]:

Federal Reserve Board

import haver — Import data from Haver Analytics databases 351

You can load multiple Haver databases/series with one command. To load the series FXTWB and
FXTWOTP from the HAVERD database and all series that start with V from the HAVERMQA database,
you would type

. import haver (FXTWB FXTWOTP)@haverd V*@havermqa, clear
(output omitted)

import haver automatically tssets the data for you.

Loading a Haver database from a describe file

You often need to search through the series information of a Haver database(s) to see which series
you would like to load. You can do this by saving the output of import haver, describe to a
Stata dataset with the saving(filename) option. The dataset created can be used by import haver,
frommemory to load data from the described Haver database(s). For example, here we search through
the series information of database HAVERMQA.

. import haver havermqa, describe saving(my_desc_file)
(output omitted)

. use my_desc_file, clear

. describe

Contains data from my_desc_file.dta
obs: 161
vars: 8 10 Dec 2012 11:41
size: 19,642

storage display value
variable name type format label variable label

path str1 %9s Path to Haver File
file str8 %9s Haver File Name
series str7 %9s Series Name
description str80 %80s Series Description
startdate str7 %9s Start Date
enddate str7 %9s End Date
frequency str9 %9s Frequency
source str3 %9s Source

Sorted by:

The resulting dataset contains information on the 164 series in HAVERMQA. Suppose that we want
to retrieve all monthly series whose description includes the word “Yield”. We need to keep only
the observations from our dataset where the frequency variable equals “Monthly” and where the
description variable contains “Yield”.

. keep if frequency=="Monthly" & strpos(description,"Yield")
(152 observations deleted)

To load the selected series into Stata, we type

. import haver, frommemory clear

Note: We must clear the described data in memory to load the selected series. If you do not
want to lose the changes you made to the description dataset, you must save it before using import
haver, frommemory.

352 import haver — Import data from Haver Analytics databases

Temporal aggregation

If you request series with different frequencies, the higher frequency data will be aggregated to the
lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series
will be aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not
be retrieved. A list of these series will be stored in r(noaggtype).

The options fin() and fwithin() are useful for aggregating series by hand.

Daily data

Haver’s daily frequency corresponds to Stata’s daily frequency. Haver’s daily data series are
business series for which business calendars are useful. See [D] datetime business calendars for
more information on business calendars.

Weekly data

Haver’s weekly data are also retrieved to Stata’s daily frequency. See [D] datetime business
calendars for more information on business calendars.

Stored results
import haver stores the following in r():

Scalars
r(k requested) number of series requested
r(k noaggtype) number of series dropped because of invalid aggregation type
r(k nodisagg) number of series dropped because their frequency is lower than that of the output

dataset
r(k notindata) number of series dropped because data were out of the date range specified in

fwithin() or fin()
r(k notfound) number of series not found in the database

Macros
r(noaggtype) list of series dropped because of invalid aggregation type
r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset
r(notindata) list of series dropped because data were out of the date range specified in fwithin()

or fin()
r(notfound) list of series not found in the database

import haver, describe stores the following in r():

Scalars
r(k described) number of series described
r(k notfound) number of series not found in the database

Macros
r(notfound) list of series not found in the database

Acknowledgment

import haver was written with the help of Daniel C. Schneider of the House of Finance at
Goethe University, Frankfurt, Germany.

import haver — Import data from Haver Analytics databases 353

Also see
[D] import — Overview of importing data into Stata

[D] import delimited — Import delimited text data

[D] odbc — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

Title

import sasxport — Import and export datasets in SAS XPORT format

Syntax Menu
Description Options for import sasxport
Option for import sasxport, describe Options for export sasxport
Remarks and examples Stored results
Technical appendix Also see

Syntax
Import SAS XPORT Transport file into Stata

import sasxport filename
[
, import options

]
Describe contents of SAS XPORT Transport file

import sasxport filename, describe
[
member(mbrname)

]
Export data in memory to a SAS XPORT Transport file

export sasxport filename
[

if
] [

in
] [

, export options
]

export sasxport varlist using filename
[

if
] [

in
] [

, export options
]

import options Description

Main

clear replace data in memory
novallabels ignore accompanying formats.xpf file if it exists
member(mbrname) member to use; seldom used

export options Description

Main

rename rename variables and value labels to meet SAS XPORT restrictions
replace overwrite files if they already exist
vallabfile(xpf) save value labels in formats.xpf

vallabfile(sascode) save value labels in SAS command file
vallabfile(both) save value labels in formats.xpf and in a SAS command file
vallabfile(none) do not save value labels

Menu
import sasxport

File > Import > SAS XPORT

export sasxport

File > Export > SAS XPORT

354

import sasxport — Import and export datasets in SAS XPORT format 355

Description
import sasxport and export sasxport convert datasets from and to SAS XPORT Transport

format. The U.S. Food and Drug Administration uses SAS XPORT transport format as the format for
datasets submitted with new drug and new device applications (NDAs).

To save the data in memory as a SAS XPORT Transport file, type

. export sasxport filename

although sometimes you will want to type

. export sasxport filename, rename

It never hurts to specify the rename option. In any case, Stata will create filename.xpt as an
XPORT file containing the data and, if needed, will also create formats.xpf—an additional XPORT
file—containing the value-label definitions. These files can be easily read into SAS.

To read a SAS XPORT Transport file into Stata, type

. import sasxport filename

Stata will read into memory the XPORT file filename.xpt containing the data and, if available, will
also read the value-label definitions stored in formats.xpf or FORMATS.xpf.

import sasxport, describe describes the contents of a SAS XPORT Transport file. The display is
similar to that produced by describe. To describe a SAS XPORT Transport file, type

. import sasxport filename, describe

If filename is specified without an extension, .xpt is assumed.

Options for import sasxport
clear permits the data to be loaded, even if there is a dataset already in memory and even if that

dataset has changed since the data were last saved.

novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be
looked for or loaded. By default, if variables are labeled in filename.xpt, then import sasxport
looks for formats.xpf to obtain and load the value-label definitions. If the file is not found,
Stata looks for FORMATS.xpf. If that file is not found, a warning message is issued.

import sasxport can use only a formats.xpf or FORMATS.xpf file to obtain value-label
definitions. import sasxport cannot understand value-label definitions from a SAS command file.

member(mbrname) is a rarely specified option indicating which member of the .xpt file is to be
loaded. It is not used much anymore, but the original XPORT definition allowed multiple datasets
to be placed in one file. The member() option allows you to read these old files. You can obtain
a list of member names using import sasxport, describe. If member() is not specified—and
it usually is not—import sasxport reads the first (and usually only) member.

Option for import sasxport, describe

� � �
Main �

member(mbrname) is a rarely specified option indicating which member of the .xpt file is to be
described. See the description of the member() option for import sasxport directly above. If
member() is not specified, all members are described, one after the other. It is rare for an XPORT
file to have more than one member.

356 import sasxport — Import and export datasets in SAS XPORT format

Options for export sasxport

� � �
Main �

rename specifies that export sasxport may rename variables and value labels to meet the SAS
XPORT restrictions, which are that names be no more than eight characters long and that there be
no distinction between uppercase and lowercase letters.

We recommend specifying the rename option. If this option is specified, any name violating the
restrictions is changed to a different but related name in the file. The name changes are listed.
The new names are used only in the file; the names of the variables and value labels in memory
remain unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message
will be issued and no file will be saved. The alternative to the rename option is that you can
rename variables yourself with the rename command:

. rename mylongvariablename myname

See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename
value labels is to use label save, edit the resulting file to change the name, execute the file by
using do, and reassign the new value label to the appropriate variables by using label values:

. label save mylongvaluelabel using myfile.do

. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)

. do myfile.do

. label values myvar mlvlab

See [D] label and [R] do for more information about renaming value labels.

replace permits export sasxport to overwrite existing filename.xpt, formats.xpf, and file-
name.sas files.

vallabfile(xpf | sascode | both | none) specifies whether and how value labels are to be stored.
SAS XPORT Transport files do not really have value labels. Value-label definitions can be preserved
in one of two ways:

1. In an additional SAS XPORT Transport file whose data contain the value-label definitions

2. In a SAS command file that will create the value labels

export sasxport can create either or both of these files.

vallabfile(xpf), the default, specifies that value labels be written into a separate SAS XPORT
Transport file named formats.xpf. Thus export sasxport creates two files: filename.xpt,
containing the data, and formats.xpf, containing the value labels. No formats.xpf file is
created if there are no value labels.

SAS users can easily use the resulting .xpt and .xpf XPORT files.
See http://www.sas.com/govedu/fda/macro.html for SAS-provided macros for reading the XPORT
files. The SAS macro fromexp() reads the XPORT files into SAS. The SAS macro toexp() creates
XPORT files. When obtaining the macros, remember to save the macros at SAS’s webpage as a
plain-text file and to remove the examples at the bottom.

If the SAS macro file is saved as C:\project\macros.mac and the files mydat.xpt and
formats.xpf created by export sasxport are in C:\project\, the following SAS commands
would create the corresponding SAS dataset and format library and list the data:

http://www.sas.com/govedu/fda/macro.html

import sasxport — Import and export datasets in SAS XPORT format 357

SAS commands
%include "C:\project\macros.mac" ;
%fromexp(C:\project, C:\project) ;
libname library ’C:\project’ ;
data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data = library.mydat ;
quit ;

vallabfile(sascode) specifies that the value labels be written into a SAS command file,
filename.sas, containing SAS proc format and related commands. Thus export sasxport
creates two files: filename.xpt, containing the data, and filename.sas, containing the value
labels. SAS users may wish to edit the resulting filename.sas file to change the “libname datapath”
and “libname xptfile xport” lines at the top to correspond to the location that they desire. export
sasxport sets the location to the current working directory at the time export sasxport was
issued. No .sas file will be created if there are no value labels.

vallabfile(both) specifies that both the actions described above be taken and that three files be
created: filename.xpt, containing the data; formats.xpf, containing the value labels in XPORT
format; and filename.sas, containing the value labels in SAS command-file format.

vallabfile(none) specifies that value-label definitions not be saved. Only one file is created:
filename.xpt, which contains the data.

Remarks and examples
All users, of course, may use these commands to transfer data between SAS and Stata, but there

are limitations in the SAS XPORT Transport format, such as the eight-character limit on the names
of variables (specifying export sasxport’s rename option works around that). For a complete
listing of limitations and issues concerning the SAS XPORT Transport format, and an explanation
of how export sasxport and import sasxport work around these limitations, see Technical
appendix below. You may find it more convenient to use translation packages such as Stat/Transfer;
see http://www.stata.com/products/transfer.html.

Remarks are presented under the following headings:

Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received from SAS

Saving XPORT files for transferring to SAS

Example 1

To save the current dataset in mydata.xpt and the value labels in formats.xpf, type

. export sasxport mydata

To save the data as above but automatically rename variable names and value labels that are too
long or are case sensitive, type

. export sasxport mydata, rename

To allow the replacement of any preexisting files, type

. export sasxport mydata, rename replace

http://www.stata.com/products/transfer.html

358 import sasxport — Import and export datasets in SAS XPORT format

To save the current dataset in mydata.xpt and the value labels in SAS command file mydata.sas
and to automatically rename variable names and value labels, type

. export sasxport mydata, rename vallab(sas)

To save the data as above but save the value labels in both formats.xpf and mydata.sas, type

. export sasxport mydata, rename vallab(both)

To not save the value labels at all, thus creating only mydata.xpt, type

. export sasxport mydata, rename vallab(none)

Determining the contents of XPORT files received from SAS

Example 2

To determine the contents of testdata.xpt, you might type

. import sasxport testdata, describe

Using XPORT files received from SAS

Example 3

To read data from testdata.xpt and obtain value labels from formats.xpf (or FORMATS.xpf),
if the file exists, you would type

. import sasxport testdata

To read the data as above and discard any data in memory, type

. import sasxport testdata, clear

Stored results
import sasxport, describe stores the following in r():

Scalars
r(N) number of observations r(size) size of data
r(k) number of variables r(n members) number of members

Macros
r(members) names of members

import sasxport — Import and export datasets in SAS XPORT format 359

Technical appendix

Technical details concerning the SAS XPORT Transport format and how export sasxport and
import sasxport handle issues regarding the format are presented under the following headings:

A1. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

A1. Overview of SAS XPORT Transport format

A SAS XPORT Transport file may contain one or more separate datasets, known as mem-
bers. It is rare for a SAS XPORT Transport file to contain more than one member. See
http://support.sas.com/techsup/technote/ts140.html for the SAS technical document describing the layout
of the SAS XPORT Transport file.

A SAS XPORT dataset (member) is subject to certain restrictions:

1. The dataset may contain only 9,999 variables.

2. The names of the variables and value labels may not be longer than eight characters and
are case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.

3. Variable labels may not be longer than 40 characters.

4. The contents of a variable may be numeric or string:

a. Numeric variables may be integer or floating but may not be smaller than 5.398e–
79 or greater than 9.046e+74, absolutely. Numeric variables may contain missing,
which may be ., . , .a, .b, . . . , .z.

b. String variables may not exceed 200 characters. String variables are recorded in a
“padded” format, meaning that, when variables are read, it cannot be determined
whether the variable had trailing blanks.

5. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in
the data with values 0 and 1, and the values are labeled for gender (0=male, and 1=female).
When the dataset is written in SAS XPORT Transport format, you can record that the variable
label gender is associated with the sex variable, but you cannot record the association with
the value labels male and female.

Value-label definitions are typically stored in a second XPORT dataset or in a text file
containing SAS commands. You can use the vallabfile() option of export sasxport
to produce these datasets or files.

Value labels and formats are recorded in the same position in an XPORT file, meaning that
names corresponding to formats used in SAS cannot be used. Thus value labels may not be
named

best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy,
dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eu-
rdfdwn, eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm,
hour, ib, ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmyy,
monname, month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli,
pib, pibr, pk, pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu,
s370fpd, s370fpdu, s370fpib, s370frb, s370fzd, s370fzdl, s370fzds,
s370fzdt, s370fzdu, ssn, time, timeampm, tod, weekdate, weekdatx, week-
day, worddate, worddatx, wordf, words, year, yen, yymm, yymmdd, yymon,
yyq, yyqr, z, zd, or any uppercase variation of these.

http://support.sas.com/techsup/technote/ts140.html

360 import sasxport — Import and export datasets in SAS XPORT format

We refer to this as the “Known Reserved Word List” in this documentation. Other words
may also be reserved by SAS; the technical documentation for the SAS XPORT Transport
format provides no guidelines. This list was created by examining the formats defined in
SAS Language Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.

6. A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact
number of observations in a dataset. This problem can occur only if 1) all variables in the
dataset are string and 2) the sum of the lengths of all the string variables is less than 80.
Actually, the above is the restriction, assuming that the code for reading the dataset is written
well. If it is not, the flaw could occur if 1) the last variable or variables in the dataset are
string and 2) the sum of the lengths of all variables is less than 80.

To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a
string variable. This is always sufficient to avoid the problem.

7. There is no provision for saving the Stata concepts notes and characteristics.

A2. Implications for writing XPORT datasets from Stata

Stata datasets for the most part fit well into the SAS XPORT Transport format. With the same
numbering scheme as above,

1. Stata refuses to write the dataset if it contains more than 9,999 variables.

2. Stata issues an error message if any variable or label name violates the naming restrictions,
or if the rename option is specified, Stata fixes any names that violate the restrictions.

Whether or not rename is specified, names will be recorded case insensitively: you do not
have to name all your variables with all lowercase or all uppercase letters. Stata verifies
that ignoring case does not lead to problems, complaining or, if option rename is specified,
fixing them.

3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.

4. Stata treats variable contents as follows:

a. If a numeric variable records a value greater than 9.046e+74 in absolute value,
Stata issues an error message. If a variable records a value less than 5.398e–79 in
absolute value, 0 is written.

b. If you have string variables longer than 200 characters, Stata issues an error message.
Also, if any string variable has trailing blanks, Stata issues an error message. To
remove trailing blanks from string variable s, you can type

. replace s = rtrim(s)

To remove leading and trailing blanks, type

. replace s = trim(s)

5. Value-label names are written in the XPORT dataset. The contents of the value label are not
written in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is
created containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what
SAS calls format definitions). They have provided SAS macros, making the reading of .xpt
and formats.xpf files easy. See http://www.sas.com/govedu/fda/macro.html for details.

http://www.sas.com/govedu/fda/macro.html

import sasxport — Import and export datasets in SAS XPORT format 361

Alternatively, a SAS command file containing the value-label definitions can be produced.
The vallabfile() option of export sasxport is used to indicate which, if any, of the
formats to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename
option is not specified, Stata issues an error message.

If a variable has no value label, the following format information is recorded:

Stata format SAS format
%td. . . MMDDYY10.
%-td. . . MMDDYY10.
%#s $CHAR#.
%-#s $CHAR#.
% #s $CHAR#.
all other BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued.
Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset
is numeric. This is easily done. You could, for instance, type

. gen ignoreme = 0

. export sasxport . . .

7. Because the XPORT file format does not support notes and characteristics, Stata ignores
them when it creates the XPORT file. You may wish to incorporate important notes into the
documentation that you provide to the user of your XPORT file.

A3. Implications for reading XPORT datasets into Stata

Reading SAS XPORT Transport format files into Stata is easy, but sometimes there are issues to
consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP
or Stata/SE, you can increase the maximum number of variables with the set maxvar
command; see [D] memory.

2. The XPORT format variable naming restrictions are more restrictive than those of Stata, so
no problems should arise. However, Stata reserves the following names:

all, b, byte, coef, cons, double, float, if, in, int, long, n, N, pi,
pred, rc, skip, str#, strL, using, with

If the XPORT file contains variables with any of these names, Stata issues an error message.
Also, the error message

. import sasxport . . .
________ already defined
r(110);

indicates that the XPORT file was incorrectly prepared by some other software and that two
or more variables share the same name.

3. The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems
can arise.

362 import sasxport — Import and export datasets in SAS XPORT format

4. Variable contents may cause problems:

a. The range of numeric variables in an XPORT dataset is a subset of that allowed by
Stata, so no problems can arise. All variables are brought back as doubles; we
recommend that you run compress after loading the dataset:

. import sasxport . . .

. compress

See [D] compress.

Stata has no missing-value code corresponding to . . If any value records . , then
.u is stored.

b. String variables are brought back as recorded but with all trailing blanks stripped.

5. Value-label names are read directly from the XPORT dataset. Any value-label definitions are
obtained from a separate XPORT dataset, if available. If a value-label name matches any in
the Known Reserved Word List, no value-label name is recorded, and instead, the variable
display format is set to %9.0g, %10.0g, or %td.

The %td Stata format is used when the following SAS formats are encountered:

DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY,
WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOW-
NAME, EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY,
PDJULI, WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR

If the XPORT file indicates that one or more variables have value labels, import sasxport
looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find
this file, it looks for FORMATS.xpf. If this file is not found, import sasxport issues a
warning message unless the novallabels option is specified.

Stata does not allow value-label ranges or string variables with value labels. If the .xpt file
or formats.xpf file contains any of these, an error message is issued. The novallabels
option allows you to read the data, ignoring all value labels.

6. If a dataset is read that provokes the all-strings XPORT design flaw, the dataset with the
minimum number of possible observations is returned, and a warning message is issued.
This duplicates the behavior of SAS.

7. SAS XPORT format does not allow notes or characteristics, so no issues can arise.

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

Title

infile (fixed format) — Read text data in fixed format with a dictionary

Syntax Menu Description Options
Remarks and examples References Also see

Syntax
infile using dfilename

[
if
] [

in
] [

, options
]

options Description

Main

using(filename) text dataset filename
clear replace data in memory

Options

automatic create value labels from nonnumeric data
ebcdic treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file
specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

begin dictionary file
[infile] dictionary [using filename] {

* comments may be included freely
_lrecl(#)
_firstlineoffile(#)
_lines(#)

_line(#)
_newline[(#)]
_column(#)
_skip[(#)]

[type] varname [:lblname] [% infmt] ["variable label"]
}
(your data might appear here)

end dictionary file

where % infmt is { %[#[.#]]{f|g|e} | %[#]s | %[#]S }

Menu
File > Import > Text data in fixed format with a dictionary

363

364 infile (fixed format) — Read text data in fixed format with a dictionary

Description
infile using reads a dataset that is stored in either ASCII or EBCDIC text form. infile using

does this by first reading dfilename—a “dictionary” that describes the format of the data file—and
then reads the file containing the data. The dictionary is a file you create with the Do-file Editor or
an editor outside Stata. If dfilename is specified without an extension, .dct is assumed.

If using filename is not specified, the data are assumed to begin on the line following the closing
brace. If using filename is specified, the data are assumed to be located in filename. If filename is
specified without an extension, .raw is assumed.

If dfilename or filename contains embedded spaces, remember to enclose it in double quotes.

The data may be in the same file as the dictionary or in another file. If ebcdic is specified, the
data will be converted from EBCDIC to ASCII as they are imported. The dictionary in all cases must
be ASCII. infile with a dictionary can import both numeric and string data. Individual strings may
be up to 100,000 characters long. Strings longer than 2,045 characters are imported as strLs (see
[U] 12.4.7 strL).

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This
variation is easier to use but will not read fixed-format files. On the other hand, although infile
with a dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed
format). infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do
what you are looking for, see [D] import and [U] 21 Entering and importing data.

Options

� � �
Main �

using(filename) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using(filename) is specified, filename
is used to obtain the data, even if the dictionary says otherwise. If filename is specified without
an extension, .raw is assumed.

If filename contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infile using will refuse to read new data if other
data are already in memory. clear allows infile using to replace the data in memory. You can
also drop the data yourself by typing drop all before reading new data.

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

ebcdic specifies that the data be stored using EBCDIC character encoding rather than ASCII, the
default, and be converted from EBCDIC to ASCII as they are imported. In all cases, dfilename, the
dictionary, must be specified using ASCII.

infile (fixed format) — Read text data in fixed format with a dictionary 365

Dictionary directives

* marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments
can appear many times in the same dictionary.

lrecl(#) is used only for reading datasets that do not have end-of-line delimiters (carriage return,
line feed, or some combination of these). Such files are often produced by mainframe computers
and are either coded in EBCDIC or have been translated from EBCDIC into ASCII. lrecl() specifies
the logical record length. lrecl() requests that infile act as if a line ends every # characters.

lrecl() appears only once, and typically not at all, in a dictionary.

firstlineoffile(#) (abbreviation first()) is also rarely specified. It states the line of the file
where the data begin. You do not need to specify first() when the data follow the dictionary;
Stata can figure that out for itself. However, you might specify first() when reading data from
another file in which the first line does not contain data because of headers or other markers.

first() appears only once, and typically not at all, in a dictionary.

lines(#) states the number of lines per observation in the file. Simple datasets typically have
lines(1). Large datasets often have many lines (sometimes called records) per observation.
lines() is optional, even when there is more than one line per observation because infile

can sometimes figure it out for itself. Still, if lines(1) is not right for your data, it is best to
specify the correct number through lines(#).

lines() appears only once in a dictionary.

line(#) tells infile to jump to line # of the observation. line() is not the same as lines().
Consider a file with lines(4), meaning four lines per observation. line(2) says to jump to
the second line of the observation. line(4) says to jump to the fourth line of the observation.
You may jump forward or backward. infile does not care, and there is no inefficiency in going
forward to line(3), reading a few variables, jumping back to line(1), reading another
variable, and jumping forward again to line(3).

You need not ensure that, at the end of your dictionary, you are on the last line of the observation.
infile knows how to get to the next observation because it knows where you are and it knows
lines(), the total number of lines per observation.

line() may appear many times in a dictionary.

newline[(#)] is an alternative to line(). newline(1), which may be abbreviated newline,
goes forward one line. newline(2) goes forward two lines. We do not recommend using
newline() because line() is better. If you are currently on line 2 of an observation and want

to get to line 6, you could type newline(4), but your meaning is clearer if you type line(6).

newline() may appear many times in a dictionary.

column(#) jumps to column # on the current line. You may jump forward or backward within a
line. column() may appear many times in a dictionary.

skip[(#)] jumps forward # columns on the current line. skip() is just an alternative to column().
skip() may appear many times in a dictionary.

[type] varname [:lblname] [% infmt] ["variable label"] instructs infile to read a variable. The simplest
form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column
1 of line 1, so pretend that is where we are. Given the simplest directive, ‘varname’, infile goes
through the following logic:

366 infile (fixed format) — Read text data in fixed format with a dictionary

If the current column is blank, it skips forward until there is a nonblank column (or until the
end of the line). If it just skipped all the way to the end of the line, it stores a missing value in
varname. If it skipped to a nonblank column, it begins collecting what is there until it comes to
a blank column or the end of the line. These are the data for varname. Then it sets the current
column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile
might encounter a quote. If so, it then collects the characters for the data by skipping forward until
it finds the matching quote. If you specified a % infmt, then infile skips the skipping-forward step
and simply collects the specified number of characters. If you specified a %S infmt, then infile
does not skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect,
and reset.

Remarks and examples

Remarks are presented under the following headings:
Introduction
Reading free-format files
Reading fixed-format files
Numeric formats
String formats
Specifying column and line numbers
Examples of reading fixed-format files
Reading fixed-block files
Reading EBCDIC files

Introduction
infile using follows a two-step process to read your data. You type something like infile

using descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data;
and

2. infile using then reads the data according to the instructions recorded in descript.dct.

descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just
a text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not
matter.

Reading free-format files

Another variation of infile for reading free-format files is described in [D] infile (free format).
We will refer to this variation as infile without a dictionary. The distinction between the two
variations is in the treatment of line breaks. infile without a dictionary does not consider them
significant. infile with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations,
logical records, or logical lines), is a string of characters followed by the line terminator. If you were
to type the file, a line is what would appear on your screen if your screen were infinitely wide. Your
screen would have to be infinitely wide so that there would be no possibility that one line could take
more than one line of your screen, thus fooling you into thinking that there are multiple lines when
there is only one.

infile (fixed format) — Read text data in fixed format with a dictionary 367

A logical line, on the other hand, is a sequence of one or more physical lines that represent one
observation of your data. infile with a dictionary does not spontaneously go to new physical lines;
it goes to a new line only between observations and when you tell it to. infile without a dictionary,
on the other hand, goes to a new line whenever it needs to, which can be right in the middle of an
observation. Thus consider the following little bit of data, which is for three variables:

5 4
1 9 3
2

How do you interpret these data?

Here is one interpretation: There are 3 observations. The first is 5, 4, and missing. The second
is 1, 9, and 3. The third is 2, missing, and missing. That is the interpretation that infile with a
dictionary makes.

Here is another interpretation: There are 2 observations. The first is 5, 4, and 1. The second is 9,
3, and 2. That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the
line breaks significant? Do they mean anything? If the line breaks are significant, you use infile
with a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not
process comma-separated–value format. If your data are comma-separated, tab-separated, or otherwise
delimited, see [D] import delimited or [D] infile (free format).

Example 1: A simple dictionary with data

Outside Stata, we have typed into the file highway.dct information on the accident rate per
million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of
access points (on-ramps and off-ramps) per mile. Our file contains

begin highway.dct, example 1
infile dictionary {

acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 1

This file can be read by typing the commands below. Stata displays the dictionary and reads the data:

. infile using highway

infile dictionary {
acc_rate spdlimit acc_pts

}
(4 observations read)

. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

368 infile (fixed format) — Read text data in fixed format with a dictionary

Example 2: Specifying variable labels

We can include variable labels in a dictionary so that after we infile the data, the data will be
fully labeled. We could change highway.dct to read

begin highway.dct, example 2
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.

acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 2

Now when we type infile using highway, Stata not only reads the data but also labels the
variables.

Example 3: Specifying variable storage types

We can indicate the variable types in the dictionary. For instance, if we wanted to store acc rate
as a double and spdlimit as a byte, we could change highway.dct to read

begin highway.dct, example 3
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
double acc_rate "Acc. Rate/Million Miles"
byte spdlimit "Speed Limit (mph)"

acc_pts "Access Pts/Mile"
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 3

Because we do not indicate the variable type for acc pts, it is given the default variable type float
(or the type specified by the set type command).

infile (fixed format) — Read text data in fixed format with a dictionary 369

Example 4: Reading string variables

By specifying the types, we can read string variables as well as numeric variables. For instance,

begin emp.dct
infile dictionary {
* data on employees
str20 name "Name"

age "Age"
int sex "Sex coded 0 male 1 female"

}
"Lisa Gilmore" 25 1
Branton 32 1
’Bill Ross’ 27 0

end emp.dct

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the
string contains no blanks or other special characters.

Example 5: Specifying value labels

You may attach value labels to variables in the dictionary by using the colon notation:

begin emp2.dct
infile dictionary {
* data on name, sex, and age
str16 name "Name"

sex:sexlbl "Sex"
int age "Age"

}
"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Karen Cain" Female 25

end emp2.dct

If you want the value labels to be created automatically, you must specify the automatic option
on the infile command. These data could be read by typing infile using emp2, automatic,
assuming the dictionary and data are stored in the file emp2.dct.

Example 6: Separate the dictionary and data files

The data need not be in the same file as the dictionary. We might leave the highway data in
highway.raw and write a dictionary called highway.dct describing the data:

begin highway.dct, example 4
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read "dictionary using highway.txt"

acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

}
end highway.dct, example 4

370 infile (fixed format) — Read text data in fixed format with a dictionary

Example 7: Ignoring the top of a file

The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the
following raw dataset:

begin mydata.raw
The following data was entered by Marsha Martinez. It was checked by
Helen Troy.
id income educ sex age
1024 25000 HS Male 28
1025 27000 C Female 24

end mydata.raw

Our dictionary might read

begin mydata.dct
infile dictionary using mydata {

_first(4)
int id "Identification Number"
income "Annual income"
str2 educ "Highest educ level"
str6 sex
byte age

}
end mydata.dct

Example 8: Data spread across multiple lines

The line() and lines() directives tell Stata how to read our data when there are multiple
records per observation. We have the following in mydata2.raw:

begin mydata2.raw
id income educ sex age
1024 25000 HS
Male
28
1025 27000 C
Female
24
1035 26000 HS
Male
32
1036 25000 C
Female
25

end mydata2.raw

infile (fixed format) — Read text data in fixed format with a dictionary 371

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously
reads the data:

. infile using mydata2, clear

infile dictionary using mydata2 {
_first(2) * Begin reading on line 2
_lines(3) * Each observation takes 3 lines.
int id "Identification Number" * Since _line is not specified, Stata
income "Annual income" * assumes that it is 1.
str2 educ "Highest educ level"
_line(2) * Go to line 2 of the observation.
str6 sex * (values for sex are located on line 2)
_line(3) * Go to line 3 of the observation.
int age * (values for age are located on line 3)

}

(4 observations read)

. list

id income educ sex age

1. 1024 25000 HS Male 28
2. 1025 27000 C Female 24
3. 1035 26000 HS Male 32
4. 1036 25000 C Female 25

Here is the really good part: we read these variables in order, but that was not necessary. We could
just as well have used the dictionary:

begin mydata2p.dct
infile dictionary using mydata2 {

_first(2)
_lines(3)

_line(1) int id "Identification number"
income "Annual income"

str2 educ "Highest educ level"
_line(3) int age
_line(2) str6 sex

}
end mydata2p.dct

We would have obtained the same results just as quickly, the only difference being that our variables
in the final dataset would be in the order specified: id, income, educ, age, and sex.

372 infile (fixed format) — Read text data in fixed format with a dictionary

Technical note
You can use newline to specify where breaks occur, if you prefer:

begin highway.dct, example 5
infile dictionary {

acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"

_newline acc_pts "Access Pts/Mile"
}
4.58 55
4.6
2.86 60
4.4
1.61 .
2.2
3.02 60
4.7

end highway.dct, example 5

The line reading ‘1.61 .’ could have been read 1.61 (without the period), and the results would
have been unchanged. Because dictionaries do not go to new lines automatically, a missing value is
assumed for all values not found in the record.

Reading fixed-format files

Values in formatted data are sometimes packed one against the other with no intervening blanks.
For instance, the highway data might appear as

begin highway.raw, example 6
4.58554.6
2.86604.4
1.61 2.2
3.02604.7

end highway.raw, example 6

The first four columns of each record represent the accident rate; the next two columns, the speed
limit; and the last three columns, the number of access points per mile.

To read these data, you must specify the % infmt in the dictionary. Numeric % infmts are denoted
by a leading percent sign (%) followed optionally by a string of the form w or w.d, where w and d
stand for two integers. The first integer, w, specifies the width of the format. The second integer, d,
specifies the number of digits that are to follow the decimal point. d must be less than or equal to w.
Finally, a character denoting the format type (f, g, or e) is appended. For example, %9.2f specifies
an f format that is nine characters wide and has two digits following the decimal point.

Numeric formats

The f format indicates that infile is to attempt to read the data as a number. When you do not
specify the % infmt in the dictionary, infile assumes the %f format. The width, w, being missing
means that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column
pointer to 1, indicating that it is currently on the first column. When infile processes a %f format,
it moves the column pointer forward through white space. It then collects the characters up to the

infile (fixed format) — Read text data in fixed format with a dictionary 373

next occurrence of white space and attempts to interpret those characters as a number. The column
pointer is left at the first occurrence of white space following those characters. If the next variable
is also free format, the logic repeats.

When you explicitly specify the field width w, as in %wf, infile does not skip leading white
space. Instead, it collects the next w characters starting at the column pointer and attempts to interpret
the result as a number. The column pointer is left at the old value of the column pointer plus w, that
is, on the first character following the specified field.

Example 9: Specifying the width of fields

If the data above were stored in highway.raw, we could create the following dictionary to read
the data:

begin highway.dct, example 6
infile dictionary using highway {

acc_rate %4f "Acc. Rate/Million Miles"
spdlimit %2f "Speed Limit (mph)"
acc_pts %3f "Access Pts/Mile

}
end highway.dct, example 6

When we explicitly indicate the field width, infile does not skip intervening characters. The first
four columns are used for the variable acc rate, the next two for spdlimit, and the last three for
acc pts.

Technical note
The d specification in the %w.df indicates the number of implied decimal places in the data. For

instance, the string 212 read in a %3.2f format represents the number 2.12. Do not specify d unless
your data have elements of this form. The w alone is sufficient to tell infile how to read data in
which the decimal point is explicitly indicated.

When you specify d, Stata takes it only as a suggestion. If the decimal point is explicitly indicated
in the data, that decimal point always overrides the d specification. Decimal points are also not
implied if the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ‘2 ’, ‘ 2 ’, and ‘ 2’ are all read
as 0.2 by the %3.1f format.

Technical note
The g and e formats are the same as the f format. You can specify any of these letters interchangeably.

The letters g and e are included as a convenience to those familiar with Fortran, in which the e
format indicates scientific notation. For example, the number 250 could be indicated as 2.5E+02
or 2.5D+02. Fortran programmers would refer to this as an E7.5 format, and in Stata, this format
would be indicated as %7.5e. In Stata, however, you need specify only the field width w, so you
could read this number by using %7f, %7g, or %7e.

The g format is really a Fortran output format that indicates a freer format than f. In Stata, the
two formats are identical.

Throughout this section, you may freely substitute the g or e formats for the f format.

374 infile (fixed format) — Read text data in fixed format with a dictionary

Technical note
Be careful to distinguish between % fmts and % infmts. % fmts are also known as display formats—they

describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data
are displayed. % infmts are also known as input formats—they describe how a variable looks when
you input it. For instance, there is an output date format, %td, but there is no corresponding input
format. (See [U] 24 Working with dates and times for recommendations on how to read dates.) For
the other formats, we have attempted to make the input and output definitions as similar as possible.
Thus we include g, e, and f % infmts, even though they all mean the same thing, because g, e, and
f are also % fmts.

String formats

The s and S formats are used for reading strings. The syntax is %ws or %wS, where the w is
optional. If you do not specify the field width, your strings must either be enclosed in quotes (single
or double) or not contain any characters other than letters, numbers, and “ ”.

This may surprise you, but the s format can be used for reading numeric variables, and the f
format can be used for reading string variables! When you specify the field width, w, in the %wf
format, all embedded blanks in the field are removed before the result is interpreted. They are not
removed by the %ws format.

For instance, the %3f format would read “- 2”, “-2 ”, or “ -2” as the number −2. The %3s
format would not be able to read “- 2” as a number, because the sign is separated from the digit,
but it could read “ -2” or “-2 ”. The %wf format removes blanks; datasets written by some Fortran
programs separate the sign from the number.

There are, however, some side effects of this practice. The string “2 2” will be read as 22 by a
%3f format. Most Fortran compilers would read this number as 202. The %3s format would issue a
warning and store a missing value.

Now consider reading the string “a b” into a string variable. Using a %3s format, Stata will store
it as it appears: a b. Using a %3f format, however, it will be stored as ab—the middle blank will
be removed.

%wS is a special case of %ws. A string read with %ws will have leading and trailing blanks
removed, but a string read with %wS will not have them removed.

Examples using the %s format are provided below, after we discuss specifying column and line
numbers.

Specifying column and line numbers

column() jumps to the specified column. For instance, the documentation of some dataset
indicates that the variable age is recorded as a two-digit number in column 47. You could read this
by coding

_column(47) age %2f

After typing this, you are now at column 49, so if immediately following age there were a one-digit
number recording sex as 0 or 1, you could code

_column(47) age %2f
sex %1f

infile (fixed format) — Read text data in fixed format with a dictionary 375

or, if you wanted to be explicit about it, you could instead code

_column(47) age %2f
_column(49) sex %1f

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read
it but skip reading the sex code, you could code

_column(47) age %2f
_column(50) race %1f

You could equivalently skip forward using skip():

_column(47) age %2f
_skip(1) race %1f

One advantage of column() over skip is that it lets you jump forward or backward in a record.
If you wanted to read race and then age, you could code

_column(50) race %1f
_column(47) age %2f

If the data you are reading have multiple lines per observation (sometimes said as multiple records
per observation), you can tell infile how many lines per record there are by using lines():

_lines(4)

lines() appears only once in a dictionary. Good style says that it should be placed near the top
of the dictionary, but Stata does not care.

When you want to go to a particular line, include the line() directive. In our example, let’s
assume that race, sex, and age are recorded on the second line of each observation:

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f

Let’s assume that id is recorded on line 1.

_lines(4)

_line(1)
_column(1) id %4f

_line(2)
_column(47) age %2f
_column(50) race %1f

line() works like column() in that you can jump forward or backward, so these data could just
as well be read by

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f

_line(1)
_column(1) id %4f

Remember that this dataset has four lines per observation, and yet we have never referred to line(3)
or line(4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is
okay, too. infile will still get to the next observation correctly.

376 infile (fixed format) — Read text data in fixed format with a dictionary

Technical note

Another way to move between records is newline(). newline() is to line() as skip() is
to column(), which is to say, newline() can only go forward. There is one difference: skip()
has its uses, whereas newline() is useful only for backward capability with older versions of Stata.

skip() has its uses because sometimes we think in columns and sometimes we think in widths.
Some data documentation might include the sentence, “At column 54 are recorded the answers to the
25 questions, with one column allotted to each.” If we want to read the answers to questions 1 and
5, it would indeed be natural to code

_column(54) q1 %1f
_skip(3)

q5 %1f

Nobody has ever read data documentation with the statement, “Demographics are recorded on record
2, and two records after that are the income values.” The documentation would instead say, “Record
2 contains the demographic information and record 4, income.” The newline() way of thinking
is based on what is convenient for the computer, which does, after all, have to move past a certain
number of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified newline() to go forward a number
of records. They still can, so their old dictionaries will work. When you use newline() and do
not specify lines(), you must move past the correct number of records so that, at the end of the
dictionary, you are on the last record. In this mode, when Stata reexecutes the dictionary to process
the next observation, it goes forward one record.

Examples of reading fixed-format files

Example 10: A file with two lines per observation

In this example, each observation occupies two lines. The first 2 observations in the dataset are

John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001;
that his address is 101 North 42nd Street; and that his answers to questions 1–10 were yes, no, yes,
no, yes, yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID
is 10002; that his address is 15663 Roustabout Boulevard; and that his answers to questions 1–10
were no, yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate
columns:

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

infile (fixed format) — Read text data in fixed format with a dictionary 377

Each observation in the data appears in two physical lines within our text file. We had to check in
our editor to be sure that there really were new-line characters (for example, “hard returns”) after
the address. This is important because some programs will wrap output for you so that one line may
appear as many lines. The two seemingly identical files will differ in that one has a hard return and
the other has a soft return added only for display purposes.

In our data, the name occupies columns 1–32; a person identifier occupies columns 33–37; and the
address occupies columns 40–80. Our worksheet revealed that the widest address ended in column 80.

The text file containing these data is called fname.txt. Our dictionary file looks like this:

begin fname.dct
infile dictionary using fname.txt {
*
* Example reading in data where observations extend across more
* than one line. The next line tells infile there are 2 lines/obs:
*
_lines(2)
*

str50 name %32s "Name of respondent"
_column(33) long id %5f "Person id"
_skip(2) str50 addr %41s "Address"
_line(2)
_column(1) byte q1 %1f "Question 1"

byte q2 %1f "Question 2"
byte q3 %1f "Question 3"
byte q4 %1f "Question 4"
byte q5 %1f "Question 5"
byte q6 %1f "Question 6"
byte q7 %1f "Question 7"
byte q8 %1f "Question 8"
byte q9 %1f "Question 9"
byte q10 %1f "Question 10"

}
end fname.dct

Up to five pieces of information may be supplied in the dictionary for each variable: the location
of the data, the storage type of the variable, the name of the variable, the input format, and the
variable label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called
name, and is to have the variable label “Name of respondent”. The %32s is the input format, which
tells Stata how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells
Stata to go across 32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id,
and be labeled “Person id”. Stata should start reading the information for this variable in column 33.
The f tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled “Address”.
The skip(2) directs Stata to skip two columns before beginning to read the data for this variable,
and the %41s instructs Stata to read across 41 columns and not to remove embedded blanks.

line(2) instructs Stata to go to line 2 of the observation.

The remainder of the data is 0/1 coded, indicating the answers to the questions. It would be
convenient if we could use a shorthand to specify this portion of the dictionary, but we must supply
explicit directives.

378 infile (fixed format) — Read text data in fixed format with a dictionary

Technical note
In the preceding example, there were two pieces of information about location: where the data

begin for each variable (the column(), skip(), line()) and how many columns the data span
(the %32s, %5f, %41s, %1f). In our dictionary, some of this information was redundant. After reading
name, Stata had finished with 32 columns of information. Unless instructed otherwise, Stata would
proceed to the next column—column 33—to begin reading information about id. The column(33)
was unnecessary.

The skip(2) was necessary, however. Stata had read 37 columns of information and was ready
to look at column 38. Although the address information does not begin until column 40, columns 38
and 39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would
just ignore them without any trouble. The problem is with the %41s. If Stata begins reading the
address information from column 38 and reads 41 columns, Stata would stop reading in column 78
(78− 41 + 1 = 38), but the widest address ends in column 80. We could have omitted the skip(2)
if we had specified an input format of %43s.

The line(2) was necessary, although we could have read the second line by coding newline
instead.

The column(1) could have been omitted. After the line(), Stata begins in column 1.

See the next example for a dataset in which both pieces of location information are required.

Example 11: Manipulating the column pointer

The following file contains six variables in a variety of formats. In the dictionary, we read the
variables fifth and sixth out of order by forcing the column pointer.

begin example.dct
infile dictionary {

first %3f
double second %2.1f

third %6f
_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
1.2125.7e+252abcd 1 .232
1.3135.7 52efgh2 5
1.41457 52abcd 3 100.
1.5155.7D+252efgh04 1.7
16 16 .57 52abcd 5 1.71

end example.dct

Assuming that the above is stored in a file called example.dct, we can infile and list it by
typing

. infile using example

infile dictionary {
first %3f

double second %2.1f
third %6f

_skip(2) str4 fourth %4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}
(5 observations read)

infile (fixed format) — Read text data in fixed format with a dictionary 379

. list

first second third fourth sixth fifth

1. 1.2 1.2 570 abcd .232 1
2. 1.3 1.3 5.7 efgh .5 2
3. 1.4 1.4 57 abcd 100 3
4. 1.5 1.5 570 efgh 1.7 4
5. 16 1.6 .57 abcd 1.71 5

Reading fixed-block files

Technical note
The lrecl(#) directive is used for reading datasets that do not have end-of-line delimiters (carriage

return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where
they are known as fixed block, or FB. The abbreviation LRECL is IBM mainframe jargon for logical
record length.

In a fixed-block dataset, each # characters are to be interpreted as a record. For instance, consider
the data

1 21
2 42
3 63

In fixed-block format, these data might be recorded as

begin mydata.ibm
1 212 423 63

end mydata.ibm

and you would be told, on the side, that the LRECL is 4. If you then pass along that information to
infile, it can read the data:

begin mydata.dct
infile dictionary using mydata.ibm {

_lrecl(4)
int id
int age

}
end mydata.dct

When you do not specify the lrecl(#) directive, infile assumes that each line ends with
the standard ASCII delimiter (which can be a line feed, a carriage return, a line feed followed by a
carriage return, or a carriage return followed by a line feed). When you specify lrecl(#), infile
reads the data in blocks of # characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such
as 160 when it is really 80. To understand what can happen, pretend that you thought the LRECL in
your data was 6 rather than 4. Taking the characters in groups of 6, the data appear as

1 212
423 63

380 infile (fixed format) — Read text data in fixed format with a dictionary

Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify
that you have the correct number.

The maximum LRECL infile allows is 524,275.

Reading EBCDIC files

In the previous section, we discussed the lrecl(#) directive that is often necessary for files that
originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even ASCII files, which are commonly known just as a plain-text
file. Sometimes, these files have an alternate character encoding known as extended binary coded
decimal interchange code (EBCDIC). The EBCDIC encoding was created in the 1960s by IBM for its
mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example;
it would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and
can read data from EBCDIC files.

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from
which you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically
have end-of-line delimiters) and the character positions of the fields in the file. You create a dictionary
for an EBCDIC file just as you would for an ASCII file, using the Do-file Editor or another text editor,
and being sure to use the lrecl() directive in the dictionary to specify the LRECL. You then simply
specify the ebcdic option for infile, and Stata will convert the characters in the file from EBCDIC
to ASCII on the fly:

. infile using mydict, ebcdic

References
Gleason, J. R. 1998. dm54: Capturing comments from data dictionaries. Stata Technical Bulletin 42: 3–4. Reprinted

in Stata Technical Bulletin Reprints, vol. 7, pp. 55–57. College Station, TX: Stata Press.

Gould, W. W. 1992. dm10: Infiling data: Automatic dictionary creation. Stata Technical Bulletin 9: 4–8. Reprinted
in Stata Technical Bulletin Reprints, vol. 2, pp. 28–34. College Station, TX: Stata Press.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3–5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22–25. College Station, TX: Stata Press.

Also see
[D] infile (free format) — Read unformatted text data

[D] infix (fixed format) — Read text data in fixed format

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

http://www.stata.com/products/stb/journals/stb42.pdf
http://www.stata.com/products/stb/journals/stb9.pdf
http://www.stata.com/products/stb/journals/stb20.pdf

Title

infile (free format) — Read unformatted text data

Syntax Menu Description
Options Remarks and examples Also see

Syntax
infile varlist

[
skip

[
(#)

] [
varlist

[
skip

[
(#)

]
. . .
]]]

using filename
[

if
] [

in
]

[
, options

]
options Description

Main

clear replace data in memory

Options

automatic create value labels from nonnumeric data
byvariable(#) organize external file by variables; # is number of observations

Menu
File > Import > Unformatted text data

Description
infile reads into memory from a disk a dataset that is not in Stata format. If filename is specified

without an extension, .raw is assumed.

Note for Stata for Mac and Stata for Windows users: If your filename contains embedded spaces,
remember to enclose it in double quotes.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not
need to know the formatting information. Another variation on infile allows reading fixed-format
data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier
to use if your data are tab- or comma-separated and contain 1 observation per line. Stata has other
commands for reading data, too. If you are not certain that infile will do what you are looking
for, see [D] import and [U] 21 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Options

� � �
Main �

clear specifies that it is okay for the new data to replace the data that are currently in memory. To
ensure that you do not lose something important, infile will refuse to read new data if data are
already in memory. clear allows infile to replace the data in memory. You can also drop the
data yourself by typing drop all before reading new data.

381

382 infile (free format) — Read unformatted text data

� � �
Options �

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

byvariable(#) specifies that the external data file is organized by variables rather than by observations.
All the observations on the first variable appear, followed by all the observations on the second
variable, and so on. Time-series datasets sometimes come in this format.

Remarks and examples
This section describes infile features for reading data in free or comma-separated–value format.

Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables
Skipping observations
Reading time-series data

Reading free-format data

In free format, data are separated by one or more white-space characters—blanks, tabs, or new
lines (carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may
span any number of lines.

Numeric missing values are indicated by single periods (“.”).

Example 1

In the file highway.raw, we have information on the accident rate per million vehicle miles along
a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps
and off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60
4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)

. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

infile (free format) — Read unformatted text data 383

The spacing of the numbers in the original file is irrelevant.

Technical note
Missing values need not be indicated by one period. The third observation on the speed limit is

missing in example 1. The raw data file indicates this by recording one period. Let’s assume, instead,
that the missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6
2.86 60 4.4
1.61 unknown 2.2
3.02 60
4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)

infile warned us that it could not read the word unknown, stored a missing, and then continued to
read the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicate missing data in the same way, this feature can be useful when
reading data. Whenever infile sees something that it does not understand, it warns you, records a
missing, and continues. If, on the other hand, the missing values were recorded not as unknown but
as, say, 99, Stata would have had no difficulty reading the number, but it would also have stored 99
rather than missing. To convert such coded missing values to true missing values, see [D] mvencode.

Reading comma-separated data

In comma-separated–value format, data are separated by commas. You may mix comma-separated–
value and free formats. Missing values are indicated either by single periods or by multiple commas
that serve as placeholders, or both. As with free format, 1 observation may span any number of input
lines.

Example 2

We can modify the format of highway.raw used in example 1 without affecting infile’s ability
to read it. The dataset can be read with the same command, and the results would be the same if the
file instead contained

begin highway.raw, example 3
4.58,55 4.6
2.86, 60,4.4
1.61,,2.2
3.02,60
4.7

end highway.raw, example 3

384 infile (free format) — Read unformatted text data

Specifying variable types

The variable names you type after the word infile are new variables. The syntax for a new
variable is [

type
]

new varname
[
:label name

]
A full discussion of this syntax can be found in [U] 11.4 varlists. As a quick review, new variables
are, by default, of type float. This default can be overridden by preceding the variable name with
a storage type (byte, int, long, float, double, or str#) or by using the set type command. A
list of variables placed in parentheses will be given the same type. For example,

double(first var second var . . . last var)

causes first var second var . . . last var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist var1-var4
is equivalent to specifying var1 var2 var3 var4.

Example 3

In the highway example, we could infile the data acc rate, spdlimit, and acc pts and
force the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1-v3) using highway, clear
(4 observations read)

Reading string variables

By explicitly specifying the types, you can read string variables, as well as numeric variables.

Example 4

Typing infile str20 name age sex using myfile would read

begin myfile.raw
"Sherri Holliday" 25 1
Branton 32 1
"Bill Ross" 27,0

begin myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 "Branton" 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

infile (free format) — Read unformatted text data 385

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes
do not count when calculating the length of strings. Quotes may be omitted altogether if the string
contains no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints.

Technical note
infile can also handle nonnumeric data by using value labels. We will briefly review value

labels, but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable
called sex in our data that represented the sex of the individual, we might code 0 for male and 1 for
female. We could then just remember that every time we see a value of 0 for sex, that observation
refers to a male, whereas 1 refers to a female.

Even better, we could inform Stata that 0 represents males and 1 represents females by typing

. label define sexfmt 0 "Male" 1 "Female"

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is
typically done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than 0 and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. Not only can it go from numeric codes to words
such as “Male” and “Female”, it can also go from the words to the numeric code. We tell infile
the value label that goes with each variable by placing a colon (:) after the variable name and typing
the name of the value label. Before we do that, we use the label define command to inform Stata
of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that
we wish to store numeric codes rather than the strings themselves. This will result in considerable
data compression, especially if we store the numeric code as a byte. We have a dataset named
persons.raw that contains name, sex, and age:

begin persons.raw
"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Carrie House" Female 25

end persons.raw

386 infile (free format) — Read unformatted text data

Here is how we read and encode it at the same time:

. label define sexfmt 0 "Male" 1 "Female"

. infile str16 name sex:sexfmt age using persons
(4 observations read)

. list

name sex age

1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25

The str16 in the infile command applies only to the name variable; sex is a numeric variable,
which we can prove by typing

. list, nolabel

name sex age

1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Technical note
When infile is directed to use a value label and it finds an entry in the file that does not match

any of the codings recorded in the label, it prints a warning message and stores missing for the
observation. By specifying the automatic option, you can instead have infile automatically add
new entries to the value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character
string; the remaining two variables, which we will just call var1 and var2, contain numbers. We
have stored the data in a file called geog.raw:

begin geog.raw
"NE" 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44.33
NCntrl 22.51 55.21

end geog.raw

The easiest way to read this dataset is to type

. infile str6 region var1 var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for
reading a dataset like this containing 20,000 observations. If region were numerically encoded and
stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by
100,000 bytes. We also do not want to bother with first creating the value label. Using the automatic
option, infile creates the value label automatically as it encounters new regions.

infile (free format) — Read unformatted text data 387

. infile byte region:regfmt var1 var2 using geog, automatic clear
(6 observations read)

. list, sep(0)

region var1 var2

1. NE 31.23 87.78
2. NCntrl 29.52 98.92
3. South 29.62 114.69
4. West 28.28 218.92
5. NE 17.5 44.33
6. NCntrl 22.51 55.21

infile automatically created and defined a new value label called regfmt. We can use the label
list command to view its contents:

. label list regfmt
regfmt:

1 NE
2 NCntrl
3 South
4 West

The value label need not be undefined before we use infile with the automatic option. If the
value label regfmt had been previously defined as

. label define regfmt 2 "West"

the result of label list after the infile would have been
regfmt:

2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a
dataset containing, among other things, information about an individual’s sex. We know that the sex
variable is supposed to be coded male and female. If we read the data by using the automatic
option and if one of the records contains fmlae, then infile will blindly create a third sex rather
than print a warning.

Skipping variables

Specifying skip instead of a variable name directs infile to ignore the variable in that location.
This feature makes it possible to extract manageable subsets from large disk datasets. A number of
contiguous variables can be skipped by specifying skip(#), where # is the number of variables to
ignore.

Example 5

In the highway example from example 1, the data file contained three variables: acc rate,
spdlimit, and acc pts. We can read the first two variables by typing

. infile acc_rate spdlimit _skip using highway
(4 observations read)

388 infile (free format) — Read unformatted text data

We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

skip may be specified more than once. If we had a dataset containing four variables—say, a, b,
c, and d—and we wanted to read just a and c, we could type infile a skip c skip using
filename.

Skipping observations

Subsets of observations can be extracted by specifying if exp, which also makes it possible to
extract manageable subsets from large disk datasets. Do not, however, use the variable N in exp.
Use the in range modifier to refer to observation numbers within the disk dataset.

Example 6

Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data

If you are dealing with time-series data, you may receive datasets organized by variables rather
than by observations. All the observations on the first variable appear, followed by all the observations
on the second variable, and so on. The byvariable(#) option specifies that the external data file is
organized in this way. You specify the number of observations in the parentheses, because infile
needs to know that number to read the data properly. You can also mark the end of one variable’s
data and the beginning of another’s data by placing a semicolon (“;”) in the raw data file. You may
then specify a number larger than the number of observations in the dataset and leave it to infile to
determine the actual number of observations. This method can also be used to read unbalanced data.

Example 7

We have time-series data on 4 years recorded in the file time.raw. The dataset contains information
on year, amount, and cost, and is organized by variable:

infile (free format) — Read unformatted text data 389

begin time.raw
1980 1981 1982 1983
14 17 25 30
120 135 150
180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)

. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180

If the data instead contained semicolons marking the end of each series and had no information for
amount in 1983, the raw data might appear as

1980 1981 1982 1983 ;
14 17 25 ;
120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)

. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

Also see
[D] infile (fixed format) — Read text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

Title

infix (fixed format) — Read text data in fixed format

Syntax Menu Description Options
Remarks and examples Also see

Syntax
infix using dfilename

[
if
] [

in
] [

, using(filename2) clear
]

infix specifications using filename
[

if
] [

in
] [

, clear
]

where dfilename, if it exists, contains
begin dictionary file

infix dictionary [using filename] {
* comments preceded by asterisk may appear freely
specifications

}
(your data might appear here)

end dictionary file

and where specifications is

firstlineoffile

lines

#:
/[
byte | int | float | long | double | str

]
varlist

[
#:
]
#
[
-#
]

Menu
File > Import > Text data in fixed format

Description
infix reads into memory from a disk dataset that is not in Stata format. infix requires that the

data be in fixed-column format.

If dfilename is specified without an extension, .dct is assumed. If filename is specified without
an extension, .raw is assumed. If dfilename contains embedded spaces, remember to enclose it in
double quotes.

In the first syntax, if using filename2 is not specified on the command line and using filename is
not specified in the dictionary, the data are assumed to begin on the line following the closing brace.

infile and import delimited are alternatives to infix. infile can also read data in fixed
format—see [D] infile (fixed format)—and it can read data in free format—see [D] infile (free
format). Most people think that infix is easier to use for reading fixed-format data, but infile has
more features. If your data are not fixed format, you can use import delimited; see [D] import
delimited. If you are not certain that infix will do what you are looking for, see [D] import and
[U] 21 Entering and importing data.

390

infix (fixed format) — Read text data in fixed format 391

In its first syntax, infix reads the data in a two-step process. You first create a disk file describing
how the data are recorded. You tell infix to read that file—called a dictionary—and from there,
infix reads the data. The data can be in the same file as the dictionary or in a different file.

In its second syntax, you tell infix how to read the data right on the command line with no
intermediate file.

Options

� � �
Main �

using(filename2) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using(filename2) is specified, filename2

is used to obtain the data, even if the dictionary says otherwise. If filename2 is specified without
an extension, .raw is assumed. If filename2 contains embedded spaces, remember to enclose it in
double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infix will refuse to read new data if data are already in
memory. clear allows infix to replace the data in memory. You can also drop the data yourself
by typing drop all before reading new data.

Specifications

firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which
the data begin. You need not specify first when the data follow the dictionary; infix can figure
that out for itself. You can specify first when only the data appear in a file and the first few
lines of that file contain headers or other markers.

first appears only once in the specifications.

lines states the number of lines per observation in the file. Simple datasets typically have “1
lines”. Large datasets often have many lines (sometimes called records) per observation. lines
is optional, even when there is more than one line per observation, because infix can sometimes
figure it out for itself. Still, if 1 lines is not right for your data, it is best to specify the appropriate
number of lines.

lines appears only once in the specifications.

#: tells infix to jump to line # of the observation. Consider a file with 4 lines, meaning four
lines per observation. 2: says to jump to the second line of the observation. 4: says to jump
to the fourth line of the observation. You may jump forward or backward: infix does not care,
and there is no inefficiency in going forward to 3:, reading a few variables, jumping back to 1:,
reading another variable, and jumping back again to 3:.

You need not ensure that, at the end of your specification, you are on the last line of the observation.
infix knows how to get to the next observation because it knows where you are and it knows
lines, the total number of lines per observation.

#: may appear many times in the specifications.

/ is an alternative to #:. / goes forward one line. // goes forward two lines. We do not recommend
using / because #: is better. If you are currently on line 2 of an observation and want to get to
line 6, you could type ////, but your meaning is clearer if you type 6:.

/ may appear many times in the specifications.

392 infix (fixed format) — Read text data in fixed format

[byte | int | float | long | double | str] varlist [#:]#[-#] instructs infix to read a variable
or, sometimes, more than one.

The simplest form of this is varname #, such as sex 20. That says that variable varname be read
from column # of the current line; that variable sex be read from column 20; and that here, sex
is a one-digit number.

varname #-#, such as age 21-23, says that varname be read from the column range specified;
that age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variable with a storage type. str name 25-44 means to read the string variable
name from columns 25 through 44. If you do not specify str, the variable is assumed to be numeric.
You can specify the numeric subtype if you wish. If you specify str, infix will automatically
assign the appropriate string variable type, str# or strL. Imported strings may be up to 100,000
characters.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read
variables q1, q2, q3, q4, and q5 from columns 51 through 55 and store the five variables as bytes.

Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is
to be obtained from the second line, columns 21 through 23. Another way to do this is to put
together the #: directive with the input-variable directive: 2: age 21-23. There is a difference,
but not with respect to reading the variable age. Let’s consider two alternatives:

1: str name 25-44 age 2:21-23 q1-q5 51-55

1: str name 25-44 2: age 21-23 q1-q5 51-55

The difference is that the first directive says that variables q1 through q5 are on line 1, whereas
the second says that they are on line 2.

When the colon is put in front, it indicates the line on which variables are to be found when we
do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under
consideration.

Remarks and examples

Remarks are presented under the following headings:

Two ways to use infix
Reading string variables
Reading data with multiple lines per observation
Reading subsets of observations

Two ways to use infix

There are two ways to use infix. One is to type the specifications that describe how to read the
fixed-format data on the command line:

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 using highway.raw

The other is to type the specifications into a file,

begin highway.dct, example 1
infix dictionary using highway.raw {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
end highway.dct, example 1

infix (fixed format) — Read text data in fixed format 393

and then, in Stata, type

. infix using highway.dct

The method you use makes no difference to Stata. The first method is more convenient if there are
only a few variables, and the second method is less prone to error if you are reading a big, complicated
file.

The second method allows two variations, the one we just showed—where the data are in another
file—and one where the data are in the same file as the dictionary:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

Note that in the first example, the top line of the file read infix dictionary using highway.raw,
whereas in the second, the line reads simply infix dictionary. When you do not say where the
data are, Stata assumes that the data follow the dictionary.

Example 1

So, let’s complete the example we started. We have a dataset on the accident rate per million
vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access
points per mile. We have created the dictionary file, highway.dct, which contains the dictionary
and the data:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

We created this file outside Stata by using an editor or word processor. In Stata, we now read the
data. infix lists the dictionary so that we will know the directives it follows:

. infix using highway
infix dictionary {

acc_rate 1-4
spdlimit 6-7
acc_pts 9-11

}
(4 observations read)

394 infix (fixed format) — Read text data in fixed format

. list

acc_rate spdlimit acc_pts

1. 4.58 55 .46
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

We simply typed infix using highway rather than infix using highway.dct. When we do not
specify the file extension, infix assumes that we mean .dct.

Reading string variables

When you do not say otherwise in your specification—either in the command line or in the
dictionary—infix assumes that variables are numeric. You specify that a variable is a string by
placing str in front of its name:

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

or

begin employee.dct
infix dictionary using employee.raw {

id 1-6
str name 7-36
age 38-39
str sex 40

}
end employee.dct

Reading data with multiple lines per observation

When a dataset has multiple lines per observation—sometimes called multiple records per
observation—you specify the number of lines per observation by using lines, and you specify
the line on which the elements appear by using #:. For example,

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

or

begin emp2.dct
infix dictionary using emp2.raw {

2 lines
1:

id 1-6
str name 7-36

2:
age 1-2
str sex 4

}
end emp2.dct

There are many different ways to do the same thing.

infix (fixed format) — Read text data in fixed format 395

Example 2

Consider the following raw data:

begin mydata.raw
id income educ / sex age / rcode, answers to questions 1-5
1024 25000 HS

Male 28
1 1 9 5 0 3

1025 27000 C
Female 24
0 2 2 1 1 3

1035 26000 HS
Male 32
1 1 0 3 2 1

1036 25000 C
Female 25
1 3 1 2 3 2

end mydata.raw

This dataset has three lines per observation, and the first line is just a comment. One possible method
for reading these data is

begin mydata1.dct
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
end mydata1.dct

although we prefer

begin mydata2.dct
infix dictionary using mydata {

2 first
3 lines

id 1: 1-4
income 1: 6-10
str educ 1:12-13
str sex 2: 6-11
age 2:13-14
rcode 3: 6
q1-q5 3: 7-16

}
end mydata2.dct

Either method will read these data, so we will use the first and then explain why we prefer the second.

396 infix (fixed format) — Read text data in fixed format

. infix using mydata1
infix dictionary using mydata {

2 first
3 lines
1: id 1-4

income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14

3: rcode 6
q1-q5 7-16

}
(4 observations read)

. list in 1/2

id income educ sex age rcode q1 q2 q3 q4 q5

1. 1024 25000 HS Male 28 1 1 9 5 0 3
2. 1025 27000 C Female 24 0 2 2 1 1 3

What is better about the second is that the location of each variable is completely documented on
each line—the line number and column. Because infix does not care about the order in which we
read the variables, we could take the dictionary and jumble the lines, and it would still work. For
instance,

begin mydata3.dct
infix dictionary using mydata {

2 first
3 lines

str sex 2: 6-11
rcode 3: 6
str educ 1:12-13
age 2:13-14
id 1: 1-4
q1-q5 3: 7-16
income 1: 6-10

}
end mydata3.dct

will also read these data even though, for each observation, we start on line 2, go forward to line
3, jump back to line 1, and end up on line 1. It is not inefficient to do this because infix does
not really jump to record 2, then record 3, then record 1 again, etc. infix takes what we say and
organizes it efficiently. The order in which we say it makes no difference, except that the order of
the variables in the resulting Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable.
Moreover, we often construct dictionaries, realize that we omitted a variable, and then go back and
modify them. By making each line complete, we can add new variables anywhere in the dictionary
and not worry that, because of our addition, something that occurs later will no longer read correctly.

infix (fixed format) — Read text data in fixed format 397

Reading subsets of observations

If you wanted to read only the information about males from some raw data file, you might type

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex=="M"

If your specification was instead recorded in a dictionary, you could type

. infix using employee.dct if sex=="M"

In another dataset, if you wanted to read just the first 100 observations, you could type

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw
> in 1/100

or if the specification was instead recorded in a dictionary and you wanted observations 101–573,
you could type

. infix using emp2.dct in 101/573

Also see
[D] infile (fixed format) — Read text data in fixed format with a dictionary

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

Title

input — Enter data from keyboard

Syntax Description Options Remarks and examples
Reference Also see

Syntax

input
[

varlist
] [

, automatic label
]

Description
input allows you to type data directly into the dataset in memory. See also [D] edit for a windowed

alternative to input.

Options
automatic causes Stata to create value labels from the nonnumeric data it encounters. It also

automatically widens the display format to fit the longest label. Specifying automatic implies
label, even if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated
with value labels. New value labels are not automatically created unless automatic is specified.

Remarks and examples
If no data are in memory, you must specify a varlist when you type input. Stata will then prompt

you to enter the new observations until you type end.

Example 1

We have data on the accident rate per million vehicle miles along a stretch of highway, along with
the speed limit on that highway. We wish to type these data directly into Stata:

. input
nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to
know the names of the variables we wish to create.

. input acc_rate spdlimit

acc_rate spdlimit
1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end

.

398

input — Enter data from keyboard 399

We typed input acc rate spdlimit, and Stata responded by repeating the variable names and
prompting us for the first observation. We entered the values for the first two observations, pressing
Return after each value was entered. For the third observation, we entered the accident rate (1.61),
but we entered a period (.) for missing because we did not know the corresponding speed limit for
the highway. After entering data for the fourth observation, we typed end to let Stata know that there
were no more observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61 .

If you have data in memory and type input without a varlist, you will be prompted to enter more
information on all the variables. This continues until you type end.

Example 2: Adding observations

We now have another observation that we wish to add to the dataset. Typing input by itself tells
Stata that we wish to add new observations:

. input

acc_rate spdlimit
4. 3.02 60
5. end

.

Stata reminded us of the names of our variables and prompted us for the fourth observation. We
entered the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation.
We could add as many new observations as we wish. Because we needed to add only 1 observation,
we typed end. Our dataset now has 4 observations.

You may add new variables to the data in memory by typing input followed by the names of the
new variables. Stata will begin by prompting you for the first observation, then the second, and so
on, until you type end or enter the last observation.

Example 3: Adding variables

In addition to the accident rate and speed limit, we now obtain data on the number of access points
(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts

acc_pts
1. 4.6
2. 4.4
3. 2.2
4. 4.7

.

400 input — Enter data from keyboard

When we typed input acc pts, Stata responded by prompting us for the first observation. There
are 4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us
for the second observation, and so on. We entered each of the numbers. When we entered the final
observation, Stata automatically stopped prompting us—we did not have to type end. Stata knows that
there are 4 observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the
new variables with missing. To illustrate this, we enter one more variable to our data and then list
the result:

. input junk

junk
1. 1
2. 2
3. end

. list

acc_rate spdlimit acc_pts junk

1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2 .
4. 3.02 60 4.7 .

You can input string variables by using input, but you must remember to indicate explicitly that
the variables are strings by specifying the type of the variable before the variable’s name.

Example 4: Inputting string variables

String variables are indicated by the types str# or strL. For str#, # represents the storage
length, or maximum length, of the variable. For instance, a str4 variable has a maximum length
of 4, meaning that it can contain the strings a, ab, abc, and abcd, but not abcde. Strings shorter
than the maximum length can be stored in the variable, but strings longer than the maximum length
cannot. You can create variables up to str2045. You can create strL variables of arbitrary length.

Although a str80 variable can store strings shorter than 80 characters, you should not make all
your string variables str80 because Stata allocates space for strings on the basis of their maximum
length. Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input str16 name age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. Guy Fawkes 48 male

’Fawkes’ cannot be read as a number
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable
and sex a str6 variable. Because we did not specify anything about age, Stata made it a numeric
variable.

input — Enter data from keyboard 401

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we
typed in double quotes. The double quotes are not really part of the string; they merely delimit the
beginning and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male.
We did not bother to type double quotes around the word male because it contained no blanks or
special characters. For the second observation, we typed the double quotes around female; it changed
nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us
that Fawkes could not be read as a number and reprompted us for the observation. When we omitted
the double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This
would have been okay with Stata, except for one problem: Fawkes looks nothing like a number, so
Stata complained and gave us another chance. This time, we remembered to put the double quotes
around the name.

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is
our dataset:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

Example 5: Specifying numeric storage types

Just as we indicated the string variables by placing a storage type in front of the variable name, we
can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:
byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that
the variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to
conserve memory. The default type float has plenty of precision for most circumstances because
Stata performs all calculations in double precision, no matter how the data are stored. If you were
storing nine-digit Social Security numbers, however, you would want to use a different storage type,
or the last digit would be rounded. long would be the best choice; double would work equally well,
but it would waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers
between −32,767 and 32,740, it can be stored as an int and would take only half the space. If a
variable contains only integers between −127 and 100, it can be stored as a byte, which would take
only half again as much space. For instance, in example 4 we entered data for age without explicitly
specifying the storage type; hence, it was stored as a float. It would have been better to store it as
a byte. To do that, we would have typed

. input str16 name byte age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

402 input — Enter data from keyboard

Stata understands several shorthands. For instance, typing

. input int(a b) c

allows you to input three variables—a, b, and c—and makes both a and b ints and c a float.
Remember, typing

. input int a b c

would make a an int but both b and c floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to
typing v1 v2 v3 v4. Thus typing

. input int(v1-v4)

inputs four variables and stores them as ints.

Technical note

The rest of this section deals with using input with value labels. If you are not familiar with
value labels, see [U] 12.6.3 Value labels.

Value labels map numbers into words and vice versa. There are two aspects to the process. First,
we must define the association between numbers and words. We might tell Stata that 0 corresponds
to male and 1 corresponds to female by typing label define sexlbl 0 "male" 1 "female".
The correspondences are named, and here we have named the 0↔male 1↔female correspondence
sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and
the variable were called sex, we would do this by typing label values sex sexlbl. We would
have entered the data by typing 0s and 1s, but at least now when we list the data, we would see
the words rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with
the variable at the time we input the data and tell Stata to use the value label to interpret what we
type:

. label define sexlbl 0 "male" 1 "female"

. input str16 name byte(age sex:sexlbl), label

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

After defining the value label, we typed our input command. We added the label option at the
end of the command, and we typed sex:sexlbl for the name of the sex variable. The byte(. . .)
around age and sex:sexlbl was not really necessary; it merely forced both age and sex to be
stored as bytes.

input — Enter data from keyboard 403

Let’s first decipher sex:sexlbl. sex is the name of the variable we want to input. The :sexlbl
part tells Stata that the new variable is to be associated with the value label named sexlbl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value
label and substitute the number when it stores the data. Thus when we entered the first observation
of our data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric.
Rather than complaining that “"male" could not be read as a number”, Stata accepted what we typed,
looked up the number corresponding to male, and stored that number in the data.

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if
those words were actually stored in the dataset rather than their numeric codings:

. list

name age sex

1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

. tabulate sex

sex Freq. Percent Cum.

male 2 50.00 50.00
female 2 50.00 100.00

Total 4 100.00

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For
instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata
would report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a
variable, we never have to do so again. If we wanted to add another observation to these data, we
could type

. input, label

name age sex
5. "Mark Esman" 26 male
6. end

.

Technical note
The automatic option automates the definition of the value label. In the previous example, we

informed Stata that male corresponds to 0 and female corresponds to 1 by typing label define
sexlbl 0 "male" 1 "female". It was not necessary to explicitly specify the mapping. Specifying
the automatic option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not
a number, check the value label associated with the variable in an attempt to interpret it. If an
interpretation exists, store the corresponding numeric code. If one does not exist, add a new numeric
code corresponding to what was typed. Store that new number and update the value label so that the
new correspondence is never forgotten.

404 input — Enter data from keyboard

We can use these features to reenter our age and sex data. Before reentering the data, we drop
all and label drop all to prove that we have nothing up our sleeve:

. drop _all

. label drop _all

. input str16 name byte(age sex:sexlbl), automatic

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

.

We previously defined the value label sexlbl so that male corresponded to 0 and female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 male
2 female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

Also see
[D] edit — Browse or edit data with Data Editor

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[U] 21 Entering and importing data

http://www.stata-journal.com/sjpdf.html?articlenum=dm0010

Title

inspect — Display simple summary of data’s attributes

Syntax Menu Description Remarks and examples
Stored results Also see

Syntax

inspect
[

varlist
] [

if
] [

in
]

by is allowed; see [D] by.

Menu
Data > Describe data > Inspect variables

Description
The inspect command provides a quick summary of a numeric variable that differs from the

summary provided by summarize or tabulate. It reports the number of negative, zero, and positive
values; the number of integers and nonintegers; the number of unique values; and the number of
missing; and it produces a small histogram. Its purpose is not analytical but is to allow you to quickly
gain familiarity with unknown data.

Remarks and examples
Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify

a varlist, an inspection of just those variables is presented.

Example 1

inspect is not a replacement or substitute for summarize and tabulate. It is instead a data
management or information tool that lets us quickly gain insight into the values stored in a variable.

For instance, we receive data that purport to be on automobiles, and among the variables in
the dataset is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We
inspect the variable,

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. inspect mpg

mpg: Mileage (mpg) Number of Observations

Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 74 74 -

#
Total 74 74 -
. Missing -

12 41 74
(21 unique values)

405

406 inspect — Display simple summary of data’s attributes

and we discover that the variable is never missing; all 74 observations in the dataset have some
value for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74
observations are 21 unique (different) values. The variable ranges from 12 to 41, and we are provided
with a small histogram that suggests that the variable appears to be what it claims.

Example 2

Bob, a coworker, presents us with some census data. Among the variables in the dataset is one
called region, which is labeled Census Region and is evidently a numeric variable. We inspect
this variable:

. use http://www.stata-press.com/data/r13/bobsdata
(1980 Census data by state)

. inspect region

region: Census region Number of Observations

Total Integers Nonintegers
Negative - - -
Zero - - -

Positive 50 50 -
#
Total 50 50 -
. Missing -

1 5 50
(5 unique values)

region is labeled but 1 value is NOT documented in the label.

In this dataset something may be wrong. region takes on five unique values. The variable has a
value label, however, and one of the observed values is not documented in the label. Perhaps there
is a typographical error.

Example 3

There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces
now:

. use http://www.stata-press.com/data/r13/census
(1980 Census data by state)

. inspect region

region: Census region Number of Observations

Total Integers Nonintegers
Negative - - -
Zero - - -

Positive 50 50 -
#
Total 50 50 -
Missing -

1 4 50
(4 unique values)

region is labeled and all values are documented in the label.

inspect — Display simple summary of data’s attributes 407

Example 4

We receive data on the climate in 956 U.S. cities. The variable tempjan records the Average
January temperature in degrees Fahrenheit. The results of inspect are

. use http://www.stata-press.com/data/r13/citytemp
(City Temperature Data)

. inspect tempjan

tempjan: Average January temperature Number of Observations

Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 954 78 876
#
Total 954 78 876

. # # # . Missing 2

2.2 72.6 956
(More than 99 unique values)

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan,
all are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are
more than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)

Stored results
inspect stores the following in r():
Scalars

r(N) number of observations
r(N neg) number of negative observations
r(N 0) number of observations equal to 0
r(N pos) number of positive observations
r(N negint) number of negative integer observations
r(N posint) number of positive integer observations
r(N unique) number of unique values or . if more than 99
r(N undoc) number of undocumented values or . if not labeled

Also see
[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] isid — Check for unique identifiers

[R] lv — Letter-value displays

[R] summarize — Summary statistics

[R] table — Flexible table of summary statistics

[R] tabulate oneway — One-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] tabulate twoway — Two-way table of frequencies

Title

ipolate — Linearly interpolate (extrapolate) values

Syntax Menu Description Options
Remarks and examples Methods and formulas Reference Also see

Syntax
ipolate yvar xvar

[
if
] [

in
]
, generate(newvar)

[
epolate

]
by is allowed; see [D] by.

Menu
Data > Create or change data > Other variable-creation commands > Linearly interpolate/extrapolate values

Description
ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.

Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied
values of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of
newvar is just yvar.

Options
generate(newvar) is required and specifies the name of the new variable to be created.

epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

Remarks and examples

Example 1

We have data points on y and x, although sometimes the observations on y are missing. We believe
that y is a function of x, justifying filling in the missing values by linear interpolation:

. use http://www.stata-press.com/data/r13/ipolxmpl1

. list, sep(0)

x y

1. 0 .
2. 1 3
3. 1.5 .
4. 2 6
5. 3 .
6. 3.5 .
7. 4 18

. ipolate y x, gen(y1)
(1 missing value generated)

. ipolate y x, gen(y2) epolate

408

ipolate — Linearly interpolate (extrapolate) values 409

. list, sep(0)

x y y1 y2

1. 0 . . 0
2. 1 3 3 3
3. 1.5 . 4.5 4.5
4. 2 6 6 6
5. 3 . 12 12
6. 3.5 . 15 15
7. 4 18 18 18

Example 2

We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the
magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year.
In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.

. use http://www.stata-press.com/data/r13/ipolxmpl2, clear

. by magazine: ipolate circ year, gen(icirc)

When the by prefix is specified, interpolation is performed separately for each group.

Methods and formulas
The value y at x is found by finding the closest points (x0, y0) and (x1, y1), such that x0 < x

and x1 > x where y0 and y1 are observed, and calculating

y =
y1 − y0

x1 − x0
(x− x0) + y0

If epolate is specified and if (x0, y0) and (x1, y1) cannot be found on both sides of x, the two
closest points on the same side of x are found, and the same formula is applied.

If there are multiple observations with the same value for x0, then y0 is taken as the average of
the corresponding y values for those observations. (x1, y1) is handled in the same way.

Reference
Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing.

Proceedings of the IEEE 90: 319–342.

Also see
[MI] mi impute — Impute missing values

Title

isid — Check for unique identifiers

Syntax Menu Description Options
Remarks and examples Also see

Syntax

isid varlist
[
using filename

] [
, sort missok

]
Menu

Data > Data utilities > Check for unique identifiers

Description
isid checks whether the specified variables uniquely identify the observations.

Options
sort specifies that the dataset be sorted by varlist.

missok indicates that missing values are permitted in varlist.

Remarks and examples

Example 1

Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations
in our auto dataset.

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. isid mpg
variable mpg does not uniquely identify the observations
r(459);

isid returns an error and reports that there are multiple observations with the same mileage rating.
We can locate those observations manually:

410

isid — Check for unique identifiers 411

. sort mpg

. by mpg: generate nobs = _N

. list make mpg if nobs >1, sepby(mpg)

make mpg

1. Linc. Mark V 12
2. Linc. Continental 12

(output omitted)
68. Dodge Colt 30
69. Mazda GLC 30

72. Datsun 210 35
73. Subaru 35

Example 2

isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need
two variables to identify the observations: one that labels the individual IDs and another that labels the
periods. Before we set the data using tsset, we want to make sure that there are no duplicates with
the same panel ID and time. Suppose that we have a dataset that records the yearly gross investment
of 10 companies for 20 years. The panel and time variables are company and year.

. use http://www.stata-press.com/data/r13/grunfeld, clear

. isid company year

isid reports no error, so the two variables company and year uniquely identify the observations.
Therefore, we should be able to tsset the data successfully:

. tsset company year
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954
delta: 1 year

Technical note
The sort option is a convenient shortcut, especially when combined with using. The command

. isid patient_id date using newdata, sort

is equivalent to

. preserve

. use newdata, clear

. sort patient_id date

. isid patient_id date

. save, replace

. restore

412 isid — Check for unique identifiers

Also see
[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] duplicates — Report, tag, or drop duplicate observations

[D] lookfor — Search for string in variable names and labels

[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

joinby — Form all pairwise combinations within groups

Syntax Menu Description
Options Remarks and examples Acknowledgment
Reference Also see

Syntax

joinby
[

varlist
]
using filename

[
, options

]
options Description

Options

When observations match:
update replace missing data in memory with values from filename
replace replace all data in memory with values from filename

When observations do not match:
unmatched(none) ignore all; the default
unmatched(both) include from both datasets
unmatched(master) include from data in memory
unmatched(using) include from data in filename

merge(varname) varname marks source of resulting observation; default is merge

nolabel do not copy value-label definitions from filename

varlist may not contain strLs.

Menu
Data > Combine datasets > Form all pairwise combinations within groups

Description
joinby joins, within groups formed by varlist, observations of the dataset in memory with filename,

a Stata-format dataset. By join we mean to form all pairwise combinations. filename is required to
be sorted by varlist. If filename is specified without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in
memory and in filename.

Observations unique to one or the other dataset are ignored unless unmatched() specifies differently.
Whether you load one dataset and join the other or vice versa makes no difference in the number of
resulting observations.

If there are common variables between the two datasets, however, the combined dataset will
contain the values from the master data for those observations. This behavior can be modified with
the update and replace options.

413

414 joinby — Form all pairwise combinations within groups

Options

� � �
Options �

update varies the action that joinby takes when an observation is matched. By default, values from
the master data are retained when the same variables are found in both datasets. If update is
specified, however, the values from the using dataset are retained where the master dataset contains
missing.

replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced
with corresponding values from the using dataset. A nonmissing value, however, will never be
replaced with a missing value.

unmatched(none | both | master | using) specifies whether observations unique to one of the datasets
are to be kept, with the variables from the other dataset set to missing. Valid values are

none ignore all unmatched observations (default)
both include unmatched observations from the master and using data
master include unmatched observations from the master data
using include unmatched observations from the using data

merge(varname) specifies the name of the variable that will mark the source of the resulting
observation. The default name is merge(merge). To preserve compatibility with earlier versions
of joinby, merge is generated only if unmatched is specified.

nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the
dataset in memory. Even if you do not specify this option, label definitions from the disk dataset
do not replace label definitions already in memory.

Remarks and examples
The following, admittedly artificial, example illustrates joinby.

Example 1

We have two datasets: child.dta and parent.dta. Both contain a family id variable, which
identifies the people who belong to the same family.

. use http://www.stata-press.com/data/r13/child
(Data on Children)

. describe

Contains data from http://www.stata-press.com/data/r13/child.dta
obs: 5 Data on Children
vars: 4 11 Dec 2012 21:08
size: 30

storage display value
variable name type format label variable label

family_id int %8.0g Family ID number
child_id byte %8.0g Child ID number
x1 byte %8.0g
x2 int %8.0g

Sorted by: family_id

joinby — Form all pairwise combinations within groups 415

. list

family~d child_id x1 x2

1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210

. use http://www.stata-press.com/data/r13/parent
(Data on Parents)

. describe

Contains data from http://www.stata-press.com/data/r13/parent.dta
obs: 6 Data on Parents
vars: 4 11 Dec 2012 03:06
size: 84

storage display value
variable name type format label variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g

Sorted by:

. list, sep(0)

family~d parent~d x1 x3

1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

We want to join the information for the parents and their children. The data on parents are in memory,
and the data on children are posted at http://www.stata-press.com. child.dta has been sorted by
family id, but parent.dta has not, so first we sort the parent data on family id:

http://www.stata-press.com

416 joinby — Form all pairwise combinations within groups

. sort family_id

. joinby family_id using http://www.stata-press.com/data/r13/child

. describe

Contains data
obs: 8 Data on Parents
vars: 6
size: 136

storage display value
variable name type format label variable label

family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g
child_id byte %8.0g Child ID number
x2 int %8.0g

Sorted by:
Note: dataset has changed since last saved

. list, sepby(family_id) abbrev(12)

family_id parent_id x1 x3 child_id x2

1. 1025 12 27 721 1 300
2. 1025 12 27 721 4 275
3. 1025 12 27 721 3 320
4. 1025 11 20 643 4 275
5. 1025 11 20 643 1 300
6. 1025 11 20 643 3 320

7. 1026 13 30 760 2 280
8. 1026 14 26 668 2 280

1. family id of 1027, which appears only in child.dta, and family id of 1030, which appears
only in parent.dta, are not in the combined dataset. Observations for which the matching
variables are not in both datasets are omitted.

2. The x1 variable is in both datasets. Values for this variable in the joined dataset are the values
from parent.dta—the dataset in memory when we issued the joinby command. If we had
child.dta in memory and parent.dta on disk when we requested joinby, the values for x1
would have been those from child.dta. Values from the dataset in memory take precedence over
the dataset on disk.

Acknowledgment
joinby was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The

Netherlands.

joinby — Form all pairwise combinations within groups 417

Reference
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see
[D] append — Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] fillin — Rectangularize dataset

[D] merge — Merge datasets

[D] save — Save Stata dataset

[U] 22 Combining datasets

http://www.stata-press.com/books/isp.html

Title

label — Manipulate labels

Syntax Menu Description Options
Remarks and examples Stored results References Also see

Syntax
Label dataset

label data
[
"label"

]
Label variable

label variable varname
[
"label"

]
Define value label

label define lblname # "label"
[

"label" . . .
] [

, add modify replace nofix
]

Assign value label to variables

label values varlist
[

lblname | .
] [

, nofix
]

List names of value labels

label dir

List names and contents of value labels

label list
[

lblname
[

lblname . . .
]]

Copy value labels

label copy lblname lblname
[
, replace

]
Drop value labels

label drop
{

lblname
[

lblname . . .
]
| all

}
Save value labels in do-file

label save
[

lblname
[

lblname . . .
]]

using filename
[
, replace

]
where # is an integer or an extended missing value (.a, .b, . . . , .z).

418

label — Manipulate labels 419

Menu
label data

Data > Data utilities > Label utilities > Label dataset

label variable

Data > Variables Manager

label define

Data > Variables Manager

label values

Data > Variables Manager

label list

Data > Data utilities > Label utilities > List value labels

label copy

Data > Data utilities > Label utilities > Copy value labels

label drop

Data > Variables Manager

label save

Data > Data utilities > Label utilities > Save value labels as do-file

Description

label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are
displayed when you use the dataset and when you describe it. If no label is specified, any existing
label is removed.

label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any
existing variable label is removed.

label define defines a list of up to 65,536 (1,000 for Small Stata) associations of integers and
text called value labels. Value labels are attached to variables by label values.

label values attaches a value label to varlist. If . is specified instead of lblname, any existing
value label is detached from that varlist. The value label, however, is not deleted. The syntax label
values varname (that is, nothing following the varname) acts the same as specifying the .. Value
labels may be up to 32,000 characters long.

label dir lists the names of value labels stored in memory.

label list lists the names and contents of value labels stored in memory.

label copy makes a copy of an existing value label.

label drop eliminates value labels.

label save saves value labels in a do-file. This is particularly useful for value labels that are not
attached to a variable because these labels are not saved with the data.

See [D] label language for information on the label language command.

420 label — Manipulate labels

Options
add allows you to add #↔ label correspondences to lblname. If add is not specified, you may create

only new lblnames. If add is specified, you may create new lblnames or add new entries to existing
lblnames.

modify allows you to modify or delete existing #↔ label correspondences and add new correspon-
dences. Specifying modify implies add, even if you do not type the add option.

replace, with label define, allows an existing value label to be redefined. replace, with label
copy, allows an existing value label to be copied over. replace, with label save, allows filename
to be replaced.

nofix prevents display formats from being widened according to the maximum length of the value
label. Consider label values myvar mylab, and say that myvar has a %9.0g display format
right now. Say that the maximum length of the strings in mylab is 12 characters. label values
would change the format of myvar from %9.0g to %12.0g. nofix prevents this.

nofix is also allowed with label define, but it is relevant only when you are modifying an
existing value label. Without the nofix option, label define finds all the variables that use this
value label and considers widening their display formats. nofix prevents this.

Remarks and examples
See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry

deals only with details not covered there.

label dir lists the names of all defined value labels. label list displays the contents of a
value label.

Example 1

Although describe shows the names of the value labels, those value labels may not exist. Stata
does not consider it an error to label the values of a variable with a nonexistent label. When this
occurs, Stata still shows the association on describe but otherwise acts as if the variable’s values
are unlabeled. This way, you can associate a value label name with a variable before creating the
corresponding label. Similarly, you can define labels that you have not yet used.

. use http://www.stata-press.com/data/r13/hbp4

. describe

Contains data from http://www.stata-press.com/data/r13/hbp4.dta
obs: 1,130
vars: 7 22 Jan 2013 11:12
size: 19,210

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

label — Manipulate labels 421

The dataset is using the value label sexlbl. Let’s define the value label yesno:

. label define yesno 0 "no" 1 "yes"

label dir shows you the labels that you have actually defined:

. label dir
yesno
sexlbl

We have two value labels stored in memory: yesno and sexlbl.

We can display the contents of a value label with the label list command:

. label list yesno
yesno:

0 no
1 yes

The value label yesno labels the values 0 as no and 1 as yes.

If you do not specify the name of the value label on the label list command, Stata lists all the
value labels:

. label list
yesno:

0 no
1 yes

sexlbl:
0 male
1 female

Technical note
Because Stata can have more value labels stored in memory than are actually used in the dataset,

you may wonder what happens when you save the dataset. Stata stores only those value labels
actually associated with variables.

When you use a dataset, Stata eliminates all the value labels stored in memory before loading
the dataset.

You can add new codings to an existing value label by using the add option with the label
define command. You can modify existing codings by using the modify option. You can redefine
a value label by specifying the replace option.

Example 2

The label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as
maybe. Typing label define with no options results in an error:

. label define yesno 2 maybe
label yesno already defined
r(110);

If you do not specify the add, modify, or replace options, label define can be used only to
create new value labels. The add option lets you add codings to an existing label:

422 label — Manipulate labels

. label define yesno 2 maybe, add

. label list yesno
yesno:

0 no
1 yes
2 maybe

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean “maybe” but may
instead mean “don’t know”. add does not allow you to change an existing label:

. label define yesno 2 "don’t know", add
invalid attempt to modify label
r(180);

Instead, you would specify the modify option:

. label define yesno 2 "don’t know", modify

. label list yesno
yesno:

0 no
1 yes
2 don’t know

In this way, Stata attempts to protect you from yourself. If you type label define with no
options, you can only create a new value label—you cannot accidentally change an existing one. If
you specify the add option, you can add new labels to a label, but you cannot accidentally change
any existing label. If you specify the modify option, which you may not abbreviate, you can change
any existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric
code to a null string, that is, "":

. label define yesno 2 "", modify

. label list yesno
yesno:

0 no
1 yes

You can eliminate entire value labels by using the label drop command.

Example 3

We currently have two value labels stored in memory—sexlbl and yesno—as shown by the
label dir command:

. label dir
yesno
sexlbl

The dataset that we have in memory uses only one of the labels—sexlbl. describe reports that
yesno is not being used:

label — Manipulate labels 423

. describe

Contains data from http://www.stata-press.com/data/r13/hbp4.dta
obs: 1,130
vars: 7 22 Jan 2013 11:12
size: 19,210

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

We can eliminate the yesno label by typing

. label drop yesno

. label dir
sexlbl

We could eliminate all the value labels in memory by typing

. label drop _all

. label dir

The value label sexlbl, which no longer exists, was associated with the variable female. Even
after dropping the value label, sexlbl is still associated with the variable:

. describe

Contains data from http://www.stata-press.com/data/r13/hbp4.dta
obs: 1,130
vars: 7 22 Jan 2013 11:12
size: 19,210

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

424 label — Manipulate labels

Stata does not mind if a nonexistent value label is associated with a variable. When Stata uses such
a variable, it simply acts as if the variable is not labeled:

. list in 1/4

id city year age_grp race hbp female

1. 8008238923 1 1993 2 2 0 1
2. 8007143470 1 1992 5 . 0 .
3. 8000468015 1 1988 4 2 0 0
4. 8006167153 1 1991 4 2 0 0

The label save command creates a do-file containing label define commands for each label
you specify. If you do not specify the lblnames, all value labels are stored in the file. If you do not
specify the extension for filename, .do is assumed.

Example 4

label copy is useful when you want to create a new value label that is similar to an existing
value label. For example, assume that we currently have the value label yesno in memory:

. label list yesno
yesno:

1 yes
2 no

Assume that we have some variables in our dataset coded with 1 and 2 for “yes” and “no” and
that we have some other variables coded with 1 for “yes”, 2 for “no”, and 3 for “maybe”.

We could make a copy of label yesno and then add the new coding to that copy:

. label copy yesno yesnomaybe

. label define yesnomaybe 3 "maybe", add

. label list
yesnomaybe:

1 yes
2 no
3 maybe

yesno:
1 yes
2 no

Example 5

Labels are automatically stored with your dataset when you save it. Conversely, the use command
drops all labels before loading the new dataset. You may occasionally wish to move a value label
from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:

. label list yesnomaybe
yesnomaybe:

1 yes
2 no
3 maybe

label — Manipulate labels 425

We have a dataset stored on disk called survey.dta to which we wish to add this value label.
We might use survey and then retype the label define yesnomaybe command. Retyping the
label would not be too tedious here but if the value label in memory mapped, say, the 50 states of
the United States, retyping it would be irksome. label save provides an alternative:

. label save yesnomaybe using ynfile
file ynfile.do saved

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do
containing the definition of the yesnomaybe label.

To see the contents of the file, we can use the type command:

. type ynfile.do
label define yesnomaybe 1 ‘"yes"’, modify
label define yesnomaybe 2 ‘"no"’, modify
label define yesnomaybe 3 ‘"maybe"’, modify

We can now use our new dataset, survey.dta:

. use survey
(Household survey data)

. label dir

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe
is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing
either do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If
we type run, the file will execute silently:

. run ynfile

. label dir
yesnomaybe

The label is now restored just as if we had typed it from the keyboard.

Technical note
You can also use the label save command to more easily edit value labels. You can save a label

in a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata.
Using do or run, you can load the edited values.

Stored results
label list stores the following in r():

Scalars
r(k) number of mapped values, including missings
r(min) minimum nonmissing value label
r(max) maximum nonmissing value label
r(hasemiss) 1 if extended missing values labeled, 0 otherwise

426 label — Manipulate labels

label dir stores the following in r():

Macros
r(names) names of value labels

References
Gleason, J. R. 1998a. dm56: A labels editor for Windows and Macintosh. Stata Technical Bulletin 43: 3–6. Reprinted

in Stata Technical Bulletin Reprints, vol. 8, pp. 5–10. College Station, TX: Stata Press.

. 1998b. dm56.1: Update to labedit. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7–8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39–40. College Station, TX: Stata Press.

. 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154–161.

. 2005b. Multilingual datasets. Stata Journal 5: 162–187.

Also see
[D] label language — Labels for variables and values in multiple languages

[D] labelbook — Label utilities

[D] encode — Encode string into numeric and vice versa

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.6 Dataset, variable, and value labels

http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-press.com/books/wdaus.html
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0012
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

label language — Labels for variables and values in multiple languages

Syntax Menu Description Option
Remarks and examples Stored results Methods and formulas References
Also see

Syntax

List defined languages

label language

Change labels to specified language name

label language languagename

Create new set of labels with specified language name

label language languagename, new
[
copy

]
Rename current label set

label language languagename, rename

Delete specified label set

label language languagename, delete

Menu
Data > Data utilities > Label utilities > Set label language

Description

label language lets you create and use datasets that contain different sets of data, variable, and
value labels. A dataset might contain one set in English, another in German, and a third in Spanish.
A dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need
not use the multiple sets in this way. You could create a dataset with one set of long labels and
another set of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose
among the sets by typing

. label language languagename

427

428 label language — Labels for variables and values in multiple languages

When other Stata commands produce output (such as describe and tabulate), they use the
currently set language. When you define or modify the labels by using the other label commands
(see [D] label), you modify the current set.

label language (without arguments)
lists the available languages and the name of the current one. The current language refers to
the labels you will see if you used, say, describe or tabulate. The available languages refer
to the names of the other sets of previously created labels. For instance, you might currently
be using the labels in en (English), but labels in de (German) and es (Spanish) may also be
available.

label language languagename
changes the labels to those of the specified language. For instance, if label language revealed
that en, de, and es were available, typing label language de would change the current
language to German.

label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may
name the set as you please, as long as the name does not exceed 24 characters. If the labels
correspond to spoken languages, we recommend that you use the language’s ISO 639-1 two-letter
code, such as en for English, de for German, and es for Spanish. A list of codes for popular
languages is listed in the appendix below. For a complete list, see
http://lcweb.loc.gov/standards/iso639-2/iso639jac.html.

label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default
and you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet
used label language to create a new language, the dataset will have one language, named
default.

label language languagename, delete
deletes the specified label set. If languagename is also the current language, one of the other
available languages becomes the current language.

Option
copy is used with label language, new and copies the labels from the current language to the

new language.

Remarks and examples
Remarks are presented under the following headings:

Creating labels in the first language
Creating labels in the second and subsequent languages
Creating labels from a clean slate
Creating labels from a previously existing language
Switching languages
Changing the name of a language
Deleting a language
Appendix: Selected ISO 639-1 two-letter codes

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

label language — Labels for variables and values in multiple languages 429

Creating labels in the first language

You can begin by ignoring the label language command. You create the data, variable, and
value labels just as you would ordinarily; see [D] label.

. label data "1978 Automobile Data"

. label variable foreign "Car type"

. label values foreign origin

. label define origin 0 "Domestic" 1 "Foreign"

At some point—at the beginning, the middle, or the end—rename the language appropriately. For
instance, if the labels you defined were in English, type

. label language en, rename

label language, rename simply changes the name of the currently set language. You may
change the name as often as you wish.

Creating labels in the second and subsequent languages

After creating the first language, you can create a new language by typing

. label language newlanguagename, new

or by typing the two commands

. label language existinglanguagename

. label language newlanguagename, new copy

In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the
second case, you start with the labels from existinglanguagename, and you can make the changes
from there.

Creating labels from a clean slate

To create new labels in the language named de, type

. label language de, new

If you were now to type describe, you would find that there are no data, variable, or value
labels. You can define new labels in the usual way:

. label data "1978 Automobil Daten"

. label variable foreign "Art Auto"

. label values foreign origin_de

. label define origin_de 0 "Innen" 1 "Ausländisch"

Creating labels from a previously existing language

It is sometimes easier to start with the labels from a previously existing language, which you can
then translate:

. label language en

. label language de, new copy

430 label language — Labels for variables and values in multiple languages

If you were now to type describe, you would see the English-language labels, even though the
new language is named de. You can then work to translate the labels:

. label data "1978 Automobil Daten"

. label variable foreign "Art Auto"

Typing describe, you might also discover that the variable foreign has the value label origin.
Do not change the contents of the value label. Instead, create a new value label:

. label define origin_de 0 "Innen" 1 "Ausländisch"

. label values foreign origin_de

Creating value labels with the copy option is no different from creating them from a clean slate,
except that you start with an existing set of labels from another language. Using describe can make
it easier to translate them.

Switching languages

You can discover the names of the previously defined languages by typing

. label language

You can switch to a previously defined language—say, to en—by typing

. label language en

Changing the name of a language

To change the name of a previously defined language make it the current language and then specify
the rename option:

. label language de

. label language German, rename

You may rename a language as often as you wish:

. label language de, rename

Deleting a language

To delete a previously defined language, such as de, type

. label language de, delete

The delete option deletes the specified language and, if the language was also the currently set
language, resets the current language to one of the other languages or to default if there are none.

Appendix: Selected ISO 639-1 two-letter codes

You may name languages as you please. You may name German labels Deutsch, German, Aleman,
or whatever else appeals to you. For consistency across datasets, if the language you are creating is
a spoken language, we suggest that you use the ISO 639-1 two-letter codes. Some of them are listed
below, and the full list can be found at http://lcweb.loc.gov/standards/iso639-2/iso639jac.html.

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

label language — Labels for variables and values in multiple languages 431

Two-letter English name of
code language

ar Arabic
cs Czech
cy Welsh
de German
el Greek
en English
es Spanish; Castillian
fa Persian
fi Finnish
fr French
ga Irish
he Hebrew
hi Hindi
is Icelandic
it Italian
ja Japanese
kl Kalaallisut; Greenlandic
lt Lithuanian
lv Latvian
nl Dutch; Flemish
no Norwegian
pl Polish
pt Portuguese
ro Romanian; Moldavian
ru Russian
sk Slovak
sr Serbian
sv Swedish
tr Turkish
uk Ukrainian
uz Uzbek
zh Chinese

Stored results
label language without arguments stores the following in r():

Scalars
r(k) number of languages defined

Macros
r(languages) list of languages, listed one after the other
r(language) name of current language

432 label language — Labels for variables and values in multiple languages

Methods and formulas
This section is included for programmers who wish to access or extend the services label

language provides.

Language sets are implemented using [P] char. The names of the languages and the name of the
current language are stored in

dta
[
lang list

]
list of defined languages

dta
[
lang c

]
currently set language

If these characteristics are undefined, results are as if each contained the word “default”. Do
not change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are
stored in

dta
[
lang v languagename

]
data label

varname
[
lang v languagename

]
variable label

varname
[
lang l languagename

]
value-label name

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162–187.

Also see
[D] label — Manipulate labels

[D] labelbook — Label utilities

[D] codebook — Describe data contents

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

labelbook — Label utilities

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgments References
Also see

Syntax

Produce a codebook describing value labels

labelbook
[

lblname-list
] [

, labelbook options
]

Prefix numeric values to value labels

numlabel
[

lblname-list
]
,
{
add | remove

} [
numlabel options

]
Make dataset containing value-label information

uselabel
[

lblname-list
] [

using filename
] [

, clear var
]

labelbook options Description

alpha alphabetize label mappings
length(#) check if value labels are unique to length #; default is length(12)

list(#) list maximum of # mappings; default is list(32000)

problems describe potential problems in a summary report
detail do not suppress detailed report on variables or value labels

numlabel options Description

∗add prefix numeric values to value labels
∗remove remove numeric values from value labels
mask(str) mask for formatting numeric labels; default mask is "#. "

force force adding or removing of numeric labels
detail provide details about value labels, where some labels are prefixed with

numbers and others are not

∗ Either add or remove must be specified.

Menu
labelbook

Data > Data utilities > Label utilities > Produce codebook of value labels

numlabel

Data > Data utilities > Label utilities > Prepend values to value labels

uselabel

Data > Data utilities > Label utilities > Create dataset from value labels

433

434 labelbook — Label utilities

Description

labelbook displays information for the value labels specified or, if no labels are specified, all the
labels in the data.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value
labels are attached in all defined languages.

numlabel prefixes numeric values to value labels. For example, a value mapping of 2 ->
"catholic" will be changed to 2 -> "2. catholic". See option mask() for the different formats.
Stata commands that display the value labels also show the associated numeric values. Prefixes are
removed with the remove option.

uselabel is a programmer’s command that reads the value-label information from the currently
loaded dataset or from an optionally specified filename.

uselabel creates a dataset in memory that contains only that value-label information. The new
dataset has four variables named label, lname, value, and trunc; is sorted by lname value; and
has 1 observation per mapping. Value labels can be longer than the maximum string length in Stata;
see [R] limits. The new variable trunc contains 1 if the value label is truncated to fit in a string
variable in the dataset created by uselabel.

uselabel complements label, save, which produces a text file of the value labels in a format
that allows easy editing of the value-label texts.

Specifying no list or all is equivalent to specifying all value labels. Value-label names may not
be abbreviated or specified with wildcards.

Options
Options are presented under the following headings:

Options for labelbook
Options for numlabel
Options for uselabel

Options for labelbook

alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is
to sort the list on value.

length(#) specifies the minimum length that labelbook checks to determine whether shortened
value labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook
also reports whether value labels are unique at their full length.

list(#) specifies the maximum number of value-label mappings to be listed. If a value label defines
more mappings, a random subset of # mappings is displayed. By default, labelbook displays all
mappings. list(0) suppresses the listing of the value-label definitions.

problems specifies that a summary report be produced describing potential problems that were
diagnosed:

1. Value label has gaps in mapped values (for example, values 0 and 2 are labeled, while 1 is not)

2. Value label strings contain leading or trailing blanks

3. Value label contains duplicate labels, that is, there are different values that map into the same
string

labelbook — Label utilities 435

4. Value label contains duplicate labels at length 12

5. Value label contains numeric → numeric mappings

6. Value label contains numeric → null string mappings

7. Value label is not used by variables

detail may be specified only with problems. It specifies that the detailed report on the variables
or value labels not be suppressed.

Options for numlabel

add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled
(using the same mask) are not modified.

remove specifies that numeric values be removed from the value labels. If you added numeric values
by using a nondefault mask, you must specify the same mask to remove them. Value labels that
are not numlabeled or are numlabeled using a different mask are not modified.

mask(str) specifies a mask for formatting the numeric labels. In the mask, # is replaced by the
numeric label. The default mask is "#. " so that numeric value 3 is shown as "3. ". Spaces are
relevant. For the mask "[#]", numeric value 3 would be shown as "[3]".

force specifies that adding or removing numeric labels be performed, even if some value labels are
numlabeled using the mask and others are not. Here only labels that are not numlabeled will
be modified.

detail specifies that details be provided about the value labels that are sometimes, but not always,
numlabeled using the mask.

Options for uselabel

clear permits the dataset to be created, even if the dataset already in memory has changed since it
was last saved.

var specifies that the varlists using value label vl be returned in r(vl).

Remarks and examples
Remarks are presented under the following headings:

labelbook
Diagnosing problems
numlabel
uselabel

labelbook

labelbook produces a detailed report of the value labels in your data. You can restrict the report
to a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a
companion command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), labelbook lists the variables to which value
labels are attached in any of the languages.

436 labelbook — Label utilities

Example 1

We request a labelbook report for value labels in a large dataset on the internal organization of
households. We restrict output to three value labels: agree5 (used for five-point Likert-style items),
divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.

. use http://www.stata-press.com/data/r13/labelbook1

. labelbook agree5 divlabor noyes

value label agree5

values labels
range: [1,5] string length: [8,11]

N: 5 unique at full length: yes
gaps: no unique at length 12: yes

missing .*: 0 null string: no
leading/trailing blanks: no

numeric -> numeric: no
definition

1 -- disagree
2 - disagree
3 indifferent
4 + agree
5 ++ agree

variables: rs056 rs057 rs058 rs059 rs060 rs061 rs062 rs063 rs064 rs065
rs066 rs067 rs068 rs069 rs070 rs071 rs072 rs073 rs074 rs075
rs076 rs077 rs078 rs079 rs080 rs081

value label divlabor

values labels
range: [1,7] string length: [7,16]

N: 7 unique at full length: yes
gaps: no unique at length 12: yes

missing .*: 0 null string: no
leading/trailing blanks: yes

numeric -> numeric: no
definition

1 wife only
2 wife >> husband
3 wife > husband
4 equally
5 husband > wife
6 husband >> wife
7 husband only

variables: hm01_a hm01_b hm01_c hm01_d hm01_e hn19 hn21 hn25_a hn25_b
hn25_c hn25_d hn25_e hn27_a hn27_b hn27_c hn27_d hn27_e hn31
hn36 hn38 hn42 hn46_a hn46_b hn46_c hn46_d hn46_e ho01_a ho01_b
ho01_c ho01_d ho01_e

labelbook — Label utilities 437

value label noyes

values labels
range: [1,2] string length: [2,16]

N: 4 unique at full length: yes
gaps: yes unique at length 12: yes

missing .*: 2 null string: no
leading/trailing blanks: no

numeric -> numeric: no
definition

1 no
2 yes
.a not applicable
.b ambiguous answer

variables: hb12 hd01_a hd01_b hd03 hd04_a hd04_b he03_a he03_b hlat hn09_b
hn24_a hn34 hn49 hu05_a hu06_1c hu06_2c hx07_a hx08 hlat2
hfinish rh02 rj10_01 rk16_a rk16_b rl01 rl03 rl08_a rl08_b
rl09_a rs047 rs048 rs049 rs050 rs051 rs052 rs053 rs054 rs093
rs095 rs096 rs098

The report is largely self-explanatory. Extended missing values are denoted by “.*”. In the definition
of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to
check that the value labels still make sense after truncation. The following example emphasizes this
feature. The option alpha specifies that the value-label mappings be sorted in alphabetical order by
the label strings rather than by the mapped values.

. use http://www.stata-press.com/data/r13/labelbook2

. labelbook sports, alpha

value label sports

values labels
range: [1,5] string length: [16,23]

N: 4 unique at full length: yes
gaps: yes unique at length 12: no

missing .*: 0 null string: no
leading/trailing blanks: no

numeric -> numeric: no
definition

5 college baseball
4 college basketball
2 professional baseball
1 professional basketball

variables: active passive

The report includes information about potential problems in the data. These are discussed in greater
detail in the next section.

Diagnosing problems

labelbook can diagnose a series of potential problems in the value-label mappings. labelbook
produces warning messages for a series of problems:

1. Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur
when value labels of the intermediate values have not been defined.

438 labelbook — Label utilities

2. Leading or trailing blanks in the value labels may distort Stata output.

3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string.
Below we give you an example of the unexpected output that may result. Blank labels are most
often the result of a mistaken value-label definition, for instance, the expansion of a nonexisting
macro in the definition of a value label.

4. Stata does not require that the labels within each value label consist of unique strings, that is, that
different values be mapped into different strings. For instance, you might accidentally define the
value label gender as

label define gender 1 female 2 female

You will probably catch most of the problems, but in more complicated value labels, it is easy to
miss the error. labelbook finds such problems and displays a warning.

5. Stata allows long value labels (32,000 characters), so labels can be long. However, some commands
may need to display truncated value labels, typically at length 12. Consequently, even if the value
labels are unique, the truncated value labels may not be, which can cause problems. labelbook
warns you for value labels that are not unique at length 12.

6. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it
can cause highly misleading output. Think about tabulating a variable for which the associated
value label incorrectly maps 1 into “2”, 2 into “3”, and 3 into “1”. labelbook looks for such
problematic labels and warns you if they are found.

7. In Stata, value labels are defined as separate objects that can be associated with more than one
variable:

label define labname # str # str
label value varname1 labname
label value varname2 labname
...

If you forget to associate a variable label with a variable, Stata considers the label unused and
drops its definition. labelbook reports unused value labels so that you may fix the problem.

The related command codebook reports on two other potential problems concerning value labels:

a. A variable is value labeled, but some values of the variable are not labeled. You may have
forgotten to define a mapping for some values, or you generated a variable incorrectly;
for example, your sex variable has an unlabeled value 3, and you are not working in
experimental genetics!

b. A variable has been associated with an undefined value label.

labelbook can also be invoked with the problems option, specifying that only a report on
potential problems be displayed without the standard detailed description of the value labels.

Technical note

The following two examples demonstrate some features of value labels that may be difficult to
understand. In the first example, we encode a string variable with blank strings of various sizes; that
is, we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated
variable.

labelbook — Label utilities 439

. clear all

. set obs 5
obs was 0, now 5

. generate str10 horror = substr(" ", 1, _n)

. encode horror, gen(Ihorror)

. tabulate horror

horror Freq. Percent Cum.

1 20.00 20.00
1 20.00 40.00
1 20.00 60.00
1 20.00 80.00
1 20.00 100.00

Total 5 100.00

It may look as if you have discovered a bug in Stata because there are no value labels in the first
column of the table. This happened because we encoded a variable with only blank strings, so the
associated value label maps integers into blank strings.

. label list Ihorror
Ihorror:

1
2
3
4
5

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because
these texts are all blank, the first column is empty. As illustrated below, labelbook would have
warned you about this odd value label.

Our second example illustrates what could go wrong with numeric values stored as string values.
We want to turn this into a numeric variable, but we incorrectly encode the variable rather than using
the appropriate command, destring.

. generate str10 horror2 = string(_n+1)

. encode horror2, gen(Ihorror2)

. tabulate Ihorror2

Ihorror2 Freq. Percent Cum.

2 1 20.00 20.00
3 1 20.00 40.00
4 1 20.00 60.00
5 1 20.00 80.00
6 1 20.00 100.00

Total 5 100.00

. tabulate Ihorror2, nolabel

Ihorror2 Freq. Percent Cum.

1 1 20.00 20.00
2 1 20.00 40.00
3 1 20.00 60.00
4 1 20.00 80.00
5 1 20.00 100.00

Total 5 100.00

440 labelbook — Label utilities

. label list Ihorror2
Ihorror2:

1 2
2 3
3 4
4 5
5 6

labelbook skips the detailed descriptions of the value labels and reports only the potential
problems in the value labels if the problems option is specified. This report would have alerted you
to the problems with the value labels we just described.

. use http://www.stata-press.com/data/r13/data_in_trouble, clear

. labelbook, problem

Potential problems in dataset http://www.stata-press.com/data/r13/
> data_in_trouble.dta

potential problem value labels

numeric -> numeric Ihorror2
leading or trailing blanks Ihorror

not used by variables unused

Running labelbook, problems and codebook, problems on new data might catch a series of
annoying problems.

numlabel
The numlabel command allows you to prefix numeric codes to value labels. The reason you

might want to do this is best seen in an example using the automobile data. First, we create a value
label for the variable rep78 (repair record in 1978),

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. label define repair 1 "very poor" 2 "poor" 3 "medium" 4 good 5 "very good"

. label values rep78 repair

and tabulate it.

. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.

very poor 2 2.90 2.90
poor 8 11.59 14.49

medium 30 43.48 57.97
good 18 26.09 84.06

very good 11 15.94 100.00

Total 69 100.00

Suppose that we want to recode the variable by joining the categories poor and very poor. To do
this, we need the numerical codes of the categories, not the value labels. However, Stata does not
display both the numeric codes and the value labels. We could redisplay the table with the nolabel
option. The numlabel command provides a simple alternative: it modifies the value labels so that
they also contain the numeric codes.

labelbook — Label utilities 441

. numlabel, add

. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.

1. very poor 2 2.90 2.90
2. poor 8 11.59 14.49

3. medium 30 43.48 57.97
4. good 18 26.09 84.06

5. very good 11 15.94 100.00

Total 69 100.00

If you do not like the way the numeric codes are formatted, you can use numlabel to change the
formatting. First, we remove the numeric codes again:

. numlabel repair, remove

In this example, we specified the name of the label. If we had not typed it, numlabel would have
removed the codes from all the value labels. We can include the numeric codes while specifying a
mask:

. numlabel, add mask("[#] ")

. tabulate rep78

Repair Record
1978 Freq. Percent Cum.

[1] very poor 2 2.90 2.90
[2] poor 8 11.59 14.49

[3] medium 30 43.48 57.97
[4] good 18 26.09 84.06

[5] very good 11 15.94 100.00

Total 69 100.00

numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels
can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

442 labelbook — Label utilities

uselabel
uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto

dataset.

Example 2

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. uselabel

. describe

Contains data
obs: 2
vars: 4
size: 32

storage display value
variable name type format label variable label

lname str6 %9s
value byte %9.0g
label str8 %9s
trunc byte %9.0g

Sorted by: lname value
Note: dataset has changed since last saved

. list

lname value label trunc

1. origin 0 Domestic 0
2. origin 1 Foreign 0

uselabel created a dataset containing the labels and values for the value label origin.

The maximum length of the text associated with a value label is 32,000 characters, whereas the
maximum length of a string variable in a Stata dataset is 2,045. uselabel uses only the first 2,045
characters of the label. The trunc variable will record a 1 if the text was truncated for this reason.

Stored results
labelbook stores the following in r():

Macros
r(names) lblname-list
r(gaps) gaps in mapped values
r(blanks) leading or trailing blanks
r(null) name of value label containing null strings
r(nuniq) duplicate labels
r(nuniq sh) duplicate labels at length 12
r(ntruniq) duplicate labels at maximum string length
r(notused) not used by any of the variables
r(numeric) name of value label containing mappings to numbers

labelbook — Label utilities 443

uselabel stores the following in r():

Macros
r(lblname) list of variables that use value label lblname (only when var option is specified)

Acknowledgments
labelbook and numlabel were written by Jeroen Weesie of the Department of Sociology at

Utrecht University, The Netherlands. A command similar to numlabel was written by J. M. Lauritsen
(2001) of Odense Universiteshospital, Denmark.

References
Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6–7. Reprinted

in Stata Technical Bulletin Reprints, vol. 10, pp. 35–37. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7–8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39–40. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] encode — Encode string into numeric and vice versa

[D] label — Manipulate labels

[U] 12.6 Dataset, variable, and value labels
[U] 15 Saving and printing output—log files

http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb37.pdf

Title

list — List values of variables

Syntax Menu Description Options
Remarks and examples References Also see

Syntax
list

[
varlist

] [
if
] [

in
] [

, options
]

flist is equivalent to list with the fast option.

options Description

Main

compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate(#) abbreviate variable names to # characters; default is ab(8)

string(#) truncate string variables to # characters; default is string(10)

noobs do not list observation numbers
fvall display all levels of factor variables

Options

table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header(#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator(#) draw a separator line every # lines; default is separator(5)

sepby(varlist2) draw a separator line whenever varlist2 values change
nolabel display numeric codes rather than label values

Summary

mean
[
(varlist2)

]
add line reporting the mean for the (specified) variables

sum
[
(varlist2)

]
add line reporting the sum for the (specified) variables

N
[
(varlist2)

]
add line reporting the number of nonmissing values for the (specified)

variables
labvar(varname) substitute Mean, Sum, or N for value of varname in last row of table

Advanced

constant
[
(varlist2)

]
separate and list variables that are constant only once

notrim suppress string trimming
absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header
linesize(#) columns per line; default is linesize(79)

444

list — List values of variables 445

varlist may contain factor variables; see [U] 11.4.3 Factor variables.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with list; see [D] by.

Menu
Data > Describe data > List data

Description

list displays the values of variables. If no varlist is specified, the values of all the variables are
displayed. Also see browse in [D] edit.

Options

� � �
Main �

compress and nocompress change the width of the columns in both table and display formats. By
default, list examines the data and allocates the needed width to each variable. For instance, a
variable might be a string with a %18s format, and yet the longest string will be only 12 characters
long. Or a numeric variable might have a %9.0g format, and yet, given the values actually present,
the widest number needs only four columns.

nocompress prevents list from examining the data. Widths will be set according to the display
format of each variable. Output generally looks better when nocompress is not specified, but for
very large datasets (say, 1,000,000 observations or more), nocompress can speed up the execution
of list.

compress allows list to engage in a little more compression than it otherwise would by telling
list to abbreviate variable names to fewer than eight characters.

fast is a synonym for nocompress. fast may be of interest to those with very large datasets who
wish to see output appear without delay.

abbreviate(#) is an alternative to compress that allows you to specify the minimum abbreviation
of variable names to be considered. For example, you could specify abbreviate(16) if you
never wanted variables abbreviated to less than 16 characters.

string(#) specifies that when string variables are listed, they be truncated to # characters in the
output. Any value that is truncated will be appended with “..” to indicate the truncation. string()
is useful for displaying just a part of long strings.

noobs suppresses the listing of the observation numbers.

fvall specifies that the entire dataset be used to determine how many levels are in any factor variables
specified in varlist. The default is to determine the number of levels by using only the observations
in the if and in qualifiers.

� � �
Options �

table and display determine the style of output. By default, list determines whether to use table
or display on the basis of the width of your screen and the linesize() option, if you specify
it.

446 list — List values of variables

table forces table format. Forcing table format when list would have chosen otherwise generally
produces impossible-to-read output because of the linewraps. However, if you are logging output
in SMCL format and plan to print the output on wide paper later, specifying table can be a
reasonable thing to do.

display forces display format.

header, noheader, and header(#) specify how the variable header is to be displayed.

header is the default in table mode and displays the variable header once, at the top of the table.

noheader suppresses the header altogether.

header(#) redisplays the variable header every # observations. For example, header(10) would
display a new header every 10 observations.

The default in display mode is to display the variable names interweaved with the data:

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

However, if you specify header, the header is displayed once, at the top of the table:

make price mpg rep78 headroom trunk weight length

turn displa~t gear_r~o foreign

1. AMC Concord 4,099 22 3 2.5 11 2,930 186

40 121 3.58 Domestic

clean is a better alternative to table when you want to force table format and your goal is to
produce more readable output on the screen. clean implies table, and it removes all dividing
and separating lines, which is what makes wrapped table output nearly impossible to read.

divider, separator(#), and sepby(varlist2) specify how dividers and separator lines should be
displayed. These three options affect only table format.

divider specifies that divider lines be drawn between columns. The default is nodivider.

separator(#) and sepby(varlist2) indicate when separator lines should be drawn between rows.

separator(#) specifies how often separator lines should be drawn between rows. The default
is separator(5), meaning every 5 observations. You may specify separator(0) to suppress
separators altogether.

sepby(varlist2) specifies that a separator line be drawn whenever any of the variables in
sepby(varlist2) change their values; up to 10 variables may be specified. You need not make
sure the data were sorted on sepby(varlist2) before issuing the list command. The variables in
sepby(varlist2) also need not be among the variables being listed.

nolabel specifies that numeric codes be displayed rather than the label values.

list — List values of variables 447

� � �
Summary �

mean, sum, N, mean(varlist2), sum(varlist2), and N(varlist2) all specify that lines be added to the
output reporting the mean, sum, or number of nonmissing values for the (specified) variables. If
you do not specify the variables, all numeric variables in the varlist following list are used.

labvar(varname) is for use with mean
[
()
]
, sum

[
()
]
, and N

[
()
]
. list displays Mean, Sum, or N

where the observation number would usually appear to indicate the end of the table—where a row
represents the calculated mean, sum, or number of observations.

labvar(varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname
would be displayed. For instance, you might type

. list group costs profits, sum(costs profits) labvar(group)

group costs profits

1. 1 47 5
2. 2 123 10
3. 3 22 2

Sum 192 17

and then also specify the noobs option to suppress the observation numbers.

� � �
Advanced �

constant and constant(varlist2) specify that variables that do not vary observation by observation
be separated out and listed only once.

constant specifies that list determine for itself which variables are constant.

constant(varlist2) allows you to specify which of the constant variables you want listed separately.
list verifies that the variables you specify really are constant and issues an error message if they
are not.

constant and constant() respect if exp and in range. If you type

. list if group==3

variable x might be constant in the selected observations, even though the variable varies in the
entire dataset.

notrim affects how string variables are listed. The default is to trim strings at the width implied
by the widest possible column given your screen width (or linesize(), if you specified that).
notrim specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is
equivalent to the clean option, so specifying either makes no difference.

absolute affects output only when list is prefixed with by varlist:. Observation numbers are
displayed, but the overall observation numbers are used rather than the observation numbers within
each by-group. For example, if the first group had 4 observations and the second had 2, by default
the observations would be numbered 1, 2, 3, 4 and 1, 2. If absolute is specified, the observations
will be numbered 1, 2, 3, 4 and 5, 6.

nodotz is a programmer’s option that specifies that numerical values equal to .z be listed as a field
of blanks rather than as .z.

subvarname is a programmer’s option. If a variable has the characteristic var
[
varname

]
set, then

the contents of that characteristic will be used in place of the variable’s name in the headers.

448 list — List values of variables

linesize(#) specifies the width of the page to be used for determining whether table or display
format should be used and for formatting the resulting table. Specifying a value of linesize()
that is wider than your screen width can produce truly ugly output on the screen, but that output
can nevertheless be useful if you are logging output and plan to print the log later on a wide
printer.

Remarks and examples

list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist,
only those variables are listed. Specifying one or both of in range and if exp limits the observations
listed.

list respects line size. That is, if you resize the Results window (in windowed versions of Stata)
before running list, it will take advantage of the available horizontal space. Stata for Unix(console)
users can instead use the set linesize command to take advantage of this feature; see [R] log.

list may not display all the large strings. You have two choices: 1) you can specify the clean
option, which makes a different, less attractive listing, or 2) you can increase line size, as discussed
above.

Example 1

list has two output formats, known as table and display. The table format is suitable for listing
a few variables, whereas the display format is suitable for listing an unlimited number of variables.
Stata chooses automatically between those two formats:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. list in 1/2

1. make price mpg rep78 headroom trunk weight length
AMC Concord 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign
40 121 3.58 Domestic

2. make price mpg rep78 headroom trunk weight length
AMC Pacer 4,749 17 3 3.0 11 3,350 173

turn displa~t gear_r~o foreign
40 258 2.53 Domestic

. list make mpg weight displ rep78 in 1/5

make mpg weight displa~t rep78

1. AMC Concord 22 2,930 121 3
2. AMC Pacer 17 3,350 258 3
3. AMC Spirit 22 2,640 121 .
4. Buick Century 20 3,250 196 3
5. Buick Electra 15 4,080 350 4

list — List values of variables 449

The first case is an example of display format; the second is an example of table format. The
table format is more readable and takes less space, but it is effective only if the variables can fit on
one line across the screen. Stata chose to list all 12 variables in display format, but when the varlist
was restricted to five variables, Stata chose table format.

If you are dissatisfied with Stata’s choice, you can decide for yourself. You can specify the display
option to force display format and the nodisplay option to force table format.

Technical note
If you have long string variables in your data—say, str75 or longer—by default, list displays

only the first 70 or so characters of each; the exact number is determined by the width of your Results
window. The first 70 or so characters will be shown followed by “. . . ”. If you need to see the entire
contents of the string, you can

1. specify the clean option, which makes a different (and uglier) style of list, or

2. make your Results window wider [Stata for Unix(console) users: increase set linesize].

Technical note
Among the things that determine the widths of the columns, the variable names play a role. Left

to itself, list will never abbreviate variable names to fewer than eight characters. You can use the
compress option to abbreviate variable names to fewer characters than that.

Technical note
When Stata lists a string variable in table output format, the variable is displayed right-justified

by default.

When Stata lists a string variable in display output format, it decides whether to display the
variable right-justified or left-justified according to the display format for the string variable; see
[U] 12.5 Formats: Controlling how data are displayed. In our previous example, make has a display
format of %-18s.

. describe make

storage display value
variable name type format label variable label

make str18 %-18s Make and Model

The negative sign in the %-18s instructs Stata to left-justify this variable. If the display format had
been %18s, Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:

. describe foreign

storage display value
variable name type format label variable label

foreign byte %8.0g origin Car type

450 list — List values of variables

foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value
labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value
label by using the same rule used for string variables: it looks at the display format of the variable.
Here the display format of %8.0g tells Stata to right-justify the variable. If the display format had
been %-8.0g, Stata would have left-justified this variable.

Technical note
You can list the variables in any order. When you specify the varlist, list displays the variables

in the order you specify. You may also include variables more than once in the varlist.

Example 2

Sometimes you may wish to suppress the observation numbers. You do this by specifying the
noobs option:

. list make mpg weight displ foreign in 46/55, noobs

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic

Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we want to separate the “Domestic” observations from the
“Foreign” observations, so we specify sepby(foreign).

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

make mpg weight displa~t foreign

Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic

Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

list — List values of variables 451

Example 3

We want to add vertical lines in the table to separate the variables, so we specify the divider option.
We also want to draw a horizontal line after every 2 observations, so we specify separator(2).

. list make mpg weight displ foreign in 46/55, divider separator(2)

make mpg weight displa~t foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify
abbreviate(12).

. list make mpg weight displ foreign in 46/55, divider sep(2) abbreviate(12)

make mpg weight displacement foreign

46. Plym. Volare 18 3,330 225 Domestic
47. Pont. Catalina 18 3,700 231 Domestic

48. Pont. Firebird 18 3,470 231 Domestic
49. Pont. Grand Prix 19 3,210 231 Domestic

50. Pont. Le Mans 19 3,200 231 Domestic
51. Pont. Phoenix 19 3,420 231 Domestic

52. Pont. Sunbird 24 2,690 151 Domestic
53. Audi 5000 17 2,830 131 Foreign

54. Audi Fox 23 2,070 97 Foreign
55. BMW 320i 25 2,650 121 Foreign

Technical note
You can suppress the use of value labels by specifying the nolabel option. For instance, the

foreign variable in the examples above really contains numeric codes, with 0 meaning Domestic
and 1 meaning Foreign. When we list the variable, however, we see the corresponding value
labels rather than the underlying numeric code:

452 list — List values of variables

. list foreign in 51/55

foreign

51. Domestic
52. Domestic
53. Foreign
54. Foreign
55. Foreign

Specifying the nolabel option displays the underlying numeric codes:

. list foreign in 51/55, nolabel

foreign

51. 0
52. 0
53. 1
54. 1
55. 1

References
Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425–427.

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6–7. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, pp. 35–37. College Station, TX: Stata Press.

Riley, A. R. 1993. dm15: Interactively list values of variables. Stata Technical Bulletin 16: 2–6. Reprinted in Stata
Technical Bulletin Reprints, vol. 3, pp. 37–41. College Station, TX: Stata Press.

Royston, P., and P. D. Sasieni. 1994. dm16: Compact listing of a single variable. Stata Technical Bulletin 17: 7–8.
Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 41–43. College Station, TX: Stata Press.

Weesie, J. 1999. dm68: Display of variables in blocks. Stata Technical Bulletin 50: 3–4. Reprinted in Stata Technical
Bulletin Reprints, vol. 9, pp. 27–29. College Station, TX: Stata Press.

Also see
[D] edit — Browse or edit data with Data Editor

[P] display — Display strings and values of scalar expressions

[P] tabdisp — Display tables

[R] table — Flexible table of summary statistics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0023
http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb16.pdf
http://www.stata.com/products/stb/journals/stb17.pdf
http://www.stata.com/products/stb/journals/stb50.pdf

Title

lookfor — Search for string in variable names and labels

Syntax Description Remarks and examples Stored results
References Also see

Syntax

lookfor string
[

string [. . .]
]

Description
lookfor helps you find variables by searching for string among all variable names and labels. If

multiple strings are specified, lookfor will search for each of them separately. You may search for
a phrase by enclosing string in double quotes.

Remarks and examples

Example 1

lookfor finds variables by searching for string, ignoring case, among the variable names and
labels.

. use http://www.stata-press.com/data/r13/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. lookfor code

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation

Three variable names contain the word code.

. lookfor married

storage display value
variable name type format label variable label

msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married

Two variable labels contain the word married.

. lookfor gnp

storage display value
variable name type format label variable label

ln_wage float %9.0g ln(wage/GNP deflator)

lookfor ignores case, so lookfor gnp found GNP in a variable label.

453

454 lookfor — Search for string in variable names and labels

Example 2

If multiple strings are specified, all variable names or labels containing any of the strings are listed.

. lookfor code married

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation

To search for a phrase, enclose string in double quotes.

. lookfor "never married"

storage display value
variable name type format label variable label

nev_mar byte %8.0g 1 if never married

Stored results
lookfor stores the following in r():

Macros
r(varlist) the varlist of found variables

References
Cox, N. J. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281–296.

. 2010b. Software Updates: Finding variables. Stata Journal 10: 691–692.

. 2012. Software Updates: Finding variables. Stata Journal 12: 167.

Also see
[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0048
http://www.stata-journal.com/sjpdf.html?articlenum=up0030
http://www.stata-journal.com/sjpdf.html?articlenum=up0035

Title

memory — Memory management

Syntax Description Options Remarks and examples
Stored results Reference Also see

Syntax

Display memory usage report

memory

Display memory settings

query memory

Modify memory settings
set maxvar #

[
, permanently

]
set niceness #

[
, permanently

]
set min memory amt

[
, permanently

]
set max memory amt

[
, permanently

]
set segmentsize amt

[
, permanently

]
where amt is #

[
b | k | m | g

]
, and the default unit is b.

Parameter Default Minimum Maximum
maxvar 5000 2048 32767 (MP and SE)

2047 2047 2047 (IC)
99 99 99 (Small)

niceness 5 0 10

min memory 0 0 max memory

max memory . 2×segmentsize .

segmentsize 32m 1m 32g (64-bit)
16m 1m 1g (32-bit)

Notes:

1. The maximum number of variables in your dataset is limited to maxvar. The default value
of maxvar is 5,000 for Stata/MP and Stata/SE, 2,047 for Stata/IC, and 99 for Small Stata.
With Stata/MP and Stata/SE, this default value may be increased by using set maxvar. The
default value is fixed for both Stata/IC and Small Stata.

455

456 memory — Memory management

2. Most users do not need to read beyond this point. Stata’s memory management is completely
automatic. If, however, you are using the Linux operating system, see Serious bug in Linux
OS under Remarks and examples below.

3. The maximum number of observations is fixed at 2,147,483,647 regardless of computer size
or memory settings. Depending on the amount of memory on your computer, you may face
a lower practical limit.

4. max memory specifies the maximum amount of memory Stata can use to store your data.
The default of missing (.) means all the memory the operating system is willing to supply.
There are three reasons to change the value from missing to a finite number.

1. You are a Linux user; see Serious bug in Linux OS under Remarks and examples
below.

2. You wish to reduce the chances of accidents, such as typing expand 100000 with
a large dataset in memory and actually having Stata do it. You would rather see
an insufficient-memory error message. Set max memory to the amount of physical
memory on your computer or more than that if you are willing to use virtual
memory.

3. You are a system administrator; see Notes for system administrators under Remarks
and examples below.

5. The remaining memory parameters—niceness, min memory, and segment size—affect
efficiency only; they do not affect the size of datasets you can analyze.

6. Memory amounts for min memory, max memory, and segmentsize may be specified in
bytes, kilobytes, megabytes, or gigabytes; suffix b, k, m, or g to the end of the number. The
following are equivalent ways of specifying 1 gigabyte:

1073741824
1048576k

1024m
1g

Suffix k is defined as (multiply by) 1024, m is defined as 10242, and g is defined as 10243.

7. 64-bit computers can theoretically provide up to 18,446,744,073,709,551,616 bytes of memory,
equivalent to 17,179,869,184 gigabytes, 16,777,216 terabytes, 16,384 petabytes, 16 exabytes.
Real computers have less.

8. 32-bit computers can theoretically provide up to 4,294,967,296 bytes of memory, equivalent
to 4,194,304 kilobytes, 4,096 megabytes, or 4 gigabytes. Most 32-bit operating systems limit
Stata to half that.

9. Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize
can result in more efficient use of available memory but require Stata to jump around more.
The default provides a good balance. We recommend resetting segmentsize only if your
computer has large amounts of memory.

memory — Memory management 457

10. If you have large amounts of memory and you use it to process large datasets, you may
wish to increase segmentsize. Suggested values are

memory segmentsize

32g 64m
64g 128m

128g 256m
256g 512m
512g 1g

1024g 2g

11. niceness affects how soon Stata gives back unused segments to the operating system. If
Stata releases them too soon, it often needs to turn around and get them right back. If Stata
waits too long, Stata is consuming memory that it is not using. One reason to give memory
back is to be nice to other users on multiuser systems or to be nice to yourself if you are
running other processes.

The default value of 5 is defined to provide good performance. Waiting times are currently
defined as

niceness waiting time (m:s)

10 0:00.000
9 0:00.125
8 0:00.500
7 0:01
6 0:30
5 1:00
4 5:00
3 10:00
2 15:00
1 20:00
0 30:00

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an incon-
siderate, self-centered, totally selfish jerk.

12. min memory specifies an amount of memory Stata will not fall below. For instance, you
have a long do-file. You know that late in the do-file, you will need 8 gigabytes. You want
to ensure that the memory will be available later. At the start of your do-file, you set
min memory 8g.

13. Concerning min memory and max memory, be aware that Stata allocates memory in seg-
mentsize blocks. Both min memory and max memory are rounded down. Thus the actual
minimum memory Stata will reserve will be

segmentsize*trunc(min memory/segmentsize)

The effective maximum memory is calculated similarly. (Stata does not round up min memory
because some users set min memory equal to max memory.)

458 memory — Memory management

Description
Memory usage and settings are described here.

memory displays a report on Stata’s current memory usage.

query memory displays the current values of Stata’s memory settings.

set maxvar, set niceness, set min memory, set max memory, and set segmentsize change
the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks and examples below.

Options
permanently specifies that, in addition to making the change right now, the new limit be remembered

and become the default setting when you invoke Stata.

once is not shown in the syntax diagram but is allowed with set niceness, set min memory,
set max memory, and set segmentsize. It is for use by system administrators; see Notes for
system administrators under Remarks and examples below.

Remarks and examples
Remarks are presented under the following headings:

Examples
Serious bug in Linux OS
Notes for system administrators

Examples

Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:
. sysuse auto
(1978 Automobile Data)

. memory

Memory usage
used allocated

data 3,182 67,108,864
strLs 0 0

data & strLs 3,182 67,108,864

data & strLs 3,182 67,108,864
var. names, %fmts, ... 1,751 24,173
overhead 1,081,352 1,082,144

Stata matrices 0 0
ado-files 4,630 4,630
stored results 0 0

Mata matrices 0 0
Mata functions 0 0

set maxvar usage 1,431,736 1,431,736

other 1,963 1,963

grand total 2,522,614 69,655,510

memory — Memory management 459

We could then obtain the current memory-settings report by typing
. query memory

Memory settings
set maxvar 5000 2048-32767; max. vars allowed
set matsize 400 10-11000; max. # vars in models
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g

Serious bug in Linux OS

If you use Linux OS, we strongly suggest that you set max memory. Here’s why:

“By default, Linux follows an optimistic memory allocation strategy. This means that
when malloc() returns non-NULL there is no guarantee that the memory really is available.
This is a really bad bug. In case it turns out that the system is out of memory, one or
more processes will be killed by the infamous OOM killer. In case Linux is employed
under circumstances where it would be less desirable to suddenly lose some randomly
picked processes, and moreover the kernel version is sufficiently recent, one can switch
off this overcommitting behavior using [. . .]”

– Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when
Stata uses that memory, the memory might not be available and Linux crashes Stata, or worse. The
Linux documentation writer exercised admirable restraint. This bug can cause Linux itself to crash.
It is easy.

The proponents of this behavior call it “optimistic memory allocation”. We will, like the docu-
mentation writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc
is an instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before
assuming that, we suggest using a search engine to search for “linux optimistic memory allocation”.

Alternatively, Stata can live with the bug if you set max memory. Find out how much physical
memory is on your computer and set max memory to that. If you want to use virtual memory, you
might set it larger, just make sure your Linux system can provide the requested memory. Specify the
option permanently so you only need to do this once. For example,

. set max_memory 16g, permanently

Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

Notes for system administrators

System administrators can set max memory, min memory, and niceness so that Stata users
cannot change them. You may want to do this on shared computers to prevent individual users from
hogging resources.

There is no reason you would want to do this on users’ personal computers.

You can also set segmentsize, but there is no reason to do this even on shared systems.

The instructions are to create (or edit) the text file sysprofile.do in the directory where the
Stata executable resides. Add the lines

460 memory — Memory management

set min_memory 0, once
set max_memory 16g, once
set niceness 5, once

The file must be plain text, and there must be end-of-line characters at the end of each line, including
the last line. Blank lines at the end are recommended.

The 16g on set max memory is merely for example. Choose an appropriate number.

The values of 0 for min memory and 5 for niceness are recommended.

Stored results
memory stores all reported numbers in r(). StataCorp may change what memory reports, and you

should not expect the same r() results to exist in future versions of Stata. To see the stored results
from memory, type return list, all.

Reference
Sasieni, P. D. 1997. ip20: Checking for sufficient memory to add variables. Stata Technical Bulletin 40: 13. Reprinted

in Stata Technical Bulletin Reprints, vol. 7, p. 86. College Station, TX: Stata Press.

Also see
[P] creturn — Return c-class values

[R] matsize — Set the maximum number of variables in a model

[R] query — Display system parameters

[U] 6 Managing memory

http://www.stata.com/products/stb/journals/stb40.pdf

Title

merge — Merge datasets

Syntax Menu Description Options
Remarks and examples References Also see

Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename
[
, options

]
Many-to-one merge on specified key variables

merge m:1 varlist using filename
[
, options

]
One-to-many merge on specified key variables

merge 1:m varlist using filename
[
, options

]
Many-to-many merge on specified key variables

merge m:m varlist using filename
[
, options

]
One-to-one merge by observation

merge 1:1 n using filename
[
, options

]
options Description

Options

keepusing(varlist) variables to keep from using data; default is all
generate(newvar) name of new variable to mark merge results; default is merge

nogenerate do not create merge variable
nolabel do not copy value-label definitions from using
nonotes do not copy notes from using
update update missing values of same-named variables in master with values

from using
replace replace all values of same-named variables in master with nonmissing

values from using (requires update)
noreport do not display match result summary table
force allow string/numeric variable type mismatch without error

Results

assert(results) specify required match results
keep(results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

461

462 merge — Merge datasets

Menu
Data > Combine datasets > Merge two datasets

Description

merge joins corresponding observations from the dataset currently in memory (called the master
dataset) with those from filename.dta (called the using dataset), matching on one or more key
variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-
many), which are often called joins by database people. merge can also perform sequential merges,
which have no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use
merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new
observations to existing variables, then see [D] append. You use append, for instance, when adding
current discharges to past discharges.

By default, merge creates a new variable, merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the
match results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Options

� � �
Options �

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.
By default, all variables are kept. For example, if your using dataset contains 2,000 demographic
characteristics but you want only sex and age, then type merge . . . , keepusing(sex age)

generate(newvar) specifies that the variable containing match results information should be named
newvar rather than merge.

nogenerate specifies that merge not be created. This would be useful if you also specified
keep(match), because keep(match) ensures that all values of merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be
rare, because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard
merge, the data in the master are the authority and inviolable. For example, if the master and
using datasets both contain a variable age, then matched observations will contain values from the
master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset
with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset,
unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of
overlapping variables for details.

merge — Merge datasets 463

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, merge issues an error; if specified, merge issues a warning.

� � �
Results �

assert(results) specifies the required match results. The possible results are

Numeric Equivalent
code word (results) Description

1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

4 match update observation appeared in both, missing values updated
5 match conflict observation appeared in both, conflicting nonmissing

values
Codes 4 and 5 can arise only if the update option is specified. If codes of both

4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert() or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match updates for match update, and match conflicts for
match conflict.

Using assert(match master) specifies that the merged file is required to include only matched
master or using observations and unmatched master observations, and may not include unmatched
using observations. Specifying assert() results in merge issuing an error if there are match
results among those observations you allowed.

The order of the words or codes is not important, so all the following assert() specifications
would be the same:

assert(match master)

assert(master matches)

assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the
merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep(results) specifies which observations are to be kept from the merged dataset. Using keep(match
master) specifies keeping only matched observations and unmatched master observations after
merging.

keep() differs from assert() because it selects observations from the merged dataset rather than
enforcing requirements. keep() is used to pare the merged dataset to a given set of observations
when you do not care if there are other observations in the merged dataset. assert() is used to
verify that only a given set of observations is in the merged dataset.

You can specify both assert() and keep(). If you require matched observations and unmatched
master observations but you want only the matched observations, then you could specify as-
sert(match master) keep(match).

464 merge — Merge datasets

assert() and keep() are convenience options whose functionality can be duplicated using
merge directly.

. merge . . . , assert(match master) keep(match)

is identical to

. merge . . .

. assert _merge==1 | _merge==3

. keep if _merge==3

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are
already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this
option is of interest only where speed is of the utmost importance.

Remarks and examples
Remarks are presented under the following headings:

Overview
Basic description
1:1 merges
m:1 merges
1:m merges
m:m merges
Sequential merges
Treatment of overlapping variables
Sort order
Troubleshooting m:m merges
Examples

Overview

merge 1:1 varlist . . . specifies a one-to-one match merge. varlist specifies variables common to
both datasets that together uniquely identify single observations in both datasets. For instance, suppose
you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in
each dataset. You would merge the two datasets by typing

. use customer

. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which
is the using matters only if there are overlapping variable names. 1:1 merges are less common than
1:m and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively.
To illustrate the two choices, suppose you have a dataset containing information about individual
hospitals, called hospitals.dta. In this dataset, each observation contains information about one
hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called
discharges.dta, which contains information on individual hospital stays by many different patients.
discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join
all the information in both datasets. There are two ways you could do this.

merge — Merge datasets 465

merge 1:m varlist . . . specifies a one-to-many match merge.

. use hospitals

. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to
many observations in the using dataset.

merge m:1 varlist . . . specifies a many-to-one match merge.

. use discharges

. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can
correspond to many observations in the master dataset, but uniquely identifies individual observations
in the using dataset.

merge m:m varlist . . . specifies a many-to-many match merge. This is allowed for completeness,
but it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not
uniquely identify the observations in either dataset. Matching is performed by combining observations
with equal values of varlist; within matching values, the first observation in the master dataset is
matched with the first matching observation in the using dataset; the second, with the second; and
so on. If there is an unequal number of observations within a group, then the last observation of the
shorter group is used repeatedly to match with subsequent observations of the longer group. Use of
merge m:m is not encouraged.

merge 1:1 n performs a sequential merge. n is not a variable name; it is Stata syntax for
observation number. A sequential merge performs a one-to-one merge on observation number. The
first observation of the master dataset is matched with the first observation of the using dataset; the
second, with the second; and so on. If there is an unequal number of observations, the remaining
observations are unmatched. Sequential merges are dangerous, because they require you to rely on
sort order to know that observations belong together. Use this merge at your own risk.

Basic description

Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way
we have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename

id age id wgt

1 22 1 130
2 56 2 180
5 17 4 110

We would like to join together the age and weight information. We notice that the id variable
identifies unique observations in both datasets: if you tell me the id number, then I can tell you the
one observation that contains information about that id. This is true for both the master and the using
datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring
in the dataset from disk by typing

466 merge — Merge datasets

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt

1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)

4 . 110 (using only)

The original data in memory are called the master data. The data in filename.dta are called
the using data. After merge, the merged result is left in memory. The id variable is called the key
variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in
the merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were
found and thus each became a separate observation in the merged result. Thus each observation in
the merged result came from one of three possible sources:

Numeric Equivalent
code word Description

1 master originally appeared in master only
2 using originally appeared in using only
3 match originally appeared in both

merge encodes this information into new variable merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result

id age id wgt id age wgt _merge

1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1

4 . 110 2

Note: Above we show the master and using data sorted by id before merging; this was for
illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of
the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the
master. Find the corresponding observation in the using data, if there is one. Record the matched or
unmatched result. Proceed to the next observation in the master dataset. When you finish working
through the master dataset, work through unused observations from the using data. By default,
unmatched observations are kept in the merged data, whether they come from the master dataset or
the using dataset.

Remember this formal definition. It will serve you well.

merge — Merge datasets 467

1:1 merges

The example shown above is called a 1:1 merge, because the key variable uniquely identified
each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)
corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained
by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename
master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge

14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3

17 2 . 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies
observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time
4), and another was only in the using (subject 17 at time 2).

m:1 merges

In an m:1 merge, the key variable or variables uniquely identify the observations in the using data,
but not necessarily in the master data. Suppose you had person-level data within regions and you
wished to bring in regional data. Here is an example:

. merge m:1 region using filename
master + using = merged result

id region a region x id region a x _merge

1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1

. 4 . 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged
dataset was constructed. For each observation in the master data, merge finds the corresponding
observation in the using data. merge combines the values of the variables in the using dataset to the
observations in the master dataset.

468 merge — Merge datasets

1:m merges

1:m merges are similar to m:1, except that now the key variables identify unique observations in
the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a
1:m merge by reversing the roles of the master and using datasets. Here is the same example as used
previously, with the master and using datasets reversed:

. merge 1:m region using filename
master + using = merged result

region x id region a region x id a _merge

1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3

5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1

5 . 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort
order and the contents of merge. This time, we show the merged result sorted by region rather
than id. Reversing the roles of the files causes a reversal in the 1s and 2s for merge: where merge
was previously 1, it is now 2, and vice versa. These exchanged merge values reflect the reversed
roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the
using data and then wrote down the matched or unmatched result. Once the master observations were
exhausted, merge wrote down any observations from the using data that were never used.

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges

In a sequential merge, there are no key variables. Observations are matched solely on their
observation number:

merge — Merge datasets 469

. merge 1:1 _n using filename
master + using = merged result

x1 x2 x1 x2 _merge

10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3

3 . 3 2

In the example above, the using data are longer than the master, but that could be reversed. In
most cases where sequential merges are appropriate, the datasets are expected to be of equal length,
and you should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the
data.

Treatment of overlapping variables

When performing merges of any type, the master and using datasets may have variables in common
other than the key variables. We will call such variables overlapping variables. For instance, if the
variables in the master and using datasets are

master: id, region, sex, age, race
using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

By default, merge treats values from the master as inviolable. When observations match, it is the
master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in
matched observations are replaced with values from the using data. Because of this new behavior,
the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes
3, 4, and 5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule
is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting
nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting
nonmissing values.

If you specify both the update and replace options, then the merge==5 cases are updated with
values from the using data.

470 merge — Merge datasets

Sort order

As we have mentioned, in the 1:1, 1:m, and m:1 match merges, the sort orders of the master and
using datasets do not affect the data in the merged dataset. This is not the case of m:m, which we
recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most
quickly when the master and using datasets are already sorted by the key variable(s) before merging.
You are not required to have the dataset sorted before using merge, however, because merge will
sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made
and sorted to ensure that the current sort order on disk is not affected.

All this is to reassure you that 1) your datasets on disk will not be modified by merge and 2)
despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the
scenes.

It hardly makes any difference in run times, but if you know that the master and using data are
already sorted by the key variable(s), then you can specify the sorted option. All that will be saved
is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and
sometimes useful way. If you think of datasets as tables, then the columns for the new variables
appear to the right of what was the master. If the master data originally had k variables, then the new
variables will be the (k + 1)st, (k + 2)nd, and so on. The new observations are similarly ordered so
that they all appear at the end of what was the master. If the master originally had N observations,
then the new observations, if any, are the (N + 1)st, (N + 2)nd, and so on. Thus the original master
data can be found from the merged result by extracting the first k variables and first N observations.
If merge with the update option was specified, however, then be aware that the extracted master
may have some updated values.

The merged result is unsorted except for a 1:1 merge, where there are only matched observations.
Here the dataset is sorted by the key variables.

Troubleshooting m:m merges

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you
would like to match every observation in the master to every observation in the using with the same
values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations
on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence
number or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching
the first observations within subject, the second observations within subject, and so on. If so, then
there is a concept of sequence within subject.

merge — Merge datasets 471

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering
of the observations. Here you are in a dangerous situation because any kind of sorting would lose
the identity of the first, second, and nth observation within subject. Your first goal should be to fix
this problem by creating an explicit sequence variable from the current ordering—your merge can
come later.

Start with your master data. Type
. sort subjectid, stable
. by subjectid: gen seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order
within subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type
. merge 1:m subjectid seqnum using filename

If you do not think there is a meaning to being the first, second, and nth observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the
second observations within subjectid, and so on. Would it make equal sense to match the first with
the third, the second with the fourth, or any other haphazard matching? If so, then there is no real
ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you
need to rethink your merge.

Examples

Example 1: A 1:1 merge

We have two datasets, one of which has information about the size of old automobiles, and the
other of which has information about their expense:

. use http://www.stata-press.com/data/r13/autosize
(1978 Automobile Data)

. list

make weight length

1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165

6. Plym. Arrow 3,260 170

. use http://www.stata-press.com/data/r13/autoexpense
(1978 Automobile Data)

. list

make price mpg

1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

472 merge — Merge datasets

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We
need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each
of the two datasets, also identifies individual observations within the datasets. What this means is
that if you tell me the make of car, I can tell you the one observation that corresponds to that car.
Because this is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use http://www.stata-press.com/data/r13/autosize
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r13/autoexpense

Result # of obs.

not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)

matched 5 (_merge==3)

. list

make weight length price mpg _merge

1. BMW 320i 2,650 177 9,735 25 matched (3)
2. Cad. Seville 4,290 204 15,906 21 matched (3)
3. Datsun 210 2,020 165 4,589 35 matched (3)
4. Plym. Arrow 3,260 170 . . master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 matched (3)

6. Toyota Celica 2,410 174 5,899 18 matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car
that has only size information. If we wanted only those makes for which all information is present,
it would be up to us to drop the observations for which merge < 3.

Example 2: Requiring matches

Suppose we had the same setup as in the previous example, but we erroneously think that we have
all the information on all the cars. We could tell merge that we expect only matches by using the
assert option.

. use http://www.stata-press.com/data/r13/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r13/autoexpense,
> assert(match)
merge: after merge, not all observations matched

(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there
were, we can tabulate merge:

merge — Merge datasets 473

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67
matched (3) 5 83.33 100.00

Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to
rectify the mismatch in the original datasets.

Example 3: Keeping just the matches

Once again, suppose that we had the same datasets as before, but this time we want the final
dataset to have only those observations for which there is a match. We do not care if there are
mismatches—all that is important are the complete observations. By using the keep(match) option,
we will guarantee that this happens. Because we are keeping only those observations for which the
key variable matches, there is no need to generate the merge variable. We could do the following:

. use http://www.stata-press.com/data/r13/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r13/autoexpense,
> keep(match) nogenerate

Result # of obs.

not matched 0
matched 5

. list

make weight length price mpg

1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

Example 4: Many-to-one matches

We have two datasets: one has salespeople in regions and the other has regional data about sales.
We would like to put all the information into one dataset. Here are the datasets:

474 merge — Merge datasets

. use http://www.stata-press.com/data/r13/sforce, clear
(Sales Force)

. list

region name

1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks

6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil
10. West Charles

11. West Cobb
12. West Grant

. use http://www.stata-press.com/data/r13/dollars
(Regional Sales & Costs)

. list

region sales cost

1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time
we see that region identifies individual observations in the dollars dataset but not in the sforce
dataset. This means we will have to use either an m:1 or a 1:m merge. Here we will open the sforce
dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not
identify individual observations in the dataset in memory but does identify them in the using dataset.
Here is the command and its result:

. use http://www.stata-press.com/data/r13/sforce
(Sales Force)

. merge m:1 region using http://www.stata-press.com/data/r13/dollars
(label region already defined)

Result # of obs.

not matched 0
matched 12 (_merge==3)

merge — Merge datasets 475

. list

region name sales cost _merge

1. N Cntrl Krantz 419,472 227,677 matched (3)
2. N Cntrl Phipps 419,472 227,677 matched (3)
3. N Cntrl Willis 419,472 227,677 matched (3)
4. NE Ecklund 360,523 138,097 matched (3)
5. NE Franks 360,523 138,097 matched (3)

6. South Anderson 532,399 330,499 matched (3)
7. South Dubnoff 532,399 330,499 matched (3)
8. South Lee 532,399 330,499 matched (3)
9. South McNeil 532,399 330,499 matched (3)
10. West Charles 310,565 165,348 matched (3)

11. West Cobb 310,565 165,348 matched (3)
12. West Grant 310,565 165,348 matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a
rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have
done a 1:m merge.

We would now like to use a series of examples that shows how merge treats nonkey variables,
which have the same names in the two datasets. We will call these “overlapping” variables.

Example 5: Overlapping variables

Here are two datasets whose only purpose is for this illustration:

. use http://www.stata-press.com/data/r13/overlap1, clear

. list, sepby(id)

id seq x1 x2

1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 . 2

5. 2 1 . 1
6. 2 2 . 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 .a 1
10. 2 6 .a 2

11. 3 1 . .a
12. 3 2 . 1
13. 3 3 . .
14. 3 4 .a .a

15. 10 1 5 8

. use http://www.stata-press.com/data/r13/overlap2

476 merge — Merge datasets

. list

id bar x1 x2

1. 1 11 1 1
2. 2 12 . 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also
see that there are two overlapping variables: x1 and x2.

We will start with a simple m:1 merge:

. use http://www.stata-press.com/data/r13/overlap1

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14 (_merge==3)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 matched (3)
2. 1 2 1 . 11 matched (3)
3. 1 3 1 2 11 matched (3)
4. 1 4 . 2 11 matched (3)

5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 matched (3)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 matched (3)
9. 2 5 .a 1 12 matched (3)
10. 2 6 .a 2 12 matched (3)

11. 3 1 . .a 14 matched (3)
12. 3 2 . 1 14 matched (3)
13. 3 3 . . 14 matched (3)
14. 3 4 .a .a 14 matched (3)

15. 10 1 5 8 . master only (1)

16. 20 . 1 1 18 using only (2)

Careful inspection shows that for the matched id, the values of x1 and x2 are still the values that
were originally in the overlap1 dataset. This is the default behavior of merge—the data in the
master dataset is the authority and is kept intact.

merge — Merge datasets 477

Example 6: Updating missing data

Now we would like to investigate the update option. Used by itself, it will replace missing values
in the master dataset with values from the using dataset:

. use http://www.stata-press.com/data/r13/overlap1, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)

5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12 nonmissing conflict (5)

11. 3 1 . .a 14 matched (3)
12. 3 2 . 1 14 matched (3)
13. 3 3 . .a 14 missing updated (4)
14. 3 4 . .a 14 missing updated (4)

15. 10 1 5 8 . master only (1)

16. 20 . 1 1 18 using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the merge variable gets its values.

The following is a listing that shows what is happening, where x1 m and x2 m come from the
master dataset (overlap1), x1 u and x2 u come from the using dataset (overlap2), and x1 and
x2 are the values that appear when using merge with the update option.

478 merge — Merge datasets

id x1_m x1_u x1 x2_m x2_u x2 _merge

1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 . 1 1 2 1 2 nonmissing conflict (5)

5. 2 . . . 1 1 1 matched (3)
6. 2 . . . 2 1 2 nonmissing conflict (5)
7. 2 1 . 1 1 1 1 matched (3)
8. 2 1 . 1 2 1 2 nonmissing conflict (5)
9. 2 .a . . 1 1 1 missing updated (4)
10. 2 .a . . 2 1 2 nonmissing conflict (5)

11. 3a .a .a matched (3)
12. 3 . . . 1 .a 1 matched (3)
13. 3a .a missing updated (4)
14. 3 .a . . .a .a .a missing updated (4)

15. 10 5 . 5 8 . 8 master only (1)

16. 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the
value of merge will reflect that there was a conflict, and missing values in the master dataset are
updated by missing values in the using dataset.

Example 7: Updating all common observations

We would like to see what happens if the update and replace options are specified. The replace
option extends the action of update to use nonmissing values of the using dataset to replace values
in the master dataset. The values of merge are unaffected by using both update and replace.

. use http://www.stata-press.com/data/r13/overlap1, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update replace

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 479

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 1 11 nonmissing conflict (5)
4. 1 4 1 1 11 nonmissing conflict (5)

5. 2 1 . 1 12 matched (3)
6. 2 2 . 1 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 1 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 1 12 nonmissing conflict (5)

11. 3 1 . .a 14 matched (3)
12. 3 2 . 1 14 matched (3)
13. 3 3 . .a 14 missing updated (4)
14. 3 4 . .a 14 missing updated (4)

15. 10 1 5 8 . master only (1)

16. 20 . 1 1 18 using only (2)

Example 8: More on the keep() option

Suppose we would like to use the update option, as we did above, but we would like to keep only
those observations for which the value of the key variable, id, was found in both datasets. This will
be more complicated than in our earlier example, because the update option splits the matches into
matches, match updates, and match conflicts. We must either use all of these code words in
the keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use http://www.stata-press.com/data/r13/overlap1, clear

. merge m:1 id using http://www.stata-press.com/data/r13/overlap2, update
> keep(3 4 5)

Result # of obs.

not matched 0

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

480 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge

1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)

5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12 nonmissing conflict (5)

11. 3 1 . .a 14 matched (3)
12. 3 2 . 1 14 matched (3)
13. 3 3 . .a 14 missing updated (4)
14. 3 4 . .a 14 missing updated (4)

Example 9: A one-to-many merge

As a final example, we would like show one example of a 1:m merge. There is nothing conceptually
different here; what is interesting is the order of the observations in the final dataset:

. use http://www.stata-press.com/data/r13/overlap2, clear

. merge 1:m id using http://www.stata-press.com/data/r13/overlap1

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14 (_merge==3)

merge — Merge datasets 481

. list, sepby(id)

id bar x1 x2 seq _merge

1. 1 11 1 1 1 matched (3)

2. 2 12 . 1 1 matched (3)

3. 3 14 . .a 1 matched (3)

4. 20 18 1 1 . master only (1)

5. 1 11 1 1 2 matched (3)
6. 1 11 1 1 3 matched (3)
7. 1 11 1 1 4 matched (3)

8. 2 12 . 1 2 matched (3)
9. 2 12 . 1 3 matched (3)
10. 2 12 . 1 4 matched (3)
11. 2 12 . 1 5 matched (3)
12. 2 12 . 1 6 matched (3)

13. 3 14 . .a 2 matched (3)
14. 3 14 . .a 3 matched (3)
15. 3 14 . .a 4 matched (3)

16. 10 . 5 8 1 using only (2)

We can see here that the first four observations come from the master dataset, and all additional
observations, whether matched or unmatched, come below these observations. This illustrates that the
master dataset is always in the upper-left corner of the merged dataset.

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152–156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/.

. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3–5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22–25. College Station, TX: Stata Press.

Weesie, J. 2000. dm75: Safe and easy matched merging. Stata Technical Bulletin 53: 6–17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 62–77. College Station, TX: Stata Press.

Also see
[D] append — Append datasets

[D] cross — Form every pairwise combination of two datasets

[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

[D] sort — Sort data

[U] 22 Combining datasets

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://www.stata.com/products/stb/journals/stb20.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

Title

missing values — Quick reference for missing values

Description Remarks and examples Reference Also see

Description
This entry provides a quick reference for Stata’s missing values.

Remarks and examples
Stata has 27 numeric missing values:

., the default, which is called the system missing value or sysmiss

and

.a, .b, .c, . . . , .z, which are called the extended missing values.

Numeric missing values are represented by large positive values. The ordering is

all nonmissing numbers < . < .a < .b < · · · < .z

Thus the expression
age > 60

is true if variable age is greater than 60 or missing.

To exclude missing values, ask whether the value is less than ‘.’.

. list if age > 60 & age < .

To specify missing values, ask whether the value is greater than or equal to ‘.’. For instance,

. list if age >=.

Stata has one string missing value, which is denoted by "" (blank).

Reference
Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157–159.

Also see
[U] 12.2.1 Missing values

482

http://www.stata-journal.com/sjpdf.html?articlenum=dm0047

Title

mkdir — Create directory

Syntax Description Option Remarks and examples Also see

Syntax
mkdir directoryname

[
, public

]
Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname contains embedded

spaces.

Description
mkdir creates a new directory (folder).

Option
public specifies that directoryname be readable by everyone; otherwise, the directory will be created

according to the default permissions of your operating system.

Remarks and examples
Examples:

Windows
. mkdir myproj

. mkdir c:\projects\myproj

. mkdir "c:\My Projects\Project 1"

Mac and Unix
. mkdir myproj

. mkdir ~/projects/myproj

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

483

Title

mvencode — Change missing values to numeric values and vice versa

Syntax Menu Description Options
Remarks and examples Acknowledgment Also see

Syntax
Change missing values to numeric values

mvencode varlist
[

if
] [

in
]
, mv(# | mvc = #

[
\ mvc = #. . .

] [
\ else = #

]
)
[
override

]
Change numeric values to missing values

mvdecode varlist
[

if
] [

in
]
, mv(numlist | numlist =mvc

[
\ numlist =mvc . . .

]
)

where mvc is one of . | .a | .b | . . . | .z.

Menu
mvencode

Data > Create or change data > Other variable-transformation commands > Change missing values to numeric

mvdecode

Data > Create or change data > Other variable-transformation commands > Change numeric values to missing

Description
mvencode changes missing values in the specified varlist to numeric values.

mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.

Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, . . . , .z.

String variables in varlist are ignored.

Options

� � �
Main �

mv(# | mvc = #
[
\ mvc = #. . .

] [
\ else = #

]
) is required and specifies the numeric values to which

the missing values are to be changed.

mv(#) specifies that all types of missing values be changed to #.

mv(mvc=#) specifies that occurrences of missing-value code mvc be changed to #. Multiple
transformation rules may be specified, separated by a backward slash (\). The list may be terminated
by the special rule else=#, specifying that all types of missing values not yet transformed be set
to #.

Examples: mv(9), mv(.=99\.a=98\.b=97), mv(.=99\ else=98)

484

mvencode — Change missing values to numeric values and vice versa 485

mv(numlist | numlist=mvc
[
\ numlist =mvc . . .

]
) is required and specifies the numeric values that

are to be changed to missing values.

mv(numlist=mvc) specifies that the values in numlist be changed to missing-value code mvc.
Multiple transformation rules may be specified, separated by a backward slash (\). See [P] numlist
for the syntax of a numlist.

Examples: mv(9), mv(99=.\98=.a\97=.b), mv(99=.\ 100/999=.a)

override specifies that the protection provided by mvencode be overridden. Without this option,
mvencode refuses to make the requested change if any of the numeric values are already used in
the data.

Remarks and examples

You may occasionally read data in which missing (for example, a respondent failed to answer
a survey question or the data were not collected) is coded with a special numeric value. Popular
codings are 9, 99, −9, −99, and the like. If missing were encoded as −99, then

. mvdecode _all, mv(-99)

would translate the special code to the Stata missing value “.”. Use this command cautiously because,
even if −99 were not a special code, all −99s in the data would be changed to missing.

Sometimes different codes are used to represent different reasons for missing values. For instance,
98 may be used for “refused to answer” and 99 for “not applicable”. Extended missing values (.a,
.b, and so on) may be used to code these differences.

. mvdecode _all, mv(98=.a\ 99=.b)

Conversely, you might need to export data to software that does not understand that “.” indicates
a missing value, so you might code missing with a special numeric value. To change all missings to
−99, you could type

. mvencode _all, mv(-99)

To change extended missing values back to numeric values, type

. mvencode _all, mv(.a=98\ .b=99)

This would leave sysmiss and all other extended missing values unchanged. To encode in addition
sysmiss . to 999 and all other extended missing values to 97, you might type

. mvencode _all, mv(.=999\ .a=98\ .b=99\ else=97)

mvencode will automatically recast variables upward, if necessary, so even if a variable is stored as
a byte, its missing values can be recoded to, say, 999. Also mvencode refuses to make the change
if # (−99 here) is already used in the data, so you can be certain that your coding is unique. You
can override this feature by including the override option.

Be aware of another potential problem with encoding and decoding missing values: value labels
are not automatically adapted to the changed codings. You have to do this yourself. For example,
the value label divlabor maps the value 99 to the string “not applicable”. You used mvdecode to
recode 99 to .a for all variables that are associated with this label. To fix the value label, clear the
mapping for 99 and define it again for .a.

. label define divlabor 99 "", modify

. label define divlabor .a "not applicable", add

486 mvencode — Change missing values to numeric values and vice versa

Example 1

Our automobile dataset contains 74 observations and 12 variables. Let’s first attempt to translate
the missing values in the data to 1:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. mvencode _all, mv(1)
make: string variable ignored
rep78: already 1 in 2 observations

foreign: already 1 in 22 observations
no action taken
r(9);

Our attempt failed. mvencode first informed us that make is a string variable—this is not a problem
but is reported merely for our information. String variables are ignored by mvencode. It next informed
us that rep78 was already coded 1 in 2 observations and that foreign was already coded 1 in 22
observations. Thus 1 would be a poor choice for encoding missing values because, after encoding,
we could not tell a real 1 from a coded missing value 1.

We could force mvencode to encode the data with 1, anyway, by typing mvencode all, mv(1)
override. That would be appropriate if the 1s in our data already represented missing data. They
do not, however, so we code missing as 999:

. mvencode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

This worked, and we are informed that the only changes necessary were to 5 observations of rep78.

Example 2

Let’s now pretend that we just read in the automobile data from some raw dataset in which all
the missing values were coded 999. We can convert the 999s to real missings by typing

. mvdecode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

We are informed that make is a string variable, so it was ignored, and that rep78 contained 5
observations with 999. Those observations have now been changed to contain missing.

Acknowledgment
These versions of mvencode and mvdecode were written by Jeroen Weesie of the Department of

Sociology at Utrecht University, The Netherlands.

Also see
[D] generate — Create or change contents of variable

[D] recode — Recode categorical variables

Title

notes — Place notes in data

Syntax Menu Description Remarks and examples
References Also see

Syntax

Attach notes to dataset

notes
[

evarname
]
: text

List all notes

notes

List specific notes

notes
[
list

]
evarlist

[
in #

[
/#
]]

Search for a text string across all notes in all variables and dta

notes search
[

sometext
]

Replace a note

notes replace evarname in # : text

Drop notes

notes drop evarlist
[
in #

[
/#
]]

Renumber notes

notes renumber evarname

where evarname is dta or a varname, evarlist is a varlist that may contain the dta, and # is a
number or the letter l.

If text includes the letters TS surrounded by blanks, the TS is removed, and a time stamp is substituted
in its place.

Menu
notes (add)

Data > Variables Manager

notes list and notes search

Data > Data utilities > Notes utilities > List or search notes

487

488 notes — Place notes in data

notes replace

Data > Variables Manager

notes drop

Data > Variables Manager

notes renumber

Data > Data utilities > Notes utilities > Renumber notes

Description

notes attaches notes to the dataset in memory. These notes become a part of the dataset and are
saved when the dataset is saved and retrieved when the dataset is used; see [D] save and [D] use.
notes can be attached generically to the dataset or specifically to a variable within the dataset.

Remarks and examples
Remarks are presented under the following headings:

How notes are numbered
Attaching and listing notes
Selectively listing notes
Searching and replacing notes
Deleting notes
Warnings

How notes are numbered

Notes are numbered sequentially, with the first note being 1. Say the myvar variable has four
notes numbered 1, 2, 3, and 4. If you type notes drop myvar in 3, the remaining notes will be
numbered 1, 2, and 4. If you now add another note, it will be numbered 5. That is, notes are not
renumbered and new notes are added immediately after the highest numbered note. Thus, if you now
dropped notes 4 and 5, the next note added would be 3.

You can renumber notes by using notes renumber. Going back to when myvar had notes
numbered 1, 2, and 4 after dropping note 3, if you typed notes renumber myvar, the notes would
be renumbered 1, 2, and 3. If you added a new note after that, it would be numbered 4.

Attaching and listing notes

A note is nothing formal; it is merely a string of text reminding you to do something, cautioning
you against something, or saying anything else you might feel like jotting down. People who work
with real data invariably end up with paper notes plastered around their terminal saying things like,
“Send the new sales data to Bob”, “Check the income variable in salary95; I don’t believe it”, or
“The gender dummy was significant!” It would be better if these notes were attached to the dataset.

Adding a note to your dataset requires typing note or notes (they are synonyms), a colon (:),
and whatever you want to remember. The note is added to the dataset currently in memory.

. note: Send copy to Bob once verified.

notes — Place notes in data 489

You can replay your notes by typing notes (or note) by itself.

. notes

_dta:
1. Send copy to Bob once verified.

Once you resave your data, you can replay the note in the future, too. You add more notes just as
you did the first:

. note: Mary wants a copy, too.

. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

You can place time stamps on your notes by placing the word TS (in capitals) in the text of your
note:

. note: TS merged updates from JJ&F

. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2013 15:38 merged updates from JJ&F

Notes may contain SMCL directives:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. note: check reason for missing values in {cmd:rep78}

. notes

_dta:
1. from Consumer Reports with permission
2. check reason for missing values in rep78

The notes we have added so far are attached to the dataset generically, which is why Stata prefixes
them with dta when it lists them. You can attach notes to variables:

. note mpg: is the 44 a mistake? Ask Bob.

. note mpg: what about the two missing values?

. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2013 15:38 merged updates from JJ&F

mpg:
1. is the 44 a mistake? Ask Bob.
2. what about the two missing values?

Up to 9,999 generic notes can be attached to dta, and another 9,999 notes can be attached to
each variable.

490 notes — Place notes in data

Selectively listing notes

Typing notes by itself lists all the notes. In full syntax, notes is equivalent to typing notes
all in 1/l. Here are some variations:

notes dta list all generic notes
notes mpg list all notes for variable mpg
notes dta mpg list all generic notes and mpg notes
notes dta in 3 list generic note 3
notes dta in 3/5 list generic notes 3–5
notes mpg in 3/5 list mpg notes 3–5
notes dta in 3/l list generic notes 3 through last

Searching and replacing notes

You had a bad day yesterday, and you want to recheck the notes that you added to your dataset.
Fortunately, you always put a time stamp on your notes.

. notes search "29 Jan"

_dta:
2. 29 Jan 2013 13:40 check reason for missing values in foreign

Good thing you checked. It is rep78 that has missing values.

. notes replace _dta in 2: TS check reason for missing values in rep78
(note 2 for _dta replaced)

. notes

_dta:
1. from Consumer Reports with permission
2. 30 Jan 2013 12:32 check reason for missing values in rep78

Deleting notes

notes drop works much like listing notes, except that typing notes drop by itself does not
delete all notes; you must type notes drop all. Here are some variations:

notes drop dta delete all generic notes
notes drop dta in 3 delete generic note 3
notes drop dta in 3/5 delete generic notes 3–5
notes drop dta in 3/l delete generic notes 3 through last
notes drop mpg in 4 delete mpg note 4

Warnings

• Notes are stored with the data, and as with other updates you make to the data, the additions and
deletions are not permanent until you save the data; see [D] save.

• The maximum length of one note is 67,784 characters for Stata/MP, Stata/SE, and Stata/IC; it is
13,400 characters for Small Stata.

notes — Place notes in data 491

References
Gleason, J. R. 1998. dm57: A notes editor for Windows and Macintosh. Stata Technical Bulletin 43: 6–9. Reprinted

in Stata Technical Bulletin Reprints, vol. 8, pp. 10–13. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] save — Save Stata dataset

[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.8 Characteristics

http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata-press.com/books/wdaus.html

Title

obs — Increase the number of observations in a dataset

Syntax Description Remarks and examples Also see

Syntax
set obs #

Description
set obs changes the number of observations in the current dataset. # must be at least as large as

the current number of observations. If there are variables in memory, the values of all new observations
are set to missing.

Remarks and examples

Example 1

set obs can be useful for creating artificial datasets. For instance, if we wanted to graph the
function y = x2 over the range 1–100, we could type

. drop _all

. set obs 100
obs was 0, now 100

. generate x = _n

. generate y = x^2

. scatter y x
(graph not shown)

Example 2

If we want to add an extra data point in a program, we could type

. local np1 = _N + 1

. set obs ‘np1’

or

. set obs ‘=_N + 1’

Also see
[D] describe — Describe data in memory or in file

492

Title

odbc — Load, write, or view data from ODBC sources

Syntax Menu Description Options
Remarks and examples Also see

Syntax
List ODBC sources to which Stata can connect

odbc list

Retrieve available names from specified data source

odbc query
[
"DataSourceName", verbose schema connect options

]
List column names and types associated with specified table

odbc describe
[
"TableName", connect options

]
Import data from an ODBC data source

odbc load
[

extvarlist
] [

if
] [

in
]
,
{
table("TableName") | exec("SqlStmt")

}[
load options connect options

]
Export data to an ODBC data source

odbc insert
[

varlist
] [

if
] [

in
]
, table("TableName")

{dsn("DataSourceName") | connectionstring("ConnectionStr")}[
insert options connect options

]
Allow SQL statements to be issued directly to ODBC data source

odbc exec("SqlStmt") ,

{dsn("DataSourceName") | connectionstring("ConnectionStr")}[
connect options

]
Batch job alternative to odbc exec

odbc sqlfile("filename") ,

{dsn("DataSourceName") | connectionstring("ConnectionStr")}[
loud connect options

]
Specify ODBC driver manager (Mac and Unix only)

set odbcmgr
{
iodbc | unixodbc

} [
, permanently

]
493

494 odbc — Load, write, or view data from ODBC sources

where

DataSourceName is the name of the ODBC source (database, spreadsheet, etc.)

ConnectionStr is a valid ODBC connection string

TableName is the name of a table within the ODBC data source

SqlStmt is an SQL SELECT statement

filename is pure SQL commands separated by semicolons

and where extvarlist contains
sqlvarname
varname = sqlvarname

connect options Description

user(UserID) user ID of user establishing connection
password(Password) password of user establishing connection
dialog(noprompt) do not display ODBC connection-information dialog, and

do not prompt user for connection information
dialog(prompt) display ODBC connection-information dialog
dialog(complete) display ODBC connection-information dialog only if there

is not enough information
dialog(required) display ODBC connection-information dialog only if there

is not enough mandatory information provided
∗dsn("DataSourceName") name of data source
∗connectionstring("ConnectionStr") ODBC connection string
∗dsn("DataSourceName") is not allowed with odbc query. You may not specify both DataSourceName and

connectionstring() with odbc query. Either dsn() or connectionstring() is required with odbc insert,
odbc exec, and odbc sqlfile.

load options Description

∗table("TableName") name of table stored in data source
∗exec("SqlStmt") SQL SELECT statement to generate a table to be read into

Stata
clear load dataset even if there is one in memory
noquote alter Stata’s internal use of SQL commands; seldom used
lowercase read variable names as lowercase
sqlshow show all SQL commands issued
allstring read all variables as strings
datestring read date-formatted variables as strings

∗Either table("TableName") or exec("SqlStmt") must be specified with odbc load.

odbc — Load, write, or view data from ODBC sources 495

insert options Description

∗table("TableName") name of table stored in data source
create create a simple ODBC table
overwrite clear data in ODBC table before data in memory is written to the table
insert default mode of operation for the odbc insert command
quoted quote all values with single quotes as they are inserted in ODBC table
sqlshow show all SQL commands issued
as("varlist") ODBC variables on the data source that correspond to the variables in

Stata’s memory
block use block inserts

∗table("TableName") is required for odbc insert.

Menu
odbc load

File > Import > ODBC data source

odbc insert

File > Export > ODBC data source

Description
odbc allows you to load, write, and view data from Open DataBase Connectivity (ODBC) sources

into Stata. ODBC is a standardized set of function calls for accessing data stored in both relational and
nonrelational database-management systems. By default on Unix platforms, iODBC is the ODBC driver
manager Stata uses, but you can use unixODBC by using the command set odbcmgr unixodbc.

ODBC’s architecture consists of four major components (or layers): the client interface, the ODBC
driver manager, the ODBC drivers, and the data sources. Stata provides odbc as the client interface.
The system is illustrated as follows:

odbc list produces a list of ODBC data source names to which Stata can connect.

odbc query retrieves a list of table names available from a specified data source’s system catalog.

odbc describe lists column names and types associated with a specified table.

odbc load reads an ODBC table into memory. You can load an ODBC table specified in the table()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec() option.
In both cases, you can choose which columns and rows of the ODBC table to read by specifying
extvarlist and if and in conditions. extvarlist specifies the columns to be read and allows you to
rename variables. For example,

496 odbc — Load, write, or view data from ODBC sources

. odbc load id=ID name="Last Name", table(Employees) dsn(Northwind)

reads two columns, ID and Last Name, from the Employees table of the Northwind data source.
It will also rename variable ID to id and variable Last Name to name.

odbc insert writes data from memory to an ODBC table. The data can be appended to an existing
table, replace an existing table, or be placed in a newly created ODBC table.

odbc exec allows for most SQL statements to be issued directly to any ODBC data source.
Statements that produce output, such as SELECT, have their output neatly displayed. By using Stata’s
ado language, you can also generate SQL commands on the fly to do positional updates or whatever
the situation requires.

odbc sqlfile provides a “batch job” alternative to the odbc exec command. A file is specified
that contains any number of any length SQL commands. Every SQL command in this file should be
delimited by a semicolon and must be constructed as pure SQL. Stata macros and ado-language syntax
are not permitted. The advantage in using this command, as opposed to odbc exec, is that only one
connection is established for multiple SQL statements. A similar sequence of SQL commands used
via odbc exec would require constructing an ado-file that issued a command and, thus, a connection
for every SQL command. Another slight difference is that any output that might be generated from
an SQL command is suppressed by default. A loud option is provided to toggle output back on.

set odbcmgr iodbc specifies that the ODBC driver manager is iODBC (the default). set odbcmgr
unixodbc specifies that the ODBC driver manager is unixODBC.

Options
user(UserID) specifies the user ID of the user attempting to establish the connection to the data

source. By default, Stata assumes that the user ID is the same as the one specified in the previous
odbc command or is empty if user() has never been specified in the current session of Stata.

password(Password) specifies the password of the user attempting to establish the connection to the
data source. By default, Stata assumes that the password is the same as the one previously specified
or is empty if the password has not been used during the current session of Stata. Typically, the
password() option will not be specified apart from the user() option.

dialog(noprompt | prompt | complete | required) specifies the mode the ODBC Driver Manager
uses to display the ODBC connection-information dialog to prompt for more connection information.

noprompt is the default value. The ODBC connection-information dialog is not displayed, and you
are not prompted for connection information. If there is not enough information to establish a
connection to the specified data source, an error is returned.

prompt causes the ODBC connection-information dialog to be displayed.

complete causes the ODBC connection-information dialog to be displayed only if there is not
enough information, even if the information is not mandatory.

required causes the ODBC connection-information dialog to be displayed only if there is not
enough mandatory information provided to establish a connection to the specified data source.
You are prompted only for mandatory information; controls for information that is not required to
connect to the specified data source are disabled.

dsn("DataSourceName") specifies the name of a data source, as listed by the odbc list command.
If a name contains spaces, it must be enclosed in double quotes. By default, Stata assumes that
the data source name is the same as the one specified in the previous odbc command. This option
is not allowed with odbc query. Either the dsn() option or the connectionstring() option

odbc — Load, write, or view data from ODBC sources 497

may be specified with odbc describe and odbc load, and one of these options must be specified
with odbc insert, odbc exec, and odbc sqlfile.

connectionstring("ConnectionStr") specifies a connection string rather than the name of a data
source. Stata does not assume that the connection string is the same as the one specified in the
previous odbc command. Either DataSourceName or the connectionstring() option may be
specified with odbc query; either the dsn() option or the connectionstring() option can be
specified with odbc describe and odbc load, and one of these options must be specified with
odbc insert, odbc exec, and odbc sqlfile.

table("TableName") specifies the name of an ODBC table stored in a specified data source’s system
catalog, as listed by the odbc query command. If a table name contains spaces, it must be
enclosed in double quotes. Either the table() option or the exec() option—but not both—is
required with the odbc load command.

exec("SqlStmt") allows you to issue an SQL SELECT statement to generate a table to be read into Stata.
An error message is returned if the SELECT statement is an invalid SQL statement. The statement
must be enclosed in double quotes. Either the table() option or the exec() option—but not
both—is required with the odbc load command.

clear permits the data to be loaded, even if there is a dataset already in memory, and even if that
dataset has changed since the data were last saved.

noquote alters Stata’s internal use of SQL commands, specifically those relating to quoted table
names, to better accommodate various drivers. This option has been particularly helpful for DB2
drivers.

lowercase causes all the variable names to be read as lowercase.

sqlshow is a useful option for showing all SQL commands issued to the ODBC data source from the
odbc insert or odbc load command. This can help you debug any issues related to inserting
or loading.

allstring causes all variables to be read as string data types.

datestring causes all date- and time-formatted variables to be read as string data types.

create specifies that a simple ODBC table be created on the specified data source and populated with
the data in memory. Column data types are approximated based on the existing format in Stata’s
memory.

overwrite allows data to be cleared from an ODBC table before the data in memory are written to
the table. All data from the ODBC table are erased, not just the data from the variable columns
that will be replaced.

insert appends data to an existing ODBC table and is the default mode of operation for the odbc
insert command.

quoted is useful for ODBC data sources that require all inserted values to be quoted. This option
specifies that all values be quoted with single quotes as they are inserted into an ODBC table.

as("varlist") allows you to specify the ODBC variables on the data source that correspond to the
variables in Stata’s memory. If this option is specified, the number of variables must equal the
number of variables being inserted, even if some names are identical.

loud specifies that output be displayed for SQL commands.

verbose specifies that odbc query list any data source alias, nickname, typed table, typed view, and
view along with tables so that you can load data from these table types.

498 odbc — Load, write, or view data from ODBC sources

schema specifies that odbc query return schema names with the table names from a data source.
Note: The schema names returned from odbc query will also be used with the odbc describe
and odbc load commands. When using odbc load with a schema name, you might also need to
specify the noquote option because some drivers do not accept quotes around table or schema
names.

block specifies that odbc insert use block inserts to speed up data-writing performance. Some
drivers do not support block inserts.

permanently (set odbcmgr only) specifies that, in addition to making the change right now, the
setting be remembered and become the default setting when you invoke Stata.

Remarks and examples
When possible, the examples in this manual entry are developed using the Northwind sample

database that is automatically installed with Microsoft Access. If you do not have Access, you can still
use odbc, but you will need to consult the documentation for your other ODBC sources to determine
how to set them up.

Remarks are presented under the following headings:

Setting up the data sources
Listing ODBC data source names
Listing available table names from a specified data source’s system catalog
Describing a specified table
Loading data from ODBC sources

Setting up the data sources

Before using Stata’s ODBC commands, you must register your ODBC database with the ODBC
Data Source Administrator . This process varies depending on platform, but the following example
shows the steps necessary for Windows.

Using Windows 7, XP, or Vista, follow these steps to create an ODBC User Data Source for the
Northwind sample database:

1. From the Start Menu, select the Control Panel .

2. In the Control Panel window, click on System and Security > Administrative Tools .

3. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click on Add...;
c. choose Microsoft Access Driver (*.mdb,*.accdb) on the Create New Data Source dialog
box; and

d. click on Finish.

4. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish
creating the data source.

odbc — Load, write, or view data from ODBC sources 499

Technical note

In earlier versions of Windows, the exact location of the Data Source (ODBC) dialog varies, but
it is always somewhere within the Control Panel.

Listing ODBC data source names

odbc list is used to produce a list of data source names to which Stata can connect. For a
specific data source name to be shown in the list, the data source has to be registered with the ODBC
Data Source Administrator . See Setting up the data sources for information on how to do this.

Example 1

. odbc list

Data Source Name Driver

dBASE Files Microsoft Access dBASE Driver (*.dbf, *.ndx
Excel Files Microsoft Excel Driver (*.xls, *.xlsx, *.xl
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)
Northwind Microsoft Access Driver (*.mdb, *.accdb)

In the above list, Northwind is one of the sample Microsoft Access databases that Access installs
by default.

500 odbc — Load, write, or view data from ODBC sources

Listing available table names from a specified data source’s system catalog

odbc query is used to list table names available from a specified data source.

Example 2

. odbc query "Northwind"

DataSource: Northwind
Path : C:\Program Files\Microsoft Office\Office\Samples\Northwind.accdb

Customers
Employee Privileges
Employees
Inventory Transaction Types
Inventory Transactions
Invoices
Order Details
Order Details Status
Orders
Orders Status
Orders Tax Status
Privileges
Products
Purchase Order Details
Purchase Order Status
Purchase Orders
Sales Reports
Shippers
Strings
Suppliers

odbc — Load, write, or view data from ODBC sources 501

Describing a specified table

odbc describe is used to list column (variable) names and their SQL data types that are associated
with a specified table.

Example 3

Here we specify that we want to list all variables in the Employees table of the Northwind data
source.

. odbc describe "Employees", dsn("Northwind")

DataSource: Northwind (query)
Table: Employees (load)

Variable Name Variable Type

ID COUNTER
Company VARCHAR
Last Name VARCHAR
First Name VARCHAR
E-mail Address VARCHAR
Job Title VARCHAR
Business Phone VARCHAR
Home Phone VARCHAR
Mobile Phone VARCHAR
Fax Number VARCHAR
Address LONGCHAR
City VARCHAR
State/Province VARCHAR
ZIP/Postal Code VARCHAR
Country/Region VARCHAR
Web Page LONGCHAR
Notes LONGCHAR
Attachments LONGCHAR

Loading data from ODBC sources

odbc load is used to load an ODBC table into memory.

To load an ODBC table listed in the odbc query output, specify the table name in the table()
option and the data source name in the dsn() option.

Example 4

We want to load the Employees table from the Northwind data source.

. clear

. odbc load, table("Employees") dsn("Northwind")
E-mail_Address invalid name
- converted E-mail_Address to var5
State/Province invalid name
- converted State/Province to var13
ZIP/Postal_Code invalid name
- converted ZIP/Postal_Code to var14
Country/Region invalid name
- converted Country/Region to var15

502 odbc — Load, write, or view data from ODBC sources

. describe

Contains data
obs: 9
vars: 18
size: 4,407

storage display value
variable name type format label variable label

ID long %12.0g
Company str17 %17s
Last_Name str14 %14s Last Name
First_Name str7 %9s First Name
var5 str28 %28s E-mail Address
Job_Title str21 %21s Job Title
Business_Phone str13 %13s Business Phone
Home_Phone str13 %13s Home Phone
Mobile_Phone str1 %9s Mobile Phone
Fax_Number str13 %13s Fax Number
Address strL %9s
City str8 %9s
var13 str2 %9s State/Province
var14 str5 %9s ZIP/Postal Code
var15 str3 %9s Country/Region
Web_Page strL %9s Web Page
Notes strL %9s
Attachments strL %9s

Sorted by:
Note: dataset has changed since last saved

Technical note
When Stata loads the ODBC table, data are converted from SQL data types to Stata data types.

Stata does not support all SQL data types. If the column cannot be read because of incompatible data
types, Stata will issue a note and skip a column. The following table lists the supported SQL data
types and their corresponding Stata data types:

odbc — Load, write, or view data from ODBC sources 503

SQL data type Stata data type

SQL BIT byte
SQL TINYINT

SQL SMALLINT int

SQL INTEGER long

SQL DECIMAL double
SQL NUMERIC

SQL FLOAT double
SQL DOUBLE
SQL REAL double

SQL BIGINT string

SQL CHAR string
SQL VARCHAR
SQL LONGVARCHAR
SQL WCHAR
SQL WVARCHAR
SQL WLONGVARCHAR

SQL TIME
SQL DATE
SQL TIMESTAMP
SQL TYPE TIME double
SQL TYPE DATE
SQL TYPE TIMESTAMP

SQL BINARY
SQL VARBINARY
SQL LONGVARBINARY

You can also load an ODBC table generated by an SQL SELECT statement specified in the exec()
option.

Example 5

Suppose that, from the Northwind data source, we want a list of all the customers who have
placed orders. We might use the SQL SELECT statement

SELECT DISTINCT c.ID, c.Company
FROM Customers c
INNER JOIN Orders o

ON c.[Customer ID] = o.CustomerID

To load the table into Stata, we use odbc load with the exec() option.

504 odbc — Load, write, or view data from ODBC sources

. odbc load, exec(‘"SELECT DISTINCT c.ID, c.Company FROM Customers c INNER JOIN
> Orders o ON c.ID = o.[Customer ID]"’) dsn("Northwind") clear

. describe

Contains data
obs: 15
vars: 2
size: 210

storage display value
variable name type format label variable label

ID long %12.0g
Company str10 %10s

Sorted by:
Note: dataset has changed since last saved

The extvarlist is optional. It allows you to choose which columns (variables) are to be read and
to rename variables when they are read.

Example 6

Suppose that we want to load the ID column and the Last Name column from the Employees
table of the Northwind data source. Moreover, we want to rename ID as id and Last Name as name.

. odbc load id=ID name="Last Name", table("Employees") dsn("Northwind") clear

. describe

Contains data
obs: 9
vars: 2
size: 162

storage display value
variable name type format label variable label

id long %12.0g ID
name str14 %14s Last Name

Sorted by:
Note: dataset has changed since last saved

The if and in qualifiers allow you to choose which rows are to be read. You can also use a
WHERE clause in the SQL SELECT statement to select the rows to be read.

odbc — Load, write, or view data from ODBC sources 505

Example 7

Suppose that we want the information from the Order Details table, where Quantity is greater
than 50. We can specify the if and in qualifiers,

. odbc load if Quantity>50, table("Order Details") dsn("Northwind") clear

. sum Quantity

Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

or we can issue the SQL SELECT statement directly:

. odbc load, exec("SELECT * FROM [Order Details] WHERE Quantity>50")
> dsn("Northwind") clear

. sum Quantity

Variable Obs Mean Std. Dev. Min Max

Quantity 10 177.7 94.21966 87 300

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

Title

order — Reorder variables in dataset

Syntax Menu Description Options
Remarks and examples References Also see

Syntax
order varlist

[
, options

]
options Description

first move varlist to beginning of dataset; the default
last move varlist to end of dataset
before(varname) move varlist before varname
after(varname) move varlist after varname
alphabetic alphabetize varlist and move it to beginning of dataset
sequential alphabetize varlist keeping numbers sequential and move it to

beginning of dataset

Menu
Data > Data utilities > Change order of variables

Description
order relocates varlist to a position depending on which option you specify. If no option is

specified, order relocates varlist to the beginning of the dataset in the order in which the variables
are specified.

Options
first shifts varlist to the beginning of the dataset. This is the default.

last shifts varlist to the end of the dataset.

before(varname) shifts varlist before varname.

after(varname) shifts varlist after varname.

alphabetic alphabetizes varlist and moves it to the beginning of the dataset. For example, here is a
varlist in alphabetic order: a x7 x70 x8 x80 z. If combined with another option, alphabetic
just alphabetizes varlist, and the movement of varlist is controlled by the other option.

sequential alphabetizes varlist, keeping variables with the same ordered letters but with differing
appended numbers in sequential order. varlist is moved to the beginning of the dataset. For example,
here is a varlist in sequential order: a x7 x8 x70 x80 z.

506

order — Reorder variables in dataset 507

Remarks and examples

Example 1

When using order, you must specify a varlist, but you do not need to specify all the variables
in the dataset. For example, we want to move the make and mpg variables to the front of the auto
dataset.

. use http://www.stata-press.com/data/r13/auto4
(1978 Automobile Data)

. describe

Contains data from http://www.stata-press.com/data/r13/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2013 00:20
size: 2,072

storage display value
variable name type format label variable label

price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
mpg int %8.0g Mileage (mpg)
make str18 %-18s Make and Model
length int %8.0g Length (in.)
rep78 int %8.0g Repair Record 1978

Sorted by:

. order make mpg

. describe

Contains data from http://www.stata-press.com/data/r13/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2013 00:20
size: 2,072

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
length int %8.0g Length (in.)
rep78 int %8.0g Repair Record 1978

Sorted by:

We now want length to be the last variable in our dataset, so we could type order make mpg
price weight rep78 length, but it would be easier to use the last option:

508 order — Reorder variables in dataset

. order length, last

. describe

Contains data from http://www.stata-press.com/data/r13/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2013 00:20
size: 2,072

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
rep78 int %8.0g Repair Record 1978
length int %8.0g Length (in.)

Sorted by:

We now change our mind and decide that we prefer that the variables be alphabetized.

. order _all, alphabetic

. describe

Contains data from http://www.stata-press.com/data/r13/auto4.dta
obs: 74 1978 Automobile Data
vars: 6 6 Apr 2013 00:20
size: 2,072

storage display value
variable name type format label variable label

length int %8.0g Length (in.)
make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
price int %8.0gc Price
rep78 int %8.0g Repair Record 1978
weight int %8.0gc Weight (lbs.)

Sorted by:

Technical note
If your data contain variables named year1, year2, . . . , year19, year20, specify the sequential

option to obtain this ordering. If you specify the alphabetic option, year10 will appear between
year1 and year11.

References
Gleason, J. R. 1997. dm51: Defining and recording variable orderings. Stata Technical Bulletin 40: 10–12. Reprinted

in Stata Technical Bulletin Reprints, vol. 7, pp. 49–52. College Station, TX: Stata Press.

Weesie, J. 1999. dm74: Changing the order of variables in a dataset. Stata Technical Bulletin 52: 8–9. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, pp. 61–62. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb40.pdf
http://www.stata.com/products/stb/journals/stb52.pdf

order — Reorder variables in dataset 509

Also see
[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] edit — Browse or edit data with Data Editor

[D] rename — Rename variable

Title

outfile — Export dataset in text format

Syntax Menu Description Options
Remarks and examples Also see

Syntax
outfile

[
varlist

]
using filename

[
if
] [

in
] [

, options
]

options Description

Main

dictionary write the file in Stata’s dictionary format
nolabel output numeric values (not labels) of labeled variables; the default

is to write labels in double quotes
noquote do not enclose strings in double quotes
comma write file in comma-separated (instead of space-separated) format
wide force 1 observation per line (no matter how wide)

Advanced

rjs right-justify string variables; the default is to left-justify
fjs left-justify if format width < 0; right-justify if format width > 0
runtogether all on one line, no quotes, no space between, and ignore formats
missing retain missing values; use only with comma

replace overwrite the existing file

replace does not appear in the dialog box.

Menu
File > Export > Text data (fixed- or free-format)

Description
outfile writes data to a disk file in plain-text format, which can be read by other programs. The

new file is not in Stata format; see [D] save for instructions on saving data for later use in Stata.

The data saved by outfile can be read back by infile; see [D] import. If filename is specified
without an extension, .raw is assumed unless the dictionary option is specified, in which case .dct
is assumed. If your filename contains embedded spaces, remember to enclose it in double quotes.

Options

� � �
Main �

dictionary writes the file in Stata’s data dictionary format. See [D] infile (fixed format) for a
description of dictionaries. comma, missing, and wide are not allowed with dictionary.

510

outfile — Export dataset in text format 511

nolabel causes Stata to write the numeric values of labeled variables. The default is to write the
labels enclosed in double quotes.

noquote prevents Stata from placing double quotes around the contents of strings, meaning string
variables and value labels.

comma causes Stata to write the file in comma-separated–value format. In this format, values are
separated by commas rather than by blanks. Missing values are written as two consecutive commas
unless missing is specified.

wide causes Stata to write the data with 1 observation per line. The default is to split observations
into lines of 80 characters or fewer, but strings longer than 80 characters are never split across
lines.

� � �
Advanced �

rjs and fjs affect how strings are justified; you probably do not want to specify either of these
options. By default, outfile outputs strings left-justified in their field.

If rjs is specified, strings are output right-justified. rjs stands for “right-justified strings”.

If fjs is specified, strings are output left- or right-justified according to the variable’s format:
left-justified if the format width is negative and right-justified if the format width is positive. fjs
stands for “format-justified strings”.

runtogether is a programmer’s option that is valid only when all variables of the specified varlist
are of type string. runtogether specifies that the variables be output in the order specified,
without quotes, with no spaces between, and ignoring the display format attached to each variable.
Each observation ends with a new line character.

missing, valid only with comma, specifies that missing values be retained. When comma is specified
without missing, missing values are changed to null strings ("").

The following option is available with outfile but is not shown in the dialog box:

replace permits outfile to overwrite an existing dataset.

Remarks and examples
outfile enables data to be sent to a disk file for processing by a non-Stata program. Each

observation is written as one or more records that will not exceed 80 characters unless you specify
the wide option. Each column other than the first is prefixed by two blanks.

outfile is careful to put the data in columns in case you want to read the data by using formatted
input. String variables and value labels are output in left-justified fields by default. You can change
this behavior by using the rjs or fjs options.

Numeric variables are output right-justified in the field width specified by their display format.
A numeric variable with a display format of %9.0g will be right-justified in a nine-character field.
Commas are not written in numeric variables, even if a comma format is used.

If you specify the dictionary option, the data are written in the same way, but preceding the
data, outfile writes a data dictionary describing the contents of the file.

512 outfile — Export dataset in text format

Example 1: Basic usage

We have entered into Stata some data on seven employees in our firm. The data contain employee
name, employee identification number, salary, and sex:

. list

name empno salary sex

1. Carl Marks 57213 24,000 male
2. Irene Adler 47229 27,000 female
3. Adam Smith 57323 24,000 male
4. David Wallis 57401 24,500 male
5. Mary Rogers 57802 27,000 female

6. Carolyn Frank 57805 24,000 female
7. Robert Lawson 57824 22,500 male

The last variable in our data, sex, is really a numeric variable, but it has an associated value label.

If we now wish to use a program other than Stata with these data, we must somehow get the
data over to that other program. The standard Stata-format dataset created by save will not do the
job—it is written in a special format that only Stata understands. Most programs, however, understand
plain-text datasets, such as those produced by a text editor. We can tell Stata to produce such a dataset
by using outfile. Typing outfile using employee creates a dataset called employee.raw that
contains all the data. We can use the Stata type command to review the resulting file:

. outfile using employee

. type employee.raw
"Carl Marks" 57213 24000 "male"
"Irene Adler" 47229 27000 "female"
"Adam Smith" 57323 24000 "male"
"David Wallis" 57401 24500 "male"
"Mary Rogers" 57802 27000 "female"
"Carolyn Frank" 57805 24000 "female"
"Robert Lawson" 57824 22500 "male"

We see that the file contains the four variables and that Stata has surrounded the string variables
with double quotes.

Technical note
The nolabel option prevents Stata from substituting value-label strings for the underlying numeric

values; see [U] 12.6.3 Value labels. The last variable in our data is really a numeric variable:

. outfile using employ2, nolabel

. type employ2.raw
"Carl Marks" 57213 24000 0
"Irene Adler" 47229 27000 1
"Adam Smith" 57323 24000 0
"David Wallis" 57401 24500 0
"Mary Rogers" 57802 27000 1
"Carolyn Frank" 57805 24000 1
"Robert Lawson" 57824 22500 0

outfile — Export dataset in text format 513

Technical note
If you do not want Stata to place double quotes around the contents of string variables, you can

specify the noquote option:

. outfile using employ3, noquote

. type employ3.raw
Carl Marks 57213 24000 male
Irene Adler 47229 27000 female
Adam Smith 57323 24000 male
David Wallis 57401 24500 male
Mary Rogers 57802 27000 female
Carolyn Frank 57805 24000 female
Robert Lawson 57824 22500 male

Example 2: Overwriting an existing file

Stata never writes over an existing file unless explicitly told to do so. For instance, if the file
employee.raw already exists and we attempt to overwrite it by typing outfile using employee,
here is what would happen:

. outfile using employee
file employee.raw already exists
r(602);

We can tell Stata that it is okay to overwrite a file by specifying the replace option:

. outfile using employee, replace

Technical note
Some programs prefer data to be separated by commas rather than by blanks. Stata produces such

a dataset if you specify the comma option:

. outfile using employee, comma replace

. type employee.raw
"Carl Marks",57213,24000,"male"
"Irene Adler",47229,27000,"female"
"Adam Smith",57323,24000,"male"
"David Wallis",57401,24500,"male"
"Mary Rogers",57802,27000,"female"
"Carolyn Frank",57805,24000,"female"
"Robert Lawson",57824,22500,"male"

Example 3: Creating data dictionaries

Finally, outfile can create data dictionaries that infile can read. Dictionaries are perhaps the
best way to organize your raw data. A dictionary describes your data so that you do not have to
remember the order of the variables, the number of variables, the variable names, or anything else.
The file in which you store your data becomes self-documenting so that you can understand the data
in the future. See [D] infile (fixed format) for a full description of data dictionaries.

514 outfile — Export dataset in text format

When you specify the dictionary option, Stata writes a .dct file:

. outfile using employee, dict replace

. type employee.dct
dictionary {

str15 name ‘"Employee name"’
float empno ‘"Employee number"’
float salary ‘"Annual salary"’
float sex :sexlbl ‘"Sex"’

}
"Carl Marks" 57213 24000 "male"
"Irene Adler" 47229 27000 "female"
"Adam Smith" 57323 24000 "male"
"David Wallis" 57401 24500 "male"
"Mary Rogers" 57802 27000 "female"
"Carolyn Frank" 57805 24000 "female"
"Robert Lawson" 57824 22500 "male"

Example 4: Working with dates

We have historical data on the S&P 500 for the month of January 2001.

. use http://www.stata-press.com/data/r13/outfilexmpl
(S&P 500)

. describe

Contains data from http://www.stata-press.com/data/r13/outfilexmpl.dta
obs: 21 S&P 500
vars: 6 6 Apr 2013 16:02
size: 420 (_dta has notes)

storage display value
variable name type format label variable label

date int %td Date
open float %9.0g Opening price
high float %9.0g High price
low float %9.0g Low price
close float %9.0g Closing price
volume int %12.0gc Volume (thousands)

Sorted by: date

The date variable has a display format of %td so that it is displayed as ddmmmyyyy.

outfile — Export dataset in text format 515

. list

date open high low close volume

1. 02jan2001 1320.28 1320.28 1276.05 1283.27 11,294
2. 03jan2001 1283.27 1347.76 1274.62 1347.56 18,807
3. 04jan2001 1347.56 1350.24 1329.14 1333.34 21,310
4. 05jan2001 1333.34 1334.77 1294.95 1298.35 14,308
5. 08jan2001 1298.35 1298.35 1276.29 1295.86 11,155

6. 09jan2001 1295.86 1311.72 1295.14 1300.8 11,913
7. 10jan2001 1300.8 1313.76 1287.28 1313.27 12,965
8. 11jan2001 1313.27 1332.19 1309.72 1326.82 14,112
9. 12jan2001 1326.82 1333.21 1311.59 1318.55 12,760
10. 16jan2001 1318.32 1327.81 1313.33 1326.65 12,057

11. 17jan2001 1326.65 1346.92 1325.41 1329.47 13,491
12. 18jan2001 1329.89 1352.71 1327.41 1347.97 14,450
13. 19jan2001 1347.97 1354.55 1336.74 1342.54 14,078
14. 22jan2001 1342.54 1353.62 1333.84 1342.9 11,640
15. 23jan2001 1342.9 1362.9 1339.63 1360.4 12,326

16. 24jan2001 1360.4 1369.75 1357.28 1364.3 13,090
17. 25jan2001 1364.3 1367.35 1354.63 1357.51 12,580
18. 26jan2001 1357.51 1357.51 1342.75 1354.95 10,980
19. 29jan2001 1354.92 1365.54 1350.36 1364.17 10,531
20. 30jan2001 1364.17 1375.68 1356.2 1373.73 11,498

21. 31jan2001 1373.73 1383.37 1364.66 1366.01 12,953

We outfile our data and use the type command to view the result.

. outfile using sp

. type sp.raw
"02jan2001" 1320.28 1320.28 1276.05 1283.27 11294
"03jan2001" 1283.27 1347.76 1274.62 1347.56 18807
"04jan2001" 1347.56 1350.24 1329.14 1333.34 21310
"05jan2001" 1333.34 1334.77 1294.95 1298.35 14308
"08jan2001" 1298.35 1298.35 1276.29 1295.86 11155
"09jan2001" 1295.86 1311.72 1295.14 1300.8 11913
"10jan2001" 1300.8 1313.76 1287.28 1313.27 12965
"11jan2001" 1313.27 1332.19 1309.72 1326.82 14112
"12jan2001" 1326.82 1333.21 1311.59 1318.55 12760
"16jan2001" 1318.32 1327.81 1313.33 1326.65 12057
"17jan2001" 1326.65 1346.92 1325.41 1329.47 13491
"18jan2001" 1329.89 1352.71 1327.41 1347.97 14450
"19jan2001" 1347.97 1354.55 1336.74 1342.54 14078
"22jan2001" 1342.54 1353.62 1333.84 1342.9 11640
"23jan2001" 1342.9 1362.9 1339.63 1360.4 12326
"24jan2001" 1360.4 1369.75 1357.28 1364.3 13090
"25jan2001" 1364.3 1367.35 1354.63 1357.51 12580
"26jan2001" 1357.51 1357.51 1342.75 1354.95 10980
"29jan2001" 1354.92 1365.54 1350.36 1364.17 10531
"30jan2001" 1364.17 1375.68 1356.2 1373.73 11498
"31jan2001" 1373.73 1383.37 1364.66 1366.01 12953

The date variable, originally stored as an int, was outfiled as a string variable. Whenever Stata
outfiles a variable with a date format, Stata outfiles the variable as a string.

516 outfile — Export dataset in text format

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

Title

pctile — Create variable containing percentiles

Syntax Menu Description
Options Remarks and examples Stored results
Methods and formulas Acknowledgment Also see

Syntax
Create variable containing percentiles

pctile
[

type
]

newvar = exp
[

if
] [

in
] [

weight
] [

, pctile options
]

Create variable containing quantile categories

xtile newvar = exp
[

if
] [

in
] [

weight
] [

, xtile options
]

Compute percentiles and store them in r()

pctile varname
[

if
] [

in
] [

weight
] [

, pctile options
]

pctile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)

genp(newvarp) generate newvarp variable containing percentages
altdef use alternative formula for calculating percentiles

xtile options Description

Main

nquantiles(#) number of quantiles; default is nquantiles(2)

cutpoints(varname) use values of varname as cutpoints
altdef use alternative formula for calculating percentiles

pctile options Description

nquantiles(#) number of quantiles; default is nquantiles(2)

percentiles(numlist) calculate percentiles corresponding to the specified percentages
altdef use alternative formula for calculating percentiles

aweights, fweights, and pweights are allowed (see [U] 11.1.6 weight), except when the altdef option is specified,
in which case no weights are allowed.

517

518 pctile — Create variable containing percentiles

Menu
pctile

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of percentiles

xtile

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Create variable of quantiles

Description
pctile creates a new variable containing the percentiles of exp, where the expression exp is

typically just another variable.

xtile creates a new variable that categorizes exp by its quantiles. If the cutpoints(varname)
option is specified, it categorizes exp using the values of varname as category cutpoints. For example,
varname might contain percentiles of another variable, generated by pctile.

pctile is a programmer’s command that computes up to 1,000 percentiles and places the results
in r(); see [U] 18.8 Accessing results calculated by other programs. summarize, detail computes
some percentiles (1, 5, 10, 25, 50, 75, 90, 95, and 99th); see [R] summarize.

Options� � �
Main �

nquantiles(#) specifies the number of quantiles. It computes percentiles corresponding to percent-
ages 100 k/m for k = 1, 2, . . . ,m − 1, where m = #. For example, nquantiles(10) requests
that the 10th, 20th, . . . , 90th percentiles be computed. The default is nquantiles(2); that is,
the median is computed.

genp(newvarp) (pctile only) specifies a new variable to be generated containing the percentages
corresponding to the percentiles.

altdef uses an alternative formula for calculating percentiles. The default method is to invert the
empirical distribution function by using averages, (xi + xi+1)/2, where the function is flat (the
default is the same method used by summarize; see [R] summarize). The alternative formula
uses an interpolation method. See Methods and formulas at the end of this entry. Weights cannot
be used when altdef is specified.

cutpoints(varname) (xtile only) requests that xtile use the values of varname, rather than
quantiles, as cutpoints for the categories. All values of varname are used, regardless of any if or
in restriction; see the technical note in the xtile section below.

percentiles(numlist) (pctile only) requests percentiles corresponding to the specified percent-
ages. Percentiles are placed in r(r1), r(r2), . . . , etc. For example, percentiles(10(20)90)
requests that the 10th, 30th, 50th, 70th, and 90th percentiles be computed and placed into r(r1),
r(r2), r(r3), r(r4), and r(r5). Up to 1,000 (inclusive) percentiles can be requested. See
[P] numlist for the syntax of a numlist.

Remarks and examples
Remarks are presented under the following headings:

pctile
xtile

pctile

pctile — Create variable containing percentiles 519

pctile

pctile creates a new variable containing percentiles. You specify the number of quantiles that
you want, and pctile computes the corresponding percentiles. Here we use Stata’s auto dataset
and compute the deciles of mpg:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. pctile pct = mpg, nq(10)

. list pct in 1/10

pct

1. 14
2. 17
3. 18
4. 19
5. 20

6. 22
7. 24
8. 25
9. 29
10. .

If we use the genp() option to generate another variable with the corresponding percentages, it is
easier to distinguish between the percentiles.

. drop pct

. pctile pct = mpg, nq(10) genp(percent)

. list percent pct in 1/10

percent pct

1. 10 14
2. 20 17
3. 30 18
4. 40 19
5. 50 20

6. 60 22
7. 70 24
8. 80 25
9. 90 29
10. . .

520 pctile — Create variable containing percentiles

summarize, detail calculates standard percentiles.

. summarize mpg, detail

Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12
10% 14 14 Obs 74
25% 18 14 Sum of Wgt. 74

50% 20 Mean 21.2973
Largest Std. Dev. 5.785503

75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

summarize, detail can calculate only these particular percentiles. The pctile and pctile
commands allow you to compute any percentile.

Weights can be used with pctile, xtile, and pctile:

. drop pct percent

. pctile pct = mpg [w=weight], nq(10) genp(percent)
(analytic weights assumed)

. list percent pct in 1/10

percent pct

1. 10 14
2. 20 16
3. 30 17
4. 40 18
5. 50 19

6. 60 20
7. 70 22
8. 80 24
9. 90 28
10. . .

The result is the same, no matter which weight type you specify—aweight, fweight, or pweight.

xtile
xtile creates a categorical variable that contains categories corresponding to quantiles. We

illustrate this with a simple example. Suppose that we have a variable, bp, containing blood pressure
measurements:

pctile — Create variable containing percentiles 521

. use http://www.stata-press.com/data/r13/bp1, clear

. list bp, sep(4)

bp

1. 98
2. 100
3. 104
4. 110

5. 120
6. 120
7. 120
8. 120

9. 125
10. 130
11. 132

xtile can be used to create a variable, quart, that indicates the quartiles of bp.

. xtile quart = bp, nq(4)

. list bp quart, sepby(quart)

bp quart

1. 98 1
2. 100 1
3. 104 1

4. 110 2
5. 120 2
6. 120 2
7. 120 2
8. 120 2

9. 125 3

10. 130 4
11. 132 4

The categories created are

(−∞, x[25]], (x[25], x[50]], (x[50], x[75]], (x[75],+∞)

where x[25], x[50], and x[75] are, respectively, the 25th, 50th (median), and 75th percentiles of bp.
We could use the pctile command to generate these percentiles:

522 pctile — Create variable containing percentiles

. pctile pct = bp, nq(4) genp(percent)

. list bp quart percent pct, sepby(quart)

bp quart percent pct

1. 98 1 25 104
2. 100 1 50 120
3. 104 1 75 125

4. 110 2 . .
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 3 . .

10. 130 4 . .
11. 132 4 . .

xtile can categorize a variable on the basis of any set of cutpoints, not just percentiles. Suppose
that we wish to create the following categories for blood pressure:

(−∞, 100], (100, 110], (110, 120], (120, 130], (130,+∞)

To do this, we simply create a variable containing the cutpoints,

. input class

class
1. 100
2. 110
3. 120
4. 130
5. end

and then use xtile with the cutpoints() option:

. xtile category = bp, cutpoints(class)

. list bp class category, sepby(category)

bp class category

1. 98 100 1
2. 100 110 1

3. 104 120 2
4. 110 130 2

5. 120 . 3
6. 120 . 3
7. 120 . 3
8. 120 . 3

9. 125 . 4
10. 130 . 4

11. 132 . 5

pctile — Create variable containing percentiles 523

The cutpoints can, of course, come from anywhere. They can be the quantiles of another variable
or the quantiles of a subgroup of the variable. Suppose that we had a variable, case, that indicated
whether an observation represented a case (case = 1) or control (case = 0).

. use http://www.stata-press.com/data/r13/bp2, clear

. list in 1/11, sep(4)

bp case

1. 98 1
2. 100 1
3. 104 1
4. 110 1

5. 120 1
6. 120 1
7. 120 1
8. 120 1

9. 125 1
10. 130 1
11. 132 1

We can categorize the cases on the basis of the quantiles of the controls. To do this, we first
generate a variable, pct, containing the percentiles of the controls’ blood pressure data:

. pctile pct = bp if case==0, nq(4)

. list pct in 1/4

pct

1. 104
2. 117
3. 124
4. .

Then we use these percentiles as cutpoints to classify bp: for all subjects.

. xtile category = bp, cutpoints(pct)

. gsort -case bp

. list bp case category in 1/11, sepby(category)

bp case category

1. 98 1 1
2. 100 1 1
3. 104 1 1

4. 110 1 2

5. 120 1 3
6. 120 1 3
7. 120 1 3
8. 120 1 3

9. 125 1 4
10. 130 1 4
11. 132 1 4

524 pctile — Create variable containing percentiles

Technical note

In the last example, if we wanted to categorize only cases, we could have issued the command

. xtile category = bp if case==1, cutpoints(pct)

Most Stata commands follow the logic that using an if exp is equivalent to dropping observations
that do not satisfy the expression and running the command. This is not true of xtile when the
cutpoints() option is used. (When the cutpoints() option is not used, the standard logic is true.)
xtile uses all nonmissing values of the cutpoints() variable whether or not these values belong
to observations that satisfy the if expression.

If you do not want to use all the values in the cutpoints() variable as cutpoints, simply set the
ones that you do not need to missing. xtile does not care about the order of the values or whether
they are separated by missing values.

Technical note
Quantiles are not always unique. If we categorize our blood pressure data by quintiles rather than

quartiles, we get

. use http://www.stata-press.com/data/r13/bp1, clear

. xtile quint = bp, nq(5)

. pctile pct = bp, nq(5) genp(percent)

. list bp quint pct percent, sepby(quint)

bp quint pct percent

1. 98 1 104 20
2. 100 1 120 40
3. 104 1 120 60

4. 110 2 125 80
5. 120 2 . .
6. 120 2 . .
7. 120 2 . .
8. 120 2 . .

9. 125 4 . .

10. 130 5 . .
11. 132 5 . .

The 40th and 60th percentile are the same; they are both 120. When two (or more) percentiles are
the same, they are given the lower category number.

pctile

pctile is a programmer’s command. It computes percentiles and stores them in r(); see
[U] 18.8 Accessing results calculated by other programs.

pctile — Create variable containing percentiles 525

You can use pctile to compute quantiles, just as you can with pctile:

. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)

. _pctile weight, nq(10)

. return list

scalars:
r(r1) = 2020
r(r2) = 2160
r(r3) = 2520
r(r4) = 2730
r(r5) = 3190
r(r6) = 3310
r(r7) = 3420
r(r8) = 3700
r(r9) = 4060

The percentiles() option (abbreviation p()) can be used to compute any percentile you wish:

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90)

. return list

scalars:
r(r1) = 2020
r(r2) = 2640
r(r3) = 2830
r(r4) = 3190
r(r5) = 3250
r(r6) = 3400
r(r7) = 4060

pctile, pctile, and xtile each have an option that uses an alternative definition of percentiles,
based on an interpolation scheme; see Methods and formulas below.

. _pctile weight, p(10, 33.333, 45, 50, 55, 66.667, 90) altdef

. return list

scalars:
r(r1) = 2005
r(r2) = 2639.985
r(r3) = 2830
r(r4) = 3190
r(r5) = 3252.5
r(r6) = 3400.005
r(r7) = 4060

The default formula inverts the empirical distribution function. The default formula is more commonly
used, although some consider the “alternative” formula to be the standard definition. One drawback
of the alternative formula is that it does not have an obvious generalization to noninteger weights.

Technical note

summarize, detail computes the 1st, 5th, 10th, 25th, 50th (median), 75th, 90th, 95th, and
99th percentiles. There is no real advantage in using pctile to compute these percentiles. Both
summarize, detail and pctile use the same internal code. pctile is slightly faster because
summarize, detail computes a few extra things. The value of pctile is its ability to compute
percentiles other than these standard ones.

526 pctile — Create variable containing percentiles

Stored results
pctile and pctile store the following in r():

Scalars
r(r#) value of #-requested percentile

Methods and formulas
The default formula for percentiles is as follows: Let x(j) refer to the x in ascending order for

j = 1, 2, . . . , n. Let w(j) refer to the corresponding weights of x(j); if there are no weights, w(j) = 1.
Let N =

∑n
j=1 w(j).

To obtain the pth percentile, which we will denote as x[p], let P = Np/100, and let

W(i) =

i∑
j=1

w(j)

Find the first index, i, such that W(i) > P . The pth percentile is then

x[p] =


x(i−1) + x(i)

2
if W(i−1) = P

x(i) otherwise

When the altdef option is specified, the following alternative definition is used. Here weights
are not allowed.

Let i be the integer floor of (n+ 1)p/100; that is, i is the largest integer i ≤ (n+ 1)p/100. Let
h be the remainder h = (n+ 1)p/100− i. The pth percentile is then

x[p] = (1− h)x(i) + hx(i+1)

where x(0) is taken to be x(1) and x(n+1) is taken to be x(n).

xtile produces the categories

(−∞, x[p1]], (x[p1], x[p2]], . . . , (x[pm−2], x[pm−1]], (x[pm−1],+∞)

numbered, respectively, 1, 2, . . . ,m, based on the m quantiles given by the pkth percentiles, where
pk = 100 k/m for k = 1, 2, . . . ,m− 1.

If x[pk−1] = x[pk], the kth category is empty. All elements x = x[pk−1] = x[pk] are put in the
(k − 1)th category: (x[pk−2], x[pk−1]].

If xtile is used with the cutpoints(varname) option, the categories are

(−∞, y(1)], (y(1), y(2)], . . . , (y(m−1), y(m)], (y(m),+∞)

and they are numbered, respectively, 1, 2, . . . ,m+ 1, based on the m nonmissing values of varname:
y(1), y(2), . . . , y(m).

pctile — Create variable containing percentiles 527

Acknowledgment
xtile is based on a command originally posted on Statalist (see [U] 3.4 The Stata forum) by

Philip Ryan of the Discipline of Public Health at the University of Adelaide, Australia.

Also see
[R] centile — Report centile and confidence interval

[R] summarize — Summary statistics

[U] 18.8 Accessing results calculated by other programs

Title

putmata — Put Stata variables into Mata and vice versa

Syntax Description Options for putmata
Options for getmata Remarks and examples Stored results
Reference Also see

Syntax

putmata putlist
[

if
] [

in
] [

, putmata options
]

getmata getlist
[
, getmata options

]
putmata options Description

omitmissing omit observations with missing values
view create vectors and matrices as views, not as copies
replace replace existing Mata vectors and matrices

A putlist can be as simple as a list of Stata variable names. See below for details.

getmata options Description

double create Stata variables as doubles
update update existing Stata variables
replace replace existing Stata variables
id(name) match observations with rows based on equal values of variable name

and matrix name. id(varname=vecname) is also allowed.
force allow nonconformable matrices; usually, id() is preferable

A getlist can be as simple as a list of Mata vector names. See below for details.

Definition of putlist for use with putmata:

A putlist is one or more of any of the following:

*
varname
varlist
vecname=varname
matname=(varlist)
matname=(

[
varlist

]
#
[

varlist
] [

. . .
]
)

Example: putmata *
Creates a vector in Mata for each of the Stata variables in memory. Vectors contain the same
data as Stata variables. Vectors have the same names as the corresponding variables.

Example: putmata mpg weight displ
Creates a vector in Mata for each variable specified. Vectors have the same names as the corre-
sponding variables. In this example, displ is an abbreviation for the variable displacement;
thus the vector will also be named displacement.

528

putmata — Put Stata variables into Mata and vice versa 529

Example: putmata mileage=mpg pounds=weight
Creates a vector for each variable specified. Vector names differ from the corresponding variable
names. In this example, vectors will be named mileage and pounds.

Example: putmata y=mpg X=(weight displ)
Creates N × 1 Mata vector y equal to Stata variable mpg, and creates N × 2 Mata matrix X
containing the values of Stata variables weight and displacement.

Example: putmata y=mpg X=(weight displ 1)
Creates N × 1 Mata vector y containing mpg, and creates N × 3 Mata matrix X containing
weight, displacement, and a column of 1s. After typing this example, you could enter Mata
and type invsym(X’X)*X’y to obtain the regression coefficients.

Syntactical elements may be combined. It is valid to type

. putmata mpg foreign X=(weight displ) Z=(foreign 1)

No matter how you specify the putlist, you will need to specify the replace option if some or all
vectors already exist in Mata:

. putmata mpg foreign X=(weight displ) Z=(foreign 1), replace

Definition of getlist for use with getmata:

A getlist is one or more of any of the following:

vecname
varname=vecname
(varname varname . . . varname)=matname
(varname*)=matname

Example: getmata x1 x2
Creates a Stata variable for each Mata vector specified. Variables will have the same names as
the corresponding vectors. Names may not be abbreviated.

Example: getmata myvar1=x1 myvar2=x2
Creates a Stata variable for each Mata vector specified. Variable names will differ from the
corresponding vector names.

Example: getmata (firstvar secondvar)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. In this
case, the matrix has two columns, and corresponding variables will be named firstvar and
secondvar. If the matrix had three columns, then three variable names would need to be
specified.

Example: getmata (myvar*)=X
Creates one Stata variable corresponding to each column of the Mata matrix specified. Variables
will be named myvar1, myvar2, etc. The matrix may have any number of columns, even zero!

Syntactical elements may be combined. It is valid to type

. getmata r1 r2 final=r3 (rplus*=X)

No matter how you specify the getlist, you will need to specify the replace or update option if
some or all variables already exist in Stata:

. getmata r1 r2 final=r3 (rplus*=X), replace

530 putmata — Put Stata variables into Mata and vice versa

Description
putmata exports the contents of Stata variables to Mata vectors and matrices.

getmata imports the contents of Mata vectors and matrices to Stata variables.

putmata and getmata are useful for creating solutions to problems more easily solved in Mata.
The commands are also useful in teaching.

Options for putmata
omitmissing specifies that observations containing a missing value in any of the numeric variables

specified be omitted from the vectors and matrices created in Mata. In
. putmata y=mpg X=(weight displ 1), omitmissing

rows would be omitted from y and X in which the corresponding observation contained missing
in any of mpg, weight, or displ. In this case, specifying omitmissing would be equivalent to
typing

. putmata y=mpg X=(weight displ 1) if !missing(mpg) & !missing(weight) ///
& !missing(displ)

All vectors and matrices created by a single putmata command will have the same number of
rows (observations). That is true whether you specify if, in, or the omitmissing option.

view specifies that putmata create views rather than copies of the Stata data in the Mata vectors
and matrices. Views require less memory than copies and offer the advantage (and disadvantage)
that changes in the Stata data are immediately reflected in the Mata vectors and matrices, and vice
versa.

If you specify numeric constants using the matname=(. . .) syntax, matname is created as a copy
even if the view option is specified. Other vectors and matrices created by the command, however,
would be views.

Use of the view option with putmata often obviates the need to use getmata to import results
back into Stata.

Warning 1: Mata records views as “this vector is a view onto variable 3, observations 2 through 5
and 7”. If you change the order of the variables, the order of the observations, or drop variables
once the views are created, then the contents of the views will change.

Warning 2: When assigning values in Mata to view vectors, code

v[] = ...

not v =

To have changes reflected in the underlying Stata data, you must update the elements of the view
v, not redefine it. To update all the elements of v, you literally code v[.]. In the matrix case,
you code X[.,.].

replace specifies that existing Mata vectors or matrices be replaced should that be necessary.

Options for getmata
double specifies that Stata numeric variables be created as doubles. The default is that they be

created as floats. Actually, variables start out as floats or doubles, but then they are compressed
(see [D] compress).

putmata — Put Stata variables into Mata and vice versa 531

update and replace are alternatives. They have the same meaning unless the id() or force option
is specified.

When id() or force is not specified, both replace and update specify that it is okay to replace
the values in existing Stata variables. By default, vectors can be posted to new Stata variables
only.

When id() or force is specified, replace and update allow posting of values of existing
variables, just as usual. The options differ in how the posting is performed when the id() or
force option causes only a subset of the observations of the variables to be updated. update
specifies that the remaining values be left as they are. replace specifies that the remaining values
be set to missing, just as if the existing variable(s) were being created for the first time.

id(name) and id(varname=vecname) specify how the rows in the Mata vectors and matrices match
the observations in the Stata data. Observation i matches row j if variable name[i] equals vector
name[j], or in the second syntax, if varname[i] = vecname[j]. The ID variable (vector) must
contain values that uniquely identify the observations (rows). Only in observations that contain
matching values will the variable be modified. Values in observations that have no match will not
be modified or will be set to missing, as appropriate; values in the ID vector that have no match
will be ignored.

Example: You wish to run a regression of y on x1 and x2 on the males in the data and use
that result to obtain the fitted values for the males. Stata already has commands that will do
this, namely, regress y x1 x2 if male followed by predict yhat if male. For instructional
purposes, let’s say you wish to do this in Mata. You type

. putmata myid y X=(x1 x2 1) if male

. mata
: b = invsym(X’X)*X’y
: yhat = X*b
: end

. getmata yhat, id(myid)

The new Stata variable yhat will contain the predicted values for males and missing values for
the females. If the yhat variable already existed, you would type

. getmata yhat, id(myid) replace

or

. getmata yhat, id(myid) update

The replace option would set the female observations to missing. The update option would
leave the female observations unchanged.

If you do not have an identification variable, create one first by typing generate myid = n.

force specifies that it is okay to post vectors and matrices with fewer or with more rows than the
number of observations in the data. The force option is an alternative to id(), and usually, id()
is the appropriate choice.

If you specify force and if there are fewer rows in the vectors and matrices than observations in the
data, new variables will be padded with missing values. If there are more rows than observations,
observations will be added to the data and previously existing variables will be padded with missing
values.

532 putmata — Put Stata variables into Mata and vice versa

Remarks and examples

Remarks are presented under the following headings:

Use of putmata
Use of putmata and getmata
Using putmata and getmata on subsets of observations
Using views
Constructing do-files

Use of putmata

In this example, we will use Mata to make a calculation and report the result, but we will not
post results back to Stata. We will use putmata but not getmata.

Consider solving for b the set of linear equations

y = Xb (1)

where y: N × 1, X: N × k, and b: k× 1. If N = k, then y = Xb amounts to solving k equations
for k unknowns, and the solution is

b = X−1y (2)

That solution is obtained by premultiplying both sides of (1) by X−1.

When N > k, (2) can be used to obtain least-square results if matrix inversion is appropriately
defined. Assume that you wish to demonstrate this when matrix inversion is defined as the Moore–
Penrose generalized inverse for nonsquare matrices. The demonstration can be obtained by typing

. sysuse auto, clear

. regress mpg weight displacement

. putmata y=mpg X=(weight displacement 1)

. mata
: pinv(X)*y
: end

. _

The Mata expression pinv(X)*y will display a 3× 1 column vector. The elements of the vector
will equal the coefficients reported by regress mpg weight displacement.

For your information, the Moore–Penrose inverse of rectangular matrix X: N × k is a k × N
rectangular matrix. Among other properties, pinv(X)*X = I, where I is the k × k identity matrix.
You can demonstrate that using Mata, too:

. mata: pinv(X)*X

Use of putmata and getmata

In this example, we will use Mata to calculate a result that we wish to post back to Stata. We
will use both putmata and getmata.

Some problems are more easily solved in Mata than in Stata. For instance, say that you need to
create new Stata variable D from existing variable C, defined as

D[i] = sum(C[j]− C[i]) for all C[j] > C[i]

where i and j index observations.

putmata — Put Stata variables into Mata and vice versa 533

This problem can be solved in Stata, but the solution is elusive to most people. The solution is more
natural in Mata because the Mata solution corresponds almost letter for letter with the mathematical
statement of the problem. If C and D were Mata vectors rather than Stata variables, the solution would
be

D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

The most difficult part of this solution to understand is the first line, D = J(rows(C), 1, 0), and
that is because you may not be familiar with Mata’s J() function. D = J(rows(C), 1, 0) creates a
rows(C)× 1 column vector of 0s. The arguments of J() are in just that order.

C and D are not vectors in Mata, or at least they are not yet. Using getmata, we can create vector
C from variable C and run our Mata solution. Then using putmata, we can post Mata vector D back
to new Stata variable D. The solution includes these three steps, also shown in the do-file below:

(1) In Stata, use putmata to create vector C in Mata equal to variable C in Stata: putmata C.

(2) Use Mata to solve the problem, creating new Mata vector D.

(3) In Stata again, use getmata to create new variable D equal to Mata vector D.

Because of the typing involved in the solution, we would package the code in a do-file:

begin myfile.do

use mydata, clear
putmata C (1)

mata: (2)
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end

getmata D (3)
save mydata, replace

end myfile.do

With myfile.do now in place, in Stata we would type

. do myfile

Notes:

(1) Our program might be better if we changed putmata C to read putmata C, replace and if
we changed getmata D to read getmata D, replace. As things are right now, typing do
myfile works, but if we were then to run it a second time, it would not work. Stata would
encounter the putmata command and issue an error that matrix C already exists. Even if
Stata got through that, it would encounter the getmata command and issue an error that
variable D already exists. Perhaps that is an advantage. You cannot run myfile.do again
without dropping matrix C and variable D. If you consider that a disadvantage, however,
include the replace option.

534 putmata — Put Stata variables into Mata and vice versa

(2) In our solution, we entered Mata by typing mata:, which is to say, mata with a colon.
Interactively, we usually enter Mata by just typing mata. The colon affects how Mata treats
errors. When working interactively, we want Mata to note errors but then to continue running
so we can correct ourselves. In do-files, we want Mata to note the error and stop. That is
the difference between mata without the colon and mata with the colon. Remember to use
mata: when writing do-files.

(3) Rather than specify the replace option, you could modify the do-file to drop any preexisting
Mata vector C and any preexisting variable D. To drop vector C, in Mata you can type mata
drop C, or in Stata, you can type mata: mata drop C. To drop variable D, in Stata you
can type drop D. You must worry that the variables do not exist, so in your do-file, you
would code

capture mata: mata drop C
capture drop D

Rather than dropping vector C, you might prefer just to clear Mata:

clear mata

Using putmata and getmata on subsets of observations

putmata can be used to create Mata vectors that contain a subset of the observations in the Stata
data, and getmata can be used to fetch such vectors back into Stata. Thus you can work with only
the males or only outcomes in which failures are observed, and so on. Below we work with only the
observations in which C does not contain missing values.

In the create-variable-D-from-C example above, we assumed that there were no missing values
in C, or at least we did not consider the issue. It turns out that our code produces several missing
values in the presence of just one missing value in C. Perhaps, if there are missing values, we want
to exclude them from our calculation. We could complicate our Mata code to handle that. We could
modify our Mata code to read

use mydata, clear
putmata C

D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

if (C[i]>=.) D[i] = . // new
else for (j=1; j<=rows(C); j++) {

if (C[j]<.) { // new
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}

}
end

getmata D
save mydata, replace

Easier, however, is simply to restrict Mata vector C to the nonmissing elements of Stata variable
C, which we could do by replacing putmata C with

putmata C if !missing(C)

or, equivalently,

putmata C, omitmissing

putmata — Put Stata variables into Mata and vice versa 535

Whichever way we coded it, if the data contained 100 observations and variable C contained 82
nonmissing values, new Mata vector C would contain 82 rows rather than 100. The observations
corresponding to missing(C) would be omitted from the vector, and that means we could run our
original Mata solution without modification.

There is, however, an issue. At the end of our code when we post the Mata solution vector D to
Stata variable D—getmata D—we will need to specify which of the 100 observations are to receive
the 82 results stored in the vector. getmata has an option to handle this situation—id(varname),
where varname is the name of an identification variable.

An identification variable is a variable that takes on different values for each observation in the
data. The values could be 1, 2, . . . , 100; or they could be 1.25, −2, . . . , 16.5; or they could be
Nick, Bill, . . . , Mary. The values can be numeric or string, and they need not be in order. All that
is important is that the variable contain a unique (different) value in each observation. Possibly, the
data already contain such a variable. If not, you can create one by typing

generate fid = _n

When we use putmata to create vector C, we will need simultaneously to create vector fid
containing the selected values of variable fid, which we can do by adding fid to the putlist:

putmata fid C if !missing(C)

The above command creates two vectors in Mata: fid and C. When we post the resulting vector
D back to Stata, we will specify the id(fid) option to indicate into which observations getmata is
to post the results:

getmata D, id(fid)

The id(fid) option is taken to mean that there exists a variable named fid and a vector named
fid. It is by comparing the values in each that getmata determines how the rows of the vectors
correspond to the observations of the data.

The entire solution is

begin myfile.do

use mydata, clear
putmata fid C if !missing(C) // new: we put fid & add if !missing(C)

mata:
D = J(rows(C), 1, 0)
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end

getmata D, id(fid) // new: we add option id(fid)
save mydata, replace

end myfile.do

The above code will run on data with or without missing values. New variable D will be missing
in observations where C is missing, but D will otherwise contain nonmissing values.

536 putmata — Put Stata variables into Mata and vice versa

Using views

When you type or code putmata C, vector C is created as a copy of the Stata data. The variable
and the vector are separate things. An alternative is to make the Mata vector a view onto the Stata
variable. By that, we mean that both the variable and the vector share the same recording of the
values. Views save memory but are slightly less efficient in terms of execution time. Views have other
advantages and disadvantages, too.

For instance, if you type putmata mpg and then, in Mata, type mpg[1]=20, you will change not
only the Mata vector but also the Stata data! Or if, after typing putmata mpg, you typed replace
mpg = 20 in 1, that would modify both the data and the Mata vector! This is an advantage if you
are fixing real errors and a disadvantage if you intend to do something else.

If in the middle of your Mata session where you are working with views you take a break and
return to Stata, it is important that you do not modify the Stata data in certain ways. Rather than
recording copies of the data, views record notes about the mapping. A view might record that this
Mata vector corresponds to variable 3, observations 2 through 20 and 39. If you change the sort order
of the data, the view will still be working with observations 2 through 20 and 39 even though those
physical observations now contain different data. If you drop the first or second variable, the view
will still be working with the third variable even though that will now be a different variable!

The memory savings offered by views are considerable, at least when working with large datasets.
Say that you have a dataset containing 200 variables and 1,000,000 observations. Your data might be
1 GB in size. Even so, typing putmata *, view, and thus creating 200 vectors each with 1,000,000
rows, would consume only a few dozen kilobytes of memory.

All the examples shown above work equally well with copies or views. We have been working
with copies, but in the previous example, where we coded

putmata fid C if !missing(C)

we could switch to working with views by coding

putmata fid C if !missing(C), view

With that one change, our code would still work and it would use less memory.

With that one change, we would still not be working with views everywhere we could, however.
Vector D—the vector we create in Mata and then post back to Stata—would still be a regular vector.
We can save additional memory by making D a view, too. Before we do that, let us warn you that
we do not recommend doing this unless the memory savings is vitally important. The result, when
complete, will be elegant and memory efficient, but the extra memory savings is seldom worth the
debugging effort.

No extra changes are required to your code when the vectors you make into views contain values
that are not modified in the code. Vector C is such a vector. We use the values stored in C, but we do
not change them. Vector D, on the other hand, is a vector in which we change values. It is usually
easier if you do not convert such vectors into views.

putmata — Put Stata variables into Mata and vice versa 537

With that proviso, we are going to make D into a view, too, and in the process, we will drop the
use of fid altogether:

begin myfile.do

use mydata, clear
generate D = . // new
putmata C D if !missing(C), view // changed

mata:
D[.] = J(rows(C), 1, 0) // changed
for (i=1; i<=rows(C); i++) {

for (j=1; j<=rows(C); j++) {
if (C[j]>C[i]) D[i] = D[i] + (C[j] - C[i])

}
}
end

// we drop the getmata
save mydata, replace

end myfile.do

In this solution, we create new Stata variable D at the outset, and then we modify the putmata
command to create view vectors for both C and D. Our code, which stores results in vector D, now
simultaneously posts to variable D when we store results in vector D, so we can omit the getmata
D at the end because results are already posted! Moreover, we no longer have to concern ourselves
with matching observations to rows via fid. Rows of D now automatically align themselves with the
selected observations in variable D by the mere fact of D being a view.

The beginning of our Mata code has an important change, however. We change

D = J(rows(C), 1, 0)

to

D[.] = J(rows(C), 1, 0)

That change is very important. What we coded previously created vector D. What we now code
changes the values stored in existing vector D. If we left what we coded previously, Mata would
discard the view currently stored in D and create a new D—a regular Mata vector unconnected to
Stata—containing 0s.

Constructing do-files

putmata and getmata can be used interactively, but if you have much Mata code between the
put and the get, you will be better off using a do-file because do-files can be easily edited when they
have a mistake in them. We recommend the following outline for such do-files:

538 putmata — Put Stata variables into Mata and vice versa

begin outline.do

version 13 (1)
mata clear (2)
// Stata code for setup goes here (3)
putmata ... (4)
mata:
// Mata code goes here (5)
end

getmata (6)
mata clear (7)

end outline.do

Notes on do-file steps:

(1) A do-file should always start with a version statement; it ensures that the do-file continues
to work in the years to come as new versions of Stata are released. See [P] version.

(2) The do-file should not depend on Mata having certain vectors, matrices, or programs already
loaded and set up because if you attempt to run the do-file again later, what you assumed
may not be true. A do-file should be self-contained. To ensure that is true the first time we
write and run the do-file and to ensure on subsequent runs that nothing lying around in Mata
gets in our way, we clear Mata.

(3) You may need to sort your data, create extra variables that your do-file will use, or drop
variables that you are assuming do not already exist. In the last iteration of myfile.do, we
needed to generate D = ., and it would not have been a bad idea to capture drop D
before we did that. Our example did not depend on the sort order of the data, but if it had,
we would have included the sort even if we were certain that the data would already be in
the right order.

(4) Put the putmata command here. If putmata includes the omitmissing option, then
put everything you need to put in a single putmata command. Otherwise, you can use
multiple putmata commands if you find that more convenient. If you use multiple putmata
commands, be sure to include the same if expression and in range qualifiers on each one.

(5) The Mata code goes here. Note that we type mata: (mata with a colon) to enter Mata.
mata: ensures that errors stop Mata and thus our do-file.

(6) The getmata command goes here if you need it. Be sure to include getmata’s id(name)
or id(vecname=varname) option if, on the putmata command in step 4, you included the
if expression qualifier or the in range qualifier or the omitmissing option. If you include
id(), be sure you included the ID variable in the putmata command in step 4.

(7) We conclude by clearing Mata again to avoid leaving memory allocated needlessly and to
avoid causing problems for poorly written do-files that we might subsequently run.

putmata and getmata are designed to work interactively and in do-files. The commands are not
designed to work with ado-files. An ado-file is something like a do-file, but it defines a program
that implements a new command of Stata, and well-written ado-files do not use globals such as the
global vectors and matrices that putmata creates. Ado-files use local variables. Ado-file programmers
should use the Mata functions st data() and st view() (see [M-5] st data() and [M-5] st view())
to create vectors and matrices, and if necessary, use st store() (see [M-5] st store()) to post the
contents of those vectors and matrices back to Stata.

putmata — Put Stata variables into Mata and vice versa 539

Stored results
putmata stores the following in r():

Scalars
r(N) number of rows in created vectors and matrices
r(K views) number of vectors and matrices created as views
r(K copies) number of vectors and matrices created as copies

The total number of vectors and matrices created is r(K views) + r(K copies).

r(N)=. if r(K views) + r(K copies) = 0. r(N)=0 means that zero-observation vectors and matrices were
created, which is to say, vectors and matrices dimensioned 0 × 1 and 0 × k.

getmata stores the following in r():

Scalars
r(K new) number of new variables created
r(K existing) number of existing variables modified

The total number of variables modified is r(K new) + r(K existing).

Reference
Gould, W. W. 2010. Mata Matters: Stata in Mata. Stata Journal 10: 125–142.

Also see
[M-4] stata — Stata interface functions

[M-5] st data() — Load copy of current Stata dataset

[M-5] st store() — Modify values stored in current Stata dataset

[M-5] st view() — Make matrix that is a view onto current Stata dataset

http://www.stata-journal.com/sjpdf.html?articlenum=pr0050

Title

range — Generate numerical range

Syntax Menu Description Remarks and examples
Also see

Syntax

range varname #first #last

[
#obs

]
Menu

Data > Create or change data > Other variable-creation commands > Generate numerical range

Description
range generates a numerical range, which is useful for evaluating and graphing functions.

Remarks and examples
range constructs the variable varname, taking on values #first to #last, inclusive, over #obs. If

#obs is not specified, the number of observations in the current dataset is used.

range can be used to produce increasing sequences, such as

. range x 0 12.56 100

or it can be used to produce decreasing sequences:

. range z 100 1

Example 1

To graph y = e−x/6sin(x) over the interval [0, 12.56], we can type

. range x 0 12.56 100
obs was 0, now 100

. generate y = exp(-x/6)*sin(x)

540

range — Generate numerical range 541

. scatter y x, yline(0) ytitle(y = exp(-x/6) sin(x))

−
.5

0
.5

1
y
 =

 e
x
p

(−
x
/6

)
s
in

(x
)

0 5 10 15
x

Example 2

Stata is not limited solely to graphing functions—it can draw parameterized curves as well. For
instance, consider the curve given by the polar coordinate relation r = 2 sin(2θ). The conversion of
polar coordinates to parameterized form is (y, x) = (r sin θ, r cos θ), so we can type

. clear

. range theta 0 2*_pi 400
(obs was 100, now 400)

. generate r = 2*sin(2*theta)

. generate y = r*sin(theta)

. generate x = r*cos(theta)

. line y x, yline(0) xline(0) aspectratio(1)

−
2

−
1

0
1

2
y

−2 −1 0 1 2
x

542 range — Generate numerical range

Also see
[D] egen — Extensions to generate

[D] obs — Increase the number of observations in a dataset

Title

recast — Change storage type of variable

Syntax Description Option Remarks and examples
Also see

Syntax

recast type varlist
[
, force

]
where type is byte, int, long, float, double, str1, str2, . . . , str2045, or strL.

Description
recast changes the storage type of the variables identified in varlist to type.

Option
force makes recast unsafe by causing the variables to be given the new storage type even if that

will cause a loss of precision, introduction of missing values, or, for string variables, the truncation
of strings.

force should be used with caution. force is for those instances where you have a variable saved
as a double but would now be satisfied to have the variable stored as a float, even though that
would lead to a slight rounding of its values.

Remarks and examples
See [U] 12 Data for a description of storage types. Also see [D] compress and [D] destring for

alternatives to recast.

Example 1

recast refuses to change a variable’s type if that change is inappropriate for the values actually
stored, so it is always safe to try:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. describe headroom

storage display value
variable name type format label variable label

headroom float %6.1f Headroom (in.)

. recast int headroom
headroom: 37 values would be changed; not changed

Our attempt to change headroom from a float to an int was ignored—if the change had been
made, 37 values would have changed. Here is an example where the type can be changed:

. describe mpg

storage display value
variable name type format label variable label

mpg int %8.0g Mileage (mpg)

543

544 recast — Change storage type of variable

. recast byte mpg

. describe mpg

storage display value
variable name type format label variable label

mpg byte %8.0g Mileage (mpg)

recast works with string variables as well as numeric variables, and it provides all the same
protections:

. describe make

storage display value
variable name type format label variable label

make str18 %-18s Make and Model

. recast str16 make
make: 2 values would be changed; not changed

recast can be used both to promote and to demote variables:

. recast str20 make

. describe make

storage display value
variable name type format label variable label

make str20 %-20s Make and Model

Also see
[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa

[U] 12.2.2 Numeric storage types
[U] 12.4 Strings

Title

recode — Recode categorical variables

Syntax Menu Description Options
Remarks and examples Acknowledgment Also see

Syntax
Basic syntax

recode varlist (rule)
[
(rule) . . .

] [
, generate(newvar)

]
Full syntax

recode varlist (erule)
[
(erule) . . .

] [
if
] [

in
] [

, options
]

where the most common forms for rule are

rule Example Meaning

= # 3 = 1 3 recoded to 1
= # 2 . = 9 2 and . recoded to 9
#/# = # 1/5 = 4 1 through 5 recoded to 4
nonmissing = # nonmiss = 8 all other nonmissing to 8
missing = # miss = 9 all other missings to 9

where erule has the form

element
[
element . . .

]
= el

[
"label"

]
nonmissing = el

[
"label"

]
missing = el

[
"label"

]
else | * = el

[
"label"

]
element has the form

el | el/el

and el is

| min | max
The keyword rules missing, nonmissing, and else must be the last rules specified. else may not

be combined with missing or nonmissing.

options Description

Options

generate(newvar) generate newvar containing transformed variables; default is to replace
existing variables

prefix(str) generate new variables with str prefix
label(name) specify a name for the value label defined by the transformation rules
copyrest copy out-of-sample values from original variables
test test that rules are invoked and do not overlap

545

546 recode — Recode categorical variables

Menu
Data > Create or change data > Other variable-transformation commands > Recode categorical variable

Description
recode changes the values of numeric variables according to the rules specified. Values that do

not meet any of the conditions of the rules are left unchanged, unless an otherwise rule is specified.

A range #1/#2 refers to all (real and integer) values between #1 and #2, including the boundaries
#1 and #2. This interpretation of #1/#2 differs from that in numlists.

min and max provide a convenient way to refer to the minimum and maximum for each variable in
varlist and may be used in both the from-value and the to-value parts of the specification. Combined
with if and in, the minimum and maximum are determined over the restricted dataset.

The keyword rules specify transformations for values not changed by the previous rules:

nonmissing all nonmissing values not changed by the rules
missing all missing values (., .a, .b, . . . , .z) not changed by the rules
else all nonmissing and missing values not changed by the rules
* synonym for else

recode provides a convenient way to define value labels for the generated variables during the
definition of the transformation, reducing the risk of inconsistencies between the definition and value
labeling of variables. Value labels may be defined for integer values and for the extended missing
values (.a, .b, . . . , .z), but not for noninteger values or for sysmiss (.).

Although this is not shown in the syntax diagram, the parentheses around the rules and keyword
clauses are optional if you transform only one variable and if you do not define value labels.

Options

� � �
Options �

generate(newvar) specifies the names of the variables that will contain the transformed variables.
into() is a synonym for generate(). Values outside the range implied by if or in are set to
missing (.), unless the copyrest option is specified.

If generate() is not specified, the input variables are overwritten; values outside the if or in
range are not modified. Overwriting variables is dangerous (you cannot undo changes, value labels
may be wrong, etc.), so we strongly recommend specifying generate().

prefix(str) specifies that the recoded variables be returned in new variables formed by prefixing
the names of the original variables with str.

label(name) specifies a name for the value label defined from the transformation rules. label()
may be defined only with generate() (or its synonym, into()) and prefix(). If a variable is
recoded, the label name defaults to newvar unless a label with that name already exists.

copyrest specifies that out-of-sample values be copied from the original variables. In line with
other data management commands, recode defaults to setting newvar to missing (.) outside the
observations selected by if exp and in range.

test specifies that Stata test whether rules are ever invoked or that rules overlap; for example,
(1/5=1) (3=2).

recode — Recode categorical variables 547

Remarks and examples

Remarks are presented under the following headings:

Simple examples
Setting up value labels with recode
Referring to the minimum and maximum in rules
Recoding missing values
Recoding subsets of the data
Otherwise rules
Test for overlapping rules

Simple examples

Many users experienced with other statistical software use the recode command often, but easier
and faster solutions in Stata are available. On the other hand, recode often provides simple ways to
manipulate variables that are not easily accomplished otherwise. Therefore, we show other ways to
perform a series of tasks with and without recode.

We want to change 1 to 2, leave all other values unchanged, and store the results in the new variable
nx.

. recode x (1 = 2), gen(nx)

or

. gen nx = x

. replace nx = 2 if nx==1

or

. gen nx = cond(x==1,2,x)

We want to swap 1 and 2, saving them in nx.

. recode x (1 = 2) (2 = 1), gen(nx)

or

. gen nx = cond(x==1,2,cond(x==2,1,x))

We want to recode item by collapsing 1 and 2 into 1, 3 into 2, and 4 to 7 (boundaries included)
into 3.

. recode item (1 2 = 1) (3 = 2) (4/7 = 3), gen(Ritem)

or

. gen Ritem = item

. replace Ritem = 1 if inlist(item,1,2)

. replace Ritem = 2 if item==3

. replace Ritem = 3 if inrange(item,4,7)

We want to change the “direction” of the 1, . . . , 5 valued variables x1, x2, x3, storing the transformed
variables in nx1, nx2, and nx3 (that is, we form new variable names by prefixing old variable
names with an “n”).

. recode x1 x2 x3 (1=5) (2=4) (3=3) (4=2) (5=1), pre(n) test

or

. gen nx1 = 6-x1

. gen nx2 = 6-x2

548 recode — Recode categorical variables

. gen nx3 = 6-x3

. forvalues i = 1/3 {
generate nx‘i’ = 6-x‘i’

}

In the categorical variable religion, we want to change 1, 3, and the real and integer numbers 3
through 5 into 6; we want to set 2, 8, and 10 to 3 and leave all other values unchanged.

. recode religion 1 3/5 = 6 2 8 10 = 3

or
. replace religion = 6 if religion==1 | inrange(religion,3,5)
. replace religion = 3 if inlist(religion,2,8,10)

This example illustrates two features of recode that were included for backward compatibility
with previous versions of recode but that we do not recommend. First, we omitted the parentheses
around the rules. This is allowed if you recode one variable and you do not plan to define value labels
with recode (see below for an explanation of this feature). Personally, we find the syntax without
parentheses hard to read, although we admit that we could have used blanks more sensibly. Because
difficulties in reading may cause us to overlook errors, we recommend always including parentheses.
Second, because we did not specify a generate() option, we overwrite the religion variable. This
is often dangerous, especially for “original” variables in a dataset. We recommend that you always
specify generate() unless you want to overwrite your data.

Setting up value labels with recode

The recode command is most often used to transform categorical variables, which are many times
value labeled. When a value-labeled variable is overwritten by recode, it may well be that the value
label is no longer appropriate. Consequently, output that is labeled using these value labels may be
misleading or wrong.

When recode creates one or more new variables with a new classification, you may want to put
value labels on these new variables. It is possible to do this in three steps:

1. Create the new variables (recode . . . , gen()).

2. Define the value label (label define . . .).

3. Link the value label to the variables (label value . . .).

Inconsistencies may emerge from mistakes between steps 1 and 2. Especially when you make
a change to the recode 1, it is easy to forget to make a similar adjustment to the value label 2.
Therefore, recode can perform steps 2 and 3 itself.

Consider recoding a series of items with values

1 = strongly agree
2 = agree
3 = neutral
4 = disagree
5 = strongly disagree

into three items:

1 = positive (= “strongly agree” or “agree”)
2 = neutral
3 = negative (= “strongly disagree” or “disagree”)

recode — Recode categorical variables 549

This is accomplished by typing

. recode item* (1 2 = 1 positive) (3 = 2 neutral) (4 5 = 3 negative), pre(R)
> label(Item3)

which is much simpler and safer than

. recode item1-item7 (1 2 = 1) (3 = 2) (4 5 = 3), pre(R)

. label define Item3 1 positive 2 neutral 3 negative

. forvalues i = 1/7 {
label value Ritem‘i’ Item3

}

Example 1

As another example, let’s recode vote (voting intentions) for 12 political parties in the Dutch
parliament into left, center, and right parties. We then tabulate the original and new variables so that
we can check that everything came out correctly.

. use http://www.stata-press.com/data/r13/recodexmpl

. label list pparty
pparty:

1 pvda
2 cda
3 d66
4 vvd
5 groenlinks
6 sgp
7 rpf
8 gpv
9 aov
10 unie55
11 sp
12 cd

. recode polpref (1 5 11 = 1 left) (2 3 = 2 center) (4 6/10 12 = 3 right),
> gen(polpref3)
(2020 differences between polpref and polpref3)

. tabulate polpref polpref3

pol party RECODE of polpref (pol party
choice if choice if elections)
elections left center right Total

pvda 622 0 0 622
cda 0 525 0 525
d66 0 634 0 634
vvd 0 0 930 930

groenlinks 199 0 0 199
sgp 0 0 54 54
rpf 0 0 63 63
gpv 0 0 30 30
aov 0 0 17 17

unie55 0 0 23 23
sp 45 0 0 45
cd 0 0 25 25

Total 866 1,159 1,142 3,167

550 recode — Recode categorical variables

Referring to the minimum and maximum in rules

recode allows you to refer to the minimum and maximum of a variable in the transformation
rules. The keywords min and max may be included as a from-value, as well as a to-value.

For example, we might divide age into age categories, storing in iage.
. recode age (0/9=1) (10/19=2) (20/29=3) (30/39=4) (40/49=5) (50/max=6),
> gen(iage)

or
. gen iage = 1 + irecode(age,9,19,29,39,49)

or
. gen iage = min(6, 1+int(age/10))

As another example, we could set all incomes less than 10,000 to 10,000 and those more than
200,000 to 200,000, storing the data in ninc.

. recode inc (min/10000 = 10000) (200000/max = 200000), gen(ninc)

or
. gen ninc = inc
. replace ninc = 10000 if ninc<10000
. replace ninc = 200000 if ninc>200000 & !missing(ninc)

or
. gen ninc = max(min(inc,200000),10000)

or
. gen ninc = clip(inc,10000,200000)

Recoding missing values

You can also set up rules in terms of missing values, either as from-values or as to-values. Here
recode mimics the functionality of mvdecode and mvencode (see [D] mvencode), although these
specialized commands execute much faster.

Say that we want to change missing (.) to 9, storing the data in X:
. recode x (.=9), gen(X)

or
. gen X = cond(x==., 9, x)

or
. mvencode x, mv(.=9) gen(X)

We want to change 9 to .a and 8 to ., storing the data in z.
. recode x (9=.a) (8=.), gen(z)

or
. gen z = cond(x==9, .a, cond(x==8, ., x))

or
. mvdecode x, mv(9=.a, 8=.) gen(z)

recode — Recode categorical variables 551

Recoding subsets of the data

We want to swap in x the values 1 and 2 only for those observations for which age>40, leaving
all other values unchanged. We issue the command

. recode x (1=2) (2=1) if age>40, gen(y)

or

. gen y = cond(x==1,2,cond(x==2,1,x)) if age>40

We are in for a surprise. y is missing for observations that do not satisfy the if condition. This
outcome is in accordance with how Stata’s data manipulation commands usually work. However, it
may not be what you intend. The copyrest option specifies that x be copied into y for all nonselected
observations:

. recode x (1=2) (2=1) if age>40, gen(y) copy

or

. gen y = x

. recode y (1=2) (2=1) if age>40

or

. gen y = cond(age>40,cond(x==1,2,cond(x==2,1,x),x))

Otherwise rules

In all our examples so far, recode had an implicit rule that specified that values that did not
meet the conditions of any of the rules were to be left unchanged. recode also allows you to use an
“otherwise rule” to specify how untransformed values are to be transformed. recode supports three
kinds of otherwise conditions:

nonmissing all nonmissing not yet transformed
missing all missing values not yet transformed
else all values, missing or nonmissing, not yet transformed

The otherwise rules are to be specified after the standard transformation rules. nonmissing and
missing may be combined with each other, but not with else.

Consider a recode that swaps the values 1 and 2, transforms all other nonmissing values to 3, and
transforms all missing values (that is, sysmiss and the extended missing values) to . (sysmiss). We
could type

. recode x (1=2) (2=1) (nonmissing=3) (missing=.), gen(z)

or

. gen z = cond(x==1,2,cond(x==2,1,cond(!missing(x),3),.))

As a variation, if we had decided to recode all extended missing values to .a but to keep sysmiss
. distinct at ., we could have typed

. recode x (1=2) (2=1) (.=.) (nonmissing=3) (missing=.a), gen(z)

552 recode — Recode categorical variables

Test for overlapping rules

recode evaluates the rules from left to right. Once a value has been transformed, it will not be
transformed again. Thus if rules “overlap”, the first matching rule is applied, and further matches are
ignored. A common form of overlapping is illustrated in the following example:

... (1/5 = 1) (5/10 = 2)

Here 5 occurs in the condition parts of both rules. Because rules are matched left to right, 5 matches
the first rule, and the second rule will not be tested for 5, unless recode is instructed to test for rule
overlap with the test option.

Other instances of overlapping rules usually arise because you mistyped the rules. For instance,
you are recoding voting intentions for parties in elections into three groups of parties (left, center,
right), and you type

... (1/5 = 1) ... (3 = 2)

Party 3 matches the conditions 1/5 and 3. Because recode applies the first matching rule, party 3
will be mapped into party category 1. The second matching rule is ignored. It is not clear what was
wrong in this example. You may have included party 3 in the range 1/5 or mistyped 3 in the second
rule. Either way, recode did not notice the problem and your data analysis is in jeopardy. The test
option specifies that recode display a warning message if values are matched by more than one
rule. With the test option specified, recode also tests whether all rules were applied at least once
and displays a warning message otherwise. Rules that never matched any data may indicate that you
mistyped a rule, although some conditions may not have applied to (a selection of) your data.

Acknowledgment
This version of recode was written by Jeroen Weesie of the Department of Sociology at Utrecht

University, The Netherlands.

Also see
[D] generate — Create or change contents of variable

[D] mvencode — Change missing values to numeric values and vice versa

Title

rename — Rename variable

Syntax Menu Description Remarks and examples References Also see

Syntax
rename old varname new varname

Menu
Data > Data utilities > Rename groups of variables

Description
rename changes the name of existing variable old varname to new varname; the contents of the

variable are unchanged. Also see [D] rename group for renaming groups of variables.

Remarks and examples

Example 1

rename allows you to change variable names. Say that we have labor market data for siblings.

. use http://www.stata-press.com/data/r13/renamexmpl

. describe

Contains data from http://www.stata-press.com/data/r13/renamexmpl.dta
obs: 277
vars: 6 9 Jan 2013 11:57
size: 6,648

storage display value
variable name type format label variable label

famid float %9.0g
edu float %9.0g
exp float %9.0g
promo float %9.0g
sex float %9.0g sex
inc float %9.0g

Sorted by: famid

553

554 rename — Rename variable

We decide to rename the exp and inc variables.

. rename exp experience

. rename inc income

. describe

Contains data from http://www.stata-press.com/data/r13/renamexmpl.dta
obs: 277
vars: 6 9 Jan 2013 11:57
size: 6,648

storage display value
variable name type format label variable label

famid float %9.0g
edu float %9.0g
experience float %9.0g
promo float %9.0g
sex float %9.0g sex
income float %9.0g

Sorted by: famid
Note: dataset has changed since last saved

The exp variable is now called experience, and the inc variable is now called income.

References
Cox, N. J., and J. Weesie. 2001. dm88: Renaming variables, multiply and systematically. Stata Technical Bulletin 60:

4–6. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 41–44. College Station, TX: Stata Press.

. 2005. Software Updates: Renaming variables, multiply and systematically. Stata Journal 5: 607.

Jenkins, S. P., and N. J. Cox. 2001. dm83: Renaming variables: Changing suffixes. Stata Technical Bulletin 59: 5–6.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 34–35. College Station, TX: Stata Press.

Also see
[D] rename group — Rename groups of variables

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties

http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=up0013
http://www.stata.com/products/stb/journals/stb59.pdf

Title

rename group — Rename groups of variables

Syntax Menu
Description Options for renaming variables
Options for changing the case of groups of variable names Remarks and examples
Stored results Also see

Syntax

Rename a single variable

rename old new
[
, options1

]
Rename groups of variables

rename (old1 old2 . . .) (new1 new2 . . .)
[
, options1

]
Change the case of groups of variable names

rename old1 old2 . . ., { upper | lower | proper }
[

options2

]
where old and new specify the existing and the new variable names. The rules for specifying them
are

1. rename stat status: Renames stat to status.

Rule 1: This is the same rename command documented in [D] rename, with which
you are familiar.

2. rename (stat inc) (status income): Renames stat to status and inc to income.

Rule 2: Use parentheses to specify multiple variables for old and new.

3. rename (v1 v2) (v2 v1): Swaps v1 and v2.

Rule 3: Variable names may be interchanged.

4. rename (a b c) (b c a): Swaps names. Renames a to b, b to c, and c to a.

Rule 4: There is no limit to how many names may be interchanged.

5. rename (a b c) (c b a): Renames a to c and c to a, but leaves b as is.

Rule 5: Renaming variables to themselves is allowed.

6. rename jan* *1: Renames all variables starting with jan to instead end with 1, for example,
janstat to stat1, janinc to inc1, etc.

Rule 6.1: * in old selects the variables to be renamed. * means that zero or more characters
go here.

Rule 6.2: * in new corresponds with * in old and stands for the text that * in old matched.

* in new or old is called a wildcard character, or just a wildcard.

rename jan* *: Removes prefix jan.

rename *jan *: Removes suffix jan.

555

556 rename group — Rename groups of variables

7. rename jan? ?1: Renames all variables starting with jan and ending in one character by
removing jan and adding 1 to the end; for example, jans is renamed to s1, but janstat
remains unchanged. ? means that exactly one character goes here, just as * means that zero
or more characters go here.

Rule 7: ? means exactly one character, ?? means exactly two characters, etc.

8. rename *jan* **: Removes prefix, midfix, and suffix jan, for example, janstat to stat,
injanstat to instat, and subjan to sub.

Rule 8: You may specify more than one wildcard in old and in new. They correspond
in the order given.

rename jan*s* *s*1: Renames all variables that start with jan and contain s to instead
end in 1, dropping the jan, for example, janstat to stat1 and janest to est1, but not
janinc to inc1.

9. rename *jan* *: Removes jan and whatever follows from variable names, thereby renaming
statjan to stat, incjan71 to inc,

Rule 9: You may specify more wildcards in old than in new.

10. rename *jan* .*: Removes jan and whatever precedes it from variable names, thereby
renaming midjaninc to inc,

Rule 10: Wildcard . (dot) in new skips over the corresponding wildcard in old.

11. rename *pop jan=: Adds prefix jan to all variables ending in pop, for example, age1pop
to janage1pop,

rename (status bp time) admit=: Renames status to admitstatus, bp to admitbp,
and time to admittime.

rename whatever pre=: Adds prefix pre to all variables selected by whatever, however
whatever is specified.

Rule 11: Wildcard = in new specifies the original variable name.

rename whatever =jan: Adds suffix jan to all variables selected by whatever.

rename whatever pre=fix: Adds prefix pre and suffix fix to all variables selected by
whatever.

12. rename v# stat#: Renames v1 to stat1, v2 to stat2, . . . , v10 to stat10,

Rule 12.1: # is like * but for digits. # in old selects one or more digits.

Rule 12.2: # in new copies the digits just as they appear in the corresponding old.

13. rename v(#) stat(#): Renames v1 to stat1, v2 to stat2, . . . , but does not rename
v10,

Rule 13.1: (#) in old selects exactly one digit. Similarly, (##) selects exactly two digits,
and so on, up to ten # symbols.

Rule 13.2: (#) in new means reformat to one or more digits. Similarly, (##) reformats
to two or more digits, and so on, up to ten # symbols.

rename v(##) stat(##): Renames v01 to stat01, v02 to stat02, . . . , v10 to stat10,
. . . , but does not rename v0, v1, v2, . . . , v9, v100,

rename group — Rename groups of variables 557

14. rename v# v(##): Renames v1 to v01, v2 to v02, . . . , v10 to v10, v11 to v11, . . . , v100
to v100, v101 to v101,

Rule 14: You may combine #, (#), (##), . . . in old with any of #, (#), (##), . . . in
new.

rename v(##) v(#): Renames v01 to v1, v02 to v2, . . . , v10 to v10, . . . , but does not
rename v001, etc.

rename stat(##) stat 20(##): Renames stat10 to stat 2010, stat11 to stat 2011,
. . . , but does not rename stat1, stat2,

rename stat(#) to stat 200(#): Renames stat1 to stat 2001, stat2 to stat 2002,
. . . , but does not rename stat10 or stat 2010.

15. rename v# (a b c): Renames v1 to a, v10 to b, and v2 to c if variables v1, v10, v2
appear in that order in the data. Because three variables were specified in new, v# in old
must select three variables or rename will issue an error.

Rule 15.1: You may mix syntaxes. Note that the explicit and implied numbers of variables
must agree.

rename v# (a b c), sort: Renames (for instance) v1 to a, v2 to b, and v10 to c.

Rule 15.2: The sort option places the variables selected by old in order and does so
smartly. In the case where #, (#), (##), . . . appear in old, sort places the
variables in numeric order.

rename v* (a b c), sort: Renames (for instance) valpha to a, vbeta to b, and vgamma
to c regardless of the order of the variables in the data.

Rule 15.3: In the case where * or ? appears in old, sort places the variables in alphabetical
order.

16. rename v# v#, renumber: Renames (for instance) v9 to v1, v10 to v2, v8 to v3, . . . ,
assuming that variables v9, v10, v8, . . . appear in that order in the data.

Rule 16.1: The renumber option resequences the numbers.

rename v# v#, renumber sort: Renames (for instance) v8 to v1, v9 to v2, v10 to v3,
. . . . Concerning option sort, see rule 15.2 above.

rename v# v#, renumber(10) sort: Renames (for instance) v8 to v10, v9 to v11, v10
to v12,

Rule 16.2: The renumber(#) option allows you to specify the starting value.

17. rename v* v#, renumber: Renames (for instance) valpha to v1, vgamma to v2, vbeta to
v3, . . . , assuming variables valpha, vgamma, vbeta, . . . appear in that order in the data.

Rule 17: # in new may correspond to *, ?, #, (#), (##), . . . in old.

rename v* v#, renumber sort: Renames (for instance) valpha to v1, vbeta to v2,
vgamma to v3, Also see rule 15.3 above concerning the sort option.

rename *stat stat#, renumber: Renames, for instance, janstat to stat1, febstat to
stat2, Note that # in new corresponds to * in old, just as in the previous example.

rename *stat stat(##), renumber: Renames, for instance, janstat to stat01, febstat
to stat02,

rename *stat stat#, renumber(0): Renames, for instance, janstat to stat0, febstat
to stat1,

558 rename group — Rename groups of variables

rename *stat stat#, renumber sort: Renames, for instance, aprstat to stat1, aug-
stat to stat2,

18. rename (a b c) v#, addnumber: Renames a to v1, b to v2, and c to v3.

Rule 18: The addnumber option allows you to add numbering. More formally, if you
specify addnumber, you may specify one more wildcard in new than is specified
in old, and that extra wildcard must be #, (#), (##),

19. rename a(#)(#) a(#)[2](#)[1]: Renames a12 to a21, a13 to a31, a14 to a41, . . . ,
a21 to a12,

Rule 19.1: You may specify explicit subscripts with wildcards in new to make explicit its
matching wildcard in old. Subscripts are specified in square brackets after a
wildcard in new. The number refers to the number of the wildcard in old.

rename *stat* *[2]stat*[1]: Swaps prefixes and suffixes; it renames bpstata to
astatbp, rstater to erstatr, etc.

rename *stat* *[2]stat*: Does the same as above; it swaps prefixes and suffixes.

Rule 19.2: After specifying a subscripted wildcard, subsequent unsubscripted wildcards
correspond to the same wildcards in old as they would if you had removed the
subscripted wildcards altogether.

rename v#a# v# #[1] a#[2]: Renames v1a1 to v1 1 a1, v1a2 to v1 1 a2, . . . , v2a1
to v2 2 a1,

Rule 19.3: Using subscripts, you may refer to the same wildcard in old more than once.

Subscripts are commonly used to interchange suffixes at the ends of variable names. For
instance, you have districts and schools within them, and many of the variable names in your
data match * # #. The first number records district and the second records school within
district. To reverse the ordering, you type rename * # # * #[3] #[2]. When specifying
subscripts, you refer to them by the position number in the original name. For example, our
original name was * # # so [1] refers to *, [2] refers to the first #, and [3] refers to the
last #.

In summary, the pattern specifiers are

Specifier Meaning in old

* 0 or more characters
? 1 character exactly
1 or more digits
(#) 1 digit exactly
(##) 2 digits exactly
(###) 3 digits exactly
. . .

(##########) 10 digits exactly

rename group — Rename groups of variables 559

May correspond
Specifier in old with Meaning in new

* *, ?, #, (#), . . . copies matched text
? ? copies a character
#, (#), . . . copies a number as is
(#) #, (#), . . . reformats to 1 or more digits
(##) #, (#), . . . reformats to 2 or more digits
. . .

(##########) #, (#), . . . reformats to 10 digits
. *, ?, #, (#), . . . skip
= nothing copies entire variable name

Specifier # in any of its guises may also correspond with * or ? if the renumber option is specified.

The options are as follows:

options1 Description

addnumber add sequential numbering to end
addnumber(#) addnumber, starting at #
renumber renumber sequentially
renumber(#) renumber, starting at #
sort sort before numbering

dryrun do not rename, but instead produce a report
r store variable names in r() for programming use

These options correspond to the first and second syntaxes.

options2 Description

upper uppercase variable names (UPPERCASE)
lower lowercase variable names (lowercase)
proper propercase variable names (Propercase)

dryrun do not rename, but instead produce a report
r store variable names in r() for programming use

These options correspond to the third syntax. One of upper, lower, or proper must be specified.

Menu
Data > Data utilities > Rename groups of variables

Description
rename changes the names of existing variables to the new names specified. See [D] rename for

the base rename syntax. Documented here is the advanced syntax for renaming groups of variables.

560 rename group — Rename groups of variables

Options for renaming variables
addnumber and addnumber(#) specify to add a sequence number to the variable names. See item

18 of Syntax. If # is not specified, the sequence number begins with 1.

renumber and renumber(#) specify to replace existing numbers or text in a set of variable names
with a sequence number. See items 16 and 17 of Syntax. If # is not specified, the sequence number
begins with 1.

sort specifies that the existing names be placed in order before the renaming is performed. See
item 15 of Syntax for details. This ordering matters only when addnumber or renumber is also
specified or when specifying a list of variable names for old or new.

dryrun specifies that the requested renaming not be performed but instead that a table be displayed
showing the old and new variable names. It is often a good idea to specify this option before
actually renaming the variables.

r is a programmer’s option that requests that old and new variable names be stored in r(). This
option may be specified with or without dryrun.

Options for changing the case of groups of variable names
upper, lower, and proper specify how the variables are to be renamed. upper specifies that

variable names be changed to uppercase; lower, to lowercase; and proper, to having the first
letter capitalized and the remaining letters in lowercase. One of these three options must be
specified.

dryrun and r are the same options as documented directly above.

Remarks and examples
Remarks are presented under the following headings:

Advice
Explanation
* matches 0 or more characters; use ?* to match 1 or more
* is greedy
is greedier

Advice

1. Read [D] rename before reading this entry.

2. Read items 1–19 (the Rules) under Syntax above before reading the rest of these remarks.

3. Specify the dryrun option when using complicated patterns. dryrun presents a table of the
old and new variable names rather than actually renaming the variables, so you can check
that the patterns you have specified produce the desired result.

Explanation

The rename command has three syntaxes; see Syntax. See [D] rename for details on the first
syntax, renaming a single variable. The remaining two syntaxes are for renaming groups of variables
and for changing the case of groups of variables. These two syntaxes are the ones we will focus on
for the remainder of this manual entry. Here they are again:

rename group — Rename groups of variables 561

rename (old1 old2 . . .) (new1 new2 . . .)

rename old1 old2 . . ., { upper | lower | proper }

The second syntax shown above merely changes the case of variables, such as MPG or mpg or Mpg.
For instance, to rename all variables to be lowercase, type

rename *, lower

The first syntax shown above is more daunting and more powerful. The first syntax has two styles,
with and without parentheses:

rename (bp 0 bp 1) (bp 1 bp 0)

rename pop*80 pop * 1980

You can combine the two styles whenever it is convenient.

rename v* (mpg weight displacement)

rename (mpg weight displacement) v#, addnumber

rename (bp 0 bp 1 pop*80) (bp 1 bp 0 pop * 1980)

We summarize all of this by simply writing the syntax as

rename old new, . . .

and referring to old and new.

Wildcards play different but related roles in old and new. When you type

rename pop*80 pop * 1980

the wildcard (* in this case) in old specifies which variables are to be renamed, and in new the
wildcard stands for the text that appears in the variables to be renamed. In this case, there is just one
wildcard, but sometimes there are more.

In old, * means zero or more characters go here. Specifying pop*80 means find all variables that
begin with pop and end in 80. Say that doing so results in three variables being found: poplt2080,
pop204080, and pop41plus80. To understand how * is interpreted in new, it is useful to write the
three found variables like this:

pop*80 = pop + * + 80

poplt2080 = pop + lt20 + 80
pop204080 = pop + 2040 + 80

pop41plus80 = pop + 41plus + 80

* in new refers to what was found by * in old. So the new pattern pop * 1980 will assemble
the following new variable names for each of the old names:

old variable * is → pop * 1980 is
poplt2080 lt20 → pop lt20 1980
pop204080 2040 → pop 2040 1980

pop41plus80 41plus → pop 41plus 1980

562 rename group — Rename groups of variables

Thus typing rename pop*80 pop * 1980 is equivalent to typing

rename poplt2080 pop_lt20_1980

rename pop204080 pop_2040_1980

rename pop41plus80 pop_41plus_1980

There are three basic wildcard characters for specification in old, and they filter the variables to
be renamed:

* 0 or more characters go here
? exactly 1 character goes here
number goes here (this one comes in 11 flavors!)

The generic # listed above collects all the digits. The other 10 flavors are (#), which means
exactly 1 digit goes here; (##), which means exactly 2 digits go here; and so on, up to exactly 10
digits go here.

All the above, the 3 + 10 = 13 wildcard characters, can appear in new, where each has a different
but related meaning:

* copy corresponding text from old as is
? copy corresponding character from old
copy corresponding number from old as is

(#) reformat corresponding number from old to 1 or more digits
(##) reformat corresponding number from old to 2 or more digits
. . .

In addition, new allows two special wildcard characters of its own:

= copy the entire original variable name
. skip the corresponding text in old

With the above information and the definitions of the options, you can derive on your own the first
eighteen rules given in Syntax. The nineteenth rule concerns subscripting. In new, you can specify
explicitly to which wildcard in old you are referring. You can type

rename pop*80 pop_*_1980

or you can type

rename pop*80 pop_*[1]_1980

thus making it explicit that the * in new is referring to the text matched by the first wildcard in old.
That * corresponds to * is hardly surprising, especially when there is only one * in old, so let’s
complicate the example:

rename v*_* outcome_*_*

You can type that command, or you can type

rename v*_* outcome_*[1]_*[2]

More importantly, you can specify the subscripts in whatever order you wish, so you could type

rename v*_* outcome_*[2]_*[1]

That command would interchange the text in old matched by the two wildcards.

rename group — Rename groups of variables 563

* matches 0 or more characters; use ?* to match 1 or more

l*a in old matches louisiana and it matches la because * means zero or more characters. What
if you want to match louisiana and lymphoma but not la?

For instance, say you have from–to variables named from*to* and from variables named from*.
The problem is that variable fromtoledo would match from*to*. To avoid that, rather than describing
the from–to pattern from*to*, you use from?*to?*. Thus you could type

rename from?*to?* from_?*_to_?*

?* is not a secret wildcard we have yet to tell you about—it is merely the two wildcards ? and *
in sequence. ? means exactly one character goes here, and * means zero or more characters go here,
so ?* means one or more characters go here. In the same way, ??* means two or more characters
go here, and so on.

* is greedy

Consider the existing variable assessment and pattern *s* in old. Clearly, *s* matches
assessment, but how? That is, among these possibilities,

assessment = * s *

a + s + sessment
as + s + essment
asse + s + sment
asses + s + ment

which one is true? We need to know the answer to know what each of the corresponding wildcards in
new will mean. The answer is that * is greedy, and the pattern is matched from left to right. As we
move through the variable name from left to right, at each step * takes the most characters possible,
subject to the pattern working out.

* s *

assessment = asses + s + ment

Thus the first * in new would stand for asses and the second would stand for ment.

The “subject to the pattern working out” part is important. Variable sunglasses would be broken
out by *s* as

* s *

sunglasses = sunglasse + s + nothing

But by *s?*, the breakout would be

* s ? *

sunglasses = sunglas + s + e + s

564 rename group — Rename groups of variables

is greedier

Wildcard # in old is greedier than *, which means that when * and # are up against each other,
wins.

Consider the pattern *# and the variable name v1234. Given that * is greedy and that the #
specifies one or more digits, the possible solutions are

v1234 = * #

v123 + 4
v12 + 34
v1 + 234
v + 1234

The solution chosen by rename is the last one, v + 1234. Thus you can type

rename *# period_#[2]

without concern that some digits might be lost.

Stored results
rename stores nothing in r() by default. If the r option is specified, then rename stores the

following in r():

Scalar
r(n) number of variables to be renamed

Macros
r(oldnames) original variable names
r(newnames) new variable names

Variables that are renamed to themselves are omitted from the recorded lists.

Also see
[D] rename — Rename variable

[D] generate — Create or change contents of variable

[D] varmanage — Manage variable labels, formats, and other properties

Title

reshape — Convert data from wide to long form and vice versa

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgment References
Also see

Syntax

Overview

long wide
i j stub i stub1 stub2
1 1 4.1 reshape 1 4.1 4.5
1 2 4.5 ←−−−−−−→ 2 3.3 3.0
2 1 3.3
2 2 3.0

To go from long to wide:

j existing variable
/

reshape wide stub, i(i) j(j)

To go from wide to long:

reshape long stub, i(i) j(j)
\

j new variable

To go back to long after using reshape wide:

reshape long

To go back to wide after using reshape long:

reshape wide

Basic syntax

Convert data from wide form to long form

reshape long stubnames , i(varlist)
[

options
]

Convert data from long form to wide form

reshape wide stubnames , i(varlist)
[

options
]

Convert data back to long form after using reshape wide

reshape long

565

566 reshape — Convert data from wide to long form and vice versa

Convert data back to wide form after using reshape long

reshape wide

List problem observations when reshape fails

reshape error

options Description

∗i(varlist) use varlist as the ID variables
j(varname

[
values

]
) long→wide: varname, existing variable

wide→long: varname, new variable
optionally specify values to subset varname

string varname is a string variable (default is numeric)

∗ i(varlist) is required.

where values is #
[
-#
] [

. . .
]

if varname is numeric (default)

"string"
[
"string" . . .

]
if varname is string

and where stubnames are variable names (long→wide), or stubs of variable names (wide→long), and
either way, may contain @, denoting where j appears or is to appear in the name.

Advanced syntax

reshape i varlist

reshape j varname
[

values
] [

, string
]

reshape xij fvarnames
[
, atwl(chars)

]
reshape xi

[
varlist

]
reshape

[
query

]
reshape clear

Menu
Data > Create or change data > Other variable-transformation commands > Convert data between wide and long

Description
reshape converts data from wide to long form and vice versa.

Options
i(varlist) specifies the variables whose unique values denote a logical observation. i() is required.

j(varname
[

values
]
) specifies the variable whose unique values denote a subobservation. values

lists the unique values to be used from varname, which typically are not explicitly stated because
reshape will determine them automatically from the data.

reshape — Convert data from wide to long form and vice versa 567

string specifies that j() may contain string values.

atwl(chars), available only with the advanced syntax and not shown in the dialog box, specifies
that chars be substituted for the @ character when converting the data from wide to long form.

Remarks and examples
Remarks are presented under the following headings:

Description of basic syntax
Wide and long data forms
Avoiding and correcting mistakes
reshape long and reshape wide without arguments
Missing variables
Advanced issues with basic syntax: i()
Advanced issues with basic syntax: j()
Advanced issues with basic syntax: xij
Advanced issues with basic syntax: String identifiers for j()
Advanced issues with basic syntax: Second-level nesting
Description of advanced syntax

See Mitchell (2010, chap. 8) for information and examples using reshape.

Description of basic syntax

Before using reshape, you need to determine whether the data are in long or wide form. You
also must determine the logical observation (i) and the subobservation (j) by which to organize the
data. Suppose that you had the following data, which could be organized in wide or long form as
follows:

i Xij i j Xij

id sex inc80 inc81 inc82 id year sex inc

1 0 5000 5500 6000 1 80 0 5000
2 1 2000 2200 3300 1 81 0 5500
3 0 3000 2000 1000 1 82 0 6000

2 80 1 2000
2 81 1 2200
2 82 1 3300
3 80 0 3000
3 81 0 2000
3 82 0 1000

Given these data, you could use reshape to convert from one form to the other:

. reshape long inc, i(id) j(year) /* goes from left form to right */

. reshape wide inc, i(id) j(year) /* goes from right form to left */

Because we did not specify sex in the command, Stata assumes that it is constant within the logical
observation, here id.

Wide and long data forms

Think of the data as a collection of observations Xij , where i is the logical observation, or group
identifier, and j is the subobservation, or within-group identifier.

568 reshape — Convert data from wide to long form and vice versa

Wide-form data are organized by logical observation, storing all the data on a particular observation
in one row. Long-form data are organized by subobservation, storing the data in multiple rows.

Example 1

For example, we might have data on a person’s ID, gender, and annual income over the years
1980–1982. We have two Xij variables with the data in wide form:

. use http://www.stata-press.com/data/r13/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

To convert these data to the long form, we type

. reshape long inc ue, i(id) j(year)
(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

There is no variable named year in our original, wide-form dataset. year will be a new variable in
our long dataset. After this conversion, we have

. list, sep(3)

id year sex inc ue

1. 1 80 0 5000 0
2. 1 81 0 5500 1
3. 1 82 0 6000 0

4. 2 80 1 2000 1
5. 2 81 1 2200 0
6. 2 82 1 3300 0

7. 3 80 0 3000 0
8. 3 81 0 2000 0
9. 3 82 0 1000 1

reshape — Convert data from wide to long form and vice versa 569

We can return to our original, wide-form dataset by using reshape wide.

. reshape wide inc ue, i(id) j(year)
(note: j = 80 81 82)

Data long -> wide

Number of obs. 9 -> 3
Number of variables 5 -> 8
j variable (3 values) year -> (dropped)
xij variables:

inc -> inc80 inc81 inc82
ue -> ue80 ue81 ue82

. list

id inc80 ue80 inc81 ue81 inc82 ue82 sex

1. 1 5000 0 5500 1 6000 0 0
2. 2 2000 1 2200 0 3300 0 1
3. 3 3000 0 2000 0 1000 1 0

Converting from wide to long creates the j (year) variable. Converting back from long to wide drops
the j (year) variable.

Technical note
If your data are in wide form and you do not have a group identifier variable (the i(varlist)

required option), you can create one easily by using generate; see [D] generate. For instance, in
the last example, if we did not have the id variable in our dataset, we could have created it by typing

. generate id = _n

Avoiding and correcting mistakes

reshape often detects when the data are not suitable for reshaping; an error is issued, and the
data remain unchanged.

Example 2

The following wide data contain a mistake:

. use http://www.stata-press.com/data/r13/reshape2, clear

. list

id sex inc80 inc81 inc82

1. 1 0 5000 5500 6000
2. 2 1 2000 2200 3300
3. 3 0 3000 2000 1000
4. 2 0 2400 2500 2400

570 reshape — Convert data from wide to long form and vice versa

. reshape long inc, i(id) j(year)
(note: j = 80 81 82)
variable id does not uniquely identify the observations

Your data are currently wide. You are performing a reshape long. You
specified i(id) and j(year). In the current wide form, variable id should
uniquely identify the observations. Remember this picture:

long wide

i j a b i a1 a2 b1 b2
< reshape >

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem observations.
r(9);

The i variable must be unique when the data are in the wide form; we typed i(id), yet we have 2
observations for which id is 2. (Is person 2 a male or female?)

Example 3

It is not a mistake when the i variable is repeated when the data are in long form, but the following
data have a similar mistake:

. use http://www.stata-press.com/data/r13/reshapexp1

. list

id year sex inc

1. 1 80 0 5000
2. 1 81 0 5500
3. 1 81 0 5400
4. 1 82 0 6000

. reshape wide inc, i(id) j(year)
(note: j = 80 81 82)
values of variable year not unique within id

Your data are currently long. You are performing a reshape wide. You
specified i(id) and j(year). There are observations within i(id) with the
same value of j(year). In the long data, variables i() and j() together
must uniquely identify the observations.

long wide

i j a b i a1 a2 b1 b2
< reshape >

1 1 1 2 1 1 3 2 4
1 2 3 4 2 5 7 6 8
2 1 5 6
2 2 7 8

Type reshape error for a list of the problem variables.
r(9);

In the long form, i(id) does not have to be unique, but j(year) must be unique within i; otherwise,
what is the value of inc in 1981 for which id==1?

reshape — Convert data from wide to long form and vice versa 571

reshape told us to type reshape error to view the problem observations.

. reshape error
(note: j = 80 81 82)

i (id) indicates the top-level grouping such as subject id.
j (year) indicates the subgrouping such as time.
The data are in the long form; j should be unique within i.

There are multiple observations on the same year within id.

The following 2 of 4 observations have repeated year values:

id year

2. 1 81
3. 1 81

(data now sorted by id year)

Example 4

Consider some long-form data that have no mistakes. We list the first 4 observations.

. use http://www.stata-press.com/data/r13/reshape6

. list in 1/4

id year sex inc ue

1. 1 80 0 5000 0
2. 1 81 0 5500 1
3. 1 82 0 6000 0
4. 2 80 1 2000 1

Say that when converting the data to wide form, however, we forget to mention the ue variable (which
varies within person).

. reshape wide inc, i(id) j(year)
(note: j = 80 81 82)
variable ue not constant within id

Your data are currently long. You are performing a reshape wide. You
typed something like

. reshape wide a b, i(id) j(year)

There are variables other than a, b, id, year in your data. They must be
constant within id because that is the only way they can fit into wide
data without loss of information.

The variable or variables listed above are not constant within id.
Perhaps the values are in error. Type reshape error for a list of the
problem observations.

Either that, or the values vary because they should vary, in which case
you must either add the variables to the list of xij variables to be
reshaped, or drop them.

r(9);

Here reshape observed that ue was not constant within id and so could not restructure the data so
that there were single observations on id. We should have typed

. reshape wide inc ue, i(id) j(year)

572 reshape — Convert data from wide to long form and vice versa

In summary, there are three cases in which reshape will refuse to convert the data:

1. The data are in wide form and i is not unique.

2. The data are in long form and j is not unique within i.

3. The data are in long form and an unmentioned variable is not constant within i.

Example 5

With some mistakes, reshape will probably convert the data and produce a surprising result.
Suppose that we forget to mention that the ue variable varies within id in the following wide data:

. use http://www.stata-press.com/data/r13/reshape1

. list

id sex inc80 inc81 inc82 ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

. reshape long inc, i(id) j(year)
(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9
Number of variables 8 -> 7
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc

. list, sep(3)

id year sex inc ue80 ue81 ue82

1. 1 80 0 5000 0 1 0
2. 1 81 0 5500 0 1 0
3. 1 82 0 6000 0 1 0

4. 2 80 1 2000 1 0 0
5. 2 81 1 2200 1 0 0
6. 2 82 1 3300 1 0 0

7. 3 80 0 3000 0 0 1
8. 3 81 0 2000 0 0 1
9. 3 82 0 1000 0 0 1

We did not state that ue varied within i, so the variables ue80, ue81, and ue82 were left as is.
reshape did not complain. There is no real problem here because no information has been lost. In
fact, this may actually be the result we wanted. Probably, however, we simply forgot to include ue
among the Xij variables.

If you obtain an unexpected result, here is how to undo it:

1. If you typed reshape long . . . to produce the result, type reshape wide (without arguments)
to undo it.

2. If you typed reshape wide . . . to produce the result, type reshape long (without arguments)
to undo it.

reshape — Convert data from wide to long form and vice versa 573

So, we can type

. reshape wide

to get back to our original, wide-form data and then type the reshape long command that we
intended:

. reshape long inc ue, i(id) j(year)

reshape long and reshape wide without arguments

Whenever you type a reshape long or reshape wide command with arguments, reshape
remembers it. Thus you might type

. reshape long inc ue, i(id) j(year)

and work with the data like that. You could then type

. reshape wide

to convert the data back to the wide form. Then later you could type

. reshape long

to convert them back to the long form. If you save the data, you can even continue using reshape
wide and reshape long without arguments during a future Stata session.

Be careful. If you create new Xij variables, you must tell reshape about them by typing the
full reshape command, although no real damage will be done if you forget. If you are converting
from long to wide form, reshape will catch your error and refuse to make the conversion. If you
are converting from wide to long, reshape will convert the data, but the result will be surprising:
remember what happened when we forgot to mention the ue variable and ended up with ue80, ue81,
and ue82 in our long data; see example 5. You can reshape long to undo the unwanted change
and then try again.

Missing variables

When converting data from wide form to long form, reshape does not demand that all the
variables exist. Missing variables are treated as variables with missing observations.

Example 6

Let’s drop ue81 from the wide form of the data:

. use http://www.stata-press.com/data/r13/reshape1, clear

. drop ue81

. list

id sex inc80 inc81 inc82 ue80 ue82

1. 1 0 5000 5500 6000 0 0
2. 2 1 2000 2200 3300 1 0
3. 3 0 3000 2000 1000 0 1

574 reshape — Convert data from wide to long form and vice versa

. reshape long inc ue, i(id) j(year)
(note: j = 80 81 82)
(note: ue81 not found)

Data wide -> long

Number of obs. 3 -> 9
Number of variables 7 -> 5
j variable (3 values) -> year
xij variables:

inc80 inc81 inc82 -> inc
ue80 ue81 ue82 -> ue

. list, sep(3)

id year sex inc ue

1. 1 80 0 5000 0
2. 1 81 0 5500 .
3. 1 82 0 6000 0

4. 2 80 1 2000 1
5. 2 81 1 2200 .
6. 2 82 1 3300 0

7. 3 80 0 3000 0
8. 3 81 0 2000 .
9. 3 82 0 1000 1

reshape placed missing values where ue81 values were unavailable. If we reshaped these data back
to wide form by typing

. reshape wide inc ue, i(id) j(year)

the ue81 variable would be created and would contain all missing values.

Advanced issues with basic syntax: i()

The i() option can indicate one i variable (as our past examples have illustrated) or multiple
variables. An example of multiple i variables would be hospital ID and patient ID within each hospital.

. reshape . . . , i(hid pid)

Unique pairs of values for hid and pid in the data define the grouping variable for reshape.

Advanced issues with basic syntax: j()

The j() option takes a variable name (as our past examples have illustrated) or a variable name and
a list of values. When the values are not provided, reshape deduces them from the data. Specifying
the values with the j() option is rarely needed.

reshape never makes a mistake when the data are in long form and you type reshape wide.
The values are easily obtained by tabulating the j variable.

reshape — Convert data from wide to long form and vice versa 575

reshape can make a mistake when the data are in wide form and you type reshape long if your
variables are poorly named. Say that you have the inc80, inc81, and inc82 variables, recording
income in each of the indicated years, and you have a variable named inc2, which is not income
but indicates when the area was reincorporated. You type

. reshape long inc, i(id) j(year)

reshape sees the inc2, inc80, inc81, and inc82 variables and decides that there are four groups
in which j = 2, 80, 81, and 82.

The easiest way to solve the problem is to rename the inc2 variable to something other than “inc”
followed by a number; see [D] rename.

You can also keep the name and specify the j values. To perform the reshape, you can type

. reshape long inc, i(id) j(year 80-82)

or

. reshape long inc, i(id) j(year 80 81 82)

You can mix the dash notation for value ranges with individual numbers. reshape would understand
80 82-87 89 91-95 as a valid values specification.

At the other extreme, you can omit the j() option altogether with reshape long. If you do, the
j variable will be named j.

Advanced issues with basic syntax: xij

When specifying variable names, you may include @ characters to indicate where the numbers go.

Example 7

Let’s reshape the following data from wide to long form:

. use http://www.stata-press.com/data/r13/reshape3, clear

. list

id sex inc80r inc81r inc82r ue80 ue81 ue82

1. 1 0 5000 5500 6000 0 1 0
2. 2 1 2000 2200 3300 1 0 0
3. 3 0 3000 2000 1000 0 0 1

. reshape long inc@r ue, i(id) j(year)
(note: j = 80 81 82)

Data wide -> long

Number of obs. 3 -> 9
Number of variables 8 -> 5
j variable (3 values) -> year
xij variables:

inc80r inc81r inc82r -> incr
ue80 ue81 ue82 -> ue

576 reshape — Convert data from wide to long form and vice versa

. list, sep(3)

id year sex incr ue

1. 1 80 0 5000 0
2. 1 81 0 5500 1
3. 1 82 0 6000 0

4. 2 80 1 2000 1
5. 2 81 1 2200 0
6. 2 82 1 3300 0

7. 3 80 0 3000 0
8. 3 81 0 2000 0
9. 3 82 0 1000 1

At most one @ character may appear in each name. If no @ character appears, results are as if the
@ character appeared at the end of the name. So, the equivalent reshape command to the one above
is

. reshape long inc@r ue@, i(id) j(year)

inc@r specifies variables named inc#r in the wide form and incr in the long form. The @
notation may similarly be used for converting data from long to wide format:

. reshape wide inc@r ue, i(id) j(year)

Advanced issues with basic syntax: String identifiers for j()

The string option allows j to take on string values.

Example 8

Consider the following wide data on husbands and wives. In these data, incm is the income of
the man and incf is the income of the woman.

. use http://www.stata-press.com/data/r13/reshape4, clear

. list

id kids incm incf

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000

These data can be reshaped into separate observations for males and females by typing
. reshape long inc, i(id) j(sex) string
(note: j = f m)

Data wide -> long

Number of obs. 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incf incm -> inc

reshape — Convert data from wide to long form and vice versa 577

The string option specifies that j take on nonnumeric values. The result is

. list, sep(2)

id sex kids inc

1. 1 f 0 5500
2. 1 m 0 5000

3. 2 f 1 2200
4. 2 m 1 2000

5. 3 f 2 2000
6. 3 m 2 3000

sex will be a string variable. Similarly, these data can be converted from long to wide form by typing

. reshape wide inc, i(id) j(sex) string

Strings are not limited to being single characters or even having the same length. You can specify
the location of the string identifier in the variable name by using the @ notation.

Example 9

Suppose that our variables are named id, kids, incmale, and incfem.

. use http://www.stata-press.com/data/r13/reshapexp2, clear

. list

id kids incmale incfem

1. 1 0 5000 5500
2. 2 1 2000 2200
3. 3 2 3000 2000

. reshape long inc, i(id) j(sex) string
(note: j = fem male)

Data wide -> long

Number of obs. 3 -> 6
Number of variables 4 -> 4
j variable (2 values) -> sex
xij variables:

incfem incmale -> inc

. list, sep(2)

id sex kids inc

1. 1 fem 0 5500
2. 1 male 0 5000

3. 2 fem 1 2200
4. 2 male 1 2000

5. 3 fem 2 2000
6. 3 male 2 3000

578 reshape — Convert data from wide to long form and vice versa

If the wide data had variables named minc and finc, the appropriate reshape command would
have been

. reshape long @inc, i(id) j(sex) string

The resulting variable in the long form would be named inc.

We can also place strings in the middle of the variable names. If the variables were named incMome
and incFome, the reshape command would be

. reshape long inc@ome, i(id) j(sex) string

Be careful with string identifiers because it is easy to be surprised by the result. Say that we have
wide data having variables named incm, incf, uem, uef, agem, and agef. To make the data long,
we might type

. reshape long inc ue age, i(id) j(sex) string

Along with these variables, we also have the variable agenda. reshape will decide that the sexes
are m, f, and nda. This would not happen without the string option if the variables were named
inc0, inc1, ue0, ue1, age0, and age1, even with the agenda variable present in the data.

Advanced issues with basic syntax: Second-level nesting
Sometimes the data may have more than one possible j variable for reshaping. Suppose that your

data have both a year variable and a sex variable. One logical observation in the data might be
represented in any of the following four forms:

. list in 1/4 // The long-long form

hid sex year inc

1. 1 f 90 3200
2. 1 f 91 4700
3. 1 m 90 4500
4. 1 m 91 4600

. list in 1/2 // The long-year wide-sex form

hid year minc finc

1. 1 90 4500 3200
2. 1 91 4600 4700

. list in 1/2 // The wide-year long-sex form

hid sex inc90 inc91

1. 1 f 3200 4700
2. 1 m 4500 4600

. list in 1 // The wide-wide form

hid minc90 minc91 finc90 finc91

1. 1 4500 4600 3200 4700

reshape — Convert data from wide to long form and vice versa 579

reshape can convert any of these forms to any other. Converting data from the long–long form
to the wide–wide form (or any of the other forms) takes two reshape commands. Here is how we
would do it:

From To
year sex year sex Command

long long long wide reshape wide @inc, i(hid year) j(sex) string
long wide long long reshape long @inc, i(hid year) j(sex) string
long long wide long reshape wide inc, i(hid sex) j(year)
wide long long long reshape long inc, i(hid sex) j(year)
long wide wide wide reshape wide minc finc, i(hid) j(year)
wide wide long wide reshape long minc finc, i(hid) j(year)
wide long wide wide reshape wide @inc90 @inc91, i(hid) j(sex) string
wide wide wide long reshape long @inc90 @inc91, i(hid) j(sex) string

Description of advanced syntax

The advanced syntax is simply a different way of specifying the reshape command, and it has
one seldom-used feature that provides extra control. Rather than typing one reshape command to
describe the data and perform the conversion, such as

. reshape long inc, i(id) j(year)

you type a sequence of reshape commands. The initial commands describe the data, and the last
command performs the conversion:

. reshape i id

. reshape j year

. reshape xij inc

. reshape long

reshape i corresponds to i() in the basic syntax.

reshape j corresponds to j() in the basic syntax.

reshape xij corresponds to the variables specified in the basic syntax. reshape xij also accepts
the atwl() option for use when @ characters are specified in the fvarnames. atwl stands for at-when-
long. When you specify names such as inc@r or ue@, in the long form the names become incr and
ue, and the @ character is ignored. atwl() allows you to change @ into whatever you specify. For
example, if you specify atwl(X), the long-form names become incXr and ueX.

There is also one more specification, which has no counterpart in the basic syntax:
. reshape xi varlist

In the basic syntax, Stata assumes that all unspecified variables are constant within i. The advanced
syntax works the same way, unless you specify the reshape xi command, which names the constant-
within-i variables. If you specify reshape xi, any variables that you do not explicitly specify are
dropped from the data during the conversion.

As a practical matter, you should explicitly drop the unwanted variables before conversion. For
instance, suppose that the data have variables inc80, inc81, inc82, sex, age, and age2 and that
you no longer want the age2 variable. You could specify

. reshape xi sex age

or
. drop age2

and leave reshape xi unspecified.

580 reshape — Convert data from wide to long form and vice versa

reshape xi does have one minor advantage. It saves reshape the work of determining which
variables are unspecified. This saves a relatively small amount of computer time.

Another advanced-syntax feature is reshape query, which is equivalent to typing reshape by
itself. reshape query reports which reshape parameters have been defined. reshape i, reshape
j, reshape xij, and reshape xi specifications may be given in any order and may be repeated to
change or correct what has been specified.

Finally, reshape clear clears the definitions. reshape definitions are stored with the dataset
when you save it. reshape clear allows you to erase these definitions.

The basic syntax of reshape is implemented in terms of the advanced syntax, so you can mix
basic and advanced syntaxes.

Stored results
reshape stores the following characteristics with the data (see [P] char):

dta[ReS i] i variable names
dta[ReS j] j variable name
dta[ReS jv] j values, if specified
dta[ReS Xij] Xij variable names
dta[ReS Xi] Xi variable names, if specified
dta[ReS atwl] atwl() value, if specified
dta[ReS str] 1 if option string specified; 0 otherwise

Acknowledgment
This version of reshape was based in part on the work of Jeroen Weesie (1997) of the Department

of Sociology at Utrecht University, The Netherlands.

References
Baum, C. F., and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268–271.

Gould, W. W. 1997. stata48: Updated reshape. Stata Technical Bulletin 39: 4–16. Reprinted in Stata Technical Bulletin
Reprints, vol. 7, pp. 5–20. College Station, TX: Stata Press.

Jeanty, P. W. 2010. Using the World Development Indicators database for statistical analysis in Stata. Stata Journal
10: 30–45.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Weesie, J. 1997. dm48: An enhancement of reshape. Stata Technical Bulletin 38: 2–4. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 40–43. College Station, TX: Stata Press.

. 1998. dm58: A package for the analysis of husband–wife data. Stata Technical Bulletin 43: 9–13. Reprinted
in Stata Technical Bulletin Reprints, vol. 8, pp. 13–20. College Station, TX: Stata Press.

Also see
[D] save — Save Stata dataset

[D] stack — Stack data

[D] xpose — Interchange observations and variables

[P] char — Characteristics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0031
http://www.stata.com/products/stb/journals/stb39.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0045
http://www.stata-press.com/books/dmus.html
http://www.stata.com/products/stb/journals/stb38.pdf
http://www.stata.com/products/stb/journals/stb43.pdf

Title

rmdir — Remove directory

Syntax Description Remarks and examples Also see

Syntax
rmdir directory name

Double quotes may be used to enclose the directory name, and the quotes must be used if the directory
name contains embedded blanks.

Description

rmdir removes an empty directory (folder).

Remarks and examples
Examples:

Windows

. rmdir myproj

. rmdir c:\projects\myproj

. rmdir "c:\My Projects\Project 1"

Mac and Unix

. rmdir myproj

. rmdir ~/projects/myproj

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

581

Title

sample — Draw random sample

Syntax Menu Description Options
Remarks and examples References Also see

Syntax
sample #

[
if
] [

in
] [

, count by(groupvars)
]

by is allowed; see [D] by.

Menu
Statistics > Resampling > Draw random sample

Description
sample draws random samples of the data in memory. “Sampling” here is defined as drawing

observations without replacement; see [R] bsample for sampling with replacement.

The size of the sample to be drawn can be specified as a percentage or as a count:

• sample without the count option draws a #% pseudorandom sample of the data in memory,
thus discarding (100− #)% of the observations.

• sample with the count option draws a #-observation pseudorandom sample of the data in
memory, thus discarding N − # observations. # can be larger than N, in which case all
observations are kept.

In either case, observations not meeting the optional if and in criteria are kept (sampled at 100%).

If you are interested in reproducing results, you must first set the random-number seed; see [R] set
seed.

Options

count specifies that # in sample # be interpreted as an observation count rather than as a percentage.
Typing sample 5 without the count option means that a 5% sample be drawn; typing sample
5, count, however, would draw a sample of 5 observations.

Specifying # as greater than the number of observations in the dataset is not considered an error.

by(groupvars) specifies that a #% sample be drawn within each set of values of groupvars, thus
maintaining the proportion of each group.

count may be combined with by(). For example, typing sample 50, count by(sex) would
draw a sample of size 50 for men and 50 for women.

Specifying by varlist: sample # is equivalent to specifying sample #, by(varlist); use whichever
syntax you prefer.

582

sample — Draw random sample 583

Remarks and examples

Example 1

We have NLSY data on young women aged 14–26 years in 1968 and wish to draw a 10% sample
of the data in memory.

. use http://www.stata-press.com/data/r13/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. describe, short

Contains data from http://www.stata-press.com/data/r13/nlswork.dta
obs: 28,534 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 21 27 Nov 2012 08:14
size: 941,622
Sorted by: idcode year

. sample 10
(25681 observations deleted)

. describe, short

Contains data from http://www.stata-press.com/data/r13/nlswork.dta
obs: 2,853 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 21 27 Nov 2012 08:14
size: 94,149
Sorted by:

Note: dataset has changed since last saved

Our original dataset had 28,534 observations. The sample-10 dataset has 2,853 observations, which
is the nearest number to 0.10× 28534.

Example 2

Among the variables in our data is race. By typing label list, we see that race = 1 denotes
whites, race = 2 denotes blacks, and race = 3 denotes other races. We want to keep 100% of the
nonwhite women but only 10% of the white women.

. use http://www.stata-press.com/data/r13/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. tab race

race Freq. Percent Cum.

white 20,180 70.72 70.72
black 8,051 28.22 98.94
other 303 1.06 100.00

Total 28,534 100.00

. sample 10 if race == 1
(18162 observations deleted)

584 sample — Draw random sample

. describe, short

Contains data from http://www.stata-press.com/data/r13/nlswork.dta
obs: 10,372 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 21 27 Nov 2012 08:14
size: 342,276
Sorted by:

Note: dataset has changed since last saved

. display .10*20180 + 8051 + 303
10372

Example 3

Now let’s suppose that we want to keep 10% of each of the three categories of race.

. use http://www.stata-press.com/data/r13/nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. sample 10, by(race)
(25681 observations deleted)

. tab race

race Freq. Percent Cum.

white 2,018 70.73 70.73
black 805 28.22 98.95
other 30 1.05 100.00

Total 2,853 100.00

This differs from simply typing sample 10 in that with by(), sample holds constant the percentages
of white, black, and other women.

Technical note
We have a large dataset on disk containing 125,235 observations. We wish to draw a 10% sample

of this dataset without loading the entire dataset (perhaps because the dataset will not fit in memory).
sample will not solve this problem—the dataset must be loaded first—but it is rather easy to solve
it ourselves. Say that bigdata.dct contains the dictionary for this dataset; see [D] import. One
solution is to type

. infile using bigdata if runiform()<=.1
dictionary {

etc.
}
(12,580 observations read)

The if modifier on the end of infile drew uniformly distributed random numbers over the interval
0 and 1 and kept each observation if the random number was less than or equal to 0.1. This, however,
did not draw an exact 10% sample—the sample was expected to contain only 10% of the observations,
and here we obtained just more than 10%. This is probably a reasonable solution.

If the sample must contain precisely 12,524 observations, however, after getting too many obser-
vations, we could type

sample — Draw random sample 585

. generate u=runiform()

. sort u

. keep in 1/12524
(56 observations deleted)

That is, we put the resulting sample in random order and keep the first 12,524 observations. Now our
only problem is making sure that, at the first step, we have more than 12,524 observations. Here we
were lucky, but half the time we will not be so lucky—after typing infile . . . if runiform()<=.1,
we will have less than a 10% sample. The solution, of course, is to draw more than a 10% sample
initially and then cut it back to 10%.

How much more than 10% do we need? That depends on the number of records in the original
dataset, which in our example is 125,235.

A little experimentation with bitesti (see [R] bitest) provides the answer:

. bitesti 125235 12524 .102

N Observed k Expected k Assumed p Observed p

125235 12524 12773.97 0.10200 0.10000

Pr(k >= 12524) = 0.990466 (one-sided test)
Pr(k <= 12524) = 0.009777 (one-sided test)
Pr(k <= 12524 or k >= 13025) = 0.019584 (two-sided test)

Initially drawing a 10.2% sample will yield a sample larger than 10% 99 times of 100. If we draw a
10.4% sample, we are virtually assured of having enough observations (type bitesti 125235 12524
.104 for yourself).

References
Cox, N. J. 2001. dm86: Sampling without replacement: Absolute sample sizes and keeping all observations. Stata

Technical Bulletin 59: 8–9. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 38–39. College Station,
TX: Stata Press.

. 2005. Software Updates: Sampling without replacement: Absolute sample sizes and keeping all observations.
Stata Journal 5: 139.

Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:
Not Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

Weesie, J. 1997. dm46: Enhancement to the sample command. Stata Technical Bulletin 37: 6–7. Reprinted in Stata
Technical Bulletin Reprints, vol. 7, pp. 37–38. College Station, TX: Stata Press.

Also see
[R] bsample — Sampling with replacement

http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=up0010
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://www.stata.com/products/stb/journals/stb37.pdf

Title

save — Save Stata dataset

Syntax Menu Description
Options for save Options for saveold Remarks and examples
Also see

Syntax

Save data in memory to file

save
[

filename
] [

, save options
]

Save data in memory to file in Stata 12 format

saveold filename
[
, saveold options

]
save options Description

nolabel omit value labels from the saved dataset
replace overwrite existing dataset
all save e(sample) with the dataset; programmer’s option
orphans save all value labels
emptyok save dataset even if zero observations and zero variables

saveold options Description

nolabel omit value labels from the saved dataset
replace overwrite existing dataset
all save e(sample) with the dataset; programmer’s option

Menu
File > Save As...

Description

save stores the dataset currently in memory on disk under the name filename. If filename is
not specified, the name under which the data were last known to Stata (c(filename)) is used. If
filename is specified without an extension, .dta is used. If your filename contains embedded spaces,
remember to enclose it in double quotes.

saveold saves the dataset currently in memory on disk under the name filename in Stata 12
format. Stata 11 can also read Stata 12 datasets.

If you are using Stata 13 and want to save a file so that it may be read by someone using Stata 11
or Stata 12, simply use the saveold command.

586

save — Save Stata dataset 587

Options for save
nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits save to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run
a regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

orphans saves all value labels, including those not attached to any variable.

emptyok is a programmer’s option. It specifies that the dataset be saved, even if it contains zero
observations and zero variables. If emptyok is not specified and the dataset is empty, save responds
with the message “no variables defined”.

Options for saveold
nolabel omits value labels from the saved dataset. The associations between variables and value-label

names, however, are saved along with the dataset label and the variable labels.

replace permits saveold to overwrite an existing dataset.

all is for use by programmers. If specified, e(sample) will be saved with the dataset. You could run
a regression; save mydata, all; drop all; use mydata; and predict yhat if e(sample).

Remarks and examples
Stata keeps the data on which you are currently working in your computer’s memory. You put

the data there in the first place; see [U] 21 Entering and importing data. Thereafter, you can save
the dataset on disk so that you can use it easily in the future. Stata stores your data on disk in a
compressed format that only Stata understands. This does not mean, however, that you are locked into
using only Stata. Any time you wish, you can export the data to a format other software packages
understand; see [D] export.

Stata goes to a lot of trouble to keep you from accidentally losing your data. When you attempt
to leave Stata by typing exit, Stata checks that your data have been safely stored on disk. If not,
Stata refuses to let you leave. (You can tell Stata that you want to leave anyway by typing exit,
clear.) Similarly, when you save your data in a disk file, Stata ensures that the disk file does not
already exist. If it does exist, Stata refuses to save it. You can use the replace option to tell Stata
that it is okay to overwrite an existing file.

Example 1

We have entered data into Stata for the first time. We have the following data:

588 save — Save Stata dataset

. describe

Contains data
obs: 39 Minnesota Highway Data, 1973
vars: 5
size: 936

storage display value
variable name type format label variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: dataset has changed since last saved

We have a dataset containing 39 observations on five variables, and, evidently, we have gone
to a lot of trouble to prepare this dataset. We have used the label data command to label the
data Minnesota Highway Data, the label variable command to label all the variables, and the
label define and label values commands to attach value labels to the last two variables. (See
[U] 12.6.3 Value labels for information about doing this.)

At the end of the describe, Stata notes that the “dataset has changed since last saved”. This is
Stata’s way of gently reminding us that these data need to be saved. Let’s save our data:

. save hiway
file hiway.dta saved

We type save hiway, and Stata stores the data in a file named hiway.dta. (Stata automatically
added the .dta suffix.) Now when we describe our data, we no longer get the warning that our
dataset has not been saved; instead, we are told the name of the file in which the data are saved:

. describe

Contains data from hiway.dta
obs: 39 Minnesota Highway Data, 1973
vars: 5 18 Jan 2013 11:42
size: 936

storage display value
variable name type format label variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed limit category

Sorted by:

Just to prove to you that the data have really been saved, let’s eliminate the copy of the data in
memory by typing drop all:

save — Save Stata dataset 589

. drop _all

. describe

Contains data
obs: 0
vars: 0
size: 0
Sorted by:

We now have no data in memory. Because we saved our dataset, we can retrieve it by typing use
hiway:

. use hiway
(Minnesota Highway Data, 1973)

. describe

Contains data from hiway.dta
obs: 39 Minnesota Highway Data, 1973
vars: 5 18 Jan 2013 11:42
size: 936

storage display value
variable name type format label variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed limit category

Sorted by:

Example 2

Continuing with our previous example, we have saved our data in the file hiway.dta. We continue
to work with our data and discover an error; we made a mistake when we typed one of the values
for the spdlimit variable:

. list in 1/3

acc_rate spdlimit acc_pts rate spdcat

1. 1.61 50 2.2 Below 4 Above 60
2. 1.81 60 6.8 Below 4 55 to 60
3. 1.84 55 14 Below 4 55 to 60

In the first observation, the spdlimit variable is 50, whereas the spdcat variable indicates that the
speed limit is more than 60 miles per hour. We check our original copy of the data and discover that
the spdlimit variable ought to be 70. We can fix it with the replace command:

. replace spdlimit=70 in 1
(1 real change made)

590 save — Save Stata dataset

If we were to describe our data now, Stata would warn us that our data have changed since they
were last saved:

. describe

Contains data from hiway.dta
obs: 39 Minnesota Highway Data, 1973
vars: 5 18 Jan 2013 11:42
size: 936

storage display value
variable name type format label variable label

acc_rate float %9.0g Accident rate
spdlimit float %9.0g Speed limit
acc_pts float %9.0g Access points per mile
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed limit category

Sorted by:
Note: dataset has changed since last saved

We take our cue and attempt to save the data again:

. save hiway
file hiway.dta already exists
r(602);

Stata refuses to honor our request, telling us instead that “file hiway.dta already exists”. Stata will
not let us accidentally overwrite an existing dataset. To replace the data, we must do so explicitly
by typing save hiway, replace. If we want to save the file under the same name as it was last
known to Stata, we can omit the filename:

. save, replace
file hiway.dta saved

Now our data are saved.

Also see
[D] compress — Compress data in memory

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[D] use — Load Stata dataset

[P] file formats .dta — Description of .dta file format

[U] 11.6 Filenaming conventions

Title

separate — Create separate variables

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgment Reference
Also see

Syntax

separate varname
[

if
] [

in
]
, by(groupvar | exp)

[
options

]
options Description

Main
∗by(groupvar) categorize observations into groups defined by groupvar
∗by(exp) categorize observations into two groups defined by exp

Options

generate(stubname) name new variables by suffixing values to stubname; default is to
use varname as prefix

sequential use as name suffix categories numbered sequentially from 1
missing create variables for the missing values
shortlabel create shorter variable labels

∗ Either by(groupvar) or by(exp) must be specified.

Menu
Data > Create or change data > Other variable-transformation commands > Create separate variables

Description
separate creates new variables containing values from varname.

Options

� � �
Main �

by(groupvar | exp) specifies one variable defining the categories or a logical expression that categorizes
the observations into two groups.

If by(groupvar) is specified, groupvar may be a numeric or string variable taking on any values.

If by(exp) is specified, the expression must evaluate to true (1), false (0), or missing.

by() is required.

591

592 separate — Create separate variables

� � �
Options �

generate(stubname) specifies how the new variables are to be named. If generate() is not specified,
separate uses the name of the original variable, shortening it if necessary. If generate() is
specified, separate uses stubname. If any of the resulting names is too long when the values are
suffixed, it is not shortened and an error message is issued.

sequential specifies that categories be numbered sequentially from 1. By default, separate uses
the actual values recorded in the original variable, if possible, and sequential numbers otherwise.
separate can use the original values if they are all nonnegative integers smaller than 10,000.

missing also creates a variable for the category missing if missing occurs (groupvar takes on the
value missing or exp evaluates to missing). The resulting variable is named in the usual manner but
with an appended underscore, for example, bp . By default, separate creates no such variable.
The contents of the other variables are unaffected by whether missing is specified.

shortlabel creates a variable label that is shorter than the default. By default, when separate
generates the new variable labels, it includes the name of the variable being separated. shortlabel
specifies that the variable name be omitted from the new variable labels.

Remarks and examples

Example 1

We have data on the miles per gallon (mpg) and country of manufacture of 74 automobiles. We want
to compare the distributions of mpg for domestic and foreign automobiles by plotting the quantiles
of the two distributions (see [R] diagnostic plots).

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. separate mpg, by(foreign)

storage display value
variable name type format label variable label

mpg0 byte %8.0g mpg, foreign == Domestic
mpg1 byte %8.0g mpg, foreign == Foreign

. list mpg* foreign

mpg mpg0 mpg1 foreign

1. 22 22 . Domestic
2. 17 17 . Domestic
3. 22 22 . Domestic

(output omitted)
22. 16 16 . Domestic
23. 17 17 . Domestic
24. 28 28 . Domestic

(output omitted)
73. 25 . 25 Foreign
74. 17 . 17 Foreign

separate — Create separate variables 593

. qqplot mpg0 mpg1

1
0

2
0

3
0

4
0

m
p

g
,

fo
re

ig
n

 =
=

 D
o

m
e

s
ti
c

15 20 25 30 35 40
mpg, foreign == Foreign

Quantile−Quantile Plot

In our auto dataset, the foreign cars have better gas mileage.

Stored results
separate stores the following in r():

Macros
r(varlist) names of the newly created variables

Acknowledgment
separate was originally written by Nicholas J. Cox of the Department of Geography at Durham

University, UK, and coeditor of the Stata Journal.

Reference
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see
[R] tabulate oneway — One-way table of frequencies

[R] tabulate twoway — Two-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

http://www.stata-journal.com/
http://www.stata-press.com/books/isp.html

Title

shell — Temporarily invoke operating system

Syntax Description Remarks and examples Also see

Syntax{
shell | !

} [
operating system command

]
winexec program name

[
program args

]
{
xshell | !!

} [
operating system command

]
Command availability:

Stata for . . .
Command Windows Mac Unix(GUI) Unix(console)

shell X X X X
winexec X X X –
xshell – X X –

Description

shell (synonym: “!”) allows you to send commands to your operating system or to enter your oper-
ating system for interactive use. Stata will wait for the shell to close or the operating system command
to complete before continuing.

winexec allows you to start other programs (such as browsers) from Stata’s command line. Stata
will continue without waiting for the program to complete.

xshell (Stata for Mac and Unix(GUI) only) brings up an xterm in which the command is to
be executed. On Mac OS X, xterm is available when X11 is installed. If you are using Mac OS
X 10.6, X11 might not be installed by default; you can install it by running the Optional Installs
installer from your Mac OS X installation DVD. X11 is installed by default on Mac OS X 10.7 but
not on Mac OS X 10.8 and newer. To install X11 on these newer operating systems, you must first
download XQuartz from http://xquartz.macosforge.org/.

Remarks and examples
Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix(GUI)
Stata for Unix(console)

594

http://xquartz.macosforge.org/

shell — Temporarily invoke operating system 595

Stata for Windows

shell, without arguments, preserves your session and invokes the operating system. The Command
window will disappear, and a DOS window will appear, indicating that you may not continue in Stata
until you exit the DOS shell. To reenter Stata, type exit at your operating system’s prompt. Your
Stata session is reestablished just as if you had never left.

Say that you are using Stata for Windows and you suddenly realize you need to do two things.
You need to enter your operating system for a few minutes. Rather than exiting Stata, doing what
you have to do, and then restarting Stata, you type shell in the Command window. A DOS window
appears:

C:\data>

You can now do whatever you need to do in DOS, and Stata will wait until you exit the DOS window
before continuing.

Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have
to enter your operating system, issue a command, and then exit back to Stata. If you want to execute
one command, you can type the command right after the word shell or the exclamation point:

. !rename try15.dta final.dta

If you do this, the DOS window will open and close as the command is executed.

Stata for Windows users can also use the winexec command, which allows you to launch any
Windows application from within Stata. You can think of it as a shortcut for clicking on the Windows
Start button, choosing Run..., and typing a command.

Assume that you are working in Stata and decide that you want to run a text editor:
. winexec notepad

(The Windows application Notepad will start and run at the same time as Stata)

You could even pass a filename to your text editor:

. winexec notepad c:\docs\myfile.txt

You may need to specify a complete path to the executable that you wish to launch:

. winexec c:\windows\notepad c:\docs\myfile.txt

The important difference between winexec and shell is that Stata does not wait for whatever
program winexec launches to complete before continuing. Stata will wait for the program shell
launches to complete before performing any further commands.

Stata for Mac
shell, with arguments, invokes your operating system, executes one command, and redirects the

output to the Results window. The command must complete before you can enter another command
in the Command window.

Say that you are using Stata for Mac and suddenly realize that there are two things you have to
do. You need to switch to the Finder or enter commands from a terminal for a few minutes. Rather
than exiting Stata, doing what you have to do, and then switching back to Stata, you type shell and
the command in the Command window to execute one command. You then repeat this step for each
command that you want to execute from the shell.

Experienced Stata users seldom type out the word shell. They type “!”.

. !mv try15.dta final.dta

596 shell — Temporarily invoke operating system

Be careful not to execute commands, such as vi, that require interaction from you. Because all output
is redirected to Stata’s Results window, you will not be able to interact with the command from Stata.
This will effectively lock up Stata because the command will never complete.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes
a shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell
vi myfile.do.

Stata for Mac users can also use the winexec command, which allows you to launch any native
application from within Stata. You may, however, have to specify the absolute path to the application.
If the application you wish to launch is a Mac OS X application bundle, you must specify an absolute
path to the executable in the bundle.

Assume that you are working in Stata and decide that you want to run a text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit

(The OS X application TextEdit will start and run at the same time as Stata)

You could even pass a filename to your text editor:

. winexec /Applications/TextEdit.app/Contents/MacOS/TextEdit
> /Users/cnguyen/myfile.do

If you specify a file path as an argument to the program to be launched, you must specify an absolute
path. Also using ~ in the path will not resolve to a home directory. winexec cannot launch PEF
binaries such as those from Mac OS 9 and some Carbon applications. If an application cannot be
launched from a terminal window, it cannot be launched by winexec.

The important difference between winexec and shell is that Stata does not wait for whatever
program winexec launches to complete before continuing. Stata will wait for the program shell
launches to complete before performing any further commands. shell is appropriate for executing
shell commands; winexec is appropriate for launching applications.

Stata for Unix(GUI)

shell, without arguments, preserves your session and invokes the operating system. The Command
window will disappear, and an xterm window will appear, indicating that you may not do anything
in Stata until you exit the xterm window. To reenter Stata, type exit at the Unix prompt. Your Stata
session is reestablished just as if you had never left.

Say that you are using Stata for Unix(GUI) and suddenly realize that you need to do two things.
You need to enter your operating system for a few minutes. Rather than exiting Stata, doing what you
have to do, and then restarting Stata, you type shell in the Command window. An xterm window
will appear:

mycomputer$

You can now do whatever you need to do, and Stata will wait until you exit the window before
continuing.

Experienced Stata users seldom type out the word shell. They type “!”. Also you do not have
to enter your operating system, issue a command, and then exit back to Stata. If you want to execute
one command, you can type the command right after the word shell or the exclamation point:

. !mv try15.dta final.dta

Be careful because sometimes you will want to type

. !!vi myfile.do

shell — Temporarily invoke operating system 597

and in other cases,
. winexec xedit myfile.do

!! is a synonym for xshell—a command different from, but related to, shell—and winexec is a
different and related command, too.

Before we get into this, understand that if all you want is a shell from which you can issue Unix
commands, type shell or !:

. !

mycomputer$

When you are through, type exit to the Unix prompt, and you will return to Stata:
mycomputer$ exit

.

If, on the other hand, you want to specify in Stata the Unix command that you want to execute,
you need to decide whether you want to use shell, xshell, or winexec. The answer depends on
whether the command you want to execute requires a terminal window or is an X application:

. . . does not need a terminal window: use shell . . . (synonym: !. . .)

. . . needs a terminal window: use xshell . . . (synonym: !!. . .)

. . . is an X application: use winexec . . . (no synonym)

When you type shell mv try15.dta final.dta, Stata invokes your shell (/bin/sh, /bin/csh,
etc.) and executes the specified command (mv here), routing the standard output and standard error
back to Stata. Typing !mv try15.dta final.dta is the same as typing shell mv try15.dta
final.dta.

When you type xshell vi myfile.do, Stata invokes an xterm window (which in turn invokes
a shell) and executes the command there. Typing !!vi myfile.do is equivalent to typing xshell
vi myfile.do.

When you type winexec xedit myfile.do, Stata directly invokes the command specified (xedit
here). No xterm window is brought up nor is a shell invoked because, here, xterm does not need
it. xterm is an X application that will create its own window in which to run. You could have
typed !!xedit myfile.do. That would have brought up an unnecessary xterm window from which
xedit would have been executed, and that would not matter. You could even have typed !xedit
myfile.do. That would have invoked an unnecessary shell from which xedit would have been
executed, and that would not matter, either. The important difference, however, is that shell and
xshell wait until the process completes before allowing Stata to continue, and winexec does not.

Technical note
You can set Stata global macros to control the behavior of shell and xshell. The macros are

$S SHELL defines the shell to be used by shell when
you type a command following shell.
The default is something like “/bin/sh -c”, although this can vary,
depending on how your Unix environment variables are set.

$S XSHELL defines shell to be used by shell and xshell
when they are typed without arguments.
The default is “xterm”.

$S XSHELL2 defines shell to be used by xshell when it is
typed with arguments.
The default is “xterm -e”.

598 shell — Temporarily invoke operating system

For instance, if you type in Stata

. global S_XSHELL2 "/usr/X11R6/bin/xterm -e"

and then later type

. !!vi myfile.do

then Stata would issue the command /usr/X11R6/bin/xterm -e vi myfile.do to Unix.

If you do make changes, we recommend that you record the changes in your profile.do file.

Stata for Unix(console)

shell, without arguments, preserves your session and then invokes your operating system. Your
Stata session will be suspended until you exit the shell, at which point your Stata session is
reestablished just as if you had never left.

Say that you are using Stata and you suddenly realize that you need to do two things. You need
to enter your operating system for a few minutes. Rather than exiting Stata, doing what you have to
do, and then restarting Stata, you type shell. A Unix prompt appears:

. shell
(Type exit to return to Stata)

$

You can now do whatever you need to do and type exit when you finish. You will return to Stata
just as if you had never left.

Experienced Stata users seldom type out the word shell. They type ‘!’. Also you do not have
to enter your operating system, issue a command, and then exit back to Stata. If you want to execute
one command, you can type the command right after the word shell or the exclamation point. If
you want to edit the file myfile.do, and if vi is the name of your favorite editor, you could type

. !vi myfile.do
Stata opens your editor.
When you exit your editor:

.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] type — Display contents of a file

Title

snapshot — Save and restore data snapshots

Syntax Menu Description Option
Remarks and examples Stored results Also see

Syntax
Save snapshot

snapshot save
[
, label("label")

]
Change snapshot label

snapshot label snapshot# "label"

Restore snapshot

snapshot restore snapshot#

List snapshots

snapshot list
[

all | numlist
]

Erase snapshots

snapshot erase all | numlist

Menu
Data > Data Editor > Data Editor (Edit)

Description
snapshot saves to disk and restores from disk copies of the data in memory. snapshot’s main

purpose is to allow the Data Editor to save and restore data snapshots during an interactive editing
session. A more popular alternative for programmers is preserve; see [P] preserve.

Snapshots are referred to by a snapshot#. If no snapshots currently exist, the next snapshot saved
will receive a snapshot# of 1. If snapshots do exist, the next snapshot saved will receive a snapshot#
one greater than the highest existing snapshot#.

snapshot save creates a temporary file containing a copy of the data currently in memory and
attaches an optional label (up to 80 characters) to the saved snapshot. Up to 1,000 snapshots may be
saved.

snapshot label changes the label on the specified snapshot.

snapshot restore replaces the data in memory with the data from the specified snapshot.

599

600 snapshot — Save and restore data snapshots

snapshot list lists specified snapshots.

snapshot erase erases specified snapshots.

Option
label(label) is for use with snapshot save and allows you to label a snapshot when saving it.

Remarks and examples
snapshot was created to allow a user using the Data Editor to save and restore snapshots of their

data while editing them interactively. It is similar to a checkpoint save in a video game, where after
you have made a certain amount of progress, you wish to make sure you will be able to return to
that point no matter what may happen in the future.

snapshot does not overwrite any copies of your data that you may have saved to disk. It saves
a copy of the data currently in memory to a temporary file and allows you to later restore that copy
to memory.

snapshot saves the date and time at which you create a snapshot. It is a good idea to also give
a snapshot a label so that you will be better able to distinguish between multiple snapshots should
you need to restore one.

Technical note
Although we mention above the use of the Data Editor and we demonstrate below the use of

snapshot, we recommend that data cleaning not be done interactively. Instead, we recommend
that data editing and cleaning be done in a reproducible manner through the use of do-files; see
[U] 16 Do-files.

Example 1

You decide to make some changes to the auto dataset. You make a snapshot of the data before
you begin making changes, and you make another snapshot after the changes:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. snapshot save, label("before changes")
snapshot 1 (before changes) created at 19 Apr 2013 21:32

. generate gpm = 1/mpg

. label variable gpm "Gallons per mile"

. snapshot save, label("after changes")
snapshot 2 (after changes) created at 19 Apr 2013 21:34

You go on to do some analyses, but then, for some reason, you accidentally drop the variable you
previously created:

. drop gpm

Luckily, you made some snapshots of your work:
. snapshot list
snapshot 1 (before changes) created at 19 Apr 2013 21:32
snapshot 2 (after changes) created at 19 Apr 2013 21:34

. snapshot restore 2

snapshot — Save and restore data snapshots 601

. describe gpm

storage display value
variable name type format label variable label

gpm float %9.0g Gallons per mile

Stored results
snapshot save stores the following in r():

Scalars
r(snapshot) sequence number of snapshot saved

Also see
[D] edit — Browse or edit data with Data Editor

[P] preserve — Preserve and restore data

Title

sort — Sort data

Syntax Menu Description Option
Remarks and examples References Also see

Syntax
sort varlist

[
in
] [

, stable
]

Menu
Data > Sort

Description
sort arranges the observations of the current data into ascending order based on the values

of the variables in varlist. There is no limit to the number of variables in the varlist. Missing
numeric values are interpreted as being larger than any other number, so they are placed last with
. < .a < .b < · · · < .z. When you sort on a string variable, however, null strings are placed first.
The dataset is marked as being sorted by varlist unless in range is specified. If in range is specified,
only those observations are rearranged. The unspecified observations remain in the same place.

Option
stable specifies that observations with the same values of the variables in varlist keep the same

relative order in the sorted data that they had previously. For instance, consider the following data:

x b
3 1
1 2
1 1
1 3
2 4

Typing sort x without the stable option produces one of the following six orderings:

x b x b x b x b x b x b
1 2 1 2 1 1 1 1 1 3 1 3
1 1 1 3 1 3 1 2 1 1 1 2
1 3 1 1 1 2 1 3 1 2 1 1
2 4 2 4 2 4 2 4 2 4 2 4
3 1 3 1 3 1 3 1 3 1 3 1

Without the stable option, the ordering of observations with equal values of varlist is randomized.
With sort x, stable, you will always get the first ordering and never the other five.

If your intent is to have the observations sorted first on x and then on b within tied values of x
(the fourth ordering above), you should type sort x b rather than sort x, stable.

stable is seldom used and, when specified, causes sort to execute more slowly.

602

sort — Sort data 603

Remarks and examples
Sorting data is one of the more common tasks involved in processing data. Sometimes, before

Stata can perform some task, the data must be in a specific order. For example, if you want to use
the by varlist: prefix, the data must be sorted in order of varlist. You use the sort command to
fulfill this requirement.

Example 1

Sorting data can also be informative. Suppose that we have data on automobiles, and each car’s
make and mileage rating (called make and mpg) are included among the variables in the data. We
want to list the five cars with the lowest mileage rating in our data:

. use http://www.stata-press.com/data/r13/auto
(1978 Automobile Data)

. keep make mpg weight

. sort mpg, stable

. list make mpg in 1/5

make mpg

1. Linc. Continental 12
2. Linc. Mark V 12
3. Cad. Deville 14
4. Cad. Eldorado 14
5. Linc. Versailles 14

Example 2: Tracking the sort order

Stata keeps track of the order of your data. For instance, we just sorted the above data on mpg.
When we ask Stata to describe the data in memory, it tells us how the dataset is sorted:

. describe

Contains data from http://www.stata-press.com/data/r13/auto.dta
obs: 74 1978 Automobile Data
vars: 3 13 Apr 2013 17:45
size: 1,628 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by: mpg
Note: dataset has changed since last saved

Stata keeps track of changes in sort order. If we were to make a change to the mpg variable, Stata
would know that the data are no longer sorted. Remember that the first observation in our data has
mpg equal to 12, as does the second. Let’s change the value of the first observation:

. replace mpg=13 in 1
(1 real change made)

604 sort — Sort data

. describe

Contains data from http://www.stata-press.com/data/r13/auto.dta
obs: 74 1978 Automobile Data
vars: 3 13 Apr 2013 17:45
size: 1,628 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)

Sorted by:
Note: dataset has changed since last saved

After making the change, Stata indicates that our dataset is “Sorted by:” nothing. Let’s put the dataset
back as it was:

. replace mpg=12 in 1
(1 real change made)

. sort mpg

Technical note
Stata does not track changes in the sort order and will sometimes decide that a dataset is not

sorted when, in fact, it is. For instance, if we were to change the first observation of our auto dataset
from 12 miles per gallon to 10, Stata would decide that the dataset is “Sorted by:” nothing, just as
it did above when we changed mpg from 12 to 13. Our change in example 2 did change the order
of the data, so Stata was correct. Changing mpg from 12 to 10, however, does not really affect the
sort order.

As far as Stata is concerned, any change to the variables on which the data are sorted means that
the data are no longer sorted, even if the change actually leaves the order unchanged. Stata may be
dumb, but it is also fast. It sorts already-sorted datasets instantly, so Stata’s ignorance costs us little.

Example 3: Sorting on multiple variables

Data can be sorted by more than one variable, and in such cases, the sort order is lexicographic.
If we sort the data by two variables, for instance, the data are placed in ascending order of the first
variable, and then observations that share the same value of the first variable are placed in ascending
order of the second variable. Let’s order our automobile data by mpg and within mpg by weight:

sort — Sort data 605

. sort mpg weight

. list in 1/8, sep(4)

make mpg weight

1. Linc. Mark V 12 4,720
2. Linc. Continental 12 4,840
3. Peugeot 604 14 3,420
4. Linc. Versailles 14 3,830

5. Cad. Eldorado 14 3,900
6. Merc. Cougar 14 4,060
7. Merc. XR-7 14 4,130
8. Cad. Deville 14 4,330

The data are in ascending order of mpg, and, within each mpg category, the data are in ascending
order of weight. The lightest car that achieves 14 miles per gallon in our data is the Peugeot 604.

Technical note
The sorting technique used by Stata is fast, but the order of variables not included in the varlist

is not maintained. If you wish to maintain the order of additional variables, include them at the end
of the varlist. There is no limit to the number of variables by which you may sort.

Example 4: Descending sorts

Sometimes you may want to order a dataset by descending sequence of something. Perhaps we
wish to obtain a list of the five cars achieving the best mileage rating. The sort command orders
the data only into ascending sequences. Another command, gsort, orders the data in ascending or
descending sequences; see [D] gsort. You can also create the negative of a variable and achieve the
desired result:

. generate negmpg = -mpg

. sort negmpg

. list in 1/5

make mpg weight negmpg

1. VW Diesel 41 2,040 -41
2. Subaru 35 2,050 -35
3. Datsun 210 35 2,020 -35
4. Plym. Champ 34 1,800 -34
5. Toyota Corolla 31 2,200 -31

We find that the VW Diesel tops our list.

606 sort — Sort data

Example 5: Sorting on string variables

sort may also be used on string variables. The data are sorted alphabetically:

. sort make

. list in 1/5

make mpg weight negmpg

1. AMC Concord 22 2,930 -22
2. AMC Pacer 17 3,350 -17
3. AMC Spirit 22 2,640 -22
4. Audi 5000 17 2,830 -17
5. Audi Fox 23 2,070 -23

Technical note
Bear in mind that Stata takes “alphabetically” to mean that all uppercase letters come before

lowercase letters. As far as Stata is concerned, the following list is sorted alphabetically:

. list, sep(0)

myvar

1. ALPHA
2. Alpha
3. BETA
4. Beta
5. alpha
6. beta

References
Royston, P. 2001. Sort a list of items. Stata Journal 1: 105–106.

Schumm, L. P. 2006. Stata tip 28: Precise control of dataset sort order. Stata Journal 6: 144–146.

Also see
[D] describe — Describe data in memory or in file

[D] gsort — Ascending and descending sort

[U] 11 Language syntax

http://www.stata-journal.com/sjpdf.html?articlenum=dm0001
http://www.stata-journal.com/sjpdf.html?articlenum=dm0019

Title

split — Split string variables into parts

Syntax Menu Description Options
Remarks and examples Stored results Acknowledgments Also see

Syntax
split strvar

[
if
] [

in
] [

, options
]

options Description

Main

generate(stub) begin new variable names with stub; default is strvar
parse(parse strings) parse on specified strings; default is to parse on spaces
limit(#) create a maximum of # new variables
notrim do not trim leading or trailing spaces of original variable

Destring

destring apply destring to new string variables, replacing initial string
variables with numeric variables where possible

ignore("chars") remove specified nonnumeric characters
force convert nonnumeric strings to missing values
float generate numeric variables as type float

percent convert percent variables to fractional form

Menu
Data > Create or change data > Other variable-transformation commands > Split string variables into parts

Description
split splits the contents of a string variable, strvar, into one or more parts, using one or more

parse strings (by default, blank spaces), so that new string variables are generated. Thus split is
useful for separating “words” or other parts of a string variable. strvar itself is not modified.

Options

� � �
Main �

generate(stub) specifies the beginning characters of the new variable names so that new variables
stub1, stub2, etc., are produced. stub defaults to strvar.

parse(parse strings) specifies that, instead of using spaces, parsing use one or more parse strings.
Most commonly, one string that is one punctuation character will be specified. For example, if
parse(,) is specified, then "1,2,3" is split into "1", "2", and "3".

607

608 split — Split string variables into parts

You can also specify 1) two or more strings that are alternative separators of “words” and 2)
strings that consist of two or more characters. Alternative strings should be separated by spaces.
Strings that include spaces should be bound by " ". Thus if parse(, " ") is specified, "1,2
3" is also split into "1", "2", and "3". Note particularly the difference between, say, parse(a
b) and parse(ab): with the first, a and b are both acceptable as separators, whereas with the
second, only the string ab is acceptable.

limit(#) specifies an upper limit to the number of new variables to be created. Thus limit(2)
specifies that, at most, two new variables be created.

notrim specifies that the original string variable not be trimmed of leading and trailing spaces before
being parsed. notrim is not compatible with parsing on spaces, because the latter implies that
spaces in a string are to be discarded. You can either specify a parsing character or, by default,
allow a trim.

� � �
Destring �

destring applies destring to the new string variables, replacing the variables initially created as
strings by numeric variables where possible. See [D] destring.

ignore(), force, float, percent; see [D] destring.

Remarks and examples

split is used to split a string variable into two or more component parts, for example, “words”.
You might need to correct a mistake, or the string variable might be a genuine composite that you
wish to subdivide before doing more analysis.

The basic steps applied by split are, given one or more separators, to find those separators
within the string and then to generate one or more new string variables, each containing a part of the
original. The separators could be, for example, spaces or other punctuation symbols, but they can in
turn be strings containing several characters. The default separator is a space.

The key string functions for subdividing string variables and, indeed, strings in general, are
strpos(), which finds the position of separators, and substr(), which extracts parts of the string.
(See [D] functions.) split is based on the use of those functions.

If your problem is not defined by splitting on separators, you will probably want to use substr()
directly. Suppose that you have a string variable, date, containing dates in the form "21011952" so
that the last four characters define a year. This string contains no separators. To extract the year, you
would use substr(date,-4,4). Again suppose that each woman’s obstetric history over the last 12
months was recorded by a str12 variable containing values such as "nppppppppbnn", where p, b,
and n denote months of pregnancy, birth, and nonpregnancy. Once more, there are no separators, so
you would use substr() to subdivide the string.

split discards the separators, because it presumes that they are irrelevant to further analysis or
that you could restore them at will. If this is not what you want, you might use substr() (and
possibly strpos()).

Finally, before we turn to examples, compare split with the egen function ends(), which
produces the head, the tail, or the last part of a string. This function, like all egen functions, produces
just one new variable as a result. In contrast, split typically produces several new variables as the
result of one command. For more details and discussion, including comments on the special problem
of recognizing personal names, see [D] egen.

split — Split string variables into parts 609

split can be useful when input to Stata is somehow misread as one string variable. If you copy and
paste into the Data Editor, say, under Windows by using the clipboard, but data are space-separated,
what you regard as separate variables will be combined because the Data Editor expects comma- or
tab-separated data. If some parts of your composite variable are numeric characters that should be
put into numeric variables, you could use destring at the same time; see [D] destring.

. split var1, destring

Here no generate() option was specified, so the new variables will have names var11, var12,
and so forth. You may now wish to use rename to produce more informative variable names. See
[D] rename.

You can also use split to subdivide genuine composites. For example, email addresses such as
tech-support@stata.com may be split at "@":

. split address, p(@)

This sequence yields two new variables: address1, containing the part of the email address before
the "@", such as "tech-support", and address2, containing the part after the "@", such as
"stata.com". The separator itself, "@", is discarded. Because generate() was not specified, the
name address was used as a stub in naming the new variables. split displays the names of new
variables created, so you will see quickly whether the number created matches your expectations.

If the details of individuals were of no interest and you wanted only machine names, either

. egen machinename = ends(address), tail p(@)

or

. generate machinename = substr(address, strpos(address,"@") + 1,.)

would be more direct.

Next suppose that a string variable holds names of legal cases that should be split into variables for
plaintiff and defendant. The separators could be " V ", " V. ", " VS ", and " VS. ". (We assume that
any inconsistency in the use of uppercase and lowercase has been dealt with by the string function
upper(); see [D] functions.) Note particularly the leading and trailing spaces in our detailing of
separators: the first separator is " V ", for example, not "V", which would incorrectly split "GOLIATH
V DAVID" into "GOLIATH ", " DA", and "ID". The alternative separators are given as the argument
to parse():

. split case, p(" V " " V. " " VS " " VS. ")

Again with default naming of variables and recalling that separators are discarded, we expect new
variables case1 and case2, with no creation of case3 or further new variables. Whenever none of
the separators specified were found, case2 would have empty values, so we can check:

. list case if case2 == ""

Suppose that a string variable contains fields separated by tabs. For example, import delimited
leaves tabs unchanged. Knowing that a tab is char(9), we can type

. split data, p(‘=char(9)’) destring

p(char(9)) would not work. The argument to parse() is taken literally, but evaluation of functions
on the fly can be forced as part of macro substitution.

Finally, suppose that a string variable contains substrings bound in parentheses, such as (1 2 3)
(4 5 6). Here we can split on the right parentheses and, if desired, replace those afterward. For
example,

610 split — Split string variables into parts

. split data, p(")")

. foreach v in ‘r(varlist)’ {
replace ‘v’ = ‘v’ + ")"

. }

Stored results
split stores the following in r():

Scalars
r(nvars) number of new variables created
r(varlist) names of the newly created variables

Acknowledgments
split was written by Nicholas J. Cox of the Department of Geography at Durham University, UK,

and coeditor of the Stata Journal, who in turn thanks Michael Blasnik of M. Blasnik & Associates
for ideas contributed to an earlier jointly written program.

Also see
[D] destring — Convert string variables to numeric variables and vice versa

[D] egen — Extensions to generate

[D] functions — Functions

[D] rename — Rename variable

[D] separate — Create separate variables

http://www.stata-journal.com/

Title

stack — Stack data

Syntax Menu Description Options
Remarks and examples Reference Also see

Syntax
stack varlist

[
if
] [

in
]
,
{
into(newvars) | group(#)

} [
options

]
options Description

Main
∗into(newvars) identify names of new variables to be created
∗group(#) stack # groups of variables in varlist
clear clear dataset from memory
wide keep variables in varlist that are not specified in newvars

∗ Either into(newvars) or group(#) is required.

Menu
Data > Create or change data > Other variable-transformation commands > Stack data

Description
stack stacks the variables in varlist vertically, resulting in a dataset with variables newvars and

N · (Nv/Nn) observations, where Nv is the number of variables in varlist and Nn is the number
in newvars. stack creates the new variable stack identifying the groups.

Options

� � �
Main �

into(newvars) identifies the names of the new variables to be created. into() may be specified
using variable ranges (for example, into(v1-v3)). Either into() or group(), but not both,
must be specified.

group(#) specifies the number of groups of variables in varlist to be stacked. The created variables
will be named according to the first group in varlist. Either group() or into(), but not both,
must be specified.

clear indicates that it is okay to clear the dataset in memory. If you do not specify this option, you
will be asked to confirm your intentions.

wide includes any of the original variables in varlist that are not specified in newvars in the resulting
data.

611

612 stack — Stack data

Remarks and examples

Example 1: Illustrating the concept

This command is best understood by examples. We begin with artificial but informative examples
and end with useful examples.

. use http://www.stata-press.com/data/r13/stackxmpl

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b c d, into(e f) clear

. list

_stack e f

1. 1 1 2
2. 1 5 6
3. 2 3 4
4. 2 7 8

We formed the new variable e by stacking a and c, and we formed the new variable f by stacking
b and d. stack is automatically created and set equal to 1 for the first (a, b) group and equal to
2 for the second (c, d) group. (When stack==1, the new data e and f contain the values from a
and b. When stack==2, e and f contain values from c and d.)

There are two groups because we specified four variables in the varlist and two variables in the
into list, and 4/2 = 2. If there were six variables in the varlist, there would be 6/2 = 3 groups.
If there were also three variables in the into list, there would be 6/3 = 2 groups. Specifying six
variables in the varlist and four variables in the into list would result in an error because 6/4 is not
an integer.

Example 2: Stacking a variable multiple times

Variables may be repeated in the varlist, and the varlist need not contain all the variables:

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear

stack — Stack data 613

. list

_stack a bc

1. 1 1 2
2. 1 5 6
3. 2 1 3
4. 2 5 7

a was stacked on a and called a, whereas b was stacked on c and called bc.

If we had wanted the resulting variables to be called simply a and b, we could have used

. stack a b a c, group(2) clear

which is equivalent to

. stack a b a c, into(a b) clear

Example 3: Keeping the original variables

In this artificial but informative example, the wide option includes the variables in the original
dataset that were specified in varlist in the output dataset:

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b c d, into(e f) clear wide

. list

_stack e f a b c d

1. 1 1 2 1 2 . .
2. 1 5 6 5 6 . .
3. 2 3 4 . . 3 4
4. 2 7 8 . . 7 8

In addition to the stacked e and f variables, the original a, b, c, and d variables are included. They
are set to missing where their values are not appropriate.

Example 4: Using wide with repeated variables

This is the last artificial example. When you specify the wide option and repeat the same variable
name in both the varlist and the into list, the variable will contain the stacked values:

614 stack — Stack data

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

a b c d

1. 1 2 3 4
2. 5 6 7 8

. stack a b a c, into(a bc) clear wide

. list

_stack a bc b c

1. 1 1 2 2 .
2. 1 5 6 6 .
3. 2 1 3 . 3
4. 2 5 7 . 7

Example 5: Using stack to make graphs

We want one graph of y against x1 and y against x2. We might be tempted to type scatter y
x1 x2, but that would graph y against x2 and x1 against x2. One solution is to type

. save mydata

. stack y x1 y x2, into(yy x12) clear

. generate y1 = yy if _stack==1

. generate y2 = yy if _stack==2

. scatter y1 y2 x12

. use mydata, clear

The names yy and x12 are supposed to suggest the contents of the variables. yy contains (y,y), and x12
contains (x1,x2). We then make y1 defined at the x1 points but missing at the x2 points—graphing
y1 against x12 is the same as graphing y against x1 in the original dataset. Similarly, y2 is defined
at the x2 points but missing at x1—graphing y2 against x12 is the same as graphing y against x2
in the original dataset. Therefore, scatter y1 y2 x12 produces the desired graph.

Example 6: Plotting cumulative distributions

We wish to graph y1 against x1 and y2 against x2 on the same graph. The logic is the same
as above, but let’s go through it. Perhaps we have constructed two cumulative distributions by using
cumul (see [R] cumul):

. use http://www.stata-press.com/data/r13/citytemp
(City Temperature Data)

. cumul tempjan, gen(cjan)

. cumul tempjuly, gen(cjuly)

We want to graph both cumulatives in the same graph; that is, we want to graph cjan against tempjan
and cjuly against tempjuly. Remember that we could graph the tempjan cumulative by typing

. scatter cjan tempjan, c(l) m(o) sort
(output omitted)

stack — Stack data 615

We can graph the tempjuly cumulative similarly. To obtain both on the same graph, we must stack
the data:

. stack cjuly tempjuly cjan tempjan, into(c temp) clear

. generate cjan = c if _stack==1
(958 missing values generated)

. generate cjuly = c if _stack==2
(958 missing values generated)

. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

Alternatively, if we specify the wide option, we do not have to regenerate cjan and cjuly because
they will be created automatically:

. use http://www.stata-press.com/data/r13/citytemp, clear
(City Temperature Data)

. cumul tempjan, gen(cjan)

. cumul tempjuly, gen(cjuly)

. stack cjuly tempjuly cjan tempjan, into(c temp) clear wide

. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)

Technical note
There is a third way, not using the wide option, that is exceedingly tricky but is sometimes useful:

. use http://www.stata-press.com/data/r13/citytemp, clear
(City Temperature Data)

. cumul tempjan, gen(cjan)

. cumul tempjuly, gen(cjuly)

. stack cjuly tempjuly cjan tempjan, into(c temp) clear

. sort _stack temp

. scatter c temp, c(L) m(o)
(output omitted)

Note the use of connect’s capital L rather than lowercase l option. c(L) connects points only from
left to right; because the data are sorted by stack temp, temp increases within the first group (cjuly
vs. tempjuly) and then starts again for the second (cjan vs. tempjan); see [G-4] connectstyle.

Reference
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see
[D] contract — Make dataset of frequencies and percentages

[D] reshape — Convert data from wide to long form and vice versa

[D] xpose — Interchange observations and variables

http://www.stata-press.com/books/isp.html

Title

statsby — Collect statistics for a command across a by list

Syntax Menu Description Options
Remarks and examples Acknowledgment References Also see

Syntax
statsby

[
exp list

] [
, options

]
: command

options Description

Main
∗by(varlist

[
, missing

]
) equivalent to interactive use of by varlist:

Options

clear replace data in memory with results
saving(filename, . . .) save results to filename; save statistics in double precision; save

results to filename every # replications
total include results for the entire dataset
subsets include all combinations of subsets of groups

Reporting

nodots suppress replication dots
noisily display any output from command
trace trace command
nolegend suppress table legend
verbose display the full table legend

Advanced

basepop(exp) restrict initializing sample to exp; seldom used
force do not check for svy commands; seldom used
forcedrop retain only observations in by-groups when calling command;

seldom used
∗ by(varlist) is required on the dialog box because statsby is useful to the interactive user only when using by().
All weight types supported by command are allowed except pweights; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist
eexp

elist contains newvarname = (exp)
(exp)

eexp is specname
[eqno]specname

616

statsby — Collect statistics for a command across a by list 617

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [], which are to be typed, and
[]

, which indicate optional arguments.

Menu
Statistics > Other > Collect statistics for a command across a by list

Description
statsby collects statistics from command across a by list. Typing

. statsby exp list, by(varname): command

executes command for each group identified by varname, building a dataset of the associated values
from the expressions in exp list. The resulting dataset replaces the current dataset, unless the saving()
option is supplied. varname can refer to a numeric or a string variable.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with statsby, as long as they follow standard Stata syntax and allow the if
qualifier; see [U] 11 Language syntax. The by prefix cannot be part of command.

exp list specifies the statistics to be collected from the execution of command. If no expressions
are given, exp list assumes a default depending upon whether command changes results in e() and
r(). If command changes results in e(), the default is b. If command changes results in r() (but
not e()), the default is all the scalars posted to r(). It is an error not to specify an expression in
exp list otherwise.

Options

� � �
Main �

by(varlist
[
, missing

]
) specifies a list of existing variables that would normally appear in the

by varlist: section of the command if you were to issue the command interactively. By default,
statsby ignores groups in which one or more of the by() variables is missing. Alternatively,
missing causes missing values to be treated like any other values in the by-groups, and results
from the entire dataset are included with use of the subsets option. If by() is not specified,
command will be run on the entire dataset. varlist can contain both numeric and string variables.

� � �
Options �

clear specifies that it is okay to replace the data in memory, even though the current data have not
been saved to disk.

saving(filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the replicates.

618 statsby — Collect statistics for a command across a by list

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
in conjunction with saving() only when command takes a long time for each replication. This
will allow recovery of partial results should your computer crash. See [P] postfile.

total specifies that command be run on the entire dataset, in addition to the groups specified in the
by() option.

subsets specifies that command be run for each group defined by any combination of the variables
in the by() option.

� � �
Reporting �

nodots suppresses display of the replication dots. By default, one dot character is printed for each
by-group. A red ‘x’ is printed if command returns with an error or if one of the values in exp list
is missing.

noisily causes the output of command to be displayed for each by-group. This option implies the
nodots option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

� � �
Advanced �

basepop(exp) specifies a base population that statsby uses to evaluate the command and to set up
for collecting statistics. The default base population is the entire dataset, or the dataset specified
by any if or in conditions specified on the command.

One situation where basepop() is useful is collecting statistics over the panels of a panel dataset
by using an estimator that works for time series, but not panel data, for example,

. statsby, by(mypanels) basepop(mypanels==2): arima . . .

force suppresses the restriction that command not be a svy command. statsby does not perform
subpopulation estimation for survey data, so it should not be used with svy. statsby reports an
error when it encounters svy in command if the force option is not specified. This option is
seldom used, so use it only if you know what you are doing.

forcedrop forces statsby to drop all observations except those in each by-group before calling
command for the group. This allows statsby to work with user-written commands that completely
ignore if and in but do not return an error when either is specified. forcedrop is seldom used.

Remarks and examples

Remarks are presented under the following headings:

Collecting coefficients and standard errors
Collecting stored results
All subsets

statsby — Collect statistics for a command across a by list 619

Collecting coefficients and standard errors

Example 1

We begin with an example using auto2.dta. In this example, we want to collect the coefficients
from a regression in which we model the price of a car on its weight, length, and mpg. We want to
run this model for both domestic and foreign cars. We can do this easily by using statsby with the
extended expression b.

. use http://www.stata-press.com/data/r13/auto2
(1978 Automobile Data)

. statsby _b, by(foreign) verbose nodots: regress price weight length mpg

command: regress price weight length mpg
_b_weight: _b[weight]
_b_length: _b[length]

_b_mpg: _b[mpg]
_b_cons: _b[_cons]

by: foreign

. list

foreign _b_wei~t _b_length _b_mpg _b_cons

1. Domestic 6.767233 -109.9518 142.7663 2359.475
2. Foreign 4.784841 13.39052 -18.4072 -6497.49

If we were interested only in the coefficient of a particular variable, such as mpg, we would specify
that particular coefficient; see [U] 13.5 Accessing coefficients and standard errors.

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. statsby mpg=_b[mpg], by(foreign) nodots: regress price weight length mpg

command: regress price weight length mpg
mpg: _b[mpg]
by: foreign

. list

foreign mpg

1. Domestic 142.7663
2. Foreign -18.4072

The extended expression se indicates that we want standard errors.

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. statsby _se, by(foreign) verbose nodots: regress price weight length mpg

command: regress price weight length mpg
_se_weight: _se[weight]
_se_length: _se[length]

_se_mpg: _se[mpg]
_se_cons: _se[_cons]

by: foreign

620 statsby — Collect statistics for a command across a by list

. list

foreign _se_we~t _se_le~h _se_mpg _se_cons

1. Domestic 1.226326 39.48193 134.7221 7770.131
2. Foreign 1.670006 50.70229 59.37442 6337.952

Example 2

For multiple-equation estimations, we can use [eqno] b ([eqno] se) to get the coefficients
(standard errors) of a specific equation or use b (se) to get the coefficients (standard errors) of all
the equations. To demonstrate, we use heckman and a slightly different dataset.

. use http://www.stata-press.com/data/r13/statsby, clear

. statsby _b, by(group) verbose nodots: heckman price mpg, sel(trunk)

command: heckman price mpg, sel(trunk)
price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]
select_b_tr~k: [select]_b[trunk]
select_b_cons: [select]_b[_cons]
athrho_b_cons: [athrho]_b[_cons]
lnsigma_b_c~s: [lnsigma]_b[_cons]

by: group

. list, compress noobs

group price_b~g price_~s select_~k select~s athrho_~s lnsigm~s

1 -253.9293 11836.33 -.0122223 1.248342 -.31078 7.895351
2 -242.5759 11906.46 -.0488969 1.943078 -1.399222 8.000272
3 -172.6499 9813.357 -.0190373 1.452783 -.3282423 7.876059
4 -250.7318 10677.31 .0525965 .3502012 .6133645 7.96349

To collect the coefficients of the first equation only, we would specify [price] b instead of b.

. use http://www.stata-press.com/data/r13/statsby, clear

. statsby [price]_b, by(group) verbose nodots: heckman price mpg, sel(trunk)

command: heckman price mpg, sel(trunk)
price_b_mpg: [price]_b[mpg]
price_b_cons: [price]_b[_cons]

by: group

. list

group price_b~g price_~s

1. 1 -253.9293 11836.33
2. 2 -242.5759 11906.46
3. 3 -172.6499 9813.357
4. 4 -250.7318 10677.31

statsby — Collect statistics for a command across a by list 621

Technical note
If command fails on one or more groups, statsby will capture the error messages and ignore

those groups.

Collecting stored results

Many Stata commands store results of calculations; see [U] 13.6 Accessing results from Stata
commands. statsby can collect the stored results and expressions involving these stored results,
too. Expressions must be bound in parentheses.

Example 3

Suppose that we want to collect the mean and the median of price, as well as their ratios, and
we want to collect them for both domestic and foreign cars. We might type

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. statsby mean=r(mean) median=r(p50) ratio=(r(mean)/r(p50)), by(foreign) nodots:
> summarize price, detail

command: summarize price, detail
mean: r(mean)

median: r(p50)
ratio: r(mean)/r(p50)

by: foreign

. list

foreign mean median ratio

1. Domestic 6072.423 4782.5 1.269717
2. Foreign 6384.682 5759 1.108644

Technical note
In exp list, newvarname is not required. If no new variable name is specified, statsby names

the new variables stat 1, stat 2, and so forth.

All subsets

Example 4

When there are two or more variables in by(varlist), we can execute command for any combination,
or subset, of the variables in the by() option by specifying the subsets option.

622 statsby — Collect statistics for a command across a by list

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. statsby mean=r(mean) median=r(p50) n=r(N), by(foreign rep78) subsets nodots:
> summarize price, detail

command: summarize price, detail
mean: r(mean)

median: r(p50)
n: r(N)
by: foreign rep78

. list

foreign rep78 mean median n

1. Domestic Poor 4564.5 4564.5 2
2. Domestic Fair 5967.625 4638 8
3. Domestic Average 6607.074 4749 27
4. Domestic Good 5881.556 5705 9
5. Domestic Excellent 4204.5 4204.5 2

6. Domestic . 6179.25 4853 48
7. Foreign Average 4828.667 4296 3
8. Foreign Good 6261.444 6229 9
9. Foreign Excellent 6292.667 5719 9
10. Foreign . 6070.143 5719 21

11. . Poor 4564.5 4564.5 2
12. . Fair 5967.625 4638 8
13. . Average 6429.233 4741 30
14. . Good 6071.5 5751.5 18
15. . Excellent 5913 5397 11

16. . . 6165.257 5006.5 74

In the above dataset, observation 6 is for domestic cars, regardless of the repair record; observation
10 is for foreign cars, regardless of the repair record; observation 11 is for both foreign cars and
domestic cars given that the repair record is 1; and the last observation is for the entire dataset.

Technical note
To see the output from command for each group identified in the by() option, we can use the

noisily option.

statsby — Collect statistics for a command across a by list 623

. use http://www.stata-press.com/data/r13/auto2, clear
(1978 Automobile Data)

. statsby mean=r(mean) se=(r(sd)/sqrt(r(N))), by(foreign) noisily nodots:
> summarize price
statsby: First call to summarize with data as is:

. summarize price

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906

statsby legend:

command: summarize price
mean: r(mean)
se: r(sd)/sqrt(r(N))
by: foreign

Statsby groups

running (summarize price) on group 1

. summarize price

Variable Obs Mean Std. Dev. Min Max

price 52 6072.423 3097.104 3291 15906

running (summarize price) on group 2

. summarize price

Variable Obs Mean Std. Dev. Min Max

price 22 6384.682 2621.915 3748 12990

. list

foreign mean se

1. Domestic 6072.423 429.4911
2. Foreign 6384.682 558.9942

Acknowledgment
Speed improvements in statsby were based on code written by Michael Blasnik of M. Blasnik

& Associates.

References
Cox, N. J. 2010. Speaking Stata: The statsby strategy. Stata Journal 10: 143–151.

Hardin, J. W. 1996. dm42: Accrue statistics for a command across a by list. Stata Technical Bulletin 32: 5–9.
Reprinted in Stata Technical Bulletin Reprints, vol. 6, pp. 13–18. College Station, TX: Stata Press.

Newson, R. B. 1999a. dm65.1: Update to a program for saving a model fit as a dataset. Stata Technical Bulletin 58:
25. Reprinted in Stata Technical Bulletin Reprints, vol. 10, p. 7. College Station, TX: Stata Press.

. 1999b. dm65: A program for saving a model fit as a dataset. Stata Technical Bulletin 49: 2–5. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, pp. 19–23. College Station, TX: Stata Press.

. 2003. Confidence intervals and p-values for delivery to the end user. Stata Journal 3: 245–269.

http://www.stata-journal.com/sjpdf.html?articlenum=gr0045
http://www.stata.com/products/stb/journals/stb32.pdf
http://www.stata.com/products/stb/journals/stb58.pdf
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0043

624 statsby — Collect statistics for a command across a by list

Also see
[D] by — Repeat Stata command on subsets of the data

[D] collapse — Make dataset of summary statistics

[P] postfile — Post results in Stata dataset

[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] permute — Monte Carlo permutation tests

Title

sysuse — Use shipped dataset

Syntax Menu Description Options
Remarks and examples Stored results Also see

Syntax
Use example dataset installed with Stata

sysuse
[
"
]
filename

[
"
] [

, clear
]

List example Stata datasets installed with Stata

sysuse dir
[
, all

]
Menu

File > Example Datasets...

Description
sysuse filename loads the specified Stata-format dataset that was shipped with Stata or that is

stored along the ado-path. If filename is specified without a suffix, .dta is assumed.

sysuse dir lists the names of the datasets shipped with Stata plus any other datasets stored along
the ado-path.

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not

been saved to disk.

all specifies that all datasets be listed, even those that include an underscore () in their name. By
default, such datasets are not listed.

Remarks and examples
Remarks are presented under the following headings:

Typical use
A note concerning shipped datasets
Using user-installed datasets
How sysuse works

625

626 sysuse — Use shipped dataset

Typical use

A few datasets are included with Stata and are stored in the system directories. These datasets are
often used in the help files to demonstrate a certain feature.

Typing

. sysuse dir

lists the names of those datasets. One such dataset is lifeexp.dta. If you simply type use lifeexp,
you will see

. use lifeexp
file lifeexp.dta not found
r(601);

Type sysuse, however, and the dataset is loaded:

. sysuse lifeexp
(Life expectancy, 1998)

The datasets shipped with Stata are stored in different folders (directories) so that they do not become
confused with your datasets.

A note concerning shipped datasets

Not all the datasets used in the manuals are shipped with Stata. To obtain the other datasets, see
[D] webuse.

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset
is real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real, but that they
were created so long ago that information about their original source has been lost. Treat such datasets
as if they were fictional.

Using user-installed datasets

Any datasets you have installed using net or ssc (see [R] net and [R] ssc) can be listed by typing
sysuse dir and can be loaded using sysuse filename.

Any datasets you store in your personal ado folder (see [P] sysdir) are also listed by sysuse dir
and can be loaded using sysuse filename.

How sysuse works

sysuse simply looks across the ado-path for .dta files; see [P] sysdir.

By default, sysuse dir does not list a dataset that contains an underscore () in its name. By
convention, such datasets are used by ado-files to achieve their ends and probably are not of interest
to you. If you type sysuse dir, all all datasets are listed.

Stored results
sysuse dir stores in the macro r(files) the list of dataset names.

sysuse filename stores in the macro r(fn) the filename, including the full path specification.

sysuse — Use shipped dataset 627

Also see
[D] webuse — Use dataset from Stata website

[D] use — Load Stata dataset

[P] findfile — Find file in path

[P] sysdir — Query and set system directories

[R] net — Install and manage user-written additions from the Internet

[R] ssc — Install and uninstall packages from SSC

Title

type — Display contents of a file

Syntax Description Options Remarks and examples Also see

Syntax
type

[
"
]

filename
[
"
] [

, options
]

Note: Double quotes must be used to enclose filename if the name contains blanks.

options Description

asis show file as is; default is to display files with suffix .smcl or .sthlp as SMCL
smcl display file as SMCL; default for files with suffix .smcl or .sthlp
showtabs display tabs as <T> rather than being expanded
starbang list lines in the file that begin with “*!”
lines(#) list first # lines

Description

type lists the contents of a file stored on disk. This command is similar to the Windows type
command and the Unix more(1) or pg(1) commands.

In Stata for Mac and Stata for Unix, cat is a synonym for type.

Options
asis specifies that the file be shown exactly as it is. The default is to display files with the suffix

.smcl or .sthlp as SMCL, meaning that the SMCL directives are interpreted and properly rendered.
Thus type can be used to look at files created by the log using command.

smcl specifies that the file be displayed as SMCL, meaning that the SMCL directives are interpreted
and properly rendered. This is the default for files with the suffix .smcl or .sthlp.

showtabs requests that any tabs be displayed as <T> rather than being expanded.

starbang lists only the lines in the specified file that begin with the characters “*!”. Such comment
lines are typically used to indicate the version number of ado-files, class files, etc. starbang may
not be used with SMCL files.

lines(#) lists the first # lines of a file. lines() is ignored if the file is displayed as SMCL or if #
is less than or equal to 0.

628

type — Display contents of a file 629

Remarks and examples

Example 1

We have raw data containing the level of Lake Victoria Nyanza and the number of sunspots during
the years 1902–1921 stored in a file called sunspots.raw. We want to read this dataset into Stata
by using infile, but we cannot remember the order in which we entered the variables. We can find
out by using the type command:

. type sunspots.raw
1902 -10 5 1903 13 24 1904 18 42
1905 15 63 1906 29 54 1907 21 62
1908 10 49 1909 8 44 1910 1 19
1911 -7 6 1912 -11 4 1913 -3 1
1914 -2 10 1915 4 47 1916 15 57
1917 35 104 1918 27 81 1919 8 64
1920 3 38 1921 -5 25

Looking at this output, we now remember that the variables are entered year, level, and number of
sunspots. We can read this dataset by typing infile year level spots using sunspots.

If we wanted to see the tabs in sunspots.raw, we could type

. type sunspots.raw, showtabs
1902 -10 5<T>1903 13 24<T>1904 18 42
1905 15 63<T>1906 29 54<T>1907 21 62
1908 10 49<T>1909 8 44<T>1910 1 19
1911 -7 6<T>1912 -11 4<T>1913 -3 1
1914 -2 10<T>1915 4 47<T>1916 15 57
1917 35 104<T>1918 27 81<T>1919 8 64
1920 3 38<T>1921 -5 25

Example 2

In a previous Stata session, we typed log using myres and created myres.smcl, containing our
results. We can use type to list the log:

630 type — Display contents of a file

. type myres.smcl

name: <unnamed>
log: /work/peb/dof/myres.smcl

log type: smcl
opened on: 20 Jan 2013, 15:37:48

. use lbw
(Hosmer & Lemeshow data)

. logistic low age lwt i.race smoke ptl ht ui

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416
(output omitted)

. estat gof
Logistic model for low, goodness-of-fit test

(output omitted)
. log close

name: <unnamed>
log: /work/peb/dof/myres.smcl

log type: smcl
closed on: 20 Jan 2013, 15:38:30

We could also use view to look at the log; see [R] view.

Also see
[D] cd — Change directory

[D] copy — Copy file from disk or URL

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[P] viewsource — View source code

[R] translate — Print and translate logs

[R] view — View files and logs

[U] 11.6 Filenaming conventions

Title

use — Load Stata dataset

Syntax Menu Description Options Remarks and examples Also see

Syntax

Load Stata-format dataset

use filename
[
, clear nolabel

]
Load subset of Stata-format dataset

use
[

varlist
] [

if
] [

in
]
using filename

[
, clear nolabel

]

Menu
File > Open...

Description

use loads into memory a Stata-format dataset previously saved by save. If filename is specified
without an extension, .dta is assumed. If your filename contains embedded spaces, remember to
enclose it in double quotes.

In the second syntax for use, a subset of the data may be read.

Options
clear specifies that it is okay to replace the data in memory, even though the current data have not

been saved to disk.

nolabel prevents value labels in the saved data from being loaded. It is unlikely that you will ever
want to specify this option.

Remarks and examples

Example 1

We have no data in memory. In a previous session, we issued the command save hiway to save
the Minnesota Highway Data that we had been analyzing. We retrieve it now:

. use hiway
(Minnesota Highway Data, 1973)

631

632 use — Load Stata dataset

Stata loads the data into memory and shows us that the dataset is labeled “Minnesota Highway Data,
1973”.

Example 2

We continue to work with our hiway data and find an error in our data that needs correcting:

. replace spdlimit=70 in 1
(1 real change made)

We remember that we need to forward some information from another dataset to a colleague. We
use that other dataset:

. use accident
no; data in memory would be lost
r(4);

Stata refuses to load the data because we have not saved the hiway data since we changed it.

. save hiway, replace
file hiway.dta saved

. use accident
(Minnesota Accident Data)

After we save our hiway data, Stata lets us load our accident dataset. If we had not cared whether
our changed hiway dataset were saved, we could have typed use accident, clear to tell Stata to
load the accident data without saving the changed dataset in memory.

Technical note
In example 2, you saved a revised hiway.dta dataset, which you forward to your colleague. Your

colleague issues the command

. use hiway

and gets the message

file hiway.dta not Stata format
r(610);

Your colleague is using a version of Stata older than Stata 13. If your colleague is using Stata 11 or
12, you can save the dataset in Stata 11 or 12 format by using the saveold command; see [D] save.

Newer versions of Stata can always read datasets created by older versions of Stata. Stata/MP and
Stata/SE can read datasets created by Stata/IC. Stata/IC can read datasets created by Stata/MP and
Stata/SE if those datasets conform to Stata/IC’s limits; see [R] limits.

use — Load Stata dataset 633

Example 3

If you are using a dataset that is too large for the amount of memory on your computer, you could
load only some of the variables:

. use ln_wage grade age tenure race using
> http://www.stata-press.com/data/r13/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. describe

Contains data from http://www.stata-press.com/data/r13/nlswork.dta
obs: 28,534 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 5 7 Dec 2010 17:02
size: 313,874

storage display value
variable name type format label variable label

age byte %8.0g age in current year
race byte %8.0g 1=white, 2=black, 3=other
grade byte %8.0g current grade completed
tenure float %9.0g job tenure, in years
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by:

Stata successfully loaded the five variables.

Example 4

You are new to Stata and want to try working with a Stata dataset that was used in example 1 of
[XT] xtlogit. You load the dataset:

. use http://www.stata-press.com/data/r13/union
(NLS Women 14-24 in 1968)

The dataset is successfully loaded, but it would have been shorter to type
. webuse union
(NLS Women 14-24 in 1968)

webuse is a synonym for use http://www.stata-press.com/data/r13/; see [D] webuse.

Also see
[D] compress — Compress data in memory

[D] datasignature — Determine whether data have changed

[D] import — Overview of importing data into Stata

[D] save — Save Stata dataset

[D] sysuse — Use shipped dataset

[D] webuse — Use dataset from Stata website

[U] 11.6 Filenaming conventions
[U] 21 Entering and importing data

Title

varmanage — Manage variable labels, formats, and other properties

Syntax Menu Description Remarks and examples Also see

Syntax
varmanage

Menu
Data > Variables Manager

Description
varmanage opens the Variables Manager. The Variables Manager allows for the sorting and filtering

of variables for the purpose of setting properties on one or more variables at a time. Variable properties
include the name, label, storage type, format, value label, and notes. The Variables Manager also can
be used to create varlists for the Command window.

Remarks and examples

A tutorial discussion of varmanage can be found in [GS] 7 Using the Variables Manager (GSM,
GSU, or GSW).

Also see
[D] drop — Drop variables or observations

[D] edit — Browse or edit data with Data Editor

[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] notes — Place notes in data

[D] rename — Rename variable

634

Title

webuse — Use dataset from Stata website

Syntax Menu Description Option
Remarks and examples Also see

Syntax
Load dataset over the web

webuse
[
"
]
filename

[
"
] [

, clear
]

Report URL from which datasets will be obtained

webuse query

Specify URL from which dataset will be obtained

webuse set
[
http://

]
url
[
/
]

Reset URL to default

webuse set

Menu
File > Example Datasets...

Description
webuse filename loads the specified dataset, obtaining it over the web. By default, datasets are

obtained from http://www.stata-press.com/data/r13/. If filename is specified without a suffix, .dta is
assumed.

webuse query reports the URL from which datasets will be obtained.

webuse set allows you to specify the URL to be used as the source for datasets. webuse set
without arguments resets the source to http://www.stata-press.com/data/r13/.

Option
clear specifies that it is okay to replace the data in memory, even though the current data have not

been saved to disk.

Remarks and examples

Remarks are presented under the following headings:

Typical use
A note concerning example datasets
Redirecting the source

635

636 webuse — Use dataset from Stata website

Typical use

In the examples in the Stata manuals, we see things such as
. use http://www.stata-press.com/data/r13/lifeexp

The above is used to load—in this instance—the dataset lifeexp.dta. You can type that, and it
will work:

. use http://www.stata-press.com/data/r13/lifeexp
(Life expectancy, 1998)

Or you may simply type
. webuse lifeexp
(Life expectancy, 1998)

webuse is a synonym for use http://www.stata-press.com/data/r13/.

A note concerning example datasets

The datasets used to demonstrate Stata are often fictional. If you want to know whether a dataset
is real or fictional, and its history, load the dataset and type

. notes

A few datasets have no notes. This means that the datasets are believed to be real but that they were
created so long ago that information about their original source has been lost. Treat such datasets as
if they were fictional.

Redirecting the source

By default, webuse obtains datasets from http://www.stata-press.com/data/r13/, but you can change
that. Say that the site http://www.zzz.edu/users/s̃ue/ has several datasets that you wish to explore. You
can type

. webuse set http://www.zzz.edu/users/~sue

webuse will become a synonym for use http://www.zzz.edu/users/~sue/ for the rest of the
session or until you give another webuse command.

When you set the URL, you may omit the trailing slash (as we did above), or you may include it:
. webuse set http://www.zzz.edu/users/~sue/

You may also omit http://:
. webuse set www.zzz.edu/users/~sue

If you type webuse set without arguments, the URL will be reset to the default,
http://www.stata-press.com/data/r13/:

. webuse set

Also see
[D] sysuse — Use shipped dataset

[D] use — Load Stata dataset

[U] 1.2.2 Example datasets

Title

xmlsave — Export or import dataset in XML format

Syntax Menu Description Options for xmlsave
Options for xmluse Remarks and examples Also see

Syntax
Export dataset in memory to XML format

xmlsave filename
[

if
] [

in
] [

, xmlsave options
]

Export subset of dataset in memory to XML format

xmlsave varlist using filename
[

if
] [

in
] [

, xmlsave options
]

Import XML-format dataset

xmluse filename
[
, xmluse options

]
xmlsave options Description

Main

doctype(dta) save XML file by using Stata’s .dta format
doctype(excel) save XML file by using Excel XML format
dtd include Stata DTD in XML file
legible format XML to be more legible
replace overwrite existing filename

xmluse options Description

doctype(dta) load XML file by using Stata’s .dta format
doctype(excel) load XML file by using Excel XML format
sheet("sheetname") Excel worksheet to load
cells(upper-left:lower-right) Excel cell range to load
datestring import Excel dates as strings
allstring import all Excel data as strings
firstrow treat first row of Excel data as variable names
missing treat inconsistent Excel types as missing
nocompress do not compress Excel data
clear replace data in memory

637

638 xmlsave — Export or import dataset in XML format

Menu

xmlsave

File > Export > XML data

xmluse

File > Import > XML data

Description

xmlsave and xmluse allow datasets to be exported or imported in XML file formats for Stata’s
.dta and Microsoft Excel’s SpreadsheetML format. XML files are advantageous because they are
structured text files that are highly portable between applications that understand XML.

Stata can directly import files in Microsoft Excel .xls or .xlsx format. If you have files in that
format or you wish to export files to that format, see [D] import excel.

xmlsave exports the data in memory in the dta XML format by default. To export the data, type

. xmlsave filename

although sometimes you will want to explicitly specify which document type definition (DTD) to use
by typing

. xmlsave filename, doctype(dta)

xmluse can read either an Excel-format XML or a Stata-format XML file into Stata. You type

. xmluse filename

Stata will read into memory the XML file filename.xml, containing the data after determining whether
the file is of document type dta or excel. As with the xmlsave command, the document type can
also be explicitly specified with the doctype() option.

. xmluse filename, doctype(dta)

It never hurts to specify the document type; it is actually recommended because there is no guarantee
that Stata will be able to determine the document type from the content of the XML file. Whenever
the doctype() option is omitted, a note will be displayed that identifies the document type Stata
used to load the dataset.

If filename is specified without an extension, .xml is assumed.

xmlsave cannot save strLs.

Options for xmlsave

� � �
Main �

doctype(dta | excel) specifies the DTD to use when exporting the dataset.

doctype(dta), the default, specifies that an XML file will be exported using Stata’s .dta format
(see [P] file formats .dta). This is analogous to Stata’s binary dta format for datasets. All data
that can normally be represented in a normal dta file will be represented by this document type.

xmlsave — Export or import dataset in XML format 639

doctype(excel) specifies that an XML file will be exported using Microsoft’s SpreadsheetML
DTD. SpreadsheetML is the term given by Microsoft to the Excel XML format. Specifying this
document type produces a generic spreadsheet with variable names as the first row, followed by
data. It can be imported by any version of Microsoft Excel that supports Microsoft’s SpreadsheetML
format.

dtd when combined with doctype(dta) embeds the necessary DTD into the XML file so that a
validating parser of another application can verify the dta XML format. This option is rarely used,
however, because it increases file size with information that is purely optional.

legible adds indents and other optional formatting to the XML file, making it more legible for a person
to read. This extra formatting, however, is unnecessary and in larger datasets can significantly
increase the file size.

replace permits xmlsave to overwrite existing filename.xml.

Options for xmluse

doctype(dta | excel) specifies the DTD to use when loading data from filename.xml. Although it
is optional, use of doctype() is encouraged. If this option is omitted with xmluse, the document
type of filename.xml will be determined automatically. When this occurs, a note will display the
document type used to translate filename.xml. This automatic determination of document type is
not guaranteed, and the use of this option is encouraged to prevent ambiguity between various
XML formats. Specifying the document type explicitly also improves speed, as the data are only
passed over once to load, instead of twice to determine the document type. In larger datasets, this
advantage can be noticeable.

doctype(dta) specifies that an XML file will be loaded using Stata’s dta format. This document
type follows closely Stata’s binary .dta format (see [P] file formats .dta).

doctype(excel) specifies that an XML file will be loaded using Microsoft’s SpreadsheetML DTD.
SpreadsheetML is the term given by Microsoft to the Excel XML format.

sheet("sheetname") imports the worksheet named sheetname. Excel files can contain multiple
worksheets within one document, so using the sheet() option specifies which of these to load.
The default is to import the first worksheet to occur within filename.xml.

cells(upper-left:lower-right) specifies a cell range within an Excel worksheet to load. The default
range is the entire range of the worksheet, even if portions are empty. Often the use of cells()
is necessary because data are offset within a spreadsheet, or only some of the data need to be
loaded. Cell-range notation follows the letter-for-column and number-for-row convention that is
popular within all spreadsheet applications. The following are valid examples:

. xmluse filename, doctype(excel) cells(A1:D100)

. xmluse filename, doctype(excel) cells(C23:AA100)

datestring forces all Excel SpreadsheetML date formats to be imported as strings to retain time
information that would otherwise be lost if automatically converted to Stata’s date format. With
this option, time information can be parsed from the string after loading it.

allstring forces Stata to import all Excel SpreadsheetML data as string data. Although data type
information is dictated by SpreadsheetML, there are no constraints to keep types consistent within
columns. When such inconsistent use of data types occurs in SpreadsheetML, the only way to
resolve inconsistencies is to import data as string data.

640 xmlsave — Export or import dataset in XML format

firstrow specifies that the first row of data in an Excel worksheet consist of variable names. The
default behavior is to generate generic names. If any name is not a valid Stata variable name, a
generic name will be substituted in its place.

missing forces any inconsistent data types within SpreadsheetML columns to be imported as missing
data. This can be necessary for various reasons but often will occur when a formula for a particular
cell results in an error, thus inserting a cell of type ERROR into a column that was predominantly
of a NUMERIC type.

nocompress specifies that data not be compressed after loading from an Excel SpreadsheetML file.
Because data type information in SpreadsheetML can be ambiguous, Stata initially imports with
broad data types and, after all data are loaded, performs a compress (see [D] compress) to reduce
data types to a more appropriate size. The following table shows the data type conversion used
before compression and the data types that would result from using nocompress:

SpreadsheetML type Initial Stata type

String str2045
Number double
Boolean double
DateTime double
Error str2045

clear clears data in memory before loading from filename.xml.

Remarks and examples
XML stands for Extensible Markup Language and is a highly adaptable text format derived from

SGML. The World Wide Web Consortium is responsible for maintaining the XML language standards.
See http://www.w3.org/XML/ for information regarding the XML language, as well as a thorough
definition of its syntax.

The document type dta, used by both xmlsave and xmluse, represents Stata’s own DTD for
representing Stata .dta files in XML. Stata reserves the right to modify the specification for this DTD
at any time, although this is unlikely to be a frequent event.

The document type excel, used by both xmlsave and xmluse, corresponds to the DTD developed
by Microsoft for use in modern versions of Microsoft Excel spreadsheets. This product may incorporate
intellectual property owned by Microsoft Corporation. The terms and conditions under which Microsoft
is licensing such intellectual property may be found at

http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx

For more information about Microsoft Office and XML, see http://msdn.microsoft.com/en-us/library/
aa140066%28office.10%29.aspx.

Technical note

When you import data from Excel to Stata, a common hurdle is handling Excel’s use of inconsistent
data types within columns. Numbers, strings, and other types can be mixed freely within a column
of Excel data. Stata, however, requires that all data in a variable be of one consistent type. This can
cause problems when a column of data from Excel is imported into Stata and the data types vary
across rows.

http://www.w3.org/XML
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx
http://msdn.microsoft.com/en-us/library/aa140066%28office.10%29.aspx
http://msdn.microsoft.com/en-us/library/aa140066%28office.10%29.aspx

xmlsave — Export or import dataset in XML format 641

By default, xmluse attempts to import Excel data by using the data type information stored in
the XML file. If an error due to data type inconsistencies is encountered, you can use the options
firstrow, missing, and cells() to isolate the problem while retaining as much of the data-type
information as possible.

However, identifying the problem and determining which option to apply can sometimes be difficult.
Often you may not care in what format the data are imported into Stata, as long as you can import
them. The quick solution for these situations is to use the allstring option to guarantee that all the
data are imported as strings, assuming that the XML file itself was valid. Often converting the data
back into numeric form after they are imported into Stata is easier, given Stata’s vast data management
commands.

Example 1: Saving XML files

To export the current Stata dataset to a file, auto.xml, type
. xmlsave auto

To overwrite an existing XML dataset with a new file containing the variables make, mpg, and
weight, type

. xmlsave make mpg weight using auto, replace

To export the dataset to an XML file for use with Microsoft Excel, type
. xmlsave auto, doctype(excel) replace

Example 2: Using XML files

Assuming that we have a file named auto.xml exported using the doctype(dta) option of
xmlsave, we can read in this dataset with the command

. xmluse auto, doctype(dta) clear

If the file was exported from Microsoft Excel to a file called auto.xml that contained the worksheet
Rollover Data, with the first row representing column headers (or variable names), we could import
the worksheet by typing

. xmluse auto, doctype(excel) sheet("Rollover Data") firstrow clear

Continuing with the previous example: if we wanted just the first column of data in that worksheet,
and we knew that there were only 75 rows, including one for the variable name, we could have typed

. xmluse auto, doc(excel) sheet("Rollover Data") cells(A1:A75) first clear

Also see
[D] compress — Compress data in memory

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

[P] file formats .dta — Description of .dta file format

Title

xpose — Interchange observations and variables

Syntax Menu Description Options
Remarks and examples Methods and formulas References Also see

Syntax
xpose , clear

[
options

]
options Description

∗clear reminder that untransposed data will be lost if not previously saved
format use largest numeric display format from untransposed data
format(% fmt) apply specified format to all variables in transposed data
varname add variable varname containing original variable names
promote use the most compact data type that preserves numeric accuracy

∗ clear is required.

Menu
Data > Create or change data > Other variable-transformation commands > Interchange observations and variables

Description
xpose transposes the data, changing variables into observations and observations into variables.

All new variables—that is, those created by the transposition—are made the default storage type.
Thus any original variables that were strings will result in observations containing missing values. (If
you transpose the data twice, you will lose the contents of string variables.)

Options
clear is required and is supposed to remind you that the untransposed data will be lost (unless you

have saved the data previously).

format specifies that the largest numeric display format from your untransposed data be applied to
the transposed data.

format(% fmt) specifies that the specified numeric display format be applied to all variables in the
transposed data.

varname adds the new variable varname to the transposed data containing the original variable
names. Also, with or without the varname option, if the variable varname exists in the dataset
before transposition, those names will be used to name the variables after transposition. Thus
transposing the data twice will (almost) yield the original dataset.

promote specifies that the transposed data use the most compact numeric data type that preserves
the original data accuracy.

642

xpose — Interchange observations and variables 643

If your data contain any variables of type double, all variables in the transposed data will be of
type double.

If variables of type float are present, but there are no variables of type double or long, the
transposed variables will be of type float. If variables of type long are present, but there are no
variables of type double or float, the transposed variables will be of type long.

Remarks and examples

Example 1

We have a dataset on something by county and year that contains

. use http://www.stata-press.com/data/r13/xposexmpl

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

Each observation reflects a county. To change this dataset so that each observation reflects a year,
type

. xpose, clear varname

. list

v1 v2 v3 _varname

1. 1 2 3 county
2. 57.2 12.5 18 year1
3. 11.3 8.2 14.2 year2
4. 19.5 28.9 33.2 year3

We would now have to drop the first observation (corresponding to the previous county variable) to
make each observation correspond to one year. Had we not specified the varname option, the variable
varname would not have been created. The varname variable is useful, however, if we want to

transpose the dataset back to its original form.

. xpose, clear

. list

county year1 year2 year3

1. 1 57.2 11.3 19.5
2. 2 12.5 8.2 28.9
3. 3 18 14.2 33.2

644 xpose — Interchange observations and variables

Methods and formulas
See Hamilton (2013, chap. 2) for an introduction to Stata’s data management features.

References
Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Hamilton, L. C. 2013. Statistics with Stata: Updated for Version 12. 8th ed. Boston: Brooks/Cole.

Also see
[D] reshape — Convert data from wide to long form and vice versa

[D] stack — Stack data

http://www.stata-press.com/books/isp.html
http://www.stata.com/bookstore/statistics-with-stata/

Title

zipfile — Compress and uncompress files and directories in zip archive format

Syntax Description Option for zipfile Option for unzipfile
Remarks and examples

Syntax
Add files or directories to a zip file

zipfile file | directory
[

file | directory
]
. . . , saving(zipfilename

[
, replace

]
)

Extract files or directories from a zip file

unzipfile zipfilename
[
, replace

]
Note: Double quotes must be used to enclose file and directory if the name or path contains blanks.

file and directory may also contain the ? and * wildcard characters.

Description
zipfile compresses files and directories into a zip file that is compatible with WinZip, PKZIP

2.04g, and other applications that use the zip archive format.

unzipfile extracts files and directories from a file in zip archive format into the current directory.
unzipfile can open zip files created by WinZip, PKZIP 2.04g, and other applications that use the
zip archive format.

Option for zipfile
saving(zipfilename

[
, replace

]
) is required. It specifies the filename to be created or replaced. If

zipfilename is specified without an extension, .zip will be assumed.

Option for unzipfile
replace overwrites any file or directory in the current directory with the files or directories in the

zip file that have the same name.

Remarks and examples

Example 1: Creating a zip file

Suppose that we would like to zip all the .dta files in the current directory into the file
myfiles.zip. We would type

. zipfile *.dta, saving(myfiles)

645

646 zipfile — Compress and uncompress files and directories in zip archive format

But we notice that we did not want the files in the current directory; instead, we wanted the files
in the dta, abc, and eps subdirectories. We can easily zip all the .dta files from all three-character
subdirectories of the current directory and overwrite the file myfiles.zip if it exists by typing

. zipfile ???/*.dta, saving(myfiles, replace)

Example 2: Unzipping a zip file

Say, for example, we send myfiles.zip to a colleague, who now wants to unzip the file in the
current directory, overwriting any files or directories that have the same name as the files or directories
in the zip file. The colleague should type

. unzipfile myfiles, replace

Subject and author index
This is the subject and author index for the Data
Management Reference Manual. Readers interested in
topics other than data management should see the
combined subject index (and the combined author index)
in the Glossary and Index.

Symbols
*, clear subcommand, [D] clear

A
.a, .b, . . . , .z, see missing values
abbrev() function, [D] functions
Abramowitz, M., [D] functions
abs() function, [D] functions
absolute value function, see abs() function
Access, Microsoft, reading data from, [D] odbc
acos() function, [D] functions
acosh() function, [D] functions
addition across

observations, [D] egen
variables, [D] egen

ado, clear subcommand, [D] clear
aggregate

functions, [D] egen
statistics, dataset of, [D] collapse

Ahrens, J. H., [D] functions
all, clear subcommand, [D] clear
alphabetizing

observations, [D] gsort, [D] sort
variable names, [D] order
variables, [D] sort

Andrews, D. F., [D] egen
anycount(), egen function, [D] egen
anymatch(), egen function, [D] egen
anyvalue(), egen function, [D] egen
append command, [D] append
append variable, [D] append

appending data, [D] append
arccosine, arcsine, and arctangent functions,

[D] functions
asin() function, [D] functions
asinh() function, [D] functions
assert command, [D] assert
atan() function, [D] functions
atan2() function, [D] functions
atanh() function, [D] functions
Atkinson, A. C., [D] functions
autocode() function, [D] functions
averages, see means

B
b() function, [D] functions

Babu, A. J. G., [D] functions
Balakrishnan, N., [D] functions
Baum, C. F., [D] cross, [D] fillin, [D] joinby,

[D] reshape, [D] separate, [D] stack, [D] xpose
bcal

check command, [D] bcal
create command, [D] bcal
describe command, [D] bcal
dir command, [D] bcal
load command, [D] bcal

Best, D. J., [D] functions
beta

density,
central, [D] functions
noncentral, [D] functions

distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions
inverse cumulative noncentral, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

function
complement to incomplete, [D] functions
incomplete, [D] functions

betaden() function, [D] functions
Bickel, P. J., [D] egen
binomial

distribution,
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

probability mass function, [D] functions
binomial() function, [D] functions
binomialp() function, [D] functions
binomialtail() function, [D] functions
binormal() function, [D] functions
bivariate normal function, [D] functions
blanks, removing from strings, [D] functions
Blasnik, M., [D] clonevar, [D] split, [D] statsby
bofd() function, [D] datetime business calendars,

[D] functions
Brady, T., [D] edit
Bray, T. A., [D] functions
browse command, [D] edit
Buis, M. L., [D] functions
business calendars, [D] bcal, [D] datetime business

calendars, [D] datetime business calendars
creation

business dates, see business calendars
by varlist: prefix, [D] by
by-groups, [D] by, [D] statsby
bysort varlist: prefix, [D] by
byte, [D] data types
byteorder() function, [D] functions

647

648 Subject and author index

C
c() pseudofunction, [D] functions
c(checksum) c-class value, [D] checksum
c(dp) c-class value, [D] format
c(max memory) c-class value, [D] memory
c(maxvar) c-class value, [D] memory
c(min memory) c-class value, [D] memory
c(niceness) c-class value, [D] memory
c(segmentsize) c-class value, [D] memory
c(type) c-class value, [D] generate
calendars, [D] bcal, [D] datetime business calendars,

[D] datetime business calendars creation
caller() pseudofunction, [D] functions

Cappellari, L., [D] corr2data, [D] egen
casewise deletion, [D] egen
cat command, [D] type
categorical data, [D] egen, [D] recode
cd command, [D] cd
Cdhms() function, [D] datetime, [D] functions
ceil() function, [D] functions
ceiling function, [D] functions
centiles, see percentiles
certifying data, [D] assert, [D] checksum, [D] count,

[D] datasignature, [D] inspect
cf command, [D] cf
changeeol command, [D] changeeol
changing

data, see editing data
directories, [D] cd

char() function, [D] functions
character

data, see string variables
variables, [D] infile (free format)

chdir command, [D] cd
check,

bcal subcommand, [D] bcal
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9

checking data, [D] assert
checkpoint, [D] snapshot
checksum command, [D] checksum
checksum, set subcommand, [D] checksum
checksums of data, [D] checksum, [D] datasignature
chi2() function, [D] functions
chi2den() function, [D] functions
chi2tail() function, [D] functions
chi-squared

density, [D] functions
distribution,

cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions
inverse cumulative noncentral, [D] functions
inverse reverse cumulative, [D] functions
inverse reverse cumulative noncentral,

[D] functions
noncentral, [D] functions

chi-squared distribution, continued
reverse cumulative, [D] functions
reverse cumulative noncentral, [D] functions

noncentrality parameter, [D] functions
Chms() function, [D] datetime, [D] functions
cholesky() function, [D] functions
chop() function, [D] functions
Clayton, D. G., [D] egen
clean,

icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9

clear

* command, [D] clear
ado command, [D] clear
all command, [D] clear
command, [D] clear
mata command, [D] clear
matrix command, [D] clear
programs command, [D] clear
results command, [D] clear

clear, datasignature subcommand,
[D] datasignature

clearing memory, [D] clear
clip() function, [D] functions
Clock() function, [D] datetime, [D] datetime

translation, [D] functions
clock() function, [D] datetime, [D] datetime

translation, [D] functions
cloglog() function, [D] functions
clonevar command, [D] clonevar
clusters, duplicating, [D] expandcl
Cmdyhms() function, [D] datetime, [D] functions
codebook command, [D] codebook
Cofc() function, [D] datetime, [D] functions
cofC() function, [D] datetime, [D] functions
Cofd() function, [D] datetime, [D] functions
cofd() function, [D] datetime, [D] functions
collapse command, [D] collapse
collect statistics, [D] statsby
colnumb() function, [D] functions
colsof() function, [D] functions
comb() function, [D] functions
combinatorials, calculating, [D] functions
combining datasets, [D] append, [D] cross, [D] joinby,

[D] merge
commands, repeating automatically, [D] by
commas, reading data separated by, [D] import

delimited, [D] infile (fixed format), [D] infile
(free format)

comments with data, [D] notes
compare command, [D] compare
comparing two

files, [D] cf, [D] checksum
variables, [D] compare

compress command, [D] compress
compress files, [D] zipfile
concat(), egen function, [D] egen

Subject and author index 649

cond() function, [D] functions
confirm, datasignature subcommand,

[D] datasignature
contents of data, [D] codebook, [D] describe, [D] ds,

[D] labelbook
contract command, [D] contract
conversion, file, [D] changeeol, [D] filefilter
copy and paste, [D] edit
copy command, [D] copy
copy, label subcommand, [D] label
copying variables, [D] clonevar, [D] edit
corr() function, [D] functions
corr2data command, [D] corr2data
correcting data, see editing data
correlation, data generation, [D] corr2data,

[D] drawnorm
cos() function, [D] functions
cosh() function, [D] functions
cosine function, [D] functions
count command, [D] count
count(), egen function, [D] egen
counts, making dataset of, [D] collapse
covariate class, [D] duplicates
Cox, N. J., [D] by, [D] clonevar, [D] codebook,

[D] contract, [D] count, [D] datetime,
[D] describe, [D] destring, [D] drop, [D] ds,
[D] duplicates, [D] egen, [D] expand, [D] fillin,
[D] format, [D] functions, [D] lookfor,
[D] missing values, [D] rename, [D] reshape,
[D] sample, [D] separate, [D] split, [D] statsby

create, bcal subcommand, [D] bcal
cross command, [D] cross
Crow, K., [D] import excel
.csv filename suffix, [D] import delimited
cumulative distribution functions, [D] functions
cut(), egen function, [D] egen

D
data,

appending, see appending data
categorical, see categorical data
certifying, see certifying data
checksums of, see checksums of data
combining, see combining datasets
contents of, see contents of data
displaying, see displaying data
documenting, see documenting data
editing, see editing data
entering, see importing data, see inputting data

interactively
exporting, see exporting data
extended missing values, see missing values
generating, see generating data
importing, see importing data
inputting, see importing data, see inputting data

interactively

data, continued
labeling, see labeling data
large, dealing with, see memory
listing, see listing data
loading, see importing data, see inputting data

interactively, see using data
missing values, see missing values
range of, see range of data
reading, see importing data, see loading data
recoding, see recoding data
rectangularizing, see rectangularize dataset
reordering, see reordering data
reorganizing, see reorganizing data
restoring, see restoring data
sampling, see sampling
saving, see exporting data, see saving data
stacking, see stacking data
strings, see string variables
summarizing, see summarizing data
time-series, see time-series analysis
transposing, see transposing data
verifying, see certifying data

Data Browser, see Data Editor
Data Editor, [D] edit

copy and paste, [D] edit
data entry, see importing data, see inputting data

interactively
data signature, [D] datasignature
data transfer, see exporting data, see importing data
data types, [D] data types
data, label subcommand, [D] label
database, reading data from, [D] odbc
dataset,

adding notes to, [D] notes
comparing, [D] cf, [D] checksum
creating, [D] corr2data, [D] drawnorm
loading, see importing data, see inputting data

interactively, see using data
rectangularize, [D] fillin
saving, see exporting data, see saving data

dataset labels, [D] label, [D] label language, [D] notes
determining, [D] codebook, [D] describe
managing, [D] varmanage

datasignature

clear command, [D] datasignature
command, [D] datasignature
confirm command, [D] datasignature
report command, [D] datasignature
set command, [D] datasignature

date
and time stamp, [D] describe
functions, [D] datetime, [D] datetime translation,

[D] functions
date() function, [D] datetime, [D] datetime

translation, [D] functions

650 Subject and author index

dates and times, [D] datetime, [D] datetime business
calendars, [D] datetime business calendars
creation, [D] datetime display formats,
[D] datetime translation

dates,
business, see business calendars
Excel, [D] datetime
OpenOffice, [D] datetime
R, [D] datetime
SAS, [D] datetime
SPSS, [D] datetime

datetime, [D] datetime, [D] datetime business
calendars, [D] datetime business calendars
creation, [D] datetime display formats,
[D] datetime translation

David, H. A., [D] egen
day() function, [D] datetime, [D] functions
.dct filename suffix, [D] import, [D] infile (fixed

format), [D] infix (fixed format), [D] outfile
decimal symbol, setting, [D] format
decode command, [D] encode
define, label subcommand, [D] label
degree-to-radian conversion, [D] functions
deleting

casewise, [D] egen
files, [D] erase
variables or observations, [D] drop

delimited,
export subcommand, [D] import delimited
import subcommand, [D] import delimited

derivative of incomplete gamma function, [D] functions
describe command, [D] describe
describe, bcal subcommand, [D] bcal
descriptive statistics,

creating dataset containing, [D] collapse
creating variables containing, [D] egen
displaying, [D] codebook, [D] pctile

destring command, [D] destring
det() function, [D] functions
Devroye, L., [D] functions
dgammapda() function, [D] functions
dgammapdada() function, [D] functions
dgammapdadx() function, [D] functions
dgammapdx() function, [D] functions
dgammapdxdx() function, [D] functions
dhms() function, [D] datetime, [D] functions
diag() function, [D] functions
diag0cnt() function, [D] functions
diagnostic codes, [D] icd9
Dicle, M. F., [D] import
dictionaries, [D] export, [D] import, [D] infile (fixed

format), [D] infix (fixed format), [D] outfile
Dieter, U., [D] functions
diff(), egen function, [D] egen
digamma() function, [D] functions
digits, controlling the number displayed, [D] format

dir,
bcal subcommand, [D] bcal
label subcommand, [D] label
sysuse subcommand, [D] sysuse

dir command, [D] dir
directories,

changing, [D] cd
creating, [D] mkdir
listing, [D] dir
removing, [D] rmdir

dispersion, measures of, [D] pctile
display formats, [D] describe, [D] format
displaying

contents, [D] describe
data, [D] edit, [D] list
files, [D] type

distributions, examining, [D] pctile
documenting data, [D] codebook, [D] labelbook,

[D] notes
dofb() function, [D] datetime business calendars,

[D] functions
dofC() function, [D] datetime, [D] functions
dofc() function, [D] datetime, [D] functions
dofh() function, [D] datetime, [D] functions
dofm() function, [D] datetime, [D] functions
dofq() function, [D] datetime, [D] functions
dofw() function, [D] datetime, [D] functions
dofy() function, [D] datetime, [D] functions
double, [D] data types
dow() function, [D] datetime, [D] functions
doy() function, [D] datetime, [D] functions
dp, set subcommand, [D] format
drawnorm command, [D] drawnorm
drop,

duplicates subcommand, [D] duplicates
label subcommand, [D] label
notes subcommand, [D] notes

drop command, [D] drop
dropping variables and observations, [D] drop
ds command, [D] ds
Dunnett, C. W., [D] functions
dunnettprob() function, [D] functions
Dunnett’s multiple range distribution,

cumulative, [D] functions
inverse cumulative, [D] functions

duplicate observations,
dropping, [D] duplicates
identifying, [D] duplicates

duplicates

drop command, [D] duplicates
examples command, [D] duplicates
list command, [D] duplicates
report command, [D] duplicates
tag command, [D] duplicates

duplicating
clustered observations, [D] expandcl
observations, [D] expand

Subject and author index 651

Dyck, A., [D] datetime

E

e() function, [D] functions
e(sample) function, [D] functions
EBCDIC files, [D] filefilter, [D] infile (fixed format)
edit command, [D] edit
editing data, [D] edit, [D] generate, [D] merge,

[D] recode
egen command, [D] egen
el() function, [D] functions
encode command, [D] encode
end-of-line characters, [D] changeeol
ends(), egen function, [D] egen
entering data, see importing data, see inputting data

interactively
epsdouble() function, [D] functions
epsfloat() function, [D] functions
erase command, [D] erase
erase, snapshot subcommand, [D] snapshot
erasing files, [D] erase
error checking, [D] assert
error, reshape subcommand, [D] reshape
Esman, R. M., [D] egen
examples, duplicates subcommand, [D] duplicates
excel,

export subcommand, [D] import excel
import subcommand, [D] import excel

Excel dates, [D] datetime
Excel, Microsoft, reading data from, [D] import excel,

[D] odbc, [D] xmlsave, also see spreadsheets,
transferring

exec(), odbc subcommand, [D] odbc
exp() function, [D] functions
expand command, [D] expand
expandcl command, [D] expandcl
exponential function, [D] functions
export

delimited command, [D] import delimited
excel command, [D] import excel
sasxport command, [D] import sasxport

exporting data, [D] export, [D] import delimited,
[D] import excel, [D] import sasxport,
[D] odbc, [D] outfile, [D] xmlsave

extrapolation, [D] ipolate

F

F

density,
central, [D] functions
noncentral, [D] functions

distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions

F distribution, continued
inverse reverse cumulative, [D] functions
inverse reverse cumulative noncentral,

[D] functions
reverse cumulative, [D] functions
reverse cumulative noncentral, [D] functions

noncentrality parameter, [D] functions
F() function, [D] functions
factorial function, [D] functions
Fden() function, [D] functions
file

conversion, [D] changeeol, [D] filefilter
modification, [D] changeeol, [D] filefilter
translation, [D] changeeol, [D] filefilter

fileexists() function, [D] functions
filefilter command, [D] filefilter
filenames, displaying, [D] dir
fileread() function, [D] functions
filereaderror() function, [D] functions
files,

checksum of, [D] checksum
comparison, [D] cf
compressing, [D] zipfile
copying and appending, [D] copy
display contents of, [D] type
downloading, [D] checksum, [D] copy
erasing, [D] erase
exporting, see exporting data
importing, see importing data
loading, [D] use
saving, [D] save
uncompressing, [D] zipfile

filewrite() function, [D] functions
fill(), egen function, [D] egen
fillin command, [D] fillin
finding variables, [D] lookfor
Flannery, B. P., [D] functions
flist command, [D] list
float, [D] data types
float() function, [D] functions
floor() function, [D] functions
%fmts, [D] format
fmtwidth() function, [D] functions
folders, see directories
format command, [D] format
formats, [D] datetime, [D] describe, [D] format,

[D] varmanage
formatted data, reading, see importing data
formatting statistical output, [D] format
Franklin, C. H., [D] cross
frequencies, creating dataset of, [D] collapse,

[D] contract
Ftail() function, [D] functions
functions, [D] functions

aggregate, [D] egen
combinatorial, [D] functions
creating dataset of, [D] collapse, [D] obs

652 Subject and author index

functions, continued
date and time, [D] functions
graphing, [D] range
mathematical, [D] functions
matrix, [D] functions
programming, [D] functions
random number, [D] generate
statistical, [D] functions
string, [D] functions
time-series, [D] functions

G
gamma

density function, [D] functions
incomplete, [D] functions

distribution
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

gammaden() function, [D] functions
gammap() function, [D] functions
gammaptail() function, [D] functions
generate,

icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9

generate command, [D] generate
generating data, [D] egen, [D] generate
Gentle, J. E., [D] functions
get() function, [D] functions
getmata command, [D] putmata
Gleason, J. R., [D] cf, [D] describe, [D] functions,

[D] generate, [D] infile (fixed format), [D] label,
[D] notes, [D] order

Golbe, D. L., [D] label language, [D] merge
Goldstein, R., [D] ds, [D] egen
Gould, W. W., [D] datasignature, [D] datetime,

[D] destring, [D] drawnorm, [D] ds, [D] egen,
[D] format, [D] functions, [D] icd9, [D] infile
(fixed format), [D] merge, [D] putmata,
[D] reshape, [D] sample

graphs,
functions, [D] obs, [D] range
parameterized curves, [D] range

group(), egen function, [D] egen
gsort command, [D] gsort

H
hadamard() function, [D] functions
Hadamard, J. S., [D] functions
Hakkio, C. S., [D] egen
halfyear() function, [D] datetime, [D] functions
halfyearly() function, [D] datetime, [D] datetime

translation, [D] functions
Hamilton, L. C., [D] xpose
Hampel, F. R., [D] egen
Hardin, J. W., [D] statsby

Harrison, D. A., [D] list
has eprop() function, [D] functions
Haver Analytics databases, reading data from,

[D] import haver
haver import subcommand, [D] import haver
haverdir, set subcommand, [D] import haver
hexadecimal report, [D] hexdump
hexdump command, [D] hexdump
hh() function, [D] datetime, [D] functions
hhC() function, [D] datetime, [D] functions
Higbee, K. T., [D] clonevar, [D] ds
Hilbe, J. M., [D] functions
Hills, M., [D] egen
hms() function, [D] datetime, [D] functions
hofd() function, [D] datetime, [D] functions
hours() function, [D] datetime, [D] functions
HRF, see human readable form
Huber, P. J., [D] egen
human readable form, [D] datetime, [D] datetime

display formats, [D] datetime translation
hyperbolic functions, [D] functions
hypergeometric() function, [D] functions
hypergeometric,

cumulative distribution, [D] functions
probability mass function, [D] functions

hypergeometricp() function, [D] functions

I
I() function, [D] functions
ibeta() function, [D] functions
ibetatail() function, [D] functions
icd9

check command, [D] icd9
clean command, [D] icd9
generate command, [D] icd9
lookup command, [D] icd9
query command, [D] icd9
search command, [D] icd9

icd9p

check command, [D] icd9
clean command, [D] icd9
generate command, [D] icd9
lookup command, [D] icd9
query command, [D] icd9
search command, [D] icd9

identifier, unique, [D] isid
import

delimited command, [D] import delimited
excel command, [D] import excel
haver command, [D] import haver
sasxport command, [D] import sasxport

importing data, [D] import, [D] import delimited,
[D] import excel, [D] import haver, [D] import
sasxport, [D] infile (fixed format), [D] infile
(free format), [D] infix (fixed format), [D] odbc,
[D] xmlsave, also see combining datasets, also
see inputting data interactively

Subject and author index 653

income tax rate function, [D] egen
incomplete

beta function, [D] functions
gamma function, [D] functions

indexnot() function, [D] functions
infile command, [D] infile (fixed format), [D] infile

(free format)
infix command, [D] infix (fixed format)
%infmt, [D] infile (fixed format)
inlist() function, [D] functions
input command, [D] input
inputting data

from a file, see importing data
interactively, [D] edit, [D] input, also see editing

data, also see importing data
inrange() function, [D] functions
insert, odbc subcommand, [D] odbc
inspect command, [D] inspect
int, [D] data types
int() function, [D] functions
integer truncation function, [D] functions
interpolation, [D] ipolate
interquartile range,

generating variable containing, [D] egen
making dataset of, [D] collapse
summarizing, [D] pctile

inv() function, [D] functions
invbinomial() function, [D] functions
invbinomialtail() function, [D] functions
invchi2() function, [D] functions
invchi2tail() function, [D] functions
invcloglog() function, [D] functions
invdunnettprob() function, [D] functions
inverse

cumulative
beta distribution, [D] functions
binomial function, [D] functions
chi-squared distribution function, [D] functions
F distribution function, [D] functions
incomplete gamma function, [D] functions

noncentral
beta distribution, [D] functions
chi-squared distribution function, [D] functions
F distribution, [D] functions

normal distribution function, [D] functions
reverse cumulative

beta distribution, [D] functions
binomial function, [D] functions
chi-squared distribution function, [D] functions
F distribution function, [D] functions
incomplete gamma function, [D] functions
noncentral chi-squared distribution function,

[D] functions
t distribution function, [D] functions

invF() function, [D] functions
invFtail() function, [D] functions
invgammap() function, [D] functions

invgammaptail() function, [D] functions
invibeta() function, [D] functions
invibetatail() function, [D] functions
invlogit() function, [D] functions
invnbinomial() function, [D] functions
invnbinomialtail() function, [D] functions
invnchi2() function, [D] functions
invnchi2tail() function, [D] functions
invnFtail() function, [D] functions
invnibeta() function, [D] functions
invnormal() function, [D] functions
invnttail() function, [D] functions
invpoisson() function, [D] functions
invpoissontail() function, [D] functions
invsym() function, [D] functions
invt() function, [D] functions
invttail() function, [D] functions
invtukeyprob() function, [D] functions
ipolate command, [D] ipolate
IQR, see interquartile range
iqr(), egen function, [D] egen
irecode() function, [D] functions
isid command, [D] isid
issymmetric() function, [D] functions
itrim() function, [D] functions

J
J() function, [D] functions
Jacobs, M., [D] duplicates
Jeanty, P. W., [D] destring, [D] functions, [D] import

excel, [D] reshape
Jenkins, S. P., [D] corr2data, [D] egen, [D] rename
Johnson, N. L., [D] functions
joinby command, [D] joinby
joining datasets, see combining datasets

K
Kachitvichyanukul, V., [D] functions
Kantor, D., [D] cf, [D] functions
Kaufman, J., [D] ds
keep command, [D] drop
keeping variables or observations, [D] drop
Kemp, A. W., [D] functions
Kemp, C. D., [D] functions
Kinderman, A. J., [D] functions
Knuth, D. E., [D] functions
Kohler, U., [D] egen, [D] input
Kotz, S., [D] functions
Kronecker direct product, [D] cross
kurt(), egen function, [D] egen

L
label

copy command, [D] label
data command, [D] label

654 Subject and author index

label, continued
define command, [D] label
dir command, [D] label
drop command, [D] label
language command, [D] label language
list command, [D] label
save command, [D] label
values command, [D] label
variable command, [D] label

label, snapshot subcommand, [D] snapshot
labelbook command, [D] labelbook
labeling data, [D] describe, [D] edit, [D] label,

[D] label language, [D] notes, [D] varmanage
labels,

creating, [D] edit, [D] varmanage
editing, [D] edit, [D] varmanage

Lal, R., [D] functions
language, label subcommand, [D] label language
languages, multiple, [D] label language
Lauritsen, J. M., [D] labelbook, [D] list
length() function, [D] functions
length of string function, [D] functions
Levendis, J., [D] import
limits, [D] describe, [D] memory
Linde-Zwirble, W., [D] functions
linear interpolation and extrapolation, [D] ipolate
Linhart, J. M., [D] ds, [D] format
list,

duplicates subcommand, [D] duplicates
label subcommand, [D] label
notes subcommand, [D] notes
odbc subcommand, [D] odbc
snapshot subcommand, [D] snapshot

list command, [D] list
listing data, [D] edit, [D] list
ln() function, [D] functions
lnfactorial() function, [D] functions
lngamma() function, [D] functions
lnnormal() function, [D] functions
lnnormalden() function, [D] functions
load,

bcal subcommand, [D] bcal
odbc subcommand, [D] odbc

loading data, see importing data, see inputting data
interactively, see using data

log() function, [D] functions
log10() function, [D] functions
logit function, [D] functions
long, [D] data types
Long, J. S., [D] codebook, [D] label, [D] notes
long, reshape subcommand, [D] reshape
lookfor command, [D] lookfor
lookup,

icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9

lower() function, [D] functions
lowercase-string function, [D] functions

LRECLs, [D] infile (fixed format)
ls command, [D] dir
ltrim() function, [D] functions
Lukácsy, K., [D] functions

M

MacLaren, M. D., [D] functions
mad(), egen function, [D] egen
mapping strings to numbers, [D] destring, [D] encode,

[D] label, also see real() function
marginal tax rate egen function, [D] egen
Marsaglia, G., [D] functions
Mata, [D] putmata
mata, clear subcommand, [D] clear
mathematical functions and expressions, [D] functions
matmissing() function, [D] functions
matrices, functions, [D] functions
matrix() function, [D] functions
matrix, clear subcommand, [D] clear
matuniform() function, [D] functions
max(),

built-in function, [D] functions
egen function, [D] egen

maxbyte() function, [D] functions
maxdouble() function, [D] functions
maxfloat() function, [D] functions
maximum

function, [D] egen, [D] functions
number of observations, [D] memory
number of variables, [D] describe, [D] memory

maximums and minimums,
creating dataset of, [D] collapse
functions, [D] egen, [D] functions

maxint() function, [D] functions
maxlong() function, [D] functions
max memory, set subcommand, [D] memory
maxvar, set subcommand, [D] memory
Mazýa, V. G., [D] functions
md command, [D] mkdir
mdev(), egen function, [D] egen
mdy() function, [D] datetime, [D] functions
mdyhms() function, [D] datetime, [D] functions
mean(), egen function, [D] egen
means,

across variables, not observations, [D] egen
creating

dataset of, [D] collapse
variable containing, [D] egen

median(), egen function, [D] egen
medians,

creating
dataset of, [D] collapse
variable containing, [D] egen

displaying, [D] pctile
Meijering, E., [D] ipolate

Subject and author index 655

memory,
clearing, [D] clear
determining and resetting limits, [D] describe,

[D] memory
reducing utilization, [D] compress, [D] encode,

[D] recast
memory command, [D] memory
memory, query subcommand, [D] memory
merge command, [D] merge
merge variable, [D] merge

merging data, see combining datasets
mi() function, [D] functions
Microsoft

Access, reading data from, [D] odbc
Excel, reading data from, [D] import excel,

[D] odbc
SpreadsheetML, [D] xmlsave

Miller, R. G., Jr., [D] functions
min() function, [D] functions
min(), egen function, [D] egen
minbyte() function, [D] functions
mindouble() function, [D] functions
minfloat() function, [D] functions
minimums and maximums, see maximums and

minimums
minint() function, [D] functions
minlong() function, [D] functions
min memory, set subcommand, [D] memory
minutes() function, [D] datetime, [D] functions
missing() function, [D] functions
missing values, [D] missing values

counting, [D] codebook, [D] inspect
encoding and decoding, [D] mvencode
extended, [D] mvencode
replacing, [D] merge

Mitchell, M. N., [D] data management, [D] by,
[D] egen, [D] reshape

mkdir command, [D] mkdir
mm() function, [D] datetime, [D] functions
mmC() function, [D] datetime, [D] functions
mod() function, [D] functions
mode(), egen function, [D] egen
modification, file, [D] filefilter
modifying data, [D] generate, also see editing data
modulus function, [D] functions
mofd() function, [D] datetime, [D] functions
Monahan, J. F., [D] functions
month() function, [D] datetime, [D] functions
monthly() function, [D] datetime, [D] datetime

translation, [D] functions
Moore, R. J., [D] functions
mreldif() function, [D] functions
msofhours() function, [D] datetime, [D] functions
msofminutes() function, [D] datetime, [D] functions
msofseconds() function, [D] datetime, [D] functions
mtr(), egen function, [D] egen
multiple languages, [D] label language

mvdecode command, [D] mvencode
mvencode command, [D] mvencode
Myland, J. C., [D] functions

N
naming groups of variables, [D] rename group
naming variables, [D] rename
Nash, J. D., [D] infile (fixed format), [D] merge
natural log function, [D] functions
nbetaden() function, [D] functions
nbinomial() function, [D] functions
nbinomialp() function, [D] functions
nbinomialtail() function, [D] functions
nchi2() function, [D] functions
nchi2den() function, [D] functions
nchi2tail() function, [D] functions
negative binomial

distribution,
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

probability mass function, [D] functions
new lines, data without, [D] infile (fixed format)
Newson, R. B., [D] contract, [D] generate, [D] statsby
nF() function, [D] functions
nFden() function, [D] functions
nFtail() function, [D] functions
nibeta() function, [D] functions
niceness, set subcommand, [D] memory
noncentral

beta density, [D] functions
beta distribution, [D] functions
chi-squared distribution, [D] functions
F density, [D] functions
F distribution, [D] functions
Student’s t density, [D] functions
Student’s t distribution, [D] functions

normal distribution and normality, generating
multivariate data, [D] drawnorm

normal() function, [D] functions
normal,

density,
mean µ, std. dev. σ, [D] functions
natural log of mean µ, std. dev. σ, [D] functions
natural log of standard normal, [D] functions
standard normal, [D] functions

distribution,
cumulative, [D] functions
generating multivariate data with, [D] corr2data
inverse cumulative, [D] functions
joint cumulative of bivariate, [D] functions
natural log of cumulative, [D] functions
sample from multivariate, [D] functions

normalden() function, [D] functions
normally distributed random numbers, [D] functions

656 Subject and author index

notes

command, [D] notes
drop command, [D] notes
list command, [D] notes
renumber command, [D] notes
replace command, [D] notes
search command, [D] notes

notes,
creating, [D] notes, [D] varmanage
editing, [D] notes, [D] varmanage

npnchi2() function, [D] functions
npnF() function, [D] functions
npnt() function, [D] functions
nt() function, [D] functions
ntden() function, [D] functions
nttail() function, [D] functions
nullmat() function, [D] functions
number to string conversion, see string functions
numbers,

formatting, [D] format
mapping to strings, [D] encode, [D] label

numeric value labels, [D] labelbook
numlabel command, [D] labelbook

O

obs parameter, [D] describe, [D] obs
obs, set subcommand, [D] obs
observations,

creating dataset of, [D] collapse
dropping, [D] drop
dropping duplicate, [D] duplicates
duplicating, [D] expand
duplicating, clustered, [D] expandcl
identifying duplicate, [D] duplicates
increasing number of, [D] obs
maximum number of, [D] memory
ordering, [D] gsort, [D] sort
transposing with variables, [D] xpose

odbc

describe command, [D] odbc
exec() command, [D] odbc
insert command, [D] odbc
list command, [D] odbc
load command, [D] odbc
query command, [D] odbc
sqlfile() command, [D] odbc

ODBC data source, reading data from, [D] odbc
odbcmgr, set subcommand, [D] odbc
Oldham, K. B., [D] functions
OpenOffice dates, [D] datetime
operating system command, [D] cd, [D] copy, [D] dir,

[D] erase, [D] mkdir, [D] rmdir, [D] shell,
[D] type

Oracle, reading data from, [D] odbc
order command, [D] order
order statistics, [D] egen

ordering
observations, [D] gsort, [D] sort
variables, [D] order, [D] sort

outer product, [D] cross
outfile command, [D] outfile
output, formatting numbers, [D] format

P
pairwise combinations, [D] cross, [D] joinby
parameterized curves, [D] range
patterns of data, [D] egen
pc(), egen function, [D] egen
pctile command, [D] pctile

pctile command, [D] pctile
pctile(), egen function, [D] egen
percentiles,

create
dataset of, [D] collapse
variable containing, [D] codebook, [D] egen,

[D] pctile
plural() function, [D] functions
poisson() function, [D] functions
Poisson

distribution,
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

probability mass function, [D] functions
poissonp() function, [D] functions
poissontail() function, [D] functions
polar coordinates, [D] range
Posten, H. O., [D] functions
Press, W. H., [D] functions
procedure codes, [D] icd9
programs, clear subcommand, [D] clear
proper() function, [D] functions
proportional sampling, [D] sample
pseudofunctions, [D] datetime, [D] functions
psi function, [D] functions
putmata command, [D] putmata
pwd command, [D] cd

Q
qofd() function, [D] datetime, [D] functions
quantiles, see percentiles
quarter() function, [D] datetime, [D] functions
quarterly() function, [D] datetime, [D] datetime

translation, [D] functions
query,

icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
odbc subcommand, [D] odbc
webuse subcommand, [D] webuse

Subject and author index 657

query memory command, [D] memory
quick reference, [D] data types, [D] missing values

R

R dates, [D] datetime
r() function, [D] functions
radians, [D] functions
random

number function, [D] functions, [D] generate
numbers, normally distributed, [D] functions,

[D] generate
sample, [D] sample

range command, [D] range
range of data, [D] codebook, [D] inspect
rank(), egen function, [D] egen
rank-order statistics, [D] egen
ranks of observations, [D] egen
rbeta() function, [D] functions
rbinomial() function, [D] functions
rchi2() function, [D] functions
reading data from disk, see importing data
real() function, [D] functions
real number to string conversion, [D] destring,

[D] encode, [D] functions
recase() function, [D] functions
recast command, [D] recast
recode command, [D] recode
recode() function, [D] functions
recoding data, [D] recode
recoding data autocode() function, [D] functions
rectangularize dataset, [D] fillin
regexm() function, [D] functions
regexr() function, [D] functions
regexs() function, [D] functions
regular expressions, [D] functions
relative difference function, [D] functions
reldif() function, [D] functions
remainder function, [D] functions
removing

directories, [D] rmdir
files, [D] erase

rename command, [D] rename, [D] rename group
renaming variables, [D] rename, [D] rename group
renumber, notes subcommand, [D] notes
reordering data, [D] gsort, [D] order, [D] sort
reorganizing data, [D] reshape, [D] xpose
repeating commands, [D] by
replace command, [D] generate
replace, notes subcommand, [D] notes
replay() function, [D] functions
replicating

clustered observations, [D] expandcl
observations, [D] expand

report,
datasignature subcommand, [D] datasignature
duplicates subcommand, [D] duplicates

reshape

command, [D] reshape
error command, [D] reshape
long command, [D] reshape
wide command, [D] reshape

restore, snapshot subcommand, [D] snapshot
restoring data, [D] snapshot
results, clear subcommand, [D] clear
return() function, [D] functions
reverse() function, [D] functions
rgamma() function, [D] functions
rhypergeometric() function, [D] functions
Riley, A. R., [D] filefilter, [D] list
Rising, W. R., [D] functions
rm command, [D] erase
rmdir command, [D] rmdir
rnbinomial() function, [D] functions
rnormal() function, [D] functions
Rogers, W. H., [D] egen
Ronchetti, E. M., [D] egen
Roodman, D., [D] collapse
round() function, [D] functions
Rousseeuw, P. J., [D] egen
row operators for data, [D] egen
rowfirst(), egen function, [D] egen
rowlast(), egen function, [D] egen
rowmax(), egen function, [D] egen
rowmean(), egen function, [D] egen
rowmedian(), egen function, [D] egen
rowmin(), egen function, [D] egen
rowmiss(), egen function, [D] egen
rownonmiss(), egen function, [D] egen
rownumb() function, [D] functions
rowpctile(), egen function, [D] egen
rowsd(), egen function, [D] egen
rowsof() function, [D] functions
rowtotal(), egen function, [D] egen
Royston, P., [D] generate, [D] list, [D] sort
rpoisson() function, [D] functions
rseed() function, [D] functions
rt() function, [D] functions
rtrim() function, [D] functions
runiform() function, [D] functions
Rush, M., [D] egen
Ryan, P., [D] egen, [D] pctile

S
s() function, [D] functions
s() stored results, [D] functions
Salas Pauliac, C. H., [D] egen
sample command, [D] sample
sample, random, see random sample
sampling, [D] sample
SAS dates, [D] datetime
SAS XPORT format, [D] import sasxport
Sasieni, P. D., [D] list, [D] memory

658 Subject and author index

sasxport,
export subcommand, [D] import sasxport
import subcommand, [D] import sasxport

save,
label subcommand, [D] label
snapshot subcommand, [D] snapshot

save command, [D] save
saveold command, [D] save
saving data, [D] import delimited, [D] outfile,

[D] save, [D] snapshot, also see exporting data
scalar() function, [D] functions
Schechter, C. B., [D] encode
Schmeiser, B. W., [D] functions
Schmidt, T. J., [D] egen
Schneider, D. C., [D] import haver
Schumm, L. P., [D] sort
sd(), egen function, [D] egen
search,

icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
notes subcommand, [D] notes

seconds() function, [D] datetime, [D] functions
segmentsize, set subcommand, [D] memory
separate command, [D] separate
separating string variables into parts, [D] split
seq(), egen function, [D] egen
set

checksum command, [D] checksum
dp command, [D] format
haverdir command, [D] import haver
max memory command, [D] memory
maxvar command, [D] memory
min memory command, [D] memory
niceness command, [D] memory
obs command, [D] obs
odbcmgr command, [D] odbc
segmentsize command, [D] memory
type command, [D] generate

set,
datasignature subcommand, [D] datasignature
webuse subcommand, [D] webuse

Shaposhnikova, T. O., [D] functions
shell command, [D] shell
sign() function, [D] functions
signature of data, [D] checksum, [D] datasignature
signum function, [D] functions
sin() function, [D] functions
sine function, [D] functions
sinh() function, [D] functions
skew(), egen function, [D] egen
smallestdouble() function, [D] functions
snapshot, [D] snapshot
snapshot

erase command, [D] snapshot
label command, [D] snapshot
list command, [D] snapshot

snapshot, continued
restore command, [D] snapshot
save command, [D] snapshot

sort command, [D] sort
sort order, [D] describe
soundex() function, [D] functions
soundex nara() function, [D] functions
Spanier, J., [D] functions
split command, [D] split
spreadsheets, transferring

from Stata, [D] edit, [D] export, [D] import
delimited, [D] import excel, [D] import haver,
[D] odbc, [D] outfile, [D] xmlsave

into Stata, [D] edit, [D] import, [D] import
delimited, [D] import excel, [D] import haver,
[D] infile (fixed format), [D] infile (free format),
[D] odbc, [D] xmlsave

SPSS dates, [D] datetime
SQL, [D] odbc
sqlfile(), odbc subcommand, [D] odbc
sqrt() function, [D] functions
square root function, [D] functions
ss() function, [D] datetime, [D] functions
ssC() function, [D] datetime, [D] functions
stack command, [D] stack
stacking data, [D] stack
Stahel, W. A., [D] egen
standard deviations, creating

dataset of, [D] collapse
variable containing, [D] egen

standardized, variables, [D] egen
Stata internal form, [D] datetime, [D] datetime display

formats, [D] datetime translation
statsby prefix command, [D] statsby
.stbcal file, [D] bcal, [D] datetime business

calendars, [D] datetime business calendars
creation

std(), egen function, [D] egen
Stegun, I. A., [D] functions
Steichen, T. J., [D] duplicates
storage types, [D] codebook, [D] compress,

[D] describe, [D] encode, [D] format,
[D] generate, [D] recast, [D] varmanage

str#, [D] data types
strcat() function, [D] functions
strdup() function, [D] functions
string() function, [D] functions
string functions, [D] functions
string variables, [D] data types, [D] infile (free format)

converting to numbers, [D] functions
encoding, [D] encode
exporting, [D] export
formatting, [D] format
importing, [D] import
inputting, [D] edit, [D] input
making from value labels, [D] encode

Subject and author index 659

string variables, continued
mapping to numbers, [D] destring, [D] encode,

[D] label, also see real() function
splitting into parts, [D] split

strL, [D] data types
strlen() function, [D] functions
strlower() function, [D] functions
strltrim() function, [D] functions
strmatch() function, [D] functions
strofreal() function, [D] functions
strpos() function, [D] functions
strproper() function, [D] functions
strreverse() function, [D] functions
strrtrim() function, [D] functions
strtoname() function, [D] functions
strtrim() function, [D] functions
strupper() function, [D] functions
Student’s t

density,
central, [D] functions
noncentral, [D] functions

distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions
inverse cumulative noncentral, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions

subinstr() function, [D] functions
subinword() function, [D] functions
substr() function, [D] functions
substring function, [D] functions
sum() function, [D] functions
summarize command, [D] format
summarizing data, [D] codebook, [D] inspect
summary statistics, see descriptive statistics
sums,

creating dataset containing, [D] collapse
over observations, [D] egen, [D] functions
over variables, [D] egen

sweep() function, [D] functions
sysmiss, see missing values
sysuse

command, [D] sysuse
dir command, [D] sysuse

T
t distribution, cdf, [D] functions
%t formats, [D] format
t() function, [D] functions
%t values and formats, [D] datetime
tab characters, show, [D] type
tables, formatting numbers in, [D] format
tag, duplicates subcommand, [D] duplicates
tag(), egen function, [D] egen
Tamhane, A. C., [D] functions

tan() function, [D] functions
tangent function, [D] functions
tanh() function, [D] functions
tC() pseudofunction, [D] datetime, [D] functions
tc() pseudofunction, [D] datetime, [D] functions
td() pseudofunction, [D] datetime, [D] functions
tden() function, [D] functions
Teukolsky, S. A., [D] functions
text,

exporting, see exporting data
reading data in, see importing data
saving data in, see exporting data

th() pseudofunction, [D] datetime, [D] functions
time-series

analysis, [D] egen
formats, [D] format
functions, [D] functions

time stamp, [D] describe
time variables and values, [D] datetime
tin() function, [D] functions
tm() pseudofunction, [D] datetime, [D] functions
tostring command, [D] destring
total(), egen function, [D] egen
tq() pseudofunction, [D] datetime, [D] functions
trace() function, [D] functions
transferring data

copying and pasting, [D] edit
from Stata, [D] export
into Stata, [D] import

translation, file, [D] changeeol, [D] filefilter
transposing data, [D] xpose
trigamma() function, [D] functions
trigonometric functions, [D] functions
trim() function, [D] functions
trunc() function, [D] functions
truncating

real numbers, [D] functions
strings, [D] functions

ttail() function, [D] functions
Tukey, J. W., [D] egen
tukeyprob() function, [D] functions
Tukey’s Studentized range distribution,

cumulative, [D] functions
inverse cumulative, [D] functions

tw() pseudofunction, [D] datetime, [D] functions
twithin() function, [D] functions
type

command, [D] type
parameter, [D] generate

type, set subcommand, [D] generate

U
uncompress files, [D] zipfile
underscore c() function, [D] functions
uniformly distributed random-number function,

[D] functions

660 Subject and author index

unique value labels, [D] labelbook
unique values,

counting, [D] codebook
determining, [D] inspect, [D] labelbook

unzipfile command, [D] zipfile
upper() function, [D] functions
uppercase-string function, [D] functions
use command, [D] use
uselabel command, [D] labelbook
using data, [D] sysuse, [D] use, [D] webuse, also see

importing data

V

value labels, [D] codebook, [D] describe, [D] edit,
[D] encode, [D] inspect, [D] label, [D] label
language, [D] labelbook, [D] varmanage

potential problems in, [D] labelbook
values, label subcommand, [D] label
variable

description, [D] describe
labels, [D] codebook, [D] describe, [D] edit,

[D] label, [D] label language, [D] notes,
[D] varmanage

types, [D] codebook, [D] data types, [D] describe
variable, label subcommand, [D] label
variables,

alphabetizing, [D] order
categorical, see categorical data
changing storage types of, [D] recast
comparing, [D] compare
copying, [D] clonevar
creating, [D] varmanage
creating new, [D] separate
describing, [D] codebook, [D] notes
determining storage types of, [D] describe
displaying contents of, [D] edit, [D] list
documenting, [D] codebook, [D] labelbook,

[D] notes
dropping, [D] drop
filtering, [D] varmanage
finding, [D] lookfor
in dataset, maximum number of, [D] memory
listing, [D] codebook, [D] describe, [D] edit,

[D] labelbook, [D] list
mapping numeric to string, [D] destring
naming, [D] rename
naming groups of, [D] rename group
ordering, [D] sort
renaming, see renaming variables
reordering, [D] order
setting properties of, [D] varmanage
sorting, [D] gsort, [D] sort, [D] varmanage
standardizing, [D] egen
storage types, see storage types
string, see string variables

variables, continued
transposing with observations, [D] xpose
unique values, [D] codebook, [D] duplicates,

[D] inspect
Variables Manager, [D] varmanage
variance,

creating dataset of, [D] collapse
creating variable containing, [D] egen

varmanage command, [D] varmanage
vec() function, [D] functions
vecdiag() function, [D] functions
verifying data, [D] assert, [D] count,

[D] datasignature, [D] inspect, also see
certifying data

Vetterling, W. T., [D] functions
virtual memory, [D] memory

W
Walker, A. J., [D] functions
Wang, D., [D] duplicates
webuse

command, [D] webuse
query command, [D] webuse
set command, [D] webuse

week() function, [D] datetime, [D] functions
weekly() function, [D] datetime, [D] datetime

translation, [D] functions
Weesie, J., [D] generate, [D] joinby, [D] label,

[D] label language, [D] labelbook, [D] list,
[D] merge, [D] mvencode, [D] order,
[D] recode, [D] rename, [D] reshape,
[D] sample

Weiss, M., [D] ds, [D] functions
Wernow, J. B., [D] destring
Whittaker, J. C., [D] functions
Wichura, M. J., [D] functions, [D] functions
wide, reshape subcommand, [D] reshape
Wilcox, R. R., [D] egen
wildcard, see regexm() function, see regexr()

function, see regexs() function, see
strmatch() function

winexec command, [D] shell
wofd() function, [D] datetime, [D] functions
Wolfe, F., [D] ds
word() function, [D] functions
wordcount() function, [D] functions
writing data, see exporting data, see saving data

X
XML, [D] xmlsave
xmlsave command, [D] xmlsave
xmluse command, [D] xmlsave
xpose command, [D] xpose
xshell command, [D] shell
xtile command, [D] pctile

Subject and author index 661

Y
year() function, [D] datetime, [D] functions
yearly() function, [D] datetime, [D] datetime

translation, [D] functions
yh() function, [D] datetime, [D] functions
ym() function, [D] datetime, [D] functions
yofd() function, [D] datetime, [D] functions
yq() function, [D] datetime, [D] functions
yw() function, [D] datetime, [D] functions

Z
Zeh, J., [D] egen
zipfile command, [D] zipfile

	Contents
	[IG] Installation Guide
	Simple installation
	Before you install
	Stata for Windows installation
	Stata for Mac installation
	Stata for Unix installation

	Installing Stata for Windows
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Creating network shortcuts
	Other ways to start Stata
	Exiting Stata
	Verifying installation

	Installing Stata for Mac
	Upgrade or update?
	Upgrading to Stata/MP, Stata/SE, or Stata/IC
	Warning against multiple Stata applications
	Before you install
	Installation
	Initialize the license
	Update Stata if necessary
	Register your copy
	Other ways to start Stata
	Exiting Stata

	Installing Stata for Unix
	Installation overview
	Find your installation DVD and paper license
	Obtain superuser access
	Create a directory for Stata
	Upgrading
	Install Stata
	Initialize the license
	Set the message of the day (optional)
	Verify that Stata is working
	Modify shell start-up script
	Update Stata if necessary
	Starting Stata
	Exiting Stata
	Troubleshooting Unix installation
	Troubleshooting Unix start-up
	Stata(console) starts but Stata(GUI) does not

	Platforms and flavors
	Available platforms
	Available flavors

	Documentation

	[GS] Getting Started
	[GSM] Mac
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Stata videos

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View > Do-file Editor menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Other ways to launch Stata
	B.3 Stata batch mode
	B.4 Memory size considerations

	C More on Stata for Mac
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Stata and the Notification Manager
	C.4 Stata(console) for Mac OS X

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSU] Unix
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory

	3 Using the Viewer
	The Viewer in Stata(GUI)
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Stata videos

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor in Stata(GUI)
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager in Stata(GUI)
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting in Stata(GUI)
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor in Stata(GUI)
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata(GUI) and Stata(console) do not start
	A.2 If Stata(console) starts but Stata(GUI) does not
	A.3 Troubleshooting tips

	B Advanced Stata usage
	B.1 Executing commands every time Stata is started
	B.2 Advanced starting of Stata for Unix
	B.3 Stata batch mode
	B.4 Using X Windows remotely
	B.5 Summary of environment variables
	B.6 Memory size considerations

	C Stata manual pages for Unix
	conren
	Syntax
	Description
	Finding a color scheme
	Can your terminal underline?
	If you had success
	If you did not have success
	Also see

	stata
	Syntax
	Description
	Remarks and examples

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[GSW] Windows
	Contents
	1 Introducing Stata---sample session
	Introducing Stata
	Sample session
	Simple data management
	Descriptive statistics
	A simple hypothesis test
	Descriptive statistics---correlation matrices
	Graphing data
	Model fitting: Linear regression
	Commands versus menus
	Keeping track of your work
	Conclusion

	2 The Stata user interface
	The windows
	The toolbar
	The Command window
	The Results window
	The Review window
	The Variables window
	The Properties window
	Menus and dialogs
	The working directory
	Fine control of Stata's windows
	Window types
	Docking windows
	Auto Hide and pinning
	Nondocking windows

	3 Using the Viewer
	The Viewer's purpose
	Viewer buttons
	Viewer's function
	Viewing local text files, including SMCL files
	Viewing remote files over the Internet
	Navigating within the Viewer
	Printing
	Tabs in the Viewer
	Right-clicking on the Viewer window
	Searching for help in the Viewer
	Commands in the Viewer
	Using the Viewer from the Command window

	4 Getting help
	System help
	Searching help
	Help and search commands
	The Stata reference manuals and User's Guide
	The Stata Journal and the Stata Technical Bulletin
	Stata videos

	5 Opening and saving Stata datasets
	How to load your dataset from disk and save it to disk

	6 Using the Data Editor
	The Data Editor
	Buttons on the Data Editor
	Data entry
	Notes on data entry
	Renaming and formatting variables
	Copying and pasting data
	Notes on copying and pasting
	Changing data
	Working with snapshots
	Dates and the Data Editor
	Data Editor advice
	Filtering and hiding
	Browse mode

	7 Using the Variables Manager
	The Variables Manager
	The Variable pane
	Right-clicking on the Variable pane
	The Variable Properties pane
	Managing notes

	8 Importing data
	Copying and pasting
	Commands for importing data
	The import delimited command
	Importing files from other software

	9 Labeling data
	Making data readable
	The dataset structure: The describe command
	Labeling datasets and variables
	Labeling values of variables

	10 Listing data and basic command syntax
	Command syntax
	list with a variable list
	list with if
	list with if, common mistakes
	list with in
	Controlling the list output
	More
	Break

	11 Creating new variables
	generate and replace
	generate
	replace
	generate with string variables

	12 Deleting variables and observations
	clear, drop, and keep
	clear and drop _all
	drop
	keep

	13 Using the Do-file Editor---automating Stata
	The Do-file Editor
	The Do-file Editor toolbar
	Using the Do-file Editor
	The File menu
	The Edit menu
	The View menu
	The Tools menu
	Saving interactive commands from Stata as a do-file
	Projects

	14 Graphing data
	Working with graphs
	A simple graph example
	Graph window
	Saving and printing graphs
	Right-clicking on the Graph window
	The Graph button

	15 Editing graphs
	The Graph Editor

	16 Saving and printing results by using logs
	Using logs in Stata
	Logging output
	Working with logs
	Printing logs
	Rerunning commands as do-files

	17 Setting font and window preferences
	Changing and saving fonts and sizes and positions of your windows
	Graph window
	All other windows
	Changing color schemes
	Managing multiple sets of preferences
	Closing and opening windows

	18 Learning more about Stata
	Where to go from here
	Suggested reading from the User's Guide and reference manuals
	Internet resources

	19 Updating and extending Stata---Internet functionality
	Internet functionality in Stata
	Using files from the Internet
	Official Stata updates
	Automatic update checking
	Finding user-written programs by keyword
	Downloading user-written programs

	A Troubleshooting Stata
	A.1 If Stata does not start
	A.2 Troubleshooting tips

	B Advanced Stata usage
	B.1 The Windows Properties Sheet
	B.2 Making shortcuts
	B.3 Executing commands every time Stata is started
	B.4 Other ways to launch Stata
	B.5 Stata batch mode
	B.6 Running simultaneous Stata sessions
	B.7 Memory size considerations

	C More on Stata for Windows
	C.1 Using Stata datasets and graphs created on other platforms
	C.2 Exporting a Stata graph to another document
	C.3 Installing Stata for Windows on a network drive
	C.4 Changing a Stata for Windows license

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[U] User's Guide
	Contents
	Stata basics
	1 Read this---it will help
	1.1 Getting Started with Stata
	1.2 The User's Guide and the Reference manuals
	1.3 What's new
	1.4 References

	2 A brief description of Stata
	2.1 Video example

	3 Resources for learning and using Stata
	3.1 Overview
	3.2 Stata on the Internet (www.stata.com and other resources)
	3.3 Stata Press
	3.4 The Stata forum
	3.5 The Stata Journal
	3.6 Updating and adding features from the web
	3.7 Conferences and training
	3.8 Books and other support materials
	3.9 Technical support

	4 Stata's help and search facilities
	4.1 Introduction
	4.2 Getting started
	4.3 help: Stata's help system
	4.4 Accessing PDF manuals from help entries
	4.5 Searching
	4.6 More on search
	4.7 More on help
	4.8 search: All the details
	4.9 net search: Searching net resources

	5 Flavors of Stata
	5.1 Platforms
	5.2 Stata/MP, Stata/SE, Stata/IC, and Small Stata
	5.3 Size limits of Stata/MP, SE, IC, and Small Stata
	5.4 Speed comparison of Stata/MP, SE, IC, and Small Stata
	5.5 Feature comparison of Stata/MP, SE, and IC

	6 Managing memory
	6.1 Memory-size considerations
	6.2 Compressing data
	6.3 Setting maxvar
	6.4 Setting matsize
	6.5 The memory command

	7 --more-- conditions
	7.1 Description
	7.2 set more off
	7.3 The more programming command

	8 Error messages and return codes
	8.1 Making mistakes
	8.2 The return message for obtaining command timings

	9 The Break key
	9.1 Making Stata stop what it is doing
	9.2 Side effects of clicking on Break
	9.3 Programming considerations

	10 Keyboard use
	10.1 Description
	10.2 F-keys
	10.3 Editing keys in Stata
	10.4 Editing keys in Stata for Unix(console)
	10.5 Editing previous lines in Stata
	10.6 Tab expansion of variable names

	Elements of Stata
	11 Language syntax
	11.1 Overview
	11.2 Abbreviation rules
	11.3 Naming conventions
	11.4 varlists
	11.5 by varlist: construct
	11.6 Filenaming conventions
	11.7 References

	12 Data
	12.1 Data and datasets
	12.2 Numbers
	12.3 Dates and times
	12.4 Strings
	12.5 Formats: Controlling how data are displayed
	12.6 Dataset, variable, and value labels
	12.7 Notes attached to data
	12.8 Characteristics
	12.9 Data Editor and Variables Manager
	12.10 References

	13 Functions and expressions
	13.1 Overview
	13.2 Operators
	13.3 Functions
	13.4 System variables (_variables)
	13.5 Accessing coefficients and standard errors
	13.6 Accessing results from Stata commands
	13.7 Explicit subscripting
	13.8 Indicator values for levels of factor variables
	13.9 Time-series operators
	13.10 Label values
	13.11 Precision and problems therein
	13.12 References

	14 Matrix expressions
	14.1 Overview
	14.2 Row and column names
	14.3 Vectors and scalars
	14.4 Inputting matrices by hand
	14.5 Accessing matrices created by Stata commands
	14.6 Creating matrices by accumulating data
	14.7 Matrix operators
	14.8 Matrix functions
	14.9 Subscripting
	14.10 Using matrices in scalar expressions
	14.11 Reference

	15 Saving and printing output---log files
	15.1 Overview
	15.2 Placing comments in logs
	15.3 Logging only what you type
	15.4 The log-button alternative
	15.5 Printing logs
	15.6 Creating multiple log files for simultaneous use

	16 Do-files
	16.1 Description
	16.2 Calling other do-files
	16.3 Creating and running do-files
	16.4 Programming with do-files
	16.5 References

	17 Ado-files
	17.1 Description
	17.2 What is an ado-file?
	17.3 How can I tell if a command is built in or an ado-file?
	17.4 How can I look at an ado-file?
	17.5 Where does Stata look for ado-files?
	17.6 How do I install an addition?
	17.7 How do I add my own ado-files?
	17.8 How do I install official updates?
	17.9 How do I install updates to user-written additions?
	17.10 Reference

	18 Programming Stata
	18.1 Description
	18.2 Relationship between a program and a do-file
	18.3 Macros
	18.4 Program arguments
	18.5 Scalars and matrices
	18.6 Temporarily destroying the data in memory
	18.7 Temporary objects
	18.8 Accessing results calculated by other programs
	18.9 Accessing results calculated by estimation commands
	18.10 Storing results
	18.11 Ado-files
	18.12 Tools for interacting with programs outside Stata and with other languages
	18.13 A compendium of useful commands for programmers
	18.14 References

	19 Immediate commands
	19.1 Overview
	19.2 The display command
	19.3 The power command

	20 Estimation and postestimation commands
	20.1 All estimation commands work the same way
	20.2 Standard syntax
	20.3 Replaying prior results
	20.4 Cataloging estimation results
	20.5 Saving estimation results
	20.6 Specifying the estimation subsample
	20.7 Specifying the width of confidence intervals
	20.8 Formatting the coefficient table
	20.9 Obtaining the variance--covariance matrix
	20.10 Obtaining predicted values
	20.11 Accessing estimated coefficients
	20.12 Performing hypothesis tests on the coefficients
	20.13 Obtaining linear combinations of coefficients
	20.14 Obtaining nonlinear combinations of coefficients
	20.15 Obtaining marginal means, adjusted predictions, and predictive margins
	20.16 Obtaining conditional and average marginal effects
	20.17 Obtaining pairwise comparisons
	20.18 Obtaining contrasts, tests of interactions, and main effects
	20.19 Graphing margins, marginal effects, and contrasts
	20.20 Dynamic forecasts and simulations
	20.21 Obtaining robust variance estimates
	20.22 Obtaining scores
	20.23 Weighted estimation
	20.24 A list of postestimation commands
	20.25 References

	Advice
	21 Entering and importing data
	21.1 Overview
	21.2 Determining which method to use
	21.3 If you run out of memory
	21.4 Transfer programs
	21.5 ODBC sources
	21.6 Reference

	22 Combining datasets
	22.1 References

	23 Working with strings
	23.1 Description
	23.2 Categorical string variables
	23.3 Mistaken string variables
	23.4 Complex strings
	23.5 Reference

	24 Working with dates and times
	24.1 Overview
	24.2 Inputting dates and times
	24.3 Displaying dates and times
	24.4 Typing dates and times (datetime literals)
	24.5 Extracting components of dates and times
	24.6 Converting between date and time values
	24.7 Business dates and calendars
	24.8 References

	25 Working with categorical data and factor variables
	25.1 Continuous, categorical, and indicator variables
	25.2 Estimation with factor variables

	26 Overview of Stata estimation commands
	26.1 Introduction
	26.2 Means, proportions, and related statistics
	26.3 Linear regression with simple error structures
	26.4 Structural equation modeling (SEM)
	26.5 ANOVA, ANCOVA, MANOVA, and MANCOVA
	26.6 Generalized linear models
	26.7 Binary-outcome qualitative dependent-variable models
	26.8 ROC analysis
	26.9 Conditional logistic regression
	26.10 Multiple-outcome qualitative dependent-variable models
	26.11 Count dependent-variable models
	26.12 Exact estimators
	26.13 Linear regression with heteroskedastic errors
	26.14 Stochastic frontier models
	26.15 Regression with systems of equations
	26.16 Models with endogenous sample selection
	26.17 Models with time-series data
	26.18 Panel-data models
	26.19 Multilevel mixed-effects models
	26.20 Survival-time (failure-time) models
	26.21 Treatment-effect models
	26.22 Generalized method of moments (GMM)
	26.23 Estimation with correlated errors
	26.24 Survey data
	26.25 Multiple imputation
	26.26 Multivariate and cluster analysis
	26.27 Pharmacokinetic data
	26.28 Specification search tools
	26.29 Power and sample-size analysis
	26.30 Obtaining new estimation commands
	26.31 References

	27 Commands everyone should know
	27.1 41 commands
	27.2 The by construct

	28 Using the Internet to keep up to date
	28.1 Overview
	28.2 Sharing datasets (and other files)
	28.3 Official updates
	28.4 Downloading and managing additions by users
	28.5 Making your own download site

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	[D] Data Management
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	data management
	Description
	Reference
	Also see

	append
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	assert
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	bcal
	Syntax
	Menu
	Description
	Option for bcal check
	Options for bcal create
	Remarks and examples
	Stored results
	Also see

	by
	Syntax
	Description
	Options
	Remarks and examples
	References
	Also see

	cd
	Syntax
	Description
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix

	Also see

	cf
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	changeeol
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	checksum
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	clear
	Syntax
	Description
	Remarks and examples
	Also see

	clonevar
	Syntax
	Menu
	Description
	Remarks and examples
	Acknowledgments
	Also see

	codebook
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	collapse
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introductory examples
	Variablewise or casewise deletion
	Weights
	A final example

	Acknowledgment
	Also see

	compare
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	compress
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	contract
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	copy
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	corr2data
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	count
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	References
	Also see

	cross
	Syntax
	Menu
	Description
	Remarks and examples
	References
	Also see

	data types
	Description
	Remarks and examples
	Precision of numeric storage types

	Also see

	datasignature
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using datasignature interactively
	Using datasignature in do-files
	Interpreting data signatures
	The logic of data signatures

	Stored results
	Methods and formulas
	Reference
	Also see

	datetime
	Syntax
	Types of dates and their human readable forms (HRFs)
	Stata internal form (SIF)
	HRF-to-SIF conversion functions
	Displaying SIFs in HRF
	Building SIFs from components
	SIF-to-SIF conversion
	Extracting time-of-day components from SIFs
	Extracting date components from SIFs
	Conveniently typing SIF values
	Obtaining and working with durations
	Using dates and times from other software

	Description
	Remarks and examples
	References
	Also see

	datetime business calendars
	Syntax
	Description
	Remarks and examples
	Step 1: Read the data, date as string
	Step 2: Convert date variable to %td date
	Step 3: Convert %td date to %tb date
	Key feature: Each business calendar has its own encoding
	Key feature: Omitted dates really are omitted
	Key feature: Extracting components from %tb dates
	Key feature: Merging on dates

	Also see

	datetime business calendars creation
	Syntax
	Description
	Remarks and examples
	Introduction
	Concepts
	The preliminary commands
	The omit commands: from/to and if
	The omit commands: and
	The omit commands: omit date
	The omit commands: omit dayofweek
	The omit commands: omit dowinmonth
	Creating stbcal-files with bcal create
	Where to place stbcal-files
	How to debug stbcal-files
	Ideas for calendars that may not occur to you

	Also see

	datetime display formats
	Syntax
	Description
	Remarks and examples
	Specifying display formats
	Times are truncated, not rounded, when displayed

	Also see

	datetime translation
	Syntax
	Description
	Remarks and examples
	Introduction
	Specifying the mask
	How the HRF-to-SIF functions interpret the mask
	Working with two-digit years
	Working with incomplete dates and times
	Translating run-together dates, such as 20060125
	Valid times
	The clock() and Clock() functions
	Why there are two SIF datetime encodings
	Advice on using datetime/c and datetime/C
	Determining when leap seconds occurred
	The date() function
	The other translation functions

	Also see

	describe
	Syntax
	Menu
	Description
	Options to describe data in memory
	Options to describe data in file
	Remarks and examples
	describe
	describe, replace

	Stored results
	References
	Also see

	destring
	Syntax
	Menu
	Description
	Options for destring
	Options for tostring
	Remarks and examples
	destring
	tostring
	Saved characteristics

	Acknowledgment
	References
	Also see

	dir
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	drawnorm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	drop
	Syntax
	Menu
	Description
	Remarks and examples
	Reference
	Also see

	ds
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	duplicates
	Syntax
	Menu
	Description
	Options
	Options for duplicates examples and duplicates list
	Option for duplicates tag
	Option for duplicates drop

	Remarks and examples
	Acknowledgments
	References
	Also see

	edit
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Modes
	The current observation and current variable
	Assigning value labels to variables
	Changing values of existing cells
	Adding new variables
	Adding new observations
	Copying and pasting
	Logging changes
	Advice

	References
	Also see

	egen
	Syntax
	Menu
	Description
	Remarks and examples
	Summary statistics
	Generating patterns
	Marking differences among variables
	Ranks
	Standardized variables
	Row functions
	Categorical and integer variables
	String variables
	U.S. marginal income tax rate

	Methods and formulas
	Acknowledgments
	References
	Also see

	encode
	Syntax
	Menu
	Description
	Options for encode
	Options for decode
	Remarks and examples
	encode
	decode

	Reference
	Also see

	erase
	Syntax
	Description
	Remarks and examples
	Also see

	expand
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Reference
	Also see

	expandcl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	export
	Description
	Remarks and examples
	Summary of the different methods
	export excel
	export delimited
	odbc
	outfile
	export sasxport
	xmlsave

	Also see

	filefilter
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	fillin
	Syntax
	Menu
	Description
	Remarks and examples
	References
	Also see

	format
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Setting formats
	Setting European formats
	Details of formats
	Other effects of formats
	Displaying current formats

	References
	Also see

	functions
	Description
	Mathematical functions
	abs()
	acos()
	acosh()
	asin()
	asinh()
	atan()
	atan2()
	atanh()
	ceil()
	cloglog()
	comb()
	cos()
	cosh()
	digamma()
	exp()
	floor()
	int()
	invcloglog()
	invlogit()
	ln()
	lnfactorial()
	lngamma()
	log()
	log10()
	logit()
	max()
	min()
	mod()
	reldif()
	round()
	sign()
	sin()
	sinhh()
	sqrt()
	sum()
	tan()
	tanh()
	trigamma()
	trunc()

	Probability distributions and density functions
	Beta and noncentral beta distributions
	ibeta()
	betaden()
	ibetatail()
	invibeta()
	invibetatail()
	nibeta()
	invnibeta()
	Binomial distribution
	binomial()
	binomialp()
	binomialtail()
	invbinomial()
	invbinomialtail()
	Chi-squared and noncentral chi-squared distributions
	chi2()
	chi2den()
	chi2tail()
	invchi2()
	invchi2tail()
	nchi2()
	nchi2den()
	nchi2tail()
	invnchi2()
	invnchi2tail()
	npnchi2()
	Dunnett's multiple range distribution
	dunnettprob()
	invdunnettprob()
	F and noncentral F distributions
	F()
	Fden()
	Ftail()
	invF()
	invFtail()
	nF()
	nFtail()
	invnFtail()
	npnF()
	Gamma distribution
	gammap()
	gammaden()
	gammaptail()
	invgammap()
	invgammaptail()
	dgammapda()
	dgammapdada()
	dgammapdadx()
	dgammapdx()
	dgammapdxdx()
	Hypergeometric distribution
	hypergeometric()
	hypergeometricp()
	Negative binomial distribution
	nbinomial()
	nbinomialp()
	nbinomialtail()
	invnbinomial()
	invnbinomiailtail()
	Normal (Gaussian), log of the normal, and binormal distributions
	binormal()
	normal()
	normalden()
	invnormal()
	lnnormal()
	Poisson distribution
	poisson()
	poissonp()
	poissontail()
	invpoisson()
	invpoissontail()
	Student's t and noncentral Student's t distributions
	t()
	tden()
	ttail()
	invt()
	invttail()
	nt()
	ntden()
	nttail()
	invnttail()
	npnt()
	Tukey's Studentized range distribution
	tukeyprob()
	invtukeyprob()

	Random-number functions
	runiform()
	rbeta()
	rbinomial()
	rchi2()
	rgamma()
	rhypergeometric()
	rnbinomial()
	rnormal()
	rpoisson()
	rt()

	String functions
	abbrev()
	char()
	indexnot()
	itrim()
	length()
	lower()
	ltrim()
	plural()
	proper()
	real()
	regexm()
	regexr()
	regexs()
	reverse()
	rtrim()
	soundex()
	soundex_nara()
	strcat()
	strdup()
	string()
	strlen()
	strlower()
	strltrim()
	strmatch()
	strofreal()
	strpos()
	strproper()
	strreverse()
	strrtrim()
	strtoname()
	strtrim()
	strupper()
	subinstr()
	subinword()
	substr()
	trim()
	upper()
	word()
	wordcount()

	Programming functions
	autocode()
	byteorder()
	c()
	_caller()
	chop()
	clip()
	cond()
	e()
	e(sample)
	epsdouble()
	epsfloat()
	fileexists()
	fileread()
	filereaderror()
	filewrite()
	float()
	fmtwidth()
	has_eprop()
	inlist()
	inrange()
	irecode()
	matrix()
	maxbyte()
	maxdouble()
	maxfloat()
	maxint()
	maxlong()
	mi()
	minbyte()
	mindouble()
	minfloat()
	minint()
	minlong()
	missing()
	r()
	recode()
	replay()
	return()
	s()
	scalar()
	smallestdouble()

	Date and time functions
	bofd()
	Cdhms()
	clock()
	Cmdyhms()
	Cofc()
	cofC()
	Cofd()
	cofd()
	daily()
	date()
	day()
	dhms()
	dofb()
	dofC()
	dofc()
	dofh()
	dofm()
	dofq()
	dofw()
	dofy()
	dow()
	doy()
	halfyear()
	halfyearly()
	hh()
	hhC()
	hms()
	hofd()
	hours()
	mdy()
	mdyhms()
	minutes()
	mm()
	mmC()
	mofd()
	month()
	monthly()
	msofhours()
	msofminutes()
	msofseconds()
	qofd()
	quarter()
	quarterly()
	seconds()
	ss()
	ssC()
	tC()
	tc()
	td()
	th()
	tm()
	tq()
	tw()
	week()
	weekly()
	wofd()
	year()
	yearly()
	yh()
	ym()
	yofd()
	yq()
	yw()

	Selecting time spans
	tin()

	Matrix functions returning a matrix
	cholesky()
	corr()
	diag()
	get()
	hadamard()
	I()
	inv()
	invsym()
	J()
	matuniform()
	nullmat()
	sweep()
	vec()
	vecdiag()

	Matrix functions returning a scalar
	colsof()
	det()
	diag0cnt()
	el()
	issymmetric()
	matmissing()
	mreldif()
	rownumb()
	rowsof()
	trace()

	Acknowledgments
	References
	Also see

	generate
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	generate and replace
	set type

	Methods and formulas
	References
	Also see

	gsort
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	hexdump
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	icd9
	Syntax
	Menu
	Description
	Options
	Options for icd9 check
	Options for icd9 clean
	Options for icd9 generate
	Option for icd9 search

	Remarks and examples
	Descriptions

	Stored results
	Reference

	import
	Description
	Remarks and examples
	Summary of the different methods
	import excel
	import delimited
	odbc
	infile (free format){---}infile without a dictionary
	infix (fixed format)
	infile (fixed format){---}infile with a dictionary
	import sasxport
	import haver (Windows only)
	xmluse

	Examples
	Video example

	Reference
	Also see

	import delimited
	Syntax
	Menu
	Description
	Options for import delimited
	Options for export delimited
	Remarks and examples
	import delimited
	export delimited

	Also see

	import excel
	Syntax
	Menu
	Description
	Options for import excel
	Options for export excel
	Remarks and examples
	Video example

	Stored results
	References
	Also see

	import haver
	Syntax
	Menu
	Description
	Options for import haver
	Options for import haver, describe
	Option for set haverdir
	Remarks and examples
	Installation
	Setting the path to Haver databases
	Download example Haver databases
	Determining the contents of a Haver database
	Loading a Haver database
	Loading a Haver database from a describe file
	Temporal aggregation
	Daily data
	Weekly data

	Stored results
	Acknowledgment
	Also see

	import sasxport
	Syntax
	Menu
	Description
	Options for import sasxport
	Option for import sasxport, describe
	Options for export sasxport
	Remarks and examples
	Saving XPORT files for transferring to SAS
	Determining the contents of XPORT files received from SAS
	Using XPORT files received from SAS

	Stored results
	Technical appendix
	A1. Overview of SAS XPORT Transport format
	A2. Implications for writing XPORT datasets from Stata
	A3. Implications for reading XPORT datasets into Stata

	Also see

	infile (fixed format)
	Syntax
	Menu
	Description
	Options
	Dictionary directives

	Remarks and examples
	Introduction
	Reading free-format files
	Reading fixed-format files
	Numeric formats
	String formats
	Specifying column and line numbers
	Examples of reading fixed-format files
	Reading fixed-block files
	Reading EBCDIC files

	References
	Also see

	infile (free format)
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reading free-format data
	Reading comma-separated data
	Specifying variable types
	Reading string variables
	Skipping variables
	Skipping observations
	Reading time-series data

	Also see

	infix (fixed format)
	Syntax
	Menu
	Description
	Options
	Specifications

	Remarks and examples
	Two ways to use infix
	Reading string variables
	Reading data with multiple lines per observation
	Reading subsets of observations

	Also see

	input
	Syntax
	Description
	Options
	Remarks and examples
	Reference
	Also see

	inspect
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Also see

	ipolate
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	isid
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	joinby
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgment
	Reference
	Also see

	label
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	label language
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Creating labels in the first language
	Creating labels in the second and subsequent languages
	Creating labels from a clean slate
	Creating labels from a previously existing language
	Switching languages
	Changing the name of a language
	Deleting a language
	Appendix: Selected ISO 639-1 two-letter codes

	Stored results
	Methods and formulas
	References
	Also see

	labelbook
	Syntax
	Menu
	Description
	Options
	Options for labelbook
	Options for numlabel
	Options for uselabel

	Remarks and examples
	labelbook
	Diagnosing problems
	numlabel
	uselabel

	Stored results
	Acknowledgments
	References
	Also see

	list
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	lookfor
	Syntax
	Description
	Remarks and examples
	Stored results
	References
	Also see

	memory
	Syntax
	Description
	Options
	Remarks and examples
	Examples
	Serious bug in Linux OS
	Notes for system administrators

	Stored results
	Reference
	Also see

	merge
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Basic description
	1:1 merges
	m:1 merges
	1:m merges
	m:m merges
	Sequential merges
	Treatment of overlapping variables
	Sort order
	Troubleshooting m:m merges
	Examples

	References
	Also see

	missing values
	Description
	Remarks and examples
	Reference
	Also see

	mkdir
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	mvencode
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgment
	Also see

	notes
	Syntax
	Menu
	Description
	Remarks and examples
	How notes are numbered
	Attaching and listing notes
	Selectively listing notes
	Searching and replacing notes
	Deleting notes
	Warnings

	References
	Also see

	obs
	Syntax
	Description
	Remarks and examples
	Also see

	odbc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Setting up the data sources
	Listing ODBC data source names
	Listing available table names from a specified data source's system catalog
	Describing a specified table
	Loading data from ODBC sources

	Also see

	order
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	outfile
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	pctile
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	pctile
	xtile
	_pctile

	Stored results
	Methods and formulas
	Acknowledgment
	Also see

	putmata
	Syntax
	Description
	Options for putmata
	Options for getmata
	Remarks and examples
	Use of putmata
	Use of putmata and getmata
	Using putmata and getmata on subsets of observations
	Using views
	Constructing do-files

	Stored results
	Reference
	Also see

	range
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	recast
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	recode
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Simple examples
	Setting up value labels with recode
	Referring to the minimum and maximum in rules
	Recoding missing values
	Recoding subsets of the data
	Otherwise rules
	Test for overlapping rules

	Acknowledgment
	Also see

	rename
	Syntax
	Menu
	Description
	Remarks and examples
	References
	Also see

	rename group
	Syntax
	Menu
	Description
	Options for renaming variables
	Options for changing the case of groups of variable names
	Remarks and examples
	Advice
	Explanation
	* matches 0 or more characters; use ?* to match 1 or more
	* is greedy
	# is greedier

	Stored results
	Also see

	reshape
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Description of basic syntax
	Wide and long data forms
	Avoiding and correcting mistakes
	reshape long and reshape wide without arguments
	Missing variables
	Advanced issues with basic syntax: i()
	Advanced issues with basic syntax: j()
	Advanced issues with basic syntax: xij
	Advanced issues with basic syntax: String identifiers for j()
	Advanced issues with basic syntax: Second-level nesting
	Description of advanced syntax

	Stored results
	Acknowledgment
	References
	Also see

	rmdir
	Syntax
	Description
	Remarks and examples
	Also see

	sample
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	save
	Syntax
	Menu
	Description
	Options for save
	Options for saveold
	Remarks and examples
	Also see

	separate
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	Reference
	Also see

	shell
	Syntax
	Description
	Remarks and examples
	Stata for Windows
	Stata for Mac
	Stata for Unix(GUI)
	Stata for Unix(console)

	Also see

	snapshot
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	sort
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	References
	Also see

	split
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	Also see

	stack
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	statsby
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Collecting coefficients and standard errors
	Collecting stored results
	All subsets

	Acknowledgment
	References
	Also see

	sysuse
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	A note concerning shipped datasets
	Using user-installed datasets
	How sysuse works

	Stored results
	Also see

	type
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	use
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	varmanage
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	webuse
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Typical use
	A note concerning example datasets
	Redirecting the source

	Also see

	xmlsave
	Syntax
	Menu
	Description
	Options for xmlsave
	Options for xmluse
	Remarks and examples
	Also see

	xpose
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	zipfile
	Syntax
	Description
	Option for zipfile
	Option for unzipfile
	Remarks and examples

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[G] Graphics
	Contents
	Introduction
	intro
	Description
	Remarks and examples
	What's new

	Also see

	graph intro
	Remarks and examples
	Suggested reading order
	A quick tour
	Using the menus

	References
	Also see

	graph editor
	Remarks and examples
	Quick start
	Introduction
	Starting and stopping the Graph Editor
	The tools
	The Object Browser
	Right-click menus, or Contextual menus
	The Standard Toolbar
	The main Graph Editor menu
	Grid editing
	Graph Recorder
	Tips, tricks, and quick edits

	Also see

	Commands
	graph
	Syntax
	Description
	Remarks and examples
	Also see

	graph bar
	Syntax
	Menu
	Description
	Options
	group_options
	yvar_options
	lookofbar_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of bars
	Treatment of data
	Obtaining frequencies
	Multiple bars (overlapping the bars)
	Controlling the text of the legend
	Multiple over()s (repeating the bars)
	Nested over()s
	Charts with many categories
	How bars are ordered
	Reordering the bars
	Putting the bars in a prespecified order
	Putting the bars in height order
	Putting the bars in a derived order
	Reordering the bars, example
	Use with by()
	Video example
	History

	References
	Also see

	graph box
	Syntax
	Menu
	Description
	Options
	group_options
	yvar_options
	boxlook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Introduction
	Examples of syntax
	Treatment of multiple yvars versus treatment of over() groups
	How boxes are ordered
	Reordering the boxes
	Putting the boxes in a prespecified order
	Putting the boxes in median order
	Use with by()
	Video example
	History

	Methods and formulas
	References
	Also see

	graph combine
	Syntax
	Description
	Options
	Remarks and examples
	Typical use
	Typical use with memory graphs
	Combining twoway graphs
	Advanced use
	Controlling the aspect ratio of subgraphs

	Reference
	Also see

	graph copy
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	graph describe
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Also see

	graph dir
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	graph display
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Changing the size and aspect ratio
	Changing the margins and aspect ratio
	Changing the scheme

	Also see

	graph dot
	Syntax
	Menu
	Description
	Options
	group_options
	yvar_options
	linelook_options
	legending_options
	axis_options
	title_and_other_options
	Suboptions for use with over() and yvaroptions()

	Remarks and examples
	Relationship between dot plots and horizontal bar charts
	Examples
	Appendix: Examples of syntax

	References
	Also see

	graph drop
	Syntax
	Menu
	Description
	Remarks and examples
	Typical use
	Relationship between graph drop _all and discard
	Erasing graphs on disk

	Also see

	graph export
	Syntax
	Description
	Options
	Remarks and examples
	Exporting the graph displayed in a Graph window
	Exporting a graph stored on disk
	Exporting a graph stored in memory

	Also see

	graph manipulation
	Syntax
	Description
	Remarks and examples
	Overview of graphs in memory and graphs on disk
	Summary of graph manipulation commands

	Also see

	graph matrix
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Marker symbols and the number of observations
	Controlling the axes labeling
	Adding grid lines
	Adding titles
	Use with by()
	History

	References
	Also see

	graph other
	Syntax
	Description
	Remarks and examples
	Also see

	graph pie
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Data are summed
	Data may be long rather than wide
	How slices are ordered
	Ordering slices by size
	Reordering the slices
	Use with by()
	Video example
	History

	References
	Also see

	graph play
	Syntax
	Description
	Remarks and examples
	Also see

	graph print
	Syntax
	Description
	Options
	Remarks and examples
	Printing the graph displayed in a Graph window
	Printing a graph stored on disk
	Printing a graph stored in memory
	Appendix: Setting up Stata for Unix to print graphs

	Also see

	graph query
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	graph rename
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	graph save
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	graph set
	Syntax
	Description
	Remarks and examples
	Overview
	Setting defaults

	Also see

	graph twoway
	Syntax
	Menu
	Description
	Remarks and examples
	Definition
	Syntax
	Multiple if and in restrictions
	twoway and plot options

	graph twoway area
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway bar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use: Overlaying
	Advanced use: Population pyramid
	Cautions

	Also see

	graph twoway connected
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway contour
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Controlling the number of contours and their values
	Controlling the colors of the contour areas
	Choose the interpolation method
	Video example

	Reference
	Also see

	graph twoway contourline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Controlling the number of contour lines and their values
	Controlling the colors of the contour lines
	Choose the interpolation method

	Also see

	graph twoway dot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	graph twoway dropline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway fpfit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway fpfitci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway function
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use 1
	Advanced use 2

	Reference
	Also see

	graph twoway histogram
	Syntax
	Menu
	Description
	Options for use in the discrete case
	Options for use in the continuous case
	Options for use in both cases
	Remarks and examples
	Relationship between graph twoway histogram and histogram
	Typical use
	Use with by()
	History

	References
	Also see

	graph twoway kdensity
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lfit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway lfitci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway line
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Oneway equivalency of line and scatter
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway lowess
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpoly
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Use with by()

	References
	Also see

	graph twoway lpolyci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mband
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Use with by()

	Also see

	graph twoway mspline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway pcarrow
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic use
	Advanced use

	References
	Also see

	graph twoway pcarrowi
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway pccapsym
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic use 1
	Basic use 2

	Also see

	graph twoway pci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway pcscatter
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway pcspike
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic use
	Advanced use
	Advanced use 2

	Reference
	Also see

	graph twoway qfit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Cautions
	Use with by()

	Also see

	graph twoway qfitci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions
	Use with by()

	Also see

	graph twoway rarea
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway rbar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use

	Reference
	Also see

	graph twoway rcap
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway rcapsym
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway rconnected
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway rline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway rscatter
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway rspike
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Advanced use 2

	Also see

	graph twoway scatter
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Scatter syntax
	The overall look for the graph
	The size and aspect ratio of the graph
	Titles
	Axis titles
	Axis labels and ticking
	Grid lines
	Added lines
	Axis range
	Log scales
	Multiple axes
	Markers
	Weighted markers
	Jittered markers
	Connected lines
	Graphs by groups
	Saving graphs
	Video example
	Appendix: Styles and composite styles

	References
	Also see

	graph twoway scatteri
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	graph twoway spike
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Typical use
	Advanced use
	Cautions

	Also see

	graph twoway tsline
	Syntax
	Menu
	Description
	Also see

	graph use
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	palette
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	set graphics
	Syntax
	Description
	Remarks and examples
	Also see

	set printcolor
	Syntax
	Description
	Option
	Remarks and examples
	What set printcolor affects
	The problem set printcolor solves
	set printcolor automatic
	set printcolor asis
	set printcolor gs1, gs2, and gs3
	The scheme matters, not the background color you set

	Also see

	set scheme
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	Options
	added_line_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Typical use
	Interpretation of repeated options

	Reference
	Also see

	added_text_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Typical use
	Advanced use
	Use of the textbox option width()

	Reference
	Also see

	addplot_option
	Syntax
	Description
	Option
	Remarks and examples
	Commands that allow the addplot() option
	Advantage of graph twoway commands
	Advantages of graphic commands implemented outside graph twoway
	Use of the addplot() option

	Also see

	advanced_options
	Syntax
	Description
	Options
	Remarks and examples
	Use of yvarlabel() and xvarlabel()
	Use of yvarformat() and xvarformat()
	Use of recast()

	Also see

	area_options
	Syntax
	Description
	Options
	Remarks and examples
	Use with twoway
	Use with graph dot

	Also see

	aspect_option
	Syntax
	Description
	Option
	Suboption
	Remarks and examples
	Reference
	Also see

	axis_choice_options
	Syntax
	Description
	Options
	Remarks and examples
	Usual case: one set of axes
	Special case: multiple axes due to multiple scales
	yaxis(1) and xaxis(1) are the defaults
	Notation style is irrelevant
	yaxis() and xaxis() are plot options
	Specifying the other axes options with multiple axes
	Each plot may have at most one x scale and one y scale
	Special case: Multiple axes with a shared scale

	Reference
	Also see

	axis_label_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Default labeling and ticking
	Controlling the labeling and ticking
	Adding extra ticks
	Adding minor labels and ticks
	Adding grid lines
	Suppressing grid lines
	Substituting text for labels
	Contour axes---zlabel(), etc.
	Appendix: Details of syntax

	Reference
	Also see

	axis_options
	Syntax
	Description
	Options
	Remarks and examples
	Use of axis-appearance options with graph twoway
	Multiple y and x scales
	Axis on the left, axis on the right?
	Contour axes---zscale(), zlabel(), etc.

	Also see

	axis_scale_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Use of the yscale() and xscale()
	Specifying the range of a scale
	Obtaining log scales
	Obtaining reversed scales
	Suppressing the axes
	Contour axes---zscale()

	References
	Also see

	axis_title_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Default axis titles
	Overriding default titles
	Specifying multiline titles
	Suppressing axis titles
	Interpretation of repeated options
	Titles with multiple y axes or multiple x axes
	Contour axes---ztitle()

	Also see

	barlook_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	blabel_option
	Syntax
	Description
	Option
	Suboptions

	Remarks and examples
	Increasing the information content
	Changing how bars are labeled

	Also see

	by_option
	Syntax
	Description
	Option
	byopts
	Remarks and examples
	Typical use
	Placement of graphs
	Treatment of titles
	by() uses subtitle() with graph
	Placement of the subtitle()
	by() uses the overall note()
	Use of legends with by()
	By-styles
	Labeling the edges
	Specifying separate scales for the separate plots
	History

	References
	Also see

	cat_axis_label_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	cat_axis_line_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	clegend_option
	Syntax
	Description
	Option
	Content and appearance suboptions for use with clegend()
	Suboptions for use with clegend(region())
	Location suboptions for use with clegend()

	Remarks and examples
	When contour legends appear
	Where contour legends appear
	Putting titles on contour legends
	Controlling the axis in contour legends
	Use of legends with by()

	Also see

	cline_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	connect_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	eps_options
	Syntax
	Description
	Options
	Remarks and examples
	Using the eps_options
	Setting defaults
	Note about PostScript fonts

	Also see

	fcline_options
	Syntax
	Description
	Options
	Remarks and examples

	fitarea_options
	Syntax
	Description
	Options
	Remarks and examples

	legend_options
	Syntax
	Description
	Options
	Content suboptions for use with legend() and plegend()
	Suboptions for use with legend(region())
	Location suboptions for use with legend()

	Remarks and examples
	When legends appear
	The contents of legends
	Where legends appear
	Putting titles on legends
	Use of legends with by()
	Problems arising with or because of legends

	Also see

	line_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	marker_label_options
	Syntax
	Description
	Options
	Remarks and examples
	Typical use
	Eliminating overprinting and overruns
	Advanced use
	Using marker labels in place of markers

	Also see

	marker_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	name_option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	nodraw_option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	play_option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	png_options
	Syntax
	Description
	Options
	Remarks and examples
	Using png_options
	Specifying the width or height

	Also see

	pr_options
	Syntax
	Description
	Options
	Remarks and examples
	Using the pr_options
	Setting defaults
	Note for Unix users

	Also see

	ps_options
	Syntax
	Description
	Options
	Remarks and examples
	Using the ps_options
	Setting defaults
	Note about PostScript fonts
	Note for Unix users

	Also see

	rcap_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	region_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Setting the offset between the axes and the plot region
	Controlling the aspect ratio
	Suppressing the border around the plot region
	Setting background and fill colors
	How graphs are constructed

	Also see

	rspike_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	saving_option
	Syntax
	Description
	Option
	Suboptions

	Remarks and examples
	Also see

	scale_option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	scheme_option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	std_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	textbox_options
	Syntax
	Description
	Options
	Remarks and examples
	Definition of a textbox
	Position
	Justification
	Position and justification combined
	Margins
	Width and height
	Appendix: Overriding default or context-specified positioning

	Also see

	tif_options
	Syntax
	Description
	Options
	Remarks and examples
	Using tif_options
	Specifying the width or height

	Also see

	title_options
	Syntax
	Description
	Options
	Suboptions

	Remarks and examples
	Multiple-line titles
	Interpretation of repeated options
	Positioning of titles
	Alignment of titles
	Spanning
	Using the textbox options box and bexpand

	Reference
	Also see

	twoway_options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	Styles/concepts/schemes
	addedlinestyle
	Syntax
	Description
	Remarks and examples
	What is an added line?
	What is an addedlinestyle?
	You do not need to specify an addedlinestyle

	Also see

	alignmentstyle
	Syntax
	Description
	Remarks and examples
	Also see

	anglestyle
	Syntax
	Description
	Remarks and examples
	Also see

	areastyle
	Syntax
	Description
	Remarks and examples
	Overview of areastyles
	Numbered styles
	Using numbered styles
	When to use areastyles

	Also see

	axisstyle
	Syntax
	Description
	Remarks and examples
	Also see

	bystyle
	Syntax
	Description
	Remarks and examples
	What is a by-graph?
	What is a bystyle?

	Also see

	clockposstyle
	Syntax
	Description
	Remarks and examples
	Also see

	colorstyle
	Syntax
	Description
	Remarks and examples
	Colors are independent of the background color
	White backgrounds and black backgrounds
	RGB values
	CMYK values
	HSV values
	Adjusting intensity

	Also see

	compassdirstyle
	Syntax
	Description
	Remarks and examples
	Also see

	concept: gph files
	Description
	Remarks and examples
	Background
	Gph files are machine/operating system independent
	Gph files come in three forms
	Advantages of live-format files
	Advantages of as-is format files
	Retrieving data from live-format files

	Also see

	concept: lines
	Syntax
	Description
	Remarks and examples
	linestyle
	linepatternstyle
	linewidthstyle
	colorstyle

	Also see

	concept: repeated options
	Syntax
	Remarks and examples
	Also see

	connectstyle
	Syntax
	Description
	Remarks and examples
	Also see

	gridstyle
	Syntax
	Description
	Remarks and examples
	What is a grid?
	What is a gridstyle?
	You do not need to specify a gridstyle
	Turning off and on the grid

	Also see

	intensitystyle
	Syntax
	Description
	Remarks and examples
	Also see

	justificationstyle
	Syntax
	Description
	Remarks and examples
	Also see

	legendstyle
	Syntax
	Description
	Remarks and examples
	What is a legend?
	What is a legendstyle?
	You do not need to specify a legendstyle

	Also see

	linepatternstyle
	Syntax
	Description
	Remarks and examples
	Also see

	linestyle
	Syntax
	Description
	Remarks and examples
	What is a line?
	What is a linestyle?
	You do not need to specify a linestyle
	Specifying a linestyle can be convenient
	What are numbered styles?
	Suppressing lines

	Reference
	Also see

	linewidthstyle
	Syntax
	Description
	Remarks and examples
	Also see

	marginstyle
	Syntax
	Description
	Remarks and examples
	Also see

	markerlabelstyle
	Syntax
	Description
	Remarks and examples
	What is a markerlabel?
	What is a markerlabelstyle?
	You do not need to specify a markerlabelstyle
	Specifying a markerlabelstyle can be convenient
	What are numbered styles?

	Also see

	markersizestyle
	Syntax
	Description
	Remarks and examples
	Also see

	markerstyle
	Syntax
	Description
	Remarks and examples
	What is a marker?
	What is a markerstyle?
	You do not have to specify a markerstyle
	Specifying a markerstyle can be convenient
	What are numbered styles?

	Also see

	orientationstyle
	Syntax
	Description
	Remarks and examples
	Also see

	plotregionstyle
	Syntax
	Description
	Remarks and examples
	Also see

	pstyle
	Syntax
	Description
	Remarks and examples
	What is a plot?
	What is a pstyle?
	The pstyle() option
	Specifying a pstyle
	What are numbered styles?

	Also see

	relativesize
	Syntax
	Description
	Remarks and examples
	Also see

	ringposstyle
	Syntax
	Description
	Remarks and examples
	Also see

	schemes intro
	Syntax
	Description
	Remarks and examples
	The role of schemes
	Finding out about other schemes
	Setting your default scheme
	The scheme is applied at display time
	Background color
	Foreground color
	Obtaining new schemes
	Examples of schemes

	Also see

	scheme economist
	Syntax
	Description
	Remarks and examples
	Also see

	scheme s1
	Syntax
	Description
	Remarks and examples
	Also see

	scheme s2
	Syntax
	Description
	Remarks and examples
	Also see

	scheme sj
	Syntax
	Description
	Remarks and examples
	Also see

	shadestyle
	Syntax
	Description
	Remarks and examples
	What is a shadestyle?
	What are numbered styles?

	Also see

	stylelists
	Syntax
	Description
	Also see

	symbolstyle
	Syntax
	Description
	Remarks and examples
	Typical use
	Filled and hollow symbols
	Size of symbols

	Also see

	text
	Description
	Remarks and examples
	Overview
	Bold and italics
	Superscripts and subscripts
	Fonts, standard
	Fonts, advanced
	Greek letters and other symbols
	Full list of SMCL tags useful in graph text

	Also see

	textboxstyle
	Syntax
	Description
	Remarks and examples
	What is a textbox?
	What is a textboxstyle?
	You do not need to specify a textboxstyle

	Also see

	textsizestyle
	Syntax
	Description
	Also see

	textstyle
	Syntax
	Description
	Remarks and examples
	What is text?
	What is a textstyle?
	You do not need to specify a textstyle
	Relationship between textstyles and textboxstyles

	Also see

	ticksetstyle
	Syntax
	Description
	Also see

	tickstyle
	Syntax
	Description
	Remarks and examples
	What is a tick? What is a tick label?
	What is a tickstyle?
	You do not need to specify a tickstyle
	Suppressing ticks and/or tick labels

	Also see

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[ME] Multilevel Mixed Effects
	Contents
	me
	Syntax by example
	Formal syntax
	Description
	Remarks and examples
	Introduction
	Using mixed-effects commands
	Mixed-effects models
	Linear mixed-effects models
	Generalized linear mixed-effects models

	Alternative mixed-effects model specification
	Likelihood calculation
	Computation time and the Laplacian approximation
	Diagnosing convergence problems
	Distribution theory for likelihood-ratio test

	Examples
	Two-level models
	Covariance structures
	Three-level models
	Crossed-effects models

	Acknowledgments
	References
	Also see

	mecloglog
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	mecloglog postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	meglm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models for continuous responses
	Two-level models for nonlinear responses
	Three-level models for nonlinear responses
	Crossed-effects models
	Obtaining better starting values

	Stored results
	Methods and formulas
	Introduction
	Gauss--Hermite quadrature
	Adaptive Gauss--Hermite quadrature
	Laplacian approximation

	References
	Also see

	meglm postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	References
	Also see

	melogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	melogit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat icc
	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	menbreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models

	Stored results
	Methods and formulas
	References
	Also see

	menbreg postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	meologit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meologit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	meoprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meoprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	mepoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	mepoisson postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat group
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	meprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Three-level models

	Stored results
	Methods and formulas
	References
	Also see

	meprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat icc
	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	Also see

	meqrlogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Other covariance structures
	Three-level models
	Crossed-effects models

	Stored results
	Methods and formulas
	References
	Also see

	meqrlogit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat recovariance
	Option for estat icc
	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations

	References
	Also see

	meqrpoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	A two-level model
	A three-level model

	Stored results
	Methods and formulas
	References
	Also see

	meqrpoisson postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat recovariance
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mixed
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Two-level models
	Covariance structures
	Likelihood versus restricted likelihood
	Three-level models
	Blocked-diagonal covariance structures
	Heteroskedastic random effects
	Heteroskedastic residual errors
	Other residual-error structures
	Crossed-effects models
	Diagnosing convergence problems
	Survey data

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mixed postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat icc
	Options for estat recovariance
	Options for estat wcorrelation
	Remarks and examples
	Stored results
	Methods and formulas
	Prediction
	Intraclass correlations
	Within-cluster covariance matrix

	References
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	[MI] Multiple Imputation
	Contents
	intro substantive
	Description
	Remarks and examples
	Motivating example
	What is multiple imputation?
	Theory underlying multiple imputation
	How large should M be?
	Assumptions about missing data
	Patterns of missing data
	Proper imputation methods
	Analysis of multiply imputed data
	A brief introduction to MI using Stata
	Summary

	References
	Also see

	intro
	Syntax
	Description
	Remarks and examples
	A simple example
	Suggested reading order
	What's new

	Acknowledgments
	Also see

	estimation
	Description
	Also see

	mi add
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	mi append
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Adding new observations
	Adding new observations and imputations
	Adding new observations and imputations, M unequal
	Treatment of registered variables

	Stored results
	Also see

	mi convert
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using mi convert as a convenience tool
	Converting from flongsep
	Converting to flongsep

	Also see

	mi copy
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	mi describe
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	mi query
	mi describe

	Stored results
	Also see

	mi erase
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	mi estimate
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using mi estimate
	Example 1: Completed-data logistic analysis
	Example 2: Completed-data linear regression analysis
	Example 3: Completed-data survival analysis
	Example 4: Panel data and multilevel models
	Example 5: Estimating transformations
	Example 6: Monte Carlo error estimates
	Potential problems that can arise when using mi estimate

	Stored results
	Methods and formulas
	Univariate case
	Multivariate case

	Acknowledgments
	References
	Also see

	mi estimate using
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mi estimate postestimation
	Description
	Remarks and examples
	Using the command-specific postestimation tools

	Also see

	mi expand
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi export
	Syntax
	Description
	Remarks and examples
	References
	Also see

	mi export ice
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	References
	Also see

	mi export nhanes1
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi extract
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi import
	Syntax
	Description
	Remarks and examples
	When to use which mi import command
	Import data into Stata before importing into mi
	Using mi import nhanes1, ice, flong, and flongsep

	References
	Also see

	mi import flong
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi import flongsep
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi import ice
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	mi import nhanes1
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Description of the nhanes1 format
	Importing nhanes1 data

	Also see

	mi import wide
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi impute
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Imputation methods
	Imputation modeling
	Model building
	Outcome variables
	Transformations
	Categorical variables
	The issue of perfect prediction during imputation of categorical data
	Convergence of iterative methods
	Imputation diagnostics

	Using mi impute
	Univariate imputation
	Multivariate imputation
	Imputing on subsamples
	Conditional imputation
	Imputation and estimation samples
	Imputing transformations of incomplete variables

	Stored results
	Methods and formulas
	References
	Also see

	mi impute chained
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Multivariate imputation using chained equations
	Compatibility of conditionals
	Convergence of MICE
	First use
	Using mi impute chained
	Default prediction equations
	Custom prediction equations
	Link between mi impute chained and mi impute monotone
	Examples

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	mi impute intreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using interval regression
	Using mi impute intreg
	Example

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute logit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using logistic regression
	Using mi impute logit
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mlogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using multinomial logistic regression
	Using mi impute mlogit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute monotone
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Multivariate imputation when a missing-data pattern is monotone
	First use
	Using mi impute monotone
	Default syntax of mi impute monotone
	The alternative syntax of mi impute monotone---custom prediction equations
	Examples of using default prediction equations
	Examples of using custom prediction equations

	Stored results
	Methods and formulas
	References
	Also see

	mi impute mvn
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Incomplete continuous data with arbitrary pattern of missing values
	Multivariate imputation using data augmentation
	Convergence of the MCMC method
	Using mi impute mvn
	Examples

	Stored results
	Methods and formulas
	Data augmentation
	Prior distribution
	Initial values: EM algorithm
	 Worst linear function

	References
	Also see

	mi impute nbreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using negative binomial regression
	Using mi impute nbreg

	Stored results
	Methods and formulas
	Reference
	Also see

	mi impute ologit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using ordered logistic regression
	Using mi impute ologit

	Stored results
	Methods and formulas
	References
	Also see

	mi impute pmm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using predictive mean matching
	Using mi impute pmm
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute poisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using Poisson regression
	Using mi impute poisson

	Stored results
	Methods and formulas
	References
	Also see

	mi impute regress
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using linear regression
	Using mi impute regress
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	mi impute truncreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Univariate imputation using truncated regression
	Using mi impute truncreg

	Stored results
	Methods and formulas
	References
	Also see

	mi merge
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Merging with non-mi data
	Merging with mi data
	Merging with mi data containing overlapping variables

	Stored results
	Also see

	mi misstable
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	mi passive
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	mi passive basics
	mi passive works with the by prefix
	mi passive works fastest with the wide style
	mi passive and super-varying variables
	Renaming passive variables
	Dropping passive variables
	Update passive variables when imputed values change
	Alternatives to mi passive

	Also see

	mi predict
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using mi predict and mi predictnl
	Example 1: Obtain MI linear predictions and other statistics
	Example 2: Obtain MI linear predictions for the estimation sample
	Example 3: Obtain MI estimates of probabilities
	Example 4: Obtain other MI predictions
	Example 5: Obtain MI predictions after multiple-equation commands

	Methods and formulas
	References
	Also see

	mi ptrace
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	mi rename
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Specifying the noupdate option
	What to do if you accidentally use rename
	What to do if you accidentally use rename on wide data
	What to do if you accidentally use rename on mlong data
	What to do if you accidentally use rename on flong data
	What to do if you accidentally use rename on flongsep data

	Also see

	mi replace0
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	mi reset
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using mi reset
	Technical notes and relation to mi update

	Also see

	mi reshape
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi select
	Syntax
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	mi set
	Syntax
	Menu
	Description
	Remarks and examples
	mi set style
	mi register and mi unregister
	mi set M and mi set m
	mi unset

	Also see

	mi stsplit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	mi test
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Overview
	Example 1: Testing subsets of coefficients equal to zero
	Example 2: Testing linear hypotheses
	Example 3: Testing nonlinear hypotheses

	Stored results
	Methods and formulas
	References
	Also see

	mi update
	Syntax
	Menu
	Description
	Remarks and examples
	Purpose of mi update
	What mi update does
	mi update is run automatically

	Also see

	mi varying
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Detecting problems
	Fixing problems

	Stored results
	Also see

	mi xeq
	Syntax
	Description
	Remarks and examples
	Using mi xeq with reporting commands
	Using mi xeq with data-modification commands
	Using mi xeq with data-modification commands on flongsep data

	Stored results
	Also see

	mi XXXset
	Syntax
	Description
	Remarks and examples
	Also see

	noupdate option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	styles
	Syntax
	Description
	Remarks and examples
	The four styles
	Style wide

	Style flong
	Style mlong
	Style flongsep
	How we constructed this example

	Using mi system variables
	Advice for using flongsep

	Also see

	technical
	Description
	Remarks and examples
	Notation
	Definition of styles
	Style all
	Style wide
	Style mlong
	Style flong
	Style flongsep
	Style flongsep_sub

	Adding new commands to mi
	Outline for new commands
	Utility routines
	u_mi_assert_set
	u_mi_certify_data
	u_mi_no_sys_vars and u_mi_no_wide_vars
	u_mi_zap_chars
	u_mi_xeq_on_tmp_flongsep
	u_mi_get_flongsep_tmpname
	mata: u_mi_flongsep_erase()
	u_mi_sortback
	u_mi_save and u_mi_use
	mata: u_mi_wide_swapvars()
	u_mi_fixchars
	mata: u_mi_cpchars_get() and mata: u_mi_cpchars_put()
	mata: u_mi_get_mata_instanced_var()
	mata: u_mi_ptrace_*()

	How to write other set commands to work with mi

	Also see

	workflow
	Description
	Remarks and examples
	Suggested workflow for original data
	Suggested workflow for data that already have imputations
	Example

	Also see

	Glossary
	Also see

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	[MV] Multivariate Statistics
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	multivariate
	Description
	Remarks and examples
	Cluster analysis
	Discriminant analysis
	Factor analysis and principal component analysis
	Rotation
	Multivariate analysis of variance and related techniques
	Structural equation modeling
	Multidimensional scaling and biplots
	Correspondence analysis

	Also see

	alpha
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	biplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ca
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	A first example
	How many dimensions?
	Statistics on the points
	Normalization and interpretation of correspondence analysis
	Plotting the points
	Supplementary points
	Matrix input
	Crossed variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	ca postestimation plots
	Description
	cabiplot
	Syntax for cabiplot
	Menu for cabiplot
	Description for cabiplot
	Options for cabiplot

	caprojection
	Syntax for caprojection
	Menu for caprojection
	Description for caprojection
	Options for caprojection

	Remarks and examples
	References
	Also see

	candisc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	canon
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	canon postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster
	Syntax
	Description
	Remarks and examples
	Introduction to cluster analysis
	Stata's cluster-analysis system
	Data transformations and variable selection
	Similarity and dissimilarity measures
	Partition cluster-analysis methods
	Hierarchical cluster-analysis methods
	Hierarchical cluster analysis applied to a dissimilarity matrix
	Postclustering commands
	Cluster-management tools

	References
	Also see

	clustermat
	Syntax
	Description
	Remarks and examples
	References
	Also see

	cluster dendrogram
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	cluster generate
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	cluster kmeans and kmedians
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cluster linkage
	Syntax
	Menu
	Description
	Options for cluster linkage commands
	Options for clustermat linkage commands
	Remarks and examples
	Methods and formulas
	Also see

	cluster notes
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	cluster programming subroutines
	Description
	Remarks and examples
	Adding a cluster subroutine
	Adding a cluster generate function
	Adding a cluster stopping rule
	Applying an alternate cluster dendrogram routine

	Reference
	Also see

	cluster programming utilities
	Syntax
	Description
	Options for cluster set
	Options for cluster delete
	Options for cluster measures
	Remarks and examples
	Stored results
	Also see

	cluster stop
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cluster utility
	Syntax
	Menu
	Description
	Options for cluster list
	Options for cluster renamevar
	Remarks and examples
	Also see

	discrim
	Syntax
	Description
	Remarks and examples
	Introduction
	A simple example
	Prior probabilities, costs, and ties

	Methods and formulas
	References
	Also see

	discrim estat
	Description
	Special-interest postestimation commands

	Syntax
	Menu for estat
	Options for estat classtable
	Options for estat errorrate
	Options for estat grsummarize
	Options for estat list
	Options for estat summarize
	Remarks and examples
	Discriminating-variable summaries
	Discrimination listings
	Classification tables and error rates

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	A first example
	Mahalanobis transformation
	Binary data

	Stored results
	Methods and formulas
	References
	Also see

	discrim knn postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	discrim lda
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Descriptive LDA
	Predictive LDA
	A classic example

	Stored results
	Methods and formulas
	Predictive LDA
	Descriptive LDA

	References
	Also see

	discrim lda postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat classfunctions
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances
	Options for estat grmeans
	Options for estat loadings
	Option for estat structure

	Remarks and examples
	Classification tables, error rates, and listings
	ANOVA, MANOVA, and canonical correlations
	Discriminant and classification functions
	Scree, loading, and score plots
	Means and distances
	Covariance and correlation matrices
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim logistic postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Reference
	Also see

	discrim qda
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	discrim qda postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat correlations
	Options for estat covariance
	Options for estat grdistances

	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	factor
	Syntax
	Menu
	Description
	Options for factor and factormat
	Options unique to factormat
	Remarks and examples
	Introduction
	Factor analysis
	Factor analysis from a correlation matrix

	Stored results
	Methods and formulas
	References
	Also see

	factor postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, factor loadings, and scores
	Rotating the factor loadings
	Factor scores

	Stored results
	Methods and formulas
	estat
	rotate
	predict

	References
	Also see

	hotelling
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	manova
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	One-way MANOVA
	Reporting coefficients
	Two-way MANOVA
	N-way MANOVA
	MANCOVA
	MANOVA for Latin-square designs
	MANOVA for nested designs
	MANOVA for mixed designs
	MANOVA with repeated measures

	Stored results
	Methods and formulas
	References
	Also see

	manova postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for manovatest
	Menu for manovatest
	Options for manovatest
	Syntax for test after manova
	Menu for test after manova
	Options for test after manova
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	matrix dissimilarity
	Syntax
	Description
	Options
	Remarks and examples
	References
	Also see

	mca
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Compare MCA on two variables and CA
	MCA on four variables
	CA of the indicator matrix
	CA of the Burt matrix
	Joint correspondence analysis

	Stored results
	Methods and formulas
	Notation
	Using ca to compute MCA
	CA of an indicator or Burt matrix
	JCA
	Supplementary variables
	predict

	References
	Also see

	mca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat coordinates
	Options for estat summarize

	Remarks and examples
	Postestimation statistics
	Predicting new variables

	Stored results
	Methods and formulas
	References
	Also see

	mca postestimation plots
	Description
	mcaplot
	Syntax for mcaplot
	Menu for mcaplot
	Description for mcaplot
	Options for mcaplot

	mcaprojection
	Syntax for mcaprojection
	Menu for mcaprojection
	Description for mcaprojection
	Options for mcaprojection

	Remarks and examples
	Methods and formulas
	References
	Also see

	mds
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Euclidean distances
	Non-Euclidean dissimilarity measures
	Introduction to modern MDS
	Protecting from local minimums

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Remarks and examples
	Postestimation statistics
	Predictions

	Stored results
	Methods and formulas
	References
	Also see

	mds postestimation plots
	Description
	mdsconfig
	Syntax for mdsconfig
	Menu for mdsconfig
	Description for mdsconfig
	Options for mdsconfig

	mdsshepard
	Syntax for mdsshepard
	Menu for mdsshepard
	Description for mdsshepard
	Options for mdsshepard

	Remarks and examples
	References
	Also see

	mdslong
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Proximity data in long format
	Modern nonmetric MDS

	Stored results
	Methods and formulas
	References
	Also see

	mdsmat
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Proximity data in a Stata matrix
	Modern MDS and local minimums

	Stored results
	Methods and formulas
	Classical multidimensional scaling
	Modern multidimensional scaling
	Conversion of similarities to dissimilarities

	References
	Also see

	measure_option
	Syntax
	Description
	Options
	References
	Also see

	mvreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	mvreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	mvtest
	Syntax
	Description
	References
	Also see

	mvtest correlations
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	Stored results
	Methods and formulas
	One-sample tests for correlation matrices
	A multiple-sample test for correlation matrices

	References
	Also see

	mvtest covariances
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options for one-sample tests
	Remarks and examples
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	Stored results
	Methods and formulas
	One-sample tests for covariance matrices
	A multiple-sample test for covariance matrices

	References
	Also see

	mvtest means
	Syntax
	Menu
	Description
	Options for multiple-sample tests
	Options with one-sample tests
	Remarks and examples
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	Stored results
	Methods and formulas
	One-sample tests for mean vectors
	Multiple-sample tests for mean vectors

	References
	Also see

	mvtest normality
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mardia mSkewness and mKurtosis
	Henze--Zirkler
	Doornik--Hansen

	Acknowledgment
	References
	Also see

	pca
	Syntax
	Menu
	Description
	Options
	Options unique to pcamat
	Remarks and examples
	Stored results
	Methods and formulas
	Notation
	Inference on eigenvalues and eigenvectors
	More general tests for multivariate normal distributions

	References
	Also see

	pca postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Remarks and examples
	Postestimation statistics
	Plots of eigenvalues, component loadings, and scores
	Rotating the components
	How rotate interacts with pca
	Predicting the component scores

	Stored results
	Methods and formulas
	References
	Also see

	procrustes
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction to Procrustes methods
	Orthogonal Procrustes analysis
	Is an orthogonal Procrustes analysis symmetric?
	Other transformations

	Stored results
	Methods and formulas
	Introduction
	Orthogonal transformations
	Oblique transformations
	Unrestricted transformations
	Reported statistics

	References
	Also see

	procrustes postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Syntax for procoverlay
	Menu for procoverlay
	Options for procoverlay
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rotate
	Syntax
	Menu
	Description
	Options
	Rotation criteria

	Remarks and examples
	Orthogonal rotations
	Oblique rotations
	Other types of rotation

	Stored results
	Methods and formulas
	References
	Also see

	rotatemat
	Syntax
	Menu
	Description
	Options
	Rotation criteria

	Remarks and examples
	Introduction
	Orthogonal rotations
	Oblique rotations
	Promax rotation

	Stored results
	Methods and formulas
	References
	Also see

	scoreplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	screeplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	Glossary
	References

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	[PSS] Power and Sample Size
	Contents
	intro
	Description
	Remarks and examples
	Power and sample-size analysis
	Hypothesis testing
	Components of PSS analysis
	Study design
	Statistical method
	Significance level
	Power
	Clinically meaningful difference and effect size
	Sample size
	One-sided test versus two-sided test
	Another consideration: Dropout

	Sensitivity analysis
	An example of PSS analysis in Stata

	References
	Also see

	GUI
	Description
	Menu
	Remarks and examples
	PSS Control Panel
	Example with PSS Control Panel

	Also see

	power
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using the power command
	Specifying multiple values of study parameters

	One-sample tests
	Two-sample tests
	Paired-sample tests
	Analysis of variance models
	Tables of results
	Power curves

	Stored results
	Methods and formulas
	Reference
	Also see

	power, graph
	Syntax
	Menu
	Description
	Suboptions
	Remarks and examples
	Using power, graph
	Graph symbols
	Default graphs
	Changing default graph dimensions
	Changing the look of graphs
	Parallel plots

	Also see

	power, table
	Syntax
	Menu
	Description
	Suboptions
	Remarks and examples
	Using power, table
	Default tables
	Modifying default tables
	Custom tables

	Stored results
	Also see

	power onemean
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power onemean
	Computing sample size
	Computing power
	Computing effect size and target mean
	Performing hypothesis tests on mean

	Stored results
	Methods and formulas
	Known standard deviation
	Unknown standard deviation
	Finite population size

	References
	Also see

	power twomeans
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power twomeans
	Computing sample size
	Computing power
	Computing effect size and experimental-group mean
	Testing a hypothesis about two independent means

	Stored results
	Methods and formulas
	Known standard deviations
	Unknown standard deviations
	Unequal standard deviations
	Equal standard deviations

	References
	Also see

	power pairedmeans
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power pairedmeans
	Computing sample size
	Computing power
	Computing effect size and target mean difference
	Testing a hypothesis about two correlated means

	Stored results
	Methods and formulas
	References
	Also see

	power oneproportion
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power oneproportion
	Computing sample size
	Computing power
	Computing effect size and target proportion
	Performing hypothesis tests on proportion

	Stored results
	Methods and formulas
	Large-sample normal approximation
	Binomial test

	References
	Also see

	power twoproportions
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power twoproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and experimental-group proportion
	Testing a hypothesis about two independent proportions

	Stored results
	Methods and formulas
	Effect size
	Pearson's chi-squared test
	Likelihood-ratio test
	Fisher's exact conditional test

	References
	Also see

	power pairedproportions
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power pairedproportions
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target discordant proportions
	Testing a hypothesis about two correlated proportions

	Stored results
	Methods and formulas
	References
	Also see

	power onevariance
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power onevariance
	Computing sample size
	Computing power
	Computing effect size and target variance
	Performing a hypothesis test on variance

	Stored results
	Methods and formulas
	Reference
	Also see

	power twovariances
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power twovariances
	Computing sample size
	Computing power
	Computing effect size and experimental-group variance
	Testing a hypothesis about two independent variances

	Stored results
	Methods and formulas
	References
	Also see

	power onecorrelation
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power onecorrelation
	Computing sample size
	Computing power
	Computing effect size and target correlation
	Performing hypothesis tests on correlation

	Stored results
	Methods and formulas
	References
	Also see

	power twocorrelations
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power twocorrelations
	Computing sample size
	Computing power
	Computing effect size and experimental-group correlation
	Testing a hypothesis about two independent correlations

	Stored results
	Methods and formulas
	References
	Also see

	power oneway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power oneway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and between-group variance
	Testing hypotheses about multiple group means

	Stored results
	Methods and formulas
	Computing power

	References
	Also see

	power twoway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power twoway
	Alternative ways of specifying effect

	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple populations

	Stored results
	Methods and formulas
	Main effects
	Interaction effects
	Hypothesis testing

	References
	Also see

	power repeated
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using power repeated
	Computing sample size
	Computing power
	Computing effect size and target variance explained by the tested effect
	Testing hypotheses about means from multiple dependent populations

	Stored results
	Methods and formulas
	Hypothesis testing
	Computing power

	References
	Also see

	unbalanced designs
	Syntax
	Description
	Options
	Remarks and examples
	Two samples
	Fractional sample sizes

	Also see

	Glossary
	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	[R] Base Reference
	Contents
	Introduction
	intro
	Description
	Remarks and examples
	Arrangement of the reference manuals
	Arrangement of each entry
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	Also see

	A
	about
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	adoupdate
	Syntax
	Description
	Options
	Remarks and examples
	Using adoupdate
	Possible problem the first time you run adoupdate and the solution
	Notes for developers

	Stored results
	Also see

	ameans
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	anova
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	One-way ANOVA
	Two-way ANOVA
	N-way ANOVA
	Weighted data
	ANCOVA
	Nested designs
	Mixed designs
	Latin-square designs
	Repeated-measures ANOVA
	Video examples

	Stored results
	References
	Also see

	anova postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Syntax for test after anova
	Menu for test after anova
	Options for test after anova
	Remarks and examples
	Testing effects
	Obtaining symbolic forms
	Testing coefficients and contrasts of margins
	Video example

	References
	Also see

	areg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	areg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	References
	Also see

	asclogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	asclogit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat mfx
	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Methods and formulas
	Also see

	asmprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Variance structures

	Stored results
	Methods and formulas
	Simulated likelihood

	References
	Also see

	asmprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics
	Obtaining marginal effects

	Stored results
	Methods and formulas
	Marginal effects

	Also see

	asroprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	asroprobit postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat covariance, estat correlation, and estat facweights
	Options for estat mfx

	Remarks and examples
	Predicted probabilities
	Obtaining estimation statistics

	Stored results
	Also see

	B
	BIC note
	Description
	Remarks and examples
	Background
	The problem of determining N
	The problem of conformable likelihoods
	The first problem does not arise with AIC; the second problem does
	Calculating BIC correctly

	Methods and formulas
	References
	Also see

	binreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	binreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	References
	Also see

	biprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	biprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	bitest
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	bitest
	bitesti

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Regression coefficients
	Expressions
	Combining bootstrap datasets
	A note about macros
	Achieved significance level
	Bootstrapping a ratio
	Warning messages and e(sample)
	Bootstrapping statistics from data with a complex structure

	Stored results
	Methods and formulas
	References
	Also see

	bootstrap postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Syntax for estat bootstrap
	Menu for estat
	Options for estat bootstrap
	Remarks and examples
	Also see

	boxcox
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Theta model
	Lambda model
	Left-hand-side-only model
	Right-hand-side-only model

	Stored results
	Methods and formulas
	References
	Also see

	boxcox postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	References
	Also see

	brier
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	bsample
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	bstat
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Bootstrap datasets
	Creating a bootstrap dataset

	Stored results
	References
	Also see

	C
	centile
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Default case
	Normal case
	meansd case

	Acknowledgment
	References
	Also see

	ci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Ordinary confidence intervals
	Binomial confidence intervals
	Poisson confidence intervals
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	Ordinary
	Binomial
	Poisson

	Acknowledgment
	References
	Also see

	clogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Matched case--control data
	Use of weights
	Fixed-effects logit

	Stored results
	Methods and formulas
	References
	Also see

	clogit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	cloglog
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction to complementary log-log regression
	Robust standard errors

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cloglog postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	cls
	Syntax
	Description

	cnsreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	cnsreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	constraint
	Syntax
	Menu
	Description
	Remarks and examples
	References
	Also see

	contrast
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	One-way models
	Estimated cell means
	Testing equality of cell means
	Reference category contrasts
	Reverse adjacent contrasts
	Orthogonal polynomial contrasts

	Two-way models
	Estimated interaction cell means
	Simple effects
	Interaction effects
	Main effects
	Partial interaction effects

	Three-way and higher-order models
	Contrast operators
	Differences from a reference level (r.)
	Differences from the next level (a.)
	Differences from the previous level (ar.)
	Differences from the grand mean (g.)
	Differences from the mean of subsequent levels (h.)
	Differences from the mean of previous levels (j.)
	Orthogonal polynomials (p. and q.)

	User-defined contrasts
	Empty cells
	Empty cells, ANOVA style
	Nested effects
	Multiple comparisons
	Unbalanced data
	Using observed cell frequencies
	Weighted contrast operators

	Testing factor effects on slopes
	Chow tests
	Beyond linear models
	Multiple equations
	Video example

	Stored results
	Methods and formulas
	Marginal linear predictions
	Contrast operators
	Reference level contrasts
	Adjacent contrasts
	Grand mean contrasts
	Helmert contrasts
	Reverse Helmert contrasts
	Orthogonal polynomial contrasts

	Contrasts within interactions
	Multiple comparisons

	References
	Also see

	contrast postestimation
	Description
	Remarks and examples
	Also see

	copyright
	Syntax
	Description
	Remarks and examples
	Also see

	copyright apache
	Description
	Also see

	copyright boost
	Description
	Also see

	copyright freetype
	Description
	Legal Terms
	0. Definitions
	1. No Warranty
	2. Redistribution
	3. Advertising
	4. Contacts

	Also see

	copyright icu
	Description
	Also see

	copyright jagpdf
	Description
	Also see

	copyright lapack
	Description
	Also see

	copyright libpng
	Description
	Also see

	copyright miglayout
	Description
	Also see

	copyright scintilla
	Description
	Also see

	copyright ttf2pt1
	Description
	Also see

	copyright zlib
	Description
	Also see

	correlate
	Syntax
	Menu
	Description
	Options for correlate
	Options for pwcorr
	Remarks and examples
	correlate
	pwcorr
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	cumul
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgment
	References
	Also see

	cusum
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	D
	db
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	diagnostic plots
	Syntax
	Menu
	Description
	Options for symplot, quantile, and qqplot
	Options for qnorm and pnorm
	Options for qchi and pchi
	Remarks and examples
	symplot
	quantile
	qqplot
	qnorm
	pnorm
	qchi
	pchi

	Methods and formulas
	Acknowledgments
	References
	Also see

	display
	Syntax
	Description
	Remarks and examples
	Also see

	do
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Reference
	Also see

	doedit
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	dotplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References

	dstdize
	Syntax
	Menu
	Description
	Options for dstdize
	Options for istdize
	Remarks and examples
	Direct standardization
	Indirect standardization

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dydx
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	E
	eform_option
	Description
	Remarks and examples
	Reference
	Also see

	eivreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	eivreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	error messages
	Description
	Also see

	esize
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat
	Syntax
	Description

	estat classification
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat gof
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample

	Stored results
	Methods and formulas
	References
	Also see

	estat ic
	Syntax
	Menu for estat
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat summarize
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	estat vce
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estimates
	Syntax
	Description
	Remarks and examples
	Saving and using estimation results
	Storing and restoring estimation results
	Comparing estimation results
	Jargon

	Also see

	estimates describe
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	estimates for
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	estimates notes
	Syntax
	Description
	Remarks and examples
	Also see

	estimates replay
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	estimates save
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Setting e(sample)
	Resetting e(sample)
	Determining who set e(sample)

	Stored results
	Also see

	estimates stats
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	estimates store
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estimates table
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estimates title
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	estimation options
	Syntax
	Description
	Options
	Also see

	exit
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	exlogistic
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Sufficient statistics
	Conditional distribution and CMLE
	Median unbiased estimates and exact CI
	Conditional hypothesis tests
	Sufficient-statistic p-value

	References
	Also see

	exlogistic postestimation
	Description
	Special-interest postestimation commands

	Syntax for estat
	Menu for estat
	Options for estat predict
	Option for estat se
	Remarks and examples
	Stored results
	Reference
	Also see

	expoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Conditional distribution

	References
	Also see

	expoisson postestimation
	Description
	Special-interest postestimation command

	Syntax for estat se
	Menu for estat
	Option for estat se
	Remarks and examples
	Also see

	F
	fp
	Syntax
	Menu
	Description
	Options for fp
	Options for fp generate
	Remarks and examples
	Fractional polynomial regression
	Scaling
	Centering
	Examples

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	fp postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Syntax for fp plot and fp predict
	Menu for fp plot and fp predict
	Options for fp plot
	Options for fp predict
	Remarks and examples
	Examples

	Methods and formulas
	Acknowledgment
	References
	Also see

	frontier
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	frontier postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Reference
	Also see

	fvrevar
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	fvset
	Syntax
	Description
	Options
	Remarks and examples
	Stored results

	G
	gllamm
	Description
	Remarks and examples
	References
	Also see

	glm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	General use
	Variance estimators
	User-defined functions

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	glm postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Predictions
	Other postestimation commands

	Methods and formulas
	References
	Also see

	glogit
	Syntax
	Menu
	Description
	Options for blogit and bprobit
	Options for glogit and gprobit
	Remarks and examples
	Maximum likelihood estimates
	Weighted least-squares estimates

	Stored results
	Methods and formulas
	Maximum likelihood estimates
	Weighted least-squares estimates

	References
	Also see

	glogit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	gmm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	The weight matrix and two-step estimation
	Obtaining standard errors
	Exponential (Poisson) regression models
	Specifying derivatives
	Exponential regression models with panel data
	Rational-expectations models
	System estimators
	Dynamic panel-data models
	Details of moment-evaluator programs

	Stored results
	Methods and formulas
	Initial weight matrix
	Weight matrix
	Variance--covariance matrix
	Hansen's J statistic
	Panel-style instruments

	References
	Also see

	gmm postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Option for predict
	Syntax for estat overid
	Menu for estat
	Remarks and examples
	Stored results
	Reference
	Also see

	grmeanby
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References

	H
	hausman
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	heckman
	Syntax
	Menu
	Description
	Options for Heckman selection model (ML)
	Options for Heckman selection model (two-step)
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckman postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Reference
	Also see

	heckoprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckoprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	heckprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	heckprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	help
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Video examples

	Also see

	hetprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	hetprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	histogram
	Syntax
	Menu
	Description
	Options for use in the continuous case
	Options for use in the discrete case
	Options for use in the continuous and discrete cases
	Remarks and examples
	Histograms of continuous variables
	Overlaying normal and kernel density estimates
	Histograms of discrete variables
	Use with by()
	Video example

	References
	Also see

	I
	icc
	Syntax
	Menu
	Description
	Options for one-way RE model
	Options for two-way RE and ME models
	Remarks and examples
	Introduction
	One-way random effects
	Two-way random effects
	Two-way mixed effects
	Adoption study
	Relationship between ICCs
	Tests against nonzero values

	Stored results
	Methods and formulas
	Mean squares
	One-way random effects
	Two-way random effects
	Two-way mixed effects

	References
	Also see

	inequality
	Remarks and examples
	References

	intreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	intreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	ivpoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	GMM estimator for additive model
	GMM estimator for multiplicative model
	CF estimator for multiplicative model

	Stored results
	Methods and formulas
	References
	Also see

	ivpoisson postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat overid
	Menu for estat
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	ivprobit
	Syntax
	Menu
	Description
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Model setup
	Model identification

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	ivregress
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	2SLS and LIML estimators
	GMM estimator

	Stored results
	Methods and formulas
	Notation
	2SLS and LIML estimators
	GMM estimator

	References
	Also see

	ivregress postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Options for estat
	Options for estat endogenous
	Options for estat firststage
	Options for estat overid

	Remarks and examples
	estat endogenous
	estat firststage
	estat overid

	Stored results
	Methods and formulas
	Notation
	estat endogenous
	estat firststage
	estat overid

	References
	Also see

	ivtobit
	Syntax
	Menu
	Description
	Options for ML estimator
	Options for two-step estimator
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ivtobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Marginal effects
	Obtaining predicted values

	Methods and formulas
	Also see

	J
	jackknife
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Jackknifed standard deviation
	Collecting multiple statistics
	Collecting coefficients

	Stored results
	Methods and formulas
	References
	Also see

	jackknife postestimation
	Description
	Syntax for predict
	Also see

	K
	kappa
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Two raters
	More than two raters

	Stored results
	Methods and formulas
	kap: m=2
	kappa: m>2, k=2
	kappa: m>2, k>2

	References

	kdensity
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	ksmirnov
	Syntax
	Menu
	Description
	Options for two-sample test
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	kwallis
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	L
	ladder
	Syntax
	Menu
	Description
	Options for ladder
	Options for gladder
	Options for qladder
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	level
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	limits
	Description
	Remarks and examples
	Maximum size limits
	Matrix size
	Determining which flavor of Stata you are running

	Also see

	lincom
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using lincom
	Odds ratios and incidence-rate ratios
	Multiple-equation models

	Stored results
	References
	Also see

	linktest
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	lnskew0
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	Reference
	Also see

	log
	Syntax
	Menu
	Description
	Options for use with both log and cmdlog
	Options for use with log
	Option for use with set logtype
	Remarks and examples
	Stored results
	Also see

	logistic
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	logistic and logit
	Robust estimate of variance
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	logistic postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	predict without options
	predict with the xb and stdp options
	predict with the residuals option
	predict with the number option
	predict with the deviance option
	predict with the rstandard option
	predict with the hat option
	predict with the dx2 option
	predict with the ddeviance option
	predict with the dbeta option

	Methods and formulas
	References
	Also see

	logit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic usage
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	logit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	References
	Also see

	loneway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	The one-way ANOVA model
	R-squared
	The random-effects ANOVA model
	Intraclass correlation
	Estimated reliability of the group-averaged score

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	lowess
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgment
	References
	Also see

	lpoly
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Local polynomial smoothing
	Choice of a bandwidth
	Confidence bands

	Stored results
	Methods and formulas
	References
	Also see

	lroc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Samples other than the estimation sample
	Models other than the last fitted model

	Stored results
	Methods and formulas
	References
	Also see

	lrtest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Nested models
	Composite models

	Stored results
	Methods and formulas
	References
	Also see

	lsens
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Models other than the last fitted model

	Stored results
	Methods and formulas
	Reference
	Also see

	lv
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	M
	margins
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Obtaining margins of responses
	Example 1: A simple case after regress
	Example 2: A simple case after logistic
	Example 3: Average response versus response at average
	Example 4: Multiple margins from one command
	Example 5: Margins with interaction terms
	Example 6: Margins with continuous variables
	Example 7: Margins of continuous variables
	Example 8: Margins of interactions
	Example 9: Decomposing margins
	Example 10: Testing margins---contrasts of margins
	Example 11: Margins of a specified prediction
	Example 12: Margins of a specified expression
	Example 13: Margins with multiple outcomes (responses)
	Example 14: Margins with multiple equations
	Example 15: Margins evaluated out of sample

	Obtaining margins of derivatives of responses (a.k.a. marginal effects)
	Do not specify marginlist when you mean over()
	Use at() freely, especially with continuous variables
	Expressing derivatives as elasticities
	Derivatives versus discrete differences
	Example 16: Average marginal effect (partial effects)
	Example 17: Average marginal effect of all covariates
	Example 18: Evaluating marginal effects over the response surface

	Obtaining margins with survey data and representative samples
	Example 19: Inferences for populations, margins of response
	Example 20: Inferences for populations, marginal effects
	Example 21: Inferences for populations with svyset data

	Standardizing margins
	Obtaining margins as though the data were balanced
	Balancing using asbalanced
	Balancing by standardization
	Balancing nonlinear responses
	Treating a subset of covariates as balanced
	Using fvset design
	Balancing in the presence of empty cells

	Obtaining margins with nested designs
	Introduction
	Margins with nested designs as though the data were balanced
	Coding of nested designs

	Special topics
	Requirements for model specification
	Estimability of margins
	Manipulability of tests
	Using margins after the estimates use command
	Syntax of at()
	Estimation commands that may be used with margins

	Video examples
	Glossary

	Stored results
	Methods and formulas
	Notation
	Marginal effects
	Fixing covariates and balancing factors
	Estimable functions
	Standard errors conditional on the covariates
	Unconditional standard errors

	References
	Also see

	margins postestimation
	Description
	Remarks and examples
	Also see

	margins, contrast
	Syntax
	Menu
	Description
	Suboptions
	Remarks and examples
	Contrasts of margins
	Contrasts and the over() option
	The overjoint suboption
	The marginswithin suboption

	Contrasts and the at() option
	Estimating treatment effects with margins
	Conclusion

	Stored results
	Methods and formulas
	Reference
	Also see

	margins, pwcompare
	Syntax
	Menu
	Description
	Suboptions
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	marginsplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Dataset
	Profile plots
	Interaction plots
	Contrasts of margins---effects (discrete marginal effects)
	Three-way interactions
	Continuous covariates
	Plots at every value of a continuous covariate
	Contrasts of at() groups---discrete effects
	Controlling the graph's dimensions
	Pairwise comparisons
	Horizontal is sometimes better
	Marginal effects
	Plotting a subset of the results from margins
	Advanced usage
	Plots with multiple terms
	Plots with multiple at() options
	Adding scatterplots of the data

	Video examples

	Addendum: Advanced uses of dimlist
	Acknowledgments
	References
	Also see

	matsize
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	maximize
	Syntax
	Description
	Maximization options
	Option for set maxiter
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mean
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	The mean estimator
	Survey data
	The survey mean estimator
	The standardized mean estimator
	The poststratified mean estimator
	The standardized poststratified mean estimator
	Subpopulation estimation

	References
	Also see

	mean postestimation
	Description
	Remarks and examples
	Also see

	meta
	Remarks and examples
	References

	mfp
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Iteration report
	Estimation algorithm
	Methods of FP model selection
	Zeros and zero categories

	Stored results
	Acknowledgments
	References
	Also see

	mfp postestimation
	Description
	Special-interest postestimation commands

	Syntax for fracplot and fracpred
	Menu for fracplot and fracpred
	Options for fracplot
	Options for fracpred
	Remarks and examples
	Methods and formulas
	Also see

	misstable
	Syntax
	Menu
	Description
	Options
	Options for misstable summarize
	Options for misstable patterns
	Options for misstable tree
	Option for misstable nested
	Common options

	Remarks and examples
	misstable summarize
	misstable patterns
	misstable tree
	misstable nested
	Execution time of misstable nested

	Stored results
	Also see

	mkspline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Linear splines
	Restricted cubic splines

	Methods and formulas
	Linear splines
	Restricted cubic splines

	Acknowledgment
	References
	Also see

	ml
	Syntax
	Syntax of subroutines for use by evaluator programs
	Syntax of user-written evaluator

	Description
	Options
	Options for use with ml model in interactive or noninteractive mode
	Options for use with ml model in noninteractive mode
	Options for use when specifying equations
	Options for use with ml search
	Option for use with ml plot
	Options for use with ml init
	Options for use with ml maximize
	Option for use with ml graph
	Options for use with ml display
	Options for use with mleval
	Option for use with mlsum
	Option for use with mlvecsum
	Option for use with mlmatsum
	Options for use with mlmatbysum
	Options for use with ml score

	Remarks and examples
	Survey options and ml

	Stored results
	Methods and formulas
	References
	Also see

	mlexp
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Substitutable expressions
	Parameter constraints
	Specifying derivatives

	Stored results
	Methods and formulas
	References
	Also see

	mlexp postestimation
	Description
	Syntax for predict
	Menu for predict
	Option for predict
	Also see

	mlogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Description of the model
	Fitting unconstrained models
	Fitting constrained models

	Stored results
	Methods and formulas
	References
	Also see

	mlogit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Obtaining predicted values
	Calculating marginal effects
	Testing hypotheses about coefficients

	Reference
	Also see

	more
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	mprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	mprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	References
	Also see

	N
	nbreg
	Syntax
	Menu
	Description
	Options for nbreg
	Options for gnbreg
	Remarks and examples
	Introduction to negative binomial regression
	nbreg
	gnbreg

	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	References
	Also see

	nbreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	nestreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Estimation commands
	Wald tests
	Likelihood-ratio tests
	Programming for nestreg

	Stored results
	Acknowledgment
	Reference
	Also see

	net
	Syntax
	Description
	Options
	Remarks and examples
	Definition of a package
	The purpose of the net and ado commands
	Content pages
	Package-description pages
	Where packages are installed
	A summary of the net command
	A summary of the ado command
	Relationship of net and ado to the point-and-click interface
	Creating your own site
	Format of content and package-description files
	Example 1
	Example 2
	Additional package directives
	SMCL in content and package-description files
	Error-free file delivery

	References
	Also see

	net search
	Syntax
	Description
	Options
	Remarks and examples
	Topic searches
	Author searches
	Command searches
	Where does net search look?
	How does net search work?

	References
	Also see

	netio
	Syntax
	Description
	Options
	Remarks and examples
	1. remote connection failed r(677);
	2. connection timed out r(2);

	Also see

	news
	Syntax
	Menu
	Description
	Remarks and examples
	Also see

	nl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Substitutable expressions
	Substitutable expression programs
	Built-in functions
	Lognormal errors
	Other uses
	Weights
	Potential errors
	General comments on fitting nonlinear models
	Function evaluator programs

	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	nl postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	nlcom
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Basics
	Using the post option
	Reparameterizing ML estimators for univariate data
	nlcom versus eform

	Stored results
	Methods and formulas
	References
	Also see

	nlogit
	Syntax
	Menu
	Description
	Options
	Specification and options for lev#_equation
	Options for nlogit
	Specification and options for nlogitgen
	Specification and options for nlogittree

	Remarks and examples
	Introduction
	Data setup and the tree structure
	Estimation
	Testing for the IIA
	Nonnormalized model

	Stored results
	Methods and formulas
	Two-level nested logit model
	Three-level nested logit model

	References
	Also see

	nlogit postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat alternatives
	Menu for estat
	Remarks and examples
	Also see

	nlsur
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Substitutable expression programs
	Function evaluator programs

	Stored results
	Methods and formulas
	References
	Also see

	nlsur postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	nptrend
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	O
	ologit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	ologit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	oneway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Obtaining observed means
	Multiple-comparison tests
	Weighted data
	Video example

	Stored results
	Methods and formulas
	One-way analysis of variance
	Bartlett's test
	Multiple-comparison tests

	References
	Also see

	oprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	oprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	orthog
	Syntax
	Menu
	Description
	Options for orthog
	Options for orthpoly
	Remarks and examples
	Methods and formulas
	References
	Also see

	P
	pcorr
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	permute
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	pk
	Description
	Remarks and examples
	References

	pkcollapse
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Also see

	pkcross
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pkequiv
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pkexamine
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	pkshape
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	pksumm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Also see

	poisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	poisson postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat gof
	Menu for estat
	Remarks and examples
	Methods and formulas
	Also see

	predict
	Syntax
	Menu for predict
	Description
	Options
	Remarks and examples
	Estimation-sample predictions
	Out-of-sample predictions
	Residuals
	Single-equation (SE) models
	SE model scores
	Multiple-equation (ME) models
	ME model scores

	Methods and formulas
	Also see

	predictnl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Nonlinear transformations and standard errors
	Using xb() and predict()
	Multiple-equation (ME) estimators
	Test statistics and significance levels
	Manipulability
	Confidence intervals

	Methods and formulas
	References
	Also see

	probit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Robust standard errors
	Model identification

	Stored results
	Methods and formulas
	References
	Also see

	probit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Obtaining predicted values
	Performing hypothesis tests

	Methods and formulas
	Also see

	proportion
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Confidence intervals

	References
	Also see

	proportion postestimation
	Description
	Remarks and examples
	Also see

	prtest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	pwcompare
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Pairwise comparisons of means
	Marginal means
	All pairwise comparisons

	Overview of multiple-comparison methods
	Fisher's protected least-significant difference (LSD)
	Bonferroni's adjustment
	{accent 20 S}id{accent 19 a}k's adjustment
	Scheff{accent 19 e}'s adjustment
	Tukey's HSD adjustment
	Student--Newman--Keuls' adjustment
	Duncan's adjustment
	Dunnett's adjustment

	Example adjustments using one-way models
	Fisher's protected LSD
	Tukey's HSD
	Dunnett's method for comparisons to a control

	Two-way models
	Pairwise comparisons of slopes
	Nonlinear models
	Multiple-equation models
	Unbalanced data
	Empty cells

	Stored results
	Methods and formulas
	Notation
	Unadjusted comparisons
	Bonferroni's method
	{accent 20 S}id{accent 19 a}k's method
	Scheff{accent 19 e}'s method
	Tukey's method
	Student--Newman--Keuls' method
	Duncan's method
	Dunnett's method

	References
	Also see

	pwcompare postestimation
	Description
	Remarks and examples
	Also see

	pwmean
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Group means
	Pairwise differences of means
	Group output
	Adjusting for multiple comparisons
	Tukey's method
	Dunnett's method

	Multiple over() variables
	Equal variance assumption

	Stored results
	Methods and formulas
	Reference
	Also see

	pwmean postestimation
	Description
	Remarks and examples
	Also see

	Q
	qc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	qreg
	Syntax
	Menu
	Description
	Options for qreg
	Options for iqreg
	Options for sqreg
	Options for bsqreg
	Remarks and examples
	Median regression
	Quantile regression
	Estimated standard errors
	Interquantile and simultaneous-quantile regression
	What are the parameters?

	Stored results
	Methods and formulas
	Introduction
	Linear programming formulation of quantile regression
	Standard errors when residuals are i.i.d.
	Pseudo-R2

	References
	Also see

	qreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	query
	Syntax
	Description
	Remarks and examples
	Also see

	R
	ranksum
	Syntax
	Menu
	Description
	Options for ranksum
	Options for median
	Remarks and examples
	Stored results
	Methods and formulas
	ranksum
	median

	References
	Also see

	ratio
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The ratio estimator
	Survey data
	The survey ratio estimator
	The standardized ratio estimator
	The poststratified ratio estimator
	The standardized poststratified ratio estimator
	Subpopulation estimation

	References
	Also see

	ratio postestimation
	Description
	Remarks and examples
	Also see

	reg3
	Syntax
	Menu
	Description
	Nomenclature

	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	reg3 postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	regress
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Ordinary least squares
	Treatment of the constant
	Robust standard errors
	Weighted regression
	Instrumental variables and two-stage least-squares regression
	Video example

	Stored results
	Methods and formulas
	Coefficient estimation and ANOVA table
	A general notation for the robust variance calculation
	Robust calculation for regress

	Acknowledgments
	References
	Also see

	regress postestimation
	Description
	Predictions
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples for predict
	Terminology
	Fitted values and residuals
	Prediction standard errors
	Prediction with weighted data
	Leverage statistics
	Standardized and Studentized residuals
	DFITS, Cook's Distance, and Welsch Distance
	COVRATIO

	DFBETA influence statistics
	Syntax for dfbeta
	Menu for dfbeta
	Description for dfbeta
	Option for dfbeta
	Remarks and examples for dfbeta

	Tests for violation of assumptions
	Syntax for estat hettest
	Menu for estat
	Description for estat hettest
	Options for estat hettest
	Syntax for estat imtest
	Menu for estat
	Description for estat imtest
	Options for estat imtest
	Syntax for estat ovtest
	Menu for estat
	Description for estat ovtest
	Option for estat ovtest
	Syntax for estat szroeter
	Menu for estat
	Description for estat szroeter
	Options for estat szroeter
	Remarks and examples for estat hettest, estat imtest, estat ovtest, and estat szroeter
	Stored results for estat hettest, estat imtest, and estat ovtest

	Variance inflation factors
	Syntax for estat vif
	Menu for estat
	Description for estat vif
	Option for estat vif
	Remarks and examples for estat vif

	Measures of effect size
	Syntax for estat esize
	Menu for estat
	Description for estat esize
	Options for estat esize
	Remarks and examples for estat esize
	Stored results for estat esize

	Methods and formulas
	predict
	Special-interest postestimation commands

	Acknowledgments
	References
	Also see

	regress postestimation diagnostic plots
	Description
	rvfplot
	Syntax for rvfplot
	Menu for rvfplot
	Description for rvfplot
	Options for rvfplot
	Remarks and examples for rvfplot

	avplot
	Syntax for avplot
	Menu for avplot
	Description for avplot
	Options for avplot
	Remarks and examples for avplot

	avplots
	Syntax for avplots
	Menu for avplots
	Description for avplots
	Options for avplots
	Remarks and examples for avplots

	cprplot
	Syntax for cprplot
	Menu for cprplot
	Description for cprplot
	Options for cprplot
	Remarks and examples for cprplot

	acprplot
	Syntax for acprplot
	Menu for acprplot
	Description for acprplot
	Options for acprplot
	Remarks and examples for acprplot

	rvpplot
	Syntax for rvpplot
	Menu for rvpplot
	Description for rvpplot
	Options for rvpplot
	Remarks and examples for rvpplot

	lvr2plot
	Syntax for lvr2plot
	Menu for lvr2plot
	Description for lvr2plot
	Options for lvr2plot
	Remarks and examples for lvr2plot

	Methods and formulas
	References
	Also see

	regress postestimation time series
	Description
	Syntax for estat archlm
	Options for estat archlm
	Syntax for estat bgodfrey
	Options for estat bgodfrey
	Syntax for estat durbinalt
	Options for estat durbinalt
	Syntax for estat dwatson
	Menu for estat
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	#review
	Syntax
	Description
	Remarks and examples

	roc
	Description
	Reference

	roccomp
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Comparing areas under the ROC curve
	Correlated data
	Independent data
	Comparing areas with a gold standard

	Stored results
	Methods and formulas
	References
	Also see

	rocfit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	rocfit postestimation
	Description
	Special-interest postestimation command

	Syntax for rocplot
	Menu
	Options for rocplot
	Remarks and examples
	Using lincom and test
	Using rocplot

	Also see

	rocreg
	Syntax
	Menu
	Description
	Options
	Options for nonparametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using bootstrap
	Options for parametric ROC estimation, using maximum likelihood

	Remarks and examples
	Introduction
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Stored results
	Methods and formulas
	ROC statistics
	Covariate-adjusted ROC curves
	Parametric ROC curves: Estimating equations
	Parametric ROC curves: Maximum likelihood

	Acknowledgments
	References
	Also see

	rocreg postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat nproc
	Menu for estat
	Options for estat nproc
	Remarks and examples
	Using predict after rocreg
	Using estat nproc

	Stored results
	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	rocregplot
	Syntax
	Menu
	Description
	probit_options
	common_options
	boot_options
	Remarks and examples
	Plotting covariate-specific ROC curves
	Plotting marginal ROC curves

	Methods and formulas
	Parametric model: Summary parameter definition
	Maximum likelihood estimation
	Estimating equations estimation

	References
	Also see

	roctab
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Nonparametric ROC curves
	Lorenz-like curves

	Stored results
	Methods and formulas
	References
	Also see

	rologit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Examples
	Comparing respondents
	Incomplete rankings and ties
	Clustered choice data
	Comparison of rologit and clogit
	On reversals of rankings

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rologit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	rreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	rreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	runtest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References

	S
	scobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Skewed logistic model
	Robust standard errors

	Stored results
	Methods and formulas
	References
	Also see

	scobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	sdtest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic form
	Immediate form
	Robust test

	Stored results
	Methods and formulas
	References
	Also see

	search
	Syntax
	Menu
	Description
	Options for search
	Option for set searchdefault
	Remarks and examples
	Introduction
	Internet searches
	Author searches
	Entry ID searches
	Return codes

	Acknowledgment
	Also see

	serrbar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgment
	Also see

	set
	Syntax
	Description
	Remarks and examples
	Also see

	set cformat
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	set_defaults
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	set emptycells
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	set seed
	Syntax
	Description
	Remarks and examples
	Examples
	Setting the seed
	How to choose a seed
	Do not set the seed too often
	Preserving and restoring the random-number generator state

	Also see

	set showbaselevels
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	signrank
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Methods and formulas
	signrank
	signtest

	References
	Also see

	simulate
	Syntax
	Description
	Options
	Remarks and examples
	References
	Also see

	sj
	Description
	Remarks and examples
	Installing the Stata Journal software
	Installing the STB software

	Also see

	sktest
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	slogit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	One-dimensional model
	Higher-dimension models

	Stored results
	Methods and formulas
	References
	Also see

	slogit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	smooth
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Methods and formulas
	Running median smoothers of odd span
	Running median smoothers of even span
	Repeat operator
	Endpoint rule
	Splitting operator
	Hanning smoother
	Twicing

	Acknowledgments
	References
	Also see

	spearman
	Syntax
	Menu
	Description
	Options for spearman
	Options for ktau
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	spikeplot
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	ssc
	Syntax
	Description
	Command overview

	Options
	Options for use with ssc new
	Options for use with ssc hot
	Option for use with ssc describe
	Options for use with ssc install
	Option for use with ssc type
	Options for use with ssc copy

	Remarks and examples
	Acknowledgments
	References
	Also see

	stem
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	stepwise
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Search logic for a step
	Full search logic
	Examples
	Estimation sample considerations
	Messages
	Programming for stepwise

	Stored results
	Methods and formulas
	References
	Also see

	stored results
	Syntax
	Description
	Option
	Remarks and examples
	References
	Also see

	suest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Using suest
	Remarks on regress
	Testing the assumption of the independence of irrelevant alternatives
	Testing proportionality
	Testing cross-model hypotheses

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	summarize
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	sunflower
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgments
	References

	sureg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	sureg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	swilk
	Syntax
	Menu
	Description
	Options for swilk
	Options for sfrancia
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	symmetry
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Asymptotic tests
	Exact symmetry test

	References
	Also see

	T
	table
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks and examples
	One-way tables
	Two-way tables
	Three-way tables
	Four-way and higher-dimensional tables
	Video example

	Methods and formulas
	Also see

	tabstat
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Video example

	Acknowledgments
	Also see

	tabulate oneway
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks and examples
	tabulate
	tab1
	Video example

	Stored results
	References
	Also see

	tabulate twoway
	Syntax
	Menu
	Description
	Options
	Limits

	Remarks and examples
	tabulate
	Measures of association
	N-way tables
	Weighted data
	Tables with immediate data
	tab2
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	tabulate, summarize()
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	One-way tables
	Two-way tables

	Also see

	test
	Syntax
	Menu
	Description
	Options for testparm
	Options for test
	Remarks and examples
	Introductory examples
	Special syntaxes after multiple-equation estimation
	Constrained coefficients
	Multiple testing

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	testnl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using testnl to perform linear tests
	Specifying constraints
	Dropped constraints
	Multiple constraints
	Manipulability

	Stored results
	Methods and formulas
	References
	Also see

	tetrachoric
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Association in 2-by-2 tables
	Factor analysis of dichotomous variables
	Tetrachoric correlations with simulated data

	Stored results
	Methods and formulas
	References
	Also see

	tnbreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Acknowledgment
	References
	Also see

	tnbreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Methods and formulas
	Mean-dispersion model
	Constant-dispersion model

	Also see

	tobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	References
	Also see

	total
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	The total estimator
	Survey data
	The survey total estimator
	The poststratified total estimator
	Subpopulation estimation

	References
	Also see

	total postestimation
	Description
	Remarks and examples
	Also see

	tpoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tpoisson postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Methods and formulas
	Also see

	translate
	Syntax
	Description
	Options for print
	Options for translate
	Remarks and examples
	Printing files
	Printing files, Mac and Windows
	Printing files, Unix
	Translating files from one format to another

	Stored results
	Also see

	truncreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	truncreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	ttest
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	One-sample t test
	Two-sample t test
	Paired t test
	Two-sample t test compared with one-way ANOVA
	Immediate form
	Video examples

	Stored results
	Methods and formulas
	References
	Also see

	U
	update
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	V
	vce_option
	Syntax
	Description
	Options
	Remarks and examples
	Prefix commands
	Passing options in vce()

	Methods and formulas
	Also see

	view
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	vwls
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vwls postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	W
	which
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	X
	xi
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Background
	Indicator variables for simple effects
	Controlling the omitted dummy
	Categorical variable interactions
	Interactions with continuous variables
	Using xi: Interpreting output
	How xi names variables
	xi as a command rather than a command prefix
	Warnings

	Stored results
	References
	Also see

	Z
	zinb
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zinb postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Methods and formulas
	Reference
	Also see

	zip
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	zip postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	[SEM] Structural Equation Modeling
	Contents
	Acknowledgments
	Reference
	Also see

	intro 1
	Description
	Remarks and examples
	Also see

	intro 2
	Description
	Remarks and examples
	Using path diagrams to specify standard linear SEMs
	Specifying correlation
	Using the command language to specify standard linear SEMs
	Specifying generalized SEMs: Family and link
	Specifying generalized SEMs: Family and link, multinomial logistic regression
	Specifying generalized SEMs: Family and link, paths from response variables
	Specifying generalized SEMs: Multilevel mixed effects (2 levels)
	Specifying generalized SEMs: Multilevel mixed effects (3 levels)
	Specifying generalized SEMs: Multilevel mixed effects (4+ levels)
	Specifying generalized SEMs: Multilevel mixed effects with random intercepts
	Specifying generalized SEMs: Multilevel mixed effects with random slopes

	Reference
	Also see

	intro 3
	Description
	Remarks and examples
	Specifying indicator variables
	Specifying interactions with indicator variables
	Specifying categorical variables
	Specifying interactions with categorical variables
	Specifying endogenous variables
	Inconsistency between gsem and other estimation commands

	Also see

	intro 4
	Description
	Remarks and examples
	Differences in assumptions between sem and gsem
	sem: Choice of estimation method
	gsem: Choice of estimation method
	Treatment of missing values
	Variable types: Observed, latent, endogenous, exogenous, and error
	Constraining parameters
	Constraining path coefficients to specific values
	Constraining intercepts to specific values (suppressing the intercept)
	Constraining path coefficients or intercepts to be equal
	Constraining covariances to be equal (or to specific values)
	Constraining variances to specific values (or to be equal)

	Identification 1: Substantive issues
	Not all models are identified
	How to count parameters
	What happens when models are unidentified
	How to diagnose and fix the problem

	Identification 2: Normalization constraints (anchoring)
	Why the problem arises
	How the problem would manifest itself
	How sem (gsem) solves the problem for you
	Overriding sem's (gsem's) solution

	References
	Also see

	intro 5
	Description
	Remarks and examples
	Single-factor measurement models
	Item--response theory (IRT) models
	Multiple-factor measurement models
	Confirmatory factor analysis (CFA) models
	Structural models 1: Linear regression
	Structural models 2: Gamma regression
	Structural models 3: Binary-outcome models
	Structural models 4: Count models
	Structural models 5: Ordinal models
	Structural models 6: Multinomial logistic regression
	Structural models 7: Dependencies between response variables
	Structural models 8: Unobserved inputs, outputs, or both
	Structural models 9: MIMIC models
	Structural models 10: Seemingly unrelated regression (SUR)
	Structural models 11: Multivariate regression
	Structural models 12: Mediation models
	Correlations
	Higher-order CFA models
	Correlated uniqueness model
	Latent growth models
	Models with reliability
	Multilevel mixed-effects models

	References
	Also see

	intro 6
	Description
	Remarks and examples
	The generic SEM model
	Fitting the model for different groups of the data
	Which parameters vary by default, and which do not
	Specifying which parameters are allowed to vary in broad, sweeping terms
	Adding constraints for path coefficients across groups
	Adding constraints for means, variances, or covariances across groups
	Adding constraints for some groups but not others
	Adding paths for some groups but not others
	Relaxing constraints

	Reference
	Also see

	intro 7
	Description
	Remarks and examples
	Replaying the model (sem and gsem)
	Displaying odds ratios, incidence-rate ratios, etc. (gsem only)
	Obtaining goodness-of-fit statistics (sem and gsem)
	Performing tests for including omitted paths and relaxing constraints (sem only)
	Performing tests of model simplification (sem and gsem)
	Displaying other results, statistics, and tests (sem and gsem)
	Obtaining predicted values (sem)
	Obtaining predicted values (gsem)
	Using contrast, pwcompare, and margins (sem and gsem)
	Accessing stored results

	Also see

	intro 8
	Description
	Options
	Remarks and examples
	Also see

	intro 9
	Description
	Options
	Remarks and examples
	Also see

	intro 10
	Description
	Remarks and examples
	Also see

	intro 11
	Description
	Remarks and examples
	Background
	How to use sem with SSD
	What you cannot do with SSD
	Entering SSD
	Entering SSD for multiple groups
	What happens when you do not set all the summary statistics
	Labeling SSD
	Making summary statistics from data for use by others

	Reference
	Also see

	intro 12
	Description
	Remarks and examples
	Is your model identified?
	Convergence solutions generically described
	Temporarily eliminate option reliability()
	Use default normalization constraints
	Temporarily eliminate feedback loops
	Temporarily simplify the model
	Try other numerical integration methods (gsem only)
	Get better starting values (sem and gsem)
	Get better starting values (gsem)

	Also see

	Builder
	Description
	Remarks and examples
	Video example

	Reference

	Builder, generalized
	Description
	Remarks and examples
	Video example

	Reference

	estat eform
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	estat eqgof
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat eqtest
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	estat framework
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	estat ggof
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	estat ginvariant
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat gof
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat mindices
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat residuals
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	estat scoretests
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	References
	Also see

	estat stable
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	estat stdize
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Also see

	estat summarize
	Syntax
	Menu for estat
	Description
	Options
	Stored results
	Also see

	estat teffects
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	example 1
	Description
	Remarks and examples
	Single-factor measurement model
	Fitting the same model with gsem
	Fitting the same model with the Builder
	The measurement-error model interpretation

	Reference
	Also see

	example 2
	Description
	Remarks and examples
	Background
	Creating the SSD
	At this point, we could save the dataset and stop
	Labeling the SSD
	Listing the SSD

	Reference
	Also see

	example 3
	Description
	Remarks and examples
	Fitting multiple-factor measurement models
	Displaying standardized results
	Fitting the model with the Builder
	Obtaining equation-level goodness of fit by using estat eqgof

	References
	Also see

	example 4
	Description
	Remarks and examples
	Reference
	Also see

	example 5
	Description
	Remarks and examples
	Reference
	Also see

	example 6
	Description
	Remarks and examples
	Fitting linear regression models
	Displaying standardized results
	Fitting the model with the Builder

	Also see

	example 7
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Checking stability with estat stable
	Reporting total, direct, and indirect effects with estat teffects

	References
	Also see

	example 8
	Description
	Remarks and examples
	Using test to evaluate adding constraints
	Refitting the model with added constraints
	Using estat scoretests to test whether constraints can be relaxed

	Also see

	example 9
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder
	Evaluating omitted paths with estat mindices
	Refitting the model

	References
	Also see

	example 10
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the MIMIC model with the Builder
	Evaluating the residuals with estat residuals
	Performing likelihood-ratio tests with lrtest

	Reference
	Also see

	example 11
	Description
	Remarks and examples
	Also see

	example 12
	Description
	Remarks and examples
	Fitting the seemingly unrelated regression model
	Fitting the model with the Builder

	Also see

	example 13
	Description
	Remarks and examples
	Also see

	example 14
	Description
	Remarks and examples
	Also see

	example 15
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 16
	Description
	Remarks and examples
	Using sem to obtain correlation matrices
	Fitting the model with the Builder
	Testing correlations with estat stdize and test

	Also see

	example 17
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 18
	Description
	Remarks and examples
	Fitting the model
	Fitting the model with the Builder

	Reference
	Also see

	example 19
	Description
	Remarks and examples
	Reference
	Also see

	example 20
	Description
	Remarks and examples
	Background
	Fitting the model with all the data
	Fitting the model with the group() option
	Fitting the model with the Builder

	Reference
	Also see

	example 21
	Description
	Remarks and examples
	Also see

	example 22
	Description
	Remarks and examples
	Also see

	example 23
	Description
	Remarks and examples
	Background
	Fitting the constrained model

	Also see

	example 24
	Description
	Remarks and examples
	Baseline model (reliability ignored)
	Model with reliability
	Model with two measurement variables and reliability

	Also see

	example 25
	Description
	Remarks and examples
	Preparing data for conversion
	Converting to summary statistics form
	Publishing SSD
	Creating SSD with multiple groups

	Also see

	example 26
	Description
	Remarks and examples
	Fitting the model with method(ml)
	Fitting the model with method(mlmv)
	Fitting the model with the Builder

	Also see

	example 27g
	Description
	Remarks and examples
	Single-factor pass/fail measurement model
	Single-factor pass/fail + continuous measurement model
	Fitting the model with the Builder

	Also see

	example 28g
	Description
	Remarks and examples
	1-PL IRT model with unconstrained variance
	1-PL IRT model with variance constrained to 1
	Obtaining item--characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 29g
	Description
	Remarks and examples
	Fitting the 2-PL IRT model
	Obtaining predicted difficulty and discrimination
	Using coeflegend to obtain the symbolic names of the parameters
	Graphing item--characteristic curves
	Fitting the model with the Builder

	References
	Also see

	example 30g
	Description
	Remarks and examples
	Fitting the two-level model
	Fitting the variance-components model
	Fitting the model with the Builder

	References
	Also see

	example 31g
	Description
	Remarks and examples
	Fitting the two-factor model
	Fitting the model with the Builder

	Also see

	example 32g
	Description
	Remarks and examples
	Structural model with measurement component
	Fitting the model with the Builder

	Also see

	example 33g
	Description
	Remarks and examples
	Fitting the logit model
	Obtaining odds ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 34g
	Description
	Remarks and examples
	Fitting the combined model
	Obtaining odds ratios and incidence-rate ratios
	Fitting the model with the Builder

	Reference
	Also see

	example 35g
	Description
	Remarks and examples
	Ordered probit
	Ordered logit
	Fitting the model with the Builder

	Reference
	Also see

	example 36g
	Description
	Remarks and examples
	Fitting the MIMIC model
	Fitting the model with the Builder

	Reference
	Also see

	example 37g
	Description
	Remarks and examples
	Simple multinomial logistic regression model
	Multinomial logistic regression model with constraints
	Fitting the simple multinomial logistic model with the Builder
	Fitting the multinomial logistic model with constraints with the Builder

	Reference
	Also see

	example 38g
	Description
	Remarks and examples
	Random-intercept model, single-equation formulation
	Random-intercept model, within-and-between formulation
	Random-slope model, single-equation formulation
	Random-slope model, within-and-between formulation
	Fitting the random-intercept model with the Builder
	Fitting the random-slope model with the Builder

	Reference
	Also see

	example 39g
	Description
	Remarks and examples
	Three-level negative binomial model
	Three-level Poisson model
	Testing for overdispersion
	Fitting the models with the Builder

	References
	Also see

	example 40g
	Description
	Remarks and examples
	The crossed model
	Fitting the model with the Builder

	Reference
	Also see

	example 41g
	Description
	Remarks and examples
	Two-level multinomial logistic model with shared random effects
	Two-level multinomial logistic model with separate but correlated random effects
	Fitting the model with the Builder

	References
	Also see

	example 42g
	Description
	Remarks and examples
	One-level model with sem
	One-level model with gsem
	Two-level model with gsem
	Fitting the models with the Builder

	References
	Also see

	example 43g
	Description
	Remarks and examples
	Fitting tobit regression models
	Fitting the model with the Builder

	Also see

	example 44g
	Description
	Remarks and examples
	Fitting interval regression models
	Fitting the model with the Builder

	Also see

	example 45g
	Description
	Remarks and examples
	The Heckman selection model as an SEM
	Fitting the Heckman selection model as an SEM
	Transforming results and obtaining rho
	Fitting the model with the Builder

	References
	Also see

	example 46g
	Description
	Remarks and examples
	Fitting the treatment-effects model
	Fitting the model with the Builder

	References
	Also see

	gsem
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Also see

	gsem estimation options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	gsem family-and-link options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	gsem model description options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	gsem path notation extensions
	Syntax
	Description
	Options
	Remarks and examples
	Specifying multilevel nested latent variables
	Specifying multilevel crossed latent variables
	Specifying family and link

	Also see

	gsem postestimation
	Description
	Remarks and examples
	Also see

	gsem reporting options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	lincom
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	lrtest
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Also see

	methods and formulas for gsem
	Description
	Remarks and examples
	Introduction
	Families of distributions
	The Bernoulli family
	The binomial family
	The ordinal family
	The multinomial family
	The Poisson family
	The negative binomial family
	The gamma family
	The Gaussian family
	Reliability

	Link functions
	The logit link
	The probit link
	The complementary log-log link
	The log link
	The identity link

	The likelihood
	Gauss--Hermite quadrature
	Adaptive quadrature

	Laplacian approximation
	Postestimation
	Empirical Bayes
	Other predictions

	References
	Also see

	methods and formulas for sem
	Description
	Remarks and examples
	Variable notation
	Model and parameterization
	Summary data
	Maximum likelihood
	Weighted least squares
	Groups
	Fitted parameters
	Standardized parameters
	Reliability
	Postestimation

	References
	Also see

	nlcom
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	predict after gsem
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	predict after sem
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	sem
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Default normalization constraints
	Default covariance assumptions
	How to solve convergence problems

	Stored results
	Reference
	Also see

	sem and gsem option constraints()
	Syntax
	Description
	Remarks and examples
	Use with sem
	Use with gsem

	Also see

	sem and gsem option covstructure()
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	sem and gsem option from()
	Syntax
	Description
	Option
	Remarks and examples
	Syntax 1, especially useful when dealing with convergence problems
	Syntax 2, seldom used

	Also see

	sem and gsem option reliability()
	Syntax
	Description
	Option
	Remarks and examples
	Background
	Dealing with measurement error of exogenous variables
	Dealing with measurement error of endogenous variables
	What can go wrong

	Also see

	sem and gsem path notation
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem and gsem syntax options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem estimation options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem group options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem model description options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem option method()
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem option noxconditional
	Syntax
	Description
	Option
	Remarks and examples
	What is x conditional?
	When to specify noxconditional
	Option forcexconditional (a technical note)

	Also see

	sem option select()
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	sem path notation extensions
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	sem postestimation
	Description
	Remarks and examples
	Also see

	sem reporting options
	Syntax
	Description
	Options
	Remarks and examples
	Reference
	Also see

	sem ssd options
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	ssd
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	test
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	testnl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	[ST] Survival Analysis
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	survival analysis
	Description
	Remarks and examples
	Introduction
	Declaring and converting count data
	Converting snapshot data
	Declaring and summarizing survival-time data
	Manipulating survival-time data
	Obtaining summary statistics, confidence intervals, tables, etc.
	Fitting regression models
	Sample size and power determination for survival analysis
	Converting survival-time data
	Programmer's utilities
	Epidemiological tables

	Reference
	Also see

	ct
	Description
	Also see

	ctset
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Examples
	Data errors flagged by ctset

	Also see

	cttost
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	discrete
	Description
	Acknowledgment
	References
	Also see

	epitab
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Incidence-rate data
	Stratified incidence-rate data
	Standardized estimates with stratified incidence-rate data
	Cumulative incidence data
	Stratified cumulative incidence data
	Standardized estimates with stratified cumulative incidence data
	Case--control data
	Stratified case--control data
	Case--control data with multiple levels of exposure
	Case--control data with confounders and possibly multiple levels of exposure
	Standardized estimates with stratified case--control data
	Matched case--control data
	Video examples

	Stored results
	Methods and formulas
	Unstratified incidence-rate data (ir and iri)
	Unstratified cumulative incidence data (cs and csi)
	Unstratified case--control data (cc and cci)
	Unstratified matched case--control data (mcc and mcci)
	Stratified incidence-rate data (ir with the by() option)
	Stratified cumulative incidence data (cs with the by() option)
	Stratified case--control data (cc with by() option, mhodds, tabodds)

	Acknowledgments
	References
	Also see

	ltable
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Acknowledgments
	References
	Also see

	snapspan
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Snapshot and time-span datasets
	Specifying varlist

	Also see

	st
	Description
	Reference
	Also see

	st_is
	Syntax
	Description
	Remarks and examples
	Definitions of characteristics and st variables
	Outline of an st command
	Using the st_ct utility
	Comparison of st_ct with sttoct
	Verifying data
	Converting data

	Also see

	stbase
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	stbase without the at() option
	stbase with the at() option
	Single-failure st data where all subjects enter at time 0
	Single-failure st data where some subjects enter after time 0
	Single-failure st data with gaps and perhaps delayed entry
	Multiple-failure st data

	Also see

	stci
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	References
	Also see

	stcox
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Cox regression with uncensored data
	Cox regression with censored data
	Treatment of tied failure times
	Cox regression with discrete time-varying covariates
	Cox regression with continuous time-varying covariates
	Robust estimate of variance
	Cox regression with multiple-failure data
	Stratified estimation
	Cox regression as Poisson regression
	Cox regression with shared frailty

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox PH-assumption tests
	Syntax
	Menu
	Description
	Options for stphplot
	Options for stcoxkm
	Options for estat phtest
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcox postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat concordance
	Menu for estat
	Options for estat concordance
	Remarks and examples
	Baseline functions
	Making baseline reasonable
	Residuals and diagnostic measures
	Multiple records per subject
	Predictions after stcox with the tvc() option
	Predictions after stcox with the shared() option
	estat concordance

	Stored results
	Methods and formulas
	estat concordance

	References
	Also see

	stcrreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	The case for competing-risks regression
	Using stcrreg
	Multiple competing-event types
	stcrreg as an alternative to stcox
	Multiple records per subject
	Option tvc() and testing the proportional-subhazards assumption

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	stcrreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Baseline functions
	Null models
	Measures of influence

	Methods and formulas
	References
	Also see

	stcurve
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	stcurve after stcox
	stcurve after streg
	stcurve after stcrreg

	References
	Also see

	stdescribe
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	stfill
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	stgen
	Syntax
	Menu
	Description
	Functions
	Remarks and examples
	Also see

	stir
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	stpower
	Syntax
	Description
	Remarks and examples
	Theory and terminology
	Introduction to stpower subcommands
	Sample-size determination for survival studies
	Creating output tables
	Power curves

	Methods and formulas
	References
	Also see

	stpower cox
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Link to the sample-size and power computation for the log-rank test
	Power and effect-size determination
	Performing the analysis with the Cox PH model

	Stored results
	Methods and formulas
	References
	Also see

	stpower exponential
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Other ways of specifying the effect size
	Sample-size determination by using different approximations
	Sample-size determination in the presence of censoring
	Nonuniform accrual and exponential losses to follow-up
	The conditional versus unconditional approaches
	Link to the sample-size and power computation for the log-rank test
	Power determination

	Stored results
	Methods and formulas
	References
	Also see

	stpower logrank
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Computing sample size in the absence of censoring
	Computing sample size in the presence of censoring
	Withdrawal of subjects from the study
	Including information about subject accrual
	Power and effect-size determination
	Performing the analysis using the log-rank test

	Stored results
	Methods and formulas
	References
	Also see

	stptime
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	strate
	Syntax
	Menu
	Description
	Options for strate
	Options for stmh and stmc
	Remarks and examples
	Tabulation of rates by using strate
	Stratified rate ratios using stmh
	Log-linear trend test for metric explanatory variables using stmh
	Controlling for age with fine strata by using stmc

	Stored results
	Acknowledgments
	References
	Also see

	streg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Distributions
	Examples
	Parameterization of ancillary parameters
	Stratified estimation
	(Unshared-) frailty models
	Shared-frailty models

	Stored results
	Methods and formulas
	Parameter estimation

	References
	Also see

	streg postestimation
	Description
	Special-interest postestimation command

	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts
	Syntax
	Description
	Remarks and examples
	Listing, graphing, and generating variables
	Comparing survivor or cumulative hazard functions
	Testing equality of survivor functions
	Adjusted estimates
	Counting the number lost due to censoring

	Stored results
	Methods and formulas
	References
	Also see

	sts generate
	Syntax
	Menu
	Description
	Functions
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts graph
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Including the number lost on the graph
	Graphing the Nelson{--}Aalen cumulative hazard function
	Graphing the hazard function
	Adding an at-risk table
	On boundary bias for smoothed hazards

	Methods and formulas
	References
	Also see

	sts list
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	sts test
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	The log-rank test
	The Wilcoxon (Breslow--Gehan) test
	The Tarone--Ware test
	The Peto--Peto--Prentice test
	The generalized Fleming--Harrington tests
	The ``Cox'' test
	The trend test

	Stored results
	Methods and formulas
	References
	Also see

	stset
	Syntax
	Menu
	Description
	Options for use with stset and streset
	Options unique to streset
	Options for st
	Remarks and examples
	What are survival-time data?
	Key concepts
	Survival-time datasets
	Using stset
	Two concepts of time
	The substantive meaning of analysis time
	Setting the failure event
	Setting multiple failures
	First entry times
	Final exit times
	Intermediate exit and reentry times (gaps)
	if() versus if exp
	Past and future records
	Using streset
	Performance and multiple-record-per-subject datasets
	Sequencing of events within t
	Weights
	Data warnings and errors flagged by stset
	Using survival-time data in Stata

	References
	Also see

	stsplit
	Syntax
	Menu
	Description
	Options for stsplit
	Option for stjoin
	Remarks and examples
	What stsplit does and why
	Using stsplit to split at designated times
	Time versus analysis time
	Splitting data on recorded ages
	Using stsplit to split at failure times

	Acknowledgments
	References
	Also see

	stsum
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Single-failure data
	Multiple-failure data

	Stored results
	Methods and formulas
	Also see

	sttocc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Acknowledgments
	References
	Also see

	sttoct
	Syntax
	Description
	Options
	Remarks and examples
	Case 1: entvar not specified
	Case 2: entvar specified

	Also see

	stvary
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Reference
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	[SVY] Survey Data
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	survey
	Description
	Remarks and examples
	Introduction
	Survey design tools
	Survey data analysis tools
	Survey data concepts
	Tools for programmers of new survey commands
	Video example

	Acknowledgments
	References
	Also see

	bootstrap_options
	Syntax
	Description
	Options
	Also see

	brr_options
	Syntax
	Description
	Options
	Also see

	direct standardization
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat
	Syntax
	Menu
	Description
	Options for estat effects
	Options for estat lceffects
	Options for estat size
	Options for estat sd
	Options for estat cv
	Options for estat gof
	Options for estat vce
	Remarks and examples
	Stored results
	Methods and formulas
	Design effects
	Linear combinations
	Misspecification effects
	Population and subpopulation standard deviations
	Coefficient of variation
	Goodness of fit for binary response models

	References
	Also see

	jackknife_options
	Syntax
	Description
	Options
	Also see

	ml for svy
	Remarks and examples
	Reference
	Also see

	poststratification
	Description
	Remarks and examples
	Overview
	Video example

	Methods and formulas
	References
	Also see

	sdr_options
	Syntax
	Description
	Options
	Also see

	subpopulation estimation
	Description
	Remarks and examples
	Methods and formulas
	Subpopulation totals
	Subpopulation estimates other than the total
	Subpopulation with replication methods

	References
	Also see

	svy
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy bootstrap
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy brr
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy estimation
	Description
	Menu
	Remarks and examples
	Overview of survey analysis in Stata
	Descriptive statistics
	Regression models
	Health surveys

	References
	Also see

	svy jackknife
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	svy postestimation
	Description
	Syntax for predict
	Remarks and examples
	References
	Also see

	svy sdr
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate oneway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	svy: tabulate twoway
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	The Rao and Scott correction
	Wald statistics
	Properties of the statistics

	Stored results
	Methods and formulas
	The table items
	Confidence intervals
	The test statistics

	References
	Also see

	svydescribe
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	svymarkout
	Syntax
	Description
	Stored results
	Also see

	svyset
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction to survey design characteristics
	Finite population correction (FPC)
	Multiple-stage designs and with-replacement sampling
	Replication-weight variables
	Combining datasets from multiple surveys
	Video example

	Stored results
	References
	Also see

	variance estimation
	Description
	Remarks and examples
	Variance of the total
	Variance for census data
	Certainty sampling units
	Strata with one sampling unit
	Ratios and other functions of survey data
	Linearized/robust variance estimation
	The bootstrap
	BRR
	The jackknife
	Successive difference replication
	Confidence intervals

	References
	Also see

	Glossary
	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	[TE] Treatment Effects
	Contents
	treatment effects
	Description
	Also see

	etpoisson
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	Reference
	Also see

	etpoisson postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	etregress
	Syntax
	Menu
	Description
	Options for maximum likelihood estimates
	Options for two-step consistent estimates
	Remarks and examples
	Overview
	Basic example
	Average treatment effect (ATE)
	Average treatment effect on the treated (ATET)

	Stored results
	Methods and formulas
	References
	Also see

	etregress postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	teffects
	Syntax
	Description
	Also see

	teffects intro
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	Estimating treatment effects
	Regression adjustment
	Inverse-probability weighting
	Doubly robust combinations of RA and IPW
	Matching

	Caveats and assumptions
	A quick tour of the estimators
	Regression adjustment
	Inverse-probability weighting
	Inverse-probability-weighted regression adjustment
	Augmented inverse-probability weighting
	Nearest-neighbor matching
	Propensity-score matching

	Video example

	Reference
	Also see

	teffects intro advanced
	Description
	Remarks and examples
	Introduction
	Defining treatment effects
	The potential-outcome model
	Assumptions needed for estimation
	The CI assumption
	The overlap assumption
	The i.i.d. assumption

	Comparing the ATE and ATET
	Overview of treatment-effect estimators
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators
	Nearest-neighbor matching estimators
	Propensity-score matching estimators
	Choosing among estimators
	Model choice

	Acknowledgments
	References
	Also see

	teffects aipw
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Parameters and notation
	Overview of EE estimators
	VCE for EE estimators
	TM and OM estimating functions
	TM estimating functions
	OM estimating functions

	Effect estimating functions
	RA estimators
	IPW estimators
	AIPW estimators
	IPWRA estimators

	References
	Also see

	teffects ipw
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	teffects ipwra
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	teffects multivalued
	Description
	Remarks and examples
	Introduction
	Parameters and notation
	Illustrating multivalued treatments
	Examples

	References
	Also see

	teffects nnmatch
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Nearest-neighbor matching estimator
	Bias-corrected matching estimator

	Propensity-score matching estimator
	PSM, ATE, and ATET variance adjustment

	References
	Also see

	teffects overlap
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	References
	Also see

	teffects postestimation
	Description
	Syntax
	Syntax for predict after aipw and ipwra
	Syntax for predict after ipw
	Syntax for predict after nnmatch and psmatch
	Syntax for predict after ra

	Options
	Options for predict after aipw and ipwra
	Options for predict after ipw
	Options for predict after nnmatch and psmatch
	Options for predict after ra

	Remarks and examples
	Also see

	teffects psmatch
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	teffects ra
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	References
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	[TS] Time Series
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	time series
	Description
	Remarks and examples
	Data management tools and time-series operators
	Univariate time series
	Multivariate time series
	Forecasting models

	References
	Also see

	arch
	Syntax
	Details of syntax
	Common models
	Reading arch output

	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Priming values
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arch postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	arfima
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	The likelihood function
	The autocovariance function
	The profile likelihood
	The MPL

	References
	Also see

	arfima postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Forecasting after ARFIMA
	IRF results for ARFIMA

	Methods and formulas
	References
	Also see

	arima
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	ARIMA models
	Multiplicative seasonal ARIMA models
	ARMAX models
	Dynamic forecasting
	Video example

	Stored results
	Methods and formulas
	ARIMA model
	Kalman filter equations
	Kalman filter or state-space representation of the ARIMA model
	Kalman filter recursions
	Kalman filter initial conditions
	Likelihood from prediction error decomposition
	Missing data

	References
	Also see

	arima postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Forecasting after ARIMA
	IRF results for ARIMA

	Reference
	Also see

	corrgram
	Syntax
	Menu
	Description
	Options for corrgram
	Options for ac and pac
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	cumsp
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	dfactor
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	An introduction to dynamic-factor models
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	dfactor postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	dfgls
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	dfuller
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	estat acplot
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	estat aroots
	Syntax
	Menu for estat
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	fcast compute
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	fcast graph
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	forecast
	Syntax
	Description
	Remarks and examples
	References
	Also see

	forecast adjust
	Syntax
	Description
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast clear
	Syntax
	Description
	Remarks and examples
	Also see

	forecast coefvector
	Syntax
	Description
	Options
	Remarks and examples
	Introduction
	Simulations with coefficient vectors

	Methods and formulas
	Also see

	forecast create
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	forecast describe
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	forecast drop
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	forecast estimates
	Syntax
	Description
	Options
	Remarks and examples
	Introduction
	The advise option
	Using saved estimation results
	The predict option
	Forecasting with ARIMA models

	References
	Also see

	forecast exogenous
	Syntax
	Description
	Remarks and examples
	Also see

	forecast identity
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	forecast list
	Syntax
	Description
	Options
	Remarks and examples
	Reference
	Also see

	forecast query
	Syntax
	Description
	Remarks and examples
	Stored results
	Also see

	forecast solve
	Syntax
	Description
	Options
	Remarks and examples
	Performing conditional forecasts
	Using simulations to measure forecast accuracy

	Stored results
	Methods and formulas
	References
	Also see

	irf
	Syntax
	Description
	Remarks and examples
	References
	Also see

	irf add
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	irf cgraph
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf create
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introductory examples
	Technical aspects of IRF files
	IRFs and FEVDs
	IRF results for VARs
	IRF results for VECMs
	IRF results for ARIMA and ARFIMA

	Methods and formulas
	Impulse--response function formulas for VARs
	Dynamic-multiplier function formulas for VARs
	Forecast-error variance decomposition formulas for VARs
	Impulse{--}response function formulas for VECMs
	Algorithms for bootstrapping the VAR IRF and FEVD standard errors
	Impulse--response function formulas for ARIMA and ARFIMA

	References
	Also see

	irf ctable
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf describe
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf drop
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Also see

	irf graph
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf ograph
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf rename
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	irf set
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	irf table
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	mgarch
	Syntax
	Description
	Remarks and examples
	An introduction to MGARCH models
	Diagonal vech MGARCH models
	Conditional correlation MGARCH models
	Constant conditional correlation MGARCH model
	Dynamic conditional correlation MGARCH model
	Varying conditional correlation MGARCH model

	Error distributions and quasimaximum likelihood
	Treatment of missing data

	References
	Also see

	mgarch ccc
	Syntax
	Menu
	Description
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch ccc postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	mgarch dcc
	Syntax
	Menu
	Description
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dcc postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	mgarch dvech
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch dvech postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	mgarch vcc
	Syntax
	Menu
	Description
	Options
	Eqoptions

	Remarks and examples
	Some examples

	Stored results
	Methods and formulas
	References
	Also see

	mgarch vcc postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	newey
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	newey postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	pergram
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	pperron
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	prais
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	prais postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	psdensity
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	The frequency-domain approach to time series
	Some ARMA examples

	Methods and formulas
	Introduction
	Spectral density after arima or arfima
	Spectral density after ucm

	References
	Also see

	rolling
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgment
	References
	Also see

	sspace
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	An introduction to state-space models
	Some stationary state-space models
	Some nonstationary state-space models

	Stored results
	Methods and formulas
	References
	Also see

	sspace postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	References
	Also see

	tsappend
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Using tsappend with time-series data
	Using tsappend with panel data

	Stored results
	Also see

	tsfill
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Using tsfill with time-series data
	Using tsfill with panel data
	Video example

	Also see

	tsfilter
	Syntax
	Description
	Remarks and examples
	An example dataset
	A baseline method: Symmetric moving-average (SMA) filters
	An overview of filtering in the frequency domain
	SMA revisited: The Baxter--King filter
	Filtering a random walk: The Christiano--Fitzgerald filter
	A one-parameter high-pass filter: The Hodrick--Prescott filter
	A two-parameter high-pass filter: The Butterworth filter

	Methods and formulas
	Acknowledgments
	References
	Also see

	tsfilter bk
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter bw
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter cf
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsfilter hp
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tsline
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic examples
	Video example

	References
	Also see

	tsreport
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Basic examples
	Video example

	Stored results
	Also see

	tsrevar
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	tsset
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Panel data
	Video example

	Stored results
	References
	Also see

	tssmooth
	Syntax
	Description
	Remarks and examples
	References
	Also see

	tssmooth dexponential
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	tssmooth exponential
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Examples
	Treatment of missing values

	Stored results
	Methods and formulas
	References
	Also see

	tssmooth hwinters
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	tssmooth ma
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Overview
	Video example

	Stored results
	Methods and formulas
	Reference
	Also see

	tssmooth nl
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Also see

	tssmooth shwinters
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Holt{--}Winters seasonal multiplicative method
	Holt{--}Winters seasonal additive method

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	ucm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	An introduction to UCMs
	A random-walk model example
	Frequency-domain concepts used in the stochastic-cycle model
	Another random-walk model example
	Comparing UCM and ARIMA
	A local-level model example
	Comparing UCM and ARIMA, revisited
	Models for the trend and idiosyncratic components
	Seasonal component

	Stored results
	Methods and formulas
	Introduction
	State-space formulation
	Cyclical component extensions

	References
	Also see

	ucm postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat period
	Menu for estat
	Options for estat period
	Remarks and examples
	Methods and formulas
	Also see

	var intro
	Description
	Remarks and examples
	Introduction to VARs
	Introduction to SVARs
	Short-run SVAR models
	Long-run restrictions
	IRFs and FEVDs

	References
	Also see

	var
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Fitting models with some lags excluded
	Fitting models with exogenous variables
	Fitting models with constraints on the coefficients

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Model selection and inference
	Forecasting

	Methods and formulas
	Also see

	var svar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Short-run SVAR models
	Long-run SVAR models

	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	var svar postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	varbasic
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varbasic postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	vargranger
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varlmar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varnorm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varsoc
	Syntax
	Menu
	Description
	Preestimation options
	Postestimation option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varstable
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	varwle
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vec intro
	Description
	Remarks and examples
	Introduction to cointegrating VECMs
	VECM estimation in Stata

	References
	Also see

	vec
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Specification of constants and trends
	Collinearity

	Stored results
	Methods and formulas
	General specification of the VECM
	The log-likelihood function
	Estimation with Johansen identification
	Estimation with constraints: beta identified
	Estimation with constraints: beta not identified
	Formulas for the information criteria
	Formulas for predict

	References
	Also see

	vec postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Model selection and inference
	Forecasting

	Also see

	veclmar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Reference
	Also see

	vecnorm
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	vecrank
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	The trace statistic
	The maximum-eigenvalue statistic
	Minimizing an information criterion

	Stored results
	Methods and formulas
	References
	Also see

	vecstable
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	wntestb
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	wntestq
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xcorr
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	References
	Also see

	Glossary
	References

	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[XT] Longitudinal Data/Panel Data
	Contents
	intro
	Description
	Remarks and examples
	What's new

	Also see

	xt
	Syntax
	Description
	Remarks and examples
	References
	Also see

	quadchk
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	What makes a good random-effects model fit?
	How do I know whether I have a good quadrature approximation?
	What can I do to improve my results?

	vce_options
	Syntax
	Description
	Options
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	xtabond
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtabond postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat abond
	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Also see

	xtcloglog
	Syntax
	Menu
	Description
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtcloglog, re and the robust VCE estimator

	References
	Also see

	xtcloglog postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict

	Remarks and examples
	Also see

	xtdata
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Methods and formulas
	Also see

	xtdescribe
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Reference
	Also see

	xtdpd
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpd postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat abond
	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtdpdsys
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgment
	References
	Also see

	xtdpdsys postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat
	Menu for estat
	Option for estat abond
	Remarks and examples
	estat abond
	estat sargan

	Methods and formulas
	Reference
	Also see

	xtfrontier
	Syntax
	Menu
	Description
	Options for time-invariant model
	Options for time-varying decay model
	Remarks and examples
	Introduction
	Time-invariant model
	Time-varying decay model

	Stored results
	Methods and formulas
	References
	Also see

	xtfrontier postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	xtgee
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Introduction
	Calculating GEE for GLM
	Correlation structures
	Nonstationary and unstructured

	References
	Also see

	xtgee postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for estat wcorrelation
	Menu for estat
	Options for estat wcorrelation
	Remarks and examples
	Also see

	xtgls
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	Heteroskedasticity across panels
	Correlation across panels (cross-sectional correlation)
	Autocorrelation within panels

	Stored results
	Methods and formulas
	References
	Also see

	xtgls postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xthtaylor
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xthtaylor postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	References
	Also see

	xtintreg
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtintreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	xtivreg
	Syntax
	Menu
	Description
	Options for RE model
	Options for BE model
	Options for FE model
	Options for FD model
	Remarks and examples
	Stored results
	Methods and formulas
	xtivreg, fd
	xtivreg, fe
	xtivreg, be
	xtivreg, re

	Acknowledgment
	References
	Also see

	xtivreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xtline
	Syntax
	Menu
	Description
	Options for graph by panel
	Options for overlaid panels
	Remarks and examples
	Also see

	xtlogit
	Syntax
	Menu
	Description
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtlogit, re and the robust VCE estimator

	References
	Also see

	xtlogit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	xtnbreg
	Syntax
	Menu
	Description
	Options for RE/FE models
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtnbreg postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Methods and formulas
	Also see

	xtologit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtologit and the robust VCE estimator

	References
	Also see

	xtologit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	xtoprobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	xtoprobit and the robust VCE estimator

	References
	Also see

	xtoprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	xtpcse
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	Acknowledgments
	References
	Also see

	xtpcse postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xtpoisson
	Syntax
	Menu
	Description
	Options for RE model
	Options for FE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtpoisson, re normal and the robust VCE estimator

	References
	Also see

	xtpoisson postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Methods and formulas
	Also see

	xtprobit
	Syntax
	Menu
	Description
	Options for RE model
	Options for PA model
	Remarks and examples
	Stored results
	Methods and formulas
	xtprobit, re and the robust VCE estimator

	References
	Also see

	xtprobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Remarks and examples
	Also see

	xtrc
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xtrc postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xtreg
	Syntax
	Menu
	Description
	Options for RE model
	Options for BE model
	Options for FE model
	Options for MLE model
	Options for PA model
	Remarks and examples
	Assessing goodness of fit
	xtreg and associated commands

	Stored results
	Methods and formulas
	xtreg, fe
	xtreg, be
	xtreg, re
	xtreg, mle
	xtreg, pa

	Acknowledgments
	References
	Also see

	xtreg postestimation
	Description
	Special-interest postestimation commands

	Syntax for predict
	Menu for predict
	Options for predict
	Syntax for xttest0
	Menu for xttest0
	Remarks and examples
	Methods and formulas
	References
	Also see

	xtregar
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Introduction
	The fixed-effects model
	The random-effects model

	Stored results
	Methods and formulas
	Estimating rho
	Transforming the data to remove the AR(1) component
	The within estimator of the fixed-effects model
	The Baltagi--Wu GLS estimator
	The test statistics

	Acknowledgment
	References
	Also see

	xtregar postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xtset
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	xtsum
	Syntax
	Menu
	Description
	Remarks and examples
	Stored results
	Also see

	xttab
	Syntax
	Menu
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	xttobit
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Stored results
	Methods and formulas
	References
	Also see

	xttobit postestimation
	Description
	Syntax for predict
	Menu for predict
	Options for predict
	Also see

	xtunitroot
	Syntax
	Menu
	Description
	Options
	LLC_options
	HT_options
	Breitung_options
	IPS_options
	Fisher_options
	Hadri_options

	Remarks and examples
	Overview
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Stored results
	Methods and formulas
	Levin--Lin--Chu test
	Harris--Tsavalis test
	Breitung test
	Im--Pesaran--Shin test
	Fisher-type tests
	Hadri LM test

	Acknowledgments
	References
	Also see

	Glossary
	Subject and author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	[P] Programming
	Contents
	Combined subject table of contents
	intro
	Description
	Remarks and examples
	What's new

	References
	Also see

	automation
	Description
	Remarks and examples
	Also see

	break
	Syntax
	Description
	Remarks and examples
	Also see

	byable
	Syntax
	Description
	Option
	Remarks and examples
	byable(recall) programs
	Using sort in byable(recall) programs
	Byable estimation commands
	byable(onecall) programs
	Using sort in byable(onecall) programs
	Combining byable(onecall) with byable(recall)
	The by-group header

	Also see

	capture
	Syntax
	Description
	Remarks and examples
	Also see

	char
	Syntax
	Description
	Option
	Remarks and examples
	How to program with characteristics

	Also see

	class
	Description
	Remarks and examples
	1. Introduction
	2. Definitions
	3. Version control
	4. Member variables
	5. Inheritance
	6. Member programs' return values
	7. Assignment
	8. Built-ins
	9. Prefix operators
	10. Using object values
	11. Object destruction
	12. Advanced topics
	Appendix A. Finding, loading, and clearing class definitions
	Appendix B. Jargon
	Appendix C. Syntax diagrams

	Also see

	class exit
	Syntax
	Description
	Remarks and examples
	Examples

	Also see

	classutil
	Syntax
	Description
	Options for classutil describe
	Options for classutil dir
	Option for classutil which
	Remarks and examples
	classutil drop
	classutil describe
	classutil dir
	classutil cdir
	classutil which

	Stored results
	Also see

	comments
	Description
	Remarks and examples
	Also see

	confirm
	Syntax
	Description
	Option
	Remarks and examples
	confirm existence
	confirm file
	confirm format
	confirm names
	confirm number
	confirm matrix
	confirm scalar
	confirm variable

	Also see

	continue
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	creturn
	Syntax
	Menu
	Description
	Remarks and examples
	System values
	Directories and paths
	System limits
	Numerical and string limits
	Current dataset
	Memory settings
	Output settings
	Interface settings
	Graphics settings
	Efficiency settings
	Network settings
	Update settings
	Trace (program debugging) settings
	Mata settings
	Other settings
	Other

	Also see

	_datasignature
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Reference
	Also see

	#delimit
	Syntax
	Description
	Remarks and examples
	Also see

	dialog programming
	Description
	Remarks and examples
	1. Introduction
	2. Concepts
	2.1 Organization of the .dlg file
	2.2 Positions, sizes, and the DEFINE command
	2.3 Default values
	2.4 Memory (recollection)
	2.5 I-actions and member functions
	2.6 U-actions and communication options
	2.7 The distinction between i-actions and u-actions
	2.8 Error and consistency checking

	3. Commands
	3.1 VERSION
	3.2 INCLUDE
	3.3 DEFINE
	3.4 POSITION
	3.5 LIST
	3.6 DIALOG
	3.6.1 CHECKBOX on/off input control
	3.6.2 RADIO on/off input control
	3.6.3 SPINNER numeric input control
	3.6.4 EDIT string input control
	3.6.5 VARLIST and VARNAME string input controls
	3.6.6 FILE string input control
	3.6.7 LISTBOX list input control
	3.6.8 COMBOBOX list input control
	3.6.9 BUTTON special input control
	3.6.10 TEXT static control
	3.6.11 TEXTBOX static control
	3.6.12 GROUPBOX static control
	3.6.13 FRAME static control
	3.6.14 COLOR input control
	3.6.15 EXP expression input control
	3.6.16 HLINK hyperlink input control
	3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
	3.8 HELP and RESET helper buttons
	3.9 Special dialog directives

	4. SCRIPT
	5. PROGRAM
	5.1 Concepts
	5.1.1 Vnames
	5.1.2 Enames
	5.1.3 rstrings: cmdstring and optstring
	5.1.4 Adding to an rstring
	5.2 Flow-control commands
	5.2.1 if
	5.2.2 while
	5.2.3 call
	5.2.4 exit
	5.2.5 close
	5.3 Error-checking and presentation commands
	5.3.1 require
	5.3.2 stopbox
	5.4 Command-construction commands
	5.4.1 by
	5.4.2 bysort
	5.4.3 put
	5.4.4 varlist
	5.4.5 ifexp
	5.4.6 inrange
	5.4.7 weight
	5.4.8 beginoptions and endoptions
	5.4.8.1 option
	5.4.8.2 optionarg
	5.5 Command-execution commands
	5.5.1 stata
	5.5.2 clear
	5.6 Special scripts and programs

	6. Properties
	7. Child dialogs
	7.1 Referencing the parent
	8. Example
	Appendix A: Jargon
	Appendix B: Class definition of dialog boxes
	Appendix C: Interface guidelines for dialog boxes
	Frequently asked questions

	Also see

	discard
	Syntax
	Description
	Remarks and examples
	Also see

	display
	Syntax
	Description
	Remarks and examples
	Introduction
	Styles
	display used with quietly and noisily
	Columns
	display and SMCL
	Displaying variable names
	Obtaining input from the terminal

	Also see

	ereturn
	Syntax
	Description
	Options
	Remarks and examples
	Estimation-class programs
	Setting individual estimation results
	Posting estimation coefficient and variance--covariance matrices

	Stored results
	Also see

	error
	Syntax
	Description
	Remarks and examples
	Introduction
	Summary
	Other messages

	Also see

	estat programming
	Description
	Remarks and examples
	Standard subcommands
	Adding subcommands to estat
	Overriding standard behavior of a subcommand

	Also see

	_estimates
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	exit
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	file
	Syntax
	Description
	Options
	ASCII text output specifications

	Remarks and examples
	Use of file
	Use of file with tempfiles
	Writing ASCII text files
	Reading ASCII text files
	Use of seek when writing or reading ASCII text files
	Writing and reading binary files
	Writing binary files
	Reading binary files
	Use of seek when writing or reading binary files
	Appendix A.1 $mskip 	hinmuskip $ Useful commands and functions for use with file
	Appendix A.2 $mskip 	hinmuskip $ Actions of binary output formats with out-of-range values

	Stored results
	Reference
	Also see

	file formats .dta
	Description
	Remarks and examples
	Also see

	findfile
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	foreach
	Syntax
	Description
	Remarks and examples
	Introduction
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of local and foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of global
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of varlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of newlist
	foreach {
elax $mathsurround hbox {$Z$}@ mathinner {ldotp ldotp ldotp }mskip 	hinmuskip $} of numlist
	Use of foreach with continue
	The unprocessed list elements

	Also see

	forvalues
	Syntax
	Description
	Remarks and examples
	Reference
	Also see

	fvexpand
	Syntax
	Description
	Remarks and examples
	Stored results
	Also see

	gettoken
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	if
	Syntax
	Description
	Remarks and examples
	Introduction
	Avoid single-line if and else with ++ and -/- macro expansion

	Reference
	Also see

	include
	Syntax
	Description
	Remarks and examples
	Use with do-files
	Use with Mata
	Warning

	Also see

	java
	Description
	Usage
	Remarks and examples
	Also see

	javacall
	Syntax
	Description
	Option
	Also see

	levelsof
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Acknowledgments
	References
	Also see

	macro
	Syntax
	Description
	Remarks and examples
	Formal definition of a macro
	Global and local macro names
	Macro assignment
	Macro extended functions
	Macro extended function for extracting program properties
	Macro extended functions for extracting data attributes
	Macro extended function for naming variables
	Macro extended functions for filenames and file paths
	Macro extended function for accessing operating-system parameters
	Macro extended functions for names of stored results
	Macro extended function for formatting results
	Macro extended function for manipulating lists
	Macro extended functions related to matrices
	Macro extended function related to time-series operators
	Macro extended function for copying a macro
	Macro extended functions for parsing
	Macro expansion operators and function
	The tempvar, tempname, and tempfile commands
	Manipulation of macros
	Macros as arguments

	Also see

	macro lists
	Syntax
	Description
	Remarks and examples
	Treatment of adornment
	Treatment of duplicate elements in lists

	Also see

	makecns
	Syntax
	Description
	Options
	Remarks and examples
	Introduction
	Overview
	Mathematics
	Linkage of the mathematics to Stata

	Stored results
	Also see

	mark
	Syntax
	Description
	Options
	Remarks and examples
	Reference
	Also see

	matlist
	Syntax
	Description
	Style options
	General options
	Required options for the second syntax
	Remarks and examples
	All columns with the same format
	Different formats for each column
	Other output options

	Also see

	matrix
	Description
	Remarks and examples
	Overview of matrix commands
	Creating and replacing matrices
	Namespace
	Naming conventions in programs

	Also see

	matrix accum
	Syntax
	Description
	Options
	Remarks and examples
	matrix accum
	matrix glsaccum
	matrix opaccum
	matrix vecaccum
	Treatment of user-specified weights

	Stored results
	Reference
	Also see

	matrix define
	Syntax
	Menu
	Description
	Remarks and examples
	Introduction
	Inputting matrices by hand
	Matrix operators
	Matrix functions returning matrices
	Matrix functions returning scalars
	Subscripting and element-by-element definition
	Name conflicts in expressions (namespaces)
	Macro extended functions

	References
	Also see

	matrix dissimilarity
	Syntax
	Description
	Options
	Remarks and examples
	References
	Also see

	matrix eigenvalues
	Syntax
	Menu
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix get
	Syntax
	Description
	Remarks and examples
	Also see

	matrix mkmat
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	mkmat
	svmat

	Acknowledgment
	References
	Also see

	matrix rownames
	Syntax
	Description
	Remarks and examples
	Also see

	matrix score
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	matrix svd
	Syntax
	Menu
	Description
	Remarks and examples
	Methods and formulas
	Reference
	Also see

	matrix symeigen
	Syntax
	Menu
	Description
	Remarks and examples
	Methods and formulas
	References
	Also see

	matrix utility
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	Also see

	more
	Syntax
	Description
	Remarks and examples
	Also see

	nopreserve option
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	numlist
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	pause
	Syntax
	Description
	Remarks and examples
	Reference
	Also see

	plugin
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	postfile
	Syntax
	Description
	Options
	Remarks and examples
	References
	Also see

	_predict
	Syntax
	Description
	Options
	Methods and formulas
	Reference
	Also see

	preserve
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	program
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	program properties
	Description
	Option
	Remarks and examples
	Introduction
	Writing programs for use with nestreg and stepwise
	Writing programs for use with svy
	Writing programs for use with mi
	Properties for survival-analysis commands
	Properties for exponentiating coefficients
	Putting it all together
	Checking for program properties

	Also see

	Project Manager
	Description
	Remarks and examples
	Getting started with the Project Manager
	Editing projects
	Properties
	Relative versus absolute paths
	Filtering and searching

	Also see

	putexcel
	Syntax
	Menu
	Description
	Options
	Remarks and examples
	References
	Also see

	quietly
	Syntax
	Description
	Remarks and examples
	quietly used interactively
	quietly used in programs
	Note for programmers

	Also see

	_return
	Syntax
	Description
	Option
	Remarks and examples
	Stored results
	Also see

	return
	Syntax
	Description
	Options
	Remarks and examples
	Introduction
	Storing results in r()
	Storing results in e()
	Storing results in s()
	Recommended names for stored results
	Using hidden and historical stored results
	Programming hidden and historical stored results

	Also see

	_rmcoll
	Syntax
	Description
	Options
	Remarks and examples
	Stored results
	Also see

	rmsg
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	_robust
	Syntax
	Description
	Options
	Remarks and examples
	Introduction
	Clustered data
	Survey data
	Controlling the header display
	Maximum likelihood estimators
	Multiple-equation estimators

	Stored results
	Methods and formulas
	References
	Also see

	scalar
	Syntax
	Description
	Remarks and examples
	Naming scalars

	Reference
	Also see

	serset
	Syntax
	Description
	Options for serset create
	Options for serset create_xmedians
	Option for serset create_cspline
	Option for serset summarize
	Option for serset use
	Remarks and examples
	Introduction
	serset create
	serset create_xmedians
	serset create_cspline
	serset set
	serset sort
	serset summarize
	serset
	serset use
	serset reset_id
	serset drop
	serset clear
	serset dir
	file sersetwrite and file sersetread

	Stored results
	Also see

	signestimationsample
	Syntax
	Description
	Remarks and examples
	Using signestimationsample and checkestimationsample
	Signing
	Checking
	Handling of weights
	Do not sign unnecessarily

	Stored results
	Also see

	sleep
	Syntax
	Description
	Remarks and examples

	smcl
	Description
	Remarks and examples
	Introduction
	SMCL modes
	Command summary---general syntax
	Help file preprocessor directive for substituting repeated material
	Formatting directives for use in line and paragraph modes
	Link directives for use in line and paragraph modes
	Formatting directives for use in line mode
	Formatting directives for use in paragraph mode
	Directive for entering the as-is mode
	Directive for entering the Stata 6 help mode
	Inserting values from constant and current-value class
	Displaying characters using ASCII code
	Advice on using display
	Advice on formatting help files

	Also see

	sortpreserve
	Syntax
	Description
	Option
	Remarks and examples
	Introduction
	sortpreserve
	The cost of sortpreserve
	How sortpreserve works
	Use of sortpreserve with preserve
	Use of sortpreserve with subroutines that use sortpreserve

	Also see

	syntax
	Syntax
	Description
	Syntax, continued
	Remarks and examples
	Introduction
	The args command
	The syntax command

	Also see

	sysdir
	Syntax
	Description
	Option
	Remarks and examples
	Introduction
	sysdir
	adopath
	set adosize

	Also see

	tabdisp
	Syntax
	Description
	Options
	Remarks and examples
	Limits
	Introduction
	Treatment of string variables
	Treatment of missing values

	Also see

	timer
	Syntax
	Description
	Remarks and examples
	Stored results
	Also see

	tokenize
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	trace
	Syntax
	Description
	Options
	Remarks and examples
	Also see

	unab
	Syntax
	Description
	Options
	Remarks and examples
	Reference
	Also see

	unabcmd
	Syntax
	Description
	Remarks and examples
	Also see

	varabbrev
	Syntax
	Description
	Remarks and examples
	Also see

	version
	Syntax
	Description
	Option
	Remarks and examples
	Also see

	viewsource
	Syntax
	Description
	Remarks and examples
	Also see

	while
	Syntax
	Description
	Remarks and examples
	Also see

	window programming
	Syntax
	Description
	Also see

	window fopen
	Syntax
	Description
	Remarks and examples
	Also see

	window manage
	Syntax
	Description
	Remarks and examples
	Minimizing or restoring the main window
	Windowing preferences
	Restoring file associations (Windows only)
	Resetting the main window title
	Setting Dock icon's label (Mac only)
	Bringing windows forward
	Commands to manage Graph windows
	Printing
	Bringing forward
	Closing
	Renaming

	Commands to manage Viewer windows
	Printing
	Bringing forward
	Closing

	Also see

	window menu
	Syntax
	Description
	Remarks and examples
	Overview
	Clear previously defined menu additions
	Define submenus
	Define menu items
	Define separator bars
	Activate menu changes
	Add files to the Open Recent menu
	Keyboard shortcuts (Windows only)
	Examples
	Advanced features: Dialogs and built-in actions
	Advanced features: Creating checked menu items
	Putting it all together

	Also see

	window push
	Syntax
	Description
	Remarks and examples
	Also see

	window stopbox
	Syntax
	Description
	Remarks and examples
	Also see

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	[M] Mata
	Contents
	Introduction to the Mata manual
	intro
	Contents
	Description
	Remarks and examples
	What's new

	Also see

	Introduction and advice
	intro
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	ado
	Description
	Remarks and examples
	A first example
	Where to store the Mata functions
	Passing arguments to Mata functions
	Returning results to ado-code
	Advice: Use of matastrict
	Advice: Some useful Mata functions

	Also see

	first
	Description
	Remarks and examples
	Invoking Mata
	Using Mata
	Making mistakes: Interpreting error messages
	Working with real numbers, complex numbers, and strings
	Working with scalars, vectors, and matrices
	Working with functions
	Distinguishing real and complex values
	Working with matrix and scalar functions
	Performing element-by-element calculations: Colon operators
	Writing programs
	More functions
	Mata environment commands
	Exiting Mata

	Also see

	help
	Syntax
	Description
	Remarks and examples
	Also see

	how
	Description
	Remarks and examples
	What happens when you define a program
	What happens when you work interactively
	What happens when you type a mata environment command
	Working with object code I: .mo files
	Working with object code II: .mlib libraries
	The Mata environment

	Reference
	Also see

	interactive
	Description
	Remarks and examples
	1. Start in Stata; load the data
	2. Create any time-series variables
	3. Create a constant variable
	4. Drop unnecessary variables
	5. Drop observations with missing values
	6. Put variables on roughly the same numeric scale
	7. Enter Mata
	8. Use Mata's st_view() function to access your data
	9. Perform your matrix calculations

	Review
	Reference
	Also see

	LAPACK
	Description
	Remarks and examples
	Acknowledgments
	Reference
	Also see

	limits
	Summary
	Description
	Remarks and examples
	Also see

	naming
	Syntax
	Description
	Remarks and examples
	Interactive use
	Naming variables
	Naming functions
	What happens when functions have the same names
	How to determine if a function name has been taken

	Also see

	permutation
	Syntax
	Description
	Remarks and examples
	Permutation matrices
	How permutation matrices arise
	Permutation vectors

	Also see

	returnedargs
	Syntax
	Description
	Remarks and examples
	Also see

	source
	Syntax
	Description
	Remarks and examples
	Also see

	tolerance
	Syntax
	Description
	Remarks and examples
	The problem
	Absolute versus relative tolerances
	Specifying tolerances

	Also see

	Language definition
	intro
	Contents
	Description
	Remarks and examples
	Also see

	break
	Syntax
	Description
	Remarks and examples
	Also see

	class
	Syntax
	Introduction
	Example
	Declaration of member variables
	Declaration and definition of methods (member functions)
	Default exposure in declarations

	Description
	Remarks and examples
	Notation and jargon
	Declaring and defining a class
	Saving classes in files
	Workflow recommendation
	When you need to recompile
	Obtaining instances of a class
	Constructors and destructors
	Setting member variable and member function exposure
	Making a member final
	Making a member static
	Virtual functions
	Referring to the current class using this
	Using super to access the parent's concept
	Casting back to a parent
	Accessing external functions from member functions
	Pointers to classes

	Also see

	comments
	Syntax
	Description
	Remarks and examples
	The /* */ enclosed comment
	The // rest-of-line comment

	Also see

	continue
	Syntax
	Description
	Remarks and examples
	Also see

	declarations
	Syntax
	Description
	Remarks and examples
	The purpose of declarations
	Types, element types, and organizational types
	Implicit declarations
	Element types
	Organizational types
	Function declarations
	Argument declarations
	The by-address calling convention
	Variable declarations
	Linking to external globals

	Also see

	do
	Syntax
	Description
	Remarks and examples
	Also see

	errors
	Description
	Remarks and examples
	The error codes

	Also see

	exp
	Syntax
	Description
	Remarks and examples
	What's an expression
	Assignment suppresses display, as does (void)
	The pieces of an expression
	Numeric literals
	String literals
	Variable names
	Operators
	Functions

	Reference
	Also see

	for
	Syntax
	Description
	Remarks and examples
	Also see

	ftof
	Syntax
	Description
	Remarks and examples
	Passing functions to functions
	Writing functions that receive functions, the simplified convention
	Passing built-in functions

	Also see

	goto
	Syntax
	Description
	Remarks and examples
	Reference
	Also see

	if
	Syntax
	Description
	Remarks and examples
	Also see

	op_arith
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_assignment
	Syntax
	Description
	Remarks and examples
	Assignment suppresses display
	The equal-assignment operator
	lvals, what appears on the left-hand side
	Row, column, and element lvals
	Pointer lvals

	Conformability
	Diagnostics
	Also see

	op_colon
	Syntax
	Description
	Remarks and examples
	C-conformability: element by element
	Usefulness of colon logical operators
	Use parentheses

	Conformability
	Diagnostics
	Also see

	op_conditional
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_increment
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_join
	Syntax
	Description
	Remarks and examples
	Comma and backslash are operators
	Comma as a separator
	Warning about the misuse of comma and backslash operators

	Conformability
	Diagnostics
	Also see

	op_kronecker
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	op_logical
	Syntax
	Description
	Remarks and examples
	Introduction
	Use of logical operators with pointers

	Conformability
	Diagnostics
	Also see

	op_range
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	op_transpose
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	optargs
	Syntax
	Description
	Remarks and examples
	What are optional arguments?
	How to code optional arguments
	Examples revisited

	Also see

	pointers
	Syntax
	Description
	Remarks and examples
	What is a pointer?
	Pointers to variables
	Pointers to expressions
	Pointers to functions
	Pointers to pointers
	Pointer arrays
	Mixed pointer arrays
	Definition of NULL
	Use of parentheses
	Pointer arithmetic
	Listing pointers
	Declaration of pointers
	Use of pointers to collect objects
	Efficiency

	Diagnostics
	References
	Also see

	pragma
	Syntax
	Description
	Remarks and examples
	pragma unset
	pragma unused

	Also see

	reswords
	Syntax
	Description
	Remarks and examples
	Future developments
	Version control

	Also see

	return
	Syntax
	Description
	Remarks and examples
	Functions that return results
	Functions that return nothing (void functions)

	Also see

	semicolons
	Syntax
	Description
	Remarks and examples
	Optional use of semicolons
	You cannot break a statement anywhere even if you use semicolons
	Use of semicolons to create multistatement lines
	Significant semicolons
	Do not use #delimit ;

	Also see

	struct
	Syntax
	Description
	Remarks and examples
	Introduction
	Structures and functions must have different names
	Structure variables must be explicitly declared
	Declare structure variables to be scalars whenever possible
	Vectors and matrices of structures
	Structures of structures
	Pointers to structures
	Operators and functions for use with structure members
	Operators and functions for use with entire structures
	Listing structures
	Use of transmorphics as passthrus
	Saving compiled structure definitions
	Saving structure variables

	Reference
	Also see

	subscripts
	Syntax
	Description
	Remarks and examples
	List subscripts
	Range subscripts
	When to use list subscripts and when to use range subscripts
	A fine distinction

	Conformability
	Diagnostics
	Reference
	Also see

	syntax
	Syntax
	Description
	Remarks and examples
	Treatment of semicolons
	Types and declarations
	Void matrices
	Void functions
	Operators
	Subscripts
	Implied input tokens
	Function argument-passing convention
	Passing functions to functions
	Optional arguments

	Reference
	Also see

	version
	Syntax
	Description
	Remarks and examples
	Purpose of version control
	Recommendations for do-files
	Recommendations for ado-files
	Compile-time and run-time versioning

	Also see

	void
	Syntax
	Description
	Remarks and examples
	Void matrices, vectors, row vectors, and column vectors
	How to read conformability charts

	Also see

	while
	Syntax
	Description
	Remarks and examples
	Also see

	Commands for controlling Mata
	intro
	Contents
	Description
	Remarks and examples
	Also see

	end
	Syntax
	Description
	Remarks and examples
	Also see

	mata
	Syntax
	Description
	Remarks and examples
	Introduction
	The fine distinction between syntaxes 3 and 4
	The fine distinction between syntaxes 1 and 2

	Also see

	mata clear
	Syntax
	Description
	Remarks and examples
	Also see

	mata describe
	Syntax
	Description
	Option
	Remarks and examples
	Diagnostics
	Also see

	mata drop
	Syntax
	Description
	Remarks and examples
	Also see

	mata help
	Syntax
	Description
	Remarks and examples
	Also see

	mata matsave
	Syntax
	Description
	Option for mata matsave
	Option for mata matuse
	Remarks and examples
	Diagnostics
	Also see

	mata memory
	Syntax
	Description
	Remarks and examples
	Also see

	mata mlib
	Syntax
	Description
	Options
	Remarks and examples
	Background
	Outline of the procedure for dealing with libraries
	Creating a .mlib library
	Adding members to a .mlib library
	Listing the contents of a library
	Making it so Mata knows to search your libraries
	Advice on organizing your source code

	Also see

	mata mosave
	Syntax
	Description
	Options
	Remarks and examples
	Example of use
	Where to store .mo files
	Use of .mo files versus .mlib files

	Also see

	mata rename
	Syntax
	Description
	Also see

	mata set
	Syntax
	Description
	Option
	Remarks and examples
	Relationship between Mata's mata set and Stata's set commands
	c() values

	Also see

	mata stata
	Syntax
	Description
	Remarks and examples
	Also see

	mata which
	Syntax
	Description
	Remarks and examples
	Also see

	namelists
	Syntax
	Description
	Remarks and examples
	Also see

	Index and guide to functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	io
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	manipulation
	Contents
	Description
	Remarks and examples
	Also see

	mathematical
	Contents
	Description
	Remarks and examples
	Also see

	matrix
	Contents
	Description
	Remarks and examples
	Also see

	programming
	Contents
	Also see

	scalar
	Contents
	Description
	Remarks and examples
	Also see

	solvers
	Contents
	Description
	Remarks and examples
	Also see

	standard
	Contents
	Description
	Remarks and examples
	Also see

	stata
	Contents
	Description
	Remarks and examples
	Reference
	Also see

	statistical
	Contents
	Description
	Remarks and examples
	Also see

	string
	Contents
	Description
	Remarks and examples
	Also see

	utility
	Contents
	Description
	Remarks and examples
	Also see

	Mata functions
	intro
	Contents
	Description
	Remarks and examples
	Also see

	abbrev()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	abs()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	adosubdir()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	all()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	args()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	asarray()
	Syntax
	Description
	Remarks and examples
	Example 1: Scalar keys and scalar contents
	Example 2: Scalar keys and matrix contents
	Example 3: Vector keys and scalar contents; sparse matrix
	Setting the efficiency parameters

	Conformability
	Diagnostics
	Also see

	ascii()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	assert()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	blockdiag()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	bufio()
	Syntax
	Description
	Remarks and examples
	Basics
	Argument C
	Arguments B and offset
	Argument fh
	Argument bfmt
	bfmts for numeric data
	bfmts for string data
	Argument X
	Arguments r and c
	Advanced issues

	Conformability
	Diagnostics
	Also see

	byteorder()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	C()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	c()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	callersversion()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cat()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	chdir()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	cholesky()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	cholinv()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cholsolve()
	Syntax
	Description
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	comb()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	cond()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	conj()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	corr()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cross()
	Syntax
	Description
	Remarks and examples
	Comment concerning cross() and missing values

	Conformability
	Diagnostics
	Also see

	crossdev()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	cvpermute()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	date()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	deriv()
	Syntax
	Description
	Remarks and examples
	First example
	Notation and formulas
	Type d evaluators
	Example of a type d evaluator
	Type v evaluators
	User-defined arguments
	Example of a type v evaluator
	Type t evaluators
	Example of a type t evaluator
	Functions

	Conformability
	Diagnostics
	Methods and formulas
	References
	Also see

	designmatrix()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	det()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_diag()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	diag()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diag0cnt()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	diagonal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	dir()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	direxists()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	direxternal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	display()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayas()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	displayflush()
	Syntax
	Description
	Remarks and examples
	Diagnostics
	Also see

	Dmatrix()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	_docx*()
	Syntax
	Create and save .docx file
	Add paragraph and text
	Add image file
	Add table
	Edit table
	Query routines

	Description
	Remarks and examples
	Error codes
	Functions
	Create and save .docx file
	Add paragraph and text
	Add image
	Add table
	Edit table

	Query routines
	Save document to disk file
	Current paragraph and text
	Supported image types
	Linked and embedded images
	Styles
	Performance
	Examples
	Create a .docx document in memory
	Add paragraphs and text
	Display data
	Display regression results
	Add an image
	Display nested table
	Add images to table cells
	Save the .docx document in memory to a disk file

	Diagnostics
	References
	Also see

	dsign()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	e()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	editmissing()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittoint()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	edittozero()
	Syntax
	Description
	Remarks and examples
	Background
	Treatment of complex values
	Recommendations

	Conformability
	Diagnostics
	Also see

	editvalue()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	eigensystem()
	Syntax
	Description
	Remarks and examples
	Eigenvalues and eigenvectors
	Left eigenvectors
	Symmetric eigensystems
	Normalization and order
	Eigenvalue condition
	Balancing
	eigensystem() and eigenvalues()
	lefteigensystem()
	symeigensystem() and symeigenvalues()

	Conformability
	Diagnostics
	References
	Also see

	eigensystemselect()
	Syntax
	Description
	Remarks and examples
	Introduction
	Range selection
	Index selection
	Criterion selection
	Other functions

	Conformability
	Diagnostics
	Also see

	eltype()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	epsilon()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_equilrc()
	Syntax
	Description
	Remarks and examples
	Introduction
	Is equilibration necessary?
	The _equil*() family of functions
	The _perhapsequil*() family of functions
	rowscalefactors() and colscalefactors()

	Conformability
	Diagnostics
	Also see

	error()
	Syntax
	Description
	Remarks and examples
	Use of _error()
	Use of error()

	Conformability
	Diagnostics
	Also see

	errprintf()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exit()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	exp()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	factorial()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	favorspeed()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ferrortext()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fft()
	Syntax
	Description
	Remarks and examples
	Definitions, notation, and conventions
	Fourier transform
	Convolution and deconvolution
	Correlation
	Utility routines
	Warnings

	Conformability
	Diagnostics
	Also see

	fileexists()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	_fillmissing()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	findexternal()
	Syntax
	Description
	Remarks and examples
	Definition of a global
	Use of globals

	Conformability
	Diagnostics
	Also see

	findfile()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	floatround()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fmtwidth()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	fopen()
	Syntax
	Description
	Remarks and examples
	Opening and closing files
	Reading from a file
	Writing to a file
	Reading and writing in the same file
	Reading and writing matrices
	Repositioning in a file
	Truncating a file
	Error codes

	Conformability
	Diagnostics
	Also see

	fullsvd()
	Syntax
	Description
	Remarks and examples
	Introduction
	Relationship between the full and thin SVDs
	The contents of s
	Possibility of convergence problems

	Conformability
	Diagnostics
	Also see

	geigensystem()
	Syntax
	Description
	Remarks and examples
	Generalized eigenvalues
	Generalized eigenvectors
	Criterion selection
	Range selection
	Index selection

	Conformability
	Diagnostics
	References
	Also see

	ghessenbergd()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghk()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	ghkfast()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	gschurd()
	Syntax
	Description
	Remarks and examples
	Generalized Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Also see

	halton()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hash1()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	hessenbergd()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Hilbert()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	I()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	inbase()
	Syntax
	Description
	Remarks and examples
	Positive integers
	Negative integers
	Numbers with nonzero fractional parts
	Use of the functions

	Conformability
	Diagnostics
	Reference
	Also see

	indexnot()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	invorder()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	invsym()
	Syntax
	Description
	Remarks and examples
	Definition of generalized inverse
	Specifying the order in which columns are dropped
	Determining the rank, or counting the number of dropped columns
	Extracting linear dependencies

	Conformability
	Diagnostics
	Also see

	invtokens()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isdiagonal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isfleeting()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isreal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	isrealvalues()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	issymmetric()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	isview()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	J()
	Syntax
	Description
	Remarks and examples
	First syntax: J(r, c, val), val a scalar
	Second syntax: J(r, c, mat), mat a matrix

	Conformability
	Diagnostics
	Also see

	Kmatrix()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	lapack()
	Syntax
	Description
	Remarks and examples
	Mapping calling sequence from Fortran to Mata
	Flopping: Preparing matrices for LAPACK
	Warning on the use of rows() and cols() after _flopin()
	Warning: It is your responsibility to check info
	Example

	Reference
	Also see

	liststruct()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Lmatrix()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	logit()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	lowertriangle()
	Syntax
	Description
	Remarks and examples
	Optional argument d
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	lud()
	Syntax
	Description
	Remarks and examples
	LU decomposition
	LAPACK routine

	Conformability
	Diagnostics
	Also see

	luinv()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	lusolve()
	Syntax
	Description
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	makesymmetric()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matexpsym()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	matpowersym()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mean()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mindouble()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	minindex()
	Syntax
	Description
	Remarks and examples
	Use of functions when v has all unique values
	Use of functions when v has repeated (tied) values
	Summary

	Conformability
	Diagnostics
	Also see

	minmax()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	missing()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	missingof()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	mod()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	moptimize()
	Syntax
	Step 1: Initialization
	Step 2: Definition of maximization or minimization problem
	Step 3: Perform optimization or perform a single function evaluation
	Step 4: Post, display, or obtain results
	Utility functions for use in all steps
	Definition of M
	Setting the sample
	Specifying dependent variables
	Specifying independent variables
	Specifying constraints
	Specifying weights or survey data
	Specifying clusters and panels
	Specifying optimization technique
	Specifying initial values
	Performing one evaluation of the objective function
	Performing optimization of the objective function
	Tracing optimization
	Specifying convergence criteria
	Accessing results
	Stata evaluators
	Advanced functions
	Syntax of evaluators
	Syntax of type lf evaluators
	Syntax of type d evaluators
	Syntax of type lf* evaluators
	Syntax of type gf evaluators
	Syntax of type q evaluators
	Passing extra information to evaluators
	Utility functions

	Description
	Remarks and examples
	Relationship of moptimize() to Stata's ml and to Mata's optimize()
	Mathematical statement of the moptimize() problem
	Filling in moptimize() from the mathematical statement
	The type lf evaluator
	The type d, lf*, gf, and q evaluators
	Example using type d
	Example using type lf*

	Conformability
	Diagnostics
	References
	Also see

	more()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_negate()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	norm()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	normal()
	Syntax
	Description
	Remarks and examples
	R-conformability
	A note concerning invbinomial() and invbinomialtail()
	A note concerning ibeta()
	A note concerning gammap()

	Conformability
	Diagnostics
	Also see

	optimize()
	Syntax
	Description
	Remarks and examples
	First example
	Notation
	Type d evaluators
	Example of d0, d1, and d2
	d1debug and d2debug
	Type gf evaluators
	Example of gf0, gf1, and gf2
	Functions

	Conformability
	Diagnostics
	References
	Also see

	panelsetup()
	Syntax
	Description
	Remarks and examples
	Definition of panel data
	Definition of problem
	Preparation
	Use of panelsetup()
	Using panelstats()
	Using panelsubmatrix()
	Using panelsubview()

	Conformability
	Diagnostics
	Also see

	pathjoin()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	pinv()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	polyeval()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	printf()
	Syntax
	Description
	Remarks and examples
	printf()
	sprintf()

	Conformability
	Diagnostics
	Also see

	qrd()
	Syntax
	Description
	Remarks and examples
	QR decomposition
	Avoiding calculation of Q
	Pivoting
	Least-squares solutions with dropped columns

	Conformability
	Diagnostics
	Also see

	qrinv()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	qrsolve()
	Syntax
	Description
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	quadcross()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	range()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rank()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Re()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	reldif()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	rows()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	rowshape()
	Syntax
	Description
	Remarks and examples
	Example of rowshape()
	Example of colshape()

	Conformability
	Diagnostics
	Also see

	runiform()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	References
	Also see

	runningsum()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	schurd()
	Syntax
	Description
	Remarks and examples
	Schur decomposition
	Grouping the results

	Conformability
	Diagnostics
	Reference
	Also see

	select()
	Syntax
	Description
	Remarks and examples
	Examples
	Using st_select()

	Conformability
	Diagnostics
	Also see

	setbreakintr()
	Syntax
	Description
	Remarks and examples
	Default break-key processing
	Suspending the break-key interrupt
	Break-key polling

	Conformability
	Diagnostics
	Also see

	sign()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sin()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sizeof()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solve_tol()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	solvelower()
	Syntax
	Description
	Remarks and examples
	Derivation
	Tolerance

	Conformability
	Diagnostics
	Also see

	solvenl()
	Syntax
	Description
	Remarks and examples
	Introduction
	A fixed-point example
	A zero-finding example
	Writing a fixed-point problem as a zero-finding problem and vice versa
	Gauss{--}Seidel methods
	Newton-type methods
	Convergence criteria
	Exiting early
	Functions

	Conformability
	Diagnostics
	References
	Also see

	sort()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	soundex()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	spline3()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	sqrt()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_addobs()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_addvar()
	Syntax
	Description
	Remarks and examples
	Creating a new variable
	Creating new variables
	Creating new string variables
	Creating a new temporary variable
	Creating temporary variables
	Handling errors
	Using nofill

	Conformability
	Diagnostics
	Reference
	Also see

	st_data()
	Syntax
	Description
	Remarks and examples
	Description of _st_data() and _st_sdata()
	Description of st_data() and st_sdata()
	Details of observation subscripting using st_data() and st_sdata()

	Conformability
	Diagnostics
	Also see

	st_dir()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_dropvar()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_global()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_isfmt()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_isname()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_local()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	st_macroexpand()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_matrix()
	Syntax
	Description
	Remarks and examples
	Processing Stata's row and column stripes
	Stata's matsize is irrelevant

	Conformability
	Diagnostics
	Also see

	st_numscalar()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_nvar()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_rclear()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_store()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_subview()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_tempname()
	Syntax
	Description
	Remarks and examples
	Creating temporary objects
	When temporary objects will be eliminated

	Conformability
	Diagnostics
	Also see

	st_tsrevar()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_updata()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varformat()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_varindex()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varname()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_varrename()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	st_vartype()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_view()
	Syntax
	Description
	Remarks and examples
	Overview
	Advantages and disadvantages of views
	When not to use views
	Cautions when using views 1: Conserving memory
	Cautions when using views 2: Assignment
	Efficiency

	Conformability
	Diagnostics
	Reference
	Also see

	st_viewvars()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	st_vlexists()
	Syntax
	Description
	Remarks and examples
	Value-label mapping
	Value-label creation and editing
	Loading value labels

	Conformability
	Diagnostics
	Also see

	stata()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	stataversion()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strdup()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	strlen()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strmatch()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strofreal()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	strpos()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strreverse()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoname()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtoreal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strtrim()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	strupper()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	subinstr()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	sublowertriangle()
	Syntax
	Description
	Remarks and examples
	Get lower triangle of a matrix
	Nonsquare matrices

	Conformability
	Diagnostics
	Also see

	_substr()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	substr()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	sum()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	svd()
	Syntax
	Description
	Remarks and examples
	Introduction
	Possibility of convergence problems

	Conformability
	Diagnostics
	References
	Also see

	svsolve()
	Syntax
	Description
	Remarks and examples
	Derivation
	Relationship to inversion
	Tolerance

	Conformability
	Diagnostics
	Also see

	swap()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Toeplitz()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	tokenget()
	Syntax
	Description
	Remarks and examples
	Concepts
	Function overview

	Conformability
	Diagnostics
	Also see

	tokens()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trace()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	_transpose()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	transposeonly()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	trunc()
	Syntax
	Description
	Remarks and examples
	Relationship to Stata's functions
	Examples of rounding

	Conformability
	Diagnostics
	Also see

	uniqrows()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	unitcircle()
	Syntax
	Description
	Conformability
	Diagnostics
	Also see

	unlink()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	valofexternal()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Also see

	Vandermonde()
	Syntax
	Description
	Remarks and examples
	Conformability
	Diagnostics
	Reference
	Also see

	vec()
	Syntax
	Description
	Remarks and examples
	Example of vec()
	Example of vech() and invvech()

	Conformability
	Diagnostics
	Also see

	xl()
	Syntax
	Step 1: Initialization
	Step 2: Creating and opening an Excel workbook
	Step 3: Setting the Excel worksheet
	Step 4: Reading and writing data from and to an Excel worksheet
	Utility functions for use in all steps

	Description
	Remarks and examples
	Definition of B
	Specifying the Excel workbook
	Specifying the Excel worksheet
	Reading data from Excel
	Writing data to Excel
	Dealing with missing values
	Dealing with dates
	Utility functions
	Handling errors
	Error codes

	Also see

	Mata glossary of common terms
	Glossary
	Description
	Mata glossary
	Also see

	Subject and author index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	[I] Index
	Contents
	Combined subject table of contents
	Acronym glossary
	Glossary
	Vignette index
	Author index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Subject index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

