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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[XT] xtabond
[D] reshape
The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s

Guide; the second is a reference to the xtabond entry in the Longitudinal-Data/Panel-Data Reference
Manual; and the third is a reference to the reshape entry in the Data-Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM]  Getting Started with Stata for Mac
GSU]  Getting Started with Stata for Unix
GSW]  Getting Started with Stata for Windows

[

[

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

MV]  Stata Multivariate Statistics Reference Manual

P] Stata Programming Reference Manual

SEM]  Stata Structural Equation Modeling Reference Manual

SVY] Stata Survey Data Reference Manual

ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
TS] Stata Time-Series Reference Manual

[1] Stata Quick Reference and Index

M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/


http://www.stata-press.com/manuals/




Title

intro — Introduction to base reference manual

Description

This entry describes the organization of the reference manuals.

Remarks

The complete list of reference manuals is as follows:

[R] Stata Base Reference Manual
Volume 1, A-F
Volume 2, G-M
Volume 3, N-R
Volume 4, S—-Z
[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
MI]  Stata Multiple-Imputation Reference Manual
MV]  Stata Multivariate Statistics Reference Manual

[

[

[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual

[1] Stata Quick Reference and Index

[M] Mata Reference Manual

When we refer to “reference manuals”, we mean all manuals listed above.

When we refer to the Base Reference Manual, we mean just the four-volume Base Reference
Manual, known as [R].

When we refer to the specialty manuals, we mean all the manuals listed above except [R] and [I],
the Stata Quick Reference and Index.

Detailed information about each of these manuals can be found online at

http://www.stata-press.com/manuals/
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Arrangement of the reference manuals

Each manual contains the following sections:

e Table of contents.
At the beginning of volume 1 of [R], the Base Reference Manual, is a table of contents for the
four volumes.

e Cross-referencing the documentation.
This section lists all the manuals and explains how they are cross-referenced.

e Introduction.
This entry—usually called intro—provides an overview of the manual. In the specialty manuals,
this introduction suggests entries that you might want to read first and provides information about
new features.

Each specialty manual contains an overview of the commands described in it.

e Entries.
Entries are arranged in alphabetical order. Most entries describe Stata commands, but some entries
discuss concepts, and others provide overviews.

Entries that describe estimation commands are followed by an entry discussing postestimation
commands that are available for use after the estimation command. For example, the xtlogit entry
in the [XT] manual is followed by the xtlogit postestimation entry.

e Index.
At the end of each manual is an index. The index for the entire four-volume Base Reference
Manual is found at the end of the fourth volume.

The Quick Reference and Index, [1], contains a combined index for all the manuals and a subject
table of contents for all the manuals and the User’s Guide. It also contains quick-reference information
on many subjects, such as the estimation commands.

To find information and commands quickly, use Stata’s search command; see [R] search (see the
entry search in the [R] manual). You can broaden your search to the Internet by using search,
all to find commands and extensions written by Stata users.

Arrangement of each entry

Entries in the Stata reference manuals, except the [M] and [SEM] manuals, generally contain the
following sections, which are explained below:

Syntax

Menu

Description

Options

Remarks

Saved results
Methods and formulas
References

Also see
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Syntax
A command’s syntax diagram shows how to type the command, indicates all possible options, and

gives the minimal allowed abbreviations for all the items in the command. For instance, the syntax
diagram for the summarize command is

summarize [varlist] [lf] [zn} [weight] [, options]

options Description

Main
detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator (#) draw separator line after every # variables; default is separator(5)
display_options control spacing and base and empty cells

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by is allowed; see [D] by.

aweights, fweights, and iweights are allowed. However, iweights may not be used with the detail
option; see [U] 11.1.6 weight.

Items in the typewriter-style font should be typed exactly as they appear in the diagram,
although they may be abbreviated. Underlining indicates the shortest abbreviations where abbre-
viations are allowed. For instance, summarize may be abbreviated su, sum, summ, etc., or it may be
spelled out completely. Items in the typewriter font that are not underlined may not be abbreviated.

Square brackets denote optional items. In the syntax diagram above, varlist, if, in, weight, and the
options are optional.

The options are listed in a table immediately following the diagram, along with a brief description
of each.

Items typed in italics represent arguments for which you are to substitute variable names, observation
numbers, and the like.

The diagrams use the following symbols:

# Indicates a literal number, for example, 5; see [U] 12.2 Numbers.

[ ] Anything enclosed in brackets is optional.

{ } At least one of the items enclosed in braces must appear.

| The vertical bar separates alternatives.

Yofimt Any Stata format, for example, %8.2f; see [U] 12.5 Formats: Controlling how data are
displayed.

depvar The dependent variable in an estimation command; see [U] 20 Estimation and postesti-
mation commands.

exp Any algebraic expression, for example, (5+myvar)/2; see [U] 13 Functions and ex-
pressions.

filename  Any filename; see [U] 11.6 Filenaming conventions.
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indepvars The independent variables in an estimation command; see [U] 20 Estimation and
postestimation commands.

newvar A variable that will be created by the current command; see [U] 11.4.2 Lists of new
variables.

numlist A list of numbers; see [U] 11.1.8 numlist.

oldvar A previously created variable; see [U] 11.4.1 Lists of existing variables.

options A list of options; see [U] 11.1.7 options.

range An observation range, for example, 5/20; see [U] 11.1.4 in range.

"string"  Any string of characters enclosed in double quotes; see [U] 12.4 Strings.

varlist A list of variable names; see [U] 11.4 varlists. If varlist allows factor variables, a note to
that effect will be shown below the syntax diagram; see [U] 11.4.3 Factor variables. If
varlist allows time-series operators, a note to that effect will be shown below the syntax
diagram; see [U] 11.4.4 Time-series varlists.

varname A variable name; see [U] 11.3 Naming conventions.

weight A [wgttype=exp] modifier; see [U] 11.1.6 weight and [U] 20.22 Weighted estimation.

xvar The variable to be displayed on the horizontal axis.

yvar The variable to be displayed on the vertical axis.

The Syntax section will indicate whether factor variables or time-series operators may be used
with a command. summarize allows factor variables and time-series operators.

If a command allows prefix commands, this will be indicated immediately following the table of
options. summarize allows by.

If a command allows weights, the types of weights allowed will be specified, with the default
weight listed first. summarize allows aweights, fweights, and iweights, and if the type of weight
is not specified, the default is aweights.

Menu

A menu indicates how the dialog box for the command may be accessed using the menu system.

Description

Following the syntax diagram is a brief description of the purpose of the command.

Options

If the command allows any options, they are explained here, and for dialog users the location of
the options in the dialog is indicated. For instance, in the logistic entry in this manual, the Options
section looks like this:

Model

SE/Robust
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Reporting

Maximization

Remarks

The explanations under Description and Options are exceedingly brief and technical; they are
designed to provide a quick summary. The remarks explain in English what the preceding technical
jargon means. Examples are used to illustrate the command.

Saved results

Commands are classified as e-class, r-class, s-class, or n-class, according to whether they save
calculated results in e(), r(), s(), or not at all. These results can then be used in subroutines by
other programs (ado-files). Such saved results are documented here; see [U] 18.8 Accessing results
calculated by other programs and [U] 18.9 Accessing results calculated by estimation commands.

Methods and formulas

The techniques and formulas used in obtaining the results are described here as tersely and
technically as possible. If a command is implemented as an ado-file, that is indicated here.

References

Published sources are listed that either were directly referenced in the preceding text or might be
of interest.

Also see

Other manual entries relating to this entry are listed that might also interest you.

Also see
[U] 1.1 Getting Started with Stata



Title

about — Display information about your Stata

Syntax

about

Menu

Help > About

Description

about displays information about your version of Stata.

Remarks

about displays information about the release number, flavor, serial number, and license for your
Stata. If you are running Stata for Windows, information about memory is also displayed:

. about

Stata/MP 12.0 for Windows (64-bit x86-64)
Revision 24 Aug 2011
Copyright 1985-2011 StataCorp LP

Total physical memory: 8388608 KB
Available physical memory: 937932 KB

10-user 32-core Stata network perpetual license:
Serial number: 5012041234
Licensed to: Alan R. Riley
StataCorp

Also see

[R] which — Display location and version for an ado-file

[U] 5 Flavors of Stata



Title

adoupdate — Update user-written ado-files

Syntax
adoupdate [ pkglist] [ , options]
options Description
update perform update; default is to list packages that have updates, but not to
update them
all include packages that might have updates; default is to list or update
only packages that are known to have updates
ssconly check only packages obtained from SSC; default is to check all installed packages
dir(dir) check packages installed in dir; default is to check those installed in PLUS
verbose provide output to assist in debugging network problems
Description

User-written additions to Stata are called packages. These packages can add remarkable abilities
to Stata. Packages are found and installed by using ssc, findit, and net; see [R] ssc, [R] search,
and [R] net.

User-written packages are updated by their developers, just as official Stata software is updated
by StataCorp.

To determine whether your official Stata software is up to date, and to update it if it is not, you
use update; see [R] update.

To determine whether your user-written additions are up to date, and to update them if they are
not, you use adoupdate.

Options
update specifies that packages with updates be updated. The default is simply to list the packages
that could be updated without actually performing the update.

The first time you adoupdate, do not specify this option. Once you see adoupdate work, you
will be more comfortable with it. Then type

. adoupdate, update

The packages that can be updated will be listed and updated.

all is rarely specified. Sometimes, adoupdate cannot determine whether a package you previously
installed has been updated. adoupdate can determine that the package is still available over the
web but is unsure whether the package has changed. Usually, the package has not changed, but
if you want to be certain that you are using the latest version, reinstall from the source.
Specifying all does this. Typing

. adoupdate, all
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adds such packages to the displayed list as needing updating but does not update them. Typing

. adoupdate, update all

lists such packages and updates them.

ssconly is a popular option. Many packages are available from the Statistical Software Components
(ssC) archive—often called the Boston College Archive—which is provided at http://repec.org.
Many users find most of what they want there. See [R] ssc¢ for more information on the SSC.

ssconly specifies that adoupdate check only packages obtained from that source. Specifying
this option is popular because SSC always provides distribution dates, and so adoupdate can be
certain whether an update exists.

dir(dir) specifies which installed packages be checked. The default is dir (PLUS), and that is
probably correct. If you are responsible for maintaining a large system, however, you may have
previously installed packages in dir (SITE), where they are shared across users. See [P] sysdir
for an explanation of these directory codewords. You may also specify an actual directory name,
such as C:\mydir.

verbose is specified when you suspect network problems. It provides more detailed output that may
help you diagnose the problem.

Remarks

Do not confuse adoupdate with update. Use adoupdate to update user-written files. Use update
to update the components (including ado-files) of the official Stata software. To use either command,
you must be connected to the Internet.

Remarks are presented under the following headings:
Using adoupdate

Possible problem the first time you run adoupdate and the solution
Notes for developers

Using adoupdate

The first time you try adoupdate, type
. adoupdate
That is, do not specify the update option. adoupdate without update produces a report but does
not update any files. The first time you run adoupdate, you may see messages such as

. adoupdate
(note: package utx was installed more than once; older copy removed)
(remaining output omitted)

Having the same packages installed multiple times is common; adoupdate cleans that up.

The second time you run adoupdate, pick one package to update. Suppose that the report indicates
that package st0008 has an update available. Type

. adoupdate st0008, update
You can specify one or many packages after the adoupdate command. You can even use wildcards

such as st* to mean all packages that start with st or st*8 to mean all packages that start with st
and end with 8. You can do that with or without the update option.
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Finally, you can let adoupdate update all your user-written additions:

. adoupdate, update

Possible problem the first time you run adoupdate and the solution

The first time you run adoupdate, you might get many duplicate messages:

. adoupdate
(note: package ___ installed more than once; older copy removed)
(note: package ___ installed more than once; older copy removed)
(note: package ___ installed more than once; older copy removed)

(note: package ___ installed more than once; older copy removed)
(remaining output omitted)

Some users have hundreds of duplicates. You might even see the same package name repeated
more than once:

(note: package stylus installed more than once; older copy removed)
(note: package stylus installed more than once; older copy removed)

That means that the package was duplicated twice.

Stata tolerates duplicates, and you did nothing wrong when you previously installed and updated
packages. adoupdate, however, needs the duplicates removed, mainly so that it does not keep
checking the same files.

The solution is to just let adoupdate run. adoupdate will run faster next time, when there are
no (or just a few) duplicates.

Notes for developers

adoupdate reports whether an installed package is up to date by comparing its distribution date
with that of the package available over the web.

If you are distributing software, include the line

d Distribution-Date: date

somewhere in your .pkg file. The capitalization of Distribution-Date does not matter, but include
the hyphen and the colon as shown. Code the date in either of two formats:

all numeric: yyyymmdd, for example, 20110701
Stata standard: ddMONyyyy, for example, 01jul2011

Saved results

adoupdate saves the following in r():

Macros
r(pkglist)  a space-separated list of package names that need updating (update not specified) or that
were updated (update specified)
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Methods and formulas

adoupdate is implemented as an ado-file.

Also see
[R] ssc — Install and uninstall packages from SSC
[R] search — Search Stata documentation
[R] net — Install and manage user-written additions from the Internet

[R] update — Update Stata



Title

alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

Syntax
alpha varlist [zf] [zn] [, options]
options Description
Options
asis take sign of each item as is
casewise delete cases with missing values
detail list individual interitem correlations and covariances
generate (newvar) save the generated scale in newvar
item display item-test and item-rest correlations
label include variable labels in output table
min (#) must have at least # observations for inclusion
reverse (varlist) reverse signs of these variables
std standardize items in the scale to mean O, variance 1

by is allowed; see [D] by.

Menu

Statistics > Multivariate analysis > Cronbach’s alpha

Description

alpha computes the interitem correlations or covariances for all pairs of variables in varlist and
Cronbach’s « statistic for the scale formed from them. At least two variables must be specified with
alpha.

Options
. [options |

asis specifies that the sense (sign) of each item be taken as presented in the data. The default is to
determine the sense empirically and reverse the scorings for any that enter negatively.

casewise specifies that cases with missing values be deleted listwise. The default is pairwise
computation of covariances and correlations.

detail lists the individual interitem correlations and covariances.

generate (newvar) specifies that the scale constructed from varlist be stored in newvar. Unless asis
is specified, the sense of items entering negatively is automatically reversed. If std is also specified,
the scale is constructed by using standardized (mean 0, variance 1) values of the individual items.
Unlike most Stata commands, generate() does not use casewise deletion. A score is created
for every observation for which there is a response to at least one item (one variable in varlist
is not missing). The summative score is divided by the number of items over which the sum is
calculated.

11



12 alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

item specifies that item-test and item-rest correlations and the effects of removing an item from the
scale be displayed. item is valid only when more than two variables are specified in varlist.

label requests that the detailed output table be displayed in a compact format that enables the
inclusion of variable labels.

min(#) specifies that only cases with at least # observations be included in the computations.
casewise is a shorthand for min (k), where k is the number of variables in varlist.

reverse (varlist) specifies that the signs (directions) of the variables (items) in varlist be reversed.
Any variables specified in reverse() that are not also included in alpha’s varlist are ignored.

std specifies that the items in the scale be standardized (mean 0, variance 1) before summing.

Remarks

Cronbach’s alpha (Cronbach 1951) assesses the reliability of a summative rating (Likert 1932)
scale composed of the variables (called items) specified. The set of items is often called a test or
battery. A scale is simply the sum of the individual item scores, reversing the scoring for statements
that have negative correlations with the factor (for example, attitude) being measured. Scales can be
formed by using the raw item scores or standardized item scores.

The reliability « is defined as the square of the correlation between the measured scale and the
underlying factor. If you think of a test as being composed of a random sample of items from a
hypothetical domain of items designed to measure the same thing, « represents the expected correlation
of one test with an alternative form containing the same number of items. The square root of « is
the estimated correlation of a test with errorless true scores (Nunnally and Bernstein 1994, 235).

In addition to reporting «, alpha generates the summative scale from the items (variables) specified
and automatically reverses the sense of any when necessary. Stata’s decision can be overridden by
specifying the reverse (varlist) option.

Because it concerns reliability in measuring an unobserved factor, « is related to factor analysis.
The test should be designed to measure one factor, and, because the scale will be composed of an
unweighted sum, the factor loadings should all contribute roughly equal information to the score.
Both of these assumptions can be verified with factor; see [MV] factor. Equality of factor loadings
can also be assessed by using the item option.

> Example 1

To illustrate alpha, we apply it, first without and then with the item option, to the automobile
dataset after randomly introducing missing values:

. use http://www.stata-press.com/data/ri2/automiss
(1978 Automobile Data)

. alpha price headroom rep78 trunk weight length turn displ, std

Test scale = mean(standardized items)
Reversed item: rep78

Average interitem correlation: 0.5251
Number of items in the scale: 8
Scale reliability coefficient: 0.8984

The scale derived from our somewhat arbitrarily chosen automobile items (variables) appears to be
reasonable because the estimated correlation between it and the underlying factor it measures is
1v/0.8984 ~ 0.9478 and the estimated correlation between this battery of eight items and all other
eight-item batteries from the same domain is 0.8984. Because the “items” are not on the same scale,
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it is important that std was specified so that the scale and its reliability were based on the sum
of standardized variables. We could obtain the scale in a new variable called sc with the gen(sc)
option.

Though the scale appears reasonable, we include the item option to determine if all the items fit
the scale:

. alpha price headroom rep78 trunk weight length turn displ, std item

Test scale = mean(standardized items)

average
item-test item-rest interitem

Item Obs Sign correlation correlation correlation alpha
price 70 + 0.5260 0.3719 0.5993 0.9128
headroom 66 + 0.6716 0.5497 0.5542 0.8969
rep78 61 - 0.4874 0.3398 0.6040 0.9143
trunk 69 + 0.7979 0.7144 0.5159 0.8818
weight 64 + 0.9404 0.9096 0.4747 0.8635
length 69 + 0.9382 0.9076 0.4725 0.8625
turn 66 + 0.8678 0.8071 0.4948 0.8727
displacement 63 + 0.8992 0.8496 0.4852 0.8684
Test scale 0.5251 0.8984

“Test” denotes the additive scale; here 0.5251 is the average interitem correlation, and 0.8984 is
the alpha coefficient for a test scale based on all items.

“Obs” shows the number of nonmissing values of the items; “Sign” indicates the direction in
which an item variable entered the scale; “~” denotes that the item was reversed. The remaining four
columns in the table provide information on the effect of one item on the scale.

Column four gives the item-test correlations. Apart from the sign of the correlation for items that
entered the scale in reversed order, these correlations are the same numbers as those computed by
the commands

. alpha price headroom rep78 trunk weight length turn displ, std gen(sc)

. pwcorr sc price headroom rep78 trunk weight length turn displ

Typically, the item-test correlations should be roughly the same for all items. Item-test correlations
may not be adequate to detect items that fit poorly because the poorly fitting items may distort the scale.
Accordingly, it may be more useful to consider item-rest correlations (Nunnally and Bernstein 1994),
that is, the correlation between an item and the scale that is formed by all other items. The average
interitem correlations (covariances if std is omitted) of all items, excluding one, are shown in column
six. Finally, column seven gives Cronbach’s « for the test scale, which consists of all but the one
1tem.

Here neither the price item nor the rep78 item seems to fit well in the scale in all respects.
The item-test and item-rest correlations of price and rep78 are much lower than those of the other
items. The average interitem correlation increases substantially by removing either price or rep78;
apparently, they do not correlate strongly with the other items. Finally, we see that Cronbach’s «
coefficient will increase from 0.8984 to 0.9128 if the price item is dropped, and it will increase
from 0.8984 to 0.9143 if rep78 is dropped. For well-fitting items, we would of course expect that
« decreases by shortening the test.

N
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> Example 2

The variable names for the automobile data are reasonably informative. This may not always
be true; items in batteries commonly used to measure personality traits, attitudes, values, etc., are
usually named with indexed names such as item12a, item12b, etc. The label option forces alpha
to produce the same statistical information in a more compact format that leaves room to include
variable (item) labels. In this compact format, alpha excludes the number of nonmissing values of
the items, displays the statistics using fewer digits, and uses somewhat cryptic headers:

. alpha price headroom rep78 trunk weight length turn displ, std item label detail

Test scale = mean(standardized items)

Items S it-cor ir-cor ii-cor alpha label

price + 0.526 0.372 0.599 0.913  Price

headroom + 0.672 0.550 0.554 0.897 Headroom (in.)

rep78 - 0.487 0.340 0.604 0.914 Repair Record 1978
trunk + 0.798 0.714 0.516 0.882 Trunk space (cu. ft.)
weight + 0.940 0.910 0.475 0.863 Weight (1lbs.)

length + 0.938 0.908 0.473 0.862 Length (in.)

turn + 0.868 0.807 0.495 0.873 Turn Circle (ft.)
displacement | + 0.899 0.850 0.485 0.868 Displacement (cu. in.)
Test scale 0.525 0.898 mean(standardized items)

Interitem correlations (reverse applied) (obs=pairwise, see below)

price headroom rep78 trunk
price 1.0000
headroom 0.1174 1.0000
rep78 -0.0479 0.1955 1.0000
trunk 0.2748 0.6841 0.2777 1.0000
weight 0.5093 0.5464 0.3624 0.6486
length 0.4511 0.5823 0.3162 0.7404
turn 0.3528 0.4067 0.4715 0.5900
displacement 0.5537 0.5166 0.3391 0.6471
weight length turn displacement
weight 1.0000
length 0.9425 1.0000
turn 0.8712 0.8589 1.0000
displacement 0.8753 0.8422 0.7723 1.0000
Pairwise number of observations
price headroom rep78 trunk
price 70
headroom 62 66
rep78 59 54 61
trunk 65 61 59 69
weight 60 56 52 60
length 66 61 58 64
turn 62 58 56 62
displacement 59 58 51 58
weight length turn displacement
weight 64
length 60 69
turn 57 61 66
displacement 54 58 56 63

Because the detail option was also specified, the interitem correlation matrix was printed, together
with the number of observations used for each entry (because these varied across the matrix). Note
the negative sign attached to rep78 in the output, indicating the sense in which it entered the scale.
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Better-looking output with less-cryptic headers is produced if the linesize is set to a value of at
least 100:

. set linesize 100
. alpha price headroom rep78 trunk weight length turn displ, std item label
Test scale = mean(standardized items)

item-test item-rest interitem

Item Obs Sign corr. corr. corr. alpha  Label

price 70 + 0.5260 0.3719 0.5993 0.9128 Price

headroom 62 + 0.6716 0.5497 0.5542 0.8969 Headroom (in.)

rep78 59 - 0.4874 0.3398 0.6040 0.9143  Repair Record 1978
trunk 65 + 0.7979 0.7144 0.5159 0.8818  Trunk space (cu. ft.)
weight 60 + 0.9404 0.9096 0.4747 0.8635 Weight (1lbs.)

length 66 + 0.9382 0.9076 0.4725 0.8625 Length (in.)

turn 62 + 0.8678 0.8071 0.4948 0.8727 Turn Circle (ft.)
displacement 59 + 0.8992 0.8496 0.4852 0.8684 Displacement (cu. in.)
Test scale 0.5251 0.8984 mean(standardized items)

N

Users of alpha require some standard for judging values of a. We paraphrase Nunnally and
Bernstein (1994, 265): In the early stages of research, modest reliability of 0.70 or higher will suffice;
values in excess of 0.80 often waste time and funds. In contrast, where measurements on individuals
are of interest, a reliability of 0.80 may not be nearly high enough. Even with a reliability of 0.90,
the standard error of measurement is almost one-third as large as the standard deviation of test scores;
a reliability of 0.90 is the minimum that should be tolerated, and a reliability of 0.95 should be
considered the desirable standard.

Saved results

alpha saves the following in r():

Scalars

r(alpha) scale reliability coefficient

r(k) number of items in the scale

r(cov) average interitem covariance

r(rho) average interitem correlation if std is specified
Matrices

r(Alpha) scale reliability coefficient

r(ItemTestCorr) item-test correlation

r(ItemRestCorr) item-rest correlation

r(MeanInterItemCov) average interitem covariance

r(MeanInterItemCorr) average interitem correlation if std is specified

If the item option is specified, results are saved as row matrices for the k subscales when one
variable is removed.
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Methods and formulas

alpha is implemented as an ado-file.

Let z;, ¢ = 1,...,k, be the variables over which « is to be calculated. Let s; be the sign with
which x; enters the scale. If asis is specified, s; = 1 for all . Otherwise, principal-factor analysis
is performed on z;, and the first factor’s score is predicted; see [MV] factor. s; is —1 if correlation
of the x; and the predicted score is negative and +1 otherwise.

Let 7;; be the correlation between x; and x;, c;; be the covariance, and n;; be the number of
observations used in calculating the correlation or covariance. The average correlation is
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and the average covariance similarly is

Let c;; denote the variance of z;, and define the average variance as
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If std is specified, the scale reliability « is calculated as defined by the general form of the
Spearman—Brown Prophecy Formula (Nunnally and Bernstein 1994, 232; Allen and Yen 1979,
85-88):

kr
1+ k-7

This expression corresponds to « under the assumption that the summative rating is the sum of
the standardized variables (Nunnally and Bernstein 1994, 234). If std is not specified, « is defined
(Nunnally and Bernstein 1994, 232 and 234) as

a =

kc
v+ (k—1)e

o =

Let x;; reflect the value of item ¢ in the jth observation. If std is specified, the jth value of the
scale computed from the k x;; items is
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where S() is the function that returns the standardized (mean 0, variance 1) value if Z;; is not missing
and returns zero if x;; is missing. k; is the number of nonmissing values in z;;, ¢ = 1,..., k. If
std is not specified, S() is the function that returns x;; or returns missing if x;; is missing.

Lee Joseph Cronbach (1916-2001) was an American psychometrician and educational psychologist
who worked principally on measurement theory, program evaluation, and instruction. He taught
and researched at the State College of Washington, the University of Chicago, the University
of Illinois, and Stanford University. Cronbach’s initial paper on alpha led to a theory of test
reliability.
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Title

ameans — Arithmetic, geometric, and harmonic means

Syntax

ameans [varlist] [zf] [m] [weighl} [, options]

options Description
Main
add (#) add # to each variable in varlist
only add # only to variables with nonpositive values
level (#) set confidence level; default is 1level (95)

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Arith./geometric/harmonic means

Description

ameans computes the arithmetic, geometric, and harmonic means, with their corresponding
confidence intervals, for each variable in varlist or for all the variables in the data if varlist is
not specified. gmeans and hmeans are synonyms for ameans.

If you simply want arithmetic means and corresponding confidence intervals, see [R] ci.

Options

Main

Is

add (#) adds the value # to each variable in varlist before computing the means and confidence
intervals. This option is useful when analyzing variables with nonpositive values.

only modifies the action of the add (#) option so that it adds # only to variables with at least one
nonpositive value.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

18
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Remarks

> Example 1

We have a dataset containing 8 observations on a variable named x. The eight values are 5, 4,
—4, =5, 0, 0, missing, and 7.

. ameans x
Variable Type Obs Mean [95% Conf. Intervall
X Arithmetic 7 1 -3.204405 5.204405
Geometric 3 5.192494 2.57899 10.45448
Harmonic 3 5.060241 3.023008 15.5179
. ameans x, add(5)
Variable Type Obs Mean [95% Conf. Intervall
x | Arithmetic 7 6 1.795595 10.2044 *
Geometric 6 5.477226 2.1096 14.22071 =*
Harmonic 6 3.540984 . .ok

(%) 5 was added to the variables prior to calculating the results.
Missing values in confidence intervals for harmonic mean indicate
that confidence interval is undefined for corresponding variables.
Consult Reference Manual for details.

The number of observations displayed for the arithmetic mean is the number of nonmissing observations.
The number of observations displayed for the geometric and harmonic means is the number of
nonmissing, positive observations. Specifying the add (5) option produces 3 more positive observations.
The confidence interval for the harmonic mean is not reported; see Methods and formulas below.

d

Saved results

ameans saves the following in r():

Scalars
r(N) number of nonmissing observations; used for arithmetic mean
r(N_pos) number of nonmissing positive observations; used for geometric and harmonic means
r(mean) arithmetic mean
r(1b) lower bound of confidence interval for arithmetic mean
r(ub) upper bound of confidence interval for arithmetic mean
r(Var) variance of untransformed data
r(mean_g) geometric mean
r(lb_g) lower bound of confidence interval for geometric mean
r(ub_g) upper bound of confidence interval for geometric mean
r(Var_g) variance of Inz;
r(mean_h) harmonic mean
r(1lb_h) lower bound of confidence interval for harmonic mean
r(ub_h) upper bound of confidence interval for harmonic mean

r(Var_h) variance of 1/z;
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Methods and formulas
ameans is implemented as an ado-file.

See Armitage, Berry, and Matthews (2002) or Snedecor and Cochran (1989). For a history of the
concept of the mean, see Plackett (1958).

When restricted to the same set of values (that is, to positive values), the arithmetic mean () is
greater than or equal to the geometric mean, which in turn is greater than or equal to the harmonic
mean. Equality holds only if all values within a sample are equal to a positive constant.

The arithmetic mean and its confidence interval are identical to those provided by ci; see [R] ci.

To compute the geometric mean, ameans first creates w; = Inz; for all positive ;. The arithmetic
mean of the u; and its confidence interval are then computed as in ci. Let u be the resulting mean,
and let [L,U | be the corresponding confidence interval. The geometric mean is then exp(@), and
its confidence interval is [exp(L), exp(U)].

The same procedure is followed for the harmonic mean, except that then u; = 1/x;. The harmonic
mean is then 1/, and its confidence interval is [1/U,1/L] if L is greater than zero. If L is not
greater than zero, this confidence interval is not defined, and missing values are reported.

When weights are specified, ameans applies the weights to the transformed values, u; = Inz;
and u; = 1/x;, respectively, when computing the geometric and harmonic means. For details on
how the weights are used to compute the mean and variance of the u;, see [R] summarize. Without
weights, the formula for the geometric mean reduces to

exp{% Z ln(ajj)}

J

Without weights, the formula for the harmonic mean is
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Title

anova — Analysis of variance and covariance

Syntax
anova varname [termlist} [zf] [m] [weight] [ , options}
where termlist is a factor-variable list (see [U] 11.4.3 Factor variables) with the following additional
features:
e Variables are assumed to be categorical; use the c. factor-variable operator to override this.

e The | symbol (indicating nesting) may be used in place of the # symbol (indicating interaction).

e The / symbol is allowed after a term and indicates that the following term is the error term
for the preceding terms.

options Description

Model
repeated (varlist) variables in terms that are repeated-measures variables
B;tial use partial (or marginal) sums of squares
sequential use sequential sums of squares
noconstant suppress constant term
dropemptycells drop empty cells from the design matrix

Adv. model
bse (term) between-subjects error term in repeated-measures ANOVA
bseunit (varname) variable representing lowest unit in the between-subjects error term
grouping (varname) grouping variable for computing pooled covariance matrix

bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Analysis of variance and covariance

Description

The anova command fits analysis-of-variance (ANOVA) and analysis-of-covariance (ANCOVA) models
for balanced and unbalanced designs, including designs with missing cells; for repeated-measures
ANOVA; and for factorial, nested, or mixed designs.

The regress command (see [R] regress) will display the coefficients, standard errors, etc., of the
regression model underlying the last run of anova.

If you want to fit one-way ANOVA models, you may find the oneway or loneway command more

convenient; see [R] oneway and [R] loneway. If you are interested in MANOVA or MANCOVA, see
[MV] manova.

22
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Options

Model N

repeated (varlist) indicates the names of the categorical variables in the terms that are to be treated
as repeated-measures variables in a repeated-measures ANOVA or ANCOVA.

partial presents the ANOVA table using partial (or marginal) sums of squares. This setting is the
default. Also see the sequential option.

sequential presents the ANOVA table using sequential sums of squares.
noconstant suppresses the constant term (intercept) from the ANOVA or regression model.

dropemptycells drops empty cells from the design matrix. If c(emptycells) is set to keep (see
[R] set emptycells), this option temporarily resets it to drop before running the ANOVA model. If
c(emptycells) is already set to drop, this option does nothing.

Adv. model

bse (term) indicates the between-subjects error term in a repeated-measures ANOVA. This option
is needed only in the rare case when the anova command cannot automatically determine the
between-subjects error term.

bseunit (varname) indicates the variable representing the lowest unit in the between-subjects error
term in a repeated-measures ANOVA. This option is rarely needed because the anova command
automatically selects the first variable listed in the between-subjects error term as the default for
this option.

grouping (varname) indicates a variable that determines which observations are grouped together in
computing the covariance matrices that will be pooled and used in a repeated-measures ANOVA.
This option is rarely needed because the anova command automatically selects the combination
of all variables except the first (or as specified in the bseunit () option) in the between-subjects
error term as the default for grouping observations.

Remarks

Remarks are presented under the following headings:

Introduction

One-way ANOVA

Two-way ANOVA

N-way ANOVA

Weighted data

ANCOVA

Nested designs

Mixed designs

Latin-square designs
Repeated-measures ANOVA

Introduction

anova uses least squares to fit the linear models known as ANOVA or ANCOVA (henceforth referred
to simply as ANOVA models).

If your interest is in one-way ANOVA, you may find the oneway command to be more convenient;
see [R] oneway.
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Structural equation modeling provides a more general framework for fitting ANOVA models; see
the Stata Structural Equation Modeling Reference Manual.

ANOVA was pioneered by Fisher. It features prominently in his texts on statistical methods and his
design of experiments (1925, 1935). Many books discuss ANOVA; see, for instance, Altman (1991); van
Belle et al. (2004); Cobb (1998); Snedecor and Cochran (1989); or Winer, Brown, and Michels (1991).
For a classic source, see Scheffé¢ (1959). Kennedy and Gentle (1980) discuss ANOVA’s computing
problems. Edwards (1985) is concerned primarily with the relationship between multiple regression
and ANOVA. Acock (2010, chap. 9) illustrates his discussion with Stata output. Repeated-measures
ANOVA is discussed in Winer, Brown, and Michels (1991); Kuehl (2000); and Milliken and John-
son (2009). Pioneering work in repeated-measures ANOVA can be found in Box (1954); Geisser and
Greenhouse (1958); Huynh and Feldt (1976); and Huynh (1978).

One-way ANOVA

anova, entered without options, performs and reports standard ANOVA. For instance, to perform a
one-way layout of a variable called endog on exog, you would type anova endog exog.

> Example 1

We run an experiment varying the amount of fertilizer used in growing apple trees. We test four
concentrations, using each concentration in three groves of 12 trees each. Later in the year, we
measure the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the
four concentrations. Instead, two of the groves were mistakenly leveled by a confused man on a large
bulldozer. We are left with the following data:

. use http://www.stata-press.com/data/r12/apple
(Apple trees)

. list, abbrev(10) sepby(treatment)

treatment  weight
1. 1 117.5
2. 1 113.8
3. 1 104.4
4. 2 48.9
5. 2 50.4
6. 2 58.9
7. 3 70.4
8. 3 86.9
9. 4 87.7
10. 4 67.3
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To obtain one-way ANOVA results, we type

. anova weight treatment

Number of obs = 10 R-squared = 0.9147

Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob > F

Model 5295.54433 3 1765.18144 21.46 0.0013

treatment 5295.54433 3 1765.18144 21.46 0.0013
Residual 493.591667 6 82.2652778
Total 5789.136 9 643.237333

We find significant (at better than the 1% level) differences among the four concentrations.

Although the output is a usual ANOVA table, let’s run through it anyway. Above the table is a
summary of the underlying regression. The model was fit on 10 observations, and the root mean
squared error (Root MSE) is 9.07. The R? for the model is 0.9147, and the adjusted R? is 0.8721.

The first line of the table summarizes the model. The sum of squares (Partial SS) for the model is
5295.5 with 3 degrees of freedom (df). This line results in a mean square (MS) of 5295.5/3 ~ 1765.2.
The corresponding F’ statistic is 21.46 and has a significance level of 0.0013. Thus the model appears
to be significant at the 0.13% level.

The next line summarizes the first (and only) term in the model, treatment. Because there is
only one term, the line is identical to that for the overall model.

The third line summarizes the residual. The residual sum of squares is 493.59 with 6 degrees of
freedom, resulting in a mean squared error of 82.27. The square root of this latter number is reported
as the Root MSE.

The model plus the residual sum of squares equals the total sum of squares, which is reported as
5789.1 in the last line of the table. This is the total sum of squares of weight after removal of the
mean. Similarly, the model plus the residual degrees of freedom sum to the total degrees of freedom,
9. Remember that there are 10 observations. Subtracting 1 for the mean, we are left with 9 total
degrees of freedom.

d

Q Technical note

Rather than using the anova command, we could have performed this analysis by using the
oneway command. Example 1 in [R] oneway repeats this same analysis. You may wish to compare
the output.

a

Type regress to see the underlying regression model corresponding to an ANOVA model fit using
the anova command.

> Example 2

Returning to the apple tree experiment, we found that the fertilizer concentration appears to
significantly affect the average weight of the fruit. Although that finding is interesting, we next want
to know which concentration appears to grow the heaviest fruit. One way to find out is by examining
the underlying regression coefficients.
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. regress, baselevels

Source SS df MS Number of obs = 10

F(C 3, 6) = 21.46

Model 5295.54433 3 1765.18144 Prob > F = 0.0013

Residual 493.591667 6 82.2652778 R-squared = 0.9147

Adj R-squared = 0.8721

Total 5789.136 9 643.237333 Root MSE = 9.07

weight Coef.  Std. Err. t P>|t] [95% Conf. Intervall

treatment

1 0 (base)

2 -59.16667 7.405641 -7.99 0.000 -77.28762 -41.04572

3 -33.25 8.279758 -4.02 0.007 -563.50984 -12.99016

4 -34.4 8.279758 -4.15 0.006 -54.65984  -14.14016

_cons 111.9  5.236579 21.37 0.000 99.08655 124.7134

See [R] regress for an explanation of how to read this table. The baselevels option of regress
displays a row indicating the base category for our categorical variable, treatment. In summary,
we find that concentration 1, the base (omitted) group, produces significantly heavier fruits than
concentration 2, 3, and 4; concentration 2 produces the lightest fruits; and concentrations 3 and 4
appear to be roughly equivalent.

N

> Example 3

We previously typed anova weight treatment to produce and display the ANOVA table for our
apple tree experiment. Typing regress displays the regression coefficients. We can redisplay the
ANOVA table by typing anova without arguments:

. anova

Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721
Source Partial SS df MS F Prob > F
Model 5295.54433 3 1765.18144 21.46 0.0013
treatment 5295.54433 3 1765.18144 21.46 0.0013

Residual 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Two-way ANOVA

You can include multiple explanatory variables with the anova command, and you can specify
interactions by placing ‘#’ between the variable names. For instance, typing anova y a b performs a
two-way layout of y on a and b. Typing anova y a b a#b performs a full two-way factorial layout.
The shorthand anova y a##b does the same.

With the default partial sums of squares, when you specify interacted terms, the order of the terms
does not matter. Typing anova y a b a#b is the same as typing anova y b a b#a.
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> Example 4

The classic two-way factorial ANOVA problem, at least as far as computer manuals are concerned,
is a two-way ANOVA design from Afifi and Azen (1979).

Fifty-eight patients, each suffering from one of three different diseases, were randomly assigned
to one of four different drug treatments, and the change in their systolic blood pressure was recorded.
Here are the data:

Disease 1 Disease 2 Disease 3
Drug 1| 42, 44, 36 33, 26, 33 31, -3, 25
13, 19, 22 21 25, 24
Drug 2 | 28, 23, 34 34, 33, 31 3, 26, 28
42, 13 36 32, 4, 16
Drug 3 1, 29, 19 11, 9, 7 21,1, 9
1, -6 3
Drug 4 | 24,9,22 27,12,12 22,7, 25
-2, 15 -5,16, 15 5,12

Let’s assume that we have entered these data into Stata and stored the data as systolic.dta.
Below we use the data, 1ist the first 10 observations, summarize the variables, and tabulate the
control variables:

. use http://www.stata-press.com/data/ri12/systolic
(Systolic Blood Pressure Data)

. list in 1/10

drug disease systolic
1 1 1 42
2 1 1 44
3 1 1 36
4 1 1 13
5 1 1 19
6 1 1 22
7 1 2 33
8 1 2 26
9 1 2 33
10. 1 2 21
. summarize
Variable Obs Mean Std. Dev. Min Max
drug 58 2.5 1.158493 1 4
disease 58 2.017241 .8269873 1 3
systolic 58 18.87931 12.80087 -6 44

. tabulate drug disease

Patient’s Disease
Drug Used 1 2 3 Total
1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16
Total 19 19 20 58
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Each observation in our data corresponds to one patient, and for each patient we record drug,
disease, and the increase in the systolic blood pressure, systolic. The tabulation reveals that the
data are not balanced—there are not equal numbers of patients in each drug—disease cell. Stata
does not require that the data be balanced. We can perform a two-way factorial ANOVA by typing

. anova systolic drug disease drug#disease

Number of obs = 58 R-squared = 0.4560

Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

drug 2997.47186 3 999.157287 9.05 0.0001

disease 415.873046 2 207.936523 1.88 0.1637

drug#disease 707.266259 6 117.87771 1.07 0.3958
Residual 5080.81667 46 110.452536
Total 9340.15517 57 163.862371

Although Stata’s table command does not perform ANOVA, it can produce useful summary tables
of your data (see [R] table):

. table drug disease, c(mean systolic) row col f(%8.2f)

Patient’s Disease

Drug Used 1 2 3 Total
1] 29.33 28.25 20.40 26.07
2 [ 28.00 33.50 18.17 25.53
3| 16.33 4.40 8.50 8.75
4 | 13.60 12.83 14.20 13.50

Total 22.79 18.21 15.80 18.88

These are simple means and are not influenced by our anova model. More useful is the margins
command (see [R] margins) that provides marginal means and adjusted predictions. Because drug
is the only significant factor in our ANOVA, we now examine the adjusted marginal means for drug.

. margins drug, asbalanced

Adjusted predictions Number of obs = 58
Expression : Linear prediction, predict()
at : drug (asbalanced)
disease (asbalanced)

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
drug

1 25.99444 2.751008 9.45 0.000 20.60257 31.38632

2 26.55556 2.751008 9.65 0.000 21.16368 31.94743

3 9.744444 3.100558 3.14 0.002 3.667462 15.82143

4 13.54444 2.637123 5.14 0.000 8.375778 18.71311

These adjusted marginal predictions are not equal to the simple drug means (see the total column from
the table command); they are based upon predictions from our ANOVA model. The asbalanced
option of margins corresponds with the interpretation of the F' statistic produced by ANOVA—each
cell is given equal weight regardless of its sample size (see the following three technical notes). You
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can omit the asbalanced option and obtain predictive margins that take into account the unequal
sample sizes of the cells.

. margins drug

Predictive margins Number of obs = 58
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
drug
1 25.89799  2.750533 9.42 0.000 20.50704 31.28893
2 26.41092  2.742762 9.63 0.000 21.0352 31.78664
3 9.722989  3.099185 3.14 0.002 3.648697 15.79728
4 13.556575  2.640602 5.13 0.000 8.380261 18.73123

Q Technical note

How do you interpret the significance of terms like drug and disease in unbalanced data? If you
are familiar with SAS, the sums of squares and the I’ statistic reported by Stata correspond to SAS
type III sums of squares. (Stata can also calculate sequential sums of squares, but we will postpone
that topic for now.)

Let’s think in terms of the following table:

Disease 1 Disease 2 Disease 3
Drug 1 11 12 1413 1.
Drug 2 21 22 23 2.
Drug 3 K31 32 H33 H3.
Drug 4 Ha1 Ha2 43 .
M1 -2 H-3 H..

In this table, p;; is the mean increase in systolic blood pressure associated with drug i and disease
J, while ;. is the mean for drug 4, p.; is the mean for disease j, and p.. is the overall mean.

If the data are balanced, meaning that there are equal numbers of observations going into the
calculation of each mean f;;, the row means, fi;., are given by

o Mar a2 a3
" 3

In our case, the data are not balanced, but we define the p;. according to that formula anyway. The
test for the main effect of drug is the test that

H1. = H2. = K3 = 4.

To be absolutely clear, the F' test of the term drug, called the main effect of drug, is formally
equivalent to the test of the three constraints:
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p11 + paz + pas _ P21 + w22 + pios
3 3

B11 + piz2 + p1s ps1 + ps2 + s

3 3

M1+ pa2 4 a3 pgn A pag + fa3
3 B 3

In our data, we obtain a significant F' statistic of 9.05 and thus reject those constraints.

Q Technical note

Stata can display the symbolic form underlying the test statistics it presents, as well as display other
test statistics and their symbolic forms; see Obtaining symbolic forms in [R] anova postestimation.
Here is the result of requesting the symbolic form for the main effect of drug in our data:

. test drug, symbolic
drug

- (r2+r3+r4)
r2

r3

rd

W N

disease
0
0
0
drug#diseas
1 -1/3 (r2+r3+r4d)
-1/3 (r2+r3+r4d)
-1/3 (r2+r3+r4)
1/3 r2
1/3 r2
1/3 r2
1/3 r3
1/3 r3
1/3 r3
1/3 r4
1/3 rd
1/3 r4

WNEFRF WNFE, WONFE WNE O WN -

B WWWNNN P

_cons 0

This says exactly what we said in the previous technical note.

Q Technical note

Saying that there is no main effect of a variable is not the same as saying that it has no effect at
all. Stata’s ability to perform ANOVA on unbalanced data can easily be put to ill use.

For example, consider the following table of the probability of surviving a bout with one of two
diseases according to the drug administered to you:
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‘ Disease 1 Disease 2

Drug 1 1 0
Drug 2 0 1

If you have disease 1 and are administered drug 1, you live. If you have disease 2 and are
administered drug 2, you live. In all other cases, you die.

This table has no main effects of either drug or disease, although there is a large interaction effect.
You might now be tempted to reason that because there is only an interaction effect, you would
be indifferent between the two drugs in the absence of knowledge about which disease infects you.
Given an equal chance of having either disease, you reason that it does not matter which drug is
administered to you—either way, your chances of surviving are 0.5.

You may not, however, have an equal chance of having either disease. If you knew that disease 1
was 100 times more likely to occur in the population, and if you knew that you had one of the two
diseases, you would express a strong preference for receiving drug 1.

When you calculate the significance of main effects on unbalanced data, you must ask yourself
why the data are unbalanced. If the data are unbalanced for random reasons and you are making
predictions for a balanced population, the test of the main effect makes perfect sense. If, however,
the data are unbalanced because the underlying populations are unbalanced and you are making
predictions for such unbalanced populations, the test of the main effect may be practically—if not
statistically —meaningless.

a

> Example 5

Stata can perform ANOVA not only on unbalanced populations, but also on populations that are
so unbalanced that entire cells are missing. For instance, using our systolic blood pressure data, let’s
refit the model eliminating the drug 1-disease 1 cell. Because anova follows the same syntax as all
other Stata commands, we can explicitly specify the data to be used by typing the if qualifier at the
end of the anova command. Here we want to use the data that are not for drug 1 and disease 1:

. anova systolic drug##disease if !(drug==1 & disease==1)

Number of obs = 52 R-squared = 0.4545

Root MSE = 10.1615 Adj R-squared = 0.3215

Source Partial SS df MS F Prob > F

Model 3527.95897 10 352.795897 3.42 0.0025

drug 2686.57832 3 895.526107 8.67 0.0001

disease 327.792598 2 163.896299 1.59 0.2168

drug#disease 703.007602 5 140.60152 1.36 0.2586
Residual 4233.48333 41 103.255691
Total 7761.44231 51 152.185143

Here we used drug##disease as a shorthand for drug disease drug#disease.
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Q Technical note

The test of the main effect of drug in the presence of missing cells is more complicated than that
for unbalanced data. Our underlying tableau now has the following form:

Disease 1 Disease 2 Disease 3
Drug 1 H12 H13
Drug 2 H21 122 H23 o
Drug 3 M1 Hi32 H33 3.
Drug 4 Ha1 42 143 fg.
H-2 H-3

The hole in the drug 1-disease 1 cell indicates that the mean is unobserved. Considering the main
effect of drug, the test is unchanged for the rows in which all the cells are defined:

. = [13. = fia.

The first row, however, requires special attention. Here we want the average outcome for drug 1,
which is averaged only over diseases 2 and 3, to be equal to the average values of all other drugs
averaged over those same two diseases:

paz + pins (poz + pes) /2 + (ps2 + pas) /2 + (paz + pas) /2

2 3

Thus the test contains three constraints:

H21 + po2 + p23 H31 + 32 + 133
3 - 3
Ho1 + o2 4 pl2z Ha1 + pa2 + 43
3 3
M1z + p3 _ Moo+ pos + 3o + ps3 + Haz + Has
2 6

Q

Stata can calculate two types of sums of squares, partial and sequential. If you do not specify
which sums of squares to calculate, Stata calculates partial sums of squares. The technical notes
above have gone into great detail about the definition and use of partial sums of squares. Use the
sequential option to obtain sequential sums of squares.

Q Technical note

Before we illustrate sequential sums of squares, consider one more feature of the partial sums. If
you know how such things are calculated, you may worry that the terms must be specified in some
particular order, that Stata would balk or, even worse, produce different results if you typed, say,
anova drug#disease drug disease rather than anova drug disease drug#disease. We assure
you that is not the case.

When you type a model, Stata internally reorganizes the terms, forms the cross-product matrix,
inverts it, converts the result to an upper-Hermite form, and then performs the hypothesis tests. As a
final touch, Stata reports the results in the same order that you typed the terms.

a
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> Example 6

We wish to estimate the effects on systolic blood pressure of drug and disease by using sequential
sums of squares. We want to introduce disease first, then drug, and finally, the interaction of drug
and disease:

. anova systolic disease drug disease#drug, sequential

Number of obs = 58 R-squared = 0.4560

Root MSE = 10.5096 Adj R-squared = 0.3259

Source Seq. SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

disease 488.639383 2 244.319691 2.21 0.1210

drug 3063.43286 3 1021.14429 9.25 0.0001

disease#drug 707.266259 6 117.87771 1.07 0.3958
Residual 5080.81667 46 110.452536
Total 9340.15517 57 163.862371

The F statistic on disease is now 2.21. When we fit this same model by using partial sums of
squares, the statistic was 1.88.

4

N-way ANOVA

You may include high-order interaction terms, such as a third-order interaction between the variables
A, B, and C, by typing A#B#C.

> Example 7

We wish to determine the operating conditions that maximize yield for a manufacturing process.
There are three temperature settings, two chemical supply companies, and two mixing methods under
investigation. Three observations are obtained for each combination of these three factors.

. use http://www.stata-press.com/data/r12/manuf
(manufacturing process data)

. describe

Contains data from http://www.stata-press.com/data/r12/manuf.dta

obs: 36 manufacturing process data

vars: 4 2 Jan 2011 13:28

size: 144

storage display value

variable name type format label variable label
temperature byte %9.0g temp machine temperature setting
chemical byte  %9.0g supplier chemical supplier
method byte %9.0g meth mixing method
yield byte  %9.0g product yield

Sorted by:
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We wish to perform a three-way factorial ANOVA. We could type

. anova yield temp chem temp#chem meth temp#meth chem#meth temp#chem#meth
but prefer to use the ## factor-variable operator for brevity.

. anova yield temp##chem##meth

Number of obs = 36 R-squared = 0.5474
Root MSE = 2.62996 Adj R-squared = 0.3399
Source Partial SS df MS F Prob > F
Model 200.75 11 18.25 2.64 0.0227
temperature 30.5 2 15.25 2.20 0.1321
chemical 12.25 1 12.25 1.77 0.1958
temperature#chemical 24.5 2 12.25 1.77 0.1917
method 42.25 1 42.25 6.11 0.0209
temperature#method 87.5 2 43.75 6.33 0.0062
chemical#method .25 1 .25 0.04 0.8508
temperature#chemical#

method 3.5 2 1.75 0.25 0.7785

Residual 166 24 6.91666667

Total 366.75 35 10.4785714

The interaction between temperature and method appears to be the important story in these data.
A table of means for this interaction is given below.

. table method temp, c(mean yield) row col f(%8.2f)

mixing machine temperature setting
method low medium high Total
stir 7.50 6.00 6.00 6.50
fold 5.50 9.00 11.50 8.67
Total 6.50 7.50 8.75 7.58

Here our ANOVA is balanced (each cell has the same number of observations), and we obtain the
same values as in the table above (but with additional information such as confidence intervals) by
using the margins command. Because our ANOVA is balanced, using the asbalanced option with
margins would not produce different results. We request the predictive margins for the two terms
that appear significant in our ANOVA: temperature#method and method.
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. margins temperature#method method

Predictive margins Number of obs = 36
Expression : Linear prediction, predict()
Delta-method

Margin  Std. Err. z P>|z| [95% Conf. Intervall
temperature#
method

11 7.5 1.073675 6.99 0.000 5.395636 9.604364

12 5.5 1.073675 5.12 0.000 3.395636 7.604364

21 6 1.073675 5.59 0.000 3.895636 8.104364

22 9 1.073675 8.38 0.000 6.895636 11.10436

31 6 1.073675 5.59 0.000 3.895636 8.104364

32 11.5 1.073675 10.71 0.000 9.395636 13.60436
method

1 6.5 .6198865 10.49 0.000 5.285045 7.714955

2 8.666667 .6198865 13.98 0.000 7.451711 9.881622

We decide to use the folding method of mixing and a high temperature in our manufacturing
process.

N

Weighted data

Like all estimation commands, anova can produce estimates on weighted data. See [U] 11.1.6 weight
for details on specifying the weight.

> Example 8

We wish to investigate the prevalence of byssinosis, a form of pneumoconiosis that can afflict
workers exposed to cotton dust. We have data on 5,419 workers in a large cotton mill. We know
whether each worker smokes, his or her race, and the dustiness of the work area. The variables are

smokes smoker or nonsmoker in the last five years
race white or other
workplace 1 (most dusty), 2 (less dusty), 3 (least dusty)

We wish to fit an ANOVA model explaining the prevalence of byssinosis according to a full factorial
model of smokes, race, and workplace.

The data are unbalanced. Moreover, although we have data on 5,419 workers, the data are grouped
according to the explanatory variables, along with some other variables, resulting in 72 observations.
For each observation, we know the number of workers in the group (pop), the prevalence of byssinosis
(prob), and the values of the three explanatory variables. Thus we wish to fit a three-way factorial
model on grouped data.

We begin by showing a bit of the data, which are from Higgins and Koch (1977).
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. use http://www.stata-press.com/data/r12/byssin
(Byssinosis incidence)

. describe

Contains data from http://www.stata-press.com/data/r12/byssin.dta

obs: 72 Byssinosis incidence
vars: 5 19 Dec 2010 07:04

size: 864

storage display value

variable name  type format label variable label

smokes int %8.0g smokes Smokes
race int %8.0g race Race
workplace int %8.0g workplace

Dustiness of workplace

pop int %8.0g Population size
prob float %9.0g Prevalence of byssinosis
Sorted by:

. list in 1/5, abbrev(10) divider

smokes race workplace pop prob
1. yes | white most 40 .075
2. yes | white less 74 0
3. yes | white least 260 .0076923
4. yes other most 164 .152439
5. yes other less 88 0

The first observation in the data represents a group of 40 white workers who smoke and work
in a “most” dusty work area. Of those 40 workers, 7.5% have byssinosis. The second observation
represents a group of 74 white workers who also smoke but who work in a “less” dusty environment.
None of those workers has byssinosis.

Almost every Stata command allows weights. Here we want to weight the data by pop. We can,
for instance, make a table of the number of workers by their smoking status and race:

. tabulate smokes race [fw=pop]

Race
Smokes other white Total
no 799 1,431 2,230
yes 1,104 2,085 3,189
Total 1,903 3,516 5,419

The [fw=pop] at the end of the tabulate command tells Stata to count each observation as representing
pop persons. When making the tally, tabulate treats the first observation as representing 40 workers,
the second as representing 74 workers, and so on.

Similarly, we can make a table of the dustiness of the workplace:
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. tabulate workplace [fw=pop]

Dustiness
of
workplace Freq. Percent Cum.
least 3,450 63.66 63.66
less 1,300 23.99 87.65
most 669 12.35 100.00
Total 5,419 100.00

We can discover the average incidence of byssinosis among these workers by typing

. summarize prob [fw=pop]

Variable | Obs

Mean

Std. Dev.

Max

prob | 5419

.0304484

.0567373

.287037

We discover that 3.04% of these workers have byssinosis. Across all cells, the byssinosis rates vary
from O to 28.7%. Just to prove that there might be something here, let’s obtain the average incidence
rates according to the dustiness of the workplace:

. table workplace smokes race [fw=pop], c(mean prob)

Dustiness Race and Smokes

of other white

workplace no yes no yes
least .0107527 .0101523 .0081549 .0162774
less .02 .0081633 .0136612 .0143149
most .0820896 .1679105 .0833333 .2295082

Let’s now fit the ANOVA model.

. anova prob workplace smokes race workplace#smokes workplace#race
> smokes#race workplace#smokes#race [aweight=pop]

(sum of wgt is  5.4190e+03)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared 0.7948
Source Partial SS df MS F Prob > F
Model .173646538 11 .015786049 23.53 0.0000
workplace .097625175 2 .048812588 72.76 0.0000
smokes .013030812 1 .013030812 19.42 0.0001
race .001094723 1 .001094723 1.63 0.2070
workplace#smokes .019690342 2 .009845171 14.67 0.0000
workplace#race .001352516 2 .000676258 1.01 0.3718
smokes#race .001662874 1 .001662874 2.48 0.1214
workplace#smokes#race .000950841 2 .00047542 0.71 0.4969

Residual .035557766 53 .000670901

Total .209204304 64 .003268817

Of course, if we want to see the underlying regression, we could type regress.

Above we examined simple means of the cells of workplace#smokes#race. Our ANOVA shows
workplace, smokes, and their interaction as being the only significant factors in our model. We now

examine the predictive marginal mean byssinosis rates for these terms.
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. margins workplace#smokes workplace smokes

Predictive margins Number of obs = 65
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
workplace#
smokes
11 .0090672 .0062319 1.45 0.146 -.003147 .0212814
12 .0141264 .0053231 2.65 0.008 .0036934 .0245595
21 .0158872 .009941 1.60 0.110 -.0035967 .0353711
22 .0121546 .0087353 1.39 0.164 -.0049663 .0292756
31 .0828966 .0182151 4.55 0.000 .0471957 .1185975
32 .2078768 .012426 16.73  0.000 .1835222 .2322314
workplace
1 .0120701 .0040471 2.98 0.003 .0041379 .0200022
2 .0137273 .0065685 2.09 0.037 .0008533 .0266012
3 .1566225 .0104602 14.97  0.000 .1361208 .1771241
smokes
1 .0196915 .0050298 3.91  0.000 .0098332 .0295498
2 .0358626 .0041949 8.55 0.000 .0276408 .0440844

Smoking combined with the most dusty workplace produces the highest byssinosis rates.

Ronald Aylmer Fisher (1890-1962) (Sir Ronald from 1952) studied mathematics at Cambridge.
Even before he finished his studies, he had published on statistics. He worked as a statistician at
Rothamsted Experimental Station (1919-1933), as professor of eugenics at University College
London (1933-1943), as professor of genetics at Cambridge (1943—1957), and in retirement at
the CSIRO Division of Mathematical Statistics in Adelaide. His many fundamental and applied
contributions to statistics and genetics mark him as one of the greatest statisticians of all time,
including original work on tests of significance, distribution theory, theory of estimation, fiducial
inference, and design of experiments.

ANCOVA

You can include multiple explanatory variables with the anova command, but unless you explicitly
state otherwise by using the c. factor-variable operator, all the variables are interpreted as categorical

variables. Using the c. operator, you can designate variables as continuous and thus perform ANCOVA.

> Example 9

da

We have census data recording the death rate (drate) and median age (age) for each state. The

taset also includes the region of the country in which each state is located (region):
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. use http://www.stata-press.com/data/r12/census2
(1980 Census data by state)

. summarize drate age region

Variable Obs Mean Std. Dev. Min Max
drate 50 84.3 13.07318 40 107
age 50 29.5 1.752549 24 35
region 50 2.66 1.061574 1 4

age is coded in integral years from 24 to 35, and region is coded from 1 to 4, with 1 standing for
the Northeast, 2 for the North Central, 3 for the South, and 4 for the West.

When we examine the data more closely, we discover large differences in the death rate across
regions of the country:

. tabulate region, summarize(drate)

Census Summary of Death Rate
region Mean  Std. Dev. Freq.
NE 93.444444  7.0553368 9
N Cntrl 88.916667  5.5833899 12
South 88.3125  8.5457104 16
West 68.769231  13.342625 13
Total 84.3 13.073185 50

Naturally, we wonder if these differences might not be explained by differences in the median ages
of the populations. To find out, we fit a regression model (via anova) of drate on region and age.
In the anova example below, we treat age as a categorical variable.

. anova drate region age

Number of obs = 50 R-squared = 0.7927

Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob > F
Model 6638.86529 11 603.533208 13.21 0.0000
region 1320.00973 3 440.003244 9.63 0.0001
age 2237.24937 8 279.656171 6.12 0.0000

Residual 1735.63471 38 45.6745977

Total 8374.5 49 170.908163

We have the answer to our question: differences in median ages do not eliminate the differences in
death rates across the four regions. The ANOVA table summarizes the two terms in the model, region
and age. The region term contains 3 degrees of freedom, and the age term contains 8 degrees of
freedom. Both are significant at better than the 1% level.

The age term contains 8 degrees of freedom. Because we did not explicitly indicate that age was
to be treated as a continuous variable, it was treated as categorical, meaning that unique coefficients
were estimated for each level of age. The only clue of this labeling is that the number of degrees of
freedom associated with the age term exceeds 1. The labeling becomes more obvious if we review
the regression coefficients:
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. regress, baselevels

Source SS df MS Number of obs = 50
F( 11, 38) = 13.21
Model 6638.86529 11 603.533208 Prob > F = 0.0000
Residual 1735.63471 38 45.6745977 R-squared = 0.7927
Adj R-squared = 0.7328
Total 8374.5 49 170.908163 Root MSE = 6.7583
drate Coef. Std. Err. t P>t [95% Conf. Intervall
region
1 0 (base)
2 .4428387 3.983664 0.11 0.912 -7.621668 8.507345
3 -.2964637 3.934766 -0.08 0.940 -8.261981 7.669054
4 -13.37147 4.195344 -3.19 0.003 -21.8645 -4.878439
age
24 0 (base)
26 -15 9.557677 -1.57 0.125 -34.34851 4.348506
27 14.30833 7.857378 1.82 0.076 -1.598099 30.21476
28 12.66011 7.495513 1.69 0.099 -2.51376 27.83399
29 18.861 7.28918 2.59 0.014 4.104825 33.61717
30 20.87003 7.210148 2.89 0.006 6.273847 35.46621
31 29.91307 8.242741 3.63 0.001 13.22652 46.59963
32 27.02853 8.509432 3.18 0.003 9.802089 44 .25498
35 38.925 9.944825 3.91 0.000 18.79275 59.05724
_cons 68.37147 7.95459 8.60 0.000 52.26824 84.47469

The regress command displayed the anova model as a regression table. We used the baselevels
option to display the dropped level (or base) for each term.

If we want to treat age as a continuous variable, we must prepend c. to age in our anova.

. anova drate region c.age

Number of obs = 50 R-squared = 0.7203

Root MSE = 7.21483 Adj R-squared = 0.6954

Source Partial SS df MS F Prob > F
Model 6032.08254 4 1508.02064 28.97 0.0000
region 1645.66228 3 548.554092 10.54 0.0000
age 1630.46662 1 1630.46662 31.32 0.0000

Residual 2342.41746 45 52.0537213

Total 8374.5 49 170.908163

The age term now has 1 degree of freedom. The regression coefficients are
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. regress, baselevels

Source SS df MS Number of obs = 50

F( 4, 45) = 28.97

Model 6032.08254 4 1508.02064 Prob > F = 0.0000

Residual 2342.41746 45 52.0537213 R-squared = 0.7203

Adj R-squared = 0.6954

Total 8374.5 49 170.908163 Root MSE = 7.2148

drate Coef. Std. Err. t P>t [95% Conf. Intervall
region

1 0 (base)

2 1.792526 3.375925 0.53 0.598 -5.006935 8.591988

3 .6979912 3.18154 0.22 0.827 -5.70996 7.105942

4 -13.37578 3.723447 -3.59 0.001 -20.87519 -5.876377

age 3.922947 .7009425 5.60 0.000 2.511177 5.334718

_cons -28.60281 21.93931 -1.30 0.199 -72.79085 15.58524

Although we started analyzing these data to explain the regional differences in death rate, let’s focus
on the effect of age for a moment. In our first model, each level of age had a unique death rate
associated with it. For instance, the predicted death rate in a north central state with a median age

of 28 was
0.44 + 12.66 + 68.37 ~ 81.47

whereas the predicted death rate from our current model is
1.79 4+ 3.92 x 28 — 28.60 ~ 82.95

Our previous model had an R? of 0.7927, whereas our current model has an R? of 0.7203. This
“small” loss of predictive power accompanies a gain of 7 degrees of freedom, so we suspect that the
continuous-age model is as good as the discrete-age model.

4

Q Technical note
There is enough information in the two ANOVA tables to attach a statistical significance to our
suspicion that the loss of predictive power is offset by the savings in degrees of freedom. Because

the continuous-age model is nested within the discrete-age model, we can perform a standard Chow
test. For those of us who know such formulas off the top of our heads, the I statistic is

(2342.41746 — 1735.63471)/7

45.6745977 = 1.90

There is, however, a better way.

We can find out whether our continuous model is as good as our discrete model by putting age
in the model twice: once as a continuous variable and once as a categorical variable. The categorical
variable will then measure deviations around the straight line implied by the continuous variable, and
the F’ test for the significance of the categorical variable will test whether those deviations are jointly
Zero.
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. anova drate region c.age age

Number of obs = 50 R-squared = 0.7927

Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob > F

Model 6638.86529 11 603.533208 13.21 0.0000

region 1320.00973 3 440.003244 9.63 0.0001

age 699.74137 1 699.74137 15.32 0.0004

age 606.782747 7 86.6832496 1.90 0.0970
Residual 1735.63471 38 45.6745977
Total 8374.5 49 170.908163

We find that the F' test for the significance of the (categorical) age variable is 1.90, just as we
calculated above. It is significant at the 9.7% level. If we hold to a 5% significance level, we cannot
reject the null hypothesis that the effect of age is linear.

a

> Example 10

In our census data, we still find significant differences across the regions after controlling for the
median age of the population. We might now wonder whether the regional differences are differences
in level—independent of age—or are instead differences in the regional effects of age. Just as we
can interact categorical variables with other categorical variables, we can interact categorical variables
with continuous variables.

. anova drate region c.age region#c.age

Number of obs = 50 R-squared = 0.7365

Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob > F

Model 6167.7737 7 881.110529 16.77 0.0000

region 188.713602 3 62.9045339 1.20 0.3225

age 873.425599 1 873.425599 16.62 0.0002

region#age 135.691162 3 45.2303874 0.86 0.4689
Residual 2206.7263 42 52.5411023
Total 8374.5 49 170.908163

The region#c.age term in our model measures the differences in slopes across the regions. We cannot
reject the null hypothesis that there are no such differences. The region effect is now “insignificant”.
This status does not mean that there are no regional differences in death rates because each test is a
marginal or partial test. Here, with region#c.age included in the model, region is being tested at
the point where age is zero. Apart from this value not existing in the dataset, it is also a long way
from the mean value of age, so the test of region at this point is meaningless (although it is valid
if you acknowledge what is being tested).

To obtain a more sensible test of region, we can subtract the mean from the age variable and
use this in the model.
. quietly summarize age

. generate mage = age - r(mean)
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. anova drate region c.mage region#c.mage

Number of obs = 50 R-squared = 0.7365

Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob > F

Model 6167.7737 7 881.110529 16.77 0.0000

region 1166.14735 3 388.715783 7.40 0.0004

mage 873.425599 1 873.425599 16.62 0.0002

region#mage 135.691162 3 45.2303874 0.86 0.4689
Residual 2206.7263 42 52.5411023
Total 8374.5 49 170.908163

region is significant when tested at the mean of the age variable.

4

Remember that we can specify interactions by typing varname#varname. We have seen examples
of interacting categorical variables with categorical variables and, in the examples above, a categorical
variable (region) with a continuous variable (age or mage).

We can also interact continuous variables with continuous variables. To include an age? term
in our model, we could type c.age#c.age. If we also wanted to interact the categorical variable
region with the age? term, we could type regiont#c.age#c.age (or even c.age#region#c.age).

Nested designs

In addition to specifying interaction terms, nested terms can also be specified in an ANOVA. A
vertical bar is used to indicate nesting: A|B is read as A nested within B. A|B|C is read as A nested
within B, which is nested within C. A|B#C is read as A is nested within the interaction of B and C.
A#B|C is read as the interaction of A and B, which is nested within C.

Different error terms can be specified for different parts of the model. The forward slash is used
to indicate that the next term in the model is the error term for what precedes it. For instance,
anova y A / B|A indicates that the F' test for A is to be tested by using the mean square from B|A
in the denominator. Error terms (terms following the slash) are generally not tested unless they are
themselves followed by a slash. Residual error is the default error term.

For example, consider A / B / C, where A, B, and C may be arbitrarily complex terms. Then
anova will report A tested by B and B tested by C. If we add one more slash on the end to form
A/ B/ C/, then anova will also report C tested by the residual error.

> Example 11

We have collected data from a manufacturer that is evaluating which of five different brands
of machinery to buy to perform a particular function in an assembly line. Twenty assembly-line
employees were selected at random for training on these machines, with four employees assigned
to learn a particular machine. The output from each employee (operator) on the brand of machine
for which he trained was measured during four trial periods. In this example, the operator is nested
within machine. Because of sickness and employee resignations, the final data are not balanced. The
following table gives the mean output and sample size for each machine and operator combination.

. use http://www.stata-press.com/data/r12/machine, clear
(machine data)
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. table machine operator, c(mean output n output) col f(%8.2f)

five
brands of operator nested in machine
machine 1 2 3 4 Total

1 9.156 9.48 8.27 8.20 8.75
2 4 3 4 13

2 15.03 11.55 11.45 11.52 12.47

3 2 2 4 11
3 11.27 10.13 11.13 10.84
3 3 3 9

4 16.10 18.97 15.35 16.60 16.65

3 3 4 3 13
5 15.30 14.35 10.43 13.63
4 4 3 11

Assuming that operator is random (that is, we wish to infer to the larger population of possible
operators) and machine is fixed (that is, only these five machines are of interest), the typical test for
machine uses operator nested within machine as the error term. operator nested within machine
can be tested by residual error. Our earlier warning concerning designs with either unplanned missing
cells or unbalanced cell sizes, or both, also applies to interpreting the ANOVA results from this
unbalanced nested example.

. anova output machine / operator|machine /

Number of obs = 57 R-squared = 0.8661

Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob > F
Model 545.822288 17 32.1071934 14.84 0.0000
machine 430.980792 4 107.745198 13.82 0.0001

operator|machine 101.353804 13 7.79644648

operator |machine 101.353804 13 7.79644648 3.60 0.0009

Residual 84.3766582 39 2.16350406

Total 630.198947 56 11.2535526

operator|machine is preceded by a slash, indicating that it is the error term for the terms before
it (here machine). operator |machine is also followed by a slash that indicates it should be tested
with residual error. The output lists the operator|machine term twice, once as the error term for
machine, and again as a term tested by residual error. A line is placed in the ANOVA table to separate
the two. In general, a dividing line is placed in the output to separate the terms into groups that are
tested with the same error term. The overall model is tested by residual error and is separated from
the rest of the table by a blank line at the top of the table.

The results indicate that the machines are not all equal and that there are significant differences
between operators.

N
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> Example 12

Your company builds and operates sewage treatment facilities. You want to compare two particulate
solutions during the particulate reduction step of the sewage treatment process. For each solution,
two area managers are randomly selected to implement and oversee the change to the new treatment
process in two of their randomly chosen facilities. Two workers at each of these facilities are trained
to operate the new process. A measure of particulate reduction is recorded at various times during
the month at each facility for each worker. The data are described below.

. use http://www.stata-press.com/data/r12/sewvage
(Sewage treatment)
. describe

Contains data from http://www.stata-press.com/data/r12/sewvage.dta

obs: 64 Sewage treatment

vars: 5 9 May 2011 12:43

size: 320

storage display value

variable name  type format label variable label
particulate byte %9.0g particulate reduction
solution byte %9.0g 2 particulate solutions
manager byte %9.0g 2 managers per solution
facility byte %9.0g 2 facilities per manager
worker byte %9.0g 2 workers per facility

Sorted by: solution manager facility worker

You want to determine if the two particulate solutions provide significantly different particulate
reduction. You would also like to know if manager, facility, and worker are significant effects.
solution is a fixed factor, whereas manager, facility, and worker are random factors.

In the following anova command, we use abbreviations for the variable names, which can sometimes
make long ANOVA model statements easier to read.

. anova particulate s / mls / flmls / wlflm|ls /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194
Source Partial SS df MS F Prob > F
Model 13493.6094 15 899.573958 5.54 0.0000
solution 7203.76563 1 7203.76563 17.19 0.0536
manager | solution 838.28125 2 419.140625
manager |solution 838.28125 2 419.140625 0.55 0.6166
facility|manager|
solution 3064.9375 4 766.234375
facility|manager|
solution 3064.9375 4 766.234375 2.57 0.1193
worker|facility|
manager | solution 2386.625 8 298.328125
worker|facility|
manager | solution 2386.625 8 298.328125 1.84 0.0931
Residual 7796.25 48 162.421875
Total 21289.8594 63 337.934276
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While solution is not declared significant at the 5% significance level, it is near enough to
that threshold to warrant further investigation (see example 3 in [R] anova postestimation for a
continuation of the analysis of these data).

4

Q Technical note

Why did we use the dropemptycells option with the previous anova? By default, Stata retains
empty cells when building the design matrix and currently treats | and # the same in how it
determines the possible number of cells. Retaining empty cells in an ANOVA with nested terms can
cause your design matrix to become too large. In example 12, there are 1024 = 2 x 4 X 8§ X 16
cells that are considered possible for the worker |facility|manager|solution term because the
worker, facility, and manager variables are uniquely numbered. With the dropemptycells
option, the worker|facility|manager|solution term requires just 16 columns in the design
matrix (corresponding to the 16 unique workers).

Why did we not use the dropemptycells option in example 11, where operator is nested in
machine? If you look at the table presented at the beginning of that example, you will see that
operator is compactly instead of uniquely numbered (you need both operator number and machine
number to determine the operator). Here the dropemptycells option would have only reduced
our design matrix from 26 columns down to 24 columns (because there were only 3 operators instead
of 4 for machines 3 and 5).

We suggest that you specify dropemptycells when there are nested terms in your ANOVA. You
could also use the set emptycells drop command to accomplish the same thing; see [R] set.
a

Mixed designs

An ANOVA can consist of both nested and crossed terms. A split-plot ANOVA design provides an
example.

> Example 13

Two reading programs and three skill-enhancement techniques are under investigation. Ten classes
of first-grade students were randomly assigned so that five classes were taught with one reading
program and another five classes were taught with the other. The 30 students in each class were
divided into six groups with 5 students each. Within each class, the six groups were divided randomly
so that each of the three skill-enhancement techniques was taught to two of the groups within each
class. At the end of the school year, a reading assessment test was administered to all the students.
In this split-plot ANOVA, the whole-plot treatment is the two reading programs, and the split-plot
treatment is the three skill-enhancement techniques.

. use http://www.stata-press.com/data/ri12/reading
(Reading experiment data)
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. describe

Contains data from http://www.stata-press.com/data/r12/reading.dta

obs: 300 Reading experiment data
vars: 5 9 Mar 2011 18:57

size: 1,500 (_dta has notes)

storage display value

variable name  type format label variable label

score byte %9.0g reading score
program byte %9.0g reading program

class byte %9.0g class nested in program
skill byte  %9.0g skill enhancement technique
group byte %9.0g group nested in class and skill
Sorted by:

In this split-plot ANOVA, the error term for program is class nested within program. The error
term for skill and the program by skill interaction is the class by skill interaction nested

within program. Other terms are also involved in the model and can be seen below.

Our anova command is too long to fit on one line of this manual. Where we have chosen to break
the command into multiple lines is arbitrary. If we were typing this command into Stata, we would

just type along and let Stata automatically wrap across lines, as necessary.

. anova score prog / class|prog skill prog#skill / class#skill|prog
> / grouplclass#skill|prog /, dropemptycells

Number of obs = 300 R-squared = 0.3738
Root MSE = 14.6268 Adj R-squared = 0.2199
Source Partial SS df MS F Prob > F
Model 30656.5167 59 519.601977 2.43 0.0000
program 4493.07 1 4493.07 8.73 0.0183
class|program 4116.61333 8 514.576667
skill 1122.64667 2 561.323333 1.54 0.2450
program#skill 5694.62 2 2847.31 7.80 0.0043
class#skill|program 5841.46667 16 365.091667
class#skill|program 5841.46667 16 365.091667 1.17 0.3463
group|class#skill|
program 9388.1 30 312.936667
group|class#skill|
program 9388.1 30 312.936667 1.46 0.0636
Residual 51346.4 240 213.943333
Total 82002.9167 299 274.257246

The program#skill term is significant, as is the program term. Let’s look at the predictive margins

for these two terms and at a marginsplot for the first term.
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. margins, within(program skill)

Predictive margins Number of obs = 300
Expression : Linear prediction, predict()
within : program skill

Empty cells : reweight

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
program#
skill

11 68.16 2.068542 32.95 0.000 64.10573 72.21427
12 52.86 2.068542 25.55 0.000 48.80573 56.91427
13 61.54 2.068542 29.75 0.000 57.48573 65.59427
21 50.7 2.068542 24.51 0.000 46.64573 54.75427
22 56.54 2.068542 27.33 0.000 52.48573 60.59427
23 52.1 2.068542 25.19 0.000 48.04573 56.15427

. marginsplot, plot2opts(lp(dash) m(D)) plot3opts(lp(dot) m(T))

Variables that uniquely identify margins: program skill

Predictive Margins with 95% Cls

1

65 70
1 1

60

1

Linear Prediction
55

1

50

1

45

reading program

——— skill=1  ——¢-- skill=2
A skill=3
. margins, within(program)
Predictive margins Number of obs = 300
Expression : Linear prediction, predict()

within : program
Empty cells : reweight

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
program
1 60.85333 1.194273 50.95 0.000 58.5126 63.19407
2 53.11333 1.194273 44 .47 0.000 50.7726 55.45407

Because our ANOVA involves nested terms, we used the within() option of margins; see
[R] margins.
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skill 2 produces a low score when combined with program 1 and a high score when combined
with program 2, demonstrating the interaction between the reading program and the skill-enhancement
technique. You might conclude that the first reading program and the first skill-enhancement technique
perform best when combined. However, notice the overlapping confidence interval for the first reading
program and the third skill-enhancement technique.

N

Q Technical note

There are several valid ways to write complicated anova terms. In the reading experiment
example (example 13), we had a term grouplclass#skill|program. This term can be read
as group nested within both class and skill and further nested within program. You can
also write this term as grouplclass#skill#program or group|program#class#skill or
group|skill#class|program, etc. All variations will produce the same result. Some people prefer
having only one ‘|’ in a term and would use group | class#skill#program, which is read as group
nested within class, skill, and program.

a

Gertrude Mary Cox (1900-1978) was born on a farm near Dayton, Iowa. Initially intending to
become superintendent of an orphanage, she enrolled at Iowa State College. There she majored
in mathematics and attained the college’s first Master’s degree in statistics. After working on
her PhD in psychological statistics for two years at the University of California—Berkeley, she
decided to go back to Iowa State to work with George W. Snedecor. There she pursued her
interest in and taught a course in design of experiments. That work led to her collaboration with
W. G. Cochran, which produced a classic text. In 1940, when Snedecor shared with her his list
of men he was nominating to head the statistics department at North Carolina State College, she
wanted to know why she had not been included. He added her name, she won the position, and
she built an outstanding department at North Carolina State. Cox retired early so she could work
at the Research Triangle Institute in North Carolina. She consulted widely, served as editor of
Biometrics, and was elected to the National Academy of Sciences.

Latin-square designs

You can use anova to analyze a Latin-square design. Consider the following example, published
in Snedecor and Cochran (1989).

> Example 14

Data from a Latin-square design are as follows:

Row Column 1 Column 2 Column 3 Column 4 Column 5
257(B) 230(E) 279(A) 287(C) 202(D)
245(D) 283(A) 245(E) 280(B) 260(C)
182(E) 252(B) 280(C) 246(D) 250(A)
203(A) 204(C) 227(D) 193(E) 259(B)
231(C) 271(D) 266(B) 334(A) 338(E)

(O I S S
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In Stata, the data might appear as follows:

. use http://www.stata-press.com/data/r12/latinsq

. list
row cl c2 c3 c4 cb
1. 1 257 230 279 287 202
2. 2 245 283 245 280 260
3. 3 182 252 280 246 250
4. 4 203 204 227 193 259
5. 5 231 271 266 334 338

Before anova can be used on these data, the data must be organized so that the outcome
measurement is in one column. reshape is inadequate for this task because there is information
about the treatments in the sequence of these observations. pkshape is designed to reshape this type
of data; see [R] pkshape.

. pkshape row row cl-c5, order(beacd daebc ebcda acdeb cdbae)

. list

sequence outcome treat carry period

1. 1 257 1 0 1
2. 2 245 5 0 1
3. 3 182 2 0 1
4. 4 203 3 0 1
5. 5 231 4 0 1
6. 1 230 2 1 2
7. 2 283 3 5 2
8. 3 252 1 2 2
9. 4 204 4 3 2
10. 5 271 5 4 2
11. 1 279 3 2 3
12. 2 245 2 3 3
13. 3 280 4 1 3
14. 4 227 5 4 3
15. 5 266 1 5 3
16. 1 287 4 3 4
17. 2 280 1 2 4
18. 3 246 5 4 4
19. 4 193 2 5 4
20. 5 334 3 1 4
21. 1 202 5 4 5
22. 2 260 4 1 5
23. 3 250 3 5 5
24. 4 259 1 2 5
25. 5 338 2 3 5
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. anova outcome sequence period treat

Number of obs = 25 R-squared = 0.6536

Root MSE = 32.4901 Adj R-squared = 0.3073

Source Partial SS df MS F Prob > F

Model 23904.08 12 1992.00667 1.89 0.1426

sequence 13601.36 4 3400.34 3.22 0.0516

period 6146.16 4 1536.54 1.46 0.2758

treat 4156.56 4 1039.14 0.98 0.4523
Residual 12667.28 12 1055.60667
Total 36571.36 24 1523.80667

4

These methods will work with any type of Latin-square design, including those with replicated
measurements. For more information, see [R] pk, [R] pkeross, and [R] pkshape.

Repeated-measures ANOVA

One approach for analyzing repeated-measures data is to use multivariate ANOVA (MANOVA); see
[MV] manova. In this approach, the data are placed in wide form (see [D] reshape), and the repeated
measures enter the MANOVA as dependent variables.

A second approach for analyzing repeated measures is to use anova. However, one of the underlying
assumptions for the I tests in ANOVA is independence of observations. In a repeated-measures design,
this assumption is almost certainly violated or is at least suspect. In a repeated-measures ANOVA,
the subjects (or whatever the experimental units are called) are observed for each level of one or
more of the other categorical variables in the model. These variables are called the repeated-measure
variables. Observations from the same subject are likely to be correlated.

The approach used in repeated-measures ANOVA to correct for this lack of independence is to
apply a correction to the degrees of freedom of the I’ test for terms in the model that involve
repeated measures. This correction factor, €, lies between the reciprocal of the degrees of freedom
for the repeated term and 1. Box (1954) provided the pioneering work in this area. Milliken and
Johnson (2009) refer to the lower bound of this correction factor as Box’s conservative correction
factor. Winer, Brown, and Michels (1991) call it simply the conservative correction factor.

Geisser and Greenhouse (1958) provide an estimate for the correction factor called the Greenhouse—
Geisser €. This value is estimated from the data. Huynh and Feldt (1976) show that the Greenhouse—
Geisser € tends to be conservatively biased. They provide a revised correction factor called the
Huynh—Feldt e. When the Huynh—Feldt € exceeds 1, it is set to 1. Thus there is a natural ordering
for these correction factors:

Box’s conservative € < Greenhouse—Geisser € < Huynh—Feldt € < 1

A correction factor of 1 is the same as no correction.

anova with the repeated() option computes these correction factors and displays the revised
test results in a table that follows the standard ANOVA table. In the resulting table, H-F stands for
Huynh-Feldt, G-G stands for Greenhouse—Geisser, and Box stands for Box’s conservative e.
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> Example 15

This example is taken from table 4.3 of Winer, Brown, and Michels (1991). The reaction time for
five subjects each tested with four drugs was recorded in the variable score. Here is a table of the
data (see [P] tabdisp if you are unfamiliar with tabdisp):

. use http://www.stata-press.com/data/r12/t43, clear
(T4.3 -- Winer, Brown, Michels)

. tabdisp person drug, cellvar(score)

drug
person 1 2 3 4

30 28 16 34
14 18 10 22
24 20 18 30
38 34 20 44
26 28 14 30

G WN e

drug is the repeated variable in this simple repeated-measures ANOVA example. The ANOVA is
specified as follows:

. anova score person drug, repeated(drug)

Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803
Source Partial SS df MS F Prob > F
Model 1379 7 197 20.96 0.0000
person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.733333 24.76 0.0000
Residual 112.8 12 9.4
Total 1491.8 19 78.5157895
Between-subjects error term: person
Levels: 5 (4 af)
Lowest b.s.e. variable: person
Repeated variable: drug
Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333
Prob > F
Source df F Regular H-F G-G Box
drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

Here the Huynh—Feldt € is 1.0789, which is larger than 1. It is reset to 1, which is the same as making
no adjustment to the standard test computed in the main ANOVA table. The Greenhouse—Geisser € is
0.6049, and its associated p-value is computed from an F' ratio of 24.76 using 1.8147 (= 3¢) and
7.2588 (= 12¢) degrees of freedom. Box’s conservative € is set equal to the reciprocal of the degrees
of freedom for the repeated term. Here it is 1/3, so Box’s conservative test is computed using 1 and
4 degrees of freedom for the observed F' ratio of 24.76.
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Even for Box’s conservative €, drug is significant with a p-value of 0.0076. The following table
gives the predictive marginal mean score (that is, response time) for each of the four drugs:

. margins drug

Predictive margins Number of obs = 20
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
drug
1 26.4 1.371131 19.25 0.000 23.71263 29.08737
2 25.6 1.371131 18.67 0.000 22.91263 28.28737
3 15.6 1.371131 11.38 0.000 12.91263 18.28737
4 32 1.371131 23.34 0.000 29.31263 34.68737

The ANOVA table for this example provides an F' test for person, but you should ignore it. An
appropriate test for person would require replication (that is, multiple measurements for person
and drug combinations). Also, without replication there is no test available for investigating the
interaction between person and drug.

d

> Example 16

Table 7.7 of Winer, Brown, and Michels (1991) provides another repeated-measures ANOVA example.
There are four dial shapes and two methods for calibrating dials. Subjects are nested within calibration
method, and an accuracy score is obtained. The data are shown below.

. use http://www.stata-press.com/data/r12/t77
(T7.7 -- Winer, Brown, Michels)

. tabdisp shape subject calib, cell(score)

2 methods for calibrating dials and

subject nested in calib

4 dial 1 2
shapes 1 2 3 1 2 3
1 0 3 4 4 5 7
2 0 1 3 2 4 5
3 5 5 6 7 6 8
4 3 4 2 8 6 9

The calibration method and dial shapes are fixed factors, whereas subjects are random. The
appropriate test for calibration method uses the nested subject term as the error term. Both the dial
shape and the interaction between dial shape and calibration method are tested with the dial shape
by subject interaction nested within calibration method. Here we drop this term from the anova
command, and it becomes residual error. The dial shape is the repeated variable because each subject
is tested with all four dial shapes. Here is the anova command that produces the desired results:
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. anova score calib / subjectl|calib shape calib#shape, repeated(shape)

Number of obs = 24 R-squared = 0.8925
Root MSE =1.11181 Adj R-squared = 0.7939
Source Partial SS daf MS F Prob > F
Model 123.125 11 11.1931818 9.06 0.0003
calib 51.0416667 1 51.0416667 11.89 0.0261

subject|calib 17.1666667 4 4.29166667
shape 47.4583333 3 15.8194444 12.80 0.0005
calib#shape 7.45833333 3 2.48611111 2.01 0.1662

Residual 14.8333333 12 1.23611111

Total 137.958333 23 5.99818841

Between-subjects error term: subjectl|calib
Levels: 6 (4 af)
Lowest b.s.e. variable: subject
Covariance pooled over: calib (for repeated variable)
Repeated variable: shape
Huynh-Feldt epsilon 0.8483
Greenhouse-Geisser epsilon = 0.4751
Box’s conservative epsilon = 0.3333
Prob > F
Source df F Regular H-F G-G Box
shape 3 12.80 0.0005 0.0011 0.0099 0.0232
calib#shape 3 2.01 0.1662 0.1791 0.2152 0.2291
Residual 12

The repeated-measure € corrections are applied to any terms that are tested in the main ANOVA
table and have the repeated variable in the term. These € corrections are given in a table below the
main ANOVA table. Here the repeated-measures tests for shape and calib#shape are presented.

Calibration method is significant, as is dial shape. The interaction between calibration method and
dial shape is not significant. The repeated-measure € corrections do not change these conclusions, but
they do change the significance level for the tests on shape and calib#shape. Here, though, unlike
in the previous example, the Huynh—Feldt € is less than 1.

Here are the predictive marginal mean scores for calibration method and dial shapes. Because the
interaction was not significant, we request only the calib and shape predictive margins.

. margins, within(calib)

Predictive margins Number of obs = 24
Expression : Linear prediction, predict()
within : calib
Empty cells : reweight
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
calib
1 3 .3209506 9.35 0.000 2.370948 3.629052
2 5.916667 .3209506 18.43 0.000 5.287615 6.545718
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. margins, within(shape)

Predictive margins Number of obs = 24
Expression : Linear prediction, predict()
within : shape

Empty cells : reweight

Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
shape
1 3.833333 .4538926 8.45 0.000 2.94372 4.722947
2 2.5 .4538926 5.51 0.000 1.610387 3.389613
3 6.166667 .4538926 13.59 0.000 5.277053 7.05628
4 5.333333 .4538926 11.75 0.000 4.44372 6.222947

Q Technical note

The computation of the Greenhouse—Geisser and Huynh—Feldt epsilons in a repeated-measures
ANOVA requires the number of levels and degrees of freedom for the between-subjects error term, as
well as a value computed from a pooled covariance matrix. The observations are grouped based on
all but the lowest-level variable in the between-subjects error term. The covariance over the repeated
variables is computed for each resulting group, and then these covariance matrices are pooled. The
dimension of the pooled covariance matrix is the number of levels of the repeated variable (or
combination of levels for multiple repeated variables). In example 16, there are four levels of the
repeated variable (shape), so the resulting covariance matrix is 4 X 4.

The anova command automatically attempts to determine the between-subjects error term and the
lowest-level variable in the between-subjects error term to group the observations for computation of
the pooled covariance matrix. anova issues an error message indicating that the bse () or bseunit ()
option is required when anova cannot determine them. You may override the default selections of
anova by specifying the bse (), bseunit (), or grouping() option. The term specified in the bse ()
option must be a term in the ANOVA model.

The default selection for the between-subjects error term (the bse () option) is the interaction of the
nonrepeated categorical variables in the ANOVA model. The first variable listed in the between-subjects
error term is automatically selected as the lowest-level variable in the between-subjects error term
but can be overridden with the bseunit (varname) option. varname is often a term, such as subject
or subsample within subject, and is most often listed first in the term because of the nesting notation
of ANOVA. This term makes sense in most repeated-measures ANOVA designs when the terms of
the model are written in standard form. For instance, in example 16, there were three categorical
variables (subject, calib, and shape), with shape being the repeated variable. Here anova looked
for a term involving only subject and calib to determine the between-subjects error term. It found
subject|calib as the term with six levels and 4 degrees of freedom. anova then picked subject
as the default for the bseunit() option (the lowest variable in the between-subjects error term)
because it was listed first in the term.

The grouping of observations proceeds, based on the different combinations of values of the
variables in the between-subjects error term, excluding the lowest level variable (as found by default
or as specified with the bseunit () option). You may specify the grouping() option to change the
default grouping used in computing the pooled covariance matrix.

The between-subjects error term, number of levels, degrees of freedom, lowest variable in the
term, and grouping information are presented after the main ANOVA table and before the rest of the

repeated-measures output. 0
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> Example 17

Data with two repeated variables are given in table 7.13 of Winer, Brown, and Michels (1991).
The accuracy scores of subjects making adjustments to three dials during three different periods are
recorded. Three subjects are exposed to a certain noise background level, whereas a different set of
three subjects is exposed to a different noise background level. Here is a table of accuracy scores for
the noise, subject, period, and dial variables:

. use http://www.stata-press.com/data/r12/t713
(T7.13 -- Winer, Brown, Michels)

. tabdisp subject dial period, by(noise) cell(score) stubwidth(11)

noise

background

and subject 10 minute time periods and dial

nested in 1 2 3

noise 1 2 3 1 2 3 1 2 3

1
1 45 53 60 40 52 57 28 37 46
2 35 41 50 30 37 47 25 32 41
3 60 65 75 58 54 70 40 47 50

2
1 50 48 61 25 34 51 16 23 35
2 42 45 55 30 37 43 22 27 37
3 56 60 77 40 39 57 31 29 46

noise, period, and dial are fixed, whereas subject is random. Both period and dial are
repeated variables. The ANOVA for this example is specified next.
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. anova score noise / subject|noise period noise#period

> / period#subject|noise

dial noise#dial / dial#subject|noise

> period#dial noise#period#dial, repeated(period dial)

Number of obs = 54 R-squared = 0.9872
Root MSE = 2.81859 Adj R-squared = 0.9576
Source Partial SS df MS F Prob > F
Model 9797.72222 37 264.803303 33.33 0.0000
noise 468.166667 1 468.166667 0.75 0.4348
subject |noise 2491.11111 4 622.777778
period 3722.33333 2 1861.16667 63.39 0.0000
noise#period 333 2 166.5 5.67 0.0293
period#subject|noise 234.888889 8 29.3611111
dial 2370.33333 2 1185.16667 89.82 0.0000
noise#dial 50.3333333 2 25.1666667 1.91 0.2102
dial#subject|noise 105.555556 8 13.1944444
period#dial 10.6666667 4 2.66666667 0.34 0.8499
noise#period#dial 11.3333333 4 2.83333333 0.36 0.8357
Residual 127.111111 16 7.94444444
Total 9924.83333 53 187.261006
Between-subjects error term: subject|noise
Levels: 6 (4 d4f)
Lowest b.s.e. variable: subject
Covariance pooled over: mnoise (for repeated variables)
Repeated variable: period
Huynh-Feldt epsilon = 1.0668
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6476
Box’s conservative epsilon = 0.5000
Prob > F
Source df F Regular H-F G-G Box
period 2 63.39 0.0000 0.0000 0.0003 0.0013
noise#period 2 5.67 0.0293 0.0293 0.0569 0.0759
period#subject|noise 8
Repeated variable: dial
Huynh-Feldt epsilon = 2.0788
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.9171
Box’s conservative epsilon = 0.5000
Prob > F
Source df F Regular H-F G-G Box
dial 2 89.82 0.0000 0.0000 0.0000 0.0007
noise#dial 2 1.91  0.2102 0.2102 0.2152 0.239%4
dial#subject|noise 8
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Repeated variables: period#dial

Huynh-Feldt epsilon = 1.3258

*Huynh-Feldt epsilon reset to 1.0000

Greenhouse-Geisser epsilon = 0.5134

Box’s conservative epsilon = 0.2500

Prob > F
Source daf F Regular H-F G-G Box
period#dial 4 0.34 0.8499 0.8499 0.7295 0.5934
noise#period#dial 4 0.36 0.8357 0.8357 0.7156 0.5825
Residual 16

For each repeated variable and for each combination of interactions of repeated variables, there are
different € correction values. The anova command produces tables for each applicable combination.

The two most significant factors in this model appear to be dial and period. The noise by
period interaction may also be significant, depending on the correction factor you use. Below is a
table of predictive margins for the accuracy score for dial, period, and noise by period.

. margins, within(dial)

Predictive margins Number of obs = 54
Expression : Linear prediction, predict()
within : dial
Empty cells : reweight
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Intervall
dial

1 37.38889 .6643478 56.28 0.000 36.08679 38.69099

2 42.22222 .6643478 63.55 0.000 40.92012 43.52432

3 53.22222 .6643478 80.11 0.000 51.92012 54.52432
. margins, within(period)
Predictive margins Number of obs = 54
Expression : Linear prediction, predict()
within : period
Empty cells : reweight

Delta-method
Margin  Std. Err. P P>|z| [95% Conf. Intervall
period

1 54.33333 .6643478 81.78 0.000 53.03124 55.63543

2 44.5 .6643478 66.98 0.000 43.1979 45.8021

3 34 .6643478 51.18 0.000 32.6979 35.3021




anova — Analysis of variance and covariance 59
. margins, within(noise period)
Predictive margins Number of obs = 54
Expression : Linear prediction, predict()
within : noise period
Empty cells : reweight
Delta-method
Margin Std. Err. z P>|z| [95% Conf. Intervall
noise#period
11 53.77778 .9395297 57.24 0.000 51.93633 55.61922
12 49.44444 .9395297 52.63 0.000 47.603 51.28589
13 38.44444 .9395297 40.92 0.000 36.603 40.28589
21 54.88889 .9395297 58.42 0.000 53.04744 56.73033
22 39.55556 .9395297 42.10 0.000 37.71411 41.397
23 29.55556 .9395297 31.46 0.000 27.71411 31.397
Dial shape 3 produces the highest score, and scores decrease over the periods.
d

Example 17 had two repeated-measurement variables. Up to four repeated-measurement variables

may be specified in the anova command.

Saved results

anova saves the following in e():

e(rank)

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df_m) model degrees of freedom

e(rss) residual sum of squares

e(df_r) residual degrees of freedom

e(r2) R-squared

e(r2_a) adjusted R-squared

e(F) F statistic

e(rmse) root mean squared error

e(11) log likelihood

e(11-0) log likelihood, constant-only model

e(ss_#) sum of squares for term #

e(df_#) numerator degrees of freedom for term #

e(ssdenom_#) denominator sum of squares for term # (when using nonresidual error)

e(dfdenom_#) denominator degrees of freedom for term # (when using nonresidual error)

e(F_#) F statistic for term # (if computed)

e(N_bse) number of levels of the between-subjects error term

e(df_bse) degrees of freedom for the between-subjects error term

e (box#) Box’s conservative epsilon for a particular combination of repeated variables
(repeated() only)

e(gg#) Greenhouse—Geisser epsilon for a particular combination of repeated variables
(repeated() only)

e (hf#) Huynh-Feldt epsilon for a particular combination of repeated variables

(repeated() only)
rank of e(V)
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Macros
e(cmd) anova
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varnames) names of the right-hand-side variables
e(term_#) term #
e(errorterm_#) error term for term # (when using nonresidual error)
e(sstype) type of sum of squares; sequential or partial
e(repvars) names of repeated variables (repeated() only)
e(repvar#) names of repeated variables for a particular combination (repeated() only)
e (model) ols
e(wtype) weight type
e (wexp) weight expression
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
e(Srep) covariance matrix based on repeated measures (repeated() only)
Functions
e(sample) marks estimation sample

Methods and formulas

anova is implemented as an ado-file.
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Description
The following postestimation commands are of special interest after anova:
Command Description
dfbeta DFBETA influence statistics

estat hettest

estat imtest
estat ovtest

estat szroeter

estat vif
acprplot
avplot
avplots
cprplot
lvr2plot
rviplot
rvpplot

tests for heteroskedasticity

information matrix test

Ramsey regression specification-error test for omitted variables
Szroeter’s rank test for heteroskedasticity

variance inflation factors for the independent variables
augmented component-plus-residual plot
added-variable plot

all added-variable plots in one image
component-plus-residual plot
leverage-versus-squared-residual plot
residual-versus-fitted plot

residual-versus-predictor plot

For information about these commands, see [R] regress postestimation.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

linktest link test for model specification

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

62
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Special-interest postestimation commands

In addition to the common estat commands (see [R] estat), estat hettest, estat imtest,
estat ovtest, estat szroeter, and estat vif are also available. dfbeta is also available.
The syntax for dfbeta and these estat commands is the same as after regress; see [R] regress
postestimation.

In addition to the standard syntax of test (see [R] test), test after anova has three additionally
allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of
the underlying regression model. Simple and composite linear hypotheses are possible.

Syntax for predict

predict after anova follows the same syntax as predict after regress and can provide
predictions, residuals, standardized residuals, Studentized residuals, the standard error of the residuals,
the standard error of the prediction, the diagonal elements of the projection (hat) matrix, and Cook’s D.
See [R] regress postestimation for details.

Syntax for test after anova

In addition to the standard syntax of test (see [R] test), test after anova also allows the

following:

test, test (matname) [@test[ (opt) ] matvlc (matname) ] syntax a

test, showorder syntax b

test [term [term } ] [/ term [term ] ] [, §ymbolic] syntax ¢

syntax a test expression involving the coefficients of the underlying regression model;
you provide information as a matrix

syntax b show underlying order of design matrix, which is useful when constructing
matname argument of the test () option

syntax ¢ test effects and show symbolic forms

Menu

Statistics > Linear models and related > ANOVA/MANOVA > Test linear hypotheses after anova

Options for test after anova

test (matname) is required with syntax a of test. The rows of matname specify linear combinations
of the underlying design matrix of the ANOVA that are to be jointly tested. The columns correspond
to the underlying design matrix (including the constant if it has not been suppressed). The column
and row names of matname are ignored.

A listing of the constraints imposed by the test () option is presented before the table containing
the tests. You should examine this table to verify that you have applied the linear combinations
you desired. Typing test, showorder allows you to examine the ordering of the columns for
the design matrix from the ANOVA.
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mtest [(opt)} specifies that tests are performed for each condition separately. opt specifies the method
for adjusting p-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method

holm Holm’s method

sidak Sidak’s method

noadjust no adjustment is to be made

Specifying mtest with no argument is equivalent to mtest (noadjust).

matvlc(matname), a programmer’s option, saves the variance—covariance matrix of the linear
combinations involved in the suite of tests. For the test Lb = ¢, what is returned in matname is
LVL/, where V is the estimated variance—covariance matrix of b.

showorder causes test to list the definition of each column in the design matrix. showorder is
not allowed with any other option.

symbolic requests the symbolic form of the test rather than the test statistic. When this option

is specified with no terms (test, symbolic), the symbolic form of the estimable functions is
displayed.

Remarks

Remarks are presented under the following headings:

Testing effects
Obtaining symbolic forms
Testing coefficients and contrasts of margins

See examples 4, 7, 8, 13, 15, 16, and 17 in [R] anova for examples that use the margins command.

Testing effects

After fitting a model using anova, you can test for the significance of effects in the ANOVA table,
as well as for effects that are not reported in the ANOVA table, by using the test or contrast
command. You follow test or contrast by the list of effects that you wish to test. By default, these
commands use the residual mean squared error in the denominator of the F' ratio. You can specify

other error terms by using the slash notation, just as you would with anova. See [R] contrast for
details on this command.

> Example 1

Recall our byssinosis example (example 8) in [R] anova:
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. anova prob workplace smokes race workplace#smokes workplace#race
> smokes#race workplace#smokes#race [aweight=pop]

(sum of wgt is

5.4190e+03)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared 0.7948
Source Partial SS df MS F Prob > F
Model .173646538 11 .015786049 23.53 0.0000
workplace .097625175 2 .048812588 72.76 0.0000
smokes .013030812 1 .013030812 19.42 0.0001
race .001094723 1 .001094723 1.63 0.2070
workplace#smokes .019690342 2 .009845171 14.67 0.0000
workplace#race .001352516 2 .000676258 1.01 0.3718
smokes#race .001662874 1 .001662874 2.48 0.1214
workplace#smokes#race .000950841 2 .00047542 0.71 0.4969
Residual .035557766 53 .000670901
Total .209204304 64 .003268817

We can easily obtain a test on a particular term from the ANOVA table. Here are two examples:

. test smokes

Source Partial SS df MS F Prob > F
smokes .013030812 1 .013030812 19.42 0.0001
Residual .035557766 53 .000670901
. test smokes#race
Source Partial SS df MS F Prob > F
smokes#race .001662874 1 .001662874 2.48 0.1214
Residual .035557766 53 .000670901

Both of these tests use residual error by default and agree with the ANOVA table produced earlier.

We could have performed these same tests with contrast:

. contrast smokes

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
smokes 1 19.42 0.0001
Residual 53
. contrast smokes#race
Contrasts of marginal linear predictions
Margins : asbalanced
df F P>F
smokes#race 1 2.48 0.1214
Residual 53
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Q Technical note

After anova, you can use the ‘/’ syntax in test or contrast to perform tests with a variety of
non-o2I error structures. However, in most unbalanced models, the mean squares are not independent
and do not have equal expectations under the null hypothesis. Also, be warned that you assume

responsibility for the validity of the test statistic.

> Example 2

We return to the nested ANOVA example (example 11) in [R] anova, where five brands of machinery
were compared in an assembly line. We can obtain appropriate tests for the nested terms using test,

even if we had run the anova command without initially indicating the proper error terms.

. use http://www.stata-press.com/data/ri12/machine
(machine data)

. anova output machine operator|machine

Number of obs = 57 R-squared = 0.8661

Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob > F

Model 545.822288 17 32.1071934 14.84 0.0000

machine 430.980792 4 107.745198 49.80 0.0000

operator |machine 101.353804 13 7.79644648 3.60 0.0009

Residual 84.3766582 39 2.16350406

Total 630.198947 56 11.2535526

In this ANOVA table, machine is tested with residual error. With this particular nested design, the
appropriate error term for testing machine is operator nested within machine, which is easily

obtained from test.

. test machine / operator|machine
Source | Partial SS af MS F Prob > F

machine 430.980792 4 107.745198 13.82 0.0001
operator |machine 101.353804 13 7.79644648

This result from test matches what we obtained from our anova command.

> Example 3

The other nested ANOVA example (example 12) in [R] anova was based on the sewage data. The
ANOVA table is presented here again. As before, we will use abbreviations of variable names in typing

the commands.

. use http://www.stata-press.com/data/r12/sewvage
(Sewage treatment)
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. anova particulate s / mls / flmls / wlflmls /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194
Source Partial SS df MS F Prob > F
Model 13493.6094 16 899.573958 5.54 0.0000
solution 7203.76563 1 7203.76563 17.19 0.0536
manager | solution 838.28125 2 419.140625
manager |solution 838.28125 2 419.140625 0.55 0.6166
facility|manager|
solution 3064.9375 4 766.234375
facility|manager|
solution 3064.9375 4 766.234375 2.57 0.1193
worker|facilityl
manager | solution 2386.625 8 298.328125
worker|facilityl
manager | solution 2386.625 8 298.328125 1.84 0.0931
Residual 7796.25 48 162.421875
Total 21289.8594 63 337.934276

In practice, it is often beneficial to pool nonsignificant nested terms to increase the power of
tests on remaining terms. One rule of thumb is to allow the pooling of a term whose p-value is
larger than 0.25. In this sewage example, the p-value for the test of manager is 0.6166. This value
indicates that the manager effect is negligible and might be ignored. Currently, solution is tested by
manager | solution, which has only 2 degrees of freedom. If we pool the manager and facility
terms and use this pooled estimate as the error term for solution, we would have a term with 6
degrees of freedom.

Below are two tests: a test of solution with the pooled manager and facility terms and a
test of this pooled term by worker.

. test s / mls flmls
Source Partial SS df MS F Prob > F

solution 7203.76563 1 7203.76563 11.07 0.0159
manager | solution
facility|manager|

solution 3903.21875 6 650.536458
. test mls flmls / wlfimls
Source Partial SS df MS F Prob > F

manager | solution
facility|manager|

solution 3903.21875 6 650.536458 2.18 0.1520
worker|facility|manager|
solution 2386.625 8 298.328125

In the first test, we included two terms after the forward slash (m|s and f Im|s). test after anova
allows multiple terms both before and after the slash. The terms before the slash are combined and
are then tested by the combined terms that follow the slash (or residual error if no slash is present).

The p-value for solution using the pooled term is 0.0159. Originally, it was 0.0536. The increase
in the power of the test is due to the increase in degrees of freedom for the pooled error term.
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We can get identical results if we drop manager from the anova model. (This dataset has unique
numbers for each facility so that there is no confusion of facilities when manager is dropped.)

. anova particulate s / fls / wlfls /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194
Source Partial SS df MS F Prob > F
Model 13493.6094 15 899.573958 5.54 0.0000
solution 7203.76563 1 7203.76563 11.07 0.0159
facility|solution 3903.21875 6 650.536458
facilityl|solution 3903.21875 6 650.536458 2.18 0.1520
worker|facility|
solution 2386.625 8 298.328125
worker|facility|
solution 2386.625 8 298.328125 1.84 0.0931
Residual 7796.25 48 162.421875
Total 21289.8594 63 337.934276

This output agrees with our earlier test results.

In the following example, two terms from the anova are jointly tested (pooled).

> Example 4

In example 10 of [R] anova, we fit the model anova drate region c.mage region#c.mage.
Now we use the contrast command to test for the overall significance of region.

. contrast region region#c.mage, overall

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
region 3 7.40 0.0004
region#c.mage 3 0.86 0.4689
Overall 6 5.65 0.0002
Residual 42

The overall F' statistic associated with the region and region#c.mage terms is 5.65, and it is
significant at the 0.02% level.

In the ANOVA output, the region term, by itself, had a sum of squares of 1166.15, which, based
on 3 degrees of freedom, yielded an F statistic of 7.40 and a significance level of 0.0004. This is
the same test that is reported by contrast in the row labeled region. Likewise, the test from the
ANOVA output for the region#c.mage term is reproduced in the second row of the contrast output.

4
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Obtaining symbolic forms

test can produce the symbolic form of the estimable functions and symbolic forms for particular

tests.

> Example 5

After fitting an ANOVA model, we type test, symbolic to obtain the symbolic form of the
estimable functions. For instance, returning to our blood pressure data introduced in example 4 of

[R] anova, let’s begin by reestimating systolic on drug, disease, and drug#disease:

. use http://www.stata-press.com/data/r12/systolic, clear
(Systolic Blood Pressure Data)

. anova systolic drug##disease

Number of obs = 58 R-squared = 0.4560

Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

drug 2997.47186 3 999.157287 9.05 0.0001

disease 415.873046 2 207.936523 1.88 0.1637

drug#disease 707 .266259 6 117.87771 1.07 0.3958
Residual 5080.81667 46 110.452536
Total 9340.15517 57 163.862371

To obtain the symbolic form of the estimable functions, type

. test, symbolic

drug

- (r2+r3+r4-r0)
r2

r3

r4d

W N -

disease

-(r6+r7-r0)

ré

r7

drug#diseas
1 = (r2+r3+r4+r6+r7-r12-r13-r15-r16-r18-r19-r0)

r6 - (r12+r15+ri8)

r7 - (r13+ri16+ri19)

r2 - (r12+ri13)

ri2

ri3

r3 - (r15+ri16)

rib

ri6

rd - (r18+r19)

ri8

ri19

_cons r0

WNFEF WONRFEFWNRFEWNEO WN -

DR P WWWNNN
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> Example 6

To obtain the symbolic form for a particular test, we type test ferm [term ...], symbolic. For
instance, the symbolic form for the test of the main effect of drug is

. test drug, symbolic
drug

-(r2+r3+r4)
r2

r3

r4

B wWN

disease
0
0
0
drug#diseas
1 -1/3 (r2+r3+r4)
-1/3 (r2+r3+r4d)
-1/3 (r2+r3+r4d)
1/3 r2
1/3 r2
1/3 r2
1/3 r3
1/3 r3
1/3 r3
1/3 r4
1/3 r4
1/3 r4

WNFEF WNFE, WNFE, WNE O WN -

DR P WWWNNN R

_cons 0

If we omit the symbolic option, we instead see the result of the test:

. test drug
Source | Partial SS df MS F Prob > F

drug 2997.47186 3 999.157287 9.05 0.0001
Residual 5080.81667 46 110.452536

Testing coefficients and contrasts of margins

The test command allows you to perform tests directly on the coefficients of the underly-
ing regression model. For instance, the coefficient on the third drug and the second disease
is referred to as 3.drug#2.disease. This could also be written as i3.drug#i2.disease, or
_b[3.drug#2.disease], or even _coef [13.drug#i2.disease]; see [U] 13.5 Accessing coeffi-
cients and standard errors.

> Example 7

Let’s begin by testing whether the coefficient on the third drug is equal to the coefficient on the
fourth in our blood pressure data. We have already fit the model anova systolic drugt##disease
(equivalent to anova systolic drug disease drug#disease), and you can see the results of that
estimation in example 5. Even though we have performed many tasks since we fit the model, Stata
still remembers, and we can perform tests at any time.
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. test 3.drug = 4.drug
(1) 3.drug - 4.drug = 0

F(C 1, 46) = 0.13
Prob > F = 0.7234

We find that the two coefficients are not significantly different, at least at any significance level smaller
than 73%.

For more complex tests, the contrast command often provides a more concise way to specify
the test we are interested in and prevents us from having to write the tests in terms of the regression
coefficients. With contrast, we instead specify our tests in terms of differences in the marginal
means for the levels of a particular factor. For example, if we want to compare the third and fourth
drugs, we can test the difference in the mean impact on systolic blood pressure separately for each
disease using the @ operator. We also use the reverse adjacent operator, ar., to compare the fourth
level of drug with the previous level.

. contrast ar4.drug@disease
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
drug@disease
(4vs 3) 1 1 0.13 0.7234
(4 vs 3) 2 1 1.76 0.1917
(4 vs 3) 3 1 0.65 0.4230
Joint 3 0.85 0.4761
Residual 46
Contrast  Std. Err. [95% Conf. Intervall]
drug@disease
(4vs 3) 1 -2.733333 7.675156 -18.18262 12.71595
(4 vs 3) 2 8.433333 6.363903 -4.376539 21.24321
(4 vs 3) 3 5.7 7.050081 -8.491077 19.89108

None of the individual contrasts shows significant differences between the third drug and the
fourth drug. Likewise, the overall F statistic is 0.85, which is hardly significant. We cannot reject
the hypothesis that the third drug has the same effect as the fourth drug.

d

Q Technical note

Alternatively, we could have specified these tests based on the coefficients of the underlying
regression model using the test command. We would have needed to perform tests on the coefficients
for drug and for the coefficients on drug interacted with disease in order to test for differences in
the means mentioned above. To do this, we start with our previous test command:

. test 3.drug = 4.drug

Notice that the [’ statistic for this test is equivalent to the test labeled (4 vs 3) 1 in the contrast
output. Let’s now add the constraint that the coefficient on the third drug interacted with the third
disease is equal to the coefficient on the fourth drug, again interacted with the third disease. We do
that by typing the new constraint and adding the accumulate option:
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. test 3.drug#3.disease = 4.drug#3.disease, accumulate
(1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0

F( 2, 46) = 0.39
Prob > F = 0.6791

So far, our test includes the equality of the two drug coefficients, along with the equality of the
two drug coefficients when interacted with the third disease. Now we add two more equations, one
for each of the remaining two diseases:

. test 3.drug#2.disease = 4.drug#2.disease, accumulate

(1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease
( 3) 3.drug#2.disease - 4.drug#2.disease
F( 3, 46) = 0.85
Prob > F = 4761

0.
. test 3.drug#l.disease = 4.drug#l.disease, accumulate

(1) 3.drug - 4.drug = 0

( 2) 3.drug#3.disease - 4.drug#3.disease = 0

( 3) 3.drug#2.disease - 4.drug#2.disease = 0

( 4) 3o.drug#lb.disease - 4o.drug#lb.disease = 0
Constraint 4 dropped

F( 3, 46) = 0.85
Prob > F = 0.4761

0
0

The overall F' statistic reproduces the one from the joint test in the contrast output.

You may notice that we also got the message “Constraint 4 dropped”. For the technically inclined,
this constraint was unnecessary, given the normalization of the model. If we specify all the constraints
involved in our test or use contrast, we need not worry about the normalization because Stata
handles this automatically.

a

The test () option of test provides another alternative for testing coefficients. Instead of spelling
out each coefficient involved in the test, a matrix representing the test provides the needed information.
test, showorder shows the order of the terms in the ANOVA corresponding to the order of the
columns for the matrix argument of test ().

> Example 8

We repeat the last test of example 7 above with the test () option. First, we view the definition
and order of the columns underlying the ANOVA performed on the systolic data.
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. test, showorder

Order of columns in the design matrix

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

OO0 ~NO O WN -

¢ (drug==1)

(drug==2)

(drug==3)

(drug==4)

(disease==1)
(disease==2)
(disease==3)
(drug==1)*(disease==1)
(drug==1)*(disease==2)
(drug==1)*(disease==3)
(drug==2) * (disease==1)
(drug==2) * (disease==2)
(drug==2) * (disease==3)
(drug==3)*(disease==1)
(drug==3) * (disease==2)
(drug==3) *(disease==3)
(drug==4)*(disease==1)
(drug==4)*(disease==2)
(drug==4)*(disease==3)
_cons

Columns 1-4 correspond to the four levels of drug. Columns 5-7 correspond to the three levels
of disease. Columns 8§—19 correspond to the interaction of drug and disease. The last column
corresponds to _cons, the constant in the model.

We construct the matrix dr3vs4 with the same four constraints as the last test shown in example 7
and then use the test (dr3vs4) option to perform the test.

. mat dr3vsd = (

>
>
>

(D)
2)
3

o0,0,1,-1, o0,0,0, 0,0,0,0,0,0,0,0,0, O, O, O, O\
0,0,0, 0, o0,0,0, 0,0,0,0,0,0,0,0,1, 0, 0,-1, 0\
0,0,0, 0, o0,0,0, 0,0,0,0,0,0,0,1,0, 0,-1, 0, O\
0,0,0, 0, o0,0,0, 0,0,0,0,0,0,1,0,0,-1, 0, O, 0)
. test, test(dr3vs4)

3.drug - 4.drug = 0

3.drug#3.disease - 4.drug#3.disease = 0

3.drug#2.disease - 4.drug#2.disease = 0

3o.drug#lb.disease - 4o.drug#lb.disease = 0

4

Constraint 4 dropped

F( 3, 46) = 0.85
Prob > F = 0.4761

Here the effort involved with spelling out the coefficients is similar to that of constructing a matrix
and using it in the test() option. When the test involving coefficients is more complicated, the
test () option may be more convenient than specifying the coefficients directly in test. However,
as previously demonstrated, contrast may provide an even simpler method for testing the same

hypothesis.

N

After fitting an ANOVA model, various contrasts (1-degree-of-freedom tests comparing different
levels of a categorical variable) are often of interest. contrast can perform each 1-degree-of-freedom
test in addition to the combined test, even in cases in which the contrasts do not correspond to one
of the contrast operators.
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> Example 9

Rencher and Schaalje (2008) illustrate 1-degree-of-freedom contrasts for an ANOVA comparing the
net weight of cans filled by five machines (labeled A-E). The data were originally obtained from
Ostle and Mensing (1975). Rencher and Schaalje use a cell-means ANOVA model approach for this
problem. We could do the same by using the noconstant option of anova; see [R] anova. Instead,
we obtain the same results by using the standard overparameterized ANOVA approach (that is, we
keep the constant in the model).

. use http://www.stata-press.com/data/r12/canfill
(Can Fill Data)

. list, sepby(machine)

machine  weight

1. A 11.95
2. A 12.00
3. A 12.25
4. A 12.10
5 B 12.18
B 12.11

7. C 12.16
8. C 12.15
9. C 12.08
10. D 12.25
11. D 12.30
12. D 12.10
13. E 12.10
14. E 12.04
15. E 12.02
16. E 12.02

. anova weight machine

Number of obs = 16 R-squared = 0.4123

Root MSE = .087758 Adj R-squared = 0.1986

Source Partial SS df MS F Prob > F

Model .059426993 4 .014856748 1.93 0.1757

machine .059426993 4 .014856748 1.93 0.1757
Residual .084716701 11 .007701518
Total .144143694 15 .00960958

The four 1-degree-of-freedom tests of interest among the five machines are A and D versus B, C,
and E; B and E versus C; A versus D; and B versus E. We can specify these tests as user-defined
contrasts by placing the corresponding contrast coefficients into positions related to the five levels of
machine as described in User-defined contrasts of [R] contrast.
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. contrast {machine
> {machine
> {machine
> {machine

3
0
1

0

-2 3 -2}
-2 0 1}
0 -1 0}

-2
1
0
1 0 0 -1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
machine
(1 1 0.75 0.4055
(2) 1 0.31 0.5916
(3) 1 4.47 0.0582
(4 1 1.73 0.2150
Joint 4 1.93 0.1757
Residual 11

contrast produces a 1-degree-of-freedom test for each of the specified contrasts as well as a
joint test. We included the noeffects option so that the table displaying the values of the individual
contrasts with their confidence intervals was suppressed.

The significance values above are not adjusted for multiple comparisons. We could have produced
the Bonferroni-adjusted significance values by using the mcompare (bonferroni) option.

. contrast {machine
> {machine
> {machine
> {machine

0

-2 3 -2}
-2 0 1}
0 -1 0}

-2
1
0
1 0 O -1}, mcompare(bonferroni) noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
Bonferroni
df F P>F P>F
machine
(1) 1 0.75 0.4055 1.0000
(2) 1 0.31 0.5916 1.0000
(3 1 4.47 0.0582 0.2329
(4) 1 1.73 0.2150 0.8601
Joint 4 1.93 0.1757
Residual 11

Note: Bonferroni-adjusted p-values are reported for tests
on individual contrasts only.

xample 10

Here there are two factors, A and B, each with three levels. The levels are quantitative so that
linear and quadratic contrasts are of interest.
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. use http://www.stata-press.com/data/r12/twowaytrend

. anova Y A B A#B

Number of obs = 36 R-squared = 0.9304

Root MSE = 2.6736 Adj R-squared 0.9097

Source Partial SS df MS F Prob > F

Model 2578.55556 8 322.319444 45.09 0.0000

A 2026.72222 2 1013.36111 141.77 0.0000

B 383.722222 2 191.861111 26.84 0.0000

A#B 168.111111 4 42.0277778 5.88 0.0015
Residual 193 27 7.14814815
Total 2771.55556 35 79.1873016

We can use the p. contrast operator to obtain the 1-degree-of-freedom tests for the linear and
quadratic effects of A and B.

. contrast p.A p.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
A
(linear) 1 212.65 0.0000
(quadratic) 1 70.88 0.0000
Joint 2 141.77 0.0000
B
(linear) 1 26.17 0.0000
(quadratic) 1 27.51 0.0000
Joint 2 26.84 0.0000
Residual 27

All the above tests appear to be significant. In addition to presenting the 1-degree-of-freedom tests,
the combined tests for A and B are produced and agree with the original ANOVA results.

Now we explore the interaction between A and B.

. contrast p.A#pl.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
A#B
(linear) (linear) 1 17.71 0.0003
(quadratic) (linear) 1 0.07 0.7893
Joint 2 8.89 0.0011
Residual 27

The 2-degrees-of-freedom test of the interaction of A with the linear components of B is significant
at the 0.0011 level. But, when we examine the two 1-degree-of-freedom tests that compose this result,
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the significance is due to the linear A by linear B contrast (significance level of 0.0003). A significance
value of 0.7893 for the quadratic A by linear B indicates that this factor is not significant for these
data.

. contrast p.A#p2.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
A#B
(linear) (quadratic) 1 2.80 0.1058
(quadratic) (quadratic) 1 2.94 0.0979
Joint 2 2.87 0.0741
Residual 27

The test of A with the quadratic components of B does not fall below the 0.05 significance level.

N

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

References
Ostle, B., and R. W. Mensing. 1975. Statistics in Research. 3rd ed. Ames, IA: Iowa State University Press.
Rencher, A. C., and G. B. Schaalje. 2008. Linear Models in Statistics. 2nd ed. New York: Wiley.

Also see
[R] anova — Analysis of variance and covariance
[R] regress postestimation — Postestimation tools for regress

[U] 20 Estimation and postestimation commands



Title

areg — Linear regression with a large dummy-variable set

Syntax

areg depvar [indepvars] [lf] [m] [weight] , absorb(varname) [options]

options Description
Model
* absorb (varname) categorical variable to be absorbed
SE/Robust
vce (veetype) vcetype may be ols, robust, cluster clustvar, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
display_options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells
coeflegend display legend instead of statistics

*absorb (varname) is required.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

aweights, fweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Linear models and related > Other > Linear regression absorbing one cat. variable

Description

areg fits a linear regression absorbing one categorical factor. areg is designed for datasets with
many groups, but not a number of groups that increases with the sample size. See the xtreg, fe
command in [XT] xtreg for an estimator that handles the case in which the number of groups increases
with the sample size.

78



areg — Linear regression with a large dummy-variable set 79

Options
_ [Model

absorb (varname) specifies the categorical variable, which is to be included in the regression as if
it were specified by dummy variables. absorb() is required.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

Exercise caution when using the vce (cluster clustvar) option with areg. The effective number
of degrees of freedom for the robust variance estimator is ngy — 1, where ng is the number of
clusters. Thus the number of levels of the absorb() variable should not exceed the number of
clusters.

Reporting

level (#); see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

The following option is available with areg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Suppose that you have a regression model that includes among the explanatory variables a large
number, k, of mutually exclusive and exhaustive dummies:

y=XB+dim +deye+ - +dpyv t+e

For instance, the dummy variables, d;, might indicate countries in the world or states of the United
States. One solution would be to fit the model with regress, but this solution is possible only if &
is small enough so that the total number of variables (the number of columns of X plus the number
of d;’s plus one for y) is sufficiently small—meaning less than matsize (see [R] matsize). For
problems with more variables than the largest possible value of matsize (100 for Small Stata, 800
for Stata/IC, and 11,000 for Stata/SE and Stata/MP), regress will not work. areg provides a way
of obtaining estimates of 3—but not the ~;’s—in these cases. The effects of the dummy variables
are said to be absorbed.

> Example 1

So that we can compare the results produced by areg with Stata’s other regression commands,
we will fit a model in which k is small. areg’s real use, however, is when k is large.

In our automobile data, we have a variable called rep78 that is coded 1, 2, 3, 4, and 5, where 1
means poor and 5 means excellent. Let’s assume that we wish to fit a regression of mpg on weight,
gear_ratio, and rep78 (parameterized as a set of dummies).
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. use http://www.stata-press.com/data/r12/auto

(1978 Automobile Data)

. regress mpg weight gear_ratio b5.rep78

Source SS df MS Number of obs = 69
F( 6, 62) = 21.31
Model 1575.97621 6 262.662702 Prob > F 0.0000
Residual 764.226686 62 12.3262369 R-squared = 0.6734
Adj R-squared = 0.6418
Total 2340.2029 68 34.4147485 Root MSE = 3.5109
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971
rep78
1 -2.036937 2.740728 -0.74 0.460 -7.515574 3.4417
2 -2.419822 1.764338 -1.37 0.175 -5.946682 1.107039
3 -2.557432 1.370912 -1.87 0.067 -5.297846 .1829814
4 -2.788389 1.395259 -2.00 0.050 -5.577473 .0006939
_cons 36.23782 7.01057 5.17 0.000 22.22389 50.25175
To fit the areg equivalent, we type
. areg mpg weight gear_ratio, absorb(rep78)
Linear regression, absorbing indicators Number of obs = 69
FC 2, 62) = 41.64
Prob > F = 0.0000
R-squared = 0.6734
Adj R-squared = 0.6418
Root MSE = 3.5109
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971
_cons 34.06889  7.056383 4.83 0.000 19.95338 48.1644
rep78 F(4, 62) = 1.117 0.356 (5 categories)

Both regress and areg display the same R? values, root mean squared error, and—for weight
and gear_ratio—the same parameter estimates, standard errors, ¢ statistics, significance levels, and
confidence intervals. areg, however, does not report the coefficients for rep78, and, in fact, they
are not even calculated. This computational trick makes the problem manageable when k is large.
areg reports a test that the coefficients associated with rep78 are jointly zero. Here this test has a
significance level of 35.6%. This F test for rep78 is the same that we would obtain after regress
if we were to specify test 1.rep78 2.rep78 3.rep78 4.rep78; see [R] test.

The model F' tests reported by regress and areg also differ. The regress command reports a
test that all coefficients except that of the constant are equal to zero; thus, the dummies are included
in this test. The areg output shows a test that all coefficients excluding the dummies and the constant
are equal to zero. This is the same test that can be obtained after regress by typing test weight
gear_ratio. q
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Q Technical note

areg is designed for datasets with many groups, but not a number that grows with the sample
size. Consider two different samples from the U.S. population. In the first sample, we have 10,000
individuals and we want to include an indicator for each of the 50 states, whereas in the second
sample we have 3 observations on each of 10,000 individuals and we want to include an indicator for
each individual. areg was designed for datasets similar to the first sample in which we have a fixed
number of groups, the 50 states. In the second sample, the number of groups, which is the number of
individuals, grows as we include more individuals in the sample. For an estimator designed to handle
the case in which the number of groups grows with the sample size, see the xtreg, fe command
in [XT] xtreg.

Although the point estimates produced by areg and xtreg, fe are the same, the estimated VCEs
differ when cluster () is specified because the commands make different assumptions about whether
the number of groups increases with the sample size.

a

Q Technical note

The intercept reported by areg deserves some explanation because, given k mutually exclusive
and exhaustive dummies, it is arbitrary. areg identifies the model by choosing the intercept that
makes the prediction calculated at the means of the independent variables equal to the mean of the

dependent variable: y = iB.

. predict yhat
(option xb assumed; fitted values)

. summarize mpg yhat if rep78 != .

Variable | Obs Mean Std. Dev. Min Max
mpg 69 21.28986 5.866408 12 41
yhat 69 21.28986 4.383224 11.58643 28.07367

We had to include if rep78 < . in our summarize command because we have missing values in
our data. areg automatically dropped those missing values (as it should) in forming the estimates,
but predict with the xb option will make predictions for cases with missing rep78 because it does
not know that rep78 is really part of our model.

These predicted values do not include the absorbed effects (that is, the d;~;). For predicted values
that include these effects, use the xbd option of predict (see [R] areg postestimation) or see
[XT] xtreg.

a

> Example 2

areg, vce(robust) is a Huberized version of areg; see [P] _robust. Just as areg is equivalent to
using regress with dummies, areg, vce(robust) is equivalent to using regress, vce(robust)
with dummies. You can use areg, vce(robust) when you expect heteroskedastic or nonnormal
errors. areg, vce(robust), like ordinary regression, assumes that the observations are independent,
unless the vce(cluster clustvar) option is specified. If the vce(cluster clustvar) option is
specified, this independence assumption is relaxed and only the clusters identified by equal values of
clustvar are assumed to be independent.
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Assume that we were to collect data by randomly sampling 10,000 doctors (from 100 hospitals)
and then sampling 10 patients of each doctor, yielding a total dataset of 100,000 patients in a cluster
sample. If in some regression we wished to include effects of the hospitals to which the doctors
belonged, we would want to include a dummy variable for each hospital, adding 100 variables to our

model. areg could fit this model by

. areg depvar patient_vars, absorb(hospital) vce(cluster doctor)

Saved results

areg saves the following in e():

Scalars
e(N)
e(tss)
e(df_m)
e(rss)
e(df_r)
e(r2)
e(r2_a)
e(df_a)
e(rmse)
e(11)
e(11_0)
e(N_clust)
e(F)
e(F_absorb)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(absvar)
e (wtype)
e (wexp)
e(title)
e(clustvar)
e(vce)
e(vcetype)

e(datasignature)
e(datasignaturevars)
e(properties)

e(predict)

e(marginsnotok)
e(asbalanced)
e (asobserved)

Matrices
e(b)
e(Cns)
e(V)

e(V_modelbased)

Functions
e(sample)

number of observations
total sum of squares

model degrees of freedom
residual sum of squares
residual degrees of freedom
R-squared

adjusted R-squared

degrees of freedom for absorbed effect

root mean squared error
log likelihood

log likelihood, constant-only model

number of clusters
F statistic

F statistic for absorbed effect (when vce(robust) is not specified)

rank of e(V)

areg
command as typed

name of dependent variable
name of absorb variable
weight type

weight expression

title in estimation output
name of cluster variable
veetype specified in vee ()
title used to label Std. Err.
the checksum

variables used in calculation of checksum

bV

program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
constraints matrix

variance—covariance matrix of the estimators

model-based variance

marks estimation sample
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Methods and formulas
areg is implemented as an ado-file.

areg begins by recalculating depvar and indepvars to have mean 0 within the groups specified
by absorb(). The overall mean of each variable is then added back in. The adjusted depvar is then
regressed on the adjusted indepvars with regress, yielding the coefficient estimates. The degrees
of freedom of the variance—covariance matrix of the coefficients is then adjusted to account for the
absorbed variables—this calculation yields the same results (up to numerical roundoff error) as if the
matrix had been calculated directly by the formulas given in [R] regress.

areg with vce(robust) or vce(cluster clustvar) works similarly, calling _robust after
regress to produce the Huber/White/sandwich estimator of the variance or its clustered version. See
[P] _robust, particularly Introduction and Methods and formulas. The model F' test uses the robust
variance estimates. There is, however, no simple computational means of obtaining a robust test of the
absorbed dummies; thus this test is not displayed when the vce (robust) or vce (cluster clustvar)
option is specified.

The number of groups specified in absorb() are included in the degrees of freedom used in
the finite-sample adjustment of the cluster—robust VCE estimator. This statement is only valid if the
number of groups is small relative to the sample size. (Technically, the number of groups must remain
fixed as the sample size grows.) For an estimator that allows the number of groups to grow with the
sample size, see the xtreg, fe command in [XT] xtreg.

Reference
Blackwell, J. L., III. 2005. Estimation and testing of fixed-effect panel-data systems. Stata Journal 5: 202-207.

Also see

[R] areg postestimation — Postestimation tools for areg

[R] regress — Linear regression

[MI] estimation — Estimation commands for use with mi estimate

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[U] 20 Estimation and postestimation commands
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Title

areg postestimation — Postestimation tools for areg

Description

The following postestimation commands are available after areg:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [type] newvar [lf] [m] [, statistic]

where y; = X;b + dapsorbvar + €; and statistic is

statistic Description
Main
xb x;b, fitted values; the default
stdp standard error of the prediction
dresiduals dabsorbvar + €j =1yY; — ij
*xbd ij + dabsorbvar
*d dabsorbvar
*residuals residual
*score score; equivalent to residuals

Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.
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Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

Is

xb, the default, calculates the prediction of x;b, the fitted values, by using the average effect of the
absorbed variable. Also see xbd below.

stdp calculates the standard error of x;b.
dresiduals calculates y; — x;b, which are the residuals plus the effect of the absorbed variable.

xbd calculates X;b + dapsorbvar, Which are the fitted values including the individual effects of the
absorbed variable.

d calculates d.psorbvar, the individual coefficients for the absorbed variable.
residuals calculates the residuals, that is, y; — (X;b + dabsorbvar)-

score is a synonym for residuals.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[R] areg — Linear regression with a large dummy-variable set

[U] 20 Estimation and postestimation commands



Title

asclogit — Alternative-specific conditional logit (McFadden’s choice) model

Syntax
asclogit depvar [indepvars] [lf] [m] [weight] , case(varname)

alternatives (varname) [ options ]

options Description
Model
* case (varname) use varname to identify cases
*alternatives (varname) use varname to identify the alternatives available for each case
casevars (varlist) case-specific variables
basealternative(#|Ibl|str) alternative to normalize location
noconstant suppress alternative-specific constant terms
altwise use alternativewise deletion instead of casewise deletion
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
or report odds ratios
noheader do not display the header on the coefficient table
nocnsreport do not display constraints
display_options control column formats and line width
Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

*case (varname) and alternatives(varname) are required.

bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to cases
as a whole, not to individual observations. See Use of weights in [R] clogit.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Categorical outcomes > Alternative-specific conditional logit

Description

asclogit fits McFadden’s choice model, which is a specific case of the more general conditional
logistic regression model (McFadden 1974). asclogit requires multiple observations for each case
(individual or decision), where each observation represents an alternative that may be chosen. The cases
are identified by the variable specified in the case () option, whereas the alternatives are identified by
the variable specified in the alternatives () option. The outcome or chosen alternative is identified
by a value of 1 in depvar, whereas zeros indicate the alternatives that were not chosen. There can be
multiple alternatives chosen for each case.

asclogit allows two types of independent variables: alternative-specific variables and case-specific
variables. Alternative-specific variables vary across both cases and alternatives and are specified in
indepvars. Case-specific variables vary only across cases and are specified in the casevars () option.

See [R] clogit for a more general application of conditional logistic regression. For example,
clogit would be used when you have grouped data where each observation in a group may be
a different individual, but all individuals in a group have a common characteristic. You may use
clogit to obtain the same estimates as asclogit by specifying the case () variable as the group ()
variable in clogit and generating variables that interact the casevars() in asclogit with each
alternative (in the form of an indicator variable), excluding the interaction variable associated with the
base alternative. asclogit takes care of this data-management burden for you. Also, for clogit,
each record (row in your data) is an observation, whereas in asclogit each case, consisting of
several records (the alternatives) in your data, is an observation. This last point is important because
asclogit will drop observations, by default, in a casewise fashion. That is, if there is at least one
missing value in any of the variables for each record of a case, the entire case is dropped from
estimation. To use alternativewise deletion, specify the altwise option and only the records with
missing values will be dropped from estimation.

Options
_ (Wogel

case (varname) specifies the numeric variable that identifies each case. case () is required and must
be integer valued.

alternatives (varname) specifies the variable that identifies the alternatives for each case. The
number of alternatives can vary with each case; the maximum number of alternatives cannot exceed
the limits of tabulate oneway; see [R] tabulate oneway. alternatives() is required and may
be a numeric or a string variable.

casevars (varlist) specifies the case-specific numeric variables. These are variables that are constant
for each case. If there are a maximum of .J alternatives, there will be J — 1 sets of coefficients
associated with the casevars().

basealternative (#|Ibl|str) specifies the alternative that normalizes the latent-variable location
(the level of utility). The base alternative may be specified as a number, label, or string depending
on the storage type of the variable indicating alternatives. The default is the alternative with the
highest frequency.

If vce(bootstrap) or vce(jackknife) is specified, you must specify the base alternative. This
is to ensure that the same model is fit with each call to asclogit.
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noconstant suppresses the J — 1 alternative-specific constant terms.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.

offset (varname), constraints (numlist | mamame), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

Reporting

level (#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, b rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noheader prevents the coefficient table header from being displayed.
nocnsreport; see [R] estimation options.

display_options: cformat (%, fint), pformat (%fmt), sformat (,fint), and nolstretch; see [R] es-
timation options.

Maximization

maximize—options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

technique (bhhh) is not allowed.

The initial estimates must be specified as from(matname [, copy]), where matname is the
matrix containing the initial estimates and the copy option specifies that only the position of each
element in matname is relevant. If copy is not specified, the column stripe of matname identifies
the estimates.

The following option is available with asclogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

asclogit fits McFadden’s choice model (McFadden [1974]; for a brief introduction, see Greene
[2012, sec. 18.2] or Cameron and Trivedi [2010, sec. 15.5]). In this model, we have a set of unordered
alternatives indexed by 1,2,...,J. Let y;;, j = 1,...,J, be an indicator variable for the alternative
actually chosen by the ¢th individual (case). That is, y;; = 1 if individual i chose alternative j
and y;; = 0 otherwise. The independent variables come in two forms: alternative specific and case
specific. Alternative-specific variables vary among the alternatives (as well as cases), and case-specific
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variables vary only among cases. Assume that we have p alternative-specific variables so that for
case ¢ we have a J X p matrix, X;. Further, assume that we have q case-specific variables so that
we have a 1 X ¢ vector z; for case 7. Our random-utility model can then be expressed as

u; = Xlﬁ + (ZiA)/ +€;

Here 3 is a p x 1 vector of alternative-specific regression coefficients and A = (a1, ..., )isagxJ
matrix of case-specific regression coefficients. The elements of the J X 1 vector €; are independent
Type I (Gumbel-type) extreme-value random variables with mean «y (the Euler—Mascheroni constant,
approximately 0.577) and variance 772 /6. We must fix one of the 4 to the constant vector to normalize
the location. We set o, = 0, where k is specified by the basealternative() option. The vector
u; quantifies the utility that the individual gains from the J alternatives. The alternative chosen by
individual ¢ is the one that maximizes utility.

> Example 1

We have data on 295 consumers and their choice of automobile. Each consumer chose among an
American, Japanese, or European car; the variable car indicates the nationality of the car for each
alternative. We want to explore the relationship between the choice of car to the consumer’s sex
(variable sex) and income (variable income in thousands of dollars). We also have information on
the number of dealerships of each nationality in the consumer’s city in the variable dealer that we
want to include as a regressor. We assume that consumers’ preferences are influenced by the number
of dealerships in an area but that the number of dealerships is not influenced by consumer preferences
(which we admit is a rather strong assumption). The variable dealer is an alternative-specific variable
(X; is a 3 x 1 vector in our previous notation), and sex and income are case-specific variables (z;
is a 1 x 2 vector). Each consumer’s chosen car is indicated by the variable choice.

Let’s list some of the data.

. use http://www.stata-press.com/data/r12/choice

. list id car choice dealer sex income in 1/12, sepby(id)

id car choice dealer sex income

1. 1 American 0 18 male 46.7
2. 1 Japan 0 8 male 46.7
3. 1 Europe 1 5 male 46.7
4. 2  American 1 17 male 26.1
5. 2 Japan 0 6 male 26.1
6. 2 Europe 0 2 male 26.1
7. 3 American 1 12 male 32.7
8. 3 Japan 0 6 male 32.7
9. 3 Europe 0 2 male 32.7
10. 4  American 0 18 female 49.2
11. 4 Japan 1 7  female 49.2
12. 4 Europe 0 4  female 49.2

We see, for example, that the first consumer, a male earning $46,700 per year, chose to purchase a
European car even though there are more American and Japanese car dealers in his area. The fourth
consumer, a female earning $49,200 per year, purchased a Japanese car.

We now fit our model.
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. asclogit choice dealer, case(id) alternatives(car) casevars(sex income)

Iteration O log likelihood = -273.55685
Iteration 1: log likelihood = -252.75109
Iteration 2: log likelihood = -250.78555
Iteration 3: log likelihood = -250.7794
Iteration 4: log likelihood = -250.7794
Alternative-specific conditional logit Number of obs = 885
Case variable: id Number of cases = 295
Alternative variable: car Alts per case: min = 3
avg = 3.0
max = 3
Wald chi2(5) 15.86
Log likelihood = -250.7794 Prob > chi2 = 0.0072
choice Coef. Std. Err. p P>|z]| [95% Conf. Interval]
car
dealer .0680938 .0344465 1.98 0.048 .00058 .1356076
American (base alternative)
Japan
sex -.5346039 .3141564 -1.70 0.089 -1.150339 .0811314
income .0325318 .012824 2.54 0.011 .0073973 .0576663
_cons -1.352189 .6911829 -1.96 0.050 -2.706882 .0025049
Europe
sex .5704109 .4540247 1.26  0.209 -.3194612 1.460283
income .032042 .0138676 2.31  0.021 .004862 .0592219
_cons -2.355249 .8526681 -2.76  0.006 -4.026448 -.6840501
Displaying the results as odds ratios makes interpretation easier.
. asclogit, or noheader
choice | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
car
dealer 1.070466 .0368737 1.98 0.048 1.00058 1.145232
American (base alternative)
Japan
sex .5859013 .1840647 -1.70 0.089 .3165294 1.084513
income 1.033067 .013248 2.54 0.011 1.007425 1.059361
_cons .2586735 .1787907 -1.96 0.050 .0667446 1.002508
Europe
sex 1.768994 .8031669 1.26  0.209 . 7265404 4.307178
income 1.032561 .0143191 2.31  0.021 1.004874 1.061011
_cons .0948699 .0808925 -2.76  0.006 .0178376 .5045693

These results indicate that men (sex = 1) are less likely to pick a Japanese car over an American
car than women (odds ratio 0.59) but that men are more likely to choose a European car over an
American car (odds ratio 1.77). Raising a person’s income increases the likelihood that he or she
purchases a Japanese or European car; interestingly, the effect of higher income is about the same
for these two types of cars.

4
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Daniel Little McFadden was born in 1937 in North Carolina. He studied physics, psychology,
and economics at the University of Minnesota and has taught economics at Pittsburgh, Berkeley,
MIT, and the University of Southern California. His contributions to logit models were triggered
by a student’s project on freeway routing decisions, and his work consistently links economic
theory and applied problems. In 2000, he shared the Nobel Prize in Economics with James J.
Heckman.

Q Technical note

McFadden’s choice model is related to multinomial logistic regression (see [R] mlogit). If all the
independent variables are case specific, then the two models are identical. We verify this supposition
by running the previous example without the alternative-specific variable, dealer.

. asclogit choice, case(id) alternatives(car) casevars(sex income) nolog

Alternative-specific conditional logit Number of obs = 885
Case variable: id Number of cases = 295
Alternative variable: car Alts per case: min = 3
avg = 3.0
max = 3
Wald chi2(4) = 12.53
Log likelihood = -252.72012 Prob > chi2 = 0.0138
choice Coef. Std. Err. z P>|z| [95% Conf. Intervall
American (base alternative)
Japan
sex -.4694799 .3114939 -1.51  0.132 -1.079997 .141037
income .0276854 .0123666 2.24 0.025 .0034472 .0519236
_cons -1.962652 .6216804 -3.16  0.002 -3.181123  -.7441807
Europe
sex .5388441 .4525279 1.19 0.234 -.3480942 1.425782
income .0273669 .013787 1.98 0.047 .000345 .0543889
_cons -3.180029 . 7546837 -4.21  0.000 -4.659182 -1.700876

To run mlogit, we must rearrange the dataset. mlogit requires a dependent variable that indicates
the choice—1, 2, or 3—for each individual. We will use car as our dependent variable for those
observations that represent the choice actually chosen.
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. keep if choice ==
(590 observations deleted)

. mlogit car sex income

Iteration O: log likelihood = -259.1712
Iteration 1: log likelihood = -252.81165
Iteration 2: log likelihood = -252.72014

Iteration 3: log likelihood = -252.72012

Multinomial logistic regression Number of obs = 295
LR chi2(4) = 12.90
Prob > chi2 = 0.0118
Log likelihood = -252.72012 Pseudo R2 = 0.0249
car Coef. Std. Err. z P>zl [95% Conf. Intervall]
American (base outcome)

Japan
sex -.4694798 .3114939 -1.51 0.132 -1.079997 .1410371
income .0276854 .0123666 2.24 0.025 .0034472 .0519236
_cons -1.962651 .6216803 -3.16 0.002 -3.181122 -.7441801

Europe
sex .5388443 .4525278 1.19 0.234 -.348094 1.425783
income .027367 .013787 1.98 0.047 .000345 .0543889
_cons -3.18003 . 7546837 -4.21  0.000 -4.659182 -1.700877

The results are the same except for the model statistic: asclogit uses a Wald test and mlogit
uses a likelihood-ratio test. If you prefer the likelihood-ratio test, you can fit the constant-only model
for asclogit followed by the full model and use [R] Irtest. The following example will carry this
out.

. use http://www.stata-press.com/data/r12/choice, clear

. asclogit choice, case(id) alternatives(car)

. estimates store null

. asclogit choice, case(id) alternatives(car) casevars(sex income)

. lrtest null .

Q Technical note

We force you to explicitly identify the case-specific variables in the casevars() option to ensure
that the program behaves as you expect. For example, an if or in qualifier may drop observations in
such a way that (what was expected to be) an alternative-specific variable turns into a case-specific
variable. Here you would probably want asclogit to terminate instead of interacting the variable with
the alternative indicators. This situation could also occur if asclogit drops cases, or observations
if you use the altwise option, because of missing values.

a
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Saved results

asclogit saves the following in e():

Scalars
e(N) number of observations
e(N_case) number of cases
e(k) number of parameters
e(k_alt) number of alternatives
e(k_indvars) number of alternative-specific variables
e(k_casevars) number of case-specific variables
e(k_eq) number of equations in e(b)
e(k_eq-model) number of equations in overall model test
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(const) constant indicator
e(i_base) base alternative index
e(chi2) X2
e(F) F statistic
e(p) significance
e(alt_min) minimum number of alternatives
e(alt_avg) average number of alternatives
e(alt_max) maximum number of alternatives
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) asclogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) alternative-specific independent variable
e(casevars) case-specific variables
e(case) variable defining cases
e(altvar) variable defining alternatives
e(altegs) alternative equation names
e(alt#) alternative labels
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald, type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict

e(marginsnotok) predictions disallowed by margins
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Matrices
e(b) coefficient vector
e(stats) alternative statistics
e(altvals) alternative values
e(altfreq) alternative frequencies
e(alt_casevars) indicators for estimated case-specific coefficients—e (k_alt) xe(k_casevars)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(\) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

asclogit is implemented as an ado-file.

In this model, we have a set of unordered alternatives indexed by 1,2,...,J. Lety;;,j =1,...,J,
be an indicator variable for the alternative actually chosen by the ¢th individual (case). That is, y;; = 1
if individual ¢ chose alternative j and y;; = O otherwise. The independent variables come in two
forms: alternative specific and case specific. Alternative-specific variables vary among the alternatives
(as well as cases), and case-specific variables vary only among cases. Assume that we have p
alternative-specific variables so that for case ¢ we have a J X p matrix, X,. Further, assume that
we have g case-specific variables so that we have a 1 X g vector z; for case ¢. The deterministic
component of the random-utility model can then be expressed as

n = XiB+ (z:A)
=X;8+ (z; 1) vec(A")

(X 7 B
- (XZ7 Z; ® IJ) (VeC(AI)>
=X:3

As before, 3 is a p x 1 vector of alternative-specific regression coefficients, and A = (a1, ..., ay)
is a ¢ x J matrix of case-specific regression coefficients; remember that we must fix one of the
to the constant vector to normalize the location. Here I; is the J x J identity matrix, vec() is the
vector function that creates a vector from a matrix by placing each column of the matrix on top of
the other (see [M-5] vec()), and & is the Kronecker product (see [M-2] op_kronecker).

We have rewritten the linear equation so that it is a form that can be used by clogit, namely,
X*3*, where
Xi =X, zi®1y)

7= (i)

With this in mind, see Methods and formulas in [R] clogit for the computational details of the
conditional logit model.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce (robust) and vce(cluster clustvar). See [P] _robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce (robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.
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Also see

[R] asclogit postestimation — Postestimation tools for asclogit

[R] asmprobit — Alternative-specific multinomial probit regression
[R] asroprobit — Alternative-specific rank-ordered probit regression
[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[U] 20 Estimation and postestimation commands


http://www.stata-press.com/books/musr.html
http://www.stata.com/bookstore/ea.html

Title

asclogit postestimation — Postestimation tools for asclogit

Description

The following postestimation commands are of special interest after asclogit:

Commands

Description

estat alternatives

estat mfx

alternative summary statistics
marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Commands Description

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predicted probabilities, estimated linear predictor and its standard error

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample.

estat mfx computes probability marginal effects.

96
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Syntax for predict

predict [type] newvar [zf] [in] [, statistic 0pti0ns]

predict [type] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
pr probability that each alternative is chosen; the default
xb linear prediction
stdp standard error of the linear prediction
options Description
Main

*k(#| observed) condition on # alternatives per case or on observed number of alternatives

altwise use alternativewise deletion instead of casewise deletion when computing
probabilities
nooffset ignore the offset () variable specified in asclogit

TR (# | observed) may be used only with pr.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

pr computes the probability of choosing each alternative conditioned on each case choosing k()
alternatives. This is the default statistic with default k(1); one alternative per case is chosen.

xb computes the linear prediction.
stdp computes the standard error of the linear prediction.

k(#| observed) conditions the probability on # alternatives per case or on the observed number of
alternatives. The default is k(1). This option may be used only with the pr option.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

nooffset is relevant only if you specified offset (varname) for asclogit. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
x3 rather than as x3 + offset.

scores calculates the scores for each coefficient in e (b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.
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Syntax for estat alternatives

estat alternatives

Menu

Statistics > Postestimation > Reports and statistics

Syntax for estat mfx

estat mfx [zf] [in] [, options]

options Description
Main

varlist (varlist) display marginal effects for varlist

at (mean [allist] | median [atlist}) calculate marginal effects at these values

k(#) condition on the number of alternatives chosen to be #
Options

level (#) set confidence interval level; default is 1level (95)

nodiscrete treat indicator variables as continuous

noesample do not restrict calculation of means and medians to the

estimation sample
nowght ignore weights when calculating means and medians
Menu

Statistics > Postestimation > Reports and statistics

Options for estat mfx
Main

varlist (varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at (mean [atlist] | median [atlist]) specifies the values at which the marginal effects are to be
calculated. atlist is

Halternative:variable = #} [variable = #] [altemative:oﬁ’set = #] [ . H

The default is to calculate the marginal effects at the means of the independent variables by using
the estimation sample, at (mean). If offset () is used during estimation, the means of the offsets
(by alternative) are computed by default.

After specifying the summary statistic, you can specify a series of specific values for variables.
You can specify values for alternative-specific variables by alternative, or you can specify one
value for all alternatives. You can specify only one value for case-specific variables. You specify
values for the offset () variable (if present) the same way as for alternative-specific variables. For
example, in the choice dataset (car choice), income is a case-specific variable, whereas dealer
is an alternative-specific variable. The following would be a legal syntax for estat mfx:
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. estat mfx, at (mean American:dealer=18 income=40)

When nodiscrete is not specified, at (mean [atlist]) or at (median [atlist]) has no effect on
computing marginal effects for indicator variables, which are calculated as the discrete change in
the simulated probability as the indicator variable changes from O to 1.

The mean and median computations respect any if or in qualifiers, so you can restrict the data over
which the statistic is computed. You can even restrict the values to a specific case, for example,

. estat mfx if case==21

k(#) computes the probabilities conditioned on # alternatives chosen. The default is one alternative
chosen.

level (#) sets the confidence level; default is level (95).

nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value O or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from 0 to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asclogit command.

nowght specifies that weights be ignored when calculating the medians.

Remarks

Remarks are presented under the following headings:

Predicted probabilities
Obtaining estimation statistics

Predicted probabilities

After fitting a McFadden’s choice model with alternative-specific conditional logistic regression,
you can use predict to obtain the estimated probability of alternative choices given case profiles.

> Example 1

In example 1 of [R] asclogit, we fit a model of consumer choice of automobile. The alternatives are
nationality of the automobile manufacturer: American, Japanese, or European. There is one alternative-
specific variable in the model, dealer, which contains the number of dealerships of each nationality
in the consumer’s city. The case-specific variables are sex, the consumer’s sex, and income, the
consumer’s income in thousands of dollars.

. use http://www.stata-press.com/data/r12/choice

. asclogit choice dealer, case(id) alternatives(car) casevars(sex income)
(output omitted )

. predict p

(option pr assumed; Pr(car))
. predict p2, k(2)

(option pr assumed; Pr(car))
. format p p2 %6.4f
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. list car choice dealer sex income p p2 in 1/9, sepby(id)

car choice  dealer sex income P p2
1. American 0 18 male 46.7 0.6025  0.8589
2. Japan 0 8 male 46.7 0.2112 0.5974
3. Europe 1 5 male 46.7 0.1863  0.5437
4. American 1 17  male 26.1 0.7651 0.9293
5. Japan 0 6 male 26.1 0.1282 0.5778
6. Europe 0 2 male 26.1 0.1067  0.4929
7. American 1 12 male 32.7 0.6519 0.8831
8. Japan 0 6 male 32.7 0.1902  0.5995
9. Europe 0 2 male 32.7 0.1579 0.5174

Obtaining estimation statistics

Here we will demonstrate the specialized estat subcommands after asclogit. Use estat
alternatives to obtain a table of alternative statistics. The table will contain the alternative values,
labels (if any), the number of cases in which each alternative is present, the frequency that the

alternative is selected, and the percent selected.

Use estat mfx to obtain marginal effects after asclogit.

> Example 2

We will continue with the automobile choice example, where we first list the alternative statistics
and then compute the marginal effects at the mean income in our sample, assuming that there are
five automobile dealers for each nationality. We will evaluate the probabilities for females because

sex is coded O for females, and we will be obtaining the discrete change from 0 to 1.

. estat alternatives

Alternatives summary for car

Alternative Cases  Frequency Percent
index value label present selected selected
1 1 American 295 192 65.08
2 2 Japan 295 64 21.69
3 3 Europe 295 39 13.22
. estat mfx, at(dealer=0 sex=0) varlist(sex income)
Pr(choice = American|1l selected) = .41964329
variable dp/dx  Std. Err. z P>lz| [ 95% C.I. ] X
casevars
sex* .026238 .068311 0.38 0.701 -.107649 .160124 0
income | -.007891 .002674 -2.95 0.003 -.013132 -.00265 42.097

(%) dp/dx is for discrete change of indicator variable from O to 1
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Pr(choice = Japan|1l selected) = .42696187
variable dp/dx  Std. Err. z P>lzl [ 95% C.I. 1 X
casevars
sex* -.161164 .079238 -2.03 0.042 -.316468 -.005859 0
income .005861 .002997 1.96 0.051 -.000014 .011735 42.097
(*) dp/dx is for discrete change of indicator variable from O to 1
Pr(choice = Europel|l selected) = .15339484
variable dp/dx  Std. Err. z P>lz| [ 95% C.I. ] X
casevars
sex* .134926 .076556 1.76 0.078 -.015122 .284973 0
income .00203 .001785 1.14 0.255 -.001469 .00553 42.097
(*) dp/dx is for discrete change of indicator variable from O to 1

The marginal effect of income indicates that there is a lower chance for a consumer to buy American
automobiles with an increase in income. There is an indication that men have a higher preference
for European automobiles than women but a lower preference for Japanese automobiles. We did not
include the marginal effects for dealer because we view these as nuisance parameters, so we adjusted
the probabilities by fixing dealer to a constant, 0.

Saved results

estat mfx saves the following in r():

Scalars
r(pr—alt)

Matrices
r(alt)

Methods and fo

N

scalars containing the computed probability of each alternative evaluated at the value that is

labeled X in the table output. Here alf are the labels in the macro e(altegs).

matrices containing the computed marginal effects and associated statistics. There is one matrix
for each alternative, where alt are the labels in the macro e(alteqs). Column 1 of each
matrix contains the marginal effects; column 2, their standard errors; column 3, their z
statistics; and columns 4 and 5, the confidence intervals. Column 6 contains the values
of the independent variables used to compute the probabilities r(pr—_alt).

rmulas

All postestimation commands listed above are implemented as ado-files.
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The deterministic component of the random-utility model can be expressed as

n=XB+ (zA)
=XB+ (z®1;)vec(A')

-0 201 ()
.

where X is the J X p matrix containing the alternative-specific covariates, z is a 1 X ¢ vector
of case-specific variables, 3 is a p x 1 vector of alternative-specific regression coefficients, and
A = (ay,...,ay) is a ¢ X J matrix of case-specific regression coefficients (with one of the a;
fixed to the constant). Here I; is the J x J identity matrix, vec() is the vector function that creates
a vector from a matrix by placing each column of the matrix on top of the other (see [M-5] vec()),
and ® is the Kronecker product (see [M-2] op_kronecker).

We have rewritten the linear equation so that it is a form that we all recognize, namely, n = X* 3",
where

X* = (X, z01))

7= (i)

To compute the marginal effects, we use the derivative of the log likelihood 9¢(y|n)/dn, where
L(y|m) = log Pr(y|n) is the log of the probability of the choice indicator vector y given the linear
predictor vector n. Namely,

OPr(yln) _ Ol(yln)  On
8vec(X*)’_Pr(Y|n> o Ovec(X*)

= Pr(Yln)a{g};lm (B ®1,)

The standard errors of the marginal effects are computed using the delta method.

Also see
[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model

[U] 20 Estimation and postestimation commands



Title

asmprobit — Alternative-specific multinomial probit regression

Syntax
asmprobit depvar [indepvars] [lf} [in] [weight] , case(varname)

alternatives (varname) [ options ]

options Description
Model
* case (varname) use varname to identify cases
*alternatives (varname) use varname to identify the alternatives available for each case
casevars (varlist) case-specific variables
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
Model 2
correlation(correlation) correlation structure of the latent-variable errors
stddev (stddev) variance structure of the latent-variable errors
structural use the structural covariance parameterization; default is the
differenced covariance parameterization
factor (#) use the factor covariance structure with dimension #
noconstant suppress the alternative-specific constant terms

basealternative (#|Ibl|str) alternative used for normalizing location
scalealternative (#|/bl|str) alternative used for normalizing scale

altwise use alternativewise deletion instead of casewise deletion
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg,

bootstrap, or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
notransform do not transform variance—covariance estimates to the standard
deviation and correlation metric
nocnsreport do not display constraints
display_options control column formats and line width

103
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Integration

intmethod (seqtype)

intpoints (#)
intburn (#)
intseed (code | #)
antithetics

nopivot
initbhhh (#)

favor (speed | space)

Maximization
maximize_options

type of quasi- or pseudouniform point set

number of points in each sequence

starting index in the Hammersley or Halton sequence
pseudouniform random-number seed

use antithetic draws

do not use integration interval pivoting

use the BHHH optimization algorithm for the first # iterations
favor speed or space when generating integration points

control the maximization process

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations
with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;
correlations with the basealternative() are zero

independent constrain all correlation parameters to zero

pattern matname
fixed matname

user-specified matrix identifying the correlation pattern
user-specified matrix identifying the fixed and free correlation
parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations
for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one

pattern matname
fixed matname

user-specified matrix identifying the standard deviation pattern

user-specified matrix identifying the fixed and free standard
deviations

seqtype Description

hammersley Hammersley point set

halton Halton point set

random uniform pseudorandom point set

* . .
case(varname) and alternatives(varname) are required.

bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Categorical outcomes > Alternative-specific multinomial probit

Description

asmprobit fits multinomial probit (MNP) models by using maximum simulated likelihood (MSL)
implemented by the Geweke—Hajivassiliou—Keane (GHK) algorithm. By estimating the variance—
covariance parameters of the latent-variable errors, the model allows you to relax the independence
of irrelevant alternatives (IIA) property that is characteristic of the multinomial logistic model.

asmprobit requires multiple observations for each case (decision), where each observation rep-
resents an alternative that may be chosen. The cases are identified by the variable specified in the
case () option, whereas the alternatives are identified by the variable specified in the alternative ()
option. The outcome (chosen alternative) is identified by a value of 1 in depvar, with O indicating
the alternatives that were not chosen; only one alternative may be chosen for each case.

asmprobit allows two types of independent variables: alternative-specific variables and case-
specific variables. Alternative-specific variables vary across both cases and alternatives and are specified
in indepvars. Case-specific variables vary only across cases and are specified in the casevars()
option.

Options
_ (Wogel

case (varname) specifies the variable that identifies each case. This variable identifies the individuals
or entities making a choice. case() is required.

alternatives(varname) specifies the variable that identifies the alternatives for each case. The
number of alternatives can vary with each case; the maximum number of alternatives is 20.
alternatives() is required.

casevars (varlist) specifies the case-specific variables that are constant for each case (). If there are
a maximum of J alternatives, there will be J — 1 sets of coefficients associated with casevars().

constraints (constraints), collinear; see [R] estimation options.

Model 2

correlation(correlation) specifies the correlation structure of the latent-variable errors.

correlation(unstructured) is the most general and has J(J — 3)/2 + 1 unique correlation
parameters. This is the default unless stdev() or structural are specified.

correlation(exchangeable) provides for one correlation coefficient common to all latent
variables, except the latent variable associated with the basealternative() option.

correlation(independent) assumes that all correlations are zero.

correlation(pattern matmame) and correlation(fixed matname) give you more flexibility
in defining the correlation structure. See Variance structures later in this entry for more
information.

stddev (stddev) specifies the variance structure of the latent-variable errors.

stddev (heteroskedastic) is the most general and has J —2 estimable parameters. The standard
deviations of the latent-variable errors for the alternatives specified in basealternative()
and scalealternative() are fixed to one.
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stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining
the standard deviation parameters. See Variance structures later in this entry for more information.

structural requests the J X J structural covariance parameterization instead of the default J—1x J—1
differenced covariance parameterization (the covariance of the latent errors differenced with that
of the base alternative). The differenced covariance parameterization will achieve the same MSL
regardless of the choice of basealternative() and scalealternative(). On the other hand,
the structural covariance parameterization imposes more normalizations that may bound the model
away from its maximum likelihood and thus prevent convergence with some datasets or choices
of basealternative() and scalealternative().

factor (#) requests that the factor covariance structure of dimension # be used. The factor () option
can be used with the structural option but cannot be used with stddev() or correlation().
A #x J (or #x J — 1) matrix, C, is used to factor the covariance matrix as I + C’'C, where
I is the identity matrix of dimension J (or J — 1). The column dimension of C depends on
whether the covariance is structural or differenced. The row dimension of C, #, must be less than
or equal to floor ((J(J—1)/2—1)/(J —2)), because there are only J(J —1)/2 — 1 identifiable
variance—covariance parameters. This covariance parameterization may be useful for reducing the
number of covariance parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.
The column corresponding to the scale alternative has a one in the first row and zeros elsewhere.
If the covariance is differenced, the column corresponding to the scale alternative (differenced with
the base) has a one in the first row and zeros elsewhere.

noconstant suppresses the J — 1 alternative-specific constant terms.

basealternative (#|Ibl|str) specifies the alternative used to normalize the latent-variable location
(also referred to as the level of utility). The base alternative may be specified as a number, label,
or string. The standard deviation for the latent-variable error associated with the base alternative
is fixed to one, and its correlations with all other latent-variable errors are set to zero. The default
is the first alternative when sorted. If a fixed or pattern matrix is given in the stddev()
and correlation() options, the basealternative() will be implied by the fixed standard
deviations and correlations in the matrix specifications. basealternative() cannot be equal to
scalealternative().

scalealternative (#|Ibl|str) specifies the alternative used to normalize the latent-variable scale
(also referred to as the scale of utility). The scale alternative may be specified as a number,
label, or string. The default is to use the second alternative when sorted. If a fixed or pattern
matrix is given in the stddev() option, the scalealternative() will be implied by the
fixed standard deviations in the matrix specification. scalealternative() cannot be equal to
basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale
alternative are implied by the standard deviations and correlations in the matrix specifications, and
they need not be specified in the basealternative() and scalealternative() options.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

If specifying vce (bootstrap) or vce(jackknife), you must also specify basealternative ()
and scalealternative().

Reporting

level (#); see [R] estimation options.

notransform prevents retransforming the Cholesky-factored variance—covariance estimates to the
correlation and standard deviation metric.

This option has no effect if structural is not specified because the default differenced variance—
covariance estimates have no interesting interpretation as correlations and standard deviations.
notransform also has no effect if the correlation() and stddev() options are specified with
anything other than their default values. Here it is generally not possible to factor the variance—
covariance matrix, so optimization is already performed using the standard deviation and correlation
representations.

nocnsreport; see [R] estimation options.

display_options: cformat (% fint), pformat (% fmt), sformat (% fint), and nolstretch; see [R] es-
timation options.

Integration

intmethod (hammersley | halton | random) specifies the method of generating the point sets used in
the quasi—-Monte Carlo integration of the multivariate normal density. intmethod (hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and
intmethod(random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the quasi—-Monte Carlo integration. If
this option is not specified, the number of points is 50 x J if intmethod(hammersley) or
intmethod(halton) is used and 100 X J if intmethod(random) is used. Larger values of
intpoints() provide better approximations of the log likelihood, but at the cost of added
computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the
correlation between the sequences of each dimension. The default is 0. This option may not be
specified with intmethod (random).

intseed (code | #) specifies the seed to use for generating the uniform pseudorandom sequence. This
option may be specified only with intmethod(random). code refers to a string that records the
state of the random-number generator runiform(); see [R] set seed. An integer value # may
be used also. The default is to use the current seed value from Stata’s uniform random-number
generator, which can be obtained from c(seed).

antithetics specifies that antithetic draws be used. The antithetic draw for the J — 1 vector
uniform-random variables, x, is 1 — x.

nopivot turns off integration interval pivoting. By default, asmprobit will pivot the wider intervals
of integration to the interior of the multivariate integration. This improves the accuracy of the
quadrature estimate. However, discontinuities may result in the computation of numerical second-
order derivatives using finite differencing (for the Newton—Raphson optimize technique, tech(nr))
when few simulation points are used, resulting in a non—positive-definite Hessian. asmprobit
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uses the Broyden—Fletcher—Goldfarb—Shanno optimization algorithm, by default, which does not
require computing the Hessian numerically using finite differencing.

initbhhh (#) specifies that the Berndt—Hall-Hall-Hausman (BHHH) algorithm be used for the initial
# optimization steps. This option is the only way to use the BHHH algorithm along with other
optimization techniques. The algorithm switching feature of ml’s technique() option cannot
include bhhh.

favor (speed | space) instructs asmprobit to favor either speed or space when generating the
integration points. favor (speed) is the default. When favoring speed, the integration points are
generated once and stored in memory, thus increasing the speed of evaluating the likelihood. This
speed increase can be seen when there are many cases or when the user specifies a large number
of integration points, intpoints(#). When favoring space, the integration points are generated
repeatedly with each likelihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed
using intmethod(random) will vary slightly between favor (speed) and favor (space). This
is because the uniform sequences will not be identical, even when initiating the sequences using the
same uniform seed, intseed (code | #). For favor (speed), ncase blocks of intpoints(#) X
J — 2 uniform points are generated, where J is the maximum number of alternatives. For
favor(space), the column dimension of the matrices of points varies with the number of
alternatives that each case has.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@]Qg, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

The following options may be particularly useful in obtaining convergence with asmprobit:
difficult, technique (algorithm_spec), nrtolerance (#), nonrtolerance, and
from (init_specs) .

If technique () contains more than one algorithm specification, bhhh cannot be one of them. To
use the BHHH algorithm with another algorithm, use the initbhhh() option and specify the other
algorithm in technique().

Setting the optimization type to technique(bhhh) resets the default vcetype to vce (opg).

The following option is available with asmprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:

Introduction
Variance structures

Introduction

The MNP model is used with discrete dependent variables that take on more than two outcomes
that do not have a natural ordering. The stochastic error terms are assumed to have a multivariate
normal distribution that is heteroskedastic and correlated. Say that you have a set of J unordered
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alternatives that are modeled by a regression of both case-specific and alternative-specific covariates.
A “case” refers to the information on one decision maker. Underlying the model is the set of J latent
variables (utilities),

Nij = XiiB + zioy + &5 (1)
where ¢ denotes cases and j denotes alternatives. X;; is a 1 X p vector of alternative-specific variables,
B1is a p X 1 vector of parameters, z; is a 1 X g vector of case-specific variables, a; is a ¢ x 1 vector
of parameters for the jth alternative, and &; = (&;1,...,&;s) is distributed multivariate normal with
mean zero and covariance matrix £2. The decision maker selects the alternative whose latent variable
is highest.

Because the MNP model allows for a general covariance structure in §;;, it does not impose the
IIA property inherent in multinomial logistic and conditional logistic models. That is, the MNP model
permits the odds of choosing one alternative over another to depend on the remaining alternatives. For
example, consider the choice of travel mode between two cities: air, train, bus, or car, as a function
of the travel mode cost, travel time (alternative-specific variables), and an individual’s income (a
case-specific variable). The odds of choosing air travel over a bus may not be independent of the train
alternative because both bus and train travel are public ground transportation. That is, the probability
of choosing air travel is Pr(nair > Mbus, Mair > Merain, Jair > Mear), and the two events 7aiy > Nbus
and 7air > Ntrain May be correlated.

An alternative to MNP that will allow a nested correlation structure in &;; is the nested logit model
(see [R] nlogit).

The added flexibility of the MNP model does impose a significant computation burden because of
the need to evaluate probabilities from the multivariate normal distribution. These probabilities are
evaluated using simulation techniques because a closed-form solution does not exist. See Methods
and formulas for more information.

Not all the J sets of regression coefficients «; are identifiable, nor are all J(J + 1)/2 elements
of the variance—covariance matrix €2. As described by Train (2009, sec. 2.5), the model requires
normalization because both the location (level) and scale of the latent variable are irrelevant. Increasing
the latent variables by a constant does not change which 7);; is the maximum for decision maker i,
nor does multiplying them by a constant. To normalize location, we choose an alternative, indexed
by k, say, and take the difference between the latent variable k£ and the J — 1 others,

Vijk = Nij — Nik
= (xij — Xi) B+ zi(0 — ap) + &ij — Lin
=0/ B+ zivy + €
= Nijr + €50

(2)

where j' = jif j <kand j =j—1if j >k, sothat 5 =1,...,J — 1. One can now work with
the (J — 1) x (J — 1) covariance matrix 3 for €; = (€;1,...,€;,7-1). The kth alternative here
is the basealternative() in asmprobit. From (2), the probability that decision maker ¢ chooses
alternative k, for example, is

Pr(i chooses k) = Pr(vi1g <0,...,v;5-1% < 0)
=Pr(en < =ity h€,0-1 < —Xig—1)

To normalize for scale, one of the diagonal elements of Z(k) must be fixed to a constant. In
asmprobit, this is the error variance for the alternative specified by scalealternative(). Thus
there are a total of, at most, J(J —1)/2 —1 identifiable variance—covariance parameters. See Variance
structures below for more on this issue.



110 asmprobit — Alternative-specific multinomial probit regression

In fact, the model is slightly more general in that not all cases need to have faced all J alternatives.
The model allows for situations in which some cases chose among all possible alternatives, whereas
other cases were given a choice among a subset of them, and perhaps other cases were given a
choice among a different subset. The number of observations for each case is equal to the number
of alternatives faced.

The MNP model is often motivated using a random-utility consumer-choice framework. Equation
(1) represents the utility that consumer ¢ receives from good j. The consumer purchases the good for
which the utility is highest. Because utility is ordinal, all that matters is the ranking of the utilities
from the alternatives. Thus one must normalize for location and scale.

> Example 1

Application of MNP models is common in the analysis of transportation data. Greene (2012,
sec. 18.2.9) uses travel-mode choice data between Sydney and Melbourne to demonstrate estimating
parameters of various discrete-choice models. The data contain information on 210 individuals’
choices of travel mode. The four alternatives are air, train, bus, and car, with indices 1, 2, 3, and 4,
respectively. One alternative-specific variable is travelcost, a measure of generalized cost of travel
that is equal to the sum of in-vehicle cost and a wagelike measure times the amount of time spent
traveling. A second alternative-specific variable is the terminal time, termtime, which is zero for car
transportation. Household income, income, is a case-specific variable.

. use http://www.stata-press.com/data/ri12/travel

. list id mode choice travelcost termtime income in 1/12, sepby(id)

id mode choice travel~t termtime income

1. 1 air 0 70 69 35
2. 1 train 0 71 34 35
3. 1 bus 0 70 35 35
4. 1 car 1 30 0 35
5. 2 air 0 68 64 30
6. 2 train 0 84 44 30
7. 2 bus 0 85 53 30
8. 2 car 1 50 0 30
9. 3 air 0 129 69 40
10. 3 train 0 195 34 40
11. 3 bus 0 149 35 40
12. 3 car 1 101 0 40

The model of travel choice is
Mi; = Pitravelcost;; + Batermtime;; + oy jincome; + ag; + &;;
The alternatives can be grouped as air and ground travel. With this in mind, we set the air alternative

to be the basealternative() and choose train as the scaling alternative. Because these are the
first and second alternatives in the mode variable, they are also the defaults.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210
Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000
choice Coef . Std. Err. z P>|z| [95% Conf. Intervall
mode
travelcost -.00977 .0027834 -3.51  0.000 -.0152253  -.0043146
termtime -.0377095 .0094088 -4.01 0.000 -.0561504 -.0192686
air (base alternative)
train
income -.0291971 .0089246 -3.27 0.001 -.046689 -.0117052
_cons .5616376 .3946551 1.42 0.155 -.2118721 1.335147
bus
income -.0127503 .0079267 -1.61 0.108 -.0282863 .0027857
_cons -.0571364 .4791861 -0.12  0.905 -.9963239 .882051
car
income -.0049086 .0077486 -0.63 0.526 -.0200957 .0102784
_cons -1.833393 .8186156 -2.24 0.025 -3.43785  -.2289357
/1nl2_2 -.5502039 .3905204 -1.41  0.159 -1.31561 .2152021
/1n13_3 -.6005552 .3353292 -1.79 0.073 -1.257788 .0566779
/12_1 1.131518 .2124817 5.33 0.000 .7150612 1.547974
/13_1 .9720669 .2352116 4.13 0.000 .5110606 1.433073
/13_2 .5197214 .2861552 1.82 0.069 -.0411325 1.080575

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

. estimates store full

By default, the differenced covariance parameterization is used, so the covariance matrix for this
model is 3 X 3. There are two free variances to estimate and three correlations. To help ensure that the
covariance matrix remains positive definite, asmprobit uses the square root transformation, where it
optimizes on the Cholesky-factored variance—covariance. To ensure that the diagonal elements of the
Cholesky estimates remain positive, we use the log transformation. The estimates labeled /1nl12_2
and /1nl13_3 in the coefficient table are the log-transformed diagonal elements of the Cholesky
matrix. The estimates labeled /12_1, /13_1, and /13_2 are the off-diagonal entries for elements
(2,1), (3,1), and (3,2) of the Cholesky matrix.

Although the transformed parameters of the differenced covariance parameterization are difficult
to interpret, you can view them untransformed by using the estat command. Typing
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estat correlation

train bus car
train 1.0000
bus 0.8909 1.0000
car 0.7895 0.8951 1.0000

Note: correlations are for alternatives differenced with air

gives the correlations, and typing

. estat covariance

train bus car
train 2
bus 1.600208 1.613068
car 1.37471 1.399703 1.515884

Note: covariances are for alternatives differenced with air

gives the (co)variances.

We can reduce the number of covariance parameters in the model by using the factor model by
Cameron and Trivedi (2005). For large models with many alternatives, the parameter reduction can
be dramatic, but for our example we will use factor(1), a one-dimension factor model, to reduce
by 3 the number of parameters associated with the covariance matrix.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) factor(l)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210
Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 107.85
Log simulated-likelihood = -196.85094 Prob > chi2 = 0.0000
choice Coef. Std. Err. z P>|z| [95% Conf. Intervall
mode
travelcost -.0093696 .0036329 -2.58 0.010 -.01649  -.0022492
termtime -.0593173 .0064585 -9.18 0.000 -.0719757  -.0466589
air (base alternative)
train
income -.0373511 .0098219 -3.80 0.000 -.0566018 -.0181004
_cons .1092322 .3949529 0.28 0.782 -.6648613 .8833257
bus
income -.0158793 .0112239 -1.41  0.157 -.0378777 .0061191
_cons -1.082181 .4678732 -2.31 0.021 -1.999196 -.1651666
car
income .0042677 .0092601 0.46 0.645 -.0138817 .0224171
_cons -3.765445 .5540636 -6.80 0.000 -4.851389 -2.6795
/c1_2 1.182805 .3060299 3.86 0.000 .5829972 1.782612
/c1_3 1.227705 .3401237 3.61 0.000 .5610747 1.894335

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

The estimates labeled /c1_2 and /c1_3 in the coefficient table are the factor loadings. These factor
loadings produce the following differenced covariance estimates:

. estat covariance

train bus car

train 2
bus 1.182805 2.399027
car 1.227705 1.452135 2.507259

Note: covariances are for alternatives differenced with air

Variance structures

The matrix €2 has J(J+1)/2 distinct elements because it is symmetric. Selecting a base alternative,
normalizing its error variance to one, and constraining the correlations between its error and the other
errors reduces the number of estimable parameters by J. Moreover, selecting a scale alternative and
normalizing its error variance to one reduces the number by one, as well. Hence, there are at most
m = J(J —1)/2 — 1 estimable parameters in £2.
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In practice, estimating all m parameters can be difficult, so one must often place more restrictions on
the parameters. The asmprobit command provides the correlation() option to specify restrictions
on the J(J —3)/2 4 1 correlation parameters not already restricted as a result of choosing the base
alternatives, and it provides stddev() to specify restrictions on the J — 2 standard deviations not
already restricted as a result of choosing the base and scale alternatives.

When the structural option is used, asmprobit fits the model by assuming that all m
parameters can be estimated, which is equivalent to specifying correlation(unstructured) and
stddev(heteroskedastic). The unstructured correlation structure means that all J(J —3)/2 + 1
of the remaining correlation parameters will be estimated, and the heteroskedastic specification means
that all J — 2 standard deviations will be estimated. With these default settings, the log likelihood is
maximized with respect to the Cholesky decomposition of €2, and then the parameters are transformed
to the standard deviation and correlation form.

The correlation(exchangeable) option forces the J(J — 3)/2 4+ 1 correlation parameters
to be equal, and correlation(independent) forces all the correlations to be zero. Using the
stddev (homoskedastic) option forces all J standard deviations to be one. These options may help
in obtaining convergence for a model if the default options do not produce satisfactory results. In
fact, when fitting a complex model, it may be advantageous to first fit a simple one and then proceed
with removing the restrictions one at a time.

Advanced users may wish to specify alternative variance structures of their own choosing, and the
next few paragraphs explain how to do so.

correlation(pattern matname) allows you to give the name of a J x J matrix that identifies
a correlation structure. Sequential positive integers starting at 1 are used to identify each correlation
parameter: if there are three correlation parameters, they are identified by 1, 2, and 3. The integers
can be repeated to indicate that correlations with the same number should be constrained to be equal.
A zero or a missing value (.) indicates that the correlation is to be set to zero. asmprobit considers
only the elements of the matrix below the main diagonal.

Suppose that you have a model with four alternatives, numbered 1-4, and alternative 1 is the
base. The unstructured and exchangeable correlation structures identified in the 4 X 4 lower triangular
matrices are

unstructured exchangeable
1 2 3 4 1 2 3 4
1 /- 1 /-
210 - 210 -
310 1 - 310 1
4\0 2 3 4\0 1 1

asmprobit labels these correlation structures unstructured and exchangeable, even though the correla-
tions corresponding to the base alternative are set to zero. More formally: these terms are appropriate
when considering the (J — 1) x (J — 1) submatrix 3, defined in the Introduction above.

You can also use the correlation(fixed matname) option to specify a matrix that specifies
fixed and free parameters. Here the free parameters (those that are to be estimated) are identified by
a missing value, and nonmissing values represent correlations that are to be taken as given. Below
is a correlation structure that would set the correlations of alternative 1 to be 0.5:

1 2 3 4
1 .
2105
3105
4 \0.5
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The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

To specify the structure of the standard deviations—the diagonal elements of £2—you can use the
stddev (pattern matname) option, where matname is a 1 X J matrix. Sequential positive integers
starting at 1 are used to identify each standard deviation parameter. The integers can be repeated to
indicate that standard deviations with the same number are to be constrained to be equal. A missing
value indicates that the corresponding standard deviation is to be set to one. In the four-alternative
example mentioned above, suppose that you wish to set the first and second standard deviations to
one and that you wish to constrain the third and fourth standard deviations to be equal; the following
pattern matrix will do that:

1 2 3 4

L (- - 1 1)
Using the stddev(fixed matname) option allows you to identify the fixed and free standard
deviations. Fixed standard deviations are entered as positive real numbers, and free parameters are

identified with missing values. For example, to constrain the first and second standard deviations to
equal one and to allow the third and fourth to be estimated, you would use this fixed matrix:

123 4
L(r 1 - )

When supplying either the pattern or the fixed matrices, you must ensure that the model is
properly scaled. At least two standard deviations must be constant for the model to be scaled. A
warning is issued if asmprobit detects that the model is not scaled.

The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

> Example 2

In example 1, we used the differenced covariance parameterization, the default. We now use
the structural option to view the J — 2 standard deviation estimates and the (J — 1)(J —2)/2
correlation estimates. Here we will fix the standard deviations for the air and train alternatives to
1 and the correlations between air and the rest of the alternatives to 0.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) structural

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210
Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000
choice Coef . Std. Err. z P>|z| [95% Conf. Intervall
mode
travelcost -.0097703 .0027834 -3.51  0.000 -.0152257  -.0043149
termtime -.0377103 .0094092 -4.01 0.000 -.056152  -.0192687
air (base alternative)
train
income -.0291975 .0089246 -3.27 0.001 -.0466895 -.0117055
_cons .5616448 .3946529 1.42 0.155 -.2118607 1.33515
bus
income -.01275 .0079266 -1.61 0.108 -.0282858 .0027858
_cons -.0571664 .4791996 -0.12  0.905 -.9963803 .8820476
car
income -.0049085 .0077486 -0.63 0.526 -.0200955 .0102785
_cons -1.833444 .8186343 -2.24 0.025 -3.437938 -.22895
/1nsigma3 -.2447428 .4953363 -0.49 0.621 -1.215584 . 7260985
/lnsigma4 -.3309429 .6494493 -0.51 0.610 -1.60384 .9419543
/atanhr3_2 1.01193 .3890994 2.60 0.009 .249309 1.774551
/atanhr4_2 .5786576 .3940461 1.47 0.142 -.1936586 1.350974
/atanhr4_3 .8885204 .5600561 1.59 0.113 -.2091693 1.98621
sigmal 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 . 7829059 .3878017 .2965368 2.067
sigmad .7182462 .4664645 .2011227 2.564989
rho3_2 . 766559 .1604596 .244269 .9441061
rho4_2 .5216891 .2868027 -.1912734 .874283
rho4_3 .7106622 .277205 -.2061713 .9630403

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

When comparing this output to that of example 1, we see that we have achieved the same log
likelihood. That is, the structural parameterization using air as the base alternative and train as
the scale alternative applied no restrictions on the model. This will not always be the case. We leave
it up to you to try different base and scale alternatives, and you will see that not all the different
combinations will achieve the same log likelihood. This is not true for the differenced covariance
parameterization: it will always achieve the same log likelihood (and the maximum possible likelihood)
regardless of the base and scale alternatives. This is why it is the default parameterization.
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For an exercise, we can compute the differenced covariance displayed in example 1 by using the
following ado-code.

. estat covariance

air train bus car
air 1
train 0 1
bus 0 .6001436 .6129416
car 0 .3747012 .399619 .5158776

. return list

matrices:
r(cov) : 4 x4

. matrix cov = r(cov)

. matrix M = (1,-1,0,0 \ 1,0,-1,0 \ 1,0,0,-1)
. matrix covl = Mxcov*M’

. matrix list covl

symmetric covi[3,3]
rl r2 r3
rl 2
r2 1.6001436 1.6129416
r3 1.3747012 1.399619 1.5158776

The slight difference in the regression coefficients between the example 1 and example 2 coefficient
tables reflects the accuracy of the [M-5] ghk() algorithm using 200 points from the Hammersley
sequence.

We now fit the model using the exchangeable correlation matrix and compare the models with a
likelihood-ratio test.



118 asmprobit — Alternative-specific multinomial probit regression

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(exchangeable)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210
Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 53.60
Log simulated-likelihood = -190.4679 Prob > chi2 = 0.0000
choice Coef . Std. Err. z P>|z| [95% Conf. Intervall
mode
travelcost -.0084636 .0020452 -4.14  0.000 -.012472  -.0044551
termtime -.0345394 .0072812 -4.74 0.000 -.0488103  -.0202684
air (base alternative)
train
income -.0290357 .0083226 -3.49 0.000 -.0453477 -.0127237
_cons .5517445 .3719913 1.48 0.138 -.177345 1.280834
bus
income -.0132562 .0074133 -1.79 0.074 -.0277859 .0012735
_cons -.0052517 .4337932 -0.01  0.990 -.8554708 .8449673
car
income -.0060878 .006638 -0.92 0.359 -.0190981 .0069224
_cons -1.565918 .6633007 -2.36 0.018 -2.865964 -.265873
/1nsigmaP1 -.3557589 .1972809 -1.80 0.071 -.7424222 .0309045
/1lnsigmaP2 -1.308596 .8872957 -1.47 0.140 -3.047663 .4304719
/atanhrP1 1.116589 .3765488 2.97 0.003 .3785667 1.854611
sigmal 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7006416 .1382232 .4759596 1.031387
sigmad .2701992 .2397466 .0474697 1.537983
rho3_2 .8063791 .131699 .3614621 .9521783
rho4_2 .8063791 .131699 .3614621 .9521783
rho4_3 .8063791 .131699 .3614621 .9521783
(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)
. lrtest full .
Likelihood-ratio test LR chi2(2) = 0.75
(Assumption: . nested in full) Prob > chi2 = 0.6882

The likelihood-ratio test suggests that a common correlation is a plausible hypothesis, but this could
be an artifact of the small sample size. The labeling of the standard deviation and correlation estimates
has changed from /1nsigma and /atanhr, in the previous example, to /1lnsigmaP and /atanhrP.
The “P” identifies the parameter’s index in the pattern matrices used by asmprobit. The pattern
matrices are saved in e(stdpattern) and e(corpattern). q
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Q Technical note

Another way to fit the model with the exchangeable correlation structure in example 2 is to use
the constraint command to define the constraints on the rho parameters manually and then apply
those.

. constraint 1 [atanhr3_2]_cons = [atanhr4_2]_cons
. constraint 2 [atanhr3_2]_cons = [atanhr4_3]_cons

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) constraints(l 2) structural

With this method, however, we must keep track of what parameterization of the rhos is used in
estimation, and that depends on the options specified.
Q

> Example 3

In the last example, we used the correlation(exchangeable) option, reducing the number
of correlation parameters from three to one. We can explore a two—correlation parameter model
by specifying a pattern matrix in the correlation() option. Suppose that we wish to have the
correlation between train and bus be equal to the correlation between bus and car and to have the
standard deviations for the bus and car equations be equal. We will use air as the base category and
train as the scale category.

. matrix define corpat = J(4, 4, .)

. matrix corpat[3,2] =1
. matrix corpat[4,3] =1
. matrix corpat[4,2] = 2

. matrix define stdpat = J(1, 4, .)
. matrix stdpat[1,3] =1
. matrix stdpat[1,4] = 1

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(pattern corpat) stddev(pattern stdpat)

Iteration O: log simulated-likelihood = -201.33896

Iteration 1 log simulated-likelihood = -201.00457 (backed up)
Iteration 2: log simulated-likelihood = -200.80208 (backed up)
Iteration 3: log simulated-likelihood = -200.79758 (backed up)
Iteration 4: log simulated-likelihood = -200.55655 (backed up)
Iteration 5: log simulated-likelihood = -200.5421 (backed up)
Iteration 6: log simulated-likelihood = -196.24925

(output omitted )
Iteration 20: log simulated-likelihood = -190.12874
Iteration 21: 1log simulated-likelihood = -190.12871
Iteration 22: log simulated-likelihood = -190.12871

Alternative-specific multinomial probit Number of obs = 840

Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley

Integration points: 200 Wald chi2(5) = 41.67

Log simulated-likelihood = -190.12871 Prob > chi2 0.0000
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choice Coef. Std. Err. z P>zl [95% Conf. Intervall]
mode
travelcost -.0100335 .0026203 -3.83 0.000 -.0151692 -.0048979
termtime -.0385731 .008608 -4.48 0.000 -.0554445 -.0217018
air (base alternative)
train
income -.029271 .0089739 -3.26 0.001 -.0468595 -.0116824
_cons .56528 .4008037 1.41 0.158 -.2202809 1.350841
bus
income -.0124658 .0080043 -1.56 0.119 -.0281539 .0032223
_cons -.0741685 .4763422 -0.16 0.876 -1.007782 .859445
car
income -.0046905 .0079934 -0.59 0.557 -.0203573 .0109763
_cons -1.897931 .7912106 -2.40 0.016 -3.448675 -.3471867
/1nsigmaP1 -.197697 .2751269 -0.72 0.472 -.7369359 .3415418
/atanhrP1 .9704403 .3286981 2.95 0.003 .3262038 1.614677
/atanhrP2 .5830923 .3690419 1.58 0.114 -.1402165 1.306401
sigmal 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .8206185 .2257742 .4785781 1.407115
sigma4d .8206185 .2257742 .4785781 1.407115
rho3_2 . 7488977 .1443485 .3151056 .9238482
rho4_2 .5249094 .2673598 -.1393048 .863362
rho4_3 . 7488977 .1443485 .3151056 .9238482

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

In the call to asmprobit, we did not need to specify the basealternative() and scalealter-
native() options because they are implied by the specifications of the pattern matrices.

N

Q Technical note

If you experience convergence problems, try specifying nopivot, increasing intpoints(),
specifying antithetics, specifying technique(nr) with difficult, or specifying a switching
algorithm in the technique() option. As a last resort, you can use the nrtolerance() and
showtolerance options. Changing the base and scale alternative in the model specification can also
affect convergence if the structural option is used.

Because simulation methods are used to obtain multivariate normal probabilities, the estimates
obtained have a limited degree of precision. Moreover, the solutions are particularly sensitive to the
starting values used. Experimenting with different starting values may help in obtaining convergence,
and doing so is a good way to verify previous results.

If you wish to use the BHHH algorithm along with another maximization algorithm, you must
specify the initbhhh (#) option, where # is the number of BHHH iterations to use before switching
to the algorithm specified in technique (). The BHHH algorithm uses an outer-product-of-gradients
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approximation for the Hessian, and asmprobit must perform the gradient calculations differently
than for the other algorithms.
a

Q Technical note

If there are no alternative-specific variables in your model, the variance—covariance matrix pa-
rameters are not identifiable. For such a model to converge, you would therefore need to use cor-
relation(independent) and stddev(homoskedastic). A better alternative is to use mprobit,
which is geared specifically toward models with only case-specific variables. See [R] mprobit.

a

Saved results

asmprobit saves the following in e():

Scalars
e(N) number of observations
e(N_case) number of cases
e(k) number of parameters
e(k_alt) number of alternatives

e(k_indvars)
e(k_casevars)

number of alternative-specific variables
number of case-specific variables

e(k_sigma) number of variance estimates

e(k—rho) number of correlation estimates

e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(df_m) model degrees of freedom

e(11) log simulated-likelihood

e(N_clust) number of clusters

e(const) constant indicator

e(i_base) base alternative index

e(i_scale)
e(mc_points)
e (mc_burn)

e(mc_antithetics)

scale alternative index

number of Monte Carlo replications
starting sequence index

antithetics indicator

e(chi2) x2

e(p) significance

e(fullcov) unstructured covariance indicator
e(structcov) 1 if structured covariance; O otherwise
e(cholesky) Cholesky-factored covariance indicator
e(alt_min) minimum number of alternatives
e(alt_avg) average number of alternatives
e(alt_max) maximum number of alternatives
e(rank) rank of e(V)

e(ic) number of iterations

e(rc) return code

e(converged)

1 if converged, O otherwise
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Macros

e(cmd)
e(cmdline)
e(depvar)
e(indvars)
e(casevars)
e(case)
e(altvar)
e(altegs)
e(alt#)
e(wtype)

e (wexp)
e(title)
e(clustvar)
e(correlation)
e(stddev)
e(cov_class)
e(chi2type)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(mc_method)
e(mc_seed)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(mfx_dlg)
e(predict)
e(marginsnotok)

Matrices

e(b)

e(Cns)

e(stats)
e(stdpattern)
e(stdfixed)
e(altvals)
e(altfreq)
e(alt_casevars)
e(corpattern)
e(corfixed)

asmprobit

command as typed

name of dependent variable
alternative-specific independent variable
case-specific variables

variable defining cases

variable defining alternatives

alternative equation names

alternative labels

weight type

weight expression

title in estimation output

name of cluster variable

correlation structure

variance structure

class of the covariance structure

Wald, type of model x? test

veetype specified in vce ()

title used to label Std. Err.

type of optimization

max or min; whether optimizer is to perform maximization or minimization
type of ml method

technique used to generate sequences
random-number generator seed

name of likelihood-evaluator program
maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement estat mfx dialog
program used to implement predict
predictions disallowed by margins

coefficient vector

constraints matrix

alternative statistics

variance pattern

fixed and free standard deviations

alternative values

alternative frequencies

indicators for estimated case-specific coefficients—e (k_alt) xe(k_casevars)
correlation structure

fixed and free correlations

e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e (V_modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas

asmprobit is implemented as an ado-file.

The simulated maximum likelihood estimates for the MNP are obtained using ml; see [R] ml.
The likelihood evaluator implements the GHK algorithm to approximate the multivariate distribution
function (Geweke 1989; Hajivassiliou and McFadden 1998; Keane and Wolpin 1994). The technique
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is also described in detail by Genz (1992), but Genz describes a more general algorithm where both
lower and upper bounds of integration are finite. We briefly describe the GHK simulator and refer you
to Bolduc (1999) for the score computations.

As discussed earlier, the latent variables for a .J-alternative model are 7;; = X;;8 + z;a; + &;5,
forj=1,....,J,i=1,...,n,and & = (& 1,...,&.5) ~ MVN(0,£2). The experimenter observes
alternative k for the ith observation if k = arg max(n;;,j = 1,...,J). Let

Vigr = Mij — MNik
= (xij — Xik) B+ zi(aj — k) + &5 — in
=0/ B+ 2y + €ijr

where j/ = j if j < kand 7/ = j—1if j > k, so that 5/ = 1,...,J — 1. Further, ¢; =
(€i1y- -+, €:,3-1) ~ MYN(0, X)) X is indexed by k because it depends on the choice made. We
denote the deterministic part of the model as A;j» = &;;/3 + z;7;, and the probability of this event
is
Pr(y, = k) =Pr(vin <0,...,v, -1 <0)
=Pr(ein < =ity €60-1 < —Nig-1)

. (3)
’Ll i,J—1
_ (2m)" V2 |5 | 1/2/ / eXp /S )dz

Simulated likelihood

For clarity in the discussion that follows, we drop the index denoting case so that for an arbitrary
observation v/ = (vy,...,v5_1), X' = (A1,...,As_1), and € = (€1,...,€51).

The Cholesky-factored variance—covariance, 3 = LL/, is lower triangular,

l11 0 0

l21 122 “ o 0

L= : : :
li—ia ly—i2 oo lj—1,0-1

and the correlated latent-variable errors can be expressed as linear functions of uncorrelated normal
variates, € = L(, where ¢/ = ((1,...,{y—1) and (; ~ iid N(0, 1). We now have v = A + L(, and
by defining

A1

I
NI LG

Ljj

for j =1

(4)

Zj:
forj=2,....,J—1

we can express the probability statement (3) as the product of conditional probabilities

Pr(yi=k)=Pr((1 <2z21)Pr(Ge <2z | G <21)- -
Pr(Cjo1<zjo1 |G <z,....00—2 < zj_2)
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because
Pr(v; <0) =Pr(A1 + 111G <0)

= Pr <C1 < )\1)
l11

Pr(ve <0) = Pr(A2 +l21G1 + 12262 < 0)

:Pr<(2 )\2-;121@‘( <_);11)

The Monte Carlo algorithm then must make draws from the truncated standard normal distribution.
It does so by generating J — 1 uniform variates, d;,7 = 1,...,J — 1, and computing

{5@( Al)} for j =1
~ I
G = _)\__24'711__5
O35 1 11:1 720 for j=2,...,J—1
Ji

Define z; by replacing @ for (; in (4) so that the simulated probability for the [th draw is

J—1
n=[]2E)
=1

To increase accuracy, the bounds of integration, A, are ordered so that the largest integration intervals
are on the inside. The rows and columns of the variance—covariance matrix are pivoted accordingly
(Genz 1992).

For a more detailed description of the GHK algorithm in Stata, see Gates (2000).

Repeated draws are made, say, IV, and the simulated likelihood for the ith case, denoted Zi, is

computed as
1
N > m
=1

The overall simulated log likelihood is ), log EZ

If the true likelihood is L;, the error bound on the approximation can be expressed as
|Li — Li| < V(Li)Dn{(6:)}

where V' (L;) is the total variation of L; and D is the discrepancy, or nonuniformity, of the set of ab-

scissas. For the uniform pseudorandom sequence, §;, the discrepancy is of order O{ (log log N/N)'/?}.
The order of discrepancy can be improved by using quasirandom sequences.

Quasi—-Monte Carlo integration is carried out by asmprobit by replacing the uniform deviates
with either the Halton or the Hammersley sequences. These sequences spread the points more evenly
than the uniform random sequence and have a smaller order of discrepancy, O [{(log N)’/~*}/N]|
and O [{(log N)”~2}/N], respectively. The Halton sequence of dimension .J — 1 is generated from
the first J — 1 primes, p, so that on draw [ we have h; = {ry, (1), 7p,(1),...,7p,_,({)}, where
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(1) =Y bi(Dp” ™ € (0,1)
j=0

is the radical inverse function of [ with base py so that Z?:o bjk(l)pi =1, where p{ <1< pZH
(Fang and Wang 1994).

This function is demonstrated with base ps = 5 and [ = 33, which generates 75 (33). Here ¢ = 2,
b0’3(33) =3, b175(33) =1, and b2’5(33) =1, so that 7‘5(33) = 3/5 + 1/25 + 1/625.

The Hammersley sequence uses an evenly spaced set of points with the first J — 2 components
of the Halton sequence

2l -1
hl = {2]\[7’!’1,1 (l)7rp2(l)7 e 7rp.72(l)}

fori=1,...,N.
For a more detailed description of the Halton and Hammersley sequences, see Drukker and
Gates (2006).

Computations for the derivatives of the simulated likelihood are taken from Bolduc (1999). Bolduc
gives the analytical first-order derivatives for the log of the simulated likelihood with respect to
the regression coefficients and the parameters of the Cholesky-factored variance—covariance matrix.
asmprobit uses these analytical first-order derivatives and numerical second-order derivatives.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce (robust) and vce(cluster clustvar). See [P] _robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce (robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.
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[R] asmprobit postestimation — Postestimation tools for asmprobit
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[R] mprobit — Multinomial probit regression

[U] 20 Estimation and postestimation commands
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Title

asmprobit postestimation — Postestimation tools for asmprobit

Description

The following postestimation commands are of special interest after asmprobit:

Command Description

estat alternatives alternative summary statistics

estat covariance
estat correlation

estat facweights covariance factor weights matrix
estat mfx marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

nlcom point estimates, standard errors, testing, and inference for nonlinear

predict predicted probabilities, estimated linear predictor and its standard error

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

combinations of coefficients

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample
and provides a mapping between the index numbers that label the covariance parameters of the model

and their associated values and labels for the alternative variable.

in

estat covariance computes the estimated variance—covariance matrix of the latent-variable
errors for the alternatives. The estimates are displayed, and the variance—covariance matrix is stored

r(cov).

estat correlation computes the estimated correlation matrix of the latent-variable errors for
the alternatives. The estimates are displayed, and the correlation matrix is stored in r(cor).
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covariance matrix of the latent-variable errors for the alternatives
correlation matrix of the latent-variable errors for the alternatives
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estat facweights displays the covariance factor weights matrix and stores it in r(C).

estat mfx computes the simulated probability marginal effects.

Syntax for predict
predict [type] newvar [lf] [m] [, statistic altwise}

predict [rype] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
pr probability alternative is chosen; the default
xb linear prediction
stdp standard error of the linear prediction
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

pr, the default, calculates the probability that alternative j is chosen in case <.
xb calculates the linear prediction X;;3 + z;c; for alternative j and case 1.
stdp calculates the standard error of the linear predictor.

altwise specifies that alternativewise deletion be used when marking out observations due to missing

values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

scores calculates the scores for each coefficient in e (b). This option requires a new variable list of
length equal to the number of columns in e (b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.

Syntax for estat alternatives

estat alternatives

Menu

Statistics > Postestimation > Reports and statistics
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Syntax for estat covariance

estat covariance [, format (% fimt) border (bspec) left(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat covariance

format (% fint) sets the matrix display format. The default is format (%9.0g).
border (bspec) sets the matrix display border style. The default is border (all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft(2). See [P] matlist.

Syntax for estat correlation

estat correlation [, format (% fint) border (bspec) left(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat correlation

format (% fint) sets the matrix display format. The default is format (%9.4f).
border (bspec) sets the matrix display border style. The default is border (all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft (2). See [P] matlist.

Syntax for estat facweights

estat facweights [, format (% fint) border (bspec) 1eft(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat facweights

format (% fint) sets the matrix display format. The default is format (%9.0f).
border (bspec) sets the matrix display border style. The default is border (all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft (2). See [P] matlist.
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Syntax for estat mfx

estat mfx [lf] [in] [, options]

options Description
Main
varlist (varlist) display marginal effects for varlist

at (mean [azlist] | median [azlist]) calculate marginal effects at these values

Options
level (#) set confidence interval level; default is 1level (95)
nodiscrete treat indicator variables as continuous
noesample do not restrict calculation of means and medians to the
estimation sample
nowght ignore weights when calculating means and medians
Menu

Statistics > Postestimation > Reports and statistics

Options for estat mfx
Main

varlist (varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at (mean [atlist] | median [atlist]) specifies the values at which the marginal effects are to be
calculated. atlist is

Halternative:variable = #] [variable = #] [ H

The default is to calculate the marginal effects at the means of the independent variables at the
estimation sample, at (mean).

After specifying the summary statistic, you can specify a series of specific values for variables.
You can specify values for alternative-specific variables by alternative, or you can specify one
value for all alternatives. You can specify only one value for case-specific variables. For example,
in the travel dataset, income is a case-specific variable, whereas termtime and travelcost
are alternative-specific variables. The following would be a legal syntax for estat mfx:

. estat mfx, at(mean air:termtime=50 travelcost=100 income=60)

When nodiscrete is not specified, at (mean [atlist]) or at (median [atlist]) has no effect on
computing marginal effects for indicator variables, which are calculated as the discrete change in
the simulated probability as the indicator variable changes from 0 to 1.

The mean and median computations respect any if and in qualifiers, so you can restrict the data
over which the means or medians are computed. You can even restrict the values to a specific
case; for example,

. estat mfx if case==21

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
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nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value O or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from O to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asmprobit command.

nowght specifies that weights be ignored when calculating the means or medians.

Remarks
Remarks are presented under the following headings:
Predicted probabilities

Obtaining estimation statistics
Obtaining marginal effects

Predicted probabilities

After fitting an alternative-specific multinomial probit model, you can use predict to obtain the
simulated probabilities that an individual will choose each of the alternatives. When evaluating the
multivariate normal probabilities via Monte Carlo simulation, predict uses the same method to
generate the random sequence of numbers as the previous call to asmprobit. For example, if you
specified intmethod (Halton) when fitting the model, predict also uses the Halton sequence.

> Example 1

In example 1 of [R] asmprobit, we fit a model of individuals’ travel-mode choices. We can obtain
the simulated probabilities that an individual chooses each alternative by using predict:

. use http://www.stata-press.com/data/r12/travel

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income)

(output omitted )

. predict prob
(option pr assumed; Pr(mode))

. list id mode prob choice in 1/12, sepby(id)

id mode prob choice

1. 1 air .1494137 0
2. 1 train .329167 0
3. 1 bus .1320298 0
4. 1 car .3898562 1
5. 2 air .2565875 0
6. 2 train .2761054 0
7. 2 bus .0116135 0
8. 2 car .4556921 1
9. 3 air .2098406 0
10. 3  train .1081824 0
11. 3 bus .1671841 0
12. 3 car .5147822 1
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Obtaining estimation statistics

Once you have fit a multinomial probit model, you can obtain the estimated variance or correlation
matrices for the model alternatives by using the estat command.
> Example 2

To display the correlations of the errors in the latent-variable equations, we type

. estat correlation

train bus car
train 1.0000
bus 0.8909 1.0000
car 0.7895 0.8951 1.0000

Note: correlations are for alternatives differenced with air

The covariance matrix can be displayed by typing

. estat covariance

train bus car
train 2
bus 1.600208 1.613068
car 1.37471 1.399703 1.515884

Note: covariances are for alternatives differenced with air

Obtaining marginal effects

The marginal effects are computed as the derivative of the simulated probability for an alternative
with respect to an independent variable. A table of marginal effects is displayed for each alternative,
with the table containing the marginal effect for each case-specific variable and the alternative for
each alternative-specific variable.

By default, the marginal effects are computed at the means of each continuous independent variable
over the estimation sample. For indicator variables, the difference in the simulated probability evaluated
at 0 and 1 is computed by default. Indicator variables will be treated as continuous variables if the
nodiscrete option is used.

> Example 3

Continuing with our model from example 1, we obtain the marginal effects for alternatives air,
train, bus, and car evaluated at the mean values of each independent variable. Recall that the
travelcost and termtime variables are alternative specific, taking on different values for each
alternative, so they have a separate marginal effect for each alternative.
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. estat mfx

Pr(choice = air) = .29434926

variable dp/dx  Std. Err. z P>lz| [ 95% C.I. 1 X
travelcost
air -.002688 .000677 -3.97 0.000 -.004015 -.001362 102.65
train .0009 .000436 2.07 0.039 .000046 .001755 130.2
bus .000376 .000271 1.39 0.166 -.000155 .000908 115.26
car .001412 .00051 2.77 0.006 .000412 .002412 95.414
termtime
air -.010376 .002711 -3.83 0.000 -.015689 -.005063 61.01
train .003475 .001639 2.12 0.034 .000264 .006687 35.69
bus .001452 .001008 1.44 0.150 -.000523 .003427 41.657
car .005449 .002164 2.52 0.012 .001209 .00969 0
casevars
income .003891 .001847 2.11 0.035 .000271 .007511 34.548
Pr(choice = train) = .29531182
variable dp/dx  Std. Err. P>lz| [ 95% C.I. ] X
travelcost
air .000899 .000436 2.06 0.039 .000045 .001753 102.65
train -.004081 .001466 -2.78 0.005 -.006953 -.001208 130.2
bus .001278 .00063 2.03 0.042 .000043 .002513 115.26
car .001904 .000887 2.15 0.032 .000166 .003641 95.414
termtime
air .003469 .001638 2.12 0.034 .000258 .00668 61.01
train -.01575 .00247 -6.38 0.000 -.020591 -.010909 35.69
bus .004934 .001593 3.10 0.002 .001812 .008056 41.657
car .007348 .002228 3.30 0.001 .00298 .011715 0
casevars
income -.00957 .002223 -4.31 0.000 -.013927 -.005214 34.548
Pr(choice = bus) = .08880039
variable dp/dx  Std. Err. P>lz|l [ 95% C.I. ] X
travelcost
air .00038 .000274 1.39 0.165 -.000157 .000916 102.65
train .001279 .00063 2.03 0.042 .000044 .002514 130.2
bus -.003182 .001175 -2.71 0.007 -.005485 -.00088 115.26
car .001523 .000675 2.26 0.024 .0002 .002847 95.414
termtime
air .001466 .001017 1.44 0.149 -.000526 .003459 61.01
train .004937 .001591 3.10 0.002 .001819 .008055 35.69
bus -.012283 .002804 -4.38 0.000 -.017778 -.006788 41.657
car .00588 .002255 2.61 0.009 .001461 .010299 0
casevars
income .000435 .001461 0.30 0.766 -.002428 .003298 34.548
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Pr(choice = car) = .32168607

variable dp/dx  Std. Err. z P>lzl [ 95% C.I. 1 X
travelcost
air .00141 .000509 2.77 0.006 .000411 .002408 102.65
train .001903 .000886 2.15 0.032 .000166 .003641 130.2
bus .001523 .000675 2.25 0.024 .000199 .002847 115.26
car -.004836 .001539 -3.14 0.002 -.007853 -.001819 95.414
termtime
air .005441 .002161 2.52 0.012 .001205 .009677 61.01
train .007346 .002228 3.30 0.001 .00298 .011713 35.69
bus .005879 .002256 2.61 0.009 .001456 .010301 41.657
car -.018666 .003938 -4.74 0.000 -.026385 -.010948 0
casevars
income .005246 .002166 2.42 0.015 .001002 .00949 34.548

First, we note that there is a separate marginal effects table for each alternative and that table
begins by reporting the overall probability of choosing the alternative, for example, 0.2944 for air
travel. We see in the first table that a unit increase in terminal time for air travel from 61.01 minutes
will result in a decrease in probability of choosing air travel (when the probability is evaluated at the
mean of all variables) by approximately 0.01, with a 95% confidence interval of about —0.016 to
—0.005. Travel cost has a less negative effect of choosing air travel (at the average cost of 102.65).
Alternatively, an increase in terminal time and travel cost for train, bus, or car from these mean values
will increase the chance for air travel to be chosen. Also, with an increase in income from 34.5, it
would appear that an individual would be more likely to choose air or automobile travel over bus or
train. (While the marginal effect for bus travel is positive, it is not significant.)

4

> Example 4

Plotting the simulated probability marginal effect evaluated over a range of values for an independent
variable may be more revealing than a table of values. Below are the commands for generating the
simulated probability marginal effect of air travel for increasing air travel terminal time. We fix all
other independent variables at their medians.

. qui gen meff = .

. qui gen tt = .

. qui gen 1b = .

. qui gen ub = .

. forvalues i=0/19 {

2. local termtime = 5+5%‘i’

3. qui replace tt = ‘termtime’ if _n == ‘i’+1

4. qui estat mfx, at(median air:termtime=‘termtime’) var(termtime)
5. mat air = r(air)

6. qui replace meff = air[1,1] if _n == ‘i’+1

7. qui replace 1b = air[1,5] if _n == ‘i’+1

8. qui replace ub = air[1,6] if _n == ‘i’+1

9. qui replace prob = r(pr_air) if _n == ‘i’+1

10. }

. label variable tt "terminal time"
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. twoway (rarea 1lb ub tt, pstyle(ci)) (line meff tt, lpattern(solid)), name(meff)
> legend(off) title(" marginal effect of air travel" "terminal time and"
> "95% confidence interval", position(3))

" "air travel",

. twoway line prob tt, name(prob) title(" probability of choosing
> position(3)) graphregion(margin(r+9)) ytitle("") xtitle("")

. graph combine prob meff, cols(l) graphregion(margin(l+5 r+5))
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From the graphs, we see that the simulated probability of choosing air travel decreases in an
sigmoid fashion. The marginal effects display the rate of change in the simulated probability as a
function of the air travel terminal time. The rate of change in the probability of choosing air travel
decreases until the air travel terminal time reaches about 45; thereafter, it increases.

d
Saved results

estat mfx saves the following in r():
Scalars

r(pr_alt) scalars containing the computed probability of each alternative evaluated at the value that is

labeled X in the table output. Here ait are the labels in the macro e(altegs).

Matrices

r(alt) matrices containing the computed marginal effects and associated statistics. There is one matrix

for each alternative, where alt are the labels in the macro e(alteqgs). Column 1 of each
matrix contains the marginal effects; column 2, their standard errors; columns 3 and 4,
their z statistics and the p-values for the z statistics; and columns 5 and 6, the confidence
intervals. Column 7 contains the values of the independent variables used to compute the
probabilities r (pr_alt).
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Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Marginal effects

The marginal effects are computed as the derivative of the simulated probability with respect to each
independent variable. A set of marginal effects is computed for each alternative; thus, for J alternatives,
there will be J tables. Moreover, the alternative-specific variables will have .J entries, one for each
alternative in each table. The details of computing the effects are different for alternative-specific
variables and case-specific variables, as well as for continuous and indicator variables.

We use the latent-variable notation of asmprobit (see [R] asmprobit) for a J-alternative model
and, for notational convenience, we will drop any subscripts involving observations. We then have
the following linear functions 7; = x;8 + zay, for j = 1,...,J. Let k index the alternative of
interest, and then

Vi =15 = Mk
= (xj —xk)B+z(a; — o) + €
where j' = jif j < kand j' = j—1if j >k, so that 5 =1,...,J — 1 and €;; ~ MVN(0, ).
Denote pp = Pr(v; < 0,...,v5-1 < 0) as the simulated probability of choosing alternative k
given profile x5 and z. The marginal effects are then Jpy/0xy, Opr/0x;, and Opy/0z, where
k=1,...,J, j # k. asmprobit analytically computes the first-order derivatives of the simulated

probability with respect to the v’s, and the marginal effects for x’s and z are obtained via the chain
rule. The standard errors for the marginal effects are computed using the delta method.

Also see

[R] asmprobit — Alternative-specific multinomial probit regression

[U] 20 Estimation and postestimation commands



Title

asroprobit — Alternative-specific rank-ordered probit regression

Syntax
asroprobit depvar [indepvars] [lf] [in] [weight] , case(varname)

alternatives (varname) [ options ]

options Description
Model
* case (varname) use varname to identify cases
*alternatives (varname) use varname to identify the alternatives available for each case
casevars (varlist) case-specific variables
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
Model 2
correlation(correlation) correlation structure of the latent-variable errors
stddev (stddev) variance structure of the latent-variable errors
structural use the structural covariance parameterization; default is the
differenced covariance parameterization
factor (#) use the factor covariance structure with dimension #
noconstant suppress the alternative-specific constant terms

basealternative (#|Ibl|str) alternative used for normalizing location

scalealternative (#|/bl|str) alternative used for normalizing scale

altwise use alternativewise deletion instead of casewise deletion

reverse interpret the lowest rank in depvar as the best; the default is the
highest rank is the best

SE/Robust
vce (veetype) vecetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1evel (95)
notransform do not transform variance—covariance estimates to the standard
deviation and correlation metric
nocnsreport do not display constraints
display_options control column formats and line width

137



138 asroprobit — Alternative-specific rank-ordered probit regression

Integration

intmethod (seqtype)
intpoints (#)
intburn (#)
intseed (code | #)
antithetics

nopivot
initbhhh (#)
favor (speed | space)

Maximization
maximize_options

type of quasi- or pseudouniform sequence

number of points in each sequence

starting index in the Hammersley or Halton sequence
pseudouniform random-number seed

use antithetic draws

do not use integration interval pivoting

use the BHHH optimization algorithm for the first # iterations
favor speed or space when generating integration points

control the maximization process

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations
with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;
correlations with the basealternative() are zero

independent constrain all correlation parameters to zero

pattern matname
fixed matname

user-specified matrix identifying the correlation pattern
user-specified matrix identifying the fixed and free correlation
parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations
for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one

pattern matname
fixed matname

user-specified matrix identifying the standard deviation pattern

user-specified matrix identifying the fixed and free standard
deviations

seqtype Description

hammersley Hammersley point set

halton Halton point set

random uniform pseudorandom point set

* . .
case(varname) and alternatives(varname) are required.

bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu

Statistics > Ordinal outcomes > Rank-ordered probit regression

Description

asroprobit fits rank-ordered probit (ROP) models by using maximum simulated likelihood (MSL).
The model allows you to relax the independence of irrelevant alternatives (IIA) property that is
characteristic of the rank-ordered logistic model by estimating the variance—covariance parameters
of the latent-variable errors. Each unique identifier in the case() variable has multiple alternatives
identified in the alternatives() variable, and depvar contains the ranked alternatives made by each
case. Only the order in the ranks, not the magnitude of their differences, is assumed to be relevant.
By default, the largest rank indicates the more desirable alternative. Use the reverse option if the
lowest rank should be interpreted as the more desirable alternative. Tied ranks are allowed, but they
increase the computation time because all permutations of the tied ranks are used in computing the
likelihood for each case. asroprobit allows two types of independent variables: alternative-specific
variables, in which the values of each variable vary with each alternative, and case-specific variables,
which vary with each case.

The estimation technique of asroprobit is nearly identical to that of asmprobit, and the two
routines share many of the same options; see [R] asmprobit.

Options
_ [Model

case (varname) specifies the variable that identifies each case. This variable identifies the individuals
or entities making a choice. case () is required.

alternatives (varname) specifies the variable that identifies the alternatives available for each case.
The number of alternatives can vary with each case; the maximum number of alternatives is 20.
alternatives() is required.

casevars (varlist) specifies the case-specific variables that are constant for each case (). If there are
a maximum of J alternatives, there will be J — 1 sets of coefficients associated with casevars().

constraints (constraints), collinear; see [R] estimation options.

Model 2

correlation(correlation) specifies the correlation structure of the latent-variable errors.

correlation(unstructured) is the most general and has J(J — 3)/2 + 1 unique correlation
parameters. This is the default unless stddev() or structural are specified.

correlation(exchangeable) provides for one correlation coefficient common to all latent
variables, except the latent variable associated with the basealternative().

correlation(independent) assumes that all correlations are zero.

correlation(pattern matname) and correlation(fixed matname) give you more flexibil-
ity in defining the correlation structure. See Variance structures in [R] asmprobit for more
information.

stddev (stddev) specifies the variance structure of the latent-variable errors.

stddev (heteroskedastic) is the most general and has J —2 estimable parameters. The standard
deviations of the latent-variable errors for the alternatives specified in basealternative()
and scalealternative() are fixed to one.
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stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining
the standard deviation parameters. See Variance structures in [R] asmprobit for more information.

structural requests the J X J structural covariance parameterization instead of the default J—1x J—1
differenced covariance parameterization (the covariance of the latent errors differenced with that of
the base alternative). The differenced covariance parameterization will achieve the same maximum
simulated likelihood regardless of the choice of basealternative() and scalealternative().
On the other hand, the structural covariance parameterization imposes more normalizations that
may bound the model away from its maximum likelihood and thus prevent convergence with some
datasets or choices of basealternative() and scalealternative().

factor (#) requests that the factor covariance structure of dimension # be used. The factor () option
can be used with the structural option but cannot be used with stddev() or correlation().
A #x J (or #x J — 1) matrix, C, is used to factor the covariance matrix as I + C’'C, where
I is the identity matrix of dimension J (or J — 1). The column dimension of C depends on
whether the covariance is structural or differenced. The row dimension of C, #, must be less than
or equal to floor ((J(J—1)/2—1)/(J —2)), because there are only J(J —1)/2 — 1 identifiable
variance—covariance parameters. This covariance parameterization may be useful for reducing the
number of covariance parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.
The column corresponding to the scale alternative has a one in the first row and zeros elsewhere.
If the covariance is differenced, the column corresponding to the scale alternative (differenced with
the base) has a one in the first row and zeros elsewhere.

noconstant suppresses the J — 1 alternative-specific constant terms.

basealternative (#|Ibl|str) specifies the alternative used to normalize the latent-variable location
(also referred to as the level of utility). The base alternative may be specified as a number, label,
or string. The standard deviation for the latent-variable error associated with the base alternative
is fixed to one, and its correlations with all other latent-variable errors are set to zero. The default
is the first alternative when sorted. If a fixed or pattern matrix is given in the stddev()
and correlation() options, the basealternative() will be implied by the fixed standard
deviations and correlations in the matrix specifications. basealternative() cannot be equal to
scalealternative().

scalealternative (#|Ibl|str) specifies the alternative used to normalize the latent-variable scale
(also referred to as the scale of utility). The scale alternative may be specified as a number,
label, or string. The default is to use the second alternative when sorted. If a fixed or pattern
matrix is given in the stddev() option, the scalealternative() will be implied by the
fixed standard deviations in the matrix specification. scalealternative() cannot be equal to
basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale
alternative are implied by the standard deviations and correlations in the matrix specifications, and
they need not be specified in the basealternative() and scalealternative() options.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.

reverse directs asroprobit to interpret the rank in depvar that is smallest in value as the preferred
alternative. By default, the rank that is largest in value is the favored alternative.



asroprobit — Alternative-specific rank-ordered probit regression 141

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

If specifying vce (bootstrap) or vce (jackknife), you must also specify basealternative ()
and scalealternative().

Reporting

level (#); see [R] estimation options.

notransform prevents retransforming the Cholesky-factored variance—covariance estimates to the
correlation and standard deviation metric.

This option has no effect if structural is not specified because the default differenced variance—
covariance estimates have no interesting interpretation as correlations and standard deviations.
notransform also has no effect if the correlation() and stddev() options are specified with
anything other than their default values. Here it is generally not possible to factor the variance—
covariance matrix, so optimization is already performed using the standard deviation and correlation
representations.

nocnsreport; see [R] estimation options.

display_options: cformat (% fimt), pformat (% fmt), sformat (%fmt), and nolstretch; see [R] es-
timation options.

Integration

intmethod (hammersley |halton | random) specifies the method of generating the point sets used in
the quasi—Monte Carlo integration of the multivariate normal density. intmethod (hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and
intmethod (random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the quasi—-Monte Carlo integration. If
this option is not specified, the number of points is 50 x J if intmethod(hammersley) or
intmethod(halton) is used and 100 x J if intmethod(random) is used. Larger values of
intpoints() provide better approximations of the log likelihood, but at the cost of added
computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the
correlation between the sequences of each dimension. The default is 0. This option may not be
specified with intmethod (random).

intseed(code | #) specifies the seed to use for generating the uniform pseudorandom sequence. This
option may be specified only with intmethod(random). code refers to a string that records the
state of the random-number generator runiform(); see [R] set seed. An integer value # may
be used also. The default is to use the current seed value from Stata’s uniform random-number
generator, which can be obtained from c(seed).

antithetics specifies that antithetic draws be used. The antithetic draw for the J — 1 vector
uniform-random variables, x, is 1 — x.

nopivot turns off integration interval pivoting. By default, asroprobit will pivot the wider intervals
of integration to the interior of the multivariate integration. This improves the accuracy of the
quadrature estimate. However, discontinuities may result in the computation of numerical second-
order derivatives using finite differencing (for the Newton—Raphson optimize technique, tech(nr))
when few simulation points are used, resulting in a non—positive-definite Hessian. asroprobit
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uses the Broyden—Fletcher—Goldfarb—Shanno optimization algorithm, by default, which does not
require computing the Hessian numerically using finite differencing.

initbhhh (#) specifies that the Berndt—Hall-Hall-Hausman (BHHH) algorithm be used for the initial
# optimization steps. This option is the only way to use the BHHH algorithm along with other
optimization techniques. The algorithm switching feature of ml’s technique() option cannot
include bhhh.

favor (speed | space) instructs asroprobit to favor either speed or space when generating the
integration points. favor (speed) is the default. When favoring speed, the integration points are
generated once and stored in memory, thus increasing the speed of evaluating the likelihood. This
speed increase can be seen when there are many cases or when the user specifies a large number
of integration points, intpoints(#). When favoring space, the integration points are generated
repeatedly with each likelihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed
using intmethod (random) will vary slightly between favor (speed) and favor (space). This
is because the uniform sequences will not be identical, even when initiating the sequences using the
same uniform seed, intseed(code | #). For favor (speed), ncase blocks of intpoints(#) x
J — 2 uniform points are generated, where J is the maximum number of alternatives. For
favor(space), the column dimension of the matrices of points varies with the number of
alternatives that each case has.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@]Qg, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize.

The following options may be particularly useful in obtaining convergence with asroprobit:
difficult, technique (algorithm_spec), nrtolerance(#), nonrtolerance, and
from(init_specs).

If technique () contains more than one algorithm specification, bhhh cannot be one of them. To
use the BHHH algorithm with another algorithm, use the initbhhh() option and specify the other
algorithm in technique().

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

When specifying from(matname [ s copy] ), the values in matname associated with the latent-
variable error variances must be for the log-transformed standard deviations and inverse-hyperbolic
tangent-transformed correlations. This option makes using the coefficient vector from a previously
fitted asroprobit model convenient as a starting point.

The following option is available with asroprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

The mathematical description and numerical computations of the rank-ordered probit model are
similar to that of the multinomial probit model. The only difference is that the dependent variable
of the rank-ordered probit model is ordinal, showing preferences among alternatives, as opposed to
the binary dependent variable of the multinomial probit model, indicating a chosen alternative. We
will describe how the likelihood of a ranking is computed using the latent-variable framework here,
but for details of the latent-variable parameterization of these models and the method of maximum
simulated likelihood, see [R] asmprobit.
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Consider the latent-variable parameterization of a J alternative rank-ordered probit model. Using

the notation from asmprobit, we have variables 7;;, j = 1,...,J, such that
Nij = XijB + zicj + &ij

Here the x;; are the alternative-specific independent variables, the z; are the case-specific variables,
and the &;; are multivariate normal with mean zero and covariance £2. Without loss of generality,
assume that individual ¢ ranks the alternatives in order of the alternative indices j = 1,2,...,J,
so the alternative J is the preferred alternative and alternative 1 is the least preferred alternative.
The probability of this ranking given 3 and «; is the probability that 1; ;1 — 7;; < 0 and
Ni,g—2 — Ni,g—1 <0, ..., and 7;1 —n;2 < 0.

> Example 1

Long and Freese (2006) provide an example of a rank-ordered logit model with alternative-specific
variables. We use this dataset to demonstrate asroprobit. The data come from the Wisconsin
Longitudinal Study. This is a study of 1957 Wisconsin high school graduates that were asked to rate
their relative preference of four job characteristics: esteem, a job other people regard highly; variety,
a job that is not repetitive and allows you to do a variety of things; autonomy, a job where your
supervisor does not check on you frequently; and security, a job with a low risk of being laid off. The
case-specific covariates are gender, female, an indicator variable for females, and score, a score
on a general mental ability test measured in standard deviations. The alternative-specific variables
are high and low, which indicate whether the respondent’s current job is high or low in esteem,
variety, autonomy, or security. This approach provides three states for a respondent’s current job
status for each alternative, (1,0), (0, 1), and (0, 0), using the notation (high, low). The score (1,1)
is omitted because the respondent’s current job cannot be considered both high and low in one of the
job characteristics. The (0,0) score would indicate that the respondent’s current job does not rank
high or low (is neutral) in a job characteristic. The alternatives are ranked such that 1 is the preferred
alternative and 4 is the least preferred.

. use http://www.stata-press.com/data/r12/wlsrank
(1992 Wisconsin Longitudinal Study data on job values)
. list id jobchar rank female score high low in 1/12, sepby(id)

id jobchar rank  female score high low

1. 1 security 1 1 .0492111 0 0

2. 1 autonomy 4 1 .0492111 0 0

3. 1 variety 1 1 .0492111 0 0

4. 1 esteem 3 1 .0492111 0 0

5. 5 security 2 1 2.115012 1 0

6. 5 variety 2 1 2.115012 1 0

7. 5 esteem 2 1 2.115012 1 0

8. 5 autonomy 1 1 2.115012 0 0

9. 7  autonomy 1 0 1.701852 1 0

10. 7 variety 1 0 1.701852 0 1
11. 7 esteem 4 0 1.701852 0 0
12. 7  security 1 0 1.701852 0 0

The three cases listed have tied ranks. asroprobit will allow ties, but at the cost of increased
computation time. To evaluate the likelihood of the first observation, asroprobit must compute

Pr(esteem = 3, variety = 1, autonomy = 4, security = 2)+

Pr(esteem = 3, variety = 2, autonomy = 4, security = 1)
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and both of these probabilities are estimated using simulation. In fact, the full dataset contains 7,237
tied ranks and asroprobit takes a great deal of time to estimate the parameters. For exposition, we
estimate the rank-ordered probit model by using the cases without ties. These cases are marked in
the variable noties.

The model of job preference is
Nij = ,Blhighij + 6210W1‘j + aljfemalei + Qig;8CO0re; + Qo + gij

for 7 = 1,2,3,4. The base alternative will be esteem, so ag; = a1 = ag; = 0.

. asroprobit rank high low if noties, case(id) alternatives(jobchar)

> casevars(female score) reverse

note: variable high has 107 cases that are not alternative-specific: there is
no within-case variability

variable low has 193 cases that are not alternative-specific: there is
no within-case variability

note:

Iteration O: log simulated-likelihood = -1103.2768
Iteration 1: log simulated-likelihood = -1089.3361 (backed up)
(output omitted )
Alternative-specific rank-ordered probit Number of obs = 1660
Case variable: id Number of cases = 415
Alternative variable: jobchar Alts per case: min = 4
avg = 4.0
max = 4
Integration sequence: Hammersley
Integration points: 200 Wald chi2(8) = 34.01
Log simulated-likelihood = -1080.2206 Prob > chi2 = 0.0000
rank Coef. Std. Err. z P>|z| [95% Conf. Intervall
jobchar
high .3741029 .0925685 4.04 0.000 .192672 .5555337
low -.0697443 .1093317 -0.64 0.524 -.2840305 .1445419
esteem (base alternative)
variety
female .1351487 .1843088 0.73 0.463 -.2260899 .4963873
score .1405482 .0977567 1.44 0.151 -.0510515 .3321479
_cons 1.735016 .1451343 11.95  0.000 1.450558 2.019474
autonomy
female .2561828 .1679565 1.53 0.127 -.0730059 .58563715
score .1898853 .0875668 2.17  0.030 .0182575 .361513
_cons .7009797 .1227336 5.71  0.000 .4604262 .9415333
security
female .232622 .2057547 1.13 0.258 -.1706497 .6358938
score -.1780076 .1102115 -1.62 0.106 -.3940181 .038003
_cons 1.343766 .1600059 8.40 0.000 1.030161 1.657372
/1nl2_2 .1805151 .0757296 2.38 0.017 .0320878 .3289424
/1n13_3 .4843091 .0793343 6.10 0.000 .3288168 .6398014
/12_1 .6062037 .1169368 5.18 0.000 .3770117 .8353957
/13_1 .4509217 .1431183 3.15 0.002 .1704151 .7314283
/13_2 .2289447 .1226081 1.87 0.062 -.0113627 .4692521

(jobchar=esteem is the alternative normalizing location)
(jobchar=variety is the alternative normalizing scale)
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We specified the reverse option because a rank of 1 is the highest preference. The variance—
covariance estimates are for the Cholesky-factored variance—covariance for the latent-variable errors
differenced with that of alternative esteem. We can view the estimated correlations by entering

. estat correlation

variety autonomy security

variety 1.0000
autonomy 0.4516 1.0000
security 0.2652 0.2399 1.0000

Note: correlations are for alternatives differenced with esteem
and typing

. estat covariance

variety autonomy security

variety 2
autonomy .8573015 1.80229
security .6376996 .5475882  2.890048

Note: covariances are for alternatives differenced with esteem

gives the (co)variances. [R] mprobit explains that if the latent-variable errors are independent, then
the correlations in the differenced parameterization should be ~0.5 and the variances should be ~2.0,
which seems to be the case here.

The coefficient estimates for the probit models can be difficult to interpret because of the
normalization for location and scale. The regression estimates for the case-specific variables will be
relative to the base alternative and the regression estimates for both the case-specific and alternative-
specific variables are affected by the scale normalization. The more pronounced the heteroskedasticity
and correlations, the more pronounced the resulting estimate differences when choosing alternatives
to normalize for location and scale. However, when using the differenced covariance structure, you
will obtain the same model likelihood regardless of which alternatives you choose as the base and
scale alternatives. For model interpretation, you can examine the estimated probabilities and marginal
effects by using postestimation routines predict and estat mfx. See [R] asroprobit postestimation.

N
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Saved results

asroprobit saves the following in e():

Scalars
e(N) number of observations
e(N_case) number of cases
e(N_ties) number of ties
e(k) number of parameters
e(k_alt) number of alternatives
e(k_indvars) number of alternative-specific variables
e(k_casevars) number of case-specific variables
e(k_sigma) number of variance estimates
e(k_rho) number of correlation estimates
e(k_eq) number of equations in e (b)
e(k_eq-model) number of equations in overall model test
e(df_m) model degrees of freedom
e(11) log simulated-likelihood
e(N_clust) number of clusters
e(const) constant indicator
e(i_base) base alternative index
e(i_scale) scale alternative index
e(mc_points) number of Monte Carlo replications
e (mc_burn) starting sequence index
e(mc_antithetics) antithetics indicator
e(reverse) 1 if minimum rank is best, 0 if maximum rank is best
e(chi2) x>
e(p) significance
e(fullcov) unstructured covariance indicator
e(structcov) 1 if structured covariance; O otherwise
e(cholesky) Cholesky-factored covariance indicator
e(alt_min) minimum number of alternatives
e(alt_avg) average number of alternatives
e(alt_max) maximum number of alternatives
e(rank) rank of e (V)
e(ic) number of iterations
e(rc) return code

e(converged) 1 if converged, O otherwise
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Macros
e(cmd)
e(cmdline)
e(depvar)
e(indvars)
e(casevars)
e(case)
e(altvar)
e(altegs)
e(alt#)
e(wtype)
e (wexp)
e(title)
e(clustvar)
e(correlation)
e(stddev)
e(chi2type)
e(vce)
e(vcetype)
e(opt)
e(which)
e(ml_method)
e(mc_method)
e(mc_seed)
e(user)
e(technique)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(mfx_dlg)
e(predict)
e(marginsnotok)

Matrices
e(b)
e(Cns)
e(stats)
e(stdpattern)
e(stdfixed)
e(altvals)
e(altfreq)
e(alt_casevars)
e(corpattern)
e(corfixed)
e(ilog)
e(gradient)
e(V)
e(V_modelbased)

Functions
e(sample)

Methods and formulas

asroprobit

command as typed

name of dependent variable
alternative-specific independent variable
case-specific variables

variable defining cases

variable defining alternatives

alternative equation names

alternative labels

weight type

weight expression

title in estimation output

name of cluster variable

correlation structure

variance structure

Wald, type of model x? test

veetype specified in vce()

title used to label Std. Err.

type of optimization

max or min; whether optimizer is to perform maximization or minimization
type of m1 method

Hammersley, Halton, or uniform random; technique to generate sequences
random-number generator seed

name of likelihood-evaluator program
maximization technique

the checksum

variables used in calculation of checksum
bV

program used to implement estat
program used to implement estat mfx dialog
program used to implement predict
predictions disallowed by margins

coefficient vector

constraints matrix

alternative statistics

variance pattern

fixed and free standard deviations
alternative values

alternative frequencies

indicators for estimated case-specific coefficients—e (k_alt) xe(k_casevars)
correlation structure

fixed and free correlations

iteration log (up to 20 iterations)

gradient vector

variance—covariance matrix of the estimators
model-based variance

marks estimation sample

asroprobit is implemented as an ado-file.

From a computational perspective, asroprobit is similar to asmprobit and the two programs
share many numerical tools. Therefore, we will use the notation from Methods and formulas in
[R] asmprobit to discuss the rank-ordered probit probability model.
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The latent variables for a J-alternative model are 7;; = X;;8 + z;05 + &5, for j = 1,...,J,
i=1,...,n, and & = (&1,...,&.5) ~ MVN(0,€Q). Without loss of generality, assume for
the sth observation that an individual ranks the alternatives in the order of their numeric indices,
vi = (J,J —1,...,1), so the first alternative is the most preferred and the last alternative is the
least preferred. We can then difference the latent variables such that

Vik = Ni,k4+1 — Nik
= (X k41 — Xik)B+ zi(ary1 — ar) + &iprr — ik
=0k + ziVy + €ik
for k=1,...,J — 1 and where ¢; = (€;1,...,€;,3-1) ~ MVN(0, X(;)). X is indexed by i because

it is specific to the ranking of individual 7. We denote the deterministic part of the model as
Aik = ;1.8 + z;7,, and the probability of this event is

Pr(y;) = Pr(vi1 <0,...,v;,5-1 <0)
=Pr(eg < =ity 60-10 < =Xijg-1)

Aig—1
(27.‘.) (J— 1)/2|2 |71/2/ / exp 2() )dZ

The integral has the same form as (3) of Methods and formulas in [R] asmprobit. See [R] asmprobit
for details on evaluating this integral numerically by using simulation.

asroprobit handles tied ranks by enumeration. For k tied ranks, it will generate k! rankings,
where ! is the factorial operator k! = k(k —1)(k—2)---(2)(1). For two sets of tied ranks of size k1
and ko, asroprobit will generate kq!ko! rankings. The total probability is the sum of the probability
of each ranking. For example, if there are two tied ranks such that yl = (J,J,J —2,...,1), then

asroprobit will evaluate Pr(y;) = Pr(y (1)) + Pr(y,; (2 )), where y =(LJ-1,J-2,...,1)
and y? = (J—1,J,J—2,...,1).

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] _robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce (robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.

Reference

Long, J. S., and J. Freese. 2006. Regression Models for Categorical Dependent Variables Using Stata. 2nd ed. College
Station, TX: Stata Press.

Also see

[R] asroprobit postestimation — Postestimation tools for asroprobit
[R] asmprobit — Alternative-specific multinomial probit regression
[R] mlogit — Multinomial (polytomous) logistic regression

[R] mprobit — Multinomial probit regression

[R] oprobit — Ordered probit regression

[U] 20 Estimation and postestimation commands


http://www.stata-press.com/books/regmodcdvs.html

Title

asroprobit postestimation — Postestimation tools for asroprobit

Description

The following postestimation commands are of special interest after asroprobit:

Command Description

estat alternatives alternative summary statistics

estat covariance covariance matrix of the latent-variable errors for the alternatives
estat correlation correlation matrix of the latent-variable errors for the alternatives
estat facweights covariance factor weights matrix

estat mfx marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

lrtest likelihood-ratio test

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predicted probabilities, estimated linear predictor and its standard error

predictnl point estimates, standard errors, testing, and inference for generalized
predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample.
The command also provides a mapping between the index numbers that label the covariance parameters
of the model and their associated values and labels for the alternative variable.

estat covariance computes the estimated variance—covariance matrix of the latent-variable
errors for the alternatives. The estimates are displayed, and the variance—covariance matrix is stored
in r(cov).

estat correlation computes the estimated correlation matrix of the latent-variable errors for
the alternatives. The estimates are displayed, and the correlation matrix is stored in r(cor).

estat facweights displays the covariance factor weights matrix and stores it in r(C).

149
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estat mfx computes marginal effects of a simulated probability of a set of ranked alternatives.
The probability is stored in r(pr), the matrix of rankings is stored in r(ranks), and the matrix of
marginal-effect statistics is stored in r(mfx).

Syntax for predict

predict [Iype] newvar [zf] [m] [, statistic altwise}

predict [type] {stub*|newvarlist} [zf} [in], scores

statistic Description
Main
pr probability of each ranking, by case; the default
pril probability that each alternative is preferred
xb linear prediction
stdp standard error of the linear prediction
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

pr, the default, calculates the probability of each ranking. For each case, one probability is computed
for the ranks in e(depvar).

prl calculates the probability that each alternative is preferred.
xb calculates the linear prediction X;;3 + z;c; for alternative j and case 1.
stdp calculates the standard error of the linear predictor.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

scores calculates the scores for each coefficient in e (b). This option requires a new variable list of
length equal to the number of columns in e (b). Otherwise, use the sfub* option to have predict
generate enumerated variables with prefix stub.

Syntax for estat alternatives

estat alternatives
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Menu

Statistics > Postestimation > Reports and statistics

Syntax for estat covariance

estat covariance [, format (% fimt) border (bspec) left(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat covariance

format (% fimt) sets the matrix display format. The default is format (%9.0g).
border (bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft(2). See [P] matlist.

Syntax for estat correlation

estat correlation [, format (% fint) border (bspec) left(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat correlation

format (% fimt) sets the matrix display format. The default is format (%9.4f).
border (bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft (2). See [P] matlist.

Syntax for estat facweights

estat facweights [, format (% fimt) border (bspec) 1eft(#)]

Menu

Statistics > Postestimation > Reports and statistics

Options for estat facweights

format (% fint) sets the matrix display format. The default is format (%9.0f).
border (bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left (#) sets the matrix display left indent. The default is 1eft (2). See [P] matlist.
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Syntax for estat mfx

estat mfx [lf] [in] [, options]

options Description

Main
varlist (varlist) display marginal effects for varlist
at (median [atlist]) calculate marginal effects at these values
rank (ranklist) calculate marginal effects for the simulated probability of these ranked

alternatives

Options
level (#) set confidence interval level; default is 1level (95)
nodiscrete treat indicator variables as continuous
noesample do not restrict calculation of the medians to the estimation sample
nowght ignore weights when calculating medians

Menu

Statistics > Postestimation > Reports and statistics

Options for estat mfx

Main

varlist (varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at (median [atlist]) specifies the values at which the marginal effects are to be calculated. atlist is

Halternative:variable = #] [variable = #] [ ] ])
The marginal effects are calculated at the medians of the independent variables.

After specifying the summary statistic, you can specify specific values for variables. You can
specify values for alternative-specific variables by alternative, or you can specify one value for
all alternatives. You can specify only one value for case-specific variables. For example, in the
wlsrank dataset, female and score are case-specific variables, whereas high and low are
alternative-specific variables. The following would be a legal syntax for estat mfx:

. estat mfx, at(median high=0 esteem:high=1 low=0 security:low=1 female=1)

When nodiscrete is not specified, at (median [atlist]) has no effect on computing marginal
effects for indicator variables, which are calculated as the discrete change in the simulated probability
as the indicator variable changes from O to 1.

The median computations respect any if or in qualifiers, so you can restrict the data over which
the medians are computed. You can even restrict the values to a specific case, for example,

. estat mfx if case==13
rank (ranklist) specifies the ranks for the alternatives. ranklist is

alternative = # alternative = # [])
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The default is to rank the calculated latent variables. Alternatives excluded from rank() are
omitted from the analysis. You must therefore specify at least two alternatives in rank(). You
may have tied ranks in the rank specification. Only the order in the ranks is relevant.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value O or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from O to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asroprobit command.

nowght specifies that weights be ignored when calculating the medians.

Remarks

Remarks are presented under the following headings:

Predicted probabilities
Obtaining estimation statistics

Predicted probabilities

After fitting an alternative-specific rank-ordered probit model, you can use predict to obtain the
probabilities of alternative rankings or the probabilities of each alternative being preferred. When
evaluating the multivariate normal probabilities via (quasi) Monte Carlo, predict uses the same
method to generate the (quasi) random sequence of numbers as the previous call to asroprobit. For
example, if you specified intmethod(halton) when fitting the model, predict also uses Halton
sequences.

> Example 1

In example 1 of [R] asroprobit, we fit a model of job characteristic preferences. This is a study
of 1957 Wisconsin high school graduates that were asked to rate their relative preference of four
job characteristics: esteem, a job other people regard highly; variety, a job that is not repetitive and
allows you to do a variety of things; autonomy, a job where your supervisor does not check on you
frequently; and security, a job with a low risk of being laid off. The case-specific covariates are
gender, female, an indicator variable for females, and score, a score on a general mental ability test
measured in standard deviations. The alternative-specific variables are high and low, which indicate
whether the respondent’s current job is high or low in esteem, variety, autonomy, or security. This
approach provides three states for a respondent’s current job status for each alternative, (1,0), (0, 1),
and (0,0), using the notation (high, low). The score (1,1) is omitted because the respondent’s
current job cannot be considered both high and low in one of the job characteristics. The (0,0)
score would indicate that the respondent’s current job does not rank high or low (is neutral) in a job
characteristic. The alternatives are ranked such that 1 is the preferred alternative and 4 is the least
preferred.

We can obtain the probabilities of the observed alternative rankings, the pr option, and the
probability of each alternative being preferred, the pr1 option, by using predict:
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. use http://www.stata-press.com/data/r12/wlsrank
(1992 Wisconsin Longitudinal Study data on job values)

. asroprobit rank high low if noties, case(id) alternatives(jobchar)

> casevars(female score) reverse

(output omitted )

. keep if e(sample)
(11244 observations deleted)

. predict prob, pr

. predict probl, pril

. list id jobchar prob probl rank female score high low in 1/12

9.
10.
11.
12.

The prob variable is constant for each case because it contains the probability of the ranking in
the rank variable. On the other hand, the prob1 variable contains the estimated probability of each
alternative being preferred. For each case, the sum of the values in prob1 will be approximately 1.0.
They do not add up to exactly 1.0 because of approximations due to the GHK algorithm.

B W N

0w ~No o,

id jobchar prob probl rank female score  high low
13 security .0421807 .2784269 3 0 .3246512 0o 1
13 autonomy .0421807 .1029036 1 0 .3246512 0 o0
13 variety .0421807 .6026725 2 0 .3246512 1 0
13 esteem .0421807 .0160111 4 0 .3246512 0o 1
19  autonomy .0942025 .1232488 4 1 .0492111 0 0
19 esteem .0942025 .0140261 3 1 .0492111 0O 0
19  security .0942025 .4601368 1 1 .0492111 1 0
19 variety .0942025 .4025715 2 1 .0492111 0 0
22 esteem .1414177 .0255264 4 1 1.426412 1 0
22 variety .1414177 .4549441 1 1 1.426412 0 0
22  security .1414177 .2629494 3 1 1.426412 0o 0
22  autonomy .1414177 .2566032 2 1 1.426412 1 0

Obtaining estimation statistics

For examples of the specialized estat subcommands covariance and correlation, see [R] asm-
probit postestimation. The entry also has a good example of computing marginal effects after asm-
probit that is applicable to asroprobit. Below we will elaborate further on marginal effects after

asroprobit where we manipulate the rank() option.

> Example 2

We will continue with the preferred job characteristics example where we first compute the marginal

effects for case id = 13.
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. estat mfx if id==13, rank(security=3 autonomy=1 variety=2 esteem=4)

Pr(esteem=4 variety=2 autonomy=1 security=3) = .04218068

variable dp/dx  Std. Err. z P>lz| [ 95% C.I. ] X
highx*
esteem | -.008713 .001964 -4.44 0.000 -.012562 -.004864 0
variety -.009102 .003127 -2.91 0.004 -.015231 -.002973 1
autonomy .025535 .007029 3.63 0.000 .011758 .039313 0
security -.003745 .001394 -2.69 0.007 -.006477 -.001013 0
low*
esteem .001614 .002646 0.61 0.542 -.003572 .0068 1
variety .001809 .003012 0.60 0.548 -.004094 .007712 0
autonomy -.003849 .006104 -0.63 0.528 -.015813 .008115 0
security .000582 .000985 0.59 0.554 -.001348 .002513 1
casevars
femalex .009767 .009064 1.08 0.281 -.007998 .027533 0
score .008587 .004488 1.91 0.056 -.00021 .017384 .32465

(%) dp/dx is for discrete change of indicator variable from O to 1

Next we compute the marginal effects for the probability that autonomy is preferred given the profile
of case id = 13.

. estat mfx if id==13, rank(security=2 autonomy=1 variety=2 esteem=2)

Pr(esteem=3 variety=4 autonomy=1 security=2) +
Pr(esteem=4 variety=3 autonomy=1 security=2) +
Pr(esteem=2 variety=4 autonomy=1 security=3) +
Pr(esteem=4 variety=2 autonomy=1 security=3) +
Pr(esteem=2 variety=3 autonomy=1 security=4) +
Pr(esteem=3 variety=2 autonomy=1 security=4) = .10276103
variable dp/dx  Std. Err. z P>lz| [ 95% C.I. ] X
highx*
esteem | -.003524 .001258 -2.80 0.005 -.005989 -.001059 0
variety -.036203 .00894 -4.05 0.000 -.053724 -.018681 1
autonomy .067279 .013801 4.15 0.000 .030231 .084328 0
security -.0128 .002665 -4.80 0.000 -.018024 -.007576 0
low*
esteem .000518 .000833 0.62 0.534 -.001116 .002151 1
variety .006409 .010588 0.61 0.545 -.014343 .027161 0
autonomy -.008818 .013766 -0.64 0.522 -.035799 .018163 0
security .002314 .003697 0.63 0.531 -.004932 .009561 1
casevars
femalex .013839 .021607 0.64 0.522 -.028509 .056188 0
score .017917 .011062 1.62 0.105 -.003764 .039598 .32465

(*) dp/dx is for discrete change of indicator variable from O to 1

The probability computed by estat mfx matches the probability computed by predict, prl only
within three digits. This outcome is because of how the computation is carried out and the numeric
inaccuracy of the GHK simulator using a Hammersley point set of length 200. The computation
carried out by estat mfx literally computes all six probabilities listed in the header of the MFX
table and sums them. The computation by predict, prl is the same as predict after asmprobit
(multinomial probit): it computes the probability that autonomy is chosen, thus requiring only one
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call to the GHK simulator. Hence, there is a difference in the reported values even though the two
probability statements are equivalent.

d
Saved results
estat mfx saves the following in r():
Scalars
r(pr) scalar containing the computed probability of the ranked alternatives.
Matrices
r(ranks) column vector containing the alternative ranks. The rownames identify the alternatives.
r(mfx) matrix containing the computed marginal effects and associated statistics. Column 1 of the

matrix contains the marginal effects; column 2, their standard errors; column 3, their z
statistics; and columns 4 and 5, the confidence intervals. Column 6 contains the values of
the independent variables used to compute the probabilities r(pr).

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[R] asroprobit — Alternative-specific rank-ordered probit regression
[R] asmprobit — Alternative-specific multinomial probit regression

[U] 20 Estimation and postestimation commands



Title

BIC note — Calculating and interpreting BIC

Description

This entry discusses a statistical issue that arises when using the Bayesian information criterion
(BIC) to compare models.

Stata calculates BIC, assuming N = e (N) —we will explain—but sometimes it would be better if
a different N were used. Commands that calculate BIC have an n() option, allowing you to specify
the N to be used.

In summary,

1. If you are comparing results estimated by the same estimation command, using the default
BIC calculation is probably fine. There is an issue, but most researchers would ignore it.

2. If you are comparing results estimated by different estimation commands, you need to be
on your guard.

a. If the different estimation commands share the same definitions of observations,
independence, and the like, you are back in case 1.

b. If they differ in these regards, you need to think about the value of N that should
be used. For example, logit and xtlogit differ in that the former assumes
independent observations and the latter, independent panels.

c. If estimation commands differ in the events being used over which the likelihood
function is calculated, the information criteria may not be comparable at all. We
say information criteria because this would apply equally to the Akaike information
criterion (AIC), as well as to BIC. For instance, streg and stcox produce such
incomparable results. The events used by streg are the actual survival times,
whereas the events used by stcox are failures within risk pools, conditional on
the times at which failures occurred.

Remarks

Remarks are presented under the following headings:

Background

The problem of determining N

The problem of conformable likelihoods

The first problem does not arise with AIC; the second problem does
Calculating BIC correctly

Background
The AIC and the BIC are two popular measures for comparing maximum likelihood models. AIC
and BIC are defined as
AIC = —2 X In(likelihood) + 2 X k

BIC = —2 X In(likelihood) + In(N) x k
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where
k = number of parameters estimated

N = number of observations

We are going to discuss AIC along with BIC because AIC has some of the problems that BIC has,
but not all.

AIC and BIC can be viewed as measures that combine fit and complexity. Fit is measured negatively
by —2 X In(likelihood); the larger the value, the worse the fit. Complexity is measured positively,
either by 2 X k (AIC) or In(N) X k (BIC).

Given two models fit on the same data, the model with the smaller value of the information
criterion is considered to be better.

There is substantial literature on these measures: see Akaike (1974); Raftery (1995); Sakamoto,
Ishiguro, and Kitagawa (1986); and Schwarz (1978).

When Stata calculates the above measures, it uses the rank of e(V) for k& and it uses e(N) for
N. e(V) and e(N) are Stata notation for results stored by the estimation command. e (V) is the
variance—covariance matrix of the estimated parameters, and e (N) is the number of observations in
the dataset used in calculating the result.

The problem of determining N

The difference between AIC and BIC is that AIC uses the constant 2 to weight k, whereas BIC uses
In(NV).

Determining what value of N should be used is problematic. Despite appearances, the definition
“N is the number of observations” is not easy to make operational. [N does not appear in the likelihood
function itself, NV is not the output of a standard statistical formula, and what is an observation is
often subjective.

> Example 1

Often what is meant by N is obvious. Consider a simple logit model. What is meant by [V is the
number of observations that are statistically independent and that corresponds to M, the number of
observations in the dataset used in the calculation. We will write N = M.

But now assume that the same dataset has a grouping variable and the data are thought to be
clustered within group. To keep the problem simple, let’s pretend that there are GG groups and m
observations within group, so that M = G X m. Because you are worried about intragroup correlation,
you fit your model with xtlogit, grouping on the grouping variable. Now you wish to calculate
BIC. What is the N that should be used? N = M or N = G?

That is a deep question. If the observations really are independent, then you should use N = M.
If the observations within group are not just correlated but are duplicates of one another, and they
had to be so, then you should use M = G. Between those two extremes, you should probably
use a number between N and G, but determining what that number should be from measured
correlations is difficult. Using N = M is conservative in that, if anything, it overweights complexity.
Conservativeness, however, is subjective, too: using N = G could be considered more conservative
in that fewer constraints are being placed on the data.

When the estimated correlation is high, our reaction would be that using N = G is probably more
reasonable. Our first reaction, however, would be that using BIC to compare models is probably a
misuse of the measure.
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Stata uses N = M. An informal survey of web-based literature suggests that N = M is the
popular choice.

There is another reason, not so good, to choose N = M. It makes across-model comparisons more
likely to be valid when performed without thinking about the issue. Say that you wish to compare
the logit and xtlogit results. Thus you need to calculate

BIC, = —2 X In(likelihood,) + In(N,) x k

BIC,

—2 x In(likelihood; ) + In(N,) x k

Whatever N you use, you must use the same N in both formulas. Stata’s choice of N = M at
least meets that test.

4

> Example 2

In the above example, using N = M is reasonable. Now let’s look at when using N = M is
wrong, even if popular.

Consider a model fit by stcox. Using N = M is certainly wrong if for no other reason than
M is not even a well-defined number. The same data can be represented by different datasets with
different numbers of observations. For example, in one dataset, there might be 1 observation per
subject. In another, the same subjects could have two records each, the first recording the first half
of the time at risk and the second recording the remaining part. All statistics calculated by Stata on
either dataset would be the same, but M would be different.

Deciding on the right definition, however, is difficult. Viewed one way, N in the Cox regression
case should be the number of risk pools, R, because the Cox regression calculation is made on the
basis of the independent risk pools. Viewed another way, IV should be the number of subjects, Ngupj,
because, even though the likelihood function is based on risk pools, the parameters estimated are at
the subject level.

You can decide which argument you prefer.

For parametric survival models, in single-record data, N = M is unambiguously correct. For
multirecord data, there is an argument for N = M and for N = Ngyp;.

N

The problem of conformable likelihoods

The problem of conformable likelihoods does not concern N. Researchers sometimes use infor-
mation criteria such as BIC and AIC to make comparisons across models. For that to be valid, the
likelihoods must be conformable; that is, the likelihoods must all measure the same thing.

It is common to think of the likelihood function as the Pr(data|parameters), but in fact, the
likelihood is
Pr(particular events in the data | parameters)

You must ensure that the events are the same.

For instance, they are not the same in the semiparametric Cox regression and the various parametric
survival models. In Cox regression, the events are, at each failure time, that the subjects observed to
fail in fact failed, given that failures occurred at those times. In the parametric models, the events
are that each subject failed exactly when the subject was observed to fail.
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The formula for AIC and BIC is

measure = —2 X In(likelihood) + complexity

When you are comparing models, if the likelihoods are measuring different events, even if the
models obtain estimates of the same parameters, differences in the information measures are irrelevant.

The first problem does not arise with AIC; the second problem does
Regardless of model, the problem of defining /N never arises with AIC because N is not used in
the AIC calculation. AIC uses a constant 2 to weight complexity as measured by k, rather than In(V).

For both AIC and BIC, however, the likelihood functions must be conformable; that is, they must
be measuring the same event.

Calculating BIC correctly

When using BIC to compare results, and especially when using BIC to compare results from different
models, you should think carefully about how N should be defined. Then specify that number by
using the n() option:

. estimates stats full sub, n(74)

Model Obs 11(null) 11 (model) daf AIC BIC

full 102  -45.03321 -20.59083 4  49.18167 58.39793
sub 102 -45.03321 -27.17516 3 60.35031 67.26251

Note: N = 74 used in calculating BIC

Both estimates stats and estat ic allow the n() option; see [R] estimates stats and [R] estat.

Methods and formulas
AIC and BIC are defined as

AIC = —2 X In(likelihood) + 2 X k
BIC = —2 X In(likelihood) + In(N) x k

where k is the model degrees of freedom calculated as the rank of variance—covariance matrix of
the parameters e (V) and N is the number of observations used in estimation or, more precisely, the
number of independent terms in the likelihood. Operationally, /N is defined as e (N) unless the n()
option is specified.

References
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Also see

[R] estat — Postestimation statistics

[R] estimates stats — Model statistics



Title

binreg — Generalized linear models: Extensions to the binomial family

Syntax

binreg depvar [indepvars] [t_'f] [in] [weighl} [, options]

options Description
Model
noconstant suppress constant term
or use logit link and report odds ratios
rr use log link and report risk ratios
hr use log-complement link and report health ratios
rd use identity link and report risk differences

n(#| varname)

exposure (varname)
offset (varname)
constraints (constraints)
collinear

mu (varname)

init (varname)

SE/Robust
vce (veetype)

t (varname)
vfactor (#)
disp(#)
scale(x2|dev|#)

Reporting
level (#)
coefficients
nocnsreport
display_options

Maximization

irls

ml
maximize_options
fisher (#)
search

coeflegend

use # or varname for number of trials

include In(varname) in model with coefficient constrained to 1
include varname in model with coefficient constrained to 1
apply specified linear constraints

keep collinear variables

use varname as the initial estimate for the mean of depvar
synonym for mu (varname)

vcetype may be eim, robust, cluster clustvar, oim, opg,
bootstrap, Hknife, hac kernel, jackknifel, or unbiased

variable name corresponding to time

multiply variance matrix by scalar #

quasi-likelihood multiplier

set the scale parameter; default is scale(1)

set confidence level; default is 1level (95)
report nonexponentiated coefficients
do not display constraints

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

use iterated, reweighted least-squares optimization; the default
use maximum likelihood optimization

control the maximization process; seldom used

Fisher scoring steps

search for good starting values

display legend instead of statistics
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap), vce(jackknife), and vce(jackknifel) are not allowed with the mi estimate prefix; see
[MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Generalized linear models > GLM for the binomial family

Description

binreg fits generalized linear models for the binomial family. It estimates odds ratios, risk ratios,
health ratios, and risk differences. The available links are

Option Implied link Parameter
or logit odds ratios = exp((3)
rr log risk ratios = exp((3)
hr log complement health ratios = exp(/3)
rd identity risk differences = 0

Estimates of odds, risk, and health ratios are obtained by exponentiating the appropriate coefficients.
The or option produces the same results as Stata’s logistic command, and or coefficients
yields the same results as the logit command. When no link is specified, or is assumed.

Options

_ (Wogel

noconstant; see [R] estimation options.

or requests the logit link and results in odds ratios if coefficients is not specified.

rr requests the log link and results in risk ratios if coefficients is not specified.

hr requests the log-complement link and results in health ratios if coefficients is not specified.
rd requests the identity link and results in risk differences.

n(#| varname) specifies either a constant integer to use as the denominator for the binomial family
or a variable that holds the denominator for each observation.

exposure (varname), offset (varname), constraints (constraints), collinear; see [R] estima-
tion options. constraints (constraints) and collinear are not allowed with irls.

mu (varname) specifies varname containing an initial estimate for the mean of depvar. This option
can be useful if you encounter convergence difficulties. init (varname) is a synonym.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification, that allow for intragroup correlation, that are derived from
asymptotic theory, and that use bootstrap or jackknife methods; see [R] vce_option.

vce(eim), the default, uses the expected information matrix (EIM) for the variance estimator.
binreg also allows the following:

vce(hac kernel [#]) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC)
variance estimate be used. HAC refers to the general form for combining weighted matrices to
form the variance estimate. There are three kernels built into binreg. kernel is a user-written
program or one of

nwest | gallant | anderson
If # is not specified, N — 2 is assumed.
vce(jackknifel) specifies that the one-step jackknife estimate of variance be used.
vce (unbiased) specifies that the unbiased sandwich estimate of variance be used.

t (varname) specifies the variable name corresponding to time; see [TS] tsset. binreg does not
always need to know t(), though it does if vce(hac ...) is specified. Then you can either
specify the time variable with t (), or you can tsset your data before calling binreg. When the
time variable is required, binreg assumes that the observations are spaced equally over time.

vfactor (#) specifies a scalar by which to multiply the resulting variance matrix. This option
allows users to match output with other packages, which may apply degrees of freedom or other
small-sample corrections to estimates of variance.

disp(#) multiplies the variance of depvar by # and divides the deviance by #. The resulting
distributions are members of the quasilikelihood family.

scale(x2|dev|#) overrides the default scale parameter. This option is allowed only with Hessian
(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative
binomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and
inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson chi-squared (or generalized
chi-squared) statistic divided by the residual degrees of freedom, which was recommended by
McCullagh and Nelder (1989) as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and overdispersed
or underdispersed discrete distributions.

scale(#) sets the scale parameter to #.

Reporting

level (#), noconstant; see [R] estimation options.

coefficients displays the nonexponentiated coefficients and corresponding standard errors and
confidence intervals. This option has no effect when the rd option is specified, because it always
presents the nonexponentiated coefficients.

nocnsreport; see [R] estimation options.
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display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of
Newton—Raphson optimization of the log likelihood. This option is the default.

ml requests that optimization be carried out by using Stata’s m1 command; see [R] ml.

maximize_options: technique (algorithm_spec), [@} log, trace, gradient, showstep, hessian,
showtolerance, difficult, iterate(#), tolerance(#), ltolerance (#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization method to ml, with technique() set to something other than BHHH,
changes the vcetype to vce(oim). Specifying technique (bhhh) changes vcetype to vce (opg).

fisher (#) specifies the number of Newton—Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is available only
if m1 is specified and is useful only for Newton—Raphson optimization.

search specifies that the command search for good starting values. This option is available only if
ml is specified and is useful only for Newton—Raphson optimization.

The following option is available with binreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Wacholder (1986) suggests methods for estimating risk ratios and risk differences from prospective
binomial data. These estimates are obtained by selecting the proper link functions in the generalized
linear-model framework. (See Methods and formulas for details; also see [R] glm.)

> Example 1

Wacholder (1986) presents an example, using data from Wright et al. (1983), of an investigation
of the relationship between alcohol consumption and the risk of a low-birthweight baby. Covariates
examined included whether the mother smoked (yes or no), mother’s social class (three levels), and
drinking frequency (light, moderate, or heavy). The data for the 18 possible categories determined
by the covariates are illustrated below.

Let’s first describe the data and list a few observations.
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. use http://www.stata-press.com/data/r12/binreg

. list
cat d n alc smo soc
1 1 11 84 3 1 1
2. 2 5 79 2 1 1
3. 3 11 169 1 1 1
4 4 6 28 3 2 1
5 5 3 13 2 2 1
6. 6 1 26 1 2 1
T. 7 4 22 3 1 2
8. 8 3 25 2 1 2
9. 9 12 162 1 1 2
10. 10 4 17 3 2 2
11 11 2 7 2 2 2
12 12 6 38 1 2 2
13 13 0 14 3 1 3
14 14 1 18 2 1 3
15 15 12 91 1 1 3
16. 16 7 19 3 2 3
17. 17 2 18 2 2 3
18. 18 8 70 1 2 3

Each observation corresponds to one of the 18 covariate structures. The number of low-birthweight
babies from n in each category is given by the d variable.

We begin by estimating risk ratios:

. binreg d i.soc i.alc i.smo, n(n) rr

Iteration 1 deviance = 14.2879
Iteration 2: deviance = 13.607
Iteration 3 deviance = 13.60503

Iteration 4: deviance = 13.60503

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12
(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976
Variance function: V(u) = ux(1-u/n) [Binomiall
Link function : g(u) = 1n(u/n) [Log]
BIC = -21.07943
EIM
d | Risk Ratio Std. Err. z P>|z| [95% Conf. Intervall
soc
2 1.340001 .3127382 1.25 0.210 .848098 2.11721
3 1.349487 .3291488 1.23 0.219 .8366715 2.176619
alc
2 1.191157 .3265354 0.64 0.523 .6960276 2.038503
3 1.974078 .4261751 3.15 0.002 1.293011 3.013884
2.smo 1.648444 .332875 2.48 0.013 1.109657 2.448836
_cons .0630341 .0128061 -13.61 0.000 .0423297 .0938656
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By default, Stata reports the risk ratios (the exponentiated regression coefficients) estimated by the
model. We can see that the risk ratio comparing heavy drinkers with light drinkers, after adjusting
for smoking and social class, is 1.974078. That is, mothers who drink heavily during their pregnancy
have approximately twice the risk of delivering low-birthweight babies as mothers who are light
drinkers.

The nonexponentiated coefficients can be obtained with the coefficients option:

. binreg d i.soc i.alc i.smo, n(n) rr coefficients

Iteration 1: deviance = 14.2879
Iteration 2: deviance = 13.607
Iteration 3: deviance = 13.60503

Iteration 4: deviance = 13.60503

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12
(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976
Variance function: V(u) = u*(1-u/n) [Binomiall
Link function : g(w) = 1n(u/n) [Log]
BIC = -21.07943
EIM
d Coef. Std. Err. z P>|z| [95% Conf. Intervall]
soc
2 .2926702 .2333866 1.25 0.210 -.1647591 .7500994
3 .2997244 .2439066 1.23 0.219 -.1783238 TTT7726
alc
2 .1749248 .274133 0.64 0.523 -.362366 .7122156
3 .6801017 .2158856 3.15 0.002 .2569737 1.10323
2.smo .4998317 .2019329 2.48 0.013 .1040505 .8956129
_cons -2.764079 .2031606 -13.61 0.000 -3.162266 -2.365891




168 binreg — Generalized linear models: Extensions to the binomial family

Risk differences are obtained with the rd option:

. binreg d i.soc i.alc i.smo, n(n) rd

Iteration 1: deviance = 18.67277
Iteration 2: deviance = 14.94364
Iteration 3: deviance = 14.9185
Iteration 4: deviance = 14.91762
Iteration 5: deviance = 14.91758
Iteration 6: deviance = 14.91758
Iteration 7: deviance = 14.91758
Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12
(IRLS EIM) Scale parameter = 1
Deviance = 14.91758277 (1/df) Deviance = 1.243132
Pearson = 12.60353235 (1/df) Pearson = 1.050294
Variance function: V(u) = u*(1-u/n) [Binomiall]
Link function : g(uw) = u/n [Identity]
BIC = -19.76688
EIM
d | Risk Diff. Std. Err. z P>|z| [95% Conf. Intervall]
soc
2 .0263817 .0232124 1.14 0.256 -.0191137 .0718771
3 .0365553 .0268668 1.36 0.174 -.0161026 .0892132
alc
2 .0122539 .0257713 0.48 0.634 -.0382569 .0627647
3 .0801291 .0302878 2.65 0.008 .020766 .1394921
2.smo .0542415 .0270838 2.00 0.045 .0011582 .1073248
_cons .059028 .0160693 3.67 0.000 .0275327 .0905232

The risk difference between heavy drinkers and light drinkers is simply the value of the coefficient for
3.alc = 0.0801291. Because the risk differences are obtained directly from the coefficients estimated
by using the identity link, the coefficients option has no effect here.

Health ratios are obtained with the hr option. The health ratios (exponentiated coefficients for the
log-complement link) are reported directly.
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. binreg d i.soc i.alc i.smo, n(n) hr

Iteration 1: deviance = 21.15233
Iteration 2: deviance = 15.16467
Iteration 3: deviance = 15.13205
Iteration 4: deviance = 15.13114
Iteration 5: deviance = 15.13111
Iteration 6: deviance = 15.13111
Iteration 7: deviance = 15.13111
Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12
(IRLS EIM) Scale parameter = 1
Deviance = 15.13110545 (1/df) Deviance = 1.260925
Pearson = 12.84203917 (1/df) Pearson = 1.07017
Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = In(1-u/n) [Log complement]
BIC = -19.55336
EIM
d HR  Std. Err. z P>zl [95% Conf. Intervall]
soc
2 .9720541 .024858 -1.11 0.268 .9245342 1.022017
3 .9597182 .0290412 -1.36 0.174 .9044535 1.01836
alc
2 .9871517 .0278852 -0.46 0.647 .9339831 1.043347
3 .9134243 .0325726 -2.54 0.011 .8517631 .9795493
2.smo .9409983 .0296125 -1.93 0.053 .8847125 1.000865
_cons .9409945 .0163084 -3.51 0.000 .9095674 .9735075

(HR) Health ratios

To see the nonexponentiated coefficients, we can specify the coefficients option. 4
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Saved results

binreg, irls saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq_model) number of equations in overall model test
e(df_m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) model scale parameter
e(disp) dispersion parameter
e(bic) model BIC
e(N_clust) number of clusters
e(deviance) deviance
e(deviance_s) scaled deviance
e(deviance_p) Pearson deviance
e(deviance_ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers_s) scaled dispersion
e(dispers_p) Pearson dispersion
e(dispers_ps) scaled Pearson dispersion
e(vf) factor set by vfactor(), 1 if not set
e(rank) rank of e(V)
e(rc) return code
Macros
e(cmd) binreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e (wexp) weight expression
e(title_f1) family—link title
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) noconstant or not set
e(hac_kernel) HAC kernel
e(hac_lag) HAC lag
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(optl) optimization title, line 1
e(opt2) optimization title, line 2
e(properties) bV
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced

e (asobserved) factor variables fvset as asobserved
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Matrices
e(b)
e(Cns)
e(V)
e(V_modelbased)

Functions
e(sample)

coefficient vector

constraints matrix

variance—covariance matrix of the estimators
model-based variance

marks estimation sample

binreg, ml saves the following in e():

Scalars
e(N)
e(k)
e(k_eq)
e(k_eq_model)
e(k_dv)
e(df_m)
e(df)
e(phi)
e(aic)
e(bic)
e(11)
e(N_clust)
e(chi2)
e(p)
e(deviance)
e(deviance_s)
e(deviance_p)
e(deviance_ps)
e(dispers)
e(dispers_s)
e(dispers_p)
e(dispers_ps)
e(vf)
e(rank)
e(ic)
e(rc)
e(converged)

number of observations
number of parameters

number of equations in e(b)
number of equations in overall model test
number of dependent variables
model degrees of freedom
residual degrees of freedom
model scale parameter

model AIC, if m1

model BIC

log likelihood, if ml

number of clusters

2
X

significance of model test
deviance

scaled deviance

Pearson deviance

scaled Pearson deviance
dispersion

scaled dispersion

Pearson dispersion

scaled Pearson dispersion
factor set by vfactor(), 1 if not set
rank of e(V)

number of iterations

return code

1 if converged, O otherwise
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Macros
e(cmd) binreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(1linkf) link function
e(m) number of binomial trials
e (wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(title_f1) family—link title
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) noconstant or not set
e(hac_kernel) HAC kernel
e(hac_lag) HAC lag
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(optl) optimization title, line 1
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas
binreg is implemented as an ado-file.

Let 7; be the probability of success for the ith observation, ¢ = 1, ..., N, and let X 3 be the linear
predictor. The link function relates the covariates of each observation to its respective probability
through the linear predictor.
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In logistic regression, the logit link is used:

™
ln(1 ﬂ) =Xp

The regression coefficient () represents the change in the logarithm of the odds associated with a
one-unit change in the value of the X} covariate; thus exp(0) is the ratio of the odds associated
with a change of one unit in Xj.

For risk differences, the identity link 7 = X is used. The regression coefficient (3j represents
the risk difference associated with a change of one unit in X;. When using the identity link, you can
obtain fitted probabilities outside the interval (0,1). As suggested by Wacholder, at each iteration,
fitted probabilities are checked for range conditions (and put back in range if necessary). For example,
if the identity link results in a fitted probability that is smaller than le—4, the probability is replaced
with le—4 before the link function is calculated.

A similar adjustment is made for the logarithmic link, which is used for estimating the risk ratio,
In(7) = X3, where exp(0y) is the risk ratio associated with a change of one unit in X}, and for
the log-complement link used to estimate the probability of no disease or health, where exp(Sy)
represents the “health ratio” associated with a change of one unit in Xj.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Maximum likelihood estimators and Methods and formulas.

References

Cummings, P. 2009. Methods for estimating adjusted risk ratios. Stata Journal 9: 175-196.

Hardin, J. W.,, and M. A. Cleves. 1999. sbe29: Generalized linear models: Extensions to the binomial family. Stata
Technical Bulletin 50: 21-25. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 140-146. College Station,
TX: Stata Press.

Kleinbaum, D. G., and M. Klein. 2010. Logistic Regression: A Self-Learning Text. 3rd ed. New York: Springer.
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

Wacholder, S. 1986. Binomial regression in GLIM: Estimating risk ratios and risk differences. American Journal of
Epidemiology 123: 174-184.

Wright, J. T., I. G. Barrison, I. G. Lewis, K. D. MacRae, E. J. Waterson, P. J. Toplis, M. G. Gordon, N. F. Morris,
and I. M. Murray-Lyon. 1983. Alcohol consumption, pregnancy and low birthweight. Lancet 1: 663-665.

Also see
[R] binreg postestimation — Postestimation tools for binreg
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[U] 20 Estimation and postestimation commands
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Title

binreg postestimation — Postestimation tools for binreg

Description

The following postestimation commands are available after binreg:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.
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Syntax for predict

predict [type] newvar [lf] [in] [, statistic options]

statistic Description
Main
mu expected value of y; the default
xb linear prediction 17 = xﬁ
eta synonym for xb
stdp standard error of the linear prediction
anscombe Anscombe (1953) residuals
cooksd Cook’s distance
deviance deviance residuals
hat diagonals of the “hat” matrix as an analog to simple linear regression
likelihood weighted average of the standardized deviance and standard Pearson residuals
pearson Pearson residuals
response differences between the observed and fitted outcomes
score first derivative of the log likelihood with respect to x;3
working working residuals
options Description
Options
nooffset modify calculations to ignore the offset variable
adjusted adjust deviance residual to speed up convergence
standardized multiply residual by the factor (1 — h)/2
studentized  multiply residual by one over the square root of the estimated scale parameter
modified modify denominator of residual to be a reasonable estimate of the variance of
depvar
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

mu, the default, specifies that predict calculate the expected value of ¥, equal to g~ (XB) [ng~t(x0)

o~

for the binomial family].

xb calculates the linear prediction 7 = XB.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.

N
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anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal
distribution.

cooksd calculates Cook’s distance, which measures the aggregate change in the estimated coefficients
when each observation is left out of the estimation.

deviance calculates the deviance residuals, which are recommended by McCullagh and Nelder (1989)
and others as having the best properties for examining goodness of fit of a GLM. They are
approximately normally distributed if the model is correct and may be plotted against the fitted
values or against a covariate to inspect the model’s fit. Also see the pearson option below.

hat calculates the diagonals of the “hat” matrix as an analog to simple linear regression.

likelihood calculates a weighted average of the standardized deviance and standardized Pearson
(described below) residuals.

pearson calculates the Pearson residuals, which often have markedly skewed distributions for
nonnormal family distributions. Also see the deviance option above.

response calculates the differences between the observed and fitted outcomes.
score calculates the equation-level score, Oln L/0(x;03).

working calculates the working residuals, which are response residuals weighted according to the
derivative of the link function.

nooffset is relevant only if you specified of fset (varname) for binreg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x;b
rather than as x;b + offset;.

adjusted adjusts the deviance residual to make the convergence to the limiting normal distribution
faster. The adjustment deals with adding to the deviance residual a higher-order term depending
on the variance function family. This option is allowed only when deviance is specified.

standardized requests that the residual be multiplied by the factor (1 — h)_l/ 2, where h is the
diagonal of the hat matrix. This step is done to take into account the correlation between depvar

and its predicted value.

studentized requests that the residual be multiplied by one over the square root of the estimated
scale parameter.

modified requests that the denominator of the residual be modified to be a reasonable estimate
of the variance of depvar. The base residual is multiplied by the factor (k/w)~'/2, where k is
either one or the user-specified dispersion parameter and w is the specified weight (or one if left
unspecified).

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

References
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Also see
[R] binreg — Generalized linear models: Extensions to the binomial family

[U] 20 Estimation and postestimation commands



Title

biprobit — Bivariate probit regression

Syntax

Bivariate probit regression

biprobit depvary depvars [indepvars] [l_'f] [in] [weight] [, options]

Seemingly unrelated bivariate probit regression

biprobit equation; equations [lf] [ln] [weight] [, Su_OpliOHS]

where equation; and equations are specified as

( [eqname:] depvar [=] [indepvars] [ , noconstant ﬁset(warname)} )

options Description

Model
noconstant suppress constant term
partial fit partial observability model
offsetl(varname) offset variable for first equation
offset2(varname) offset variable for second equation
constraints (constraints)  apply specified linear constraints
collinear keep collinear variables

SE/Robust
vce (veetype) vecetype may be oim, robust, cluster clustvar, opg, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is level (95)
noskip perform likelihood-ratio test
nocnsreport do not display constraints

display_options

Maximization
maximize_options

coeflegend

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

control the maximization process; seldom used

display legend instead of statistics

178
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su—_options Description
Model
partial fit partial observability model
constraints (constraints)  apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
noskip perform likelihood-ratio test
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells
Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvary, depvars, indepvars, and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce(), noskip, and weights are not allowed with the svy prefix; see [SVY] svy.

pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
biprobit
Statistics > Binary outcomes > Bivariate probit regression

seemingly unrelated biprobit

Statistics > Binary outcomes > Seemingly unrelated bivariate probit regression

Description

biprobit fits maximum-likelihood two-equation probit models—either a bivariate probit or a
seemingly unrelated probit (limited to two equations).
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Options

Model

noconstant; see [R] estimation options.

partial specifies that the partial observability model be fit. This particular model commonly has
poor convergence properties, so we recommend that you use the difficult option if you want
to fit the Poirier partial observability model; see [R] maximize.

This model computes the product of the two dependent variables so that you do not have to replace
each with the product.

offsetl (varname), offset2(varname), constraints (constraints), collinear; see [R] estima-
tion options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

Reporting

level (#); see [R] estimation options.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test of all the parameters in the regression equation
being zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance (#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following option is available with biprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

For a good introduction to the bivariate probit models, see Greene (2012, 738-752) and Pindyck
and Rubinfeld (1998). Poirier (1980) explains the partial observability model. Van de Ven and Van
Pragg (1981) explain the probit model with sample selection; see [R] heckprob for details.
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> Example 1

We use the data from Pindyck and Rubinfeld (1998, 332). In this dataset, the variables are
whether children attend private school (private), number of years the family has been at the present
residence (years), log of property tax (logptax), log of income (loginc), and whether the head of
the household voted for an increase in property taxes (vote).

We wish to model the bivariate outcomes of whether children attend private school and whether
the head of the household voted for an increase in property tax based on the other covariates.

. use http://www.stata-press.com/data/r12/school
. biprobit private vote years logptax loginc
Fitting comparison equation 1:

log likelihood = -31.967097
log likelihood = -31.452424
log likelihood = -31.448958
log likelihood = -31.448958
Fitting comparison equation 2:

log likelihood = -63.036914

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:

Iteration O:

Iteration 1: log likelihood = -58.534843
Iteration 2: log likelihood = -58.497292
Iteration 3 log likelihood = -58.497288
Comparison: log likelihood = -89.946246

Fitting full model:

log likelihood = -89.946246
log likelihood = -89.258897
log likelihood = -89.254028
log likelihood = -89.254028

Iteration O:
Iteration 1:
Iteration 2:
Iteration 3:

Bivariate probit regression Number of obs = 95
Wald chi2(6) = 9.59
Log likelihood = -89.254028 Prob > chi2 = 0.1431
Coef.  Std. Err. z P>|z| [95% Conf. Intervall

private
years -.0118884 .0256778 -0.46  0.643 -.0622159 .0384391
logptax -.1066962 .6669782 -0.16  0.873 -1.413949 1.200557
loginc .3762037 .5306484 0.71 0.478 -.663848 1.416255
_cons -4.184694  4.837817 -0.86 0.387 -13.66664 5.297253

vote

years -.0168561 .0147834 -1.14 0.254 -.0458309 .0121188
logptax -1.288707 .5752266 -2.24 0.025 -2.416131  -.1612839
loginc .998286 .4403565 2.27 0.023 .1352031 1.861369
_cons -.5360573  4.068509 -0.13 0.895 -8.510188 7.438073
/athrho -.2764525 .2412099 -1.15 0.252 -.7492153 .1963102
rho -.2696186 .2236753 -.6346806 .1938267
Likelihood-ratio test of rho=0: chi2(1) = 1.38444 Prob > chi2 = 0.2393

The output shows several iteration logs. The first iteration log corresponds to running the univariate
probit model for the first equation, and the second log corresponds to running the univariate probit
for the second model. If p = 0, the sum of the log likelihoods from these two models will equal the
log likelihood of the bivariate probit model; this sum is printed in the iteration log as the comparison
log likelihood.
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The final iteration log is for fitting the full bivariate probit model. A likelihood-ratio test of the
log likelihood for this model and the comparison log likelihood is presented at the end of the output.
If we had specified the vce (robust) option, this test would be presented as a Wald test instead of
as a likelihood-ratio test.

We could have fit the same model by using the seemingly unrelated syntax as

. biprobit (private=years logptax loginc) (vote=years logptax loginc)

Saved results

biprobit saves the following in e():

e(technique)
e(properties)
d(predict)
e(asbalanced)
e(asobserved)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_aux) number of auxiliary parameters
e(k_eq_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11-0) log likelihood, constant-only model (noskip only)
e(11l_c) log likelihood, comparison model
e(N_clust) number of clusters
e(chi2) 2
e(chi2_c) x? for comparison test
e(p) significance
e(rho) p
e(rank) rank of e(V)
e (rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) biprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offsetl) offset for first equation
e(offset2) offset for second equation
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program

maximization technique

bV

program used to implement predict
factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(\) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas
biprobit is implemented as an ado-file.

The log likelihood, InL, is given by

55 =z;8+ offsetf
&

- {1 if y1; #0
9 —1 otherwise

{1, im A0
92 —1 otherwise

zj7y + offset

P}k- = 415925

n
InL = Z w; In®y (quﬁfv 425€] P}k)

j=1

where ®5() is the cumulative bivariate normal distribution function (with mean [0 0]) and w; is
an optional weight for observation j. This derivation assumes that

Yi; = 2B+ ey + oﬁ’set?
Y5; = zj7 + €25 + offset]

E(e1) = E(e2) =0
Var(e;) = Var(ez) =1
Cov(er,e2) =p

where y7; and y3; are the unobserved latent variables; instead, we observe only y;; = 1 if y; > 0
and y;; = 0 otherwise (for ¢ = 1,2).

In the maximum likelihood estimation, p is not directly estimated, but atanh p is

1 1
atanh P = 5 ln<1+p)
—p

From the form of the likelihood, if p = 0, then the log likelihood for the bivariate probit models
is equal to the sum of the log likelihoods of the two univariate probit models. A likelihood-ratio test
may therefore be performed by comparing the likelihood of the full bivariate model with the sum of
the log likelihoods for the univariate probit models.
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This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Maximum likelihood estimators and Methods and formulas.

biprobit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see

[R] biprobit postestimation — Postestimation tools for biprobit
[R] mprobit — Multinomial probit regression

[R] probit — Probit regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Title

biprobit postestimation — Postestimation tools for biprobit

Description

The following postestimation commands are available after biprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estat (svy)  postestimation statistics for survey data

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

lrtest! likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

I Irtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict

predict [type] newvar [zf] [in] [, statistic nooffset]

predict [type] {stub*|newvareql newvareq2 newvarathrho} [zj] [zn} , scores

statistic Description
Main
pil ®9(x;b,2z;g, p), predicted probability Pr(y;; = 1, yo; = 1); the default
plo Oy (x;b, —2;8, —p), predicted probability Pr(y1; = 1,y2; = 0)
po1 Qo (—x; b ,2;8, —p), predicted probability Pr(y,; = 0, y2; = 1)
po0 ®o(—x;b, —2z;g, p), predicted probability Pr(y1; = 0,y2; = 0)
pmargl O (x; ) rnarginal success probability for equation 1
pmarg2 ®(z;g), marginal success probability for equation 2
pcondi ®9(x;b,2z;g, p)/P(2z,8), conditional probability of success for equation 1
pcond?2 ®4(x;b,2z;g, p)/P(x,b), conditional probability of success for equation 2
xb1l x;b, linear prediction for equation 1
xb2 z;g, linear prediction for equation 2
stdp1 standard error of the linear prediction for equation 1
stdp2 standard error of the linear prediction for equation 2

where ®() is the standard normal-distribution function and ®5() is the bivariate standard
normal-distribution function.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

p11, the default, calculates the bivariate predicted probability Pr(y1; = 1,32, = 1).

p10 calculates the bivariate predicted probability Pr(y,; = 1,y2; = 0).

pO1 calculates the bivariate predicted probability Pr(y:; = 0,y2; = 1).

pOO calculates the bivariate predicted probability Pr(y1; = 0,y2; = 0).

pmargl calculates the univariate (marginal) predicted probability of success Pr(y;; = 1).
pmarg? calculates the univariate (marginal) predicted probability of success Pr(ys; = 1).

pcond1 calculates the conditional (on success in equation 2) predicted probability of success
Pr(yi; = 1,y2; = 1)/Pr(y2; = 1).

pcond?2 calculates the conditional (on success in equation 1) predicted probability of success
Pr(yi; = 1,y2; = 1)/Pr(y1; = 1).



biprobit postestimation — Postestimation tools for biprobit 187

xb1 calculates the probit linear prediction x;b.
xb2 calculates the probit linear prediction z;g.
stdp1 calculates the standard error of the linear prediction for equation 1.
stdp2 calculates the standard error of the linear prediction for equation 2.

nooffset is relevant only if you specified of fset1 (varname) or offset2(varname) for biprobit.
It modifies the calculations made by predict so that they ignore the offset variables; the linear
predictions are treated as x;b rather than as x;b 4 offset;; and z;~y rather than as z;+ + offsety;.

scores calculates equation-level score variables.
The first new variable will contain dln L/9(x;03).
The second new variable will contain Oln L/0(z;7).

The third new variable will contain dIn L/ (atanh p).

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[R] biprobit — Bivariate probit regression

[U] 20 Estimation and postestimation commands



Title

bitest — Binomial probability test

Syntax
Binomial probability test

bitest varname== #, [lf] [ll’l] [weight] [, getail]

Immediate form of binomial probability test
bitesti #y #suce #p |, detail |

by is allowed with bitest; see [D] by.
fweights are allowed with bitest; see [U] 11.1.6 weight.

Menu
bitest

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test

bitesti

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test calculator

Description

bitest performs exact hypothesis tests for binomial random variables. The null hypothesis is that
the probability of a success on a trial is #,. The total number of trials is the number of nonmissing
values of varname (in bitest) or #5 (in bitesti). The number of observed successes is the number
of 1s in varname (in bitest) or #ycc (in bitesti). varname must contain only Os, 1s, and missing.

bitesti is the immediate form of bitest; see [U] 19 Immediate commands for a general
introduction to immediate commands.

Option
Advanced

detail shows the probability of the observed number of successes, kops; the probability of the
number of successes on the opposite tail of the distribution that is used to compute the two-sided
p-value, kopp; and the probability of the point next to kopp,. This information can be safely ignored.
See the technical note below for details.

Remarks

Remarks are presented under the following headings:

bitest
bitesti
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bitest

> Example 1

We test 15 university students for high levels of one measure of visual quickness which, from
other evidence, we believe is present in 30% of the nonuniversity population. Included in our data is
quick, taking on the values 1 (“success”) or 0 (“failure”) depending on the outcome of the test.

. use http://www.stata-press.com/data/r12/quick
. bitest quick == 0.3

Variable | N  Observed k Expected k Assumed p Observed p
quick | 15 7 4.5 0.30000 0.46667
Pr(k >=7) 0.131143 (one-sided test)

Pr(k <= 7)
Pr(k <= 1 or k >= 7)

0.949987 (one-sided test)
0.166410 (two-sided test)

The first part of the output reveals that, assuming a true probability of success of 0.3, the expected
number of successes is 4.5 and that we observed seven. Said differently, the assumed frequency under
the null hypothesis Hy is 0.3, and the observed frequency is 0.47.

The first line under the table is a one-sided test; it is the probability of observing seven or
more successes conditional on p = 0.3. It is a test of Hy:p = 0.3 versus the alternative hypothesis
Ha:p > 0.3. Said in English, the alternative hypothesis is that more than 30% of university students
score at high levels on this test of visual quickness. The p-value for this hypothesis test is 0.13.

The second line under the table is a one-sided test of H( versus the opposite alternative hypothesis
Hp:p <03.

The third line is the two-sided test. It is a test of H(y versus the alternative hypothesis Ha: p # 0.3.
d

Q Technical note

The p-value of a hypothesis test is the probability (calculated assuming Hj is true) of observing
any outcome as extreme or more extreme than the observed outcome, with extreme meaning in the
direction of the alternative hypothesis. In example 1, the outcomes £k = 8, 9, ..., 15 are clearly
“more extreme” than the observed outcome kon,s = 7 when considering the alternative hypothesis
Hx:p # 0.3. However, outcomes with only a few successes are also in the direction of this alternative
hypothesis. For two-sided hypotheses, outcomes with k successes are considered “as extreme or more
extreme” than the observed outcome kops if Pr(k) < Pr(kobs). Here Pr(k = 0) and Pr(k = 1) are
both less than Pr(k = 7), so they are included in the two-sided p-value.

The detail option allows you to see the probability (assuming that Hy is true) of the observed
successes (k = 7) and the probability of the boundary point (k = 1) of the opposite tail used for the
two-sided p-value.
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. bitest quick == 0.3, detail

Variable | N Observed k Expected k Assumed p Observed p
quick | 15 7 4.5 0.30000 0.46667
Pr(k >= 7) = 0.131143 (one-sided test)
Pr(k <= 7) = 0.949987 (one-sided test)
Pr(k <=1 or k >= 7) = 0.166410 (two-sided test)
Pr(k == 7) = 0.081130 (observed)
Pr(k == 2) = 0.091560
Pr(k == 1) = 0.030520 (opposite extreme)

Also shown is the probability of the point next to the boundary point. This probability, namely,
Pr(k = 2) = 0.092, is certainly close to the probability of the observed outcome Pr(k = 7) = 0.081,
so some people might argue that & = 2 should be included in the two-sided p-value. Statisticians
(at least some we know) would reply that the p-value is a precisely defined concept and that this
is an arbitrary “fuzzification” of its definition. When you compute exact p-values according to the
precise definition of a p-value, your type I error is never more than what you say it is—so no one
can criticize you for being anticonservative. Including the point k = 2 is being overly conservative
because it makes the p-value larger yet. But it is your choice; being overly conservative, at least in
statistics, is always safe. Know that bitest and bitesti always keep to the precise definition of
a p-value, so if you wish to include this extra point, you must do so by hand or by using the r ()
saved results; see Saved results below.

a

bitesti

> Example 2

The binomial test is a function of two statistics and one parameter: N, the number of observations;
kobs, the number of observed successes; and p, the assumed probability of a success on a trial. For
instance, in a city of N = 2,500,000, we observe kops = 36 cases of a particular disease when the
population rate for the disease is p = 0.00001.

. bitesti 2500000 36 .00001
N  Observed k Expected k Assumed p Observed p

2500000 36 25 0.00001 0.00001
Pr(k >= 36) 0.022458 (one-sided test)
Pr(k <= 36) 0.985448 (one-sided test)
Pr(k <= 14 or k >= 36) 0.034859 (two-sided test)

> Example 3

Boice and Monson (1977) present data on breast cancer cases and person-years of observations
for women with tuberculosis who were repeatedly exposed to multiple x-ray fluoroscopies and for
women with tuberculosis who were not. The data are

Exposed Not exposed Total
Breast cancer 41 15 56
Person-years 28,010 19,017 47,027
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We can thus test whether x-ray fluoroscopic examinations are associated with breast cancer; the
assumed rate of exposure is p = 28010/47027.

. bitesti 56 41 28010/47027
N  Observed k Expected k Assumed p Observed p

56 41 33.35446 0.59562 0.73214
Pr(k >= 41) 0.023830 (one-sided test)

Pr(k <= 41) 0.988373 (one-sided test)
Pr(k <= 25 or k >= 41) = 0.040852 (two-sided test)
d
Saved results
bitest and bitesti save the following in r():
Scalars
r(N) number N of trials r (k_opp) opposite extreme k
r(P_p) assumed probability p of success r(P_k) probability of observed k (detail only)
r (k) observed number k of successes r(P_oppk)  probability of opposite extreme k (detail
only)
r(p-1) lower one-sided p-value r(k_nopp) k next to opposite extreme (detail only)
r(p—u) upper one-sided p-value r(P_noppk) probability of k next to opposite extreme
r(p) two-sided p-value (detail only)

Methods and formulas

bitest and bitesti are implemented as ado-files.

Let IV, kops, and p be, respectively, the number of observations, the observed number of successes,
and the assumed probability of success on a trial. The expected number of successes is Np, and the
observed probability of success on a trial is kops/N.

bitest and bitesti compute exact p-values based on the binomial distribution. The upper

one-sided p-value is
N

N
P > _ mi1 _ \N—m
I'(k‘ = kobs) Z <m> p (]- p)
m=Kkobs
The lower one-sided p-value is
kobs

N ( —m
Pr(k < kops) = (m) p"(1— p)N

=0
If kopbs > Np, the two-sided p-value is

Pr(k < kopp or k > kobs)
where kopp, is the largest number < Np such that Pr(k = kopp) < Pr(k = kops). If kobs < Np,

the two-sided p-value is
Pr(k < kops or k > kopp)

where kopp, is the smallest number > Np such that Pr(k = kopp) < Pr(k = kobs)-
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Also see
[R] ci — Confidence intervals for means, proportions, and counts

[R] prtest — One- and two-sample tests of proportions



Title

bootstrap — Bootstrap sampling and estimation

Syntax
bootstrap exp_list [, options eform_option} : command
options Description
Main
reps (#) perform # bootstrap replications; default is reps (50)
Options
strata(varlist) variables identifying strata
size (#) draw samples of size #; default is _N
cluster (varlist) variables identifying resampling clusters
idcluster (newvar) create new cluster ID variable

saving( filename, ...)

bca

mse

Reporting
level (#)
notable
noheader
nolegend
verbose
nodots
noisily
trace
title (text)
display_options

eform_option

Advanced
nodrop
nowarn
force
reject (exp)
seed (#)

group (varname)
jackknifeopts (jkopts)
coeflegend

save results to filename; save statistics in double precision;
save results to filename every # replications

compute acceleration for BC, confidence intervals

use MSE formula for variance estimation

set confidence level; default is 1level (95)
suppress table of results

suppress table header

suppress table legend

display the full table legend

suppress replication dots

display any output from command

trace command

use text as title for bootstrap results

control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

display coefficient table in exponentiated form

do not drop observations

do not warn when e (sample) is not set

do not check for weights or svy commands; seldom used
identify invalid results

set random-number seed to #

ID variable for groups within cluster ()
options for jackknife; see [R] jackknife
display legend instead of statistics

193




194 bootstrap — Bootstrap sampling and estimation

weights are not allowed in command.
group(), jackknifeopts(), and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

exp_list contains (name: elist)
elist
eexp
elist contains newvar = (exp)
(exp)
eexp is specname
Legnolspecname
specname is _b
_b[]
_se
_sel]
eqno is ##
name
exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and H , which indicate optional arguments.

Menu

Statistics > Resampling > Bootstrap estimation

Description
bootstrap performs bootstrap estimation. Typing

. bootstrap exp_list, reps(#): command

executes command multiple times, bootstrapping the statistics in exp_list by resampling observations
(with replacement) from the data in memory # times. This method is commonly referred to as the
nonparametric bootstrap.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with bootstrap, as long as they follow standard Stata syntax; see [U] 11 Lan-
guage syntax. If the bca option is supplied, command must also work with jackknife; see
[R] jackknife. The by prefix may not be part of command.

exp_list specifies the statistics to be collected from the execution of command. If command changes
the contents in e (b), exp_list is optional and defaults to _b.

Because bootstrapping is a random process, if you want to be able to reproduce results, set the
random-number seed by specifying the seed (#) option or by typing

. set seed #

where # is a seed of your choosing, before running bootstrap; see [R] set seed.
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Many estimation commands allow the vce(bootstrap) option. For those commands, we rec-
ommend using vce (bootstrap) over bootstrap because the estimation command already handles
clustering and other model-specific details for you. The bootstrap prefix command is intended
for use with nonestimation commands, such as summarize, user-written commands, or functions of
coefficients.

bs and bstrap are synonyms for bootstrap.

Options
Main

reps (#) specifies the number of bootstrap replications to be performed. The default is 50. A total of
50-200 replications are generally adequate for estimates of standard error and thus are adequate
for normal-approximation confidence intervals; see Mooney and Duval (1993, 11). Estimates of
confidence intervals using the percentile or bias-corrected methods typically require 1,000 or more
replications.

strata(varlist) specifies the variables that identify strata. If this option is specified, bootstrap samples
are taken independently within each stratum.

size(#) specifies the size of the samples to be drawn. The default is _N, meaning to draw samples of
the same size as the data. If specified, # must be less than or equal to the number of observations
within strata().

If cluster() is specified, the default size is the number of clusters in the original dataset. For
unbalanced clusters, resulting sample sizes will differ from replication to replication. For cluster
sampling, # must be less than or equal to the number of clusters within strata().

cluster (varlist) specifies the variables that identify resampling clusters. If this option is specified,
the sample drawn during each replication is a bootstrap sample of clusters.

idcluster (newvar) creates a new variable containing a unique identifier for each resampled cluster.
This option requires that cluster () also be specified.

saving( ﬁlename[ ) suboptions]) creates a Stata data file (.dta file) consisting of (for each statistic
in exp_list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals. This option may be used without
the saving() option to compute the variance estimates by using double precision.

every (#) specifies that results be written to disk every #th replication. every () should be specified
only in conjunction with saving() when command takes a long time for each replication. This
option will allow recovery of partial results should some other software crash your computer.
See [P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the
dialog box.

beca specifies that bootstrap estimate the acceleration of each statistic in exp_list. This estimate
is used to construct BC, confidence intervals. Type estat bootstrap, bca to display the BC,
confidence interval generated by the bootstrap command.

mse specifies that bootstrap compute the variance by using deviations of the replicates from the
observed value of the statistics based on the entire dataset. By default, bootstrap computes the
variance by using deviations from the average of the replicates.
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Reporting

level (#); see [R] estimation options.
notable suppresses the display of the table of results.

noheader suppresses the display of the table header. This option implies nolegend. This option
may also be specified when replaying estimation results.

nolegend suppresses the display of the table legend. This option may also be specified when replaying
estimation results.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors
are not displayed. This option may also be specified when replaying estimation results.

nodots suppresses display of the replication dots. By default, one dot character is displayed for each
successful replication. A red ‘x’ is displayed if command returns an error or if one of the values
in exp_list is missing.

noisily specifies that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(fext) specifies a title to be displayed above the table of bootstrap results. The default title is
the title saved in e (title) by an estimation command, or if e (title) is not filled in, Bootstrap
results is used. title() may also be specified when replaying estimation results.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fimt), sformat (% fimt), and nolstretch; see [R] estimation options.

eform_option causes the coefficient table to be displayed in exponentiated form; see [R] eform_option.

command determines which of the following are allowed (eform(string) and eform are always
allowed):

eform_option Description

eform(string)  use string for the column title

eform exponentiated coefficient, string is exp(b)
hr hazard ratio, string is Haz. Ratio

shr subhazard ratio, string is SHR

irr incidence-rate ratio, string is IRR

or odds ratio, string is 0dds Ratio

rrr relative-risk ratio, string is RRR

Advanced

nodrop prevents observations outside e (sample) and the if and in qualifiers from being dropped
before the data are resampled.
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nowarn suppresses the display of a warning message when command does not set e (sample).

force suppresses the restriction that command not specify weights or be a svy command. This is a
rarely used option. Use it only if you know what you are doing.

reject (exp) identifies an expression that indicates when results should be rejected. When exp is
true, the resulting values are reset to missing values.

seed (#) sets the random-number seed. Specifying this option is equivalent to typing the following
command prior to calling bootstrap:

. set seed #

The following options are available with bootstrap but are not shown in the dialog box:

group (varname) re-creates varname containing a unique identifier for each group across the resampled
clusters. This option requires that idcluster () also be specified.

This option is useful for maintaining unique group identifiers when sampling clusters with replace-
ment. Suppose that cluster 1 contains 3 groups. If the idcluster(newclid) option is specified
and cluster 1 is sampled multiple times, newclid uniquely identifies each copy of cluster 1. If
group (newgroupid) is also specified, newgroupid uniquely identifies each copy of each group.

jackknifeopts (jkopts) identifies options that are to be passed to jackknife when it computes the
acceleration values for the BC, confidence intervals; see [R] jackknife. This option requires the
bca option and is mostly used for passing the eclass, rclass, or n(#) option to jackknife.

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:
Introduction
Regression coefficients
Expressions
Combining bootstrap datasets
A note about macros
Achieved significance level
Bootstrapping a ratio
Warning messages and e(sample)
Bootstrapping statistics from data with a complex structure

Introduction

With few assumptions, bootstrapping provides a way of estimating standard errors and other measures
of statistical precision (Efron 1979; Efron and Stein 1981; Efron 1982; Efron and Tibshirani 1986;
Efron and Tibshirani 1993; also see Davison and Hinkley [1997]; Guan [2003]; Mooney and Duval
[1993]; Poi [2004]; and Stine [1990]). It provides a way to obtain such measures when no formula
is otherwise available or when available formulas make inappropriate assumptions. Cameron and
Trivedi (2010, chap. 13) discuss many bootstrapping topics and demonstrate how to do them in Stata.

To illustrate bootstrapping, suppose that you have a dataset containing N observations and an
estimator that, when applied to the data, produces certain statistics. You draw, with replacement, [V
observations from the N-observation dataset. In this random drawing, some of the original observations
will appear once, some more than once, and some not at all. Using the resampled dataset, you apply
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the estimator and collect the statistics. This process is repeated many times; each time, a new random
sample is drawn and the statistics are recalculated.

This process builds a dataset of replicated statistics. From these data, you can calculate the standard
error by using the standard formula for the sample standard deviation

S

where 6; is the statistic calculated using the ith bootstrap sample and k is the number of replications.
This formula gives an estimate of the standard error of the statistic, according to Hall and Wilson (1991).
Although the average, 6, of the bootstrapped estimates is used in calculating the standard deviation,
it is not uAsed as the estimated value of the statistic itself. Instead, the original observed value of the

statistic, 6, is used, meaning the value of the statistic computed using the original N observations.

You might think that @ is a better estimate of the parameter than 5 but it is not. If the statistic is
biased, bootstrapping exaggerates the bias. In fact, the bias can be estimated as 8 —6 (Efron 1982, 33).

Knowing this, you might be tempted to subtract this estimate of bias from 6 to produce an unbiased
statistic. The bootstrap bias estimate has an indeterminate amount of random error, so this unbiased
estimator may have greater mean squared error than the biased estimator (Mooney and Duval 1993;

Hinkley 1978). Thus 6 is the best point estimate of the statistic.

The logic behind the bootstrap is that all measures of precision come from a statistic’s sampling
distribution. When the statistic is estimated on a sample of size /N from some population, the sampling
distribution tells you the relative frequencies of the values of the statistic. The sampling distribution,
in turn, is determined by the distribution of the population and the formula used to estimate the
statistic.

Sometimes the sampling distribution can be derived analytically. For instance, if the underlying
population is distributed normally and you calculate means, the sampling distribution for the mean is
also normal but has a smaller variance than that of the population. In other cases, deriving the sampling
distribution is difficult, as when means are calculated from nonnormal populations. Sometimes, as in
the case of means, it is not too difficult to derive the sampling distribution as the sample size goes
to infinity (N — o0). However, such asymptotic distributions may not perform well when applied to
finite samples.

If you knew the population distribution, you could obtain the sampling distribution by simulation:
you could draw random samples of size [NV, calculate the statistic, and make a tally. Bootstrapping
does precisely this, but it uses the observed distribution of the sample in place of the true population
distribution. Thus the bootstrap procedure hinges on the assumption that the observed distribution
is a good estimate of the underlying population distribution. In return, the bootstrap produces an
estimate, called the bootstrap distribution, of the sampling distribution. From this, you can estimate
the standard error of the statistic, produce confidence intervals, etc.

The accuracy with which the bootstrap distribution estimates the sampling distribution depends on
the number of observations in the original sample and the number of replications in the bootstrap. A
crudely estimated sampling distribution is adequate if you are only going to extract, say, a standard
error. A better estimate is needed if you want to use the 2.5th and 97.5th percentiles of the distribution
to produce a 95% confidence interval. To extract many features simultaneously about the distribution,
an even better estimate is needed. Generally, replications on the order of 1,000 produce very good
estimates, but only 50—200 replications are needed for estimates of standard errors. See Poi (2004)
for a method to choose the number of bootstrap replications.
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Regression coefficients

> Example 1

Let’s say that we wish to compute bootstrap estimates for the standard errors of the coefficients
from the following regression:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight gear foreign

Source S8 df MS Number of obs = 74
F( 3, 70) = 46.73

Model 1629.67805 3 543.226016 Prob > F = 0.0000
Residual 813.781411 70 11.6254487 R-squared = 0.6670
Adj R-squared = 0.6527

Total 2443.45946 73 33.4720474 Root MSE = 3.4096
mpg Coef.  Std. Err. t P>|t] [95% Conf. Intervall
weight -.006139  .0007949 -7.72  0.000 -.0077245  -.0045536
gear_ratio 1.457113 1.541286 0.95 0.348 -1.616884 4.53111
foreign -2.221682  1.234961 -1.80 0.076 -4.684735 .2413715
_cons 36.10135  6.285984 5.74 0.000 23.56435 48.63835

To run the bootstrap, we simply prefix the above regression command with the bootstrap command
(specifying its options before the colon separator). We must set the random-number seed before calling
bootstrap.

. bootstrap, reps(100) seed(1): regress mpg weight gear foreign
(running regress on estimation sample)

Bootstrap replications (100)
i 1 i 2 i 3 i 4 i 5
I I I I I
.................................................. 50
.................................................. 100
Linear regression Number of obs = 74
Replications = 100
Wald chi2(3) = 111.96
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096
Observed Bootstrap Normal-based
mpg Coef.  Std. Err. z P>|z| [95% Conf. Intervall
weight -.006139 .0006498 -9.45 0.000 -.0074127  -.0048654
gear_ratio 1.457113  1.297786 1.12  0.262 -1.086501 4.000727
foreign -2.221682  1.162728 -1.91 0.056 -4.500587 .0572236
_cons 36.10135 4.71779 7.65 0.000 26.85465 45.34805

The displayed confidence interval is based on the assumption that the sampling (and hence bootstrap)
distribution is approximately normal (see Methods and formulas below). Because this confidence
interval is based on the standard error, it is a reasonable estimate if normality is approximately true,
even for a few replications. Other types of confidence intervals are available after bootstrap; see
[R] bootstrap postestimation.
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We could instead supply names to our expressions when we run bootstrap. For example,

. bootstrap diff=(_b[weight]l-_bl[gear]): regress mpg weight gear foreign

would bootstrap a statistic, named diff, equal to the difference between the coefficients on weight
and gear_ratio.

d

Expressions

> Example 2

When we use bootstrap, the list of statistics can contain complex expressions, as long as each
expression is enclosed in parentheses. For example, to bootstrap the range of a variable x, we could

type

. bootstrap range=(r(max)-r(min)), reps(1000): summarize x

Of course, we could also bootstrap the minimum and maximum and later compute the range.

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x

. use mybs, clear
(bootstrap: summarize)

. generate range = max - min
. bstat range, stat(19.5637501)

The difference between the maximum and minimum of x in the sample is 19.5637501.

The stat () option to bstat specifies the observed value of the statistic (range) to be summarized.
This option is useful when, as shown above, the statistic of ultimate interest is not specified directly
to bootstrap but instead is calculated by other means.

Here the observed values of r (max) and r (min) are saved as characteristics of the dataset created
by bootstrap and are thus available for retrieval by bstat; see [R] bstat. The observed range,
however, is unknown to bstat, so it must be specified.

4

Combining bootstrap datasets

You can combine two datasets from separate runs of bootstrap by using append (see [D] append)
and then get the bootstrap statistics for the combined datasets by running bstat. The runs must
have been performed independently (having different starting random-number seeds), and the original
dataset, command, and bootstrap statistics must have been all the same.

A note about macros

In the previous example, we executed the command

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x
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We did not enclose r (max) and r(min) in single quotes, as we would in most other contexts, because
it would not produce what was intended:

. bootstrap ‘r(max)’ ‘r(min)’, reps(1000) saving(mybs): summarize x

To understand why, note that ‘r(max) ’, like any reference to a local macro, will evaluate to a literal
string containing the contents of r (max) before bootstrap is even executed. Typing the command
above would appear to Stata as if we had typed

. bootstrap 14.5441234 33.4393293, reps(1000) saving(mybs): summarize x

Even worse, the current contents of r(min) and r(max) could be empty, producing an even more
confusing result. To avoid this outcome, refer to statistics by name (for example, r (max)) and not
by value (for example, ‘r(max)’).

Achieved significance level

> Example 3

Suppose that we wish to estimate the achieved significance level (ASL) of a test statistic by using
the bootstrap. ASL is another name for p-value. An example is

ASL = Pr (5* > §|H0)

for an upper-tailed, alternative hypothesis, where Hj denotes the null hypothesis, 0 is the observed

value of the test statistic, and 6* is the random variable corresponding to the test statistic, assuming
that Hy is true.

Here we will compare the mean miles per gallon (mpg) between foreign and domestic cars by
using the two-sample ¢ test with unequal variances. The following results indicate the p-value to be
0.0034 for the two-sided test using Satterthwaite’s approximation. Thus assuming that mean mpg is
the same for foreign and domestic cars, we would expect to observe a t statistic more extreme (in
absolute value) than 3.1797 in about 0.3% of all possible samples of the type that we observed.
Thus we have evidence to reject the null hypothesis that the means are equal.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)
. ttest mpg, by(foreign) unequal

Two-sample t test with unequal variances

Group Obs Mean Std. Err.  Std. Dev. [95% Conf. Intervall
Domestic 52 19.82692 .657777 4.743297 18.50638 21.14747
Foreign 22 24.77273 1.40951 6.611187 21.84149 27.70396
combined 74 21.2973 .6725511 5.785503 19.9569 22.63769
diff -4.945804 1.555438 -8.120053 -1.771556
diff = mean(Domestic) - mean(Foreign) t = -3.1797
Ho: diff = 0 Satterthwaite’s degrees of freedom = 30.5463
Ha: diff < O Ha: diff !'= 0 Ha: diff > 0O

Pr(T < t) = 0.0017 Pr(ITI > |tl) = 0.0034 Pr(T > t) = 0.9983
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We also place the value of the test statistic in a scalar for later use.

. scalar tobs = r(t)

Efron and Tibshirani (1993, 224) describe an alternative to Satterthwaite’s approximation that
estimates the ASL by bootstrapping the statistic from the test of equal means. Their idea is to recenter
the two samples to the combined sample mean so that the data now conform to the null hypothesis
but that the variances within the samples remain unchanged.

. summarize mpg, meanonly
. scalar omean = r(mean)
. summarize mpg if foreign==0, meanonly

. replace mpg = mpg - r(mean) + scalar(omean) if foreign==
mpg was int now float
(62 real changes made)

. summarize mpg if foreign==1, meanonly

. replace mpg = mpg - r(mean) + scalar(omean) if foreign==1
(22 real changes made)

. sort foreign

. by foreign: summarize mpg

-> foreign = Domestic
Variable Obs Mean Std. Dev. Min Max

mpg 52 21.2973 4.743297 13.47037  35.47038

-> foreign = Foreign
Variable Obs Mean Std. Dev. Min Max

mpg 22 21.2973 6.611187 10.52457 37.52457

Each sample (foreign and domestic) is a stratum, so the bootstrapped samples must have the same
number of foreign and domestic cars as the original dataset. This requirement is facilitated by the
strata() option to bootstrap. By typing the following, we bootstrap the test statistic using the
modified dataset and save the values in bsauto2.dta:
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. keep mpg foreign
. set seed 1

. bootstrap t=r(t), rep(1000) strata(foreign) saving(bsauto2) nodots: ttest mpg,

> by(foreign) unequal

Warning: Because ttest is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be
excluded from the resampling because of missing values or other
reasons.
If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results

Number of strata = 2 Number of obs = 74
Replications = 1000
command: ttest mpg, by(foreign) unequal
t: r(t)
Observed  Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Intervall
t 1.75e-07  1.036437 0.00 1.000 -2.031379 2.031379

We can use the data in bsauto2.dta to estimate ASL via the fraction of bootstrap test statistics
that are more extreme than 3.1797.

. use bsauto2, clear
(bootstrap: ttest)

. generate indicator = abs(t)>=abs(scalar(tobs))
. summarize indicator, meanonly

. display "ASLboot = " r(mean)
ASLboot = .005

The result is ASLpoot = 0.005. Assuming that the mean mpg is the same between foreign and
domestic cars, we would expect to observe a ¢ statistic more extreme (in absolute value) than 3.1797
in about 0.5% of all possible samples of the type we observed. This finding is still strong evidence
to reject the hypothesis that the means are equal.

d

Bootstrapping a ratio

> Example 4

Suppose that we wish to produce a bootstrap estimate of the ratio of two means. Because summarize
saves results for only one variable, we must call summarize twice to compute the means. Actually,
we could use collapse to compute the means in one call, but calling summarize twice is much
faster. Thus we will have to write a small program that will return the results we want.
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We write the program below and save it to a file called ratio.ado (see [U] 17 Ado-files). Our
program takes two variable names as input and saves them in the local macros y (first variable)
and x (second variable). It then computes one statistic: the mean of ‘y’ divided by the mean of
‘x’. This value is returned as a scalar in r(ratio). ratio also returns the ratio of the number of
observations used to the mean for each variable.

program myratio, rclass
version 12
args y x
confirm var ‘y’
confirm var ‘x’
tempname ymean yn
summarize ‘y’, meanonly
scalar ‘ymean’ = r(mean)
return scalar n_‘y’ = r(N)
summarize ‘x’, meanonly
return scalar n_‘x’ = r(N)
return scalar ratio = ‘ymean’/r(mean)
end

Remember to test any newly written commands before using them with bootstrap.

. use http://www.stata-press.com/data/ri12/auto, clear
(1978 Automobile Data)

. summarize price
Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
. scalar meanl=r(mean)
. summarize weight
Variable Obs Mean Std. Dev. Min Max

weight 74 3019.459 777.1936 1760 4840
. scalar mean2=r (mean)

. di scalar(meanl)/scalar(mean2)
2.0418412

. myratio price weight

. return list

scalars:
r(ratio) = 2.041841210168278
r(n_weight) = 74
r(n_price) = 74



bootstrap — Bootstrap sampling and estimation 205

The results of running bootstrap on our program are
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. set seed 1

. bootstrap ratio=r(ratio), reps(1000) nowarn nodots: myratio price weight

Bootstrap results Number of obs = 74
Replications = 1000
command: myratio price weight
ratio: r(ratio)
Observed Bootstrap Normal-based
Coef . Std. Err. z P>|z| [95% Conf. Intervall
ratio 2.041841 .0942932 21.65 0.000 1.85703 2.226652

As mentioned previously, we should specify the saving() option if we wish to save the bootstrap
dataset. q

Warning messages and e(sample)

bootstrap is not meant to be used with weighted calculations. bootstrap determines the presence
of weights by parsing the prefixed command with standard syntax. However, commands like stcox
and streg require that weights be specified in stset, and some user commands may allow weights
to be specified by using an option instead of the standard syntax. Both cases pose a problem for
bootstrap because it cannot determine the presence of weights under these circumstances. In these
cases, we can only assume that you know what you are doing.

bootstrap does not know which variables of the dataset in memory matter to the calculation at
hand. You can speed their execution by dropping unnecessary variables because, otherwise, they are
included in each bootstrap sample.

You should thus drop observations with missing values. Leaving in missing values causes no
problem in one sense because all Stata commands deal with missing values gracefully. It does,
however, cause a statistical problem. Bootstrap sampling is defined as drawing, with replacement,
samples of size IV from a set of IV observations. bootstrap determines N by counting the number
of observations in memory, not counting the number of nonmissing values on the relevant variables.
The result is that too many observations are resampled; the resulting bootstrap samples, because they
are drawn from a population with missing values, are of unequal sizes.

If the number of missing values relative to the sample size is small, this will make little difference.
If you have many missing values, however, you should first drop the observations that contain them.

> Example 5

To illustrate, we use the previous example but replace some of the values of price with missing
values. The number of values of price used to compute the mean for each bootstrap is not constant.
This is the purpose of the Warning message.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. replace price = . if inlist(_n,1,3,5,7)
(4 real changes made, 4 to missing)

. set seed 1
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. bootstrap ratio=r(ratio) np=r(n_price) nw=r(n_weight), reps(100) nodots:

> myratio price weight

Warning: Because myratio is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be
excluded from the resampling because of missing values or other
reasons.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results Number of obs = 74
Replications = 100

command: myratio price weight
ratio: r(ratio)
np: r(n_price)
nw: r(n_weight)

Observed Bootstrap Normal-based
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ratio 2.063051 .0893669 23.09 0.000 1.887896 2.238207
np 70 1.872178 37.39  0.000 66.3306 73.6694
nw 74 . . . . .

Bootstrapping statistics from data with a complex structure

Here we describe how to bootstrap statistics from data with a complex structure, for example,
longitudinal or panel data, or matched data. bootstrap, however, is not designed to work with
complex survey data. It is important to include all necessary information about the structure of the
data in the bootstrap syntax to obtain correct bootstrap estimates for standard errors and confidence
intervals.

bootstrap offers several options identifying the specifics of the data. These options are strata(),
cluster (), idcluster (), and group (). The usage of strata() was described in example 3 above.
Below we demonstrate several examples that require specifying the other three options.

> Example 6

Suppose that the auto data in example 1 above are clustered by rep78. We want to obtain
bootstrap estimates for the standard errors of the difference between the coefficients on weight and
gear_ratio, taking into account clustering.

We supply the cluster (rep78) option to bootstrap to request resampling from clusters rather
than from observations in the dataset.
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. use http://www.stata-press.com/data/ri12/auto, clear

(1978 Automobile Data)

. keep if rep78 < .

(5 observations deleted)

. bootstrap diff=(_b[weight]-_b[gear]), seed(1) cluster(rep78): regress mpg weight
> gear foreign

(running regress on estimation sample)

Bootstrap replications (50)
. 1 . 2 . 3 . 4 . 5
I I I I I
.................................................. 50
Linear regression Number of obs = 69
Replications = 50

command: regress mpg weight gear foreign
diff: _bl[weight]-_b[gear]

(Replications based on 5 clusters in rep78)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Intervall
diff -1.910396 1.876778 -1.02 0.309 -5.588812 1.768021

We drop missing values in rep78 before issuing the command because bootstrap does not allow
missing values in cluster (). See the section above about using bootstrap when variables contain
missing values.

We can also obtain these same results by using the following syntax:

. bootstrap diff=(_b[weight]-_b[gear]), seed(1): regress mpg weight gear foreign,
> vce(cluster rep78)

When only clustered information is provided to the command, bootstrap can pick up the
vce(cluster clustvar) option from the main command and use it to resample from clusters.

d

> Example 7

Suppose now that we have matched data and want to use bootstrap to obtain estimates of the
standard errors of the exponentiated difference between two coefficients (or, equivalently, the ratio
of two odds ratios) estimated by clogit. Consider the example of matched case—control data on
birthweight of infants described in example 2 of [R] clogit.

The infants are paired by being matched on mother’s age. All groups, defined by the pairid
variable, have 1:2 matching. clogit requires that the matching information, pairid, be supplied to
the group() (or, equivalently, strata()) option to be used in computing the parameter estimates.
Because the data are matched, we need to resample from groups rather than from the whole
dataset. However, simply supplying the grouping variable pairid in cluster () is not enough with
bootstrap, as it is with clustered data.
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. use http://www.stata-press.com/data/r12/lowbirth2, clear

(Applied Logistic Regression, Hosmer & Lemeshow)

. bootstrap ratio=exp(_b[smokel-_b[ptd]), seed(1l) cluster(pairid): clogit low lwt
> smoke ptd ht ui i.race, group(pairid)

(running clogit on estimation sample)

Bootstrap replications (50)
. 1 . 2 . 3 . 4 . 5
I I I I I
.................................................. 50
Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smokel-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed Bootstrap Normal-based
Coef.  Std. Err. z P>|z| [95% Conf. Intervall
ratio .6654095 17.71791 0.04 0.970 -34.06106 35.39187

For the syntax above, imagine that the first pair was sampled twice during a replication. Then the
bootstrap sample has four subjects with pairid equal to one, which clearly violates the original 1:2
matching design. As a result, the estimates of the coefficients obtained from this bootstrap sample
will be incorrect.

Therefore, in addition to resampling from groups, we need to ensure that resampled groups are
uniquely identified in each of the bootstrap samples. The idcluster (newcluster) option is designed
for this. It requests that at each replication bootstrap create the new variable, newcluster, containing
unique identifiers for all resampled groups. Thus, to make sure that the correct matching is preserved
during each replication, we need to specify the grouping variable in cluster(), supply a variable
name to idcluster (), and use this variable as the grouping variable with clogit, as we demonstrate
below.

. bootstrap ratio=exp(_b[smoke]l-_b[ptd]), seed(1) cluster(pairid)

> idcluster(newpairid): clogit low lwt smoke ptd ht ui i.race, group(newpairid)
(running clogit on estimation sample)

Bootstrap replications (50)
{ 1 { 2 { 3 { 4 { 5
I I I I I
.................................................. 50
Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(newpairid)
ratio: exp(_blsmoke]l-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed  Bootstrap Normal-based
Coef. Std. Err. z P>|z]| [95% Conf. Intervall
ratio .6654095  7.919441 0.08 0.933 -14.85641 16.18723

Note the difference between the estimates of the bootstrap standard error for the two specifications

of the bootstrap syntax.
d
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Q Technical note

Similarly, when you have panel (longitudinal) data, all resampled panels must be unique
in each of the bootstrap samples to obtain correct bootstrap estimates of statistics. Therefore,
both cluster(panelvar) and idcluster (newpanelvar) must be specified with bootstrap, and
i(newpanelvar) must be used with the main command. Moreover, you must clear the current xtset
settings by typing xtset, clear before calling bootstrap.

a

> Example 8

Continuing with our birthweight data, suppose that we have more information about doctors
supervising women’s pregnancies. We believe that the data on the pairs of infants from the same
doctor may be correlated and want to adjust standard errors for possible correlation among the pairs.
clogit offers the vce(cluster clustvar) option to do this.

Let’s add a cluster variable to our dataset. One thing to keep in mind is that to use vce (cluster
clustvar), groups in group() must be nested within clusters.

. use http://www.stata-press.com/data/r12/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)

. set seed 12345
. by pairid, sort: egen byte doctor = total(int(2*runiform()+1)*(_n == 1))
. clogit low lwt smoke ptd ht ui i.race, group(pairid) vce(cluster doctor)

Iteration O: log pseudolikelihood = -26.768693
Iteration 1: log pseudolikelihood = -25.810476
Iteration 2: log pseudolikelihood = -25.794296
Iteration 3: log pseudolikelihood = -25.794271
Iteration 4: log pseudolikelihood = -25.794271

Conditional (fixed-effects) logistic regression  Number of obs = 112

Wald chi2(1) =
Prob > chi2 = .
Log pseudolikelihood = -25.794271 Pseudo R2 = 0.3355
(Std. Err. adjusted for 2 clusters in doctor)

Robust
low Coef. Std. Err. z P>|z| [95% Conf. Intervall
1wt -.0183757 .0217802 -0.84 0.399 -.0610641 .0243128
smoke 1.400656 .0085545 163.73  0.000 1.38389 1.417423
ptd 1.808009 .938173 1.93 0.054 -.0307765 3.646794
ht 2.361152  1.587013 1.49 0.137 -.7493362 5.47164
ui 1.401929 .8568119 1.64 0.102 -.2773913 3.08125
race

2 .5713643 .0672593 8.49 0.000 .4395385 .7031902
3 -.0253148 .9149785 -0.03 0.978 -1.81864 1.76801

To obtain correct bootstrap standard errors of the exponentiated difference between the two
coefficients in this example, we need to make sure that both resampled clusters and groups within
resampled clusters are unique in each of the bootstrap samples. To achieve this, bootstrap needs
the information about clusters in cluster (), the variable name of the new identifier for clusters
in idcluster(), and the information about groups in group(). We demonstrate the corresponding
syntax of bootstrap below.
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. bootstrap ratio=exp(_b[smoke]l-_b[ptd]l), seed(1) cluster(doctor)

> idcluster(uidoctor) group(pairid): clogit low lwt smoke ptd ht ui i.race,
> group(pairid)

(running clogit on estimation sample)

Bootstrap replications (50)
. 1 . 2 . 3 . 4 . 5
I I I I I
.................................................. 50
Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smokel-_b[ptd])

(Replications based on 2 clusters in doctor)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z]| [95% Conf. Intervall
ratio .6654095 .3156251 2.11  0.035 .0467956 1.284023

In the above syntax, although we specify group (pairid) with clogit, itis not the group identifiers
of the original pairid variable that are used to compute parameter estimates from bootstrap samples.
The way bootstrap works is that, at each replication, the clusters defined by doctor are resampled
and the new variable, uidoctor, uniquely identifying resampled clusters is created. After that, another
new variable uniquely identifying the (uidoctor, group) combination is created and renamed to
have the same name as the grouping variable, pairid. This newly defined grouping variable is then
used by clogit to obtain the parameter estimates from this bootstrap sample of clusters. After all
replications are performed, the original values of the grouping variable are restored.

N

Q Technical note

The same logic must be used when running bootstrap with commands designed for panel (longi-
tudinal) data that allow specifying the cluster (clustervar) option. To ensure that the combination of
(clustervar, panelvar) values are unique in each of the bootstrap samples, cluster (clustervar), id-
cluster (newclustervar), and group (panelvar) must be specified with bootstrap, and i (panelvar)
must be used with the main command.

a

Bradley Efron was born in 1938 in Minnesota and studied mathematics and statistics at Caltech
and Stanford; he has lived in northern California since 1960. He has worked on empirical Bayes,
survival analysis, exponential families, bootstrap and jackknife methods, and confidence intervals,
in conjunction with applied work in biostatistics, astronomy, and physics.
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Saved results

bootstrap saves the following in e():

Scalars
e(N) sample size
e(N_reps) number of complete replications

e(N_misreps)
e(N_strata)

number of incomplete replications
number of strata

e(N_clust) number of clusters
e(k_eq) number of equations in e(b)
e(k_exp) number of standard expressions
e(k_eexp) number of extended expressions (i.e., _b)
e(k_extra) number of extra equations beyond the original ones from e (b)
e(level) confidence level for bootstrap Cls
e(bs_version) version for bootstrap results
e(rank) rank of e(V)

Macros
e(cmdname) command name from command
e(cmd) same as e(cmdname) or bootstrap
e (command) command
e(cmdline) command as typed
e(prefix) bootstrap
e(title) title in estimation output
e(strata) strata variables
e(cluster) cluster variables
e(seed) initial random-number seed
e(size) from the size(#) option
e (exp#) expression for the #th statistic
e(mse) mse, if specified
e(vce) bootstrap
e(vcetype) title used to label Std. Err.
e(properties) bV

Matrices
e(b) observed statistics
e(b_bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(accel) estimated accelerations

e(ci_normal)
e(ci_percentile)

normal-approximation CIs
percentile Cls

e(ci_bc) bias-corrected Cls

e(ci_bca) bias-corrected and accelerated Cls
e(V) bootstrap variance—covariance matrix
e(V_modelbased) model-based variance

When exp_list is _b, bootstrap will also carry forward most of the results already in e() from

command.

Methods and formulas

bootstrap is implemented as an ado-file.

Let (/9\ be the observed value of the statistic, that is, the value of the statistic calculated with the
original dataset. Let ¢« = 1,2,...,k denote the bootstrap samples, and let #; be the value of the
statistic from the ¢th bootstrap sample.
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When the mse option is specified, the standard error is estimated as
~ 1k , 1/2
SeMSE = {k ;(Qi —0) }
Otherwise, the standard error is estimated as
~ 1 koo ) 1/2
se = {kl ;(Gi —0) }
where
0=

k ~
Db
i=1

The variance—covariance matrix is similarly computed. The bias is estimated as

| =

bias =6 — 0

Confidence intervals with nominal coverage rates 1 — « are calculated according to the following
formulas. The normal-approximation method yields the confidence intervals

o~

[0 —2z1_q/280, 6+ Z1—ay2 €]

where 2;_q/2 is the (1 — c/2)th quantile of the standard normal distribution. If the mse option is
specified, bootstrap will report the normal confidence interval using Séysg instead of Se. estat
bootstrap only uses S¢ in the normal confidence interval.

The percentile method yields the confidence intervals
* *
[ a/2) Y1—a /2]

where 67 is the pth quantile (the 100pth percentile) of the bootstrap distribution (51, ooy Bk).

Let —~ ~
20 = @7 {#(0; < 0)/k}

where #(60; < 0) is the number of elements of the bootstrap distribution that are less than or equal
to the observed statistic and ® is the standard cumulative normal. zg is known as the median bias of

0. Let B R
_ Z?:l(e(') - 9(1'))3
- n — -~ 3/2
6{30 1By — )2}

where é\(i) are the leave-one-out (jackknife) estimates of 0 and 5(.) is their mean. This expression is

a

known as the jackknife estimate of acceleration for f. Let
20 — 21—
= o {ZO + 0 1-—a/2 }
1 —a(z0 — z1-a/2)

20 + 21-a/2 }
1 —a(z0 + z1-a/2)

p2@{20+
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where z1_ /9 is the (1 —cr/2)th quantile of the normal distribution. The bias-corrected and accelerated
(BC,) method yields confidence intervals

[0;1 ’ 9;2 ]
where ¢ is the pth quantile of the bootstrap distribution as defined previously. The bias-corrected

(but not accelerated) method is a special case of BC, with a = 0.
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Also see
[R] bootstrap postestimation — Postestimation tools for bootstrap
[R] jackknife — Jackknife estimation
[R] permute — Monte Carlo permutation tests
[R] simulate — Monte Carlo simulations
[SVY] svy bootstrap — Bootstrap for survey data
[U] 13.5 Accessing coefficients and standard errors
[U] 13.6 Accessing results from Stata commands

[U] 20 Estimation and postestimation commands



Title

bootstrap postestimation — Postestimation tools for bootstrap

Description

The following postestimation command is of special interest after bootstrap:

Command

Description

estat bootstrap percentile-based and bias-corrected CI tables

For information about estat bootstrap, see below.

The following standard postestimation commands are also available:

Command

Description

*contrast
estat
estimates

*hausman

*lincom

*margins
*marginsplot
*nlcom

*predict
*predictnl

* pwcompare
*test
*testnl

contrasts and ANOVA-style joint tests of estimates

AIC, BIC, VCE, and estimation sample summary

cataloging estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations
of coefficients

marginal means, predictive margins, marginal effects, and average marginal effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predictions, residuals, influence statistics, and other diagnostic measures

point estimates, standard errors, testing, and inference for generalized
predictions

pairwise comparisons of estimates

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

*This postestimation command is allowed if it may be used after command.

See the corresponding entries in the Stata Base Reference Manual for details.

Special-interest postestimation command

estat bootstrap displays a table of confidence intervals for each statistic from a bootstrap

analysis.

Syntax for predict

The syntax of predict (and even if predict is allowed) following bootstrap depends upon
the command used with bootstrap. If predict is not allowed, neither is predictnl.

215
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Syntax for estat bootstrap

estat bootstrap [, options}

options Description

bc bias-corrected CIs; the default

bca bias-corrected and accelerated (BC,) CIs
normal normal-based CIs

percentile percentile CIs

all all available CIs

noheader suppress table header
nolegend suppress table legend
verbose display the full table legend

bc, bca, normal, and percentile may be used together.

Menu

Statistics > Postestimation > Reports and statistics

Options for estat bootstrap

be is the default and displays bias-corrected confidence intervals.

bca displays bias-corrected and accelerated confidence intervals. This option assumes that you also
specified the bca option on the bootstrap prefix command.

normal displays normal approximation confidence intervals.

percentile displays percentile confidence intervals.

all displays all available confidence intervals.

noheader suppresses display of the table header. This option implies nolegend.

nolegend suppresses display of the table legend, which identifies the rows of the table with the
expressions they represent.

verbose requests that the full table legend be displayed.

Remarks

> Example 1

The estat bootstrap postestimation command produces a table containing the observed value
of the statistic, an estimate of its bias, the bootstrap standard error, and up to four different confidence
intervals.

If we were interested merely in getting bootstrap standard errors for the model coefficients, we
could use the bootstrap prefix with our estimation command. If we were interested in performing
a thorough bootstrap analysis of the model coefficients, we could use the estat bootstrap
postestimation command after fitting the model with the bootstrap prefix.



bootstrap postestimation — Postestimation tools for bootstrap 217

Using example 1 from [R] bootstrap, we need many more replications for the confidence interval
types other than the normal based, so let’s rerun the estimation command. We will reset the random-
number seed—in case we wish to reproduce the results—increase the number of replications, and
save the bootstrap distribution as a dataset called bsauto.dta.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)
. set seed 1

. bootstrap _b, reps(1000) saving(bsauto) bca: regress mpg weight gear foreign

(output omitted )

. estat bootstrap, all
Linear regression Number of obs = 74
Replications = 1000

Observed Bootstrap
mpg Coef. Bias Std. Err. [95) Conf. Intervall

weight -.00613903 .0000567 .000628 -.0073699 -.0049082 )
-.0073044 -.0048548 P
-.0074355  -.004928 (BC)
-.0075282 -.0050258 (BCa)
gear_ratio 1.4571134 .1051696  1.4554785  -1.395572  4.309799 (N)

-1.262111  4.585372  (P)
-1.523927  4.174376 (BC)
-1.492223  4.231356 (BCa)
foreign -2.2216815 -.0196361  1.2023286 -4.578202  .1348393 (N)
-4.442199  .2677989  (P)
-4.155504  .6170642 (BC)
-4.216531  .5743973 (BCa)
_cons 36.101353 -.502281  5.4089441 25.50002 46.70269 (N
24.48569  46.07086  (P)
25.59799  46.63227 (BC)
25.85658  47.02108 (BCa)

n) normal confidence interval

(P) percentile confidence interval

(BC) bias-corrected confidence interval

(BCa) bias-corrected and accelerated confidence interval

The estimated standard errors here differ from our previous estimates using only 100 replications
by, respectively, 8%, 3%, 11%, and 6%; see example 1 of [R] bootstrap. So much for our advice
that 50—200 replications are good enough to estimate standard errors. Well, the more replications the
better—that advice you should believe.

Which of the methods to compute confidence intervals should we use? If the statistic is unbiased,
the percentile (P) and bias-corrected (BC) methods should give similar results. The bias-corrected
confidence interval will be the same as the percentile confidence interval when the observed value of
the statistic is equal to the median of the bootstrap distribution. Thus, for unbiased statistics, the two
methods should give similar results as the number of replications becomes large. For biased statistics,
the bias-corrected method should yield confidence intervals with better coverage probability (closer
to the nominal value of 95% or whatever was specified) than the percentile method. For statistics
with variances that vary as a function of the parameter of interest, the bias-corrected and accelerated
method (BC,) will typically have better coverage probability than the others.

When the bootstrap distribution is approximately normal, all these methods should give similar
confidence intervals as the number of replications becomes large. If we examine the normality of
these bootstrap distributions using, say, the pnorm command (see [R] diagnostic plots), we see that
they closely follow a normal distribution. Thus here, the normal approximation would also be a valid
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choice. The chief advantage of the normal-approximation method is that it (supposedly) requires fewer
replications than the other methods. Of course, it should be used only when the bootstrap distribution
exhibits normality.

We can load bsauto.dta containing the bootstrap distributions for these coefficients:

. use bsauto
(bootstrap: regress)

. describe *

storage display value
variable name  type format label variable label
_b_weight float %9.0g _blweight]
_b_gear_ratio float %9.0g _bl[gear_ratio]
_b_foreign float %9.0g _b[foreign]
_b_cons float %9.0g _b[_cons]

We can now run other commands, such as pnorm, on the bootstrap distributions. As with all
standard estimation commands, we can use the bootstrap command to replay its output table. The
default variable names assigned to the statistics in exp_list are _bs_1, _bs_2, ..., and each variable
is labeled with the associated expression. The naming convention for the extended expressions _b
and _se is to prepend _b_ and _se_, respectively, onto the name of each element of the coefficient
vector. Here the first coefficient is _b[weight], so bootstrap named it _b_weight.

4

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see

[R] bootstrap — Bootstrap sampling and estimation

[U] 20 Estimation and postestimation commands



Title

boxcox — Box—Cox regression models

Syntax

boxcox depvar [indepvars] [t_'f] [in] [weighl} [, options]

options Description

Model
noconstant suppress constant term
model (1lhsonly) left-hand-side Box—Cox model; the default
model (rhsonly) right-hand-side Box—Cox model
model (lambda) both sides Box—Cox model with same parameter
model (theta) both sides Box—Cox model with different parameters
notrans (varlist) nontransformed independent variables

Reporting
level (#) set confidence level; default is 1level (95)
lrtest perform likelihood-ratio test

Maximization

nolog suppress full-model iteration log
nologlr suppress restricted-model 1rtest iteration log
maximize_options control the maximization process; seldom used

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights and iweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Linear models and related > Box-Cox regression

Description
boxcox finds the maximum likelihood estimates of the parameters of the Box—Cox transform, the

coefficients on the independent variables, and the standard deviation of the normally distributed errors
for a model in which depvar is regressed on indepvars. You can fit the following models:

219
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Option Estimates

lhsonly Z/§0) = B1x1j + Py + - + Brrny + €

rhsonly Yy = 51»”6&?) + ﬁzaﬁg?) +e ﬁk:c;? +¢;

rhsonly notrans() y; = fha|) + Faly + oo+ ﬁkxl(:g\) +yz1y o+ iz g
lambda (/\) =/ CC(/\) + 52@?) +o 5k$kj) + €

lambda notrans() j = ﬁlxlj + ﬁ2xg;?) + .+ ﬁkxkj +y121j 4+ Yz €
theta (0) = 5133(/\) + 5233(/\) -+ ﬁkx@) +€;

theta notrans() (0) =5 x(A) + 52$(A) + 51@961(;}) + Mz 4z g

Any variable to be transformed must be strictly positive.

Options
_ (Wogel

noconstant; see [R] estimation options.

model( lhsonly |rhsonly | lambda | theta) specifies which of the four models to fit.

model (lhsonly) applies the Box—Cox transform to depvar only. model (lhsonly) is the default.

model (rhsonly) applies the transform to the indepvars only.

model (lambda) applies the transform to both depvar and indepvars, and they are transformed by

the same parameter.

model (theta) applies the transform to both depvar and indepvars, but this time, each side is

transformed by a separate parameter.

notrans (varlist) specifies that the variables in varlist be included as nontransformed independent

variables.

Reporting

level (#); see [R] estimation options.

1lrtest specifies that a likelihood-ratio test of significance be performed and reported for each

independent variable.

Maximization

nolog suppresses the iteration log when fitting the full model.

nologlr suppresses the iteration log when fitting the restricted models required by the 1rtest option.

maximize_options: iterate(#) and from(inir_specs); see [R] maximize.

Model Initial value specification

lhsonly from(fy, copy)
rhsonly from()\g, copy)
lambda from(\g, copy)
theta from(\g 6y, copy)
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Remarks

Remarks are presented under the following headings:

Introduction

Theta model

Lambda model
Left-hand-side-only model
Right-hand-side-only model

Introduction

The Box—Cox transform

y»zyx—l
)

has been widely used in applied data analysis. Box and Cox (1964) developed the transformation and
argued that the transformation could make the residuals more closely normal and less heteroskedastic.
Cook and Weisberg (1982) discuss the transform in this light. Because the transform embeds several
popular functional forms, it has received some attention as a method for testing functional forms, in
particular,

y—1 ifa=1
yN =< In(y)  ifA=0
1—1/y if x=-1

Davidson and MacKinnon (1993) discuss this use of the transform. Atkinson (1985) also gives a good
general treatment.

Theta model

boxcox obtains the maximum likelihood estimates of the parameters for four different models.
The most general of the models, the theta model, is

% A A
y = By + pral) + aal

A
R 6kx§€j) + 71215 + Yezey + oz €
where € ~ N (0,02). Here the dependent variable, vy, is subject to a Box—Cox transform with
parameter 6. Each of the indepvars, x1,xs,...,xk, is transformed by a Box—Cox transform with
parameter A. The z1, 29, ..., 2; specified in the notrans() option are independent variables that are
not transformed.

Box and Cox (1964) argued that this transformation would leave behind residuals that more closely
follow a normal distribution than those produced by a simple linear regression model. Bear in mind
that the normality of € is assumed and that boxcox obtains maximum likelihood estimates of the
k + [+ 4 parameters under this assumption. boxcox does not choose A and # so that the residuals are
approximately normally distributed. If you are interested in this type of transformation to normality,
see the official Stata commands 1nskewO and bcskewO in [R] Inskew(. However, those commands
work on a more restrictive model in which none of the independent variables is transformed.
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> Example 1

Consider an example using the auto data.

. use http://www.stata-press.com/data/r12/auto

(1978 Automobile Data)

. boxcox mpg weight price, notrans(foreign) model(theta) lrtest

Fitting comparison model
Iteration O: log likelihood = -234.39434
Iteration 1: log likelihood = -228.26891
Iteration 2: log likelihood = -228.26777
Iteration 3: log likelihood = -228.26777
Fitting full model
Iteration O: log likelihood = -194.13727
(output omitted )
Fitting comparison models for LR tests
Iteration O: log likelihood = -179.58214
Iteration 1: log likelihood = -177.59036
Iteration 2: log likelihood = -177.58739
Iteration 3: log likelihood = -177.58739
Iteration O: log likelihood = -203.92855
Iteration 1: log likelihood = -201.30202
Iteration 2: log likelihood = -201.18257
Iteration 3: log likelihood = -201.18233
Iteration 4: log likelihood = -201.18233
Iteration O: log likelihood = -178.83799
Iteration 1: log likelihood = -175.98405
Iteration 2: log likelihood = -175.97931
Iteration 3: log likelihood = -175.97931
Number of obs 74
LR chi2(4) = 105.19
Log likelihood = -175.67343 Prob > chi2 = 0.000
mpg Coef. Std. Err. z P>|z| [95% Conf. Intervall
/lambda .7601691 .6289991 1.21 0.227 -.4726465 1.992985
/theta -.7189315 .3244439 -2.22 0.027 -1.35483 -.0830332
Estimates of scale-variant parameters
Coef. chi2(df) P>chi2(df) df of chi2
Notrans
foreign -.0114338 3.828 0.050 1
_cons 1.377399
Trans
weight -.000239 51.018 0.000 1
price -6.18e-06 0.612 0.434 1
/sigma .0143509
Test Restricted
HO: log likelihood chi2 Prob > chi2
theta=lambda = -1 -181.64479 11.94 0.001
theta=lambda = 0 -178.2406 5.13 0.023
theta=lambda = 1 -194.13727 36.93 0.000




boxcox — Box—Cox regression models 223

The output is composed of the iteration logs and three distinct tables. The first table contains
a standard header for a maximum likelihood estimator and a standard output table for the Box—
Cox transform parameters. The second table contains the estimates of the scale-variant parameters.
The third table contains the output from likelihood-ratio tests on three standard functional form
specifications.

If we were to interpret this output, the right-hand-side transformation would not significantly add
to the regression, whereas the left-hand-side transformation would make the 5% but not the 1%
cutoff. price is certainly not significant, and foreign lies right on the 5% cutoff. weight is clearly
significant. The output also shows that the linear and multiplicative inverse specifications are both
strongly rejected. A natural log specification can be rejected at the 5% level but not at the 1% level.

N

Q Technical note

Spitzer (1984) showed that the Wald tests of the joint significance of the coefficients of the
right-hand-side variables, either transformed or untransformed, are not invariant to changes in the
scale of the transformed dependent variable. Davidson and MacKinnon (1993) also discuss this point.
This problem demonstrates that Wald statistics can be manipulated in nonlinear models. Lafontaine
and White (1986) analyze this problem numerically, and Phillips and Park (1988) analyze it by using
Edgeworth expansions. See Drukker (2000b) for a more detailed discussion of this issue. Because the
parameter estimates and their Wald tests are not scale invariant, no Wald tests or confidence intervals
are reported for these parameters. However, when the lrtest option is specified, likelihood-ratio
tests are performed and reported. Schlesselman (1971) showed that, if a constant is included in the
model, the parameter estimates of the Box—Cox transforms are scale invariant. For this reason, we
strongly recommend that you not use the noconstant option.

The 1lrtest option does not perform a likelihood-ratio test on the constant, so no value for this
statistic is reported. Unless the data are properly scaled, the restricted model does not often converge.
For this reason, no likelihood-ratio test on the constant is performed by the 1rtest option. However,
if you have a special interest in performing this test, you can do so by fitting the constrained model
separately. If problems with convergence are encountered, rescaling the data by their means may
help.

a

Lambda model

A less general model than the one above is called the lambda model. It specifies that the same
parameter be used in both the left-hand-side and right-hand-side transformations. Specifically,

y N = By + Bra2$) + BoxlY + -+ Bral) + vz +yezn + o+ s g

where € ~ N(0,02). Here the depvar variable, y, and each of the indepvars, x1,2a,. .., Tk, is
transformed by a Box—Cox transform with the common parameter A. Again the 21, 2s,...,2; are
independent variables that are not transformed.



224 boxcox — Box—Cox regression models

Left-hand-side-only model

Even more restrictive than a common transformation parameter is transforming the dependent
variable only. Because the dependent variable is on the left-hand side of the equation, this model is
known as the 1hsonly model. Here you are estimating the parameters of the model

0
y]( ) = o + Brzrj + Baaj + -+ Brang + €

where € ~ N(0,02). Here only the depvar, y, is transformed by a Box—Cox transform with the
parameter 6.

> Example 2

We again hypothesize mpg to be a function of weight, price, and foreign in a Box—Cox model
in which only mpg is subject to the transform:

. boxcox mpg weight price foreign, model(lhs) lrtest nolog nologlr
Fitting comparison model

Fitting full model

Fitting comparison models for LR tests

Number of obs = 74

LR chi2(3) = 105.04

Log likelihood = -175.74705 Prob > chi2 = 0.000
mpg Coef. Std. Err. z P>|z| [95% Conf. Intervall

/theta -.7826999 .281954 -2.78 0.006 -1.33532 -.2300802

Estimates of scale-variant parameters

Coef. chi2(df) P>chi2(df) df of chi2

Notrans
weight -.0000294 58.056 0.000 1
price -4.66e-07 0.469 0.493 1
foreign -.0097564 4.644 0.031 1
_cons 1.249845
/sigma .0118454
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
theta = -1 -176.04312 0.59 0.442
theta = 0 -179.54104 7.59 0.006
theta = 1 -194.13727 36.78 0.000

This model rejects both linear and log specifications of mpg but fails to reject the hypothesis
that 1/mpg is linear in the independent variables. These findings are in line with what an engineer
would have expected. In engineering terms, gallons per mile represents actual energy consumption,
and energy consumption should be approximately linear in weight.

d
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Right-hand-side-only model

The fourth model leaves the depvar alone and transforms a subset of the indepvars using the
parameter A. This is the rhsonly model. In this model, the depvar, y, is given by

A A A
y;j = Bo + ﬂng) + ﬁzxéj) +F ﬁkxij) +v1215 + Yezoj + - F iz €

where € ~ N(O,UQ). Here each of the indepvars, x1,x2,...,Tk, is transformed by a Box—Cox
transform with the parameter A. Again the zi,z29,...,2; are independent variables that are not
transformed.

> Example 3

Here is an example with the rhsonly model. price and foreign are not included in the list of
covariates. (You are invited to use the auto data and check that they fare no better here than above.)

. boxcox mpg weight, model(rhs) lrtest nolog nologlr
Fitting full model
Fitting comparison models for LR tests

Comparison model for LR test on weight is a linear regression.
Lambda is not identified in the restricted model.

Number of obs = 74

LR chi2(2) = 82.90

Log likelihood = -192.94368 Prob > chi2 = 0.000
mpg Coef.  Std. Err. z P>|z| [95% Conf. Intervall

/lambda -.4460916  .6551107 -0.68  0.496 -1.730085 .8379018

Estimates of scale-variant parameters

Coef. chi2(df) P>chi2(df) df of chi2

Notrans
_cons 1359.092
Trans
weight -614.3876 82.901 0.000 1
/sigma 3.281854
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
lambda = -1 -193.2893 0.69 0.406
lambda = O -193.17892 0.47 0.493
lambda = 1 -195.38869 4.89 0.027

The interpretation of the output is similar to that in all the cases above, with one caveat. As
requested, a likelihood-ratio test was performed on the lone independent variable. However, when it is
dropped to form the constrained model, the comparison model is not a right-hand-side-only Box—Cox
model but rather a simple linear regression on a constant model. When weight is dropped, there are
no longer any transformed variables. Hence, A is not identified, and it must also be dropped. This
process leaves a linear regression on a constant as the “comparison model”. It also implies that the
test statistic has 2 degrees of freedom instead of 1. At the top of the output, a more concise warning
informs you of this point.
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A similar identification issue can also arise in the lambda and theta models when only one
independent variable is specified. In these cases, warnings also appear on the output.

N

Saved results

boxcox saves the following in e():

Scalars
e(N) number of observations
e(11) log likelihood
e(chi2) LR statistic of full vs. comparison
e(df_m) full model degrees of freedom
e(110) log likelihood of the restricted model
e(df_r) restricted model degrees of freedom
e(11_t1) log likelihood of model A=6=1
e(chi2_t1) LR of A=60=1 vs. full model
e(p_t1) p-value of A=6=1 vs. full model
e(1l_tml) log likelihood of model A=6=-—1
e(chi2_tml) LR of A=0=—1 vs. full model
e(p—tm1) p-value of A=6=—1 vs. full model
e(11-t0) log likelihood of model A=6=0
e(chi2_t0) LR of A=6=0 vs. full model
e(p-t0) p-value of A=0=0 vs. full model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
Macros
e(cmd) boxcox
e(cmdline) command as typed
e(depvar) name of dependent variable
e(model) lhsonly, rhsonly, lambda, or theta
e(wtype) weight type
e (wexp) weight expression
e(ntrans) yes if nontransformed indepvars
e(chi2type) LR; type of model x? test
e(1lrtest) lrtest, if requested
e(properties) bV
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators (see note below)
e (pm) p-values for LR tests on indepvars
e(df) degrees of freedom of LR tests on indepvars
e(chi2m) LR statistics for tests on indepvars
Functions
e(sample) marks estimation sample

e (V) contains all zeros, except for the elements that correspond to the parameters of the Box—Cox
transform.

Methods and formulas

boxcox is implemented as an ado-file.
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In the internal computations,

. Lol A > 10710
s =

In(y) otherwise

The unconcentrated log likelihood for the theta model is

InL, = <2N> {In(2m) + (e} + (0 - 1) 3 In(y) - (;) 3SR

i=1
where

N

SSR = Z(yf‘g) — Bo+ i) + Bazly) + -+ Braly) + vz + v2zin -+ mzar)?
=1

Writing the SSR, in matrix form,
SSR = (Y@ — XM’ — zg")(Y® — XV’ — Zg')

where Y is an N x 1 vector of elementwise transformed data, X®) is an N x k matrix of
elementwise transformed data, Z is an /N X [ matrix of untransformed data, b is a 1 x k vector of
coefficients, and g is a 1 x [ vector of coefficients. Letting

W, = (x@) z)

be the horizontal concatenation of X(») and Z and

()
g
be the vertical concatenation of the coefficients yields
SSR = (Y —wW,d')(Y® —W,d)
For given values of \ and 6, the solutions for d’ and o2 are
d' = (W W) Wiy

and

52— %(Y(‘)) — W,\a’)/ (Y<9> — WAH’)
Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood

function
N

InL, = (—i) {In2r) + 1+ WG} + (0 - 1) In(y;)

i=1
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Similar calculations yield the concentrated log-likelihood function for the lambda model,

N

InL, = (—];) {In@27r)+1+ G} +(A-1) Z In(y:)
the 1hsonly model,
N
InL, = (g) {Im(27)+1+ (@2} + (0 —1) ; In(y;)

and the rhsonly model,
N ~2
InL, = -5 {m@7r)+1+ In(@?)}

where 7 2 is specific to each model and is defined analogously to that in the theta model.
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Also see

[R] boxcox postestimation — Postestimation tools for boxcox
[R] regress — Linear regression
[R] Inskew0) — Find zero-skewness log or Box—Cox transform

[U] 20 Estimation and postestimation commands
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Title

boxcox postestimation — Postestimation tools for boxcox

Description

The following postestimation commands are available after boxcox:

Command Description
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
*1lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
*nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
*test Wald tests of simple and composite linear hypotheses
*testnl Wald tests of nonlinear hypotheses

*Inference is valid only for hypotheses concerning A and 6.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict [type] newvar [t_'f] [zn] [, statistic]

statistic Description
Main
xbt transformed linear prediction; the default
yhat predicted value of y
residuals residuals
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xbt, the default, calculates the “linear” prediction. For all the models except model(lhsonly), all
the indepvars except those specified in the notrans() option of boxcox are transformed.
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yhat calculates the predicted value of y.

residuals calculates the residuals after the predicted value of y has been subtracted from the actual
value.

Remarks

boxcox estimates variances only for the A and 6 parameters (see the technical note in [R] boxcox),
so the extent to which postestimation commands can be used following boxcox is limited. Formulas
used in lincom, nlcom, test, and testnl are dependent on the estimated variances. Therefore,
the use of these commands is limited and generally applicable only to inferences on the A and 6
coefficients.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.

Also see
[R] boxcox — Box—Cox regression models
[R] Inskew0) — Find zero-skewness log or Box—Cox transform

[U] 20 Estimation and postestimation commands



Title

brier — Brier score decomposition

Syntax

brier outcomevar forecastvar [lf] [m] [, 5roup(#)]

by is allowed; see [D] by.

Menu

Statistics > Epidemiology and related > Other > Brier score decomposition

Description

brier computes the Yates, Sanders, and Murphy decompositions of the Brier Mean Probability
Score. outcomevar contains 0/1 values reflecting the actual outcome of the experiment, and forecastvar
contains the corresponding probabilities as predicted by, say, logit, probit, or a human forecaster.

Option
Main

group (#) specifies the number of groups that will be used to compute the decomposition. group(10)
is the default.

Remarks

You have a binary (0/1) response and a formula that predicts the corresponding probabilities of
having observed a positive outcome (1). If the probabilities were obtained from logistic regression,
there are many methods that assess goodness of fit (see, for instance, estat gof in [R] logistic).
However, the probabilities might be computed from a published formula or from a model fit on
another sample, both completely unrelated to the data at hand, or perhaps the forecasts are not from
a formula at all. In any case, you now have a test dataset consisting of the forecast probabilities and
observed outcomes. Your test dataset might, for instance, record predictions made by a meteorologist
on the probability of rain along with a variable recording whether it actually rained.

The Brier score is an aggregate measure of disagreement between the observed outcome and a
prediction—the average squared error difference. The Brier score decomposition is a partition of the
Brier score into components that suggest reasons for discrepancy. These reasons fall roughly into
three groups: 1) lack of overall calibration between the average predicted probability and the actual
probability of the event in your data, 2) misfit of the data in groups defined within your sample, and
3) inability to match actual 0 and 1 responses.

Problem 1 refers to simply overstating or understating the probabilities.

Problem 2 refers to what is standardly called a goodness-of-fit test: the data are grouped, and the
predictions for the group are compared with the outcomes.
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Problem 3 refers to an individual-level measure of fit. Imagine that the grouped outcomes are predicted
on average correctly but that within the group, the outcomes are poorly predicted.

Using logit or probit analysis to fit your data will guarantee that there is no lack of fit due to problem
1, and a good model fitter will be able to avoid problem 2. Problem 3 is inherent in any prediction
exercise.

> Example 1
We have data on the outcomes of 20 basketball games (win) and the probability of victory predicted
by a local pundit (for).

. use http://www.stata-press.com/data/r12/bball
. summarize win for

Variable | Obs Mean Std. Dev. Min Max
win 20 .65 .4893605 0 1
for 20 .4785 .2147526 .15 .9
. brier win for, group(5)
Mean probability of outcome  0.6500
of forecast 0.4785
Correlation 0.5907
ROC area 0.8791 p = 0.0030
Brier score 0.1828
Spiegelhalter’s z-statistic -0.6339 p = 0.7369
Sanders-modified Brier score 0.1861
Sanders resolution 0.1400
Outcome index variance 0.2275
Murphy resolution 0.0875
Reliability-in-the-small 0.0461
Forecast variance 0.0438
Excess forecast variance 0.0285
Minimum forecast variance 0.0153
Reliability-in-the-large 0.0294
2xForecast-0Outcome-Covar 0.1179

The mean probabilities of forecast and outcome are simply the mean of the predicted probabilities
and the actual outcomes (wins/losses). The correlation is the product-moment correlation between
them.

The Brier score measures the total difference between the event (winning) and the forecast
probability of that event as an average squared difference. As a benchmark, a perfect forecaster would
have a Brier score of 0, a perfect misforecaster (predicts probability of win is 1 when loses and 0
when wins) would have a Brier score of 1, and a fence-sitter (forecasts every game as 50/50) would
have a Brier score of 0.25. Our pundit is doing reasonably well.

Spiegelhalter’s z statistic is a standard normal test statistic for testing whether an individual Brier
score is extreme. The ROC area is the area under the receiver operating curve, and the associated test
is a test of whether it is greater than 0.5. The more accurate the forecast probabilities, the larger the
ROC area.

The Sanders-modified Brier score measures the difference between a grouped forecast measure
and the event, where the data are grouped by sorting the sample on the forecast and dividing it into
approximately equally sized groups. The difference between the modified and the unmodified score
is typically minimal. For this and the other statistics that require grouping—the Sanders and Murphy
resolutions and reliability-in-the-small—to be well-defined, group boundaries are chosen so as not
to allocate observations with the same forecast probability to different groups. This task is done by
grouping on the forecast using xtile, n(#), with # being the number of groups; see [D] pctile.
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The Sanders resolution measures error that arises from statistical considerations in evaluating
the forecast for a group. A group with all positive or all negative outcomes would have a Sanders
resolution of 0; it would most certainly be feasible to predict exactly what happened to each member
of the group. If the group had 40% positive responses, on the other hand, a forecast that assigned
p = 0.4 to each member of the group would be a good one, and yet, there would be “errors” in
the squared difference sense. The “error” would be (1 — 0.4)% or (0 — 0.4)? for each member. The
Sanders resolution is the average across groups of such “expected” errors. The 0.1400 value in our
data from an overall Brier score of 0.1828 or 0.1861 suggests that a substantial portion of the “error”
in our data is inherent.

Outcome index variance is just the variance of the outcome variable. This is the expected value of
the Brier score if all the forecast probabilities were merely the average observed outcome. Remember
that a fence-sitter has an expected Brier score of 0.25; a smarter fence sitter (who would guess
p = 0.65 for these data) would have a Brier score of 0.2275.

The Murphy resolution measures the variation in the average outcomes across groups. If all groups
have the same frequency of positive outcomes, little information in any forecast is possible, and the
Murphy resolution is 0. If groups differ markedly, the Murphy resolution is as large as 0.25. The
0.0875 means that there is some variation but not a lot, and 0.0875 is probably higher than in most
real cases. If you had groups in your data that varied between 40% and 60% positive outcomes, the
Murphy resolution would be 0.01; between 30% and 70%, it would be 0.04.

Reliability-in-the-small measures the error that comes from the average forecast within group not
measuring the average outcome within group—a classical goodness-of-fit measure, with 0 meaning a
perfect fit and 1 meaning a complete lack of fit. The calculated value of 0.0461 shows some amount
of lack of fit. Remember, the number is squared, and we are saying that probabilities could be just
more than 1/0.0461 = 0.215 or 21.5% off.

Forecast variance measures the amount of discrimination being attempted—that is, the variation in
the forecasted probabilities. A small number indicates a fence-sitter making constant predictions. If
the forecasts were from a logistic regression model, forecast variance would tend to increase with the
amount of information available. Our pundit shows considerable forecast variance of 0.0438 (standard
deviation 1/0.0438 = 0.2093), which is in line with the reliability-in-the-small, suggesting that the
forecaster is attempting as much variation as is available in these data.

Excess forecast variance is the amount of actual forecast variance over a theoretical minimum.
The theoretical minimum—called the minimum forecast variance—corresponds to forecasts of pg
for observations ultimately observed to be negative responses and p; for observations ultimately
observed to be positive outcomes. Moreover, pg and p; are set to the average forecasts made for the
ultimate negative and positive outcomes. These predictions would be just as good as the predictions
the forecaster did make, and any variation in the actual forecast probabilities above this is useless.
If this number is large, above 1%—2%, then the forecaster may be attempting more than is possible.
The 0.0285 in our data suggests this possibility.

Reliability-in-the-large measures the discrepancy between the mean forecast and the observed
fraction of positive outcomes. This discrepancy will be 0 for forecasts made by most statistical
models—at least when measured on the same sample used for estimation—because they, by design,
reproduce sample means. For our human pundit, the 0.0294 says that there is a 1/0.0294, or 17-
percentage-point, difference. (This difference can also be found by calculating the difference in the
averages of the observed outcomes and forecast probabilities: 0.65 —0.4785 = 0.17.) That difference,
however, is not significant, as we would see if we typed ttest win=for; see [R] ttest. If these data
were larger and the bias persisted, this difference would be a critical shortcoming of the forecast.
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Twice the forecast-outcome covariance is a measure of how accurately the forecast corresponds to
the outcome. The concept is similar to that of R-squared in linear regression.

Saved results

brier saves the following in r():

Scalars
r(p—_roc) significance of ROC area r (murphy)
r(roc_area) ROC area r(relinsm)
r(z) Spiegelhalter’s z statistic r(Var_f)
r(p) significance of z statistic r(Var_fex)
r(brier) Brier score r(Var_fmin)
r(brier_s)  Sanders-modified Brier score r(relinla)
r(sanders) Sanders resolution r(cov_2f)
r(oiv) outcome index variance

Methods and formulas

brier is implemented as an ado-file.

N

Murphy resolution
reliability-in-the-small

forecast variance

excess forecast variance
minimum forecast variance
reliability-in-the-large

2 x forecast-outcome-covariance

See Wilks (2006, 284-287, 289-292, 298-299) or Schmidt and Griffith (2005) for a discussion of

the Brier score.

Let dj, j = 1,..., N, be the observed outcomes with d; = 0 or d; = 1, and let f; be the
corresponding forecasted probabilities that d; is 1, 0 < f; < 1. Assume that the data are ordered so
that f; 11 > f; (brier sorts the data to obtain this order). Divide the data into K nearly equally
sized groups, with group 1 containing observations 1 through j» — 1, group 2 containing observations

Jo through j3 — 1, and so on.

Define B
fo = average f; among d; =0

f1 = average f; among d; = 1
f = average fi
d = average d;

fk = average f; in group k

di, = average d; in group k

ny = number of observations in group k

The Brier score is Zj(dj — f;)?/N.

The Sanders-modified Brier score is >, (d; — fk(j))z/N.

Let p; denote the true but unknown probability that d; = 1. Under the null hypothesis that p; =
f; for all j, Spiegelhalter (1986) determined that the expectation and variance of the Brier score is

given by the following:
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1 X
E(Brier) = NZ (L= f5)
j=1

N
Var(Brier) = %Z Fi(1—f)(1— 2fj)2

j=1
Denoting the observed value of the Brier score by O(Brier), Spiegelhalter’s z statistic is given by

_ O(Brier) — E/(Brier)
B Var(Brier)

The corresponding p-value is given by the upper-tail probability of Z under the standard normal
distribution.

The area under the ROC curve is estimated by applying the trapezoidal rule to the empirical ROC
curve. This area is Wilcoxon’s test statistic, so the corresponding p-value is just that of a one-sided
Wilcoxon test of the null hypothesis that the distribution of predictions is constant across the two

outcomes.
The Sanders resolution is ., fr{dr(1 — di)}/N.

The outcome index variance is d(1 — d).

The Murphy resolution is ), T (di, — d)2/N.
Reliability-in-the-small is 3", 7y (dy, — f)2/N.
The forecast variance is >, (f; — f)?/N.

The minimum forecast variance is {ZjeF(fj —fo)? + >jes(fi— f1)?}/N, where F is the
set of observations for which d; = 0 and S is the complement.

The excess forecast variance is the difference between the forecast variance and the minimum
forecast variance.

Reliability-in-the-large is (f — d)2.

Twice the outcome covariance is 2(f; — f)d(1 — d).

Glenn Wilson Brier (1913-1998) was an American meteorological statistician who, after obtaining
degrees in physics and statistics, was for many years head of meteorological statistics at the
U.S. Weather Bureau in Washington, DC. In the latter part of his career, he was associated with
Colorado State University. Brier worked especially on verification and evaluation of predictions
and forecasts, statistical decision making, the statistical theory of turbulence, the analysis of
weather modification experiments, and the application of permutation techniques.
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[R] logistic — Logistic regression, reporting odds ratios
[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression
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Title

‘ bsample — Sampling with replacement

Syntax
bsample [exp] [zf] [in] [, options]

where exp is a standard Stata expression; see [U] 13 Functions and expressions.

options Description

strata(varlist) variables identifying strata

cluster (varlist) variables identifying resampling clusters

idcluster (newvar) create new cluster ID variable

weight (varname) replace varname with frequency weights
Menu

Statistics > Resampling > Draw bootstrap sample

Description

bsample draws bootstrap samples (random samples with replacement) from the data in memory.

exp specifies the size of the sample, which must be less than or equal to the number of sampling
units in the data. The observed number of units is the default when exp is not specified.

For bootstrap sampling of the observations, exp must be less than or equal to _N (the number of
observations in the data; see [U] 13.4 System variables (_variables)).

For stratified bootstrap sampling, exp must be less than or equal to _N within the strata identified
by the strata() option.

For clustered bootstrap sampling, exp must be less than or equal to N, (the number of clusters
identified by the cluster () option).

For stratified bootstrap sampling of clusters, exp must be less than or equal to N. within the strata
identified by the strata() option.

Observations that do not meet the optional if and in criteria are dropped (not sampled).

Options
strata(varlist) specifies the variables identifying strata. If strata() is specified, bootstrap samples
are selected within each stratum.

cluster (varlist) specifies the variables identifying resampling clusters. If cluster() is specified,
the sample drawn during each replication is a bootstrap sample of clusters.

idcluster (newvar) creates a new variable containing a unique identifier for each resampled cluster.
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weight (varname) specifies a variable in which the sampling frequencies will be placed. varname
must be an existing variable, which will be replaced. After bsample, varname can be used as
an fweight in any Stata command that accepts fweights, which can speed up resampling for
commands like regress and summarize. This option cannot be combined with idcluster().

By default, bsample replaces the data in memory with the sampled observations; however,
specifying the weight () option causes only the specified varname to be changed.

Remarks

Below is a series of examples illustrating how bsample is used with various sampling schemes.

> Example 1: Bootstrap sampling

We have data on the characteristics of hospital patients and wish to draw a bootstrap sample of
200 patients. We type

. use http://www.stata-press.com/data/r12/bsamplel

. bsample 200

. count
200

> Example 2: Stratified samples with equal sizes

Among the variables in our dataset is female, an indicator for the female patients. To get a
bootstrap sample of 200 female patients and 200 male patients, we type

. use http://www.stata-press.com/data/r12/bsamplel, clear

. bsample 200, strata(female)
. tab female

female Freq. Percent Cum.

male 200 50.00 50.00
female 200 50.00 100.00
Total 400 100.00

> Example 3: Stratified samples with unequal sizes

To sample 300 females and 200 males, we must generate a variable that is 300 for females and
200 for males and then use this variable in exp when we call bsample.

. use http://www.stata-press.com/data/r12/bsamplel, clear
. gen nsamp = cond(female,300,200)

. bsample nsamp, strata(female)

. tab female
female Freq. Percent Cum.
male 200 40.00 40.00
female 300 60.00 100.00
Total 500 100.00
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> Example 4: Samples satisfying a condition
For a bootstrap sample of 200 female patients, we type
. use http://www.stata-press.com/data/r12/bsamplel, clear
. bsample 200 if female
. tab female
female Freq. Percent Cum.
female 200 100.00 100.00
Total 200 100.00
d

> Example 5: Generating frequency weights

To identify the sampled observations using frequency weights instead of dropping unsampled
observations, we use the weight () option (we will need to supply it an existing variable name) and

type
. use http://www.stata-press.com/data/r12/bsamplel, clear
. set seed 1234

. gen fw = .
(5810 missing values generated)

. bsample 200 if female, weight(fw)

. tabulate fw female

female
fw male female Total
0 2,392 3,221 5,613
1 0 194 194
2 0 3 3
Total 2,392 3,418 5,810

Note that (194 x 1) + (3 x 2) = 200.

»> Example 6: Oversampling observations

bsample requires the expression in exp to evaluate to a number that is less than or equal to the
number of observations. To sample twice as many male and female patients as there are already in

memory, we must expand the data before using bsample. For example,

. use http://www.stata-press.com/data/r12/bsamplel, clear
. set seed 1234

. expand 2
(5810 observations created)

. bsample, strata(female)
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. tab female

female Freq. Percent Cum.

male 4,784 41.17 41.17
female 6,836 58.83 100.00
Total 11,620 100.00

> Example 7: Stratified oversampling with unequal sizes

To sample twice as many female patients as male patients, we must expand the records for the
female patients because there are less than twice as many of them as there are male patients, but first
put the number of observed male patients in a local macro. After expanding the female records, we
generate a variable that contains the number of observations to sample within the two groups.

. use http://www.stata-press.com/data/r12/bsamplel, clear
. set seed 1234

. count if !female
2392

. local nmale = r(N)

. expand 2 if female
(3418 observations created)

. gen nsamp = cond(female,2*‘nmale’, ‘nmale’)
. bsample nsamp, strata(female)
. tab female

female Freq. Percent Cum.

male 2,392 33.33 33.33
female 4,784 66.67 100.00
Total 7,176 100.00

> Example 8: Oversampling of clusters

For clustered data, sampling more clusters than are present in the original dataset requires more
than just expanding the data. To illustrate, suppose we wanted a bootstrap sample of eight clusters
from a dataset consisting of five clusters of observations.

. use http://www.stata-press.com/data/r12/bsample2, clear
. tabstat x, stat(n mean) by(group)

Summary for variables: x
by categories of: group

group N mean
A 15 -.3073028
B 10 -.00984
C 11 .0810985
D 11 -.1989179
E 29 -.095203
Total 76 -.1153269
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bsample will complain if we simply expand the dataset.

. use http://www.stata-press.com/data/r12/bsample2

. expand 3
(152 observations created)

. bsample 8, cluster(group)
resample size must not be greater than number of clusters
r(498);

Expanding the data will only partly solve the problem. We also need a new variable that uniquely
identifies the copied clusters. We use the expandcl command to accomplish both these tasks; see
[D] expandcl.

. use http://www.stata-press.com/data/r12/bsample2, clear
. set seed 1234

. expandcl 2, generate(expgroup) cluster(group)
(76 observations created)

. tabstat x, stat(n mean) by(expgroup)

Summary for variables: x
by categories of: expgroup

expgroup N mean
1 15 -.3073028
2 15 -.3073028
3 10 -.00984
4 10  -.00984
5 11 .0810985
6 11 .0810985
7 11 -.1989179
8 11 -.1989179
9 29 -.095203
10 29 -.095203
Total 152 -.1153269
. gen fw = .

(152 missing values generated)
. bsample 8, cluster(expgroup) weight (fw)
. tabulate fw group

group

fw A B C D E Total

0 15 10 0 0 29 54

1 15 10 22 22 0 69

2 0 0 0 0 29 29
Total 30 20 22 22 58 152

The results from tabulate on the generated frequency weight variable versus the original cluster ID

(group) show us that the bootstrap sample contains one copy of cluster A, one copy of cluster B, two

copies of cluster C, two copies of cluster D, and two copies of cluster E (1 +1+4+2 42+ 2 = 8).
d
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> Example 9: Stratified oversampling of clusters

Suppose that we have a dataset containing two strata with five clusters in each stratum, but the
cluster identifiers are not unique between the strata. To get a stratified bootstrap sample with eight
clusters in each stratum, we first use expandcl to expand the data and get a new cluster ID variable.
We use cluster(strid group) in the call to expandcl; this action will uniquely identify the
2 %5 = 10 clusters across the strata.

. use http://www.stata-press.com/data/r12/bsample2, clear
. set seed 1234
. tab group strid

strid
group 1 2 Total
A 7 8 15
B 5 5 10
C 5 6 11
D 5 6 11
E 14 15 29
Total 36 40 76

. expandcl 2, generate(expgroup) cluster(strid group)
(76 observations created)

Now we can use bsample with the expanded data, stratum ID variable, and new cluster ID variable.
. gen fw = .
(152 missing values generated)
. bsample 8, cluster(expgroup) str(strid) weight(fw)
. by strid, sort: tabulate fw group

-> strid = 1

group
fw A B C D E Total
0 0 5 0 5 14 24
1 14 5 10 5 0 34
2 0 0 0 0 14 14
Total 14 10 10 10 28 72
-> strid = 2
group
fw A B C D E Total
8 10 0 6 0 24
1 8 0 6 6 15 35
2 0 0 6 0 15 21
Total 16 10 12 12 30 80

The results from by strid: tabulate on the generated frequency weight variable versus the original
cluster ID (group) show us how many times each cluster was sampled for each stratum. For stratum
1, the bootstrap sample contains two copies of cluster A, one copy of cluster B, two copies of cluster
C, one copy of cluster D, and two copies of cluster E (2 + 1+ 2+ 1 + 2 = 8). For stratum 2, the
bootstrap sample contains one copy of cluster A, zero copies of cluster B, three copies of cluster C,
one copy of cluster D, and three copies of cluster E (1 +0+43 + 1+ 3 = 8). 4
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Methods and formulas

bsample is implemented as an ado-file.

Also see
[R] bootstrap — Bootstrap sampling and estimation
[R] bstat — Report bootstrap results
[R] simulate — Monte Carlo simulations

[D] sample — Draw random sample



Title

bstat — Report bootstrap results

Syntax

Bootstrap statistics from variables

bstat [varlist] [lf] [zn] [, options]

Bootstrap statistics from file

bstat [namelist] [usingﬁlename} [lf} [ln} [, options}

options

Description

Main
stat (vector)
accel (vector)
mse

Reporting
level (#)
n(#)
notable
noheader
nolegend
verbose
title (text)
display_options

observed values for each statistic
acceleration values for each statistic
use MSE formula for variance estimation

set confidence level; default is 1level (95)

# of observations from which bootstrap samples were taken
suppress table of results

suppress table header

suppress table legend

display the full table legend

use text as title for bootstrap results

control column formats and line width

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Resampling > Report bootstrap results

Description

bstat is a programmer’s command that computes and displays estimation results from bootstrap

statistics.

For each variable in varlist (the default is all variables), then bstat computes a covariance
matrix, estimates bias, and constructs several different confidence intervals (CIs). The following CIs
are constructed by bstat:

1. Normal CIs (using the normal approximation)

2. Percentile CIs

3. Bias-corrected (BC) CIs

4. Bias-corrected and accelerated (BC,) CIs (optional)
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estat bootstrap displays a table of one or more of the above confidence intervals; see
[R] bootstrap postestimation.

If there are bootstrap estimation results in e (), bstat replays them. If given the using modifier,
bstat uses the data in filename to compute the bootstrap statistics while preserving the data currently
in memory. Otherwise, bstat uses the data in memory to compute the bootstrap statistics.

The following options may be used to replay estimation results from bstat:
level(#) notable noheader nolegend verbose title(fext)

For all other options and the qualifiers using, if, and in, bstat requires a bootstrap dataset.

Options
Main

stat (vector) specifies the observed value of each statistic (that is, the value of the statistic using
the original dataset).

accel(vector) specifies the acceleration of each statistic, which is used to construct BC, CIs.

mse specifies that bstat compute the variance by using deviations of the replicates from the observed
value of the statistics. By default, bstat computes the variance by using deviations from the
average of the replicates.

Reporting

level (#); see [R] estimation options.

n(#) specifies the number of observations from which bootstrap samples were taken. This value is
used in no calculations but improves the table header when this information is not saved in the
bootstrap dataset.

notable suppresses the display of the output table.
noheader suppresses the display of the table header. This option implies nolegend.
nolegend suppresses the display of the table legend.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

title(rext) specifies a title to be displayed above the table of bootstrap results; the default title is
Bootstrap results.

display_options: cformat (% fint), pformat (% fmt), sformat (% fint), and nolstretch; see [R] es-
timation options.

Remarks

Remarks are presented under the following headings:

Bootstrap datasets
Creating a bootstrap dataset
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Bootstrap datasets

Although bstat allows you to specify the observed value and acceleration of each bootstrap
statistic via the stat() and accel() options, programmers may be interested in what bstat uses
when these options are not supplied.

When working from a bootstrap dataset, bstat first checks the data characteristics (see [P] char)
that it understands:

_dta[bs_version] identifies the version of the bootstrap dataset. This characteristic may be empty
(not defined), 2, or 3; otherwise, bstat will quit and display an error message. This version
tells bstat which other characteristics to look for in the bootstrap dataset.

bstat uses the following characteristics from version 3 bootstrap datasets:
_dtal[N]
_dta[N_stratal
_dta[N_cluster]
_dta[command]
varname [observed]
varname [acceleration]
varname [expression]

bstat uses the following characteristics from version 2 bootstrap datasets:
_dtal[N]
_dta[N_stratal
_dta[N_cluster]
varname [observed]
varname [acceleration]

An empty bootstrap dataset version implies that the dataset was created by the bstrap
command in a version of Stata earlier than Stata 8. Here bstat expects varname [bstrap]
to contain the observed value of the statistic identified by varname (varname[observed]
in version 2). All other characteristics are ignored.

_dta[N] is the number of observations in the observed dataset. This characteristic may be overruled
by specifying the n() option.

_dta[N_strata] is the number of strata in the observed dataset.
_dtal[N_cluster] is the number of clusters in the observed dataset.
—dta[command] is the command used to compute the observed values of the statistics.

varname [observed] is the observed value of the statistic identified by varname. To specify a different
value, use the stat () option.

varname [acceleration] is the estimate of acceleration for the statistic identified by varname. To
specify a different value, use the accel() option.

varname [expression] is the expression or label that describes the statistic identified by varname.

Creating a bootstrap dataset

Suppose that we are interested in obtaining bootstrap statistics by resampling the residuals from
a regression (which is not possible with the bootstrap command). After loading some data, we
run a regression, save some results relevant to the bstat command, and save the residuals in a new
variable, res.
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. use http://www.stata-press.com/data/r12/auto

(1978 Automobile Data)
. regress mpg weight length

Source SS df MS Number of obs = 74
F( 2, 71) = 69.34

Model 1616.08062 2 808.040312 Prob > F = 0.0000
Residual 827.378835 71 11.653223 R-squared = 0.6614
Adj R-squared = 0.6519

Total 2443.45946 73 33.4720474 Root MSE = 3.4137
mpg Coef. Std. Err. t P>t [95% Conf. Intervall
weight -.0038515 .001586 -2.43 0.018 -.0070138 -.0006891
length -.0795935 .0553577 -1.44 0.155 -.1899736 .0307867
_cons 47.88487 6.08787 7.87 0.000 35.746 60.02374

. matrix b = e(b)
. local n = e(N)

. predict res, residuals

We can resample the residual values in res by generating a random observation ID (rid), generate

a new response variable (y), and run the original regression with the new response variables.

. set seed 54321
. gen rid = int(_N*runiform())+1
. matrix score double y = b

. replace y = y + res[rid]
(74 real changes made)

. regress y weight length

Source SsS df MS Number of obs = 74
F(C 2, 71) = 103.41

Model 1773.23548 2 886.617741 Prob > F = 0.0000
Residual 608.747732 71 8.57391172 R-squared = 0.7444
Adj R-squared = 0.7372

Total 2381.98321 73  32.629907 Root MSE = 2.9281

y Coef.  Std. Err. t P>|t| [95% Conf. Intervall

weight -.0059938 .0013604 -4.41 0.000 -.0087064 -.0032813
length -.0127875 .0474837 -0.27 0.788 -.1074673 .0818924
_cons 42.23195 5.22194 8.09 0.000 31.8197 52.6442

Instead of programming this resampling inside a loop, it is much more convenient to write a short
program and use the simulate command; see [R] simulate. In the following, mysim_r requires
the user to specify a coefficient vector and a residual variable. mysim_r then retrieves the list of
predictor variables (removing _cons from the list), generates a new temporary response variable with
the resampled residuals, and regresses the new response variable on the predictors.
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program mysim_r
version 12
syntax name(name=bvector), res(varname)
tempvar y rid
local xvars : colnames
local cons _cons
local xvars : list xvars - cons
matrix score double ‘y’ = ‘bvector’
gen long ‘rid’ = int(_N*runiform()) + 1
replace ‘y’ = ‘y’ + ‘res’[‘rid’]
regress ‘y’ ‘xvars’

‘bvector’

¢

end

We can now give mysim_r a test run, but we first set the random-number seed (to reproduce
results).

. set seed 54321

. mysim_r b, res(res)
(74 real changes made)

Source SS df MS Number of obs = 74
F( 2, 71) = 103.41

Model 1773.23548 2 886.617741 Prob > F = 0.0000
Residual 608.747732 71 8.57391172 R-squared = 0.7444
Adj R-squared = 0.7372

Total 2381.98321 73 32.629907 Root MSE = 2.9281
__000000 Coef. Std. Err. t P>t [95% Conf. Intervall]
weight -.0059938 .0013604 -4.41 0.000 -.0087064 -.0032813
length -.0127875 . 0474837 -0.27 0.788 -.1074673 .0818924
_cons 42.23195 5.22194 8.09 0.000 31.8197 52.6442

Now that we have a program that will compute the results we want, we
generate a bootstrap dataset and bstat to display the results.

can use simulate to

. set seed 54321
. simulate, reps(200) nodots: mysim_r b, res(res)

command: mysim_r b, res(res)

. bstat, stat(b) n(‘n’)

Bootstrap results Number of obs = 74
Replications = 200

Observed  Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Intervall
_b_weight -.0038515 .0015715 -2.45 0.014 -.0069316 -.0007713
_b_length -.0795935 .05652415 -1.44 0.150 -.1878649 .0286779
_b_cons 47.88487 6.150069 7.79 0.000 35.83096 59.93879

Finally, we see that simulate created some of the data characteristics recognized by bstat. All
we need to do is correctly specify the version of the bootstrap dataset, and bstat will automatically
use the relevant data characteristics.
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. char list

_dtal[seed]: X681014bbc43f462544a474abacbdd93d12al
_dta[command] : mysim_r b, res(res)
_b_weight[is_eexp]: 1

_b_weight [colname] : weight
_b_weight[coleq]: _

_b_weight [expression]: _blweight]
_b_length[is_eexp]: 1
_b_length[colname]: length
_b_length[coleq]: _
_b_length[expression]: _b[length]
_b_cons[is_eexp]: 1

_b_cons[colname] : _cons
_b_cons[coleq]: _

_b_cons [expression] : _b[_cons]

. char _dta[bs_version] 3
. bstat, stat(b) n(‘n’)

Bootstrap results Number of obs = 74
Replications = 200

command: mysim_r b, res(res)

Observed Bootstrap Normal-based

Coef. Std. Err. z P>|z| [95% Conf. Intervall
weight -.0038515 .0015715 -2.45 0.014 -.0069316  -.0007713
length -.0795935 .0552415 -1.44 0.150 -.1878649 .0286779
_cons 47.88487  6.150069 7.79 0.000 35.83096 59.93879

See Poi (2004) for another example of residual resampling.
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Saved results

bstat saves the following in e():

Scalars
e() sample size
e(N_reps) number of complete replications
e(N_misreps) number of incomplete replications
e(N_strata) number of strata
e(N_clust) number of clusters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e(b)
e(k_exp) number of standard expressions
e(k_eexp) number of extended expressions (i.e., _b)
e(k_extra) number of extra equations beyond the original ones from e (b)
e(level) confidence level for bootstrap CIs
e(bs_version) version for bootstrap results
e(rank) rank of e(V)

Macros
e(cmd) bstat
e (command) from _dta[command]
e(cmdline) command as typed
e(title) title in estimation output
e (exp#) expression for the #th statistic
e(prefix) bootstrap
e(mse) mse if specified
e(vce) bootstrap
e(vcetype) title used to label Std. Err.
e(properties) bV

Matrices
e(b) observed statistics
e(b_bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(accel) estimated accelerations
e(ci_normal) normal-approximation Cls
e(ci_percentile) percentile Cls
e(ci_bc) bias-corrected Cls
e(ci_bca) bias-corrected and accelerated Cls
e(V) bootstrap variance—covariance matrix

Methods and formulas

bstat is implemented as an ado-file.

Reference
Poi, B. P. 2004. From the help desk: Some bootstrapping techniques. Stata Journal 4: 312-328.

Also see

[R] bootstrap — Bootstrap sampling and estimation

[R] bsample — Sampling with replacement
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Title

centile — Report centile and confidence interval

Syntax
centile [varlist] [lf] [in] [, opzions]
options Description
Main
centile (numlist) report specified centiles; default is centile (50)
Options
cci binomial exact; conservative confidence interval
normal normal, based on observed centiles
meansd normal, based on mean and standard deviation
level (#) set confidence level; default is 1evel (95)

by is allowed; see [D] by.

Menu

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Centiles with Cls

Description
centile estimates specified centiles and calculates confidence intervals. If no varlist is specified,

centile calculates centiles for all the variables in the dataset. If centile () is not specified, medians
(centile(50)) are reported.

Options

Main

r

centile (numlist) specifies the centiles to be reported. The default is to display the 50th centile.
Specifying centile(5) requests that the fifth centile be reported. Specifying centile(5 50
95) requests that the 5th, 50th, and 95th centiles be reported. Specifying centile (10(10)90)
requests that the 10th, 20th, ..., 90th centiles be reported; see [U] 11.1.8 numlist.

cci (conservative confidence interval) forces the confidence limits to fall exactly on sample values.
Confidence intervals displayed with the cci option are slightly wider than those with the default
(nocci) option.

normal causes the confidence interval to be calculated by using a formula for the standard error
of a normal-distribution quantile given by Kendall and Stuart (1969, 237). The normal option is
useful when you want empirical centiles—that is, centiles based on sample order statistics rather
than on the mean and standard deviation—and are willing to assume normality.
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meansd causes the centile and confidence interval to be calculated based on the sample mean and
standard deviation, and it assumes normality.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

Remarks

The gth centile of a continuous random variable, X, is defined as the value of C’q, which fulfills
the condition Pr(X < C;) = ¢/100. The value of ¢ must be in the range 0 < g < 100, though ¢
is not necessarily an integer. By default, centile estimates C; for the variables in varlist and for
the values of ¢ given in centile (numlist). It makes no assumptions about the distribution of X,
and, if necessary, uses linear interpolation between neighboring sample values. Extreme centiles (for
example, the 99th centile in samples smaller than 100) are fixed at the minimum or maximum sample
value. An “exact” confidence interval for Cy is also given, using the binomial-based method described
below in Methods and formulas and in Conover (1999, 143-148). Again linear interpolation is used
to improve the accuracy of the estimated confidence limits, but extremes are fixed at the minimum
or maximum sample value.

You can prevent centile from interpolating when calculating binomial-based confidence intervals
by specifying cci. The resulting intervals are generally wider than with the default; that is, the
coverage (confidence level) tends to be greater than the nominal value (given as usual by level (#),
by default 95%).

If the data are believed to be normally distributed (a common case), there are two alternative
methods for estimating centiles. If normal is specified, C; is calculated, as just described, but its
confidence interval is based on a formula for the standard error (se) of a normal-distribution quantile
given by Kendall and Stuart (1969, 237). If meansd is alternatively specified, C, is estimated as
T + z¢ X s, where T and s are the sample mean and standard deviation, and z, is the gth centile of
the standard normal distribution (for example, zg5 = 1.645). The confidence interval is derived from
the se of the estimate of Cj.

> Example 1

Using auto.dta, we estimate the 5th, 50th, and 95th centiles of the price variable:
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)
. format price %8.2fc
. centile price, centile(5 50 95)

— Binom. Interp. —

Variable Obs Percentile Centile [95% Conf. Intervall
price 74 5 3,727.75 3,291.23  3,914.16
50 5,006.50 4,593.57 5,717.90

95 13,498.00 11,061.53 15,865.30

summarize produces somewhat different results from centile; see Methods and formulas.
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. summarize price, detail

Price

Percentiles Smallest

1% 3291 3291

5% 3748 3299
10% 3895 3667 Obs 74
25% 4195 3748 Sum of Wgt. 74
50% 5006.5 Mean 6165.257
Largest Std. Dev. 2949.496

75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188

The confidence limits produced by using the cci option are slightly wider than those produced
without this option:

. centile price, c(5 50 95) cci

— Binomial Exact —

Variable Obs Percentile Centile [95% Conf. Intervall
price 74 5 3,727.75 3,291.00 3,955.00

50 5,006.50 4,589.00  5,719.00

95 13,498.00 10,372.00 15,906.00

If we are willing to assume that price is normally distributed, we could include either the normal
or the meansd option:

. centile price, c(5 50 95) normal

— Normal, based on observed centiles —

Variable Obs Percentile Centile [95% Conf. Intervall
price 74 5 3,727.75 3,211.19 4,244 .31

50 5,006.50 4,096.68 5,916.32

95 13,498.00 5,426.81 21,569.19

. centile price, c(5 50 95) meansd

— Normal, based on mean and std. dev.—

Variable Obs Percentile Centile [95% Conf. Intervall
price 74 5 1,313.77 278.93 2,348.61

50 6,165.26 5,493.24 6,837.27

95 11,016.75 9,981.90 12,051.59

With the normal option, the centile estimates are, by definition, the same as before. The confidence
intervals for the 5th and 50th centiles are similar to the previous ones, but the interval for the
95th centile is different. The results using the meansd option also differ from both previous sets of
estimates.

We can use sktest (see [R] sktest) to check the correctness of the normality assumption:

. sktest price

Skewness/Kurtosis tests for Normality

joint
Variable | Obs  Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

price | 74 0.0000 0.0127 21.77 0.0000
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sktest reveals that price is definitely not normally distributed, so the normal assumption is not
reasonable, and the normal and meansd options are not appropriate for these data. We should rely
on the results from the default choice, which does not assume normality. If the data are normally
distributed, however, the precision of the estimated centiles and their confidence intervals will be
ordered (best) meansd > normal > [default] (worst). The normal option is useful when we really
do want empirical centiles (that is, centiles based on sample order statistics rather than on the mean
and standard deviation) but are willing to assume normality.

d

Saved results

centile saves the following in r():

Scalars
r(N) number of observations
r(n_cent) number of centiles requested
r(c_#) value of # centile
r(1b_#) #-requested centile lower confidence bound
r (ub_#) #-requested centile upper confidence bound
Macros

r(centiles) centiles requested

Methods and formulas

centile is implemented as an ado-file.
Methods and formulas are presented under the following headings:

Default case
Normal case
meansd case

Default case

The calculation is based on the method of Mood and Graybill (1963, 408). Letx; < 2o < --- < z,
be a sample of size n arranged in ascending order. Denote the estimated gth centile of the z’s as
cq- We require that 0 < g < 100. Let R = (n + 1)g/100 have integer part 7 and fractional part f;
that is, » = int(R) and f = R — r. (If R is itself an integer, then 7 = R and f = 0.) Note that
0 < r < n. For convenience, define 9 = x; and z,4; = z,. C, is estimated by

g =2r + f X (Tpy1 — )

that is, ¢4 is a weighted average of x, and x, ;1. Loosely speaking, a (conservative) p% confidence
interval for C, involves finding the observations ranked ¢ and w, which correspond, respectively, to
the & = (100 — p)/200 and 1 — « quantiles of a binomial distribution with parameters n and ¢/100,
that is, B(n, ¢/100). More precisely, define the ith value (i = 0,...,n) of the cumulative binomial
distribution function as F; = Pr(S < i), where S has distribution B(n, ¢/100). For convenience,
let F_y =0 and F,4+; = 1. t is found such that F; < « and Fyy; > «, and u is found such that
1—-F,<aand 1—-F,_1 > .

With the cci option in force, the (conservative) confidence interval is (2441, Z4+1), and its actual
coverage probability is Fy, — Fy.
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The default case uses linear interpolation on the F; as follows. Let

g=(a—F)/(Fip1 — F)
h:{Oé—(l_Fu)}/{(l_Fu—l)_(1_Fu)}
=(a—1+F,)/(F,— F,_1)

The interpolated lower and upper confidence limits (c,z,, c,u) for C, are

Cqr, = Tpy1 + 9 X (Teg2 — Teg1)
Cqu = Tyt1 — B X (Tyg1 — Ty)
Suppose that we want a 95% confidence interval for the median of a sample of size 13. n = 13,

g =50, p =295 a=0.025 R =14 x 50/100 = 7, and f = 0. Therefore, the median is the 7th
observation. Some example data, x;, and the values of F; are as follows:

Fi 1-— Fz xZ; 7 Fz 1— Fz xX;
0.0001 0.9999 - 7 07095 0.2905 33
0.0017 09983 5 8 0.8666 0.1334 37

0.0112 0.9888 7 9 09539 0.0461 45
0.0461 0.9539 10 10 0.9888 0.0112 59
0.1334 0.8666 15 11 09983 0.0017 77
0.2905 0.7095 23 12°.0.9999 0.0001 104
0.5000 0.5000 28 13 1.0000 0.0000 211

The median is 7 = 33. Also, F» < 0.025 and F3 > 0.025, so t = 2; 1 — Fip < 0.025 and
1 — Fy > 0.025, so u = 10. The conservative confidence interval is therefore

AN AW~ O .

(csor, csov) = (Teq1, Tug1) = (23, 211) = (10,77)

with actual coverage Fig— F> = 0.9888 —0.0112 = 0.9776 (97.8% confidence). For the interpolation
calculation, we have

g = (0.025 — 0.0112)/(0.0461 — 0.0112) = 0.395
h = (0.025 — 1 + 0.9888)/(0.9888 — 0.9539) = 0.395

So,
csor, = 3+ 0.395 X (x4 —23) =104+ 0.395 x 5 = 11.98

Cs50U = T11 — 0.395 x (xn — Ilo) =77-0.395 x 18 = 69.89

Normal case

The value of ¢, is as above. Its se is given by the formula

Sq = q(lOO — q)/{lOO\/ﬁZ(Cq;L 5)}
where T and s are the mean and standard deviation of the z;, and
Z2(Yip0) = (1/Vamo? )"0 /2"

is the density function of a normally distributed variable Y with mean p and standard deviation o.
The confidence interval for Cy is (cq — 2100(1—a)Sqs Cq + 2100(1—a)Sq)-
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meansd case

The value of ¢, is T + z; X s. Its se is given by the formula

5= s\/l/n +22/(2n—2)

The confidence interval for Cy is (¢ — 2z100(1—-a) X S5 Cq + 2100(1—a) X Sj)-
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Title

ci — Confidence intervals for means, proportions, and counts

Syntax

Syntax for ci

ci [varlisl} [1_’}"] [ln] [Weight] [, oplions]

Immediate command for variable distributed as normal

cii #obs #mean #sd [ s ciin_optioﬂ

Immediate command for variable distributed as binomial

cii #obs #suce [ , ciib_()pti()ns}

Immediate command for variable distributed as Poisson

cii #exposure #events » POisson [ciip_options]

options Description

Main
binomial binomial 0/1 variables; compute exact confidence intervals
poisson Poisson variables; compute exact confidence intervals
exposure (varname) exposure variable; implies poisson
exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti—Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals
total add output for all groups combined (for use with by only)
separator (#) draw separator line after every # variables; default is separator(5)
Eel #) set confidence level; default is 1level (95)

by is allowed with ci; see [D] by.

aweights and fweights are allowed, but aweights may not be specified with the binomial or
poisson options; see [U] 11.1.6 weight.

ciin_option

Description

level (#)

set confidence level; default is 1level (95)

257
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ciib_options Description
level (#) set confidence level; default is 1level (95)
exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti—Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals
ciip_options Description

* poisson numbers are Poisson-distributed counts
level (#) set confidence level; default is 1level (95)

poisson is required.

Menu
ci
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence intervals

cii for variable distributed as normal

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Normal Cl calculator

cii for variable distributed as binomial

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Binomial Cl calculator

cii for variable distributed as Poisson

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Poisson CI calculator

Description

ci computes standard errors and confidence intervals for each of the variables in varlist.

cii is the immediate form of ci; see [U] 19 Immediate commands for a general discussion of
immediate commands.

In the binomial and Poisson variants of cii, the second number specified (#succ O #ovents) must
be an integer or between 0 and 1. If the number is between O and 1, Stata interprets it as the fraction
of successes or events and converts it to an integer number representing the number of successes or
events. The computation then proceeds as if two integers had been specified.

Options
Main

Is

binomial tells ci that the variables are 0/1 variables and that binomial confidence intervals will be
calculated. (cii produces binomial confidence intervals when only two numbers are specified.)
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poisson specifies that the variables (or numbers for cii) are Poisson-distributed counts; exact Poisson
confidence intervals will be calculated.

exposure (varname) is used only with poisson. You do not need to specify poisson if you specify
exposure(); poisson is assumed. varname contains the total exposure (typically a time or an
area) during which the number of events recorded in varlist were observed.

exact, wald, wilson, agresti, and jeffreys specify that variables are 0/1 and specify how
binomial confidence intervals are to be calculated.

exact is the default and specifies exact (also known in the literature as Clopper—Pearson [1934])
binomial confidence intervals.

wald specifies calculation of Wald confidence intervals.

wilson specifies calculation of Wilson confidence intervals.
agresti specifies calculation of Agresti—Coull confidence intervals.
jeffreys specifies calculation of Jeffreys confidence intervals.

See Brown, Cai, and DasGupta (2001) for a discussion and comparison of the different binomial
confidence intervals.

total is for use with the by prefix. It requests that, in addition to output for each by-group, output
be added for all groups combined.

separator (#) specifies how often separation lines should be inserted into the output. The default is
separator(5), meaning that a line is drawn after every five variables. separator (10) would
draw the line after every 10 variables. separator (0) suppresses the separation line.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

Remarks

Remarks are presented under the following headings:

Ordinary confidence intervals
Binomial confidence intervals
Poisson confidence intervals
Immediate form

Ordinary confidence intervals

> Example 1

Without the binomial or poisson options, ci produces “ordinary” confidence intervals, meaning
those that are correct if the variable is distributed normally, and asymptotically correct for all other
distributions satisfying the conditions of the central limit theorem.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)
. ci mpg price
Variable | Obs Mean Std. Err. [95% Conf. Intervall

mpg 74 21.2973 .67256511 19.9569 22.63769
price 74 6165.257 342.8719 5481.914 6848.6
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The standard error of the mean of mpg is 0.67, and the 95% confidence interval is [19.96,22.64].
We can obtain wider confidence intervals, 99%, by typing

. ci mpg price, level(99)

Variable | Obs Mean Std. Err. [99% Conf. Intervall]
mpg 74 21.2973 .6725511 19.51849 23.07611
price 74 6165.257 342.8719 5258.405 7072.108 q
> Example 2

by () breaks out the confidence intervals
For instance,

. ci mpg, by(foreign) total

according to by-group; total adds an overall summary.

-> foreign = Domestic

Variable Obs Mean Std. Err. [95% Conf. Intervall]
mpg 52 19.82692 857777 18.50638 21.14747
-> foreign = Foreign
Variable Obs Mean Std. Err. [95% Conf. Intervall
mpg 22 24.77273 1.40951 21.84149 27.70396
-> Total
Variable Obs Mean Std. Err. [95% Conf. Intervall]
mpg 74 21.2973 .6725511 19.9569 22.63769 4

Q Technical note

You can control the formatting of the numbers in the output by specifying a display format for
the variable; see [U] 12.5 Formats: Controlling how data are displayed. For instance,

. format mpg %9.2f

. ci mpg
Variable | Obs Mean

Std. Err. [95% Conf. Intervall

mpg | 74 21.30

Binomial confidence intervals

> Example 3

0.67 19.96 22.64

We have data on employees, including a variable marking whether the employee was promoted

last year.
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. use http://www.stata-press.com/data/r12/promo
. ci promoted, binomial

— Binomial Exact —
Variable | Obs Mean Std. Err. [95% Conf. Intervall

promoted | 20 .1 .067082 .0123485 .3169827

The above interval is the default for binomial data, known equivalently as both the exact binomial
and the Clopper—Pearson interval.

Nominally, the interpretation of a 95% confidence interval is that under repeated samples or
experiments, 95% of the resultant intervals would contain the unknown parameter in question.
However, for binomial data, the actual coverage probability, regardless of method, usually differs from
that interpretation. This result occurs because of the discreteness of the binomial distribution, which
produces only a finite set of outcomes, meaning that coverage probabilities are subject to discrete
jumps and the exact nominal level cannot always be achieved. Therefore, the term exact confidence
interval refers to its being derived from the binomial distribution, the distribution exactly generating
the data, rather than resulting in exactly the nominal coverage.

For the Clopper—Pearson interval, the actual coverage probability is guaranteed to be greater
than or equal to the nominal confidence level, here 95%. Because of the way it is calculated—see
Methods and formulas—it may also be interpreted as follows: If the true probability of being promoted
were 0.012, the chances of observing a result as extreme or more extreme than the result observed
(20 x 0.1 = 2 or more promotions) would be 2.5%. If the true probability of being promoted were
0.317, the chances of observing a result as extreme or more extreme than the result observed (two
or fewer promotions) would be 2.5%.

4

> Example 4

The Clopper—Pearson interval is desirable because it guarantees nominal coverage; however, by
dropping this restriction, you may obtain accurate intervals that are not as conservative. In this vein,
you might opt for the Wilson (1927) interval,

. ci promoted, binomial wilson

Wilson
Variable | Obs Mean Std. Err. [95% Conf. Intervall
promoted | 20 .1 .067082 .0278665 .3010336

the Agresti—Coull (1998) interval,

. ci promoted, binomial agresti

— Agresti-Coull —
Variable | Obs Mean Std. Err. [95% Conf. Intervall

promoted | 20 .1 .067082 .0156562 .3132439

or the Bayesian-derived Jeffreys interval (Brown, Cai, and DasGupta 2001),

. ci promoted, binomial jeffreys

Jeffreys
Variable | Obs Mean Std. Err. [95% Conf. Intervall

promoted | 20 .1 .067082 .0213725 .2838533
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Picking the best interval is a matter of balancing accuracy (coverage) against precision (average
interval length) and depends on sample size and success probability. Brown, Cai, and DasGupta (2001)
recommend the Wilson or Jeffreys interval for small sample sizes (<40) yet favor the Agresti—Coull
interval for its simplicity, decent performance for sample sizes less than or equal to 40, and performance
comparable to Wilson/Jeffreys for sample sizes greater than 40. They also deem the Clopper—Pearson
interval to be “wastefully conservative and [. . .] not a good choice for practical use”, unless of course
one requires, at a minimum, the nominal coverage level.

d

Finally, the binomial Wald confidence interval is obtained by specifying the binomial and wald
options. The Wald interval is the one taught in most introductory statistics courses and for the above
is simply, for level 1 — o, Mean+2z,(Std. Err.), where z, is the 1 — a/2 quantile of the standard
normal. Because its overall poor performance makes it impractical, the Wald interval is available
mainly for pedagogical purposes. The binomial Wald interval is also similar to the interval produced
by treating binary data as normal data and using ci without the binomial option, with two exceptions.
First, when binomial is specified, the calculation of the standard error uses denominator 7 rather
than n — 1, used for normal data. Second, confidence intervals for normal data are based on the
t distribution rather than the standard normal. Of course, both discrepancies vanish as sample size
increases.

Q Technical note

Let’s repeat example 3, but this time with data in which there are no promotions over the observed
period:

. use http://www.stata-press.com/data/r12/promonone
. ci promoted, binomial

— Binomial Exact —
Variable | Obs Mean Std. Err. [95% Conf. Intervall

promoted | 20 0 0 0 .1684335x%
(%) one-sided, 97.5% confidence interval

The confidence interval is [0,0.168], and this is the confidence interval that most books publish. It
is not, however, a true 95% confidence interval because the lower tail has vanished. As Stata notes,
it is a one-sided, 97.5% confidence interval. If you wanted to put 5% in the right tail, you could type
ci promoted, binomial level(90).

a

Q Technical note

ci with the binomial option ignores any variables that do not take on the values 0 and 1
exclusively. For instance, with our automobile dataset,
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)
. ci mpg foreign, binomial

— Binomial Exact —
Variable | Obs Mean Std. Err. [95% Conf. Intervall

foreign | 74 .2972973 .05631331 .196584 .4148353

We also requested the confidence interval for mpg, but Stata ignored us. It does that so you can type
ci, binomial and obtain correct confidence intervals for all the variables that are 0/1 in your data.
a
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Poisson confidence intervals

> Example 5

We have data on the number of bacterial colonies on a Petri dish. The dish has been divided into
36 small squares, and the number of colonies in each square has been counted. Each observation in
our dataset represents a square on the dish. The variable count records the number of colonies in
each square counted, which varies from 0 to 5.

. use http://www.stata-press.com/data/r12/petri
. ci count, poisson

— Poisson Exact —
Variable | Exposure Mean Std. Err. [95% Conf. Intervall

count | 36 2.333333 .2545875 1.861158 2.888825

ci reports that the average number of colonies per square is 2.33. If the expected number of colonies
per square were as low as 1.86, the probability of observing 2.33 or more colonies per square would
be 2.5%. If the expected number were as large as 2.89, the probability of observing 2.33 or fewer
colonies per square would be 2.5%.

N

Q Technical note

The number of “observations”—how finely the Petri dish is divided—makes no difference. The
Poisson distribution is a function only of the count. In example 4, we observed a total of 2.33 X 36 = 84
colonies and a confidence interval of [1.86 x 36,2.89 x 36] = [67,104]. We would obtain the same
[67,104] confidence interval if our dish were divided into, say, 49 squares, rather than 36.

For the counts, it is not even important that all the squares be of the same size. For rates, however,
such differences do matter, but in an easy-to-calculate way. Rates are obtained from counts by dividing
by exposure, which is typically a number multiplied by either time or an area. For our Petri dishes,
we divide by an area to obtain a rate, but if our example were cast in terms of being infected by a
disease, we might divide by person-years to obtain the rate. Rates are convenient because they are
easier to compare: we might have 2.3 colonies per square inch or 0.0005 infections per person-year.

So, let’s assume that we wish to obtain the number of colonies per square inch, and, moreover,
that not all the “squares” on our dish are of equal size. We have a variable called area that records
the area of each “square”:

. ci count, exposure(area)

— Poisson Exact —
Variable | Exposure Mean Std. Err. [95% Conf. Intervall

count | 3 28 3.055051 22.3339 34.66591

The rates are now in more familiar terms. In our sample, there are 28 colonies per square inch and
the 95% confidence interval is [22.3,34.7]. When we did not specify exposure (), ci assumed that
each observation contributed 1 to exposure.

a
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Q Technical note

As with the binomial option, if there were no colonies on our dish, ci would calculate a one-sided
confidence interval:

. use http://www.stata-press.com/data/r12/petrinone
. ci count, poisson

— Poisson Exact —
Variable | Exposure Mean Std. Err. [95% Conf. Intervall

count | 36 0 0 0 .1024689*

(*) one-sided, 97.5% confidence interval

Immediate form

> Example 6

We are reading a soon-to-be-published paper by a colleague. In it is a table showing the number of
observations, mean, and standard deviation of 1980 median family income for the Northeast and West.
We correctly think that the paper would be much improved if it included the confidence intervals.
The paper claims that for 166 cities in the Northeast, the average of median family income is $19,509
with a standard deviation of $4,379:

For the Northeast:

. cii 166 19509 4379
Variable | Obs Mean Std. Err. [95% Conf. Intervall

| 166 19509 339.8763 18837.93 20180.07

For the West:

. cii 256 22557 5003
Variable | Obs Mean Std. Err. [95% Conf. Intervall

| 256 22557 312.6875 21941.22 23172.78

> Example 7
We flip a coin 10 times, and it comes up heads only once. We are shocked and decide to obtain
a 99% confidence interval for this coin:

. cii 10 1, level(99)

— Binomial Exact —
Variable | Obs Mean Std. Err. [99% Conf. Intervall]

| 10 .1 .0948683 .0005011 .5442871
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> Example 8

The number of reported traffic accidents in Santa Monica over a 24-hour period is 27. We need
know nothing else:

. cii 1 27, poisson

— Poisson Exact —
Variable | Exposure Mean Std. Err. [95% Conf. Intervall

| 1 27 5.196152 17.79317 39.28358

Saved results

ci and cii saves the following in r():

Scalars
r(N) number of observations or exposure r(1b) lower bound of confidence interval
r(mean) mean r (ub) upper bound of confidence interval

r(se) estimate of standard error

Methods and formulas

ci and cii are implemented as ado-files.
Methods and formulas are presented under the following headings:
Ordinary

Binomial
Poisson

Ordinary
Define n, T, and s2 as, respectively, the number of observations, (weighted) average, and (unbiased)
estimated variance of the variable in question; see [R] summarize.

The standard error of the mean, s, is defined as \/s2 /n

Let « be 1 — /100, where [ is the significance level specified by the user. Define t, as the
two-sided ¢ statistic corresponding to a significance level of a with n — 1 degrees of freedom; %,
is obtained from Stata as invttail(n-1,0.5*a). The lower and upper confidence bounds are,
respectively, T — s,t, and T + 5,14

Binomial

Given k successes of n trials, the estimated probability is p = k/n with standard error 1/p(1 — p) /n.
ci calculates the exact (Clopper—Pearson) confidence interval [py,p2 ] such that

Pr(K > klp=p1) = a/2

and
Pr(K <klp =p2) = /2
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where K is distributed as binomial(n, p). The endpoints may be obtained directly by using Stata’s
invbinomial() function. If £ = 0 or k = n, the calculation of the appropriate tail is skipped.

The Wald interval is p & zo+/p(1 — p)/n, where z, is the 1 — /2 quantile of the standard
normal. The interval is obtained by inverting the acceptance region of the large-sample Wald test of
Hy: p = pg versus the two-sided alternative. That is, the confidence interval is the set of all pg such
that

< Za

P— 1o
~!p(1 —p)

The Wilson interval is a variation on the Wald interval, using the null standard error y/n " po (1 — po)

in place of the estimated standard error \/n~!'p(1 —p) in the above expression. Inverting this
acceptance region is more complicated yet results in the closed form

k+22/2  zan? (. 2P
ﬁ + 575 Pl —Dp)+ =
n+ z2 n+ z2/2 4n

The Agresti—Coull interval is basically a Wald interval that borrows its center from the Wilson
interval. Defining k=k+ 22 /2, =mn+ 22, and (hence) p = k /n, the Agresti—Coull interval is

ﬁiza\/ﬁ(lim/ﬁ

When a = 0.05, z, is near enough to 2 that p can be thought of as a typical estimate of proportion
where two successes and two failures have been added to the sample (Agresti and Coull 1998).
This typical estimate of proportion makes the Agresti—Coull interval an easy-to-present alternative
for introductory statistics students.

The Jeffreys interval is a Bayesian interval and is based on the Jeffreys prior, which is the
Beta(1/2,1/2) distribution. Assigning this prior to p results in a posterior distribution for p that is
Beta with parameters k+1/2 and n—k+1/2. The Jeffreys interval is then taken to be the 1 — « central
posterior probability interval, namely, the /2 and 1 — /2 quantiles of the Beta(k+1/2,n—k+1/2)
distribution. These quantiles may be obtained directly by using Stata’s invibeta() function.

Poisson

Given the total cases, k, the estimate of the expected count A is k, and its standard error is \/E
ci calculates the exact confidence interval [ A1, A2 ] such that

Pr(K > klA=X) =a/2

and

Pr(K < kA=) = /2

where K is Poisson with mean A. Solution is by Newton’s method. If £ = 0, the calculation of \;
is skipped. All values are then reported as rates, which are the above numbers divided by the total
exposure.
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Harold Jeffreys (1891-1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.

Edwin Bidwell (E. B.) Wilson (1879-1964) majored in mathematics at Harvard and studied and
taught at Yale and MIT before returning to Harvard in 1922. He worked in mathematics, physics,
and statistics. His method for binomial intervals can be considered a precursor, for a particular
problem, of Neyman’s concept of confidence intervals.

Jerzy Neyman (1894-1981) was born in Bendery, Russia, now Moldavia. He studied and then
taught at Kharkov University, moving from physics to mathematics. In 1921, Neyman moved
to Poland, where he worked in statistics at Bydgoszcz and then Warsaw. Neyman received a
Rockefeller Fellowship to work with Karl Pearson at University College London. There, he
collaborated with Egon Pearson, Karl’s son, on the theory of hypothesis testing. Life in Poland
became progressively more difficult, and Neyman returned to UCL to work there from 1934 to 1938.
At this time, he published on the theory of confidence intervals. He then was offered a post in
California at Berkeley, where he settled. Neyman established an outstanding statistics department
and remained highly active in research, including applications in astronomy, meteorology, and
medicine. He was one of the great statisticians of the 20th century.
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Title

clogit — Conditional (fixed-effects) logistic regression

Syntax

clogit depvar [indepvars] [lf] [m} [weight] , group (varname) [options]

options Description
Model
* group (varname) matched group variable
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vecetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife
nonest do not check that panels are nested within clusters
Reporting
level (#) set confidence level; default is 1level (95)
or report odds ratios
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

*group (varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are
allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce(), nonest, and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to groups
as a whole, not to individual observations. See Use of weights below.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Categorical outcomes > Conditional logistic regression
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Description

clogit fits what biostatisticians and epidemiologists call conditional logistic regression for matched
case—control groups (see, for example, Hosmer and Lemeshow [2000, chap. 7]) and what economists
and other social scientists call fixed-effects logit for panel data (see, for example, Chamberlain [1980]).
Computationally, these models are the same. depvar equal to nonzero and nonmissing (typically depvar
equal to one) indicates a positive outcome, whereas depvar equal to zero indicates a negative outcome.

See [R] asclogit if you want to fit McFadden’s choice model (McFadden 1974). Also see [R] logistic
for a list of related estimation commands.

Options
_ [Model

group (varname) is required; it specifies an identifier variable (numeric or string) for the matched
groups. strata(varname) is a synonym for group ().

offset (varname), constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

nonest, available only with vce(cluster clustvar), prevents checking that matched groups are
nested within clusters. It is the user’s responsibility to verify that the standard errors are theoretically
correct.

Reporting

level (#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, b rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fimt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [@] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following option is available with clogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Remarks are presented under the following headings:

Introduction

Matched case—control data
Use of weights
Fixed-effects logit

Introduction

clogit fits maximum likelihood models with a dichotomous dependent variable coded as 0/1
(more precisely, clogit interprets 0 and not O to indicate the dichotomy). Conditional logistic analysis
differs from regular logistic regression in that the data are grouped and the likelihood is calculated
relative to each group; that is, a conditional likelihood is used. See Methods and formulas at the end
of this entry.

Biostatisticians and epidemiologists fit these models when analyzing matched case—control studies
with 1:1 matching, 1:ko; matching, or ki, : ko; matching, where ¢ denotes the ith matched group for
i =1,2,...,n, where n is the total number of groups. clogit fits a model appropriate for all these
matching schemes or for any mix of the schemes because the matching kq; : ko; can vary from group
to group. clogit always uses the true conditional likelihood, not an approximation. Biostatisticians
and epidemiologists sometimes refer to the matched groups as “strata”, but we will stick to the more
generic term “group”.

Economists and other social scientists fitting fixed-effects logit models have data that look exactly
like the data biostatisticians and epidemiologists call ki; : ko; matched case—control data. In terms
of how the data are arranged, ki;:ko; matching means that in the ith group, the dependent variable
is 1 a total of kq; times and O a total of ko; times. There are a total of T; = kq; + ko; observations
for the 4th group. This data arrangement is what economists and other social scientists call “panel
data”, “longitudinal data”, or “cross-sectional time-series data”.

So no matter what terminology you use, the computation and the use of the clogit command is
the same. The following example shows how your data should be arranged to use clogit.

> Example 1

Suppose that we have grouped data with the variable id containing a unique identifier for each
group. Our outcome variable, y, contains Os and 1s. If we were biostatisticians, y = 1 would indicate
a case, y = 0 would be a control, and id would be an identifier variable that indicates the groups of
matched case—control subjects.

If we were economists, y = 1 might indicate that a person was unemployed at any time during
a year and y = 0, that a person was employed all year, and id would be an identifier variable for
persons.



272 clogit — Conditional (fixed-effects) logistic regression

If we list the first few observations of this dataset, it looks like

. use http://www.stata-press.com/data/r12/clogitid
. list y x1 x2 id in 1/11

y x1 x2 id
1. [0 0 4 1014
2. |0 1 4 1014
3. 10 1 6 1014
4. 1 1 8 1014
5. 1 0 0 1 1017
6. | 0 0 7 1017
7. 1 1 10 1017
8. |10 0 1 1019
9. | 0 1 7 1019
10. 1 1 7 1019
11. 1 1 9 1019

Pretending that we are biostatisticians, we describe our data as follows. The first group (id = 1014)
consists of four matched persons: 1 case (y = 1) and three controls (y = 0), that is, 1:3 matching.
The second group has 1:2 matching, and the third 2:2.

Pretending that we are economists, we describe our data as follows. The first group consists of
4 observations (one per year) for person 1014. This person had a period of unemployment during 1
year of 4. The second person had a period of unemployment during 1 year of 3, and the third had a
period of 2 years of 4.

Our independent variables are x1 and x2. To fit the conditional (fixed-effects) logistic model, we
type
. clogit y x1 x2, group(id)
note: multiple positive outcomes within groups encountered.

Iteration O: log likelihood = -123.42828
Iteration 1: log likelihood = -123.41386
Iteration 2: log likelihood = -123.41386

Conditional (fixed-effects) logistic regression Number of obs = 369
LR chi2(2) = 9.07

Prob > chi2 = 0.0107

Log likelihood = -123.41386 Pseudo R2 = 0.0355
y Coef. Std. Err. z P>|z| [95% Conf. Intervall

x1 .653363 .2875215 2.27 0.023 .0898312 1.216895

x2 .0659169 .0449555 1.47 0.143 -.0221943 .1540281

Q Technical note

The message ‘“note: multiple positive outcomes within groups encountered” at the top of the
clogit output for the previous example merely informs us that we have ky; : ko; matching with
k1; > 1 for at least one group. If your data should be 1: ko; matched, this message tells you that
there is an error in the data somewhere.
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We can see the distribution of kq; and T; = kq; + ko; for the data of the previous example by
using the following steps:

. by id, sort: gen k1 = sum(y)

. by id: replace k1 = . if _n < _N
(303 real changes made, 303 to missing)

. by id: gen T = sum(y < .)

. by id: replace T = . if _n < _N

(303 real changes made, 303 to missing)

. tab ki1
k1 Freq. Percent Cum.
1 48 72.73 72.73
2 12 18.18 90.91
3 4 6.06 96.97
4 2 3.03 100.00

Total 66 100.00

. tab T
T Freq. Percent Cum.
2 5 7.58 7.58
3 5 7.58 15.15
4 12 18.18 33.33
5 11 16.67 50.00
6 13 19.70 69.70
7 8 12.12 81.82
8 3 4.55 86.36
9 7 10.61 96.97
10 2 3.03 100.00

Total 66 100.00

We see that k1; ranges from 1 to 4 and 7; ranges from 2 to 10 for these data.

Q Technical note

For ky; : ko; matching (and hence in the general case of fixed-effects logit), clogit uses a recursive
algorithm to compute the likelihood, which means that there are no limits on the size of T;. However,
computation time is proportional to Y T; min(ky;, k2;), so clogit will take roughly 10 times longer
to fit a model with 10: 10 matching than one with 1:10 matching. But clogit is fast, so computation
time becomes an issue only when min(ky;, k2;) is around 100 or more. See Methods and formulas
for details.

a

Matched case—control data

Here we give a more detailed example of matched case—control data.
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> Example 2

Hosmer and Lemeshow (2000, 25) present data on matched pairs of infants, each pair having
one with low birthweight and another with regular birthweight. The data are matched on age of the
mother. Several possible maternal exposures are considered: race (three categories), smoking status,
presence of hypertension, presence of uterine irritability, previous preterm delivery, and weight at the
last menstrual period.

. use http://www.stata-press.com/data/r12/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)

. describe

Contains data from http://www.stata-press.com/data/r12/lowbirth2.dta

obs: 112 Applied Logistic Regression,
Hosmer & Lemeshow
vars: 9 26 Apr 2011 09:33
size: 1,456
storage display
variable name type format variable label
pairid byte %8.0g Case-control pair ID
low byte %8.0g Baby has low birthweight
age byte 78.0g Age of mother
lwt int %8.0g Mother’s last menstrual weight
smoke byte %8.0g Mother smoked during pregnancy
ptd byte %8.0g Mother had previous preterm baby
ht byte %8.0g Mother has hypertension
ui byte %8.0g Uterine irritability
race float %9.0g race of mother: 1=white, 2=black,
3=other
Sorted by:

We list the case—control indicator variable, low; the match identifier variable, pairid; and two of
the covariates, 1wt and smoke, for the first 10 observations.

. list low lwt smoke pairid in 1/10

low 1wt smoke  pairid
1. 0 135 0 1
2. 1 101 1 1
3. 0 98 0 2
4. 1 115 0 2
5. 0 95 0 3
6. 1 130 0 3
7. 0 103 0 4
8. 1 130 1 4
9. 0 122 1 5
10. 1 110 1 5

We fit a conditional logistic model of low birthweight on mother’s weight, race, smoking behavior,

and history.
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. clogit low lwt smoke ptd ht ui i.race, group(pairid) nolog

Conditional (fixed-effects) logistic regression Number of obs 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005
Log likelihood = -25.794271 Pseudo R2 0.3355
low Coef.  Std. Err. z P>|z| [95% Conf. Intervall
1wt -.0183757  .0100806 -1.82 0.068 -.0381333 .0013819
smoke 1.400656  .6278396 2.23 0.026 .1701131 2.631199
ptd 1.808009  .7886502 2.29 0.022 .2622828 3.353735
ht 2.361152  1.086128 2.17  0.030 .2323796 4.489924
ui 1.401929  .6961585 2.01 0.044 .0374836 2.766375
race
2 .5713643 .689645 0.83  0.407 -.7803149 1.923044
3 -.0253148  .6992044 -0.04 0.971 -1.39573 1.345101

We might prefer to see results presented as odds ratios. We could have specified the or option when
we first fit the model, or we can now redisplay results and specify or:

. clogit, or

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005
Log likelihood = -25.794271 Pseudo R2 0.3355
low | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
1wt .9817921 .009897 -1.82 0.068 .9625847 1.001383
smoke 4.057862  2.547686 2.23 0.026 1.185439 13.89042
ptd 6.098293 4.80942 2.29 0.022 1.299894 28.60938
ht 10.60316  11.51639 2.17 0.030 1.261599 89.11467
ui 4.06303 2.828513 2.01 0.044 1.038195 15.90088
race
2 1.770681  1.221141 0.83 0.407 .4582617 6.84175
3 .975003 .6817263 -0.04 0.971 .2476522 3.838573

Smoking, previous preterm delivery, hypertension, uterine irritability, and possibly the mother’s
weight all contribute to low birthweight. 2.race (mother black) and 3.race (mother other) are
statistically insignificant when compared with the 1.race (mother white) omitted group, although
the 2.race effect is large. We can test the joint statistical significance of 2.race and 3.race by

using test:

. test 2.race 3.race

(1) [lowl2.race =0
( 2) [lowl]3.race =0
chi2( 2) =

Prob > chi2 =

0.88
0.6436

For a more complete description of test, see [R] test. test presents results in coefficients rather
than odds ratios. Jointly testing that the coefficients on 2.race and 3.race are 0 is equivalent to
jointly testing that the odds ratios are 1.
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Here one case was matched to one control, that is, 1:1 matching. From clogit’s point of view,
that was not important—Fk; cases could have been matched to ko controls (k : ko matching), and
we would have fit the model in the same way. Furthermore, the matching can change from group
to group, which we have denoted as ky; : ko; matching, where ¢ denotes the group. clogit does
not care. To fit the conditional logistic regression model, we specified the group (varname) option,
group(pairid). The case and control are stored in separate observations. clogit knew that they
were linked (in the same group) because the related observations share the same value of pairid.

d

Q Technical note

clogit provides a way to extend McNemar’s test to multiple controls per case (1:ke; matching)
and to multiple controls matched with multiple cases (k1;: ko; matching).

In Stata, McNemar’s test is calculated by the mcc command; see [ST] epitab. The mcc command,
however, requires that the matched case and control appear in one observation, so the data will need to
be manipulated from 1 to 2 observations per stratum before using clogit. Alternatively, if you begin
with clogit’s 2-observations-per-group organization, you will have to change it to 1 observation
per group if you wish to use mcc. In either case, reshape provides an easy way to change the
organization of the data. We will demonstrate its use below, but we direct you to [D] reshape for a
more thorough discussion.

In the example above, we used clogit to analyze the relationship between low birthweight and
various characteristics of the mother. Assume that we now want to assess the relationship between
low birthweight and smoking, ignoring the mother’s other characteristics. Using clogit, we obtain
the following results:

. clogit low smoke, group(pairid) or

Iteration O: log likelihood = -35.425931
Iteration 1: log likelihood = -35.419283
Iteration 2: log likelihood = -35.419282

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(1) = 6.79

Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875
low | 0Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

smoke 2.75 1.135369 2.45 0.014 1.224347 6.176763

Let’s compare our estimated odds ratio and 95% confidence interval with that produced by mcc.
We begin by reshaping the data:

. keep low smoke pairid

. reshape wide smoke, i(pairid) j(low O 1)

Data long -> wide
Number of obs. 112 -> 56
Number of variables 3 -> 3
j variable (2 values) low -> (dropped)

xij variables:
smoke -> smokeO smokel
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We now have the variables smokeO (formed from smoke and low = 0), recording 1 if the control
mother smoked and O otherwise; and smokel (formed from smoke and low = 1), recording 1 if the
case mother smoked and O otherwise. We can now use mcc:

. mcc smokel smokeO

Controls
Cases Exposed  Unexposed Total
Exposed 8 22 30
Unexposed 8 18 26
Total 16 40 56
McNemar’s chi2(1) = 6.53 Prob > chi2 = 0.0106
Exact McNemar significance probability = 0.0161
Proportion with factor
Cases .5357143
Controls .2857143 [95% Conf. Intervall
difference .25 .0519726 .4480274
ratio 1.875 1.148685  3.060565
rel. diff. .35 .1336258 .5663742
odds ratio 2.75 1.179154 7.143667 (exact)

Both methods estimated the same odds ratio, and the 95% confidence intervals are similar. clogit
produced a confidence interval of [1.22,6.18], whereas mcc produced a confidence interval of
[1.18,7.14].

Q

Use of weights

With clogit, weights apply to groups as a whole, not to individual observations. For example,
if there is a group in your dataset with a frequency weight of 3, there are a total of three groups
in your sample with the same values of the dependent and independent variables as this one group.
Weights must have the same value for all observations belonging to the same group; otherwise, an
error message will be displayed.

> Example 3

We use the example from the above discussion of the mcc command. Here we have a total of 56
matched case—control groups, each with one case matched to one control. We had 8 matched pairs
in which both the case and the control are exposed, 22 pairs in which the case is exposed and the
control is unexposed, 8 pairs in which the case is unexposed and the control is exposed, and 18 pairs
in which they are both unexposed.

With weights, it is easy to enter these data into Stata and run clogit.
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. clear

. input id case exposed weight

id case exposed weight

1.1118
2.1018
3. 21122
4. 200 22
5. 3108
6. 3018
7. 410 18
8. 400 18
9. end

clogit case exposed [w=weightl], group(id) or
(frequency weights assumed)

Iteration 0: log likelihood = -35.425931

Iteration 1: log likelihood = -35.419283
Iteration 2: log likelihood = -35.419282

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(1) = 6.79

Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875
case | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

exposed 2.75 1.135369 2.45 0.014 1.224347 6.176763

Fixed-effects logit

The fixed-effects logit model can be written as
Pr(yi = 1| xi) = Foi +xi8)
where F' is the cumulative logistic distribution

__exp(2)
Fz) = 1+ exp(z)

i = 1,2,...,n denotes the independent units (called “groups” by clogit), and t = 1,2,...,T;
denotes the observations for the ith unit (group).

Fitting this model by using a full maximum-likelihood approach leads to difficulties, however.
When T; is fixed, the maximum likelihood estimates for «; and 3 are inconsistent (Andersen 1970;
Chamberlain 1980). This difficulty can be circumvented by looking at the probability of y; =
(Yi1s - - -, yiT,) conditional on ZtT;l yi¢. This conditional probability does not involve the «;, so they
are never estimated when the resulting conditional likelihood is used. See Hamerle and Ronning (1995)
for a succinct and lucid development. See Methods and formulas for the estimation equation.
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> Example 4

We are studying unionization of women in the United States by using the union dataset; see
[XT] xt. We fit the fixed-effects logit model:

. use http://www.stata-press.com/data/r12/union, clear

(NLS Women 14-24 in 1968)

. clogit union age grade not_smsa south black, group(idcode)
note: multiple positive outcomes within groups encountered.
note: 2744 groups (14165 obs) dropped because of all positive or

all negative outcomes

note: black omitted because of no within-group variance.

Iteration O: log likeliho
Iteration 1: log likeliho
Iteration 2: log likeliho
Iteration 3: log likeliho

od = -4521.3385
od = -4516.1404
od = -4516.1385

od = -4516.1385

Conditional (fixed-effects) logistic regression Number of obs = 12035
LR chi2(4) = 68.09
Prob > chi2 = 0.0000
Log likelihood = -4516.1385 Pseudo R2 = 0.0075
union Coef . Std. Err. z P>|z| [95% Conf. Intervall
age .0170301 .004146 4.11  0.000 .0089042 .0251561
grade .0853572 .0418781 2.04 0.042 .0032777 .1674368
not_smsa .0083678 .1127963 0.07 0.941 -.2127088 .2294445
south -.748023 .1251752 -5.98 0.000 -.9933619  -.5026842

black 0 (omitted)

We received three messages at the top of the output. The first one, “multiple positive outcomes within
groups encountered”, we expected. Our data do indeed have multiple positive outcomes (union = 1)

in many groups. (Here a group consists of all the observations for a particular individual.)

The second message tells us that 2,744 groups were “dropped” by clogit. When either union = 0
or union = 1 for all observations for an individual, this individual’s contribution to the log-likelihood
is zero. Although these are perfectly valid observations in every sense, they have no effect on the
estimation, so they are not included in the total “Number of obs”. Hence, the reported “Number of
obs” gives the effective sample size of the estimation. Here it is 12,035 observations—only 46% of

the total 26,200.

We can easily check that there are indeed 2,744 groups with union either all 0 or all 1. We will
generate a variable that contains the fraction of observations for each individual who has union = 1.
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. by idcode, sort: generate fraction = sum(union)/sum(union < .)

. by idcode: replace fraction = . if _n < _N
(21766 real changes made, 21766 to missing)

. tabulate fraction

fraction Freq. Percent Cum.

0 2,481 55.95 55.95
.0833333 30 0.68 56.63
.0909091 33 0.74 57.37

.1 53 1.20 58.57

(output omitted )

.9 10 0.23 93.59
.9090909 11 0.25 93.84
.9166667 10 0.23 94.07

1 263 5.93 100.00

Total 4,434 100.00

Because 2481 + 263 = 2744, we confirm what clogit did.

The third warning message from clogit said “black omitted because of no within-group variance”.
Obviously, race stays constant for an individual across time. Any such variables are collinear with
the «; (that is, the fixed effects), and just as the «; drop out of the conditional likelihood, so do
all variables that are unchanging within groups. Thus they cannot be estimated with the conditional
fixed-effects model.

There are several other estimators implemented in Stata that we could use with these data:

cloglog ... , vce(cluster idcode)

logit ... , vce(cluster idcode)

probit ... , vce(cluster idcode)

scobit ... , vce(cluster idcode)

xtcloglog ...

xtgee ... , family(binomial) link(logit) corr(exchangeable)
xtlogit ...

xtprobit ...

See [R] cloglog, [R] logit, [R] probit, [R] scobit, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit, and
[XT] xtprobit for details.
d
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Saved results

clogit saves the following in e():

Scalars
e(N) number of observations
e(N_drop) number of observations dropped because of all positive or all negative outcomes
e (N_group_drop) number of groups dropped because of all positive or all negative outcomes
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(r2_p) pseudo-R-squared
e(11) log likelihood
e(11-0) log likelihood, constant-only model
e(N_clust) number of clusters
e(chi2) X2
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) clogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(group) name of group() variable
e(multiple) multiple if multiple positive outcomes within group
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1l method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced

e (asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(V) variance—covariance matrix of the estimators
e (V_modelbased) model-based variance
e(gradient) gradient vector
Functions
e(sample) marks estimation sample

Methods and formulas
clogit is implemented as an ado-file.

Breslow and Day (1980, 247-279), Collett (2003, 251-267), and Hosmer and Lemeshow (2000,
223-259) provide a biostatistical point of view on conditional logistic regression. Hamerle and
Ronning (1995) give a succinct and lucid review of fixed-effects logit; Chamberlain (1980) is a
standard reference for this model. Greene (2012, chap. 17) provides a straightforward textbook
description of conditional logistic regression from an economist’s point of view, as well as a brief
description of choice models.

Let ¢ = 1,2,...,n denote the groups and let t = 1,2,...,T; denote the observations for the ith
group. Let y;; be the dependent variable taking on values 0 or 1. Let y; = (y:1,- - -, yiTl) be the
outcomes for the ¢th group as a whole. Let x;; be a row vector of covariates. Let

T

ki; = Z Yit

t=1

be the observed number of ones for the dependent variable in the ¢th group. Biostatisticians would
say that there are ki; cases matched to ko; = T; — kq1; controls in the ith group.

We consider the probability of a possible value of y; conditional on ZtT:l Yit = k1; (Hamerle
and Ronning 1995, eq. 8.33; Hosmer and Lemeshow 2000, eq. 7.4),

exXp (Zthl yz‘tXitﬂ)

Pr(y; | 00 yie = kui) = .
( = ' ) Zd,;eSi eXp(Zzll ditXitB)

where d;; is equal to 0 or 1 with Z?;l di+ = k15, and S; is the set of all possible combinations of
ki1, ones and ky; zeros. Clearly, there are ( kT l) such combinations, but we need not count all these

. . . 14 . .
combinations to compute the denominator of the above equation. It can be computed recursively.

Denote the denominator by
T;
[T ki) = ) exp <Z ditxitﬂ)
d;eS; t=1

Consider, computationally, how f; changes as we go from a total of 1 observation in the group to 2
observations to 3, etc. Doing this, we derive the recursive formula

fi(T’k) = fZ(T - 17k) + fZ(T - Lk - 1) eXp("iTﬁ)

where we define f;(T, k) =0 if T < k and f;(T,0) = 1.
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The conditional log-likelihood is

n T;
L =3"3S " yaxaB — log fi(Th, k)

i=1 t=1

The derivatives of the conditional log-likelihood can also be computed recursively by taking derivatives
of the recursive formula for f;.

Computation time is roughly proportional to

P> > T; min(kyi, ko)

=1

where p is the number of independent variables in the model. If min(ky;, k2;) is small, computation
time is not an issue. But if it is large—say, 100 or more—patience may be required.

If T; is large for all groups, the bias of the unconditional fixed-effects estimator is not a concern,
and we can confidently use logit with an indicator variable for each group (provided, of course,
that the number of groups does not exceed matsize; see [R] matsize).

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] _robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce (robust) is equivalent to specifying
vce(cluster groupvar), where groupvar is the variable for the matched groups.

clogit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see

[R] clogit postestimation — Postestimation tools for clogit

[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model
[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[R] scobit — Skewed logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands



Title

clogit postestimation — Postestimation tools for clogit

Description

The following standard postestimation commands are available after clogit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estat (svy)  postestimation statistics for survey data

estimates cataloging estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

linktest link test for model specification

1rtest! likelihood-ratio test

margins? marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1

lrtest is not appropriate with svy estimation results.

2 The default prediction statistic pc1l cannot be correctly handled by margins; however, margins can be used
after clogit with options predict (pu0) and predict(xb).

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

285
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Syntax for predict

predict [type] newvar [lf] [in] [, statistic nooffset]

statistic Description
Main
pcl probability of a positive outcome; the default
pu0 probability of a positive outcome, assuming fixed effect is zero
xb linear prediction
stdp standard error of the linear prediction
*dbeta Delta-3 influence statistic
*dx2 Delta-y? lack-of-fit statistic
*gdbeta Delta-3 influence statistic for each group
*gdx2 Delta-y? lack-of-fit statistic for each group
*hat Hosmer and Lemeshow leverage
*residuals Pearson residuals
*rstandard standardized Pearson residuals
score first derivative of the log likelihood with respect to x;3
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

Starred statistics are available for multiple controls per case-matching design only. They are not available if vce (robust),
vce(cluster clustvar), or pweights were specified with clogit.

dbeta, dx2, gdbeta, gdx2, hat, and rstandard are not available if constraints() was specified with clogit.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

Main

pcl, the default, calculates the probability of a positive outcome conditional on one positive outcome
within group.

puO calculates the probability of a positive outcome, assuming that the fixed effect is zero.
xb calculates the linear prediction.
stdp calculates the standard error of the linear prediction.

dbeta calculates the Delta-3 influence statistic, a standardized measure of the difference in the
coefficient vector that is due to deletion of the observation.

dx2 calculates the Delta-x? influence statistic, reflecting the decrease in the Pearson chi-squared that
is due to deletion of the observation.

gdbeta calculates the approximation to the Pregibon stratum-specific Delta-3 influence statistic, a
standardized measure of the difference in the coefficient vector that is due to deletion of the entire
stratum.
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gdx2 calculates the approximation to the Pregibon stratum-specific Delta-y? influence statistic,
reflecting the decrease in the Pearson chi-squared that is due to deletion of the entire stratum.

hat calculates the Hosmer and Lemeshow leverage or the diagonal element of the hat matrix.
residuals calculates the Pearson residuals.

rstandard calculates the standardized Pearson residuals.

score calculates the equation-level score, Oln L/9(x;:3).

nooffset is relevant only if you specified of fset (varname) for clogit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x;b
rather than as x;b + offset;. This option cannot be specified with dbeta, dx2, gdbeta, gdx2,
hat, and rstandard.

Remarks

predict may be used after clogit to obtain predicted values of the index x;;3. Predicted
probabilities for conditional logistic regression must be interpreted carefully. Probabilities are estimated
for each group as a whole, not for individual observations. Furthermore, the probabilities are conditional
on the number of positive outcomes in the group (that is, the number of cases and the number of
controls), or it is assumed that the fixed effect is zero. predict may also be used to obtain influence
and lack of fit statistics for an individual observation and for the whole group, to compute Pearson,
standardized Pearson residuals, and leverage values.

predict may be used for both within-sample and out-of-sample predictions.

> Example 1

Suppose that we have 1:ko; matched data and that we have previously fit the following model:

. use http://www.stata-press.com/data/ri12/clogitid

. clogit y x1 x2, group(id)
(output omitted )

To obtain the predicted values of the index, we could type predict idx, xb to create a new
variable called idx. From idx, we could then calculate the predicted probabilities. Easier, however,
would be to type

. predict phat
(option pcl assumed; probability of success given one success within group)

phat would then contain the predicted probabilities.

As noted previously, the predicted probabilities are really predicted probabilities for the group as
a whole (that is, they are the predicted probability of observing y;; = 1 and y;;» = 0 for all t # t).
Thus, if we want to obtain the predicted probabilities for the estimation sample, it is important that,
when we make the calculation, predictions be restricted to the same sample on which we estimated
the data. We cannot predict the probabilities and then just keep the relevant ones because the entire
sample determines each probability. Thus, assuming that we are not attempting to make out-of-sample
predictions, we type

. predict phat2 if e(sample)
(option pcl assumed; probability of success given one success within group) 4
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Recall that 4 = 1,...,n denote the groups and ¢t = 1,...,T; denote the observations for the ¢th
group.
predict produces probabilities of a positive outcome within group conditional on there being one
positive outcome (pcl),
(yzt =1

or predict calculates the unconditional pu0:

ET: _ ) _ exp(x;03)
T;

Zt:l exp(x;3)

exp(x;:3
Pr(y; =1) = #
1+ exp(x:08)
Let N = 2?21 T} denote the total number of observations, p denote the number of covariates,
and @-t denote the conditional predicted probabilities of a positive outcome (pcl).

For the multiple control per case (1 : ko;) matching, Hosmer and Lemeshow (2000, 248-251)
propose the following diagnostics:

The Pearson residual is N
(yit — 0ir)

o~

Oit

Tit =

The leverage (hat) value is defined as
hit = 0uX5(XTUX) 1%,

where X;; = X;¢ — Z]T=1 x;;0;; is the 1 X p row vector of centered by a weighted stratum-specific
mean covariate values, Uy = diag{60;;}, and the rows of Xy p are composed of X;¢ values.
The standardized Pearson residual is
Tt
1— hy

Tsit =

The lack of fit and influence diagnostics for an individual observation are (respectively) computed
as

AX?t = r?it
and
hzt
1—h;

The lack of fit and influence diagnostics for the groups are the group-specific totals of the respective
individual diagnostics shown above.

ABi = A2,
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Reference
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Also see
[R] clogit — Conditional (fixed-effects) logistic regression

[U] 20 Estimation and postestimation commands


http://www.stata.com/bookstore/alr.html

Title

cloglog — Complementary log-log regression

Syntax

cloglog depvar [indepvars] [lf] [m] [weight] [, options]

options Description
Model
noconstant suppress constant term
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints (constraints) apply specified linear constraints
collinear keep collinear variables
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
eform report exponentiated coefficients
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells
Maximization
maximize_options control the maximization process; seldom used
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, jackknife, mi estimate, nestreg, rolling, statsby, stepwise, and svy are allowed; see
[U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Binary outcomes > Complementary log-log regression
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Description

cloglog fits maximum-likelihood complementary log-log models.
See [R] logistic for a list of related estimation commands.
Options
Model

noconstant, offset (varname); see [R] estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

constraints (constraints), collinear; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

Reporting

level (#); see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fmt), pformat (% fmt), sformat (% fimt), and nolstretch; see [R] estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [@]Qg, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),

nrtolerance(#), nonrtolerance, and from(init_specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following option is available with cloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Remarks are presented under the following headings:

Introduction to complementary log-log regression
Robust standard errors
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Introduction to complementary log-log regression

cloglog fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or,
more precisely, coded as 0 and not 0).

> Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.
We wish to fit a model explaining whether a car is foreign based on its weight and mileage. Here is
an overview of our data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign
. describe

Contains data from http://www.stata-press.com/data/ri2/auto.dta

obs: 74 1978 Automobile Data
vars: 4 13 Apr 2011 17:45
size: 1,702 (_dta has notes)
storage display value
variable name  type format label variable label
make stri8 7-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (1bs.)
foreign byte %8.0g origin Car type

Sorted by: foreign
Note: dataset has changed since last saved

. inspect foreign

foreign: Car type Number of Observations

Total Integers Nonintegers

# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

6 1 74

(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, O and 1. The value O denotes a domestic car,
and 1 denotes a foreign car.

The model that we wish to fit is
Pr(foreign = 1) = F(fy + Bi1weight + SBompg)

where F(z) = 1 —exp { — exp(2)}.
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To fit this model, we type

. cloglog foreign weight mpg

Iteration O: log likelihood = -34.054593
Iteration 1: log likelihood = -27.869915
Iteration 2: log likelihood = -27.742997
Iteration 3: log likelihood = -27.742769
Iteration 4: log likelihood = -27.742769

Complementary log-log regression Number of obs = 74
Zero outcomes = 52

Nonzero outcomes = 22

LR chi2(2) = 34.58

Log likelihood = -27.742769 Prob > chi2 = 0.0000
foreign Coef. Std. Err. z P>|z| [95% Conf. Intervall
weight -.0029153 .0006974 -4.18 0.000 -.0042823 -.0015483

mpg -.1422911 .076387 -1.86 0.062 -.2920069 .0074247

_cons 10.09694  3.351841 3.01 0.003 3.527448 16.66642

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are
also less likely to be foreign, at least when holding the weight of the car constant.

See [R] maximize for an explanation of the output.

Q Technical note

Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except
missing) as positive outcomes (successes). Thus, if your dependent variable takes on the values 0 and
1, O is interpreted as failure and 1 as success. If your dependent variable takes on the values O, 1,
and 2, 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type cloglog y x, Stata fits the
model

Pr(y; #0 | x,) =1— exp{—exp(xjﬁ)}

Robust standard errors

If you specify the vce (robust) option, cloglog reports robust standard errors, as described in
[U] 20.20 Obtaining robust variance estimates. For the model of foreign on weight and mpg, the
robust calculation increases the standard error of the coefficient on mpg by 44%:
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. cloglog foreign weight mpg, vce(robust)

Iteration O log pseudolikelihood = -34.054593
Iteration 1: log pseudolikelihood = -27.869915
Iteration 2: log pseudolikelihood = -27.742997
Iteration 3: log pseudolikelihood = -27.742769

Iteration 4: log pseudolikelihood = -27.742769

Complementary log-log regression Number of obs = 74

Zero outcomes = 52

Nonzero outcomes = 22

Wald chi2(2) = 29.74

Log pseudolikelihood = -27.742769 Prob > chi2 = 0.0000
Robust

foreign Coef. Std. Err. P P>|z| [95% Conf. Intervall

weight -.0029153 .0007484 -3.90 0.000 -.0043822 -.0014484

mpg -.1422911 .1102466 -1.29 0.197 -.3583704 .0737882

_cons 10.09694  4.317305 2.34 0.019 1.635174 18.5587

Without vce (robust), the standard error for the coefficient on mpg was reported to be 0.076, with
a resulting confidence interval of [—0.29,0.01].

The vce(cluster clustvar) option can relax the independence assumption required by the
complementary log-log estimator to being just independence between clusters. To demonstrate this
ability, we will switch to a different dataset.

We are studying unionization of women in the United States by using the union dataset; see
[XT] xt. We fit the following model, ignoring that women are observed an average of 5.9 times each
in this dataset:

. use http://www.stata-press.com/data/r12/union, clear
(NLS Women 14-24 in 1968)

. cloglog union age grade not_smsa south##c.year

Iteration O: log likelihood = -13606.373
Iteration 1: log likelihood = -13540.726
Iteration 2: log likelihood = -13540.607

Iteration 3: log likelihood = -13540.607

Complementary log-log regression Number of obs = 26200

Zero outcomes = 20389

Nonzero outcomes = 5811

LR chi2(6) = 647.24

Log likelihood = -13540.607 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Intervall

age .0185346 .0043616 4.25 0.000 .009986 .0270833

grade . 0452772 .0057125 7.93 0.000 .0340809 .0564736

not_smsa -.1886592 .0317801 -5.94  0.000 -.2509471 -.1263712

1.south -1.422292 .3949381 -3.60 0.000 -2.196356 -.648227

year -.0133007 .0049576 -2.68 0.007 -.0230174 -.0035839
south#c.year

1 .0105659 .0049234 2.15 0.032 .0009161 .0202157

_cons -1.219801 .2952374 -4.13  0.000 -1.798455 -.6411462
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The reported standard errors in this model are probably meaningless. Women are observed repeatedly,
and so the observations are not independent. Looking at the coefficients, we find a large southern
effect against unionization and a different time trend for the south. The vce(cluster clustvar)

option provides a way to fit this model and obtains correct standard errors:

. cloglog union age grade not_smsa south##c.year, vce(cluster id) nolog

Complementary log-log regression Number of obs = 26200
Zero outcomes = 20389
Nonzero outcomes = 5811
Wald chi2(6) = 160.76

Log pseudolikelihood = -13540.607 Prob > chi2 = 0.0000

(std. Err. adjusted for 4434 clusters

in idcode)

Robust
union Coef. Std. Err. z P>|z| [95% Conf. Intervall]
age .0185346 .0084873 2.18 0.029 .0018999 .0351694
grade .0452772 .0125776 3.60 0.000 .0206255 .069929
not_smsa -.1886592 .0642068 -2.94 0.003 -.3145021 -.0628162
1.south -1.422292 .506517 -2.81 0.005 -2.415047 -.4295365
year -.0133007 .0090628 -1.47 0.142 -.0310633 .004462

south#c.year

1 .0105659 .0063175 1.67 0.094 -.0018162 .022948
_cons -1.219801 .5175129 -2.36 0.018 -2.234107 -.2054942

These standard errors are larger than those reported by the inappropriate conventional calculation.
By comparison, another way we could fit this model is with an equal-correlation population-averaged
complementary log-log model:

. xtcloglog union age grade not_smsa south##c.year, pa nolog

GEE population-averaged model Number of obs 26200

Group variable: idcode Number of groups = 4434

Link: cloglog Obs per group: min = 1

Family: binomial avg = 5.9

Correlation: exchangeable max = 12

Wald chi2(6) = 234.66

Scale parameter: 1 Prob > chi2 0.0000

union Coef.  Std. Err. z P>|z| [95% Conf. Intervall

age .01563737 .0081156 1.89 0.058 -.0005326 .03128

grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326

1.south -1.714868 .3384558 -5.07 0.000 -2.378229  -1.051507

year -.01156881 .0084125 -1.38 0.168 -.0280763 .0049001
south#c.year

1 .0149796 .0041687 3.59 0.000 .0068091 .0231501

_cons -1.488278 .4468005 -3.33 0.001 -2.363991  -.6125652

The coefficient estimates are similar, but these standard errors are smaller than those produced by
cloglog, vce(cluster clustvar). This finding is as we would expect. If the within-panel correlation
assumptions are valid, the population-averaged estimator should be more efficient.
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In addition to this estimator, we may use the xtgee command to fit a panel estimator (with
complementary log-log link) and any number of assumptions on the within-idcode correlation.

cloglog, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That
is, it inefficiently sums within cluster for the standard-error calculation rather than attempting to exploit
what might be assumed about the within-cluster correlation (as do the xtgee population-averaged
models).

Saved results

cloglog saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(N_f) number of zero outcomes
e(N_s) number of nonzero outcomes
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model
e(N_clust) number of clusters
e(chi2) x2
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) cloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model x? test
e(vce) veetype specified in vee ()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of ml1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions

e(sample) marks estimation sample
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Methods and formulas
cloglog is implemented as an ado-file.

Complementary log-log analysis (related to the gompit model, so named because of its relationship
to the Gompertz distribution) is an alternative to logit and probit analysis, but it is unlike these other
estimators in that the transformation is not symmetric. Typically, this model is used when the positive
(or negative) outcome is rare.

The log-likelihood function for complementary log-log is

InL = > w; nF(x;b) + 3 w;In{1~ F(x;b)}

jES J¢S

where S is the set of all observations j such that y; # 0, F(z) = 1 — exp { — exp(2)}, and w
denotes the optional weights. InL is maximized as described in [R] maximize.

We can fit a gompit model by reversing the success—failure sense of the dependent variable and
using cloglog.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Maximum likelihood estimators and Methods and formulas. The scores are calculated as u; =

[exp(x;b) exp { — exp(x;b) } /F(x;b)]x; for the positive outcomes and {— exp(x;b)}x; for the
negative outcomes.

cloglog also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see

[R] cloglog postestimation — Postestimation tools for cloglog

[R] clogit — Conditional (fixed-effects) logistic regression

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] scobit — Skewed logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands



Title

cloglog postestimation — Postestimation tools for cloglog

Description

The following postestimation commands are available after cloglog:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat AIC, BIC, VCE, and estimation sample summary

estat (svy)  postestimation statistics for survey data

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear
combinations of coefficients

linktest link test for model specification

1rtest! likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear
combinations of coefficients

predict predictions, residuals, influence statistics, and other diagnostic measures

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

1

lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict [lype] newvar [lf] [in] [ , Sstatistic nooffset]
statistic Description
Main
pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;3

These statistics are available both in and out of sample; type predict ...

if e(sample) ... if wanted only for

the estimation sample.
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Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

pr, the default, calculates the probability of a positive outcome.
xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
score calculates the equation-level score, Oln L/0(x;03).

nooffset is relevant only if you specified of fset (varname) for cloglog. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x;b
rather than as x;b + offset;.

Remarks

Once you have fit a model, you can obtain the predicted probabilities by using the predict
command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. Here we will make only a few comments.

predict without arguments calculates the predicted probability of a positive outcome. With the
xb option, it calculates the linear combination x;b, where x; are the independent variables in the
jth observation and b is the estimated parameter vector.

With the stdp option, predict calculates the standard error of the linear prediction, which is not
adjusted for replicated covariate patterns in the data.

> Example 1

In example 1 in [R] cloglog, we fit the complementary log-log model cloglog foreign weight
mpg. To obtain predicted probabilities,

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. cloglog foreign weight mpg
(output omitted )

. predict p

(option pr assumed; Pr(foreign))

. summarize foreign p

Variable | Obs Mean Std. Dev. Min Max
foreign 74 .2972973 .4601885 0 1
P 74 .2928348 .29732 .0032726 .9446067

Methods and formulas

All postestimation commands listed above are implemented as ado-files.
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Also see
[R] cloglog — Complementary log-log regression

[U] 20 Estimation and postestimation commands



Title

cnsreg — Constrained linear regression

Syntax

cnsreg depvar indepvars [lf] [in] [weight] , constraints(constraints) [Options}

options Description
Model
* constraints (constraints)  apply specified linear constraints
collinear keep collinear variables
noconstant suppress constant term
SE/Robust
vce (veetype) vcetype may be ols, robust, cluster clustvar, bootstrap,

or jackknife

Reporting
level (#) set confidence level; default is 1level (95)
nocnsreport do not display constraints
display_options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells
msel force MSE to be 1
coeflegend display legend instead of statistics

*constraints (constraints) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, statsby, and svy are allowed; see
[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), msel, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, pweights, and iweights are allowed; see [U] 11.1.6 weight.
msel and coeflegend do not appear in the dialog.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu

Statistics > Linear models and related > Constrained linear regression

Description

cnsreg fits constrained linear regression models.
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Options
[ Wodel

constraints (constraints), collinear, noconstant; see [R] estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce_option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

Reporting

level (#); see [R] estimation options.
nocnsreport; see [R] estimation options.

display_options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat (% fint), pformat (% fint), sformat (% fimt), and nolstretch; see [R] estimation options.

The following options are available with cnsreg but are not shown in the dialog box:

msel is used only in programs and ado-files that use cnsreg to fit models other than constrained linear
regression. msel sets the mean squared error to 1, thus forcing the variance—covariance matrix of
the estimators to be (X'DX)~! (see Methods and formulas in [R] regress) and affecting calculated
standard errors. Degrees of freedom for ¢ statistics are calculated as n rather than n — p+ ¢, where
p is the total number of parameters (prior to restrictions and including the constant) and c is the
number of constraints.

msel is not allowed with the svy prefix.

coeflegend; see [R] estimation options.

Remarks

For a discussion of constrained linear regression, see Greene (2012, 121-122); Hill, Griffiths, and
Lim (2011, 231-233); or Davidson and MacKinnon (1993, 17).

> Example 1

In principle, we can obtain constrained linear regression estimates by modifying the list of
independent variables. For instance, if we wanted to fit the model

mpg = (o + (1 price + P2 weight + u
and constrain 31 = (32, we could write
mpg = 3 + B1(price + weight) + u

and run a regression of mpg on price + weight. The estimated coefficient on the sum would be the
constrained estimate of 3; and (2. Using cnsreg, however, is easier:
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. constraint 1 price = weight

. cnsreg mpg price weight, constraint(1)

Constrained linear regression Number of obs = 74
F( 1, 72) = 37.59
Prob > F = 0.0000
Root MSE =  4.722

(1) price - weight =0
mpg Coef.  Std. Err. t P>|t| [95% Conf. Intervall
price -.0009875 .0001611 -6.13  0.000 -.0013086 -.0006664
weight -.0009875 .0001611 -6.13  0.000 -.0013086 -.0006664
_cons 30.36718  1.577958 19.24  0.000 27.22158 33.51278

We define constraints by using the constraint command; see [R] constraint. We fit the model with
cnsreg and specify the constraint number or numbers in the constraints() option.

Just to show that the results above are correct, here is the result of applying the constraint by hand:

. generate x = price + weight

. regress mpg X

Source SS df MS Number of obs = 74
FC 1, 72) = 37.59

Model 838.065767 1 838.065767 Prob > F = 0.0000
Residual 1605.39369 72 22.2971346 R-squared = 0.3430
Adj R-squared = 0.3339

Total 2443.45946 73 33.4720474 Root MSE = 4.722
mpg Coef.  Std. Err. t P>|t| [95% Conf. Intervall

X -.0009875  .0001611 -6.13  0.000 -.0013086 -.0006664

_cons 30.36718  1.577958 19.24  0.000 27.22158 33.51278

> Example 2

Models can be fit subject to multiple simultaneous constraints. We simply define the constraints
and then include the constraint numbers in the constraints() option. For instance, say that we
wish to fit the model

mpg = By + (1 price + (o weight + (3 displ + (4 gear_ratio + (5 foreign+
B¢ length + u
subject to the constraints
B1= P2 = Ps=Ps
Ba=—P5 = /20

(This model, like the one in example 1, is admittedly senseless.) We fit the model by typing

. constraint 1 price=weight
. constraint 2 displ=weight

. constraint 3 length=weight
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. constraint 5 gear_ratio

. constraint 6 gear_ratio

. cnsreg mpg price weight

= -foreign

= _cons/20

displ gear_ratio foreign length, c(1-3,5-6)

Constrained linear regression Number of obs = 74
F(C 2, 72) = 785.20
Prob > F = 0.0000
Root MSE 4.6823
(1) price - weight =0
( 2) - weight + displacement = 0
( 3) - weight + length = 0
( 4) gear_ratio + foreign = 0
( B) gear_ratio - .05 _cons = 0
mpg Coef.  Std. Err. t P>|t] [95% Conf. Intervall
price -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
weight -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
displacement -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
gear_ratio 1.326114 .0687589 19.29 0.000 1.189046 1.463183
foreign -1.326114 .0687589 -19.29 0.000 -1.463183 -1.189046
length -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
_cons 26.52229 1.375178 19.29 0.000 23.78092 29.26365

There are many ways we could have specified the constraints() option (which we abbreviated
c() above). We typed c(1-3,5-6), meaning that we want constraints 1 through 3 and 5 and 6; those
numbers correspond to the constraints we defined. The only reason we did not use the number 4
was to emphasize that constraints do not have to be consecutively numbered. We typed c(1-3,5-6),
but we could have typed c(1,2,3,5,6) or c(1-3,5,6) or c(1-2,3,5,6) or even c(1-6), which
would have worked as long as constraint 4 was not defined. If we had previously defined a constraint
4, then c(1-6) would have included it.

N
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Saved results

cnsreg saves the following in e():

Scalars
e(N) number of observations
e(df_m) model degrees of freedom
e(df_r) residual degrees of freedom
e(F) F statistic
e(rmse) root mean squared error
e(11) log likelihood
e(N_clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) cnsreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. Err.
e(properties) bV
e(predict) program used to implement predict

factor variables fvset as asbalanced
factor variables fvset as asobserved

e (asbalanced)
e(asobserved)

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

cnsreg is implemented as an ado-file.

Let n be the number of observations, p be the total number of parameters (prior to restrictions
and including the constant), and ¢ be the number of constraints. The coefficients are calculated as
b = T{(T'X'WXT) HT'X'Wy — T'’X'WXa')} + a’, where T and a are as defined in
[P] makecns. W = I if no weights are specified. If weights are specified, let v: 1 X n be the
specified weights. If fweight frequency weights are specified, W = diag(v). If aweight analytic
weights are specified, then W = diag[v/(1'v)(1’1)], meaning that the weights are normalized to
sum to the number of observations.

The mean squared error is 52 = (y'Wy —2b’X'Wy +b'X’WXb)/(n — p+c). The variance—
covariance matrix is s>T(T/X'WXT) 1T’
This command supports the Huber/White/sandwich estimator of the variance and its clustered

version using vce (robust) and vce(cluster clustvar), respectively. See [P] _robust, particularly
Introduction and Methods and formulas.

cnsreg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Title

cnsreg postestimation — Postestimation tools for cnsreg

Description
The following postestimation commands are available after cnsreg:
Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients
linktest link test for model specification
lrtest! likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1

lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict

predict [type] newvar [z_’}"] [in] [, statistic]

statistic Description

Main
xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < y; <b)
e(a,b) E(yjla<y; <b)
ystar(a,b)  E(y}), y; = max{a, min(y;,b)}
score equivalent to residuals
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These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (¢ > .) means —oo, and b missing (b > .)
means +00; see [U] 12.2.1 Missing values.

Menu

Statistics > Postestimation > Predictions, residuals, etc.

Options for predict
Main

xb, the default, calculates the linear prediction.
residuals calculates the residuals, that is, y; — x;b.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < x;b + u; < b), the probability that y;|x; would be observed in the
interval (a, b).
a and b may be specified as numbers or variable names; /b and ub are variable names;
pr(20,30) calculates Pr(20 < x;b + u; < 30);
pr (b,ub) calculates Pr(ib < x;b + u; < ub); and
pr(20,ub) calculates Pr(20 < x;b 4+ u; < ub).

a missing (a > .) means —oo; pr(.,30) calculates Pr(—oco < x;b + u; < 30);
pr(Ib,30) calculates Pr(—oo < x;b 4+ u; < 30) in observations for which Ib > .
and calculates Pr(lb < x;b + u; < 30) elsewhere.

b missing (b > .) means +o00; pr(20,.) calculates Pr(+oo > x,;b + u; > 20);
pr(20,ub) calculates Pr(4+00 > x;b + u; > 20) in observations for which ub > .
and calculates Pr(20 < x;b + u; < ub) elsewhere.

e(a,b) calculates E(x;b + u;|a < x;b+ u; < b), the expected value of y;|x; conditional on
yj|x; being in the interval (a,b), meaning that y;|x; is truncated. a and b are specified as they
are for pr().

ystar(a,b) calculates E(yj) where yi = a if x;b +u; < a, yi = b if x;b+u; > b, and
y; = X;b+u; otherwise, meaning that y; is censored. a and b are specified as they are for pr ().

score is equivalent to residuals for linear regression models.

Methods and formulas

All postestimation commands listed above are implemented as ado-files.
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Also see

[R] cnsreg — Constrained linear regression

[U] 20 Estimation and postestimation commands



Title

constraint — Define and list constraints

Syntax

Define constraints

constraint [@fine] # [exp=exp|coeﬂist]

List constraints

constraint dir [numlist|_all]

constraint list [numlist\_all}

Drop constraints

constraint drop { numlist \ _all }

Programmer’s commands

constraint get #

constraint free

where coeflist is as defined in [R] test and # is restricted to the range 1-1,999, inclusive.

Menu

Statistics > Other > Manage constraints

Description

constraint defines, lists, and drops linear constraints. Constraints are for use by models that
allow constrained estimation.

Constraints are defined by the constraint command. The currently defined constraints can be
listed by either constraint list or constraint dir; both do the same thing. Existing constraints
can be eliminated by constraint drop.

constraint get and constraint free are programmer’s commands. constraint get returns
the contents of the specified constraint in macro r(contents) and returns in scalar r(defined) 0
or 1—1 being returned if the constraint was defined. constraint free returns the number of a free
(unused) constraint in macro r (free).

311



312 constraint — Define and list constraints

Remarks

Using constraints is discussed in [R] cnsreg, [R] mlogit, and [R] reg3; this entry is concerned only
with practical aspects of defining and manipulating constraints.

> Example 1

Constraints are numbered from 1 to 1,999, and we assign the number when we define the constraint:
. use http://www.stata-press.com/data/r12/sysdsni
(Health insurance data)

. constraint 2 [Indemnity]2.site = 0

The currently defined constraints can be listed by constraint list:

. constraint list
2: [indemnity]2.site = 0

constraint drop drops constraints:

. constraint drop 2

. constraint list

The empty list after constraint list indicates that no constraints are defined. Below we demonstrate
the various syntaxes allowed by constraint:

. constraint 1 [Indemnity]

. constraint 10 [Indemnity]: 1.site 2.site

. constraint 11 [Indemnity]: 3.site

. constraint 21 [Prepaid=Uninsure]: nonwhite
. constraint 30 [Prepaid]

. constraint 31 [Insure]

. constraint list
1: [Indemnity]
10: [Indemnityl: 1.site 2.site
11: [Indemnity]: 3.site
21: [Prepaid=Uninsure]: nonwhite
30: [Prepaid]
31: [Insure]
. constraint drop 21-25, 31

. constraint list
1: [Indemnity]
10: [Indemnity]: 1.site 2.site
11: [Indemnity]: 3.site
30: [Prepaid]
. constraint drop _all

. constraint list

Q Technical note

The constraint command does not check the syntax of the constraint itself because a constraint
can be interpreted only in the context of a model. Thus constraint is willing to define constraints
that later will not make sense. Any errors in the constraints will be detected and mentioned at the
time of estimation.
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[R] cnsreg — Constrained linear regression
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Title

contrast — Contrasts and linear hypothesis tests after estimation

Syntax

contrast termlist [, options]

where termlist is a list of factor variables or interactions that appear in the current estimation results.
The variables may be typed with or without contrast operators, and you may use any factor-variable

syntax:

contrast sex group sex#group

contrast r.sex

See the operators (op.) table below for the list of contrast operators.

options Description
Main
overall add a joint hypothesis test for all specified contrasts
asobserved treat all factor variables as observed
lincom treat user-defined contrasts as linear combinations
Equations
equation(egspec) perform contrasts in termlist for equation egspec
atequations perform contrasts in termlist within each equation
Advanced
emptycells (empspec) treatment of empty cells for balanced factors
noestimcheck suppress estimability checks
Reporting
level (#) confidence level; default is 1level (95)
mcompare (method) adjust for multiple comparisons; default is mcompare (noadjust)
noeffects suppress table of individual contrasts
cieffects show effects table with confidence intervals
pveffects show effects table with p-values
effects show effects table with confidence intervals and p-values
nowald suppress table of Wald tests
noatlevels report only the overall Wald test for terms that use the within @
or nested | operator
nosvyadjust compute unadjusted Wald tests for survey results
sort sort the individual contrast values in each term
post post contrasts and their VCEs as estimation results

display_options
eform_option

control column formats, row spacing, and line width
report exponentiated contrasts

314
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Term

Description

Main effects
A
r.A

Interaction effects
A#B
A#B#C
r.A#g.B

joint test of the main effects of A
individual contrasts that decompose A using r.

joint test of the two-way interaction effects of A and B
joint test of the three-way interaction effects of A, B, and C
individual contrasts for each interaction of A and B defined by r. and g.

Partial interaction effects

r.A#B
A#r.B

Simple effects
AG@B
A@B#C
r.AGB
r.AQB#C

joint tests of interactions of A and B within each contrast defined by r.A
joint tests of interactions of A and B within each contrast defined by r.B

joint tests of the effects of A within each level of B

joint tests of the effects of A within each combination of the levels of B and C
individual contrasts of A that decompose A@B using r.

individual contrasts of A that decompose A@B#C using r.

Other conditional effects

A#B@C
A#BQC#D

r.A#g.B@C

Nested effects
A|B
A|B#C
A#B|C
A#B|C#D

r.A|B
r.A|B#C
r.A#g.B|C

Slope effects
A#tc.x
A#tc.x#c.y
A#B#c.x
A#B#c.x#c.y

r.A#c.x

Denominators
... /[ term2
./

joint tests of the interaction effects of A and B within each level of C

joint tests of the interaction effects of A and B within each combination of
the levels of C and D

individual contrasts for each interaction of A and B that decompose A#B@C
using r. and g.

joint tests of the effects of A nested in each level of B
joint tests of the effects of A nested in each combination of the levels of B and C
joint tests of the interaction effects of A and B nested in each level of C
joint tests of the interaction effects of A and B nested in each
combination of the levels of C and D
individual contrasts of A that decompose A|B using r.
individual contrasts of A that decompose A|B#C using r.
individual contrasts for each interaction of A and B defined by r. and g.
nested in each level of C

joint test of the effects of A on the slopes of x

joint test of the effects of A on the slopes of the product (interaction) of x and y

joint test of the interaction effects of A and B on the slopes of x

joint test of the interaction effects of A and B on the slopes of the product
(interaction) of x and y

individual contrasts of A’s effects on the slopes of x using r.

use term2 as the denominator in the F' tests of the preceding terms
use the residual as the denominator in the F' tests of the preceding terms
(the default if no other /s are specified)
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A, B, C, and D represent any factor variable in the current estimation results.

x and y represent any continuous variable in the current estimation results.

r. and g. represent any contrast operator. See the table below.

c. specifies that a variable be treated as continuous; see [U] 11.4.3 Factor variables.

Operators are allowed on any factor variable that does not appear to the right of @ or |. Operators
decompose the effects of the associated factor variable into one-degree-of-freedom effects (contrasts).

Higher-level interactions are allowed anywhere an interaction operator (#) appears in the table.
Time-series operators are allowed if they were used in the estimation.

_eqns designates the equations in manova, mlogit, mprobit, and mvreg and can be specified
anywhere a factor variable appears.

/ is allowed only after anova, cnsreg, manova, mvreg, or regress.

operators (op.) Description

r. differences from a reference (base) level; the default

a. differences from the next level (adjacent contrasts)

ar. differences from the previous level (reverse adjacent contrasts)

As-balanced operators

g. differences from the balanced grand mean

h. differences from the balanced mean of subsequent levels (Helmert contrasts)

j. differences from the balanced mean of previous levels (reverse Helmert
contrasts)

pP- orthogonal polynomial in the level values

q. orthogonal polynomial in the level sequence

As-observed operators

gw. differences from the observation-weighted grand mean

hw. differences from the observation-weighted mean of subsequent levels
jw. differences from the observation-weighted mean of previous levels
pw. observation-weighted orthogonal polynomial in the level values

qw. observation-weighted orthogonal polynomial in the level sequence

One or more individual contrasts may be selected by using the op#. or op(numlist) . syntax. For
example, a3.A selects the adjacent contrast for level 3 of A, and p(1/2) .B selects the linear and
quadratic effects of B. Also see Orthogonal polynomial contrasts and Beyond linear models.

Custom contrasts Description
{A numlist} user-defined contrast on the levels of factor A
{A#B numlist} user-defined contrast on the levels of the interaction between A and B

Custom contrasts may be part of a term, such as {A numlist}#B, {A numlist}@B, {A numlist}|B, {A#B
numlist}, and {A numlist}#{B numlist}. The same is true of higher-order custom contrasts, such
as {A#B numlist}@C, {A#B numlist}#r.C, and {A#B numlist}#c.x.

Higher-order interactions with at most eight factor variables are allowed with custom contrasts.
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method Description
noadjust do not adjust for multiple comparisons; the default
bonferroni [adjustall] Bonferroni’s method; adjust across all terms
sidak [adjustall] Sidak’s method; adjust across all terms
scheffe Scheffé’s method

Menu

Statistics > Postestimation > Contrasts

Description

contrast tests linear hypotheses and forms contrasts involving factor variables and their interactions
from the most recently fit model. The tests include ANOVA-style tests of main effects, simple effects,
interactions, and nested effects. contrast can use named contrasts to decompose these effects into
comparisons against reference categories, comparisons of adjacent levels, comparisons against the
grand mean, orthogonal polynomials, and such. Custom contrasts may also be specified.

contrast can be used with svy estimation results; see [SVY] svy postestimation.

Contrasts can also be computed for margins of linear and nonlinear responses; see [R] margins,
contrast.

Options

Main

overall specifies that a joint hypothesis test over all terms be performed.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed in the
estimation sample. The default is to treat all factor covariates as though there were an equal number
of observations in each level.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require
that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

Equations

equation(egspec) specifies the equation from which contrasts are to be computed. The default is
to compute contrasts from the first equation.

atequations specifies that the contrasts be computed within each equation.

Advanced

emptycells (empspec) specifies how empty cells are handled in interactions involving factor variables
that are being treated as balanced.

emptycells(strict) is the default; it specifies that contrasts involving empty cells be treated
as not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the contrast estimable but changes its interpretation.
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noestimcheck specifies that contrast not check for estimability. By default, the requested contrasts
are checked and those found not estimable are reported as such. Nonestimability is usually caused
by empty cells. If noestimcheck is specified, estimates are computed in the usual way and
reported even though the resulting estimates are manipulable, which is to say they can differ across
equivalent models having different parameterizations.

Reporting

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

mcompare (method) specifies the method for computing p-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, «, to achieve a prespecified experimentwise
error rate, Q.

mcompare (noadjust) is the default; it specifies no adjustment.
Qe = Qe
mcompare (bonferroni) adjusts the comparisonwise error rate based on the upper limit of the
Bonferroni inequality
Qe<Mmag
where m is the number of comparisons within the term.
The adjusted comparisonwise error rate is
Qe = e /m
mcompare (sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality
<l — (1 — )™
where m is the number of comparisons within the term.
The adjusted comparisonwise error rate is
ae=1—(1—ap)/™
This adjustment is exact when the m comparisons are independent.

mcompare (scheffe) controls the experimentwise error rate using the F or x? distribution with
degrees of freedom equal to the rank of the term.

mcompare (method adjustall) specifies that the multiple-comparison adjustments count all
comparisons across all terms rather than performing multiple comparisons term by term. This
leads to more conservative adjustments when multiple variables or terms are specified in
marginslist. This option is compatible only with the bonferroni and sidak methods.

noeffects suppresses the table of individual contrasts with confidence intervals. This table is
produced by default when the mcompare () option is specified or when a term in fermlist implies
all individual contrasts.

cieffects specifies that a table containing a confidence interval for each individual contrast be
reported.

pveffects specifies that a table containing a p-value for each individual contrast be reported.

effects specifies that a single table containing a confidence interval and p-value for each individual
contrast be reported.
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nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or
nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out
without the default adjustment for the design degrees of freedom. That is to say the test is carried
out as W/k ~ F(k,d) rather than as (d — k + 1)W/(kd) ~ F(k,d — k + 1), where k is the
dimension of the test and d is the total number of sampled PSUs minus the total number of strata.

sort specifies that the table of individual contrasts be sorted by the contrast values within each term.

post causes contrast to behave like a Stata estimation (e-class) command. contrast posts the
vector of estimated contrasts along with the estimated variance—covariance matrix to e (), so you
can treat the estimated contrasts just as you would results from any other estimation command.
For example, you could use test to perform simultaneous tests of hypotheses on the contrasts,
or you could use lincom to create linear combinations.

display_options: vsquish, cformat (7 fint), pformat (%fmt), sformat (%fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series—operated
variables from other variables in the model be suppressed.

cformat (%fmt) specifies how to format contrasts, standard errors, and confidence limits in the
table of estimated contrasts.

pformat (% fint) specifies how to format p-values in the table of estimated contrasts.
sformat (% fimt) specifies how to format test statistics in the table of estimated contrasts.

nolstretch specifies that the width of the table of estimated contrasts not be automatically
widened to accommodate longer variable names. The default, 1stretch, is to automatically
widen the table of estimated contrasts up to the width of the Results window. To change the
default, use set 1lstretch off. nolstretch is not shown in the dialog box.

eform_option specifies that the contrasts table be displayed in exponentiated form. e°ntast jg

displayed rather than contrast. Standard errors and confidence intervals are also transformed. See
[R] eform _option for the list of available options.
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Remarks

Remarks are presented under the following headings:

Introduction
One-way models
Estimated cell means
Testing equality of cell means
Reference category contrasts
Reverse adjacent contrasts
Orthogonal polynomial contrasts
Two-way models
Estimated interaction cell means
Simple effects
Interaction effects
Main effects
Partial interaction effects
Three-way and higher-order models
Contrast operators
Differences from a reference level (r.)
Differences from the next level (a.)
Ditferences from the previous level (ar.)
Differences from the grand mean (g.)
Differences from the mean of subsequent levels (h.)
Ditferences from the mean of previous levels (j.)
Orthogonal polynomials (p. and q.)
User-defined contrasts
Empty cells
Empty cells, ANOVA style
Nested effects
Multiple comparisons
Unbalanced data
Using observed cell frequencies
Weighted contrast operators
Testing factor effects on slopes
Chow tests
Beyond linear models
Multiple equations

Introduction

contrast performs ANOVA-style tests of main effects, interactions, simple effects, and nested
effects. It can easily decompose these tests into constituent contrasts using either named contrasts
(codings) or user-specified contrasts. Comparing levels of factor variables—whether as main effects,
interactions, or simple effects—is as easy as adding a contrast operator to the variable. The operators
can compare each level with the previous level, each level with a reference level, each level with the
mean of previous levels, and more.

contrast tests and estimates contrasts. A contrast of the parameters fi1, it2, ..., tp iS a linear
combination ) -, ¢;/t; whose ¢; sum to zero. A difference of population means that f11 — ji5 is a contrast,
as are most other comparisons of population or model quantities (Coster 2005). Some contrasts may
be estimated with 1incom, but contrast is much more powerful. contrast can handle multiple
contrasts simultaneously, and the command’s contrast operators make it easy to specify complicated
linear combinations.

Both the contrast operation and the creation of the margins for comparison can be performed as
though the data were balanced (typical for experimental designs) or using the observed frequencies
in the estimation sample (typical for observational studies). contrast can perform these analyses on
the results of almost all of Stata’s estimators, not just the linear-models estimators.
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Most of contrast’s computations can be considered comparisons of estimated cell means from
a model fit. Tests of interactions are tests of whether the cell means for the interaction are all equal.
Tests of main effects are tests of whether the marginal cell means for the factor are all equal. More
focused comparisons of cell means (for example, is level 2 equal to level 1) are specified using
contrast operators. More formally, all of contrast’s computations are comparisons of conditional
expectations; cell means are one type of conditional expectation.

All contrasts can also easily be graphed; see [R] marginsplot.

For a discussion of contrasts and testing for linear models, see Searle (1971) and Searle (1997).
For discussions specifically related to experimental design, see Kuehl (2000), Winer, Brown, and
Michels (1991), and Milliken and Johnson (2009). Rosenthal, Rosnow, and Rubin (2000) focus on
contrasts with applications in behavioral sciences.

contrast is a flexible tool for understanding the effects of categorical covariates. If your model
contains categorical covariates, and especially if it contains interactions, you will want to use contrast.

One-way models

Suppose we have collected data on cholesterol levels for individuals from five age groups. To study
the effect of age group on cholesterol, we can begin by fitting a one-way model using regress:

. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. label list ages

ages:

1 10-19

2 20-29

3 30-39

4 40-59

5 60-79

. regress chol i.agegrp
Source SS df MS Number of obs = 75
F( 4, 70) = 35.02
Model 14943.3997 4 3735.84993 Prob > F = 0.0000
Residual 7468.21971 70 106.688853 R-squared = 0.6668
Adj R-squared = 0.6477
Total 22411.6194 74 302.859722 Root MSE = 10.329
chol Coef. Std. Err. t P>|t]| [95% Conf. Intervall]
agegrp

2 8.203575 3.771628 2.18 0.033 .6812991 15.72585
3 21.54105 3.771628 5.71 0.000 14.01878 29.06333
4 30.15067 3.771628 7.99 0.000 22.6284 37.67295
5 38.76221 3.771628 10.28 0.000 31.23993 46.28448
_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388
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Estimated cell means
margins will show us the estimated cell means for each age group based on our fitted model:

. margins agegrp

Adjusted predictions Number of obs = 75
Model VCE : OLS
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
agegrp
1 180.5198 2.666944 67.69 0.000 175.2926 185.7469
2 188.7233 2.666944 70.76 0.000 183.4962 193.9504
3 202.0608 2.666944 75.76 0.000 196.8337 207.2879
4 210.6704  2.666944 78.99 0.000 205.4433 215.8975
5 219.282 2.666944 82.22 0.000 214.0548 224.5091

We can graph those means with marginsplot:

. marginsplot

Variables that uniquely identify margins: agegrp

Adjusted Predictions of agegrp with 95% Cls

Linear Prediction
200 220
1 1

180
L

1019 20-29 3039 40159 60-79
agegrp
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Testing equality of cell means

Are all the means equal? That is to say is there an effect of age group on cholesterol level? We can
answer that by asking contrast to test whether the means of the age groups are identical.

. contrast agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
agegrp 4 35.02 0.0000
Residual 70

The means are clearly different. We could have obtained this same test directly had we fit our model
using anova rather than regress.

. anova chol agegrp

Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477
Source Partial SS df MS F Prob > F
Model 14943.3997 4 3735.84993 35.02 0.0000
agegrp 14943.3997 4 3735.84993 35.02 0.0000

Residual 7468.21971 70 106.688853

Total 22411.6194 74 302.859722

Achieving a more direct test result is why we recommend using anova instead of regress for
models where our focus is on the categorical covariates. The models fit by anova and regress are
identical; they merely parameterize the effects differently. The results of contrast will be identical
regardless of which command is used to fit the model. If, however, we were fitting models whose
responses are nonlinear functions of the covariates, such as logistic regression, then there would be
no analogue to anova, and we would appreciate contrast’s ability to quickly test main effects and
interactions.
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Reference category contrasts

Now that we know that the overall effect of age group is statistically significant, we can explore
the effects of each age group. One way to do that is to use the reference category operator, r.:

. contrast r.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 1) 1 32.62 0.0000
(4 vs 1) 1 63.91 0.0000
(5 vs 1) 1 105.62 0.0000
Joint 4 35.02 0.0000
Residual 70
Contrast Std. Err. [95% Conf. Intervall]
agegrp
(2 vs 1) 8.203575  3.771628 .6812991 15.72585
(3 vs 1) 21.54105 3.771628 14.01878 29.06333
(4 vs 1) 30.15067  3.771628 22.6284 37.67295
(5 vs 1) 38.76221  3.771628 31.23993 46.28448

The cell mean of each age group is compared against the base age group (group 1, ages 10—19).
The first table shows that each difference is significant. The second table gives an estimate and
confidence interval for each contrast. These are the comparisons that linear regression gives with a
factor covariate and no interactions. The contrasts are identical to the coefficients from our linear
regression.

Reverse adjacent contrasts

We have far more flexibility with contrast. Age group is ordinal, so it is interesting to compare
each age group with the preceding age group (rather than against one reference group). We specify
that analysis by using the reverse adjacent operator, ar.:

. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(2 vs 1) 1 4.73 0.0330
(3 vs 2) 1 12.51 0.0007
(4 vs 3) 1 5.21 0.0255
(5 vs 4) 1 5.21 0.0255
Joint 4 35.02 0.0000

Residual 70
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Contrast Std. Err. [95% Conf. Intervall]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 2) 13.33748 3.771628 5.815204 20.85976
(4 vs 3) 8.60962 3.771628 1.087345 16.1319
(5 vs 4) 8.611533 3.771628 1.089257 16.13381

Age group 2’s cholesterol level is 8.2 points higher than age group 1’s; age group 3’s is 13.3 points
higher than age group 2’s; and so on. Each age group is statistically different from the preceding age
group at the 5% level.

Orthogonal polynomial contrasts

The relationship between age group and cholesterol level looked almost linear in our graph. We
can examine that relationship further by using the orthogonal polynomial operator, p.:

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

Only the linear effect is statistically significant.

We can even perform the joint test that all effects beyond linear are zero. We do that by selecting
all polynomial contrasts above linear—that is, polynomial contrasts 2, 3, and 4.

. contrast p(2 3 4).agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 3 0.32 0.8129

Residual 70

The joint test has three degrees of freedom and is clearly insignificant. A linear effect of age group
seems adequate for this model.
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Two-way models

Suppose we are investigating the effects of different dosages of a blood pressure medication and
believe that the effects may be different for men and women. We can fit the following ANOVA model
for bpchange, the change in diastolic blood pressure. Change is defined as the after measurement
minus the before measurement, so that negative values of bpchange correspond to decreases in blood

pressure.

. use http://www.stata-press.com/data/r12/bpchange
(Artificial blood pressure data)

. label list gender
gender:

1 male

2 female

. anova bpchange dose##gender

Number of obs = 30 R-squared = 0.9647

Root MSE = 1.4677 Adj R-squared = 0.9573

Source Partial SS df MS F Prob > F

Model 1411.9087 5 282.381741 131.09 0.0000

dose 963.481795 2 481.740897 223.64 0.0000

gender 355.118817 1 355.118817 164.85 0.0000

dose#gender 93.3080926 2 46.6540463 21.66 0.0000
Residual 51.699253 24 2.15413554
Total 1463.60796 29 50.4692399

Estimated interaction cell means

Everything is significant, including the interaction. So increasing dosage is effective and differs by
gender. Let’s explore the effects. First, let’s look at the estimated cell mean of blood pressure change

for each combination of gender and dosage.

. margins dose#gender

Adjusted predictions Number of obs = 30
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
dose#gender
250 1 -7.35384 .6563742 -11.20 0.000 -8.64031 -6.06737
250 2 3.706567 .6563742 5.65 0.000 2.420097 4.993037
500 1 -13.73386 .6563742 -20.92 0.000 -15.02033 -12.44739
500 2 -6.584167 .6563742 -10.03 0.000 -7.870637 -5.297697
750 1 -16.82108 .6563742 -25.63 0.000 -18.10754 -15.53461
750 2 -14.38795 .6563742 -21.92 0.000 -15.67442 -13.10148

Our data are balanced, so these results will not be affected by the many different ways that
margins can compute cell means. Moreover, because our model consists of only dose and gender,

these are also the point estimates for each combination.
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We can graph the results:

. marginsplot

Variables that uniquely identify margins: dose gender

Adjusted Predictions of dose#gender with 95% Cls
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‘—0— male female ‘

The lines are not parallel, which we expected because the interaction term is significant. Males
experience a greater decline in blood pressure at every dosage level, but the effect of increasing
dosage is greater for females. In fact, it is not clear if we can tell the difference between male and

female response at the maximum dosage.

Simple effects

We can contrast the male and female responses within dosage to see the simple effects of gender.
Because there are only two levels in gender, the choice of contrast operator is largely irrelevant.
Aside from orthogonal polynomials, all operators produce the same estimates, although the effects

can change signs.

. contrast r.gender@dose

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
gender@dose
(2 vs 1) 250 1 141.97 0.0000
(2 vs 1) 500 1 59.33 0.0000
(2 vs 1) 750 1 6.87 0.0150
Joint 3 69.39 0.0000
Residual 24
Contrast  Std. Err. [95% Conf. Intervall
gender@dose
(2 vs 1) 250 11.06041 .9282533 9.144586 12.97623
(2 vs 1) 500 7.149691 .9282533 5.23387 9.065512
(2 vs 1) 750 2.433124 .9282533 .5173031 4.348944
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The effect for males is about 11 points higher than for females at a dosage of 250, and that shrinks
to 2.4 points higher at the maximum dosage of 750.

We can form the simple effects the other way by contrasting the effect of dose at each level of
gender:

. contrast ar.dose@gender

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
dose@gender
(500 vs 250) 1 1 47.24 0.0000
(500 vs 250) 2 1 122.90 0.0000
(750 vs 500) 1 1 11.06 0.0028
(750 vs 500) 2 1 70.68 0.0000
Joint 4 122.65 0.0000
Residual 24
Contrast  Std. Err. [95% Conf. Interval]
dose@gender
(500 vs 250) 1 -6.380018 .9282533 -8.295839  -4.464198
(500 vs 250) 2 -10.29073 .9282533 -12.20655 -8.374914
(750 vs 500) 1 -3.087217 .9282533 -5.003038 -1.171396
(750 vs 500) 2 -7.803784 .9282533 -9.719605  -5.887963

Here we use the ar. reverse adjacent contrast operator so that first we are comparing a dosage
of 500 with a dosage of 250, and then we are comparing 750 with 500. We see that increasing the
dosage has a larger effect on females—10.3 points when going from 250 to 500 compared with 6.4
points for males, and 7.8 points when going from 500 to 750 versus 3.1 points for males.

Interaction effects

By specifying contrast operators on both factors, we can decompose the interaction effect into
separate interaction contrasts.

. contrast ar.dose#r.gender

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
dose#gender
(600 vs 250) (2 vs 1) 1 8.87 0.0065
(750 vs 500) (2 vs 1) 1 12.91 0.0015
Joint 2 21.66 0.0000
Residual 24
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Contrast  Std. Err. [95% Conf. Intervall

dose#gender
(500 vs 250) (2 vs 1) -3.910716 1.312748 -6.620095 -1.201336
(750 vs 500) (2 vs 1) -4.716567 1.312748 -7.425947 -2.007187

Look for departures from zero to indicate an interaction effect between dose and gender. Both
contrasts are significantly different from zero. Of course, we already knew the overall interaction
was significant from our ANOVA results. The effect of increasing dose from 250 to 500 is 3.9 points
greater in females than in males, and the effect of increasing dose from 500 to 750 is 4.7 points
greater in females than in males. The confidence intervals for both estimates easily exclude zero,
meaning that there is an interaction effect.

The joint test of these two interaction effects reproduces the test of interaction effects in the anova
output. We can see that the F’ statistic of 21.66 matches the statistic from our original ANOVA results.

Main effects
We can perform tests of the main effects by listing each variable individually in contrast.

. contrast dose gender

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
dose 2 223.64 0.0000
gender 1 164.85 0.0000
Residual 24

The F tests are equivalent to the tests of main effects in the anova output. This is true only for
linear models. contrast provides an easy way to obtain main effects and other ANOVA-style tests
for models whose responses are not linear in the parameters—logistic, probit, glm, etc.

If we include contrast operators on the variables, we can also decompose the main effects into
individual contrasts:

. contrast ar.dose r.gender

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
dose
(500 vs 250) 1 161.27 0.0000
(750 vs 500) 1 68.83 0.0000
Joint 2 223.64 0.0000
gender 1 164.85 0.0000

Residual 24
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Contrast Std. Err. [95% Conf. Intervall
dose
(500 vs 250) -8.335376 .6563742 -9.690066 -6.980687
(750 vs 500) -5.4455 .6563742 -6.80019 -4.090811
gender
(2 vs 1) 6.881074 .5359273 5.774974 7.987173

By specifying the ar. operator on dose, we decompose the main effect for dose into two one-degree-
of-freedom contrasts, comparing the marginal mean of blood pressure change for each dosage level
with that of the previous level. Because gender has only two levels, we cannot decompose this main
effect any further. However, specifying a contrast operator on gender allowed us to calculate the
difference in the marginal means for women and men.

Partial interaction effects

At this point, we have looked at the total interaction effects and at the main effects of each variable.
The partial interaction effects are a midpoint between these two types of effects where we collect the
individual interaction effects along the levels of one of the variables and perform a joint test of those
interactions. If we think of the interaction effects as forming a table, with the levels of one factor
variable forming the rows and the levels of the other forming the columns, partial interaction effects
are joint tests of the interactions in a row or a column. To perform these tests, we specify a contrast
operator on only one of the variables in our interaction. For this particular model, these are not very
interesting because our variables have only two and three levels. Therefore, the tests of the partial
interaction effects reproduce the tests that we obtained for the total interaction effects. We specify a
contrast operator only on dose to decompose the overall test for interaction effects into joint tests
for each ar.dose contrast:

. contrast ar.dose#gender

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
dose#gender
(500 vs 250) (joint) 1 8.87 0.0065
(750 vs 500) (joint) 1 12.91 0.0015
Joint 2 21.66 0.0000
Residual 24

The first row is a joint test of all the interaction effects involving the (500 vs 250) comparison
of dosages. The second row is a joint test of all the interaction effects involving the (750 vs 500)
comparison. If we look back at our output in Interaction effects, we can see that there was only one of
each of these interaction effects. Therefore, each test labeled (joint) has only one degree-of-freedom.

We could have instead included a contrast operator on gender to compute the partial interaction
effects along the other dimension:
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. contrast dose#r.gender

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
dose#tgender 2 21.66 0.0000
Residual 24

Here we obtain a joint test of all the interaction effects involving the (2 vs 1) comparison for
gender. Because gender has only two levels, the (2 vs 1) contrast is the only reference category
contrast possible. Therefore, we obtain a single joint test of all the interaction effects.

Clearly, the partial interaction effects are not interesting for this particular model. However, if our
factors had more levels, the partial interaction effects would produce tests that are not available in
the total interaction effects. For example, if our model included factors for four dosage levels and
three races, then typing

. contrast ar.dose#frace

would produce three joint tests, one for each of the reverse adjacent contrasts for dosage. Each of
these tests would be a two-degree-of-freedom test because race has three levels.

Three-way and higher-order models

All the contrasts and tests that we reviewed above for two-way models can be used with models
that have more terms. For instance, we could fit a three-way full factorial model by using the anova
command:

. use http://www.stata-press.com/data/r12/cont3way
. anova y race##sex##group

We could then test the simple effects of race within each level of the interaction between sex
and group:

. contrast race@sex#group

To see the reference category contrasts that decompose these simple effects, type

. contrast r.race@sex#group
We could test the three-way interaction effects by typing
. contrast race#sex#group
or the interaction effects for the interaction of race and sex by typing

. contrast race#sex

To see the individual reference category contrasts that decompose this interaction effect, type

. contrast r.race#r.sex
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We could even obtain joint tests for the interaction of race and sex within each level of group
by typing
. contrast race#sex@group
For tests of the main effects of each factor, we can type

. contrast race sex group

We can calculate the individual reference category contrasts that decompose these main effects:
. contrast r.race r.sex r.group

For the partial interaction effects, we could type

. contrast r.race#group

to obtain a joint test of the two-way interaction effects of race and group for each of the individual
r.race contrasts.

We could type

. contrast r.race#sex#group

to obtain a joint test of all the three-way interaction terms for each of the individual r.race contrasts.

Contrast operators

contrast recognizes a set of contrast operators that are used to specify commonly used contrasts.
When these operators are used, contrast will report a test for each individual contrast in addition
to the joint test for the term. We have already seen a few of these, like r. and ar., in the previous
examples. Here we will take a closer look at each of the unweighted operators.

Here we use the cholesterol dataset and the one-way ANOVA model from the example in One-way
models:

. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. anova chol agegrp
(output omitted )

The margins command reports the estimated cell means, iy, ..., 5, for each of the five age
groups.

. margins agegrp

Adjusted predictions Number of obs = 75
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
agegrp
1 180.5198  2.666944 67.69 0.000 175.2926 185.7469
2 188.7233  2.666944 70.76  0.000 183.4962 193.9504
3 202.0608 2.666944 75.76  0.000 196.8337 207.2879
4 210.6704  2.666944 78.99  0.000 205.4433 215.8975
5 219.282  2.666944 82.22 0.000 214.0548 224.5091
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Contrast operators provide an easy way to make certain types of comparisons of these cell means.
We use the ordinal factor agegrp to demonstrate these operators because some types of contrasts are
only meaningful when the levels of the factor have a natural ordering. We demonstrate these contrast
operators using a one-way model; however, they are equally applicable to main effects, simple effects,
and interactions for more complicated models.

Differences from a reference level (r.)

The r. operator specifies that each level of the attached factor variable be compared with a
reference level. These are referred to as reference-level or reference-category contrasts (or effects),
and r. is the reference-level operator.

In the following, we use the r. operator to test the effect of each category of age group when
that category is compared with a reference category.

. contrast r.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 1) 1 32.62 0.0000
(4 vs 1) 1 63.91 0.0000
(5 vs 1) 1 105.62 0.0000
Joint 4 35.02 0.0000
Residual 70
Contrast Std. Err. [95% Conf. Intervall]
agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 1) 21.54105 3.771628 14.01878 29.06333
(4 vs 1) 30.15067 3.771628 22.6284 37.67295
(5 vs 1) 38.76221 3.771628 31.23993 46.28448

In the first table, the row labeled (2 vs 1) is a test of o = w1, a test that the mean cholesterol
levels for the 10—19 age group (agegrp = 1) and the 20-29 age group (agegrp = 2) are equal.
The tests in the next three rows are defined similarly. The row labeled Joint provides the joint test
for these four hypotheses, which is just the test of the main effects of age group.

The second table provides the contrasts of each category with the reference category along with
confidence intervals. The contrast in the row labeled (2 vs 1) is the difference in the cell means of
the second age group and the first age group, fiz — fi1.

The first level of a factor is the default reference level, but we can specify a different reference level
by using the b. operator; see [U] 11.4.3.2 Base levels. Here we use the last age group, agegrp =5,
instead of the first as the reference category. We also include the nowald option so that only the
table of contrasts and their confidence intervals is produced.
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. contrast rbb5.agegrp, nowald

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. [95% Conf. Interval]
agegrp
(1 vs 5) -38.76221 3.771628 -46.28448 -31.23993
(2 vs 5) -30.55863 3.771628 -38.08091 -23.03636
(3 vs 5) -17.22115 3.771628 -24.74343 -9.698877
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

Now the first row is labeled (1 vs 5) and is the difference in the cell means of the first and fifth
age groups.

Differences from the next level (a.)

The a. operator specifies that each level of the attached factor variable be compared with the next
level. These are referred to as adjacent contrasts (or effects), and a. is the adjacent operator. This
operator is only meaningful with factor variables that have a natural ordering in the levels.

We can use the a. operator to perform tests that each level of age group differs from the next
adjacent level.

. contrast a.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(1 vs 2) 1 4.73 0.0330
(2 vs 3) 1 12.51 0.0007
(3 vs 4) 1 5.21 0.0255
(4 vs 5) 1 5.21 0.0255
Joint 4 35.02 0.0000
Residual 70
Contrast  Std. Err. [95% Conf. Intervall]
agegrp
(1 vs 2) -8.203575 3.771628 -15.72585 -.6812991
(2 vs 3) -13.33748 3.771628 -20.85976 -5.815204
(3 vs 4) -8.60962 3.771628 -16.1319 -1.087345
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

In the first table, the row labeled (1 vs 2) tests the effect of belonging to the 10-19 age group
instead of the 20-29 age group. Likewise, the rows labeled (2 vs 3), (3 vs 4), and (4 vs 5) are
tests for the effects of being in the younger of the two age groups instead of the older one.

In the second table, the contrast in the row labeled (1 vs 2) is the difference in the cell means
of the first and second age groups, ji; — fi2. The contrasts in the other rows are defined similarly.
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Differences from the previous level (ar.)

The ar. operator specifies that each level of the attached factor variable be compared with the
previous level. These are referred to as reverse adjacent contrasts (or effects), and ar. is the reverse
adjacent operator. As with the a. operator, this operator is only meaningful with factor variables that
have a natural ordering in the levels.

In the following, we use the ar. operator to report tests for the individual reverse adjacent effects
of agegrp.

. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 2) 1 12.51 0.0007
(4 vs 3) 1 5.21 0.0255
(5 vs 4) 1 5.21 0.0255
Joint 4 35.02 0.0000
Residual 70
Contrast Std. Err. [95% Conf. Intervall]
agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 2) 13.33748 3.771628 5.815204 20.85976
(4 vs 3) 8.60962 3.771628 1.087345 16.1319
(5 vs 4) 8.611533 3.771628 1.089257 16.13381

Here the Wald tests in the first table for the individual reverse adjacent effects are equivalent to the
tests for the adjacent effects in the previous example. However, if we compare values of the contrasts
in the bottom tables, we see the difference between the r. and the ar. operators. This time, the
contrast in the first row is labeled (2 vs 1) and is the difference in the cell means of the second and
first age groups, fia — fi1. This is the estimated effect of belonging to the 20-29 age group instead
of the 10-19 age group. The remaining rows make similar comparisons to the previous level.

Differences from the grand mean (g.)

The g. operator specifies that each level of a factor variable be compared with the grand mean of
all levels. For this operator, the grand mean is computed using a simple average of the cell means.
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Here are the grand mean effects of agegrp:

. contrast g.agegrp
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(1 vs mean) 1 68.42 0.0000
(2 vs mean) 1 23.36 0.0000
(3 vs mean) 1 0.58 0.4506
(4 vs mean) 1 19.08 0.0000
(5 vs mean) 1 63.65 0.0000
Joint 4 35.02 0.0000
Residual 70
Contrast Std. Err. [95% Conf. Intervall]
agegrp
(1 vs mean) -19.7315 2.385387 -24.48901 -14.974
(2 vs mean) -11.52793 2.385387 -16.28543 -6.770423
(3 vs mean) 1.809552 2.385387 -2.947953 6.567057
(4 vs mean) 10.41917 2.385387 5.661668 15.17668
(5 vs mean) 19.0307 2.385387 14.2732 23.78821

There are five age groups in our estimation sample. Thus the row labeled (1 vs mean) tests
1 = (p1+pe+ps+pa+ps)/5. The row labeled (2 vs mean) tests o = (1 4o+ 3+ pat+ps)/5.
The remaining rows perform similar tests for the third, fourth, and fifth age groups. In our example,
the means for all age groups except group 3 (30—-39 age group) are statistically different from the
grand mean.

Differences from the mean of subsequent levels (h.)

The h. operator specifies that each level of the attached factor variable be compared with the mean
of subsequent levels. These are referred to as Helmert contrasts (or effects), and h. is the Helmert
operator. For this operator, the mean is computed using a simple average of the cell means. This
operator is only meaningful with factor variables that have a natural ordering in the levels.

Here are the Helmert contrasts for agegrp:

. contrast h.agegrp
Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(1 vs >1) 1 68.42 0.0000
(2 vs >2) 1 50.79 0.0000
(3 vs >3) 1 15.63 0.0002
(4 vs b) 1 5.21 0.0255
Joint 4 35.02 0.0000

Residual 70
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Contrast Std. Err. [95% Conf. Intervall]

agegrp
(1 vs >1) -24.66438 2.981734 -30.61126 -18.7175
(2 vs >2) -21.94774 3.079522 -28.08965 -15.80583
(3 vs >3) -12.91539 3.266326 -19.42987 -6.400905
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

The row labeled (1 vs >1) tests 1 = (u2 + ps + pa + ps)/4, that is, that the cell mean for the
youngest age group is equal to the average of the cell means for the older age groups. The row
labeled (2 vs >2) tests o = (i3 + g + f15)/3. The tests in the other rows are defined similarly.

Differences from the mean of previous levels (j.)

The j. operator specifies that each level of the attached factor variable be compared with the
mean of the previous levels. These are referred to as reverse Helmert contrasts (or effects), and j.
is the reverse Helmert operator. For this operator, the mean is computed using a simple average of
the cell means. This operator is only meaningful with factor variables that have a natural ordering in

the levels.

Here are the reverse Helmert contrasts of agegrp:

. contrast j.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp
(2vs 1) 1 4.73 0.0330
(3 vs <3) 1 28.51 0.0000
(4 vs <4) 1 43.18 0.0000
(5 vs <5) 1 63.65 0.0000
Joint 4 35.02 0.0000
Residual 70
Contrast  Std. Err. [95% Conf. Intervall]
agegrp
(2vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs <3) 17.43927  3.266326 10.92479 23.95375
(4 vs <4) 20.2358 3.079522 14.09389 26.37771
(5 vs <5b) 23.78838 2.981734 17.8415 29.73526

The row labeled (2 vs 1) tests uo = p, that is, that the cell means for the 20-29 and the 10-19
age groups are equal. The row labeled (3 vs <3) tests p3 = (u1 + p2)/2, that is, that the cell mean
for the 30-39 age group is equal to the average of the cell means for the 10-19 and 20-29 age
groups. The tests in the remaining rows are defined similarly.
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Orthogonal polynomials (p. and q.)

The p. and q. operators specify that orthogonal polynomials be applied to the attached factor
variable. Orthogonal polynomial contrasts allow us to partition the effects of a factor variable into
linear, quadratic, cubic, and higher-order polynomial components. The p. operator applies orthogonal
polynomials using the values of the factor variable. The q. operator applies orthogonal polynomials
using the level indices. If the level values of the factor variable are equally spaced, as with our agegrp
variable, then the p. and q. operators yield the same result. These operators are only meaningful
with factor variables that have a natural ordering in the levels.

Because agegrp has five levels, contrast can test the linear, quadratic, cubic, and quartic effects
of agegrp.

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

daf F P>F
agegrp

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

The row labeled (linear) tests the linear effect of agegrp, the only effect that appears to be
significant in this case.

The labels for our agegrp variable show the age ranges that correspond to each level.

. label list ages
ages:

10-19
20-29
30-39
40-59
60-79

O W N

Notice that these groups do not have equal widths. Now let’s refit our model using the agemidpt
variable. The values of agemidpt indicate the midpoint of each age group that was defined by the
agegrp variable and are, therefore, not equally spaced.

. anova chol agemidpt

Number of obs = 75 R-squared = 0.6668

Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob > F
Model 14943.3997 4 3735.84993 35.02 0.0000
agemidpt 14943.3997 4 3735.84993 35.02 0.0000

Residual 7468.21971 70 106.688853

Total 22411.6194 74 302.859722
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Now if we use the q. operator, we will obtain the same results as above because the level indices
of agemidpt are equivalent to the values of agegrp.

. contrast q.agemidpt, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agemidpt

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

However, if we use the p. operator, we will instead fit an orthogonal polynomial to the midpoint
values.

. contrast p.agemidpt, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agemidpt

(linear) 1 133.45 0.0000
(quadratic) 1 5.40 0.0230
(cubic) 1 0.05 0.8198
(quartic) 1 1.16 0.2850
Joint 4 35.02 0.0000

Residual 70

Using the values of the midpoints, the quadratic effect is also significant at the 5% level.

Q Technical note

We used the noeffects option when working with orthogonal polynomial contrasts. Apart from
perhaps the sign of the contrast, the values of the individual contrasts are not meaningful for orthogonal
polynomial contrasts. In addition, many textbooks provide tables with contrast coefficients that can be
used to compute orthogonal polynomial contrasts where the levels of a factor are equally spaced. If
we use these coefficients and calculate the contrasts manually with user-defined contrasts, as described
below, the Wald tests for the polynomial terms will be equivalent, but the values of the individual
contrasts will not necessarily match those that we obtain when using the polynomial contrast operator.
When we use one of these contrast operators, an algorithm is used to calculate the coefficients of the
polynomial contrast that will allow for unequal spacing in the levels of the factor as well as in the
weights for the cell frequencies (when using pw. or qw.), as described in Methods and formulas.

a
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User-defined contrasts

In the previous examples, we performed tests using contrast operators. When there is not a contrast
operator available to calculate the contrast in which we are interested, we can specify custom contrasts.

Here we fit a one-way model for cholesterol on the factor race, which has three levels:

. label list race
race:
1 black
2 white
3 other

. anova chol race

Number of obs = 75 R-squared = 0.0299

Root MSE = 17.3775 Adj R-squared = 0.0029

Source Partial SS df MS F Prob > F
Model 669.278235 2 334.639117 1.11 0.3357
race 669.278235 2 334.639117 1.11 0.3357

Residual 21742.3412 72 301.976961

Total 22411.6194 74 302.859722

margins calculates the estimated cell mean cholesterol level for each race:

. margins race

Adjusted predictions Number of obs = 75
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
race
1 204.4279 3.475497 58.82 0.000 197.6161 211.2398
2 197.6132 3.475497 56.86 0.000 190.8014 204.425
3 198.7127 3.475497 57.18 0.000 191.9008 205.5245

Suppose we want to test the following linear combination:

3

Z Ci i

i=1

where ; is the cell mean of chol when race is equal to its ith level (the means estimated using
margins above). Assuming the c; elements sum to zero, this linear combination is a contrast. We
can specify this type of custom contrast by using the following syntax:

{race ¢; ¢y c3}

The null hypothesis for the test of the main effects of race is

Ho, oot 11 = pl2 = 3
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Although Hy_, , can be tested using any of several different contrasts on the cell means, we will test
it by comparing the second and third cell means with the first. To test that the cell means for blacks
and whites are equal, ;17 = e, we can specify the contrast

{race -1 1 0}

To test that the cell means for blacks and other races are equal, p11 = p3, we can specify the contrast

{race -1 0 1}

We can use both in a single call to contrast.

. contrast {race -1 1 0} {race -1 0 1}
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race
(1) 1 1.92 0.1699
(2) 1 1.35 0.2488
Joint 2 1.11 0.3357
Residual 72
Contrast Std. Err. [95% Conf. Intervall]
race
(1) -6.814717 4.915095 -16.61278 2.983345
(2) -5.715261 4.915095 -15.51332 4.082801

The row labeled (1) is the test for 1 = o, the first specified contrast. The row labeled (2) is the
test for 1 = s, the second specified contrast. The row labeled Joint is the overall test for the
main effects of race.

Now let’s fit a model with two factors, race and age group:

. anova chol race##agegrp

Number of obs = 75 R-squared = 0.7524

Root MSE = 9.61785 Adj R-squared = 0.6946

Source Partial SS df MS F Prob > F

Model 16861.438 14 1204.38843 13.02 0.0000

race 669.278235 2 334.639117 3.62 0.0329

agegrp 14943.3997 4 3735.84993 40.39 0.0000

race#agegrp 1248.76005 8 156.095006 1.69 0.1201
Residual 5550.18143 60 92.5030238
Total 22411.6194 74 302.859722

The null hypothesis for the test of the main effects of race is now

Ho,,..: p1. = po. = ps.

where p;. is the marginal mean of chol when race is equal to its ith level.



342 contrast — Contrasts and linear hypothesis tests after estimation

We can use the same syntax as above to perform this test by specifying contrasts on the marginal
means of race:

. contrast {race -1 1 0} {race -1 0 1}

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race
(1) 1 6.28 0.0150
(2) 1 4.41 0.0399
Joint 2 3.62 0.0329
Residual 60
Contrast  Std. Err. [95% Conf. Intervall]
race
(1) -6.814717 2.720339 -12.2562 -1.37323
(2) -5.715261 2.720339 -11.15675 -.2737739

Custom contrasts may be specified on the cell means of interactions, too. Here we use margins
to calculate the mean of chol for each cell in the interaction of race and agegrp:

. margins race#agegrp

Adjusted predictions Number of obs = 75
Expression : Linear prediction, predict()
Delta-method
Margin  Std. Err. z P>|z| [95% Conf. Intervall
race#agegrp
11 179.2309  4.301233 41.67  0.000 170.8006 187.6611
12 196.4777  4.301233 45.68  0.000 188.0474 204.908
13 210.6694  4.301233 48.98  0.000 202.2391 219.0996
14 214.097 4.301233 49.78  0.000 205.6668 222.5273
15 221.6646  4.301233 51.54 0.000 213.2344 230.0949
21 186.0727  4.301233 43.26  0.000 177.6425 194.503
22 184.6714  4.301233 42.93  0.000 176.2411 193.1017
23 196.2633  4.301233 45.63  0.000 187.833 204.6936
24 209.9953  4.301233 48.82  0.000 201.5651 218.4256
25 211.0633  4.301233 49.07  0.000 202.633 219.4935
31 176.2556  4.301233 40.98  0.000 167.8254 184.6859
32 185.0209  4.301233 43.02  0.000 176.5906 193.4512
33 199.2498  4.301233 46.32  0.000 190.8195 207.68
34 207.9189  4.301233 48.34  0.000 199.4887 216.3492
35 225.118  4.301233 52.34 0.000 216.6877 233.5483

Now we are interested in testing the following linear combination of these cell means:

3 5

> e

i=1 j=1
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We can specify this type of custom contrast using the following syntax:
{race#agegrp c11 C12 ... C15 C21 C22 ... C25 C31 C32 ... C35}

Because the marginal means of chol for each level of race are linear combinations of the cell
means, we can compose the test for the main effects of race in terms of the cell means directly.
The constraint that the marginal means for blacks and whites are equal, p1;. = po., translates to the
following constraint on the cell means:

1 1
3(#11 + pa2 + paz + paa + pas) = 5(#21 + pi22 + pa3 + pag + fi2s)
Ignoring the common factor, we can specify this contrast as
{race#agegrp-1-1-1-1-111111000 00}
contrast will fill in the trailing zeros for us if we neglect to specify them, so
{racet#agegrp-1-1-1-1-111111}
is also allowed. The other constraint, j41. = pus., translates to
1 1
g(/tu + pi2 + g3 + paa + pas) = g(um + p32 + w33 + p3a + p3s)
This can be specified to contrast as
{race#agegrp-1-1-1-1-10000011111}
The following call to contrast yields the same test results as above.

. contrast {racet#tagegrp -1 -1 -1 -1 -1 1111 1}
> {race#fagegrp -1 -1 -1 -1 -1 00000 1 1 1 1 1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race#agegrp
1) @ 1 6.28 0.0150
2) @ 1 4.41 0.0399
Joint 2 3.62 0.0329
Residual 60

The row labeled (1) (1) is the test for

pi1 + piz + pas + pig + pas = po1 + peg + pos + o + fos

It was the first specified contrast. The row labeled (2) (2) is the test for

M1 + pi2 + p13 + p1g + s = p31 + 32 + p3s + psa + Uss

It was the second specified contrast. The row labeled Joint tests (1) (1) and (2) (2) simultaneously.
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We used the noeffects option above to suppress the table of contrasts. We can omit the 1/5
from the equations for p;. = po. and p1. = ps3. and still obtain the appropriate tests. However, if
we want to calculate the differences in the marginal means, we must include the 1 / 5 = 0.2 on each
of the contrast coefficients as follows:

. contrast {racet#tagegrp -

S oo
©o0o
o O O
©o0o

.2
.2
{race#fagegrp -0.2 -
0

.2

NONNN
|
NONNDN
|
MO NN
|
NONNDN

0

e
e
o
o

So far, we have reproduced the reference category contrasts by specifying user-defined contrasts
on the marginal means and then on the cell means. For this test, it would have been easier to use the
r. contrast operator:

. contrast r.race, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race
(2 vs 1) 1 6.28 0.0150
(B vs 1) 1 4.41 0.0399
Joint 2 3.62 0.0329
Residual 60

In most cases, we can use contrast operators to perform tests. However, if we want to compare,
for instance, the second and third age groups with the fourth and fifth age groups with the test

1 1
S+ ps) = 5(ua+ps)

there is not a contrast operator that corresponds to this particular contrast. A custom contrast is

necessary.

. contrast {agegrp 0 -0.5 -0.5 0.5 0.5}

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
agegrp 1 62.19 0.0000
Residual 60
Contrast  Std. Err. [95% Conf. Intervall
agegrp
1) 19.58413  2.483318 14.61675 24.5515
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Empty cells

An empty cell is a combination of the levels of factor variables that is not observed in the estimation
sample. In the previous examples, we have seen data with three levels of race, five levels of agegrp,
and all level combinations of race and agegrp present. Suppose there are no observations for white
individuals in the second age group (ages 20-29).

. use http://www.stata-press.com/data/r12/cholesterol2

(Artificial cholesterol data, empty cells)

. label list
race:
1
2
3
ages:

S wWN

5

. regress chol race##agegrp

black
white
other

10-19
20-29
30-39
40-59
60-79

note: 2.race#2.agegrp identifies

no observations in the sample

Source SS df MS Number of obs = 70

F( 13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000

Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021

Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coef. Std. Err. t P>t [95% Conf. Intervall
race

2 12.84185 5.989703 2.14 0.036 .8430383 24.84067

3 -.167627 5.989703 -0.03 0.978 -12.16644 11.83119
agegrp

2 17.24681 5.989703 2.88 0.006 5.247991 29.24562

3 31.43847 5.989703 5.256  0.000 19.43966 43.43729

4 34.86613 5.989703 5.82 0.000 22.86732 46.86495

5 44.43374 5.989703 7.42 0.000 32.43492 56.43256
race#agegrp

2 2 0 (empty)

23 -22.83983  8.470719 -2.70 0.009 -39.80872 -5.870939

2 4 -14.67558  8.470719 -1.73 0.089 -31.64447 2.293306

25 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735

32 -6.054425  8.470719 -0.71 0.478 -23.02331 10.91446

33 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063

34 -.6796112  8.470719 -0.08 0.936 -17.6485 16.28928

35 -1.578052  8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309  4.235359 41.37 0.000 166.7464 183.7153
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Now let’s use contrast to test the main effects of race:

. contrast race

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race (not testable)
Residual 56

By “not testable”, contrast means that it cannot form a test for the main effects of race based
on estimable functions of the model coefficients. agegrp has five levels, so contrast constructs an
estimate of the ¢th margin for race as

5

5
I T Ry e
=2 iy =fo+ai+z > {8+ (@B}
j=1 =1

ot
<

but ()22 was constrained to zero because of the empty cell, so fi2. is not an estimable function
of the model coefficients.

See Estimable functions in Methods and formulas of [R] margins for a technical description of
estimable functions. The emptycells(reweight) option causes contrast to estimate fio. by

. [i21 + 23 + Hoa + Has
2. = 1

which is an estimable function of the model coefficients.

. contrast race, emptycells(reweight)
Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F

race 2 3.17 0.0498

Residual 56
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We can reconstruct the effect of the emptycells(reweight) option by using custom contrasts.

. contrast {racettagegrp -4 -4 -4 -4 -4 5 0 5 5 5}
> {racet#tagegrp -1 -1 -1 -1 -1 00000 1 1 1 1 1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race#agegrp
1 @ 1 1.06 0.3080
2) 2 1 2.37 0.1291
Joint 2 3.17 0.0498
Residual 56

The row labeled (1) (1) is the test for

1 1
5(#11 + pa2 + s + paa + pas) = Z(le + f123 + poa + pos)

It was the first specified contrast. The row labeled (2) (2) is the test for

p11 + pa2 + p13 + pig + pas = ps1 + 32 + pss + psa + pss

It was the second specified contrast. The row labeled Joint is the overall test of the main effects of
race.

Empty cells, ANOVA style

Let’s refit the linear model from the previous example with anova to compare with contrast’s
test for the main effects of race.

. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582

Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob > F

Model 15751.6113 13 1211.66241 13.51 0.0000

race 305.49046 2  152.74523 1.70 0.1914

agegrp 14387.8559 4 3596.96397 40.10 0.0000

race#agegrp 795.807574 7 113.686796 1.27 0.2831
Residual 5022.71559 56 89.6913498
Total 20774.3269 69 301.077201

contrast and anova handled the empty cell differently; the F' statistic reported by contrast
was 3.17, but anova reported 1.70. To see how they differ, consider the following table of the cell
means and margins for our situation.
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agegrp
1 2 3 4 5
L) p11 pi2 113 B1a  p15 | M1
race 2| 21 H23 H24  H25
3| m31 M32  M33  M34 M35 | M3
H1 K3 M4 M5

For testing the main effects of race, we know that we will be testing the equality of the marginal
means for rows 1 and 3, that is, pq. = ps3.. This translates into the following constraint:

M1+ pa2 4 p13 + pag + s = 31+ 32 4 (433 + 34 + Uss
Because row 2 contains an empty cell in column 2, anova dropped column 2 and tested the equality

of the marginal mean for row 2 with the average of the marginal means from rows 1 and 3, using
only the remaining cell means. This translates into the following constraint:

2(po1 + pog + poa + p2s) = p11 + p1s + p1a + pas + st + a3 + fi3a + s (1)

Now that we know the constraints that anova used to test for the main effects of race, we can use
custom contrasts to reproduce the anova test result.

. contrast {race#agegrp -1 -1 -1 -1 -1 00 0 0 011111}
> {race#fagegrp 1 0 1 1 1-20-2-2-21011 1}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
df F P>F
race#agegrp
@ @ 1 2.37 0.1291
(2) (@ 1 1.03 0.3138
Joint 2 1.70 0.1914
Residual 56

The row labeled (1) (1) is the test for 1. = ps.; it was the first specified contrast. The row labeled
(2) (2) is the test for the constraint in (1); it was the second specified contrast. The row labeled
Joint is an overall test for the main effects of race.

Nested effects

contrast has the | operator for computing simple effects when the levels of one factor are nested
within the levels of another. Here is a fictional example where we are interested in the effect of
five methods of teaching algebra on students’ scores for the math portion of the SAT. Suppose three
algebra classes are randomly sampled from classes using each of the five methods so that class is
nested in method as demonstrated in the following tabulation.
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. use http://www.stata-press.com/data/r12/SAT
(Artificial SAT data)

. tabulate class method

method
class 1 2 3 4 5 Total
1 5 0 0 0 0 5
2 5 0 0 0 0 5
3 5 0 0 0 0 5
4 0 5 0 0 0 5
5 0 5 0 0 0 5
6 0 5 0 0 0 5
7 0 0 5 0 0 5
8 0 0 5 0 0 5
9 0 0 5 0 0 5
10 0 0 0 5 0 5
11 0 0 0 5 0 5
12 0 0 0 5 0 5
13 0 0 0 0 5 5
14 0 0 0 0 5 5
15 0 0 0 0 5 5
Total 15 15 15 15 15 75

We will consider method as fixed and class nested in method as random. To use class nested

in method as the error term for method, we can specify the following anova model:

. anova score method / class|method /

Number of obs = 75 R-squared = 0.7599

Root MSE = 71.8517 Adj R-squared = 0.7039

Source Partial SS df MS F Prob > F

Model 980312 14 70022.2857 13.56 0.0000

method 905872 4 226468 30.42 0.0000
class|method 74440 10 7444

class|method 74440 10 7444 1.44 0.1845
Residual 309760 60 b5162.66667
Total 1290072 74 17433.4054

Like anova, contrast allows the | operator, which specifies that one variable is nested in the
levels of another. We can use contrast to test the main effects of method and the simple effects

of class within method.
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. contrast method class|method

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
method (not testable)

class|method

1 2 2.80 0.0687

2 2 0.91 0.4089

3 2 1.10 0.3390

4 2 0.22 0.8025

5 2 2.18 0.1221

Joint 10 1.44 0.1845
Residual 60

Although contrast was able to perform the individual tests for the simple effects of class within
method, empty cells in the interaction between method and class prevented contrast from testing
for a main effect of method. Here we add the emptycells(reweight) option so that contrast
can take the empty cells into account when computing the marginal means for method.

. contrast method class|method, emptycells(reweight)
Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F
method 4 43.87 0.0000
class|method

1 2 2.80 0.0687

2 2 0.91 0.4089

3 2 1.10 0.3390

4 2 0.22 0.8025

5 2 2.18 0.1221

Joint 10 1.44 0.1845

Residual 60

Now contrast does report a test for the main effects of method. However, if we compare this with
the anova results, we will see that the results are different. They are different because contrast
uses the residual error term to compute the F' test by default. Using notation similar to anova, we
can use the / operator to specify a different error term for the test. Therefore, we can reproduce the
test of main effects from our anova command by typing
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. contrast method / class|method /, emptycells(reweight)
Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F

method 4 30.42 0.0000
class|method 10 (denominator)

class|method

1 2 2.80 0.0687

2 2 0.91 0.4089

3 2 1.10 0.3390

4 2 0.22 0.8025

5 2 2.18 0.1221

Joint 10 1.44 0.1845

Residual 60

Multiple comparisons

We have seen that contrast can report the individual linear combinations that make up the
requested effects. Depending upon the specified option, contrast will report confidence intervals,
p-values, or both in the effects table. By default, the reported confidence intervals and p-values are
not adjusted for multiple comparisons. Use the mcompare () option to adjust the confidence intervals
and p-values for multiple comparisons of the individual effects.

Let’s compute the grand mean effects of race using the g. operator. We also specify the mcom-
pare(bonferroni) option to compute p-values and confidence intervals using Bonferroni’s adjust-
ment.

. use http://www.stata-press.com/data/ri12/cholesterol
(Artificial cholesterol data)

. anova chol race##agegrp
(output omitted )

. contrast g.race, mcompare(bonferroni)

Contrasts of marginal linear predictions

Margins : asbalanced
Bonferroni
df F P>F P>F

race
(1 vs mean) 1 7.07 0.0100 0.0301
(2 vs mean) 1 2.82 0.0982 0.2947
(3 vs mean) 1 0.96 0.3312 0.9936
Joint 2 3.62 0.0329
Residual 60

Note: Bonferroni-adjusted p-values are reported for tests
on individual contrasts only.
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Number of

Comparisons

race 3

Bonferroni
Contrast Std. Err. [95% Conf. Intervall]
race

(1 vs mean) 4.17666 1.570588 .3083743 8.044945
(2 vs mean) -2.638058 1.570588 -6.506343 1.230227
(3 vs mean) -1.538602 1.570588 -5.406887 2.329684

The last table reports a Bonferroni-adjusted confidence interval for each individual contrast. (Use
the effects option to add p-values to the last table.) The first table includes a Bonferroni-adjusted
p-value for each test that is not a joint test.

Joint tests are never adjusted for multiple comparisons. For example,

. contrast race@agegrp, mcompare(bonferroni)

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
raceQagegrp
2 1.37 0.2620
2 2 2.44 0.0958
3 2 3.12 0.0512
4 2 0.53 0.5889
5 2 2.90 0.0628
Joint 10 2.07 0.0409
Residual 60

Note: Bonferroni-adjusted p-values are reported
for tests on individual contrasts only.

Number of
Comparisons

race@agegrp 10
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Bonferroni
Contrast  Std. Err. [95% Conf. Intervall
race@agegrp

(2 vs base) 1 6.841855 6.082862 -10.88697 24.57068
(2 vs base) 2 -11.80631 6.082862 -29.53513 5.922513
(2 vs base) 3 -14.40607 6.082862 -32.13489 3.322751
(2 vs base) 4 -4.101691 6.082862 -21.83051 13.62713
(2 vs base) 5 -10.60137 6.082862 -28.33019 7.127448
(3 vs base) 1 -2.975244 6.082862 -20.70407 14.75358
(3 vs base) 2 -11.45679 6.082862 -29.18561 6.272031
(3 vs base) 3 -11.41958 6.082862 -29.1484 6.309244
(3 vs base) 4 -6.17807 6.082862 -23.90689 11.55075
(3 vs base) 5 3.453375 6.082862 -14.27545 21.1822

Here we have five tests of simple effects with two degrees of freedom each. No Bonferroni-adjusted
p-values are available for these tests, but the confidence intervals for the individual contrasts are
adjusted.

Unbalanced data

By default, contrast treats all factors as balanced when computing marginal means. By balanced,
we mean that contrast assumes an equal number of observations in each level of each factor and
an equal number of observations in each cell of each interaction. If our data are balanced, there
is no issue. If, however, our data are not balanced, we might prefer that contrast use the actual
cell frequencies from our data in computing marginal means. We instruct contrast to use observed
frequencies by adding the asobserved option.

Even if our data are unbalanced, we might still want contrast to compute balanced marginal
means. It depends on what we want to test and what our data represent. If we have data from a designed
experiment that started with an equal number of males and females but the data became unbalanced
because the data from a few males were unusable, we might still want our margins computed as
though the data were balanced. If, however, we have a representative sample of individuals from Los
Angeles with 40% of European descent, 34% African-American, 25% Hispanic, and 1% Australian,
we probably want our margins computed using these representative frequencies. We do not want
Australians receiving the same weight as Europeans.

The following examples will use an unbalanced version of our dataset.

. use http://www.stata-press.com/data/r12/cholesterol3
(Artificial cholesterol data, unbalanced)

. tab race agegrp

agegrp
race 10-19 20-29 30-39 40-59 60-79 Total
black 1 5 5 4 3 18
white 4 5 7 4 4 24
other 3 7 6 5 4 25
Total 8 17 18 13 11 67

The row labeled Total gives observed cell frequencies for age group. These can be obtained
by summing frequencies from the cells in the corresponding column. In this respect, we can also
refer to them as marginal frequencies. We use the terms marginal frequencies and cell frequencies
interchangeably below.
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We begin by fitting the two-factor model with an interaction.

. anova chol race##agegrp

Number of obs = 67 R-squared = 0.8179

Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob > F

Model 16379.9926 14 1169.99947 16.68 0.0000

race 230.754396 2 115.377198 1.64 0.2029

agegrp 13857.9877 4 3464.49693 49.39 0.0000

race#agegrp 857.815209 8 107.226901 1.53 0.1701
Residual 3647.2774 52 70.13995
Total 20027.27 66 303.443485

Using observed cell frequencies

Recall that the marginal means are computed from the cell means. Treating the factors as balanced
yields the following marginal means for race:

1

m. = g(““ + pag + pas + paa + pas)
1

N2. = 5(/121 + o2 + fiog + oa + pos)
1

N3 = g(um + p132 + 3z + p3a + fi3s)

If we have a fixed population and unbalanced cells, then the 7);. do not represent population means. If,
however, our data are representative of the population, we can use the frequencies from our estimation
sample to estimate the population marginal means, denoted ;..

Here are the results of testing for a main effect of race, treating all the factors as balanced.

. contrast r.race
Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race
(2 vs 1) 1 3.28 0.0757
(3 vs 1) 1 1.50 0.2263
Joint 2 1.64 0.2029
Residual 52
Contrast Std. Err. [95% Conf. Intervall]
race
(2 vs 1) -5.324254 2.93778 -11.21934 .5708338
(3 vs 1) -3.596867 2.93778 -9.491955 2.298221

The row labeled (2 vs 1) is the test for 2. = 17.. The row labeled (3 vs 1) is the test for 3. = 1;..
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If the observed marginal frequencies are representative of the distribution of the levels of agegrp,
we can use them to form the marginal means of chol for each of the levels of race from the cell
means.

1

H1. = @(8;111 + 17p12 + 18p13 + 13114 + 11p15)
1

Ho. = @(8[!21 + 1722 + 1803 + 1304 + 11p05)
1

ps. = —(8ps1 + 17p32 + 18133 + 13134 + 11pu35)

67
Here are the results of testing for the main effects of race, using the observed marginal frequencies:

. contrast r.race, asobserved

Contrasts of marginal linear predictions

Margins : asobserved
df F P>F
race
(2 vs 1) 1 7.25 0.0095
(3 vs 1) 1 3.89 0.0538
Joint 2 3.74 0.0304
Residual 52
Contrast  Std. Err. [95% Conf. Intervall]
race
(2 vs 1) -7.232433 2.686089 -12.62246 -1.842402
(3 vs 1) -5.231198 2.651203 -10.55123 .0888295

The row labeled (2 vs 1) is the test for po. = p1.. The row labeled (3 vs 1) is the test for ps. = ..
Both tests were insignificant when we tested the cell means resulting from balanced frequencies;
however, when we tested the cell means from observed frequencies, the first test is significant beyond
the 5% level (and the second test is nearly so).

Here we reproduce the results of the asobserved option with custom contrasts. Because we are
modifying the way that the marginal means are constructed from the cell means, we will specify the
contrasts on the predicted cell means. We use macro expansion, =exp, to evaluate the fractions instead
of approximating them with decimals. Macro expansion guarantees that the contrast coefficients sum
to zero. For more information, see Macro expansion operators and function in [P] macro.
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. contrast {race#tagegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/6T7’
> ‘=8/67° ‘=17/67° ‘=18/67° ‘=13/67° ‘=11/67’}
> {race#agegrp -‘=8/67’> -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> 0 0 0 0 0

> ‘=8/67° ‘=17/67° ‘=18/67° ‘=13/67° ‘=11/67’}

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race#agegrp
w 1 7.25 0.0095
(2) (2 1 3.89 0.0538
Joint 2 3.74 0.0304
Residual 52
Contrast  Std. Err. [95% Conf. Intervall
race#agegrp
@ @ -7.232433 2.686089 -12.62246  -1.842402
(2) (2 -5.231198  2.651203 -10.55123 .0888295

Weighted contrast operators

contrast provides observation-weighted versions of five of the contrast operators—gw., hw.,
jw., pw., and qw.. The first three of these operators perform comparisons of means across cells, and
like the marginal means just discussed, these means can be computed in two ways: 1) as though the
cell frequencies were equal or 2) using the observed cell frequencies from the estimation sample. The
weighted operators provide versions of the standard (as balanced) operators that weight these means
by their cell frequencies. The two orthogonal polynomial operators involve similar adjustments for
weighting.

Let’s examine what this means by using the gw. operator. The gw. operator is a weighted version
of the g. operator. The gw. operator computes the grand mean using the cell frequencies for race
obtained from the model fit.

Here we test the effects of race, comparing each level with the weighted grand mean but otherwise
treating the factors as balanced in the marginal mean calculations.

. contrast gw.race

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
race
(1 vs mean) 1 2.78 0.1014
(2 vs mean) 1 2.06 0.1573
(3 vs mean) 1 0.06 0.8068
Joint 2 1.64 0.2029

Residual 52
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Contrast Std. Err. [95% Conf. Intervall]

race
(1 vs mean) 3.24931 1.948468 -.6605779 7.159198
(2 vs mean) -2.074944 1.44618 -4.976915 .8270276
(3 vs mean) -.347557 1.414182 -3.18532 2.490206

The observed marginal frequencies of race are 18, 24, and 25. Thus the row labeled (1 vs mean) tests
1. = (18n1.+24n9.4+25n3.) /67; the row labeled (2 vs mean) tests 72. = (181;1. +24n9.+2515.) /67;
and the row labeled (3 vs mean) tests 73. = (1811. + 24n9. + 2573.)/67.

Now we reproduce the above results using custom contrasts. We are weighting the calculation
of the grand mean from the marginal means for each of the races, but we are not weighting the
calculation of the marginal means themselves. Therefore, we can specify the custom contrast on the
marginal means for race instead of on the cell means.

. contrast {race ‘=49/67’ -‘=24/67’ -‘=25/67’}
> {race -‘=18/67’ ‘=43/67’ -‘=25/67’}
> {race -‘=18/67’ -‘=24/67° ‘=42/67°}
Contrasts of marginal linear predictions
Margins : asbalanced
df F P>F
race
(1 1 2.78 0.1014
(2) 1 2.06 0.1573
(3) 1 0.06 0.8068
Joint 2 1.64 0.2029
Residual 52
Contrast  Std. Err. [95% Conf. Intervall]
race
(1 3.24931 1.948468 -.6605779 7.159198
(2) -2.074944 1.44618 -4.976915 .8270276
(3 -.347557 1.414182 -3.18532 2.490206

Now we will test for each race the difference between the marginal mean and the weighted grand
mean, treating the factors as observed in the marginal mean calculations.
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. contrast gw.race, asobserved wald ci

Contrasts of marginal linear predictions

Margins : asobserved
df F P>F
race
(1 vs mean) 1 6.81 0.0118
(2 vs mean) 1 3.74 0.0587
(3 vs mean) 1 0.26 0.6099
Joint 2 3.74 0.0304
Residual 52
Contrast Std. Err. [95% Conf. Intervall]
race
(1 vs mean) 4.542662 1.740331 1.050432 8.034891
(2 vs mean) -2.689771 1.39142 -5.481859 .1023172
(3 vs mean) -.6885363 1.341261 -3.379973 2.002901

The row labeled (1 vs mean) tests p1. = (1841. + 24pus. + 25u3.)/67; the row labeled (2
vs mean) tests po. = (18uy. + 24pus. + 25u3.)/67;, and the row labeled (3 vs mean) tests
Here we use a custom contrast to reproduce the above result testing p1. = (1811, + 24pus. +

25u3.)/67. Because both the calculation of the marginal means and the calculation of the grand mean
are adjusted, we specify the custom contrast on the cell means.

. contrast {race#agegrp ‘=49/67%8/67° ‘=49/67*17/67° ‘=49/67%18/67’
> €=49/67x13/67° ‘=49/67x11/67°

> -¢=24/67+8/67° -‘=24/67x17/67° -‘=24/67*18/6T’
> -¢=24/67x13/67° -‘=24/67x11/67’

> -¢=25/67x8/67° -‘=25/67*17/67° -‘=25/67*18/67°
> -¢=25/67%13/67°> -‘=25/67*11/67’}, nowald

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. [95% Conf. Interval]
race#agegrp
1 @ 4.542662  1.740331 1.050432 8.034891

The Helmert and reverse Helmert contrasts also involve calculating averages of the marginal means;
therefore, weighted versions of these parameters are available as well. The hw. operator is a weighted
version of the h. operator that computes the mean of the subsequent levels using the cell frequencies
obtained from the model fit. The jw. operator is a weighted version of the j. operator that computes
the mean of the previous levels using the cell frequencies obtained from the model fit.

For orthogonal polynomials, we can use the pw. and qw. operators, which are the weighted
versions of the p. and q. operators. In this case, the cell frequencies from the model fit are used in
the calculation of the orthogonal polynomial contrast coefficients.
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Testing factor effects on slopes

For linear models where the independent variables are all factor variables, the linear prediction
at fixed levels of the factor variables turns out to be a cell mean. With these models, contrast
computes and tests the effects of the factor variables on the expected mean of the dependent variable.
When factor variables are interacted with continuous variables, contrast distinguishes factor effects
on the intercept from factor effects on the slope.

Here we have 1980 census data including information on the birth rate (brate), the median age
(medage), and the region of the country (region) for each of the 50 states. We can fit an ANCOVA
model for brate using main effects of the factor variable region and the continuous variable medage.

. use http://www.stata-press.com/data/r12/census3
(1980 Census data by state)

. label list cenreg

cenreg:
1 NE
2 N Cntrl
3 South
4 West
. anova brate i.region c.medage
Number of obs = 50 R-squared = 0.8264
Root MSE = 12.7575 Adj R-squared = 0.8110
Source Partial SS df MS F Prob > F
Model 34872.8589 4 8718.21473 53.57 0.0000
region 2197.75453 3 732.584844 4.50 0.0076
medage 15327.423 1 15327.423 94.18 0.0000

Residual 7323.96108 45 162.754691

Total 42196.82 49 861.159592

For those more comfortable with linear regression, this is equivalent to the regression model
. regress brate i.region c.medage

You may use either.

We can use contrast to compute reference category effects for region. These contrasts compare
the adjusted means of regions 2, 3, and 4 with the adjusted mean of region 1.

. contrast r.region

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
region

(2vs 1) 1 2.24 0.1417
(3vs 1) 1 0.78 0.3805
(4 vs 1) 1 10.33 0.0024
Joint 3 4.50 0.0076

Residual 45
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Contrast  Std. Err. [95% Conf. Intervall]

region
(2 vs 1) 9.061063 6.057484 -3.139337 21.26146
(3 vs 1) 5.06991 5.72396 -6.458738 16.59856
(4 vs 1) 21.71328 6.755616 8.106774 35.31979

Let’s add the interaction between region and medage to the model.

. anova brate region##c.medage

Number of obs = 50 R-squared = 0.9000

Root MSE = 10.0244 Adj R-squared = 0.8833

Source Partial SS df MS F Prob > F

Model 37976.3149 7 5425.18784 53.99 0.0000

region 3405.07044 3 1135.02348 11.30 0.0000

medage 5279.71448 1 5279.71448 52.54 0.0000

region#medage 3103.45597 1034.48532 10.29 0.0000
Residual 4220.5051 42 100.488217
Total 42196.82 49 861.159592

The parameterization for the expected value of brate as a function of region and medage is given

by

E(brate|region = i,medage) = o + «; + fomedage + O;medage

where « is the intercept and [y is the slope of medage. We are modeling the effects of region
in two different ways. The «; parameters measure the effect of region on the intercept, and the (3;

parameters measure the effect of region on the slope of medage.

contrast computes and tests effects on slopes separately from effects on intercepts. First, we

will compute the reference category effects of region on the intercept:

. contrast r.region

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
region
(2 vs 1) 1 0.09 0.7691
(3 vs 1) 1 0.01 0.9389
(4 vs 1) 1 8.50 0.0057
Joint 3 11.30 0.0000
Residual 42
Contrast  Std. Err. [95% Conf. Interval]
region
(2 vs 1) -49.38396 167.1281 -386.6622 287.8942
(3 vs 1) -9.058983 117.424 -246.0302 227.9123
(4 vs 1) 343.0024 117.6547 105.5656 580.4393
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Now we will compute the reference category effects of region on the slope of medage:

. contrast r.region#c.medage

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
region#c.medage
(2 vs 1) 1 0.16 0.6917
(3 vs 1) 1 0.03 0.8558
(4 vs 1) 1 8.18 0.0066
Joint 3 10.29 0.0000
Residual 42
Contrast Std. Err. [95% Conf. Interval]
region#c.medage
(2 vs 1) 2.208539 5.530981 -8.953432 13.37051
(3 vs 1) .6928008 3.788735 -6.953175 8.338777
(4 vs 1) -10.94649 3.827357 -18.67041 -3.22257

At the 5% level, the slope of medage for the fourth region differs from that of the first region,
but at that level of significance, we cannot say that the slope for the second or third region differs
from that of the first.

This model is simple enough that the reference category contrasts reproduce the coefficients for
region and for the interactions in an equivalent model fit by regress.

. regress brate region##c.medage

Source SS df MS Number of obs = 50

F(C 7, 42) = 53.99

Model 37976.3149 7 5425.18784 Prob > F = 0.0000

Residual 4220.5051 42 100.488217 R-squared = 0.9000

Adj R-squared = 0.8833

Total 42196.82 49 861.159592 Root MSE = 10.024

brate Coef . Std. Err. t P>t [95% Conf. Intervall]
region

2 -49.38396 167.1281 -0.30 0.769 -386.6622 287.8942

3 -9.058983 117.424 -0.08 0.939 -246.0302 227.9123

4 343.0024 117.6547 2.92 0.006 105.5656 580.4393

medage -8.802707 3.462865 -2.54 0.015 -15.79105 -1.814362
region#
c.medage

2 2.208539 5.530981 0.40 0.692 -8.953432 13.37051

3 .6928008 3.788735 0.18 0.856 -6.953175 8.338777

4 -10.94649 3.827357 -2.86 0.007 -18.67041 -3.22257

_cons 411.8268 108.2084 3.81 0.000 193.4533 630.2002

This will not be the case for models that are more complicated.
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Chow tests

Now let’s suppose we are fitting a model for birth rates on median age and marriage rate. We are
also interested in whether the regression coefficients differ for states in the east versus states in the
west. We use census divisions to create a new variable, west, that indicates which states are in the
western half of the United States.

. generate west = inlist(division, 4, 7, 8, 9)

We fit a model that includes a separate intercept for west as well as an interaction between west
and each of the other variables in our model.

. regress brate i.west##c.medage i.west##c.mrgrate

Source SS df MS Number of obs = 50
F( 5, 44) = 92.09
Model 38516.2172 5 7703.24344 Prob > F = 0.0000
Residual 3680.60281 44 83.6500639 R-squared = 0.9128
Adj R-squared = 0.9029
Total 42196.82 49 861.159592 Root MSE = 9.146
brate Coef. Std. Err. t P>|t] [95% Conf. Intervall
1.west 327.8733 58.71793 5.58 0.000 209.5351 446.2115
medage -7.532304 1.387624 -5.43 0.000 -10.32888 -4.735731
west#
c.medage
1 -10.11443 1.849103 -5.47 0.000 -13.84105 -6.387808
mrgrate 828.6813 643.3443 1.29 0.204 -467.8939 2125.257
west#
c.mrgrate
1 -800.8036 645.488 -1.24 0.221 -2101.699 500.092
_cons 366.5325 47.08904 7.78 0.000 271.6308 461.4343

We can test the effects of west on the intercept and on the slopes of medage and mrgrate. We will
specify all these effects in a single contrast command and include the overall option to obtain
a joint test of effects, that is, a test that the coefficients for eastern states and for western states are
equal.

. contrast west west#c.medage west#c.mrgrate, overall

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
west 1 31.18 0.0000
west#c.medage 1 29.92 0.0000
west#c.mrgrate 1 1.54 0.2213
Overall 3 22.82 0.0000
Residual 44

This overall test is referred to as a Chow test in econometrics (Chow 1960).
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Beyond linear models

contrast may be used after almost any estimation command, with the added benefit that contrast
provides direct support for testing main and interaction effects that is not available in most estimation
commands. To illustrate, we will use contrast with results from a logistic regression. Stata’s logit
command fits logistic regression models, reporting the fitted regression coefficients. The logistic
command fits the same models but reports odds ratios. Although contrast can report odds ratios for
the computed effects, the tests are all computed from linear combinations of the model coefficients
regardless of which estimation command we used.

Suppose we have data on patient satisfaction for three hospitals in a city. Let’s begin by fitting a
model for satisfied, whether the patient was satisfied with his or her treatment, using the main
effects of hospital:

. use http://www.stata-press.com/data/r12/hospital, clear
(Artificial hospital satisfaction data)

. logit satisfied i.hospital

Iteration O: log likelihood = -393.72216
Iteration 1: log likelihood = -387.55736
Iteration 2: log likelihood = -387.4768
Iteration 3: log likelihood = -387.47679

Logistic regression Number of obs = 802

LR chi2(2) = 12.49

Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coef. Std. Err. z P>|z| [95% Conf. Intervall
hospital

2 .5348129 .2136021 2.50 0.012 .1161604 .9534654

3 . 7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431

Because there are no other independent variables in this model, the reference category effects of
hospital computed by contrast will match the fitted model coefficients, assuming a common
reference level.

. contrast r.hospital

Contrasts of marginal linear predictions

Margins : asbalanced
df chi2 P>chi2
hospital
(2 vs 1) 1 6.27 0.0123
(3 vs 1) 1 10.96 0.0009
Joint 2 12.55 0.0019
Contrast  Std. Err. [95% Conf. Interval]
hospital
(2 vs 1) .5348129 .2136021 .1161604 .9534654
(3 vs 1) .7354519 .2221929 .2999618 1.170942
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We see that the reference category effects are equal to the fitted coefficients. They also have the same
interpretation, the difference in log odds from the reference category. The top table also provides a
joint test of these effects, a test of the main effects of hospital.

We also have information on the condition for which each patient is being treated in the variable
illness. Here we fit a logistic regression using a two-way crossed model of hospital and illness.

. label list illness
illness:
1 heart attack
2 stroke
3 pneumonia
4 lung disease

5 kidney failure
. logistic satisfied hospital##illness
Logistic regression Number of obs = 802
LR chi2(14) = 38.51
Prob > chi2 = 0.0004
Log likelihood = -374.46865 Pseudo R2 = 0.0489
satisfied | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
hospital
2 1.226496 .5492177 0.46 0.648 .509921 2.950049
3 1.711111 .8061016 1.14 0.254 .6796395 4.308021
illness
2 1.328704 .6044214 0.62 0.532 .544779 3.240678
3 .7993827 .3408305 -0.53  0.599 .3466015 1.843653
4 1.231481 .5627958 0.46 0.649 .5028318 3.016012
5 1.25 .5489438 0.51 0.611 .5285676 2.956102
hospital#
illness
22 2.434061 1.768427 1.22  0.221 .5860099 10.11016
23 4.045805  2.868559 1.97 0.049 1.008058 16.23769
24 .54713 .3469342 -0.95 0.342 .1578866 1.89599
25 1.594425  1.081104 0.69 0.491 .4221288 6.022312
32 .5416535 .3590089 -0.93 0.355 .1477555 1.985635
33 1.579502  1.042504 0.69 0.489 .4332209 5.758783
34 3.137388  2.595748 1.38 0.167 .6198955 15.87881
35 1.672727  1.226149 0.70 0.483 .3976256 7.036812
_cons 2.571429 .8099239 3.00 0.003 1.386983 4.767358

Using contrast, we can obtain an ANOVA-style table of tests for the main effects and interaction
effects of hospital and illness.



contrast — Contrasts and linear hypothesis tests after estimation 365

. contrast hospital##illness

Contrasts of marginal linear predictions

Margins : asbalanced
df chi2 P>chi2
hospital 2 14.92 0.0006
illness 4 4.09 0.3937
hospital#illness 8 20.45 0.0088

Our interaction effect is significant, so we decide to evaluate the simple reference category effects of
hospital within illness. We are particularly interested in patient satisfaction when being treated
for a heart attack or stroke, so we will use the i. operator to limit our output to simple effects within
the first two illnesses.

. contrast r.hospital@i(l 2).illness, nowald

Contrasts of marginal linear predictions

Margins : asbalanced
Contrast  Std. Err. [95% Conf. Intervall
hospital@illness
(2vs 1) 1 .2041611 4477942 -.6734995 1.081822
(2vs 1) 2 1.093722 .5721288 -.0276296 2.215074
Bvs 1)1 .5371429 .4710983 -.3861928 1.460479
(3vs 1) 2 -.0759859 .4662325 -.9897847 .8378129

The row labeled (2 vs 1) 1 estimates simple effects on the log odds when comparing hospital 2
with hospital 1 for patients having heart attacks. These effects are differences in the cell means of
the linear predictions.

We can add the or option to report an odds ratio for each of these simple effects:

. contrast r.hospital@i(l 2).illness, nowald or

Contrasts of marginal linear predictions

Margins : asbalanced
0dds Ratio  Std. Err. [95% Conf. Intervall
hospital@illness
(2vs 1)1 1.226496 .5492177 .509921 2.950049
(2vs 1) 2 2.985366 1.708014 .9727486 9.162089
(Bvs 1)1 1.711111 .8061016 .6796395 4.308021
Bvs 1) 2 .9268293 .4321179 .3716567 2.311306

These odds ratios are just the exponentiated version of the contrasts in the previous table.

For contrasts of the margins of nonlinear predictions, such as predicted probabilities, see [R] margins,
contrast.
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Multiple equations

contrast works with models containing multiple equations. Commands such as intreg and
gnbreg allow their ancillary parameters to be modeled as functions of independent variables, and
contrast can compute and test effects within these equations. In addition, contrast allows a special
pseudofactor for equation—called _eqns—when working with results from manova, mvreg, mlogit,
and mprobit.

In example 4 of [MV] manova, we fit a two-way MANOVA model using data from Woodard (1931).
Here we will fit this model using mvreg. The data represent patients with jaw fractures. y1 is the
patient’s age, y2 is blood lymphocytes, and y3 is blood polymorphonuclears. Two factor variables,
gender and fracture, are used as independent variables.

. use http://www.stata-press.com/data/r12/jaw
(Table 4.6 Two-Way Unbalanced Data for Fractures of the Jaw -- Rencher (1998))

. mvreg yl y2 y3 = gender##fracture, vsquish
Equation Obs Parms RMSE "R-sq" F P
yi 27 6 10.21777 0.4086 2.902124 0.0382
y2 27 6 5.268768 0.4743 3.78967 0.0133
y3 27 6 4.993647 0.4518 3.460938 0.0195
Coef. Std. Err. t P>|t| [95% Conf. Intervall
yi
2.gender -17.5 11.03645 -1.59 0.128 -40.45156 5.451555
fracture
2 -12.625 5.518225 -2.29 0.033 -24.10078 -1.149222
3 5.666667 5.899231 0.96 0.348 -6.601456 17.93479
gender#
fracture
22 21.375 12.68678 1.68 0.107 -5.008595 47.75859
23 8.833333 13.83492 0.64 0.530 -19.93796 37.60463
_cons 39.5 4.171386 9.47 0.000 30.82513 48.17487
y2
2.gender 20.5 5.69092 3.60 0.002 8.665083 32.33492
fracture
2 -3.125 2.84546 -1.10 0.285 -9.042458 2.792458
3 .6666667 3.041925 0.22 0.829 -5.659362 6.992696
gender#
fracture
22 -19.625 6.541907 -3.00 0.007 -33.22964 -6.02036
23 -23.66667 7.133946 -3.32 0.003 -38.50252 -8.830813
_cons 35.5 2.150966 16.50 0.000 31.02682 39.97318
y3
2.gender -18.16667 5.393755 -3.37 0.003 -29.38359 -6.949739
fracture
2 1.083333 2.696877 0.40 0.692 -4.52513 6.691797
3 -3 2.883083 -1.04 0.310 -8.9957 2.9957
gender#
fracture
22 19.91667 6.200305 3.21 0.004 7.022426 32.81091
23 23.5 6.76143 3.48 0.002 9.438837 37.56116
_cons 61.16667 2.038648 30.00 0.000 56.92707 65.40627

contrast computes Wald tests using the coefficients from the first equation by default.
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. contrast gender##fracture

Contrasts of marginal linear predictions

Margins
df F P>F
yi
gender 1 2.16 0.1569
fracture 2 2.74 0.0880
gender#fracture 2 1.69 0.2085
Residual 21

Here we use the equation() option to compute the Wald tests in the y2 equation:

. contrast gender##fracture, equation(y2)

Contrasts of marginal linear predictions

Margins
df F P>F
y2
gender 1 5.41 0.0301
fracture 2 7.97 0.0027
gender#fracture 2 5.97 0.0088
Residual 21

Here we use the equation index to compute the Wald tests in the third equation:

. contrast gender##fracture, equation(#3)

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
y3
gender 1 2.23 0.1502
fracture 2 6.36 0.0069
gender#fracture 2 6.66 0.0058
Residual 21

Here we use the atequations option to compute Wald tests for each equation in the model. We

also use the vsquish option to suppress the extra blank lines between terms.
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. contrast gender##fracture, atequations vsquish

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
yi
gender 1 2.16 0.1569
fracture 2 2.74 0.0880
gender#fracture 2 1.69 0.2085
y2
gender 1 5.41 0.0301
fracture 2 7.97 0.0027
gender#fracture 2 5.97 0.0088
y3
gender 1 2.23 0.1502
fracture 2 6.36 0.0069
gender#fracture 2 6.66 0.0058
Residual 21

Because we are investigating the results from mvreg, we can use the special _eqns factor to test
for a marginal effect on the means among the dependent variables:

. contrast _eqns

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
_eqns 2 49.19 0.0000
Residual 21

Here we test whether the main effects of gender differ among the dependent variables:

. contrast gender#_eqns

Contrasts of marginal linear predictions

Margins : asbalanced
df F P>F
gender#_eqns 2 3.61 0.0448

Residual 21
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Although it is not terribly interesting in this case, we can even calculate contrasts across equations:

. contrast gender#r._eqns

Contrasts of marginal linear predictions

Margins : asbalanced
daf F P>F
gender#_eqns
(joint) (2 vs 1) 1 5.82 0.0251
(joint) (3 vs 1) 1 0.40 0.5352
Joint 2 3.61 0.0448
Residual 21

Saved results
contrast saves the following in r():

Scalars
r(df_r) variance degrees of freedom, from original estimation results

r(k_terms)

number of terms in termlist

r(level) confidence level of confidence intervals
Macros

r(cmd) contrast

r(cmdline) command as typed

r(est_cmd)
r(est_cmdline)

e(cmd) from original estimation results
e(cmdline) from original estimation results

r(title) title in output
r(overall) overall or empty
r(emptycells) empspec from emptycells()
r (mcmethod) method from mcompare ()
r(mctitle) title for method from mcompare ()
r(mcadjustall) adjustall or empty
r(margin_method) asbalanced or asobserved
Matrices
r(b) contrast estimates
r (V) variance—covariance matrix of the contrast estimates
r(error) contrast estimability codes;
0 means estimable,
8 means not estimable
r(L) matrix of contrasts applied to the model coefficients
r(table) matrix containing the contrasts with their standard errors,
test statistics, p-values, and confidence intervals
r(F) vector of F statistics; r(df _r) present
r(chi2) vector of x? statistics; r(df_r) not present
r(p) vector of p-values corresponding to r(F) or r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)
r(df2) vector of denominator degrees of freedom corresponding to r (F)
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contrast with the post option saves the following in e():

Scalars
e(df_r) variance degrees of freedom, from original estimation results
e(k_terms) number of terms in termlist
Macros
e(cmd) contrast
e(cmdline) command as typed
e(est_cmd) e(cmd) from original estimation results
e(est_cmdline) e(cmdline) from original estimation results
e(title) title in output
e(overall) overall or empty
e(emptycells) empspec from emptycells()
e(margin_method) asbalanced or asobserved
e(properties) bV
Matrices
e(b) contrast estimates
e(V) variance—covariance matrix of the contrast estimates
e(error) contrast estimability codes;
0 means estimable,
8 means not estimable
e(L) matrix of contrasts applied to the model coefficients
e(F) vector of F statistics; e(df _r) present
e(chi2) vector of x? statistics; e(df_r) not present
e(p) vector of p-values corresponding to e(F) or e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)
e(df2) vector of denominator degrees of freedom corresponding to e (F)

Methods and formulas
contrast is implemented as an ado-file.
Methods and formulas are presented under the following headings:

Marginal linear predictions
Contrast operators
Reference level contrasts
Adjacent contrasts
Grand mean contrasts
Helmert contrasts
Reverse Helmert contrasts
Orthogonal polynomial contrasts
Contrasts within interactions
Multiple comparisons

Marginal linear predictions

contrast treats intercept effects separately from slope effects. To illustrate, consider the following
parameterization for a quadratic regression of ¢ on x that also models the effects of two factor variables
A and B, where the levels of A are indexed by ¢ = 1,...,k, and the levels of B are indexed by
i=1,... k.

E(ylA =1i,B = j,z) = noij + miT + n2ijx”

Noij = Mo + aoi + Boj + (B)oi;
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Mij =m + a1 + B1j + (@f)1i;

N2ij = N2 + a2; + Boj + (f)2i;

We have partitioned the coefficients into three groups of parameters: 7g;; is a cell prediction for the
intercept, 7171;; is a cell prediction for the slope on x, and 772;; is a cell prediction for the slope on
2. For the intercept parameters, 7 is the intercept, cvy; represents a main effect for factor A at its
ith level, (o, represents a main effect for factor B at its jth level, and (/3)o;; represents an effect
for the interaction of A and B at the ijth level. The individual coefficients in 1;; and 72,; have
similar interpretations, but the effects are on the slopes of  and x2, respectively.

The marginal intercepts for A are given by

ky
Noi. = Z fijnoiz
j=1

where f;; is a marginal relative frequency of the jth level of B and is controlled by the asobserved
and emptycells(reweight) options according to

1/ky, default
_ w.j/w.., asobserved
fis = 1/(ky —e;), emptycells(reweight)
wij /Wi, emptycells(reweight) and asobserved

Above, w;; is the number of individuals with A at its ith level and B at its jth,

kp
w;. = E wl-j
j=1

ka
i=1

Jj=1

and e;. is the number of empty cells where A is at its ith level. The marginal intercepts for B and
marginal slopes on = and 2% are similarly defined.

Estimates for the cell intercepts and slopes are computed using the corresponding linear combination
of the coefficients from the fitted model. For example, the estimated cell intercepts are computed
using

Noij = 1o + Qi + 303‘ + (aB)oij

and the estimated marginal intercepts for A are computed as
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ky
Noi. = E fij770ij
Jj=1

Contrast operators

contrast performs Wald tests using linear combinations of marginal linear predictions. For
example, the following linear combination can be used to test for a specific effect of factor A on the
marginal intercepts.

ka
E CiToi.
i=1

If the ¢; elements sum to zero, the linear combination is called a contrast. If the factor A is represented
by a variable named A, then we specify this contrast using the following syntax:

{Acpco oo}

Similarly, the following linear combination can be used to test for a specific interaction effect of
factors A and B on the marginal slope of x.

ko kb

Z Z CijMij

i=1 j=1

If the factor B is represented by a variable named B, then we specify this contrast using the following
syntax:

{A#B c11 12 ... Clk, €21 - -« Ckakb}

contrast has variable operators for several commonly used contrasts. Each contrast operator
specifies a matrix of linear combinations that yield the requested set of contrasts to be applied to the
marginal linear predictions associated with the attached factor variable.

Reference level contrasts

The r. operator compares each level with a reference level. Let R be the corresponding contrast
matrix for factor A, and then R is a (k, — 1) X k, matrix with elements

—1, if j is the reference level
1, if 2 =7 and j is less than the reference level
1, if7+1=j and j is greater than the reference level
0, otherwise

Rij =
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If k, = 5 and the reference level is the third level of A (specified as rb(#3) .4), then

10 -1 00
01 -1 00
R= 00 -1 10
00 -1 01

Adjacent contrasts

The a. operator compares each level with the next level. Let A be the corresponding contrast
matrix for factor A, and then A is a (k, — 1) X k, matrix with elements

1, ifi=j
AM—{—L ifitl=j

0, otherwise

If k, = 5, then
1 -1 0 0 0
0 1 -1 0 0
A= 0 0 1 -1 0
0 0 0 1 -1

The ar. operator compares each level with the previous level. If A is the contrast matrix for the
a. operator, then —A is the corresponding contrast matrix for the ar. operator.

Grand mean contrasts

The g. operator compares each level with the mean of all the levels. Let G be the corresponding
contrast matrix for factor A, and then G is a k, x k, matrix with elements

G - [1= ke ifi=j
VT =1/ ke, ifi# ]

If k, = 5, then

4/5 —-1/5 —1/5 —1/5 —1/5
~1/5 4/5 —1/5 —1/5 —1/5
G=|-1/5 -1/5 4/5 -1/5 —1/5
~-1/5 —1/5 —1/5 4/5 —1/5
~1/5 —1/5 —1/5 —1/5 4/5

The gw. operator compares each level with the weighted mean of all the levels. The weights are
taken from the observed weighted cell frequencies in the estimation sample of the fitted model. Let
G, be the corresponding contrast matrix for factor A, and then G, is a k, X k, matrix with elements



374 contrast — Contrasts and linear hypothesis tests after estimation

G — 1—wi/w., ifi=j
e —w;jw., ifi#j

where w; is a marginal weight representing the number of individuals with A at its ith level and

w. =y w.

Helmert contrasts

The h. operator compares each level with the mean of the subsequent levels. Let H be the
corresponding contrast matrix for factor A, and then H is a (k, — 1) X k, matrix with elements

1, ifi=j
0, otherwise
If k, = 5, then
1 -1/4 —-1/4 -1/4 -1/4
H— 0 1 -1/3 -1/3 -1/3
1o 0 1 —-1/2 —1/2
0 0 0 1 -1

The hw. operator compares each level with the weighted mean of the subsequent levels. Let H,,
be the corresponding contrast matrix for factor A, and then H,, is a (k, — 1) x k, matrix with
elements

1, ifi=j

kq o .

Hwij{—wj/zl_jwl, 1fZ<]
0, otherwise

Reverse Helmert contrasts

The j. operator compares each level with the mean of the previous levels. Let J be the corresponding
contrast matrix for factor A, and then J is a (k, — 1) X k, matrix with elements

1, ifi+l=j
3y = {—1/2', ifj<i

0, otherwise
If k, = 5, then
-1 1 0
-1/2 -1/2 1

H= -1/3 -1/3 -1/3

~1/4 —1/4 —1/4 —1/4

= —_ 0 O
_= O O O
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The jw. operator compares each level with the weighted mean of the previous levels. Let J,, be
the corresponding contrast matrix for factor A, and then J,, is a (k, — 1) X k, matrix with elements

1, ifi+1=j
Jwij = {—wj/ZZ’_l wy, if1<j
0, otherwise

Orthogonal polynomial contrasts

The p. operator applies orthogonal polynomial contrasts using the level values of the attached
factor variable. The q. operator applies orthogonal polynomial contrasts using the level indices of
the attached factor variable. These two operators are equivalent when the level values of the attached
factor are equally spaced. The pw. and qw. operators are weighted versions of p. and q., where
the weights are taken from the observed weighted cell frequencies in the estimation sample of the
fitted model. contrast uses the Christoffel-Darboux recurrence formula for computing orthogonal
polynomial contrasts (Abramowitz and Stegun 1972). The elements of the contrasts are normalized

such that
, 1
QWQ = —1I
w.
where W is a diagonal matrix of the marginal cell weights wy,ws, ..., wy of the attached factor

variable (all 1 for p. and q.), and w. is the sum of the weights (the number of levels k for p. and
q.)-

Contrasts within interactions

Contrast operators are allowed to be specified on factor variables participating in interactions. In
such cases, contrast applies the proper matrix product of the contrast matrices to the cell margins
of the interacted factor variables.

For example, consider the contrasts implied by specifying r.A#h.B. Let M be the matrix of
estimated cell margins for the levels of A and B, where the rows of M are indexed by the levels of
A and the columns are indexed by the levels of B. contrast puts the estimated cell margins in the
following vector form:

My,
M,
Mlkb

, Mo,
v=vec((M) = [ M,,

Moy,

My, k,
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The individual contrasts are then given by the elements of

(R H)v

where & denotes the Kronecker direct product.

Multiple comparisons

See [R] pwcompare for details on the methods and formulas used to adjust p-values and confidence
intervals for multiple comparisons. The formulas for Bonferroni’s method and Siddk’s method are
presented with m = k(k — 1)/2, the number of pairwise comparisons for a factor term with k
levels. For contrasts, m is instead the number of contrasts being performed on the factor term; often,
m = k — 1 for a term with k levels.
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[R] lincom — Linear combinations of estimators
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Title

contrast postestimation — Postestimation tools for contrast

Description

The following postestimation commands are available after contrast, post:

Command Description

estat VCE; estat vce only

estat (svy)  postestimation statistics for survey data

estimates cataloging estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of coefficients

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks

In Orthogonal polynomial contrasts in [R] contrast, we used the p. operator to test the orthogonal
polynomial effects of age group.

. contrast p.agegrp, noeffects
We then used a second contrast command,
. contrast p(2 3 4).agegrp, noeffects
selecting levels to test whether the quadratic, cubic, and quartic contrasts were jointly significant.

We can perform the same joint test by using the test command after specifying the post option
with our first contrast command.
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. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. anova chol agegrp
(output omitted )

. contrast p.agegrp, noeffects post

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F
agegrp

(linear) 1 139.11 0.0000
(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

. test p2.agegrp p3.agegrp p4.agegrp
(1) p2.agegrp = 0
( 2) p3.agegrp =0
( 3) ph.agegrp = 0

FC 3, 70

F

0.32
= 0.8129

Also see

[R] contrast — Contrasts and linear hypothesis tests after estimation

[U] 20 Estimation and postestimation commands



Title

copyright — Display copyright information

Syntax

copyright

Description

copyright presents copyright notifications concerning tools, libraries, etc., used in the construction
of Stata.

Remarks
The correct form for a copyright notice is
Copyright dates by author/owner

The word “Copyright” is spelled out. You can use the (¢) symbol, but “(C)” has never been given
legal recognition. The phrase “All Rights Reserved” was historically required but is no longer needed.

Currently, most works are copyrighted from the moment they are written, and no copyright notice
is required. Copyright concerns the protection of the expression and structure of facts and ideas, not
the facts and ideas themselves. Copyright concerns the ownership of the expression and not the name
given to the expression, which is covered under trademark law.

Copyright law as it exists today began in England in 1710 with the Statute of Anne, An Act for
the Encouragement of Learning, by Vesting the Copies of Printed Books in the Authors or Purchases
of Such Copies, during the Times therein mentioned. In 1672, Massachusetts introduced the first
copyright law in what was to become the United States. After the Revolutionary War, copyright was
introduced into the U.S. Constitution in 1787 and went into effect on May 31, 1790. On June 9,
1790, the first copyright in the United States was registered for The Philadelphia Spelling Book by
John Barry.

There are significant differences in the understanding of copyright in the English- and non—English-
speaking world. The Napoleonic or Civil Code, the dominant legal system in the non—English-speaking
world, splits the rights into two classes: the author’s economic rights and the author’s moral rights.
Moral rights are available only to “natural persons”. Legal persons (corporations) have economic
rights but not moral rights.

Also see
Copyright page of this book
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Title

copyright boost — Boost copyright notification

Description

Stata uses portions of Boost, a library used by JagPDF, which helps create PDF files, with the
express permission of the authors pursuant to the following notice:

Boost Software License - Version 1.0 - August 17, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining
a copy of the software and accompanying documentation covered by this license (the
“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all
copies of the Software, in whole or in part, and all derivative works of the Software,
unless such copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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copyright freetype — FreeType copyright notification

Description

Stata uses portions of FreeType, a library used by JagPDF, which helps create PDF files, with the

express permission of the authors.

StataCorp thanks and acknowledges the authors of FreeType for producing FreeType and allowing

its use in Stata and other software.

For more information about FreeType, visit http://www.freetype.org/.

The full FreeType copyright notice is

Legal Terms

0. Definitions

Throughout this license, the terms ‘package’, ‘FreeType Project’, and ‘FreeType archive’
refer to the set of files originally distributed by the authors (David Turner, Robert Wilhelm,
and Werner Lemberg) as the ‘FreeType Project’, be they named as alpha, beta or final
release.

“You’ refers to the licensee, or person using the project, where ‘using’ is a generic term
including compiling the project’s source code as well as linking it to form a ‘program’
or ‘executable’. This program is referred to as ‘a program using the FreeType engine’.

This license applies to all files distributed in the original FreeType Project, including all
source code, binaries and documentation, unless otherwise stated in the file in its original,
unmodified form as distributed in the original archive. If you are unsure whether or not
a particular file is covered by this license, you must contact us to verify this.

This license applies to all files distributed in the original FreeType Project, including all
source code, binaries and documentation, unless otherwise stated in the file in its original,
unmodified form as distributed in the original archive. If you are unsure whether or not
a particular file is covered by this license, you must contact us to verify this.

The FreeType Project is copyright (©) 1996—2000 by David Turner, Robert Wilhelm, and
Werner Lemberg. All rights reserved except as specified below.

1. No Warranty

THE FREETYPE PROJECT IS PROVIDED °‘AS IS WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
USE, OF THE FREETYPE PROJECT.
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2. Redistribution

This license grants a worldwide, royalty-free, perpetual and irrevocable right and license
to use, execute, perform, compile, display, copy, create derivative works of, distribute and
sublicense the FreeType Project (in both source and object code forms) and derivative
works thereof for any purpose; and to authorize others to exercise some or all of the
rights granted herein, subject to the following conditions:

e Redistribution of source code must retain this license file (‘FTL.TXT’) unaltered;
any additions, deletions or changes to the original files must be clearly indicated in
accompanying documentation. The copyright notices of the unaltered, original files
must be preserved in all copies of source files.

e Redistribution in binary form must provide a disclaimer that states that the software is
based in part of the work of the FreeType Team, in the distribution documentation. We
also encourage you to put an URL to the FreeType web page in your documentation,
though this isn’t mandatory.

These conditions apply to any software derived from or based on the FreeType Project,
not just the unmodified files. If you use our work, you must acknowledge us. However,
no fee need be paid to us.

3. Advertising

Neither the FreeType authors and contributors nor you shall use the name of the other for
commercial, advertising, or promotional purposes without specific prior written permission.

We suggest, but do not require, that you use one or more of the following phrases to
refer to this software in your documentation or advertising materials: ‘FreeType Project’,
‘FreeType Engine’, ‘FreeType library’, or ‘FreeType Distribution’.

As you have not signed this license, you are not required to accept it. However, as the
FreeType Project is copyrighted material, only this license, or another one contracted with
the authors, grants you the right to use, distribute, and modify it. Therefore, by using,
distributing, or modifying the FreeType Project, you indicate that you understand and
accept all the terms of this license.

4. Contacts

There are two mailing lists related to FreeType:
o freetype @nongnu.org

Discusses general use and applications of FreeType, as well as future and wanted
additions to the library and distribution. If you are looking for support, start in this
list if you haven’t found anything to help you in the documentation.

o freetype-devel @nongnu.org

Discusses bugs, as well as engine internals, design issues, specific licenses, porting,
etc.

Our home page can be found at

http://www.freetype.org
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Also see
[R] copyright — Display copyright information
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copyright icu — ICU copyright notification

Description

Stata uses portions of ICU, a library used by JagPDF, which helps create PDF files, with the express
permission of the authors pursuant to the following notice:

COPYRIGHT AND PERMISSION NOTICE
Copyright (©) 1995-2011 International Business Machines Corporation and others
All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software™), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, provided that the above copyright notice(s) and
this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LI-
ABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

Also see
[R] copyright — Display copyright information
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copyright jagpdf — JagPDF copyright notification

Description

Stata uses portions of JagPDF, a library for creating PDF files, with the express permission of the
author pursuant to the following notice:

The JagPDF Library is
Copyright (©) 2005-2009 Jaroslav Gresula

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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copyright lapack — LAPACK copyright notification

Description

Stata uses portions of LAPACK, a linear algebra package, with the express permission of the authors
pursuant to the following notice:

Copyright (©) 1992-2008 The University of Tennessee. All rights reserved.

e Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the following disclaimer, listed in this license in the documentation
or other materials provided with the distribution or both.

e Neither the names of the copyright holders nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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copyright libpng — libpng copyright notification

Description

Stata uses portions of libpng, a library used by JagPDF, which helps create PDF files, with the
express permission of the authors.

For the purposes of this acknowledgement, “Contributing Authors” is as defined by the copyright
notice below.

StataCorp thanks and acknowledges the Contributing Authors of libpng and Group 42, Inc. for
producing libpng and allowing its use in Stata and other software.

For more information about libpng, visit http://www.libpng.org/.

The full libpng copyright notice is

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:

If you modify libpng you may insert additional notices immediately following this
sentence.

This code is released under the libpng license.

libpng versions 1.2.6, August 15, 2004, through 1.5.2, March 31, 2011, are Copyright
(© 2004, 2006-2011 Glenn Randers-Pehrson, and are distributed according to the
same disclaimer and license as libpng-1.2.5 with the following individual added to the
list of Contributing Authors

Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are Copyright
(© 2000-2002 Glenn Randers-Pehrson, and are distributed according to the same
disclaimer and license as libpng-1.0.6 with the following individuals added to the list
of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant
and with the following additions to the disclaimer:

There is no warranty against interference with your enjoyment of the library or against
infringement. There is no warranty that our efforts or the library will fulfill any of
your particular purposes or needs. This library is provided with all faults, and the
entire risk of satisfactory quality, performance, accuracy, and effort is with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright
© 1998, 1999 Glenn Randers-Pehrson, and are distributed according to the same
disclaimer and license as libpng-0.96, with the following individuals added to the list
of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik
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Also see

libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright (©) 1996,
1997 Andreas Dilger Distributed according to the same disclaimer and license as
libpng-0.88, with the following individuals added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are Copyright (©) 1995,
1996 Guy Eric Schalnat, Group 42, Inc.

For the purposes of this copyright and license, “Contributing Authors” is defined as
the following set of individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt

Tim Wegner

The PNG Reference Library is supplied “AS IS”. The Contributing Authors and Group 42,
Inc. disclaim all warranties, expressed or implied, including, without limitation, the
warranties of merchantability and of fitness for any purpose. The Contributing Authors
and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary,
or consequential damages, which may result from the use of the PNG Reference Library,
even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or
portions hereof, for any purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and must not be misrepresented
as being the original source.

3. This Copyright notice may not be removed or altered from any source or altered
source distribution.

The Contributing Authors and Group 42, Inc. specifically permit, without fee, and
encourage the use of this source code as a component to supporting the PNG file format
in commercial products. If you use this source code in a product, acknowledgment is
not required but would be appreciated.

[R] copyright — Display copyright information
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copyright scintilla — Scintilla copyright notification

Description

Stata uses portions of Scintilla with the express permission of the author, pursuant to the following
notice:

Copyright (©) 1998-2002 by Neil Hodgson <neilh@scintilla.org>
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Also see
[R] copyright — Display copyright information
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copyright ttf2pt1 — ttf2ptl copyright notification

Description

Stata uses portions of ttf2pt] to convert TrueType fonts to PostScript fonts, with express permission
of the authors, pursuant to the following notice:

Copyright (©) 1997-2003 by the AUTHORS:
Andrew Weeks <ccsaw @bath.ac.uk>
Frank M. Siegert <fms@this.net>
Mark Heath <mheath@netspace.net.au>
Thomas Henlich <thenlich@rcs.urz.tu-dresden.de>
Sergey Babkin <babkin@users.sourceforge.net>, <sab123 @hotmail.com>
Turgut Uyar <uyar@cs.itu.edu.tr>
Rihardas Hepas <rch@WriteMe.Com>
Szalay Tamas <tomek@elender.hu>
Johan Vromans <jvromans@squirrel.nl>
Petr Titera <P.Titera@sh.cvut.cz>
Lei Wang <lwang@amath8.amt.ac.cn>
Chen Xiangyang <chenxy@sun.ihep.ac.cn>
Zvezdan Petkovic <z.petkovic@computer.org>
Rigel <rigel863@yahoo.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: This product includes software developed by the TTF2PT1 Project and its
contributors.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
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DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Also see

[R] copyright — Display copyright information
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copyright zlib — zlib copyright notification

Description
Stata uses portions of zlib, a library used by JagPDF, which helps create PDF files, with the express
permission of the authors.

StataCorp thanks and acknowledges the authors of zlib, Jean-loup Gailly and Mark Adler, for
producing zlib and allowing its use in Stata and other software.

For more information about zlib, visit http://www.zlib.net/.

The full zlib copyright notice is

Copyright (©) 1995-2010 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1. The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not
required.

2. Altered source versions must be plainly marked as such, and must not be misrep-
resented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly
Mark Adler

Also see
[R] copyright — Display copyright information
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Title

correlate — Correlations (covariances) of variables or coefficients

Syntax
Display correlation matrix or covariance matrix

correlate [varlist] [zf} [m} [weight} [, correlate_options}

Display all pairwise correlation coefficients

pwcorr [varlist] [lf] [in] [weight} [, pwcorr-opti()ns]

correlate_options Description

Options
means display means, standard deviations, minimums, and maximums with matrix
noformat ignore display format associated with variables
covariance display covariances
wrap allow wide matrices to wrap
pwcorr_options Description

Main
obs print number of observations for each entry
sig print significance level for each entry
listwise use listwise deletion to handle missing values
casewise synonym for listwise
print (#) significance level for displaying coefficients
star (#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Sidak-adjusted significance level

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with correlate and pwcorr; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
correlate

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Correlations and covariances

pwcorr

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Pairwise correlations
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Description

The correlate command displays the correlation matrix or covariance matrix for a group of
variables. If varlist is not specified, the matrix is displayed for all variables in the dataset. Also see
the estat vce command in [R] estat.

pwcorr displays all the pairwise correlation coefficients between the variables in varlist or, if
varlist is not specified, all the variables in the dataset.

Options for correlate

means displays summary statistics (means, standard deviations, minimums, and maximums) with the
matrix.

noformat displays the summary statistics requested by the means option in g format, regardless of
the display formats associated with the variables.

covariance displays the covariances rather than the correlation coefficients.

wrap requests that no action be taken on wide correlation matrices to make them readable. It prevents
Stata from breaking wide matrices into pieces to enhance readability. You might want to specify
this option if you are displaying results in a window wider than 80 characters. Then you may need
to set linesize to however many characters you can display across a line; see [R] log.

Options for pwcorr

Main

obs adds a line to each row of the matrix reporting the number of observations used to calculate the
correlation coefficient.

sig adds a line to each row of the matrix reporting the significance level of each correlation coefficient.

listwise handles missing values through listwise deletion, meaning that the entire observation is
omitted from the estimation sample if any of the variables in varlist is missing for that observation.
By default, pwcorr handles missing values by pairwise deletion; all available observations are
used to calculate each pairwise correlation without regard to whether variables outside that pair
are missing.

correlate uses listwise deletion. Thus 1istwise allows users of pwcorr to mimic correlate’s
treatment of missing values while retaining access to pwcorr’s features.

casewise is a synonym for listwise.

print (#) specifies the significance level of correlation coefficients to be printed. Correlation coeffi-
cients with larger significance levels are left blank in the matrix. Typing pwcorr, print(.10)
would list only correlation coefficients significant at the 10% level or better.

star (#) specifies the significance level of correlation coefficients to be starred. Typing pwcorr,
star(.05) would star all correlation coefficients significant at the 5% level or better.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option affects
printed significance levels and the print() and star() options. Thus pwcorr, print(.05)
bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.
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sidak makes the Siddk adjustment to calculated significance levels. This option affects printed
significance levels and the print() and star() options. Thus pwcorr, print(.05) sidak
prints coefficients with Siddk-adjusted significance levels of 0.05 or less.

Remarks
Remarks are presented under the following headings:
correlate
pwcorr

correlate

Typing correlate by itself produces a correlation matrix for all variables in the dataset. If you
specify the varlist, a correlation matrix for just those variables is displayed.
> Example 1

We have state data on demographic characteristics of the population. To obtain a correlation matrix,
we type

. use http://www.stata-press.com/data/r12/censusi3
(1980 Census data by state)

. correlate
(obs=50)
state brate pop medage division region mrgrate
state 1.0000
brate 0.0208  1.0000
pop -0.0540 -0.2830 1.0000
medage -0.0624 -0.8800 0.3294 1.0000
division -0.1345 0.6356 -0.1081 -0.5207 1.0000
region -0.1339 0.6086 -0.1515 -0.5292 0.9688 1.0000
mrgrate 0.0509 0.0677 -0.1502 -0.0177 0.2280 0.2490 1.0000
dvcrate -0.0655 0.3508 -0.2064 -0.2229 0.5522 0.5682 0.7700
medagesq -0.0621 -0.8609 0.3324 0.9984 -0.5162 -0.5239 -0.0202
dvcrate medagesq
dvcrate 1.0000
medagesq -0.2192  1.0000

Because we did not specify the wrap option, Stata did its best to make the result readable by breaking
the table into two parts.
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To obtain the correlations between mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage

(obs=50)
mrgrate dvcrate medage
mrgrate 1.0000
dvcrate 0.7700  1.0000
medage -0.0177 -0.2229  1.0000
d
> Example 2

The pop variable in our previous example represents the total population of the state. Thus, to
obtain population-weighted correlations among mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage [w=pop]
(analytic weights assumed)
(sum of wgt is  2.2591e+08)

(obs=50)
mrgrate dvcrate medage
mrgrate 1.0000
dvcrate 0.5854 1.0000
medage -0.1316 -0.2833 1.0000 q

With the covariance option, correlate can be used to obtain covariance matrices, as well as
correlation matrices, for both weighted and unweighted data.
> Example 3

To obtain the matrix of covariances between mrgrate, dvcrate, and medage, we type correlate
mrgrate dvcrate medage, covariance:

. correlate mrgrate dvcrate medage, covariance

(obs=50)
mrgrate dvcrate medage
mrgrate .000662
dvcrate .000063 1.0e-05
medage | -.000769 -.001191 2.86775

We could have obtained the pop-weighted covariance matrix by typing correlate mrgrate
dvcrate medage [w=pop], covariance. q

pwcorr

correlate calculates correlation coefficients by using casewise deletion; when you request
correlations of variables x1, g, ..., Tk, any observation for which any of x1, x2, ..., ) is missing
is not used. Thus if xs and z4 have no missing values, but x5 is missing for half the data, the
correlation between x3 and x4 is calculated using only the half of the data for which x5 is not
missing. Of course, you can obtain the correlation between x3 and x4 by using all the data by typing
correlate x3 x4.

pwcorr makes obtaining such pairwise correlation coefficients easier.
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> Example 4
Using auto.dta, we investigate the correlation between several of the variables.
. use http://www.stata-press.com/data/ri2/autol
(Automobile Models)
. pwcorr mpg price rep78 foreign, obs sig
mpg price rep78 foreign
mpg 1.0000
74
price -0.4594  1.0000
0.0000
74 74
rep78 0.3739 0.0066 1.0000
0.0016  0.9574
69 69 69
foreign 0.3613 0.0487 0.5922 1.0000
0.0016 0.6802 0.0000
74 74 69 74
. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) star(.01)
mpg price headroom rear_s~t trunk rep78 foreign
mpg 1.0000
price -0.4594% 1.0000
headroom -0.4220%* 1.0000
rear_seat -0.5213% 0.4194% 0.5238*% 1.0000
trunk -0.5703* 0.3143% 0.6620*% 0.6480* 1.0000
rep78 0.3739% 1.0000
foreign 0.3613% -0.2939 -0.2409 -0.3594* 0.5922% 1.0000
. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) bon
mpg price headroom rear_s~t trunk rep78 foreign
mpg 1.0000
price -0.4594  1.0000
headroom -0.4220 1.0000
rear_seat -0.5213 0.4194 0.5238 1.0000
trunk -0.5703 0.6620 0.6480 1.0000
rep78 0.3739 1.0000
foreign 0.3613 -0.3594 0.5922 1.0000
4

Q Technical note

The correlate

command will report the correlation matrix of the data, but there are occasions
when you need the matrix stored as a Stata matrix so that you can further manipulate it. You can
obtain the matrix by typing

. matrix accum R =

varlist, nocons dev

. matrix R = corr(R)

The first line places the cross-product matrix of the data in matrix R. The second line converts that
to a correlation matrix. Also see [P] matrix define and [P] matrix accum.

a
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Saved results

correlate saves the following in r():

Scalars

r(N) number of observations

r(rho) p (first and second variables)

r(cov_12) covariance (covariance only)

r(Var_1) variance of first variable (covariance only)

r(Var_2) variance of second variable (covariance only)
Matrices

r(C) correlation or covariance matrix

pwcorr will leave in its wake only the results of the last call that it makes internally to correlate
for the correlation between the last variable and itself. Only rarely is this feature useful.

Methods and formulas

pwcorr is implemented as an ado-file.

For a discussion of correlation, see, for instance, Snedecor and Cochran (1989, 177-195); for an
introductory explanation using Stata examples, see Acock (2010, 186-192).

According to Snedecor and Cochran (1989, 180), the term “co-relation” was first proposed by
Galton (1888). The product-moment correlation coefficient is often called the Pearson product-moment
correlation coefficient because Pearson (1896) and Pearson and Filon (1898) were partially responsible
for popularizing its use. See Stigler (1986) for information on the history of correlation.

The estimate of the product-moment correlation coefficient, p, is

Z?:1 wi(r; —T)(yi — 7)
Vi wilwi — T2/ wiy: — 7)?

where w; are the weights, if specified, or w; = 1 if weights are not specified. T = (> w;z;)/ (> w;)
is the mean of z, and ¥ is similarly defined.

b\:

The unadjusted significance level is calculated by pwcorr as
p=2xttail(n — 2, |p|vn—2/v/1-p2)

Let v be the number of variables specified so that k& = v(v — 1) /2 correlation coefficients are to be
estimated. If bonferroni is specified, the adjusted significance level is p’ = min(1, kp). If sidak
is specified, p’ = min {1, 1-(1- p)k} In both cases, see Methods and formulas in [R] oneway
for a more complete description of the logic behind these adjustments.
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Carlo Emilio Bonferroni (1892-1960) studied in Turin and taught there and in Bari and Florence.
He published on actuarial mathematics, probability, statistics, analysis, geometry, and mechanics.
His work on probability inequalities has been applied to simultaneous statistical inference, although
the method known as Bonferroni adjustment usually relies only on an inequality established
earlier by Boole.

Karl Pearson (1857-1936) studied mathematics at Cambridge. He was professor of applied math-
ematics (1884-1911) and eugenics (1911-1933) at University College London. His publications
include literary, historical, philosophical, and religious topics. Statistics became his main interest
in the early 1890s after he learned about its application to biological problems. His work centered
on distribution theory, the method of moments, correlation, and regression. Pearson introduced
the chi-squared test and the terms coefficient of variation, contingency table, heteroskedastic,
histogram, homoskedastic, kurtosis, mode, random sampling, random walk, skewness, standard
deviation, and truncation. Despite many strong qualities, he also fell into prolonged disagreements
with others, most notably, William Bateson and R. A. Fisher.

Zbynék Sidak (1933-1999) was a notable Czech statistician and probabilist. He worked on
Markov chains, rank tests, multivariate distribution theory and multiple-comparison methods, and
he served as the chief editor of Applications of Mathematics.
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Title

cumul — Cumulative distribution

Syntax
cumul varname [ l_'f} [ in] [ weight] , generate(newvar) [Options]
options Description
Main
* generate (newvar) create variable newvar
freq use frequency units for cumulative
equal generate equal cumulatives for tied values

*generate (newvar) is required.
by is allowed; see [D] by.
fweights and aweights are allowed; see [U] 11.1.6 weight.

Menu

Statistics > Summaries, tables, and tests > Distributional plots and tests > Generate cumulative distribution

Description

cumul creates newvar, defined as the empirical cumulative distribution function of varname.

Options

Main

generate (newvar) is required. It specifies the name of the new variable to be created.

freq specifies that the cumulative be in frequency units; otherwise, it is normalized so that newvar
is 1 for the largest value of varname.

equal requests that observations with equal values in varname get the same cumulative value in
newvar.

Jean Baptiste Joseph Fourier (1768—1830) was born in Auxerre in France. As a young man,
Fourier became entangled in the complications of the French Revolution. As a result, he was
arrested and put into prison, where he feared he might meet his end at the guillotine. When
he was not in prison, he was studying, researching, and teaching mathematics. Later, he served
Napolean’s army in Egypt as a scientific adviser. Upon his return to France in 1801, he was
appointed Prefect of the Department of Isere. While prefect, Fourier worked on the mathematical
basis of the theory of heat, which is based on what are now called Fourier series. This work
was published in 1822, despite the skepticism of Lagrange, Laplace, Legendre, and others—who
found the work lacking in generality and even rigor—and disagreements of both priority and
substance with Biot and Poisson.
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Remarks

> Example 1

cumul is most often used with graph to graph the empirical cumulative distribution. For instance,
we have data on the median family income of 957 U.S. cities:
. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)
. cumul faminc, gen(cum)
. sort cum

. line cum faminc, ylab(, grid) ytitle("") xlab(, grid)
> title("Cumulative of median family income")
> subtitle("1980 Census, 957 U.S. Cities")

Cumulative of median family income
1980 Census, 957 U.S. Cities

o

T T T T
15000.00 20000.00 25000.00 30000.0C
Median family inc., 1979

It would have been enough to type 1ine cum faminc, but we wanted to make the graph look better;
see [G-2] graph twoway line.

If we had wanted a weighted cumulative, we would have typed cumul faminc [w=pop] at the
first step. N

> Example 2

To graph two (or more) cumulatives on the same graph, use cumul and stack; see [D] stack. For
instance, we have data on the average January and July temperatures of 956 U.S. cities:
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. use http://www.stata-press.com/data/r12/citytemp, clear
(City Temperature Data)

. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjan tempjan cjuly tempjuly, into(c temp) wide clear

. line cjan cjuly temp, sort ylab(, grid) ytitle("") xlab(, grid)
> xtitle("Temperature (F)")

title("Cumulatives:" "Average January and July Temperatures")

> subtitle("956 U.S. Cities") clstyle(. dot)

\%2

Cumulatives:
Average January and July Temperatures
956 U.S. Cities

0 20 40 60 80 100
Temperature (F)

cjan cjuly ‘

As before, it would have been enough to type line cjan cjuly temp, sort. See [D] stack for an
explanation of how the stack command works.

4

Q Technical note

According to Beniger and Robyn (1978), Fourier (1821) published the first graph of a cumulative
frequency distribution, which was later given the name “ogive” by Galton (1875).
a

Methods and formulas

cumul is implemented as an ado-file.
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Also see
[D] stack — Stack data
[R] diagnostic plots — Distributional diagnostic plots

[R] kdensity — Univariate kernel density estimation
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Title

cusum — Graph cumulative spectral distribution

Syntax
cusum yvar xvar [zf] [m} [, options]
options Description
Main
generate (newva