STATA DATA-MANAGEMENT
REFERENCE MANUAL

RELEASE 12

‘\é“:f\ ’
M0V
A s

A Stata Press Publication
StataCorp LP
College Station, Texas

‘é\?,\ ® Copyright (¢) 1985-2011 StataCorp LP
LEALN \\, All rights reserved
Version 12

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TeX
Printed in the United States of America

109 87 654321

ISBN-10: 1-59718-080-7
ISBN-13: 978-1-59718-080-1

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2011. Stata: Release 12. Statistical Software. College Station, TX: StataCorp LP.

Table of contents

IO« o et Introduction to data-management reference manual
data management, Introduction to data-management commands
APPENA Append datasets
ASSEIL o vttt e e e e e Verify truth of claim
beal ... Business calendar file manipulation
DY Repeat Stata command on subsets of the data
Cd Change directory
e Compare two datasets
changeeol i, Convert end-of-line characters of text file
checksum Calculate checksum of file
Clear .. e Clear memory
ClOMEVAT . . Clone existing variable
CodeboOK Describe data contents
collapse ... Make dataset of summary statistics
Le0) 1010 1 PP Compare two variables
COMPIESS + v vt ittt e ettt ittt Compress data in memory
CONMTACE vttt et ettt ittt Make dataset of frequencies and percentages
COPY t et ettt e e e e e e e Copy file from disk or URL
corr2data ... Create dataset with specified correlation structure
COUNE vttt e et Count observations satisfying specified conditions
CIOSS « ottt e e et et Form every pairwise combination of two datasets
data tyPeS .t e Quick reference for data types
datasignature Determine whether data have changed
datetime Date and time values and variables
datetime business calendars il Business calendars
datetime business calendars creation Business calendars creation
datetime display formats Display formats for dates and times
datetime translation String to numeric date translation functions
describe Describe data in memory or in file
destring Convert string variables to numeric variables and vice versa
AT o e Display filenames
drawnorm, Draw sample from multivariate normal distribution
Arop oot Eliminate variables or observations
ds oo List variables matching name patterns or other characteristics
duplicatesciiiiiiiiiiiii. Report, tag, or drop duplicate observations
edit .. Browse or edit data with Data Editor
74 PP Extensions to generate
enCOde ... Encode string into numeric and vice versa
2] Erase a disk file
EXPANA .o e Duplicate observations
expandcl ... Duplicate clustered observations
EXPOIT ittt Overview of exporting data from Stata
filefilter Convert text or binary patterns in a file
Al .o Rectangularize dataset

format e Set variables’ output format

15

19
22

25
28
31
33
36
39
41
50
58
60
61
64
66
70
72

74

75

82

94
101
110
115
125
133
142
144
148
152
156

162
167
188
194
196
198
201

203
206
208

fUNCLIONS . oot e e e Functions
GEMETAE . o\ vt vttt ettt e et Create or change contents of variable
0] PP Ascending and descending sort
hexdump Display hexadecimal report on file
icdd ICD-9-CM diagnostic and procedure codes
100 00 o P Overview of importing data into Stata
IMPOTt €XCel ..ottt Import and export Excel files
Import Sasxport Import and export datasets in SAS XPORT format
infile (fixed format) Read text data in fixed format with a dictionary
infile (free format) Read unformatted text data
infix (fixed format) Read text data in fixed format
INPUL © ettt e e e e e Enter data from keyboard
insheet Read text data created by a spreadsheet
INSPECL .« vttt e Display simple summary of data’s attributes
ipolate Linearly interpolate (extrapolate) values
ISId e e Check for unique identifiers
Joinby ... Form all pairwise combinations within groups
abel .. Manipulate labels
label language Labels for variables and values in multiple languages
labelbook Label utilities
St o List values of variables
lookfor i Search for string in variable names and labels
1001S] 00103 o 2P Memory management
INETEE . ottt ettt e e e e e e e e e e e e Merge datasets
missing valueso Quick reference for missing values
MKAIT . e Create directory
mvencode, Change missing values to numeric values and vice versa
DOLES .« e ettt et e et e e e e e e e e e Place notes in data
ODS o Increase the number of observations in a dataset
odbc ... Load, write, or view data from ODBC sources
OTAOT ettt e e Reorder variables in dataset
outfile Export dataset in text format
OULSNEEL . o\ttt et e Write spreadsheet-style dataset
petile .. Create variable containing percentiles
PUtMAta ..ot e Put Stata variables into Mata and vice versa
TANZE o vt e e et e e e e e e e e e Generate numerical range
TECASE + v vttt et e e e e e e e Change storage type of variable
TECOAR . ottt e Recode categorical variables
TENAIMNE .« o e vttt ettt e ettt e e e e e e e e e e Rename variable
TENAME ZTOUD '« et vttt e ettt e e e e et et e et et e e e Rename groups of variables
reshape Convert data from wide to long form and vice versa
TIAIT e Remove directory
SAMPIE o ot e Draw random sample
SAVE ottt Save Stata dataset

SEPATALE .« o v ettt e e e e e e e Create separate variables

222

278
283

286

292
305
313
319
328
346
355
363
370
377
380
382

385

390
399
405
416
425

427
433
455
456
457

461

466
467
479
483
490

493
503

515
517
519
527
529
539
555

556
560
565

shell ... Temporarily invoke operating system
SNAPShOt ..o e Save and restore data snapshots
) PP Sort data
St o e Split string variables into parts
SEACK . e Stack data
statsby ... Collect statistics for a command across a by list
SYSUSE .+ e v et e et et e e e e e e e e e e e e Use shipped dataset
1817 07 P Display contents of a file
USE ottt et ettt e e e e e e e e e e e Load Stata dataset
VAIMANAZE © v v v eeeee e Manage variable labels, formats, and other properties
WEDUSE . vttt e Use dataset from Stata website
XMISAVE .« ottt e Export or import dataset in XML format
XPOSE e ettt et e e e Interchange observations and variables
zipfile Compress and uncompress files and directories in zip archive format

568
573
576
581
585
591
600

603
606
609
610

613
618

621

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
GSU] Getting Started with Stata for Unix
GSW] Getting Started with Stata for Windows

[

[

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

MV] Stata Multivariate Statistics Reference Manual

P] Stata Programming Reference Manual

SEM] Stata Structural Equation Modeling Reference Manual

SVY] Stata Survey Data Reference Manual

ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
TS] Stata Time-Series Reference Manual

[1] Stata Quick Reference and Index

M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/

http://www.stata-press.com/manuals/

Title

intro — Introduction to data-management reference manual

Description

This entry describes this manual and what has changed since Stata 11. See the next entry, [D] data
management, for an introduction to Stata’s data-management capabilities.

Remarks

This manual documents most of Stata’s data-management features and is referred to as the [D]
manual. Some specialized data-management features are documented in such subject-specific reference
manuals as [MI] Stata Multiple-Imputation Reference Manual, [TS] Stata Time-Series Reference
Manual, [ST] Stata Survival Analysis and Epidemiological Tables Reference Manual, and [XT] Stata
Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] data management provides an overview of data management in Stata and
of Stata’s data-management commands. The other parts of this manual are arranged alphabetically.
If you are new to Stata’s data-management features, we recommend that you read the following first:

[D] data management — Introduction to data-management commands
[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 21 Inputting and importing data

[U] 22 Combining datasets

[U] 23 Working with strings

[U] 25 Working with categorical data and factor variables

[U] 24 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of
most Stata features, whereas this is a reference manual and provides details on the usage of specific
commands. You will get an overview of features for combining data from [U] 22 Combining datasets,
but the details of performing a match-merge (merging the records of two files by matching the records
on a common variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure
that you have the latest features, you should install the most recent official update; see [R] update.

What’s new
This section is intended for previous Stata users. If you are new to Stata, you may as well skip it.

1. Automatic memory management, which means that you no longer have to set memory and never
again will you be told that there is no room because you set too little! Stata automatically adjusts
its memory usage up and down according to current requirements.

1

2 intro — Introduction to data-management reference manual

The memory manager is tunable. We recommend the default settings. See [D] memory if you are
interested.

Old do-files can still set memory. Stata merely responds, “set memory ignored”.

2. Excel files, importing and exporting. And the new import preview tool lets you see the data
before you import them. See [D] import excel.

3. EBCDIC files, importing. And you can convert between EBCDIC and ASCII formats; see [D] infile
(fixed format) and [D] filefilter.

4. ODBC connection strings, importing and exporting and ODBC support for Oracle Solaris.
See [D] odbec.

5. PDF files, exporting of graphs and logs. You can directly create PDFs from your Stata results.
See [G-2] graph export and [R] translate.

6. Business dates allow you to define your own calendars so that they display correctly and lags and
leads work as they should. You could create file 1se.stbcal that recorded the days the London
Stock Exchange is open (or closed) and then Stata would understand format %tblse just as it
understands the usual date format %td. Once you define a calendar, Stata deeply understands it.
You can, for instance, easily convert between %tblse and %td values. See [D] datetime business
calendars.

7. Improved documentation for date and time variables. Anyone who has ever been puzzled by
Stata’s date and time variables, which is to say, anyone who uses them, should see [D] datetime,
[D] datetime translation, and [D] datetime display formats.

8. Renaming groups of variables is now easy using rename’s new syntax that is 100% compatible
with its old syntax. You can change names, swap names, renumber indices within variable names,
and more. See [D] rename group.

9. New functions,
a. Tukey’s Studentized range, cumulative and inverse, tukeyprob() and invtukeyprob().
b. Dunnett’s multiple range, cumulative and inverse, dunnettprob() and invdunnettprob().

c. New date conversion functions dofb() and bofd() convert between business dates and
standard calendar dates. See [D] datetime business calendars.

See [D] functions.

10. New Stata commands getmata and putmata make it easy to transfer your data into Mata,
manipulate them, and then transfer them back to Stata. getmata and putmata are especially
designed for interactive use. See [D] putmata.

11. New Stata commands import sasxport, export sasxport, and import sasxport, describe replace
existing commands fdause, fdasave, and fdadescribe. fdause, fdasave, and fdadescribe
are understood as synonyms. See [D] import sasxport.

12. xshell support for Mac. See [D] shell.

For a complete list of all the new features in Stata 12, see [U] 1.3 What’s new.

Also see
[U] 1.3 What’s new

[R] intro — Introduction to base reference manual

Title

data management — Introduction to data-management commands

Description

This manual, called [D], documents Stata’s data-management features. See Mitchell (2010) for

additional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,
merging, appending, and the like—but also to data reorganization because the statistical routines you
will use assume that the data are organized in a certain way. For example, statistical commands that
analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide
form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use
[D] save

[D] describe

D] codebook

D] inspect

D] count

D] data types

D] missing values
]

D] datetime

[
[
[
[
[
[
[D] list

[D] edit

[D] varmanage

[D] rename
[D] format
[D] label

Load Stata dataset
Save Stata dataset

Describe data in memory or in file

Describe data contents

Display simple summary of data’s attributes
Count observations satisfying specified conditions
Quick reference for data types

Quick reference for missing values

Date and time values and variables

List values of variables

Browse or edit data with Data Editor
Manage variable labels, formats, and other properties

Rename variable
Set variables’ output format
Manipulate labels

You will need to create and drop variables, and here is how:

[D] generate
[D] functions
[D] egen
[D] drop
[D] clear

Create or change contents of variable
Functions

Extensions to generate

Eliminate variables or observations
Clear memory

4 data management — Introduction to data-management commands

For inputting or importing data, see

[D] use
[D] sysuse
[D] webuse

[D] input

[D] insheet

[D] import

[D] import excel

[D] import sasxport
[D] infile (fixed format)
[D] infile (free format)
[D] infix (fixed format)

[D] odbce
[D] xmlsave

[D] hexdump
[D] icd9

and for exporting data, see

[D]

[D]

[D]

[D] outsheet
[D] import excel

[D] import sasxport
[D]

D] odbc

Load Stata dataset
Use shipped dataset
Use dataset from Stata website

Enter data from keyboard

Read text data created by a spreadsheet
Overview of importing data into Stata

Import and export Excel files

Import and export datasets in SAS XPORT format
Read text data in fixed format with a dictionary
Read unformatted text data

Read text data in fixed format

Load, write, or view data from ODBC sources
Export or import dataset in XML format

Display hexadecimal report on file

ICD-9-CM diagnostic and procedure codes

Save Stata dataset

Overview of exporting data from Stata

Export dataset in text format

Write spreadsheet-style dataset

Import and export Excel files

Import and export datasets in SAS XPORT format
Load, write, or view data from ODBC sources

The ordering of variables and observations (sort order) can be important; see

[D] order
[D] sort
[D] gsort

Reorder variables in dataset
Sort data
Ascending and descending sort

data management — Introduction to data-management commands

To reorganize or combine data, see

[D] merge
[D] append
[D] reshape
[D] collapse
[D] contract
[D] fillin

[D] expand
[D] expandcl
[D] stack
[D] joinby
[D] xpose
[D] cross

Merge datasets

Append datasets

Convert data from wide to long form and vice versa
Make dataset of summary statistics

Make dataset of frequencies and percentages
Rectangularize dataset

Duplicate observations

Duplicate clustered observations

Stack data

Form all pairwise combinations within groups
Interchange observations and variables

Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that
beginners often overlook.

For random sampling, see

[D] sample Draw random sample
[D] drawnorm Draw sample from multivariate normal distribution

For file manipulation, see

[D] type Display contents of a file

[D] erase Erase a disk file

[D] copy Copy file from disk or URL

[D] ed Change directory

[D] dir Display filenames

[D] mkdir Create directory

[D] rmdir Remove directory

[D] cf Compare two datasets

[D] changeeol Convert end-of-line characters of text file
[D] filefilter Convert text or binary patterns in a file
[D] checksum Calculate checksum of file

[D] zipfile Compress and uncompress files and directories in zip archive

format

6 data management — Introduction to data-management commands

The entries above are important. The rest are useful when you need them:

[D] datasignature

[D] type

[D] notes

[D] label language
[D] labelbook

[D] encode
[D] recode
[D] ipolate
[D] destring
[D] mvencode
[D] pctile

[D] range

[D] by
[D] statsby

[D] compress
[D] recast

[D] datetime display formats
[D] datetime translation

[D] bcal

[D] datetime business calendars

[D] datetime business calendars
creation

Determine whether data have changed

Display contents of a file

Place notes in data

Labels for variables and values in multiple languages
Label utilities

Encode string into numeric and vice versa

Recode categorical variables

Linearly interpolate (extrapolate) values

Convert string variables to numeric variables and vice versa
Change missing values to numeric values and vice versa
Create variable containing percentiles

Generate numerical range

Repeat Stata command on subsets of the data
Collect statistics for a command across a by list

Compress data in memory
Change storage type of variable

Display formats for dates and times

String to numeric date translation functions
Business calendar file manipulation
Business calendars

Business calendars creation

data management — Introduction to data-management commands 7

[D] assert Verify truth of claim
[D] clonevar Clone existing variable
] compare Compare two variables
D] corr2data Create dataset with specified correlation structure
D List variables matching name patterns or other characteristics

Report, tag, or drop duplicate observations

(D

[D]

[D] d

[D]

[D] isid Check for unique identifiers

[D] lookfor Search for string in variable names and labels
[D] memory Memory management

[D] putmata Put Stata variables into Mata and vice versa
[D] obs Increase the number of observations in a dataset
[D] rename group Rename groups of variables

[D] separate Create separate variables

[D] shell Temporarily invoke operating system

[D] snapshot Save and restore data snapshots

[D] split Split string variables into parts

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you

will find particularly useful.

Reference
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Also see

[D] intro — Introduction to data-management reference manual

[R] intro — Introduction to base reference manual

http://www.stata-press.com/books/dmus.html

Title

append — Append datasets

Syntax
append using filename [ﬁlename] [, options}

You may enclose filename in double quotes and must do so if filename contains blanks or other
special characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep (varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error
Menu

Data > Combine datasets > Append datasets

Description

append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any
filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 22 Combining
datasets for a comparison of append, merge, and joinby.

Options

generate(newvar) specifies the name of a variable to be created that will mark the source of
observations. Observations from the master dataset (the data in memory before the append
command) will contain O for this variable. Observations from the first using dataset will contain 1
for this variable; observations from the second using dataset will contain 2 for this variable; and
SO on.

keep (varlist) specifies the variables to be kept from the using dataset. If keep() is not specified,
all variables are kept.

The varlist in keep (varlist) differs from standard Stata varlists in two ways: variable names in
varlist may not be abbreviated, except by the use of wildcard characters, and you may not refer
to a range of variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset
in memory. Even if you do not specify this option, label definitions from the disk dataset never
replace definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is
to incorporate notes from the using dataset that do not already appear in the master data.

8

append — Append datasets 9

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append
issues a warning message.

Remarks

The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see
[D] save).

> Example 1

We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,
contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

. use even
(6th through 8th even numbers)

. list

number even

1. 6 12

2. 7 14

3. 8 16
. use odd

(First five odd numbers)

. list

number odd

g WN -
O wWwN e
O N0 Wwe

We will append the even data to the end of the odd data. Because the odd data are already in
memory (we just used them above), we type append using even. The result is

. append using even

. list
number odd even
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6. 6 12
7. 7 14
8 8 16

10

append — Append datasets

Because the number variable is in both datasets, the variable was extended with the new data
from the file even.dta. Because there is no variable called odd in the new data, the additional
observations on odd were forward-filled with missing (.). Because there is no variable called even

in the original data, the first observations on even were back-filled with missing.

> Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

. use http://www.stata-press.com/data/r12/o0dd1
(First five odd numbers)

. describe

Contains data from http://www.stata-press.com/data/ri12/odd1.dta

obs: 5 First five odd numbers
vars: 2 9 Jan 2011 08:41

size: 40

storage display value

variable name type format label variable label
odd float %9.0g 0dd numbers
number float %9.0g
Sorted by: number

. describe using http:

//www.stata-press.com/data/r12/even

Contains data from http://www.stata-press.com/data/r12/even

obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2011 08:43
size: 27

storage display value
variable name type format label variable label
number byte %9.0g
even float %9.0g Even numbers
Sorted by: number
. append using http://www.stata-press.com/data/r12/even
. list
odd number even

1 1 1

2 3 2

3 5 3

4 7 4

5 9 5

6. . 6 12

7. 7 14

8. 8 16

The results are the same as those in the first example.

append — Append datasets 11

When Stata appends two datasets, the definitions of the dataset in memory, called the master
dataset, override the definitions of the dataset on disk, called the using dataset. This extends to value
labels, variable labels, characteristics, and date—time stamps. If there are conflicts in numeric storage
types, the more precise storage type will be used regardless of whether this storage type was in the
master dataset or the using dataset. If a variable is stored as a string in one dataset that is longer
than in the other, the longer str# storage type will prevail.

Q Technical note

If a variable is a string in one dataset and numeric in the other, Stata issues an error message
unless the force option is specified. If force is specified, Stata issues a warning message before
appending the data. If the using dataset contains the string variable, the combined dataset will have
numeric missing values for the appended data on this variable; the contents of the string variable in
the using dataset are ignored. If the using dataset contains the numeric variable, the combined dataset
will have empty strings for the appended data on this variable; the contents of the numeric variable
in the using dataset are ignored.

a

> Example 3

Because Stata has five numeric variable types—byte, int, long, float, and double—you may
attempt to append datasets containing variables with the same name but of different numeric types;
see [U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using http://www.stata-press.com/data/r12/odd
Contains data from http://www.stata-press.com/data/r12/odd

obs: 5 First five odd numbers
vars: 2 9 Jan 2011 08:50

size: 60

storage display value

variable name type format label variable label
number float %9.0g
odd float %9.0g 0dd numbers
Sorted by:

. describe using http://www.stata-press.com/data/r12/even

Contains data from http://www.stata-press.com/data/ri12/even

obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2011 08:43
size: 27
storage display value
variable name type format label variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number

12 append — Append datasets

. describe using http://www.stata-press.com/data/r12/oddeven
Contains data from http://www.stata-press.com/data/r12/oddeven

obs: 8 First five odd numbers
vars: 3 9 Jan 2011 08:53

size: 128

storage display value

variable name type format label variable label
number float %9.0g
odd float %9.0g 0dd numbers
even float %9.0g Even numbers
Sorted by:

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because
float is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as
a float. Had we instead appended odd.dta to even.dta, number would still have been stored as
a float:

. use http://www.stata-press.com/data/r12/even, clear
(6th through 8th even numbers)

. append using http://www.stata-press.com/data/r12/o0dd
number was byte now float

. describe
Contains data from http://www.stata-press.com/data/r12/even.dta
obs: 8 6th through 8th even numbers
vars: 3 9 Jan 2011 08:43
size: 96
storage display value
variable name type format label variable label
number float %9.0g
even float %9.0g Even numbers
odd float %9.0g 0dd numbers
Sorted by:

Note: dataset has changed since last saved

> Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously
given a label variable educ "Education Level" command so that the variable label associated
with educ is “Education Level”. We now append a dataset called newdata.dta, which also contains
a variable named educ, except that its variable label is “Ed. Lev”. After appending the two datasets,
the educ variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

d

> Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further
assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl.
Thus there is one definition of educlbl in memory and another (although perhaps equivalent) definition
in newdata.dta. When you append the new data, you will see the following:

append — Append datasets 13

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem
and sticks with the definition currently in memory, ignoring the definition in the disk file.

d

Q Technical note

When you append two datasets that both contain definitions of the same value label, the codings
may not be equivalent. That is why Stata warns you with a message like “label educlbl already
defined”. If you do not know that the two value labels are equivalent, you should convert the value-
labeled variables into string variables, append the data, and then construct a new coding. decode and
encode make this easy:

. use newdata, clear

. decode educ, gen(edstr)
. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)
. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in
the incoming file, whether or not there is a conflict. In practice, you will probably never want to do
this.

a

> Example 6

Suppose that we have several datasets containing the populations of counties in various states. We
can use append to combine these datasets all at once and use the generate() option to create a
variable identifying from which dataset each observation originally came.

. use http://www.stata-press.com/data/r12/capop
. list

county pop

e

Los Angeles 9878554
Orange 2997033
3. Ventura 798364

N

. append using http://www.stata-press.com/data/r12/ilpop
> http://wuw.stata-press.com/data/r12/txpop, generate(state)

. label define statelab O "CA" 1 "IL" 2 "TX"

. label values state statelab

14 append — Append datasets

. list

county pop state
1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL
6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Also see

[D] save — Save Stata dataset

[D] use — Load Stata dataset

[D] cross — Form every pairwise combination of two datasets
[D] joinby — Form all pairwise combinations within groups
[D] merge — Merge datasets

[U] 22 Combining datasets

Title

assert — Verify truth of claim

Syntax

assert exp [lf} [in} [, rcO gull]

by is allowed; see [D] by.

Description

assert verifies that exp is true. If it is true, the command produces no output. If it is not true,
assert informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error
messages and return codes.

Options

rcO forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions.

Remarks

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate
to look for evidence of errors in the dataset. These commands, however, require you to review the
output to spot the error. assert is useful because it tells Stata not only what to do but also what
you can expect to find. Groups of assertions are often combined in a do-file to certify data. If the
do-file runs all the way through without complaining, every assertion in the file is true.

. do myassert

. use trans, clear
(xplant data)

. assert sex=="m" | sex=="f"

. assert packs==0 if !smoker

. assert packs>0 if smoker

. sort patient date

. by patient: assert sex==sex[_n-1] if _n>1

. by patient: assert abs(bp-bp[_n-1]) < 20 if bp< . & bp[_n-11< .
. by patient: assert died==0 if _n!=_N

. by patient: assert died==0 | died==1 if _n==_

. by patient: assert n_xplant==0 | n_xplant==1 if _n==_

. assert inval==int(inval)

end of do-file

15

16 assert — Verify truth of claim

> Example 1

You receive data from Bob, a coworker. He has been working on the dataset for some time, and
it has now been delivered to you for analysis. Before analyzing the data, you (smartly) verify that
the data are as Bob claims. In Bob’s memo, he claims that 1) the dataset reflects the earnings of 522
employees, 2) the earnings are only for full-time employees, 3) the variable female is coded 1 for
female and O otherwise, and 4) the variable exp contains the number of years, or fraction thereof, on
the job. You assemble the following do-file:

use frombob, clear

assert _N==522

assert sal>=6000 & sal<=125000
assert female==1 | female==
gen work=sum(female==1)

assert work[_N]>0

replace work=sum(female==0)
assert work[_N]>0

drop work

assert exp>=0 & exp<=40

Let’s go through these assertions one by one. After using the data, you assert that _N equals 522.
Remember, _N reflects the total number of observations in the dataset; see [U] 13.4 System variables
(—variables). Bob said it was 522, so you check it. Bob’s second claim was that the data are for only
full-time employees. You know that everybody in your company makes a salary between $6,000 and
$125,000, so you check that the salary figures are within this range. Bob’s third assertion was that
the female variable was coded zero or one.

You add something more. You know that your company employs both males and females, so you
check that there are some of each. You create a variable called work equal to the running sum of
female observations and then verify that the last observation of this variable is greater than zero.
You then repeat the process for males and discard the work variable. Finally, you verify that the exp
variable is never negative and is never larger than 40.

You save the above file as check.do, and here is what happens when you run it:

. do check

. use frombob, clear

(5/21 data)

. assert _N==522

. assert sal>6000 & sal<=125000

14 contradictions in 522 observations

assertion is false
r(9);

end of do-file
r(9);

Everything went fine until you checked the salary variable, when Stata told you that there were 14
contradictions to your assertion and stopped the do-file. Seeing this, you now interactively summarize
the sal variable and discover that 14 people have missing salaries. You dash off a memo to Bob
asking him why these data are missing.

4

assert — Verify truth of claim 17

> Example 2

Bob responds quickly. There was a mistake in reading the salaries for the consumer relations
division. He says it’s fixed. You believe him but check with your do-file again. This time you type
run instead of do, suppressing all the output:

. run check

Even though you suppressed the output, if there had been any contradictions, the messages would
have printed. check.do ran fine, so all its assertions are true.

N

Q Technical note

assert is especially useful when you are processing large amounts of data in a do-file and wish to
verify that all is going as expected. The error here may not be in the data but in the do-file itself. For
instance, your do-file is rolling along, and it has just merged two datasets that it created by subsetting
some other data. If everything has gone right so far, every observation should have merged. Include
the line

assert _merge==
to verify the correctness of the merge. If all the observations did not merge, the assertion will be
false, and your do-file will stop.

As another example, you are combining data from many sources, and you know that after the first
two datasets are combined, every individual’s sex should be defined. So, you include the line

assert sex< .

in your do-file. Experienced Stata users include many assertions in their do-files when they process
data.
a

Q Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N==522
or assert work[_N]>0, assert knows that the expression needs to be evaluated only once. When
you type assert female==1 | female==0, assert knows that the expression needs to be evaluated
once for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is
evaluated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

18 assert — Verify truth of claim

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to
assert work>0.
Q

Also see
[P] capture — Capture return code
[P] confirm — Argument verification
[U] 16 Do-files

Title

bcal — Business calendar file manipulation

Syntax
List business calendars used by the data currently in memory

bcal check [varlist] [, rcO]

List filenames and directories of available business calendars

bcal dir [pattern]

Describe the specified business calendar

bcal describe calname

Load the business calendar

bcal load calname

where

varlist is a list of variable names to be checked for whether they use business calendars. If not
specified, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and ?. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,
calname could be simple or %tbsimple.

Menu
Data > Other utilities > Business calendar utilities

Data > Variables Manager

Description

See [D] datetime business calendars for an introduction to business calendars and dates.
bcal check lists the business calendars used by the data currently in memory, if any.

bcal dir pattern lists filenames and directories of all available business calendars matching
pattern, or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically
when needed, and thus use of bcal load is never required. bcal load is used by programmers
writing their own business calendars. bcal load calname forces immediate loading of a business
calendar and displays output, including any error messages due to improper calendar construction.

19

20 bcal — Business calendar file manipulation

Option

, Main
rcO specifies that bcal check is to exit without error (return 0) even if some calendars do not exist
or have errors. Programmers can then access the results bcal check saves in r() to get even
more details about the problems. If you wish to suppress bcal dir, precede the bcal check
command with capture and specify the rcO option if you wish to access the r() results.

Remarks

bcal check reports on any %tb formats used by the data currently in memory:

. bcal check

%tbsimple: defined, used by variable
mydate

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:
simple: C:\Program Files\Statal2\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format %tbsimple):
purpose: Example for manual
range: Olnov2011 30nov2011

18932 18961 in %td units
0 19 in %tbsimple units
center: 0Olnov2011
18932 in %td units
0 in %tbsimple units
omitted: 10 days
121.8 approx. days/year
included: 20 days
243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] datetime business calendars
creation.

Saved results

bcal check saves the following in r():

Macros
r(defined) business calendars used, stbcal-file exists, and file contains no errors
r (undefined) business calendars used, but no stbcal-files exist for them

Warning to programmers: Specify the rcO option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has
errors; in such cases, the results are not saved.

bcal — Business calendar file manipulation

21

bcal describe saves the following in r():

Scalars
r(min_date_td)
r(max_date_td)
r(ctr_date_td)
r(min_date_tb)
r(max_date_tb)
r(omitted)
r(included)

Macros
r(name)
r (purpose)

calendar’s minimum date in %td units
calendar’s maximum date in %td units
calendar’s zero date in %td units

calendar’s minimum date in %tb units
calendar’s maximum date in %tb units

total number of days omitted from calendar
total number of days included in calendar

pure calendar name (for example, nyse)
short description of calendar’s purpose

bcal load saves the same results in r() as bcal describe, except it does not save r (omitted)

and r(included).

Methods and formulas

bcal is implemented as an ado-file.

Also see

[D] datetime business calendars — Business calendars

[D] datetime business calendars creation — Business calendars creation

Title

by — Repeat Stata command on subsets of the data

Syntax

by varlist : stata_cmd

bysort varlist : stata_cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist; [(varlistﬁ} [, sort rcO] 1 stata—_cmd

bysort varlist; [(varlistg)] [, rcO]: stata_cmd

Description

Most Stata commands allow the by prefix, which repeats the command for each group of observations
for which the values of the variables in varlist are the same. by without the sort option requires

that the data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax
diagram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed;

see [U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.

The varlist; (varlisty) syntax is of special use to programmers. It verifies that the data are sorted
by varlist; varlisto and then performs a by as if only varlist; were specified. For instance,

by pid (time): gen growth = (bp - bp[_n-11)/bp

performs the generate by values of pid but first verifies that the data are sorted by pid and time

within pid.

Options

sort specifies that if the data are not already sorted by varlist, by should sort them.

rcO specifies that even if the stata_cmd produces an error in one of the by-groups, then by is still
to run the stata_cmd on the remaining by-groups. The default action is to stop when an error
occurs. rcO is especially useful when stata_cmd is an estimation command and some by-groups

have insufficient observations.

22

by — Repeat Stata command on subsets of the data

23

Remarks

> Example 1

. use http://www.stata-press.com/data/r12/autornd
(1978 Automobile Data)

. keep in 1/20

(54 observations deleted)

. by mpg: egen mean_w = mean(weight)

not sorted

r(5);

. sort mpg

. by mpg: egen mean_w = mean(weight)

. list

make weight mpg mean_w

1. Cad. Eldorado 4000 15 3916.667
2. AMC Pacer 3500 15 3916.667
3. | Chev. Impala 3500 15 3916.667
4. Buick Electra 4000 15 3916.667
5. Cad. Deville 4500 15 3916.667
6. Buick Riviera 4000 15 3916.667
7. Buick LeSabre 3500 20 3350
8. Chev. Monte Carlo 3000 20 3350
9. Buick Skylark 3500 20 3350
10. | Buick Century 3500 20 3350
11. AMC Spirit 2500 20 3350
12. AMC Concord 3000 20 3350
13. Buick Regal 3500 20 3350
14. Chev. Malibu 3000 20 3350
15. Chev. Nova 3500 20 3350
16. Cad. Seville 4500 20 3350
17. Buick Opel 2000 25 2500
18. Chev. Monza 3000 25 2500
19. Chev. Chevette 2000 30 2000
20. Dodge Colt 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort: egen
mean_w = mean(weight) or bysort mpg: egen mean_w = mean(weight) rather than the separate
sort; all would yield the same results.

N

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 27.2 The
by construct. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2010,

chap. 7).

References

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

http://www.stata-journal.com/sjpdf.html?articlenum=pr0004
http://www.stata-press.com/books/dmus.html

24 by — Repeat Stata command on subsets of the data

Also see
[D] sort — Sort data
[D] statsby — Collect statistics for a command across a by list
[P] byable — Make programs byable
[P] foreach — Loop over items
[P] forvalues — Loop over consecutive values
[P] while — Looping
[U] 11.1.2 by varlist:
[U] 11.1.10 Prefix commands
[U] 11.4 varlists
[U] 11.5 by varlist: construct
[U] 27.2 The by construct

Title

cd — Change directory

Syntax
Stata for Windows
cd
cd ["] directory_name ["]
cd ["]drive: "]
cd ["]drive:directory_name|"|

pwd

Stata for Mac and Stata Unix
cd
cd ["] directory_name ["]

pwd

If your directory_name contains embedded spaces, remember to enclose it in double quotes.

Description

Stata for Windows: cd changes the current working directory to the specified drive and directory.
pwd is equivalent to typing cd without arguments; both display the name of the current working
directory. Note: You can shell out to a DOS window; see [D] shell. However, typing ! cd directory_name
does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to
directory_name or, if directory_name is not specified, the home directory. pwd displays the path of
the current working directory.

Remarks

Remarks are presented under the following headings:

Stata for Windows
Stata for Mac
Stata for Unix

25

26 cd — Change directory

Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory
specified in Properties. If you want to change this, see [GSW] C.1 The Windows Properties Sheet.
You can always see what your working directory is by looking at the status bar at the bottom of the
Stata window.

Once you are in Stata, you can change your directory with the cd command.

. cd
c:\data

. cd city
c:\data\city
. cd d:

D:\

. cd kande
D:\kande

. cd "additional detail"
D:\kande\additional detail
. cd c:

C:\

. cd data\city
C:\data\city

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g

.cd ..

C:\a\b\c\d\e\f

.cd ...

C:\a\b\c\d

.cd ...,
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then
cd "additional detail". The double quotes around “additional detail” are necessary because of
the space in the directory name. We could have changed to this directory in one command: cd
"d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the
cd .. syntax to move up one directory from where you are. The last two cd commands above let
you move up more than one directory: cd ... is shorthand for ‘cd ..\..” and cd is shorthand
for ‘cd ..\..\.. . These shorthand cd commands are not limited to Stata; they will work in your
DOS windows under Windows as well.

Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command
language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is
foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current
folder (where Stata saves files and looks for files) by typing pwd. You can change the current folder
by using cd or by selecting File > Change Working Directory.... Stata’s cd understands ‘~’ as an
abbreviation for the home directory, so you can type things like cd ~/data.

cd — Change directory 27

. pwd
/Users/bill/proj

. cd "~/data/city"
/Users/bill/data/city

If you now wanted to change to "/Users/bill/data/city/ny", you could type cd ny. If you
wanted instead to change to "/Users/bill/data", you could type ‘cd .. .

Stata for Unix

cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands
‘-’ as an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see
[U] 11.6 Filenaming conventions.

. pwd
/usr/bill/proj

. cd ~/data/city
/usr/bill/data/city

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted
instead to change to /usr/bill/data, you could type ‘cd .. .

Also see
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

cf — Compare two datasets

Syntax

cf varlist using filename [, all yerbose]

Menu

Data > Data utilites > Compare two datasets

Description

cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables
in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.
Variable labels, value labels, notes, characteristics, etc., are not compared.

Options

all displays the result of the comparison for each variable in varlist. Unless all is specified, only
the results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks

cf produces messages having the following form:

varname: does not exist in using
varname: ___ in master but __ in using
varname: ___ mismatches

varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

> Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to
understand any differences before continuing:

. cf _all using mydata

28

cf — Compare two datasets 29

All the variables in the master dataset are in mydata.dta, and these variables are the same in both
datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear_ratio
variables do not exist in mydata.dta.

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all
make: match
price: match
mpg: 2 mismatches
rep78: match
headroom: does not exist in using
trunk: match
weight: match
length: match
turn: match
displacement: does not exist in using
gear_ratio: does not exist in using
foreign: match
r(9);

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose
mpg: 2 mismatches
obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

This example shows us exactly which two observations for mpg differ, as well as the value stored
in each dataset. q

> Example 2

We want to compare a group of variables in the dataset in memory against the same group of
variables in mydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches
headroom: does not exist in using
r(9);

30 cf — Compare two datasets

Saved results
cf saves the following in r():

Macros
r (Nsum) number of differences

Methods and formulas

cf is implemented as an ado-file.

If you are using Small Stata, you may get the error “too many variables” when you stipulate _all
and have many variables in your dataset. (This will not happen if you are using Stata/MP, Stata/SE,
or Stata/IC.) If this happens, you will have to perform the comparison with groups of variables. See
example 2 for details about how to do this.

Acknowledgment

Speed improvements in cf were based on code written by David Kantor.

Reference

Gleason, J. R. 1995. dm36: Comparing two Stata data sets. Stata Technical Bulletin 28: 10-13. Reprinted in Stata
Technical Bulletin Reprints, vol. 5, pp. 39-43. College Station, TX: Stata Press.

Also see

[D] compare — Compare two variables

http://www.stata.com/products/stb/journals/stb28.pdf

Title

changeeol — Convert end-of-line characters of text file

Syntax
changeeol filenamel filename2, eol (platform) [options]

filenamel and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the
filename contains embedded blanks.

options Description
*eol (windows) convert to Windows-style end-of-line characters (\r\n)
*eol(dos) synonym for eol(windows)
*eol(unix) convert to Unix-style end-of-line characters (\n)
*eol(mac) convert to Mac-style end-of-line characters (\n)
*eol(classicmac) convert to classic Mac-style end-of-line characters (\r)

replace overwrite filename2

force force to convert filenamel to filename?2 if filenamel is a binary file

*e0l() is required.

Description

changeeol converts text file filenamel to text file filename2 with the specified Win-
dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line charac-
ters from one type of file to another.

Options

eol(windows |dos |unix |mac | classicmac) specifies to which platform style filename2 is to be
converted. eol() is required.
replace specifies that filename2 be replaced if it already exists.

force specifies that filenamel be converted if it is a binary file.

Remarks

changeeol uses hexdump to determine whether filenamel is ASCI or binary. If it is binary,
changeeol will refuse to convert it unless the force option is specified.

31

32 changeeol — Convert end-of-line characters of text file

Examples
Windows:
. changeeol orig.txt newcopy.txt, eol(windows)
Unix:
. changeeol orig.txt newcopy.txt, eol(unix)
Mac:
. changeeol orig.txt newcopy.txt, eol(mac)

Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see

[D] filefilter — Convert text or binary patterns in a file
[D] hexdump — Display hexadecimal report on file

Title

checksum — Calculate checksum of file

Syntax

checksum filename [, options}

set checksum {on | off } [, permanently}

options Description

save save output to filename . sum; default is to display a report

replace may overwrite filename . sum; use with save

saving/(filename2 [, replace]) save output to filename2; alternative to save
Description

checksum creates filename.sunm files for later use by Stata when it reads files over a network.
These optional files are used to reduce the chances of corrupted files going undetected. Whenever
Stata reads file filename . suffix over a network, whether by use, net, update, etc., it also looks for
filename . sum. If Stata finds that file, Stata reads it and uses its contents to verify that the first file
was received without error. If there are errors, Stata informs the user that the file could not be read.

set checksum on tells Stata to verify that files downloaded over a network have been received
without error.

set checksum off, which is the default, tells Stata to bypass the file verification.

Q Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the
file size in bytes. checksum produces the same results as the Unix cksum command. Comparing the
checksum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and
cksum commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used
by Unix’s sum. In some Unix operating systems, there is no cksum command, and the more robust
algorithm is obtained by specifying an option with sum.

a

Options
save saves the output of the checksum command to the text file filename.sum. The default is to
display a report but not create a file.
replace is for use with save; it permits Stata to overwrite an existing filename . sum file.

saving (filename2 [, replace]) is an alternative to save. It saves the output in the specified
filename. You must supply a file extension if you want one, because none is assumed.

permanently specifies that, in addition to making the change right now, the checksum setting be
remembered and become the default setting when you invoke Stata.

33

34 checksum — Calculate checksum of file

Remarks

> Example 1

Say that you wish to put a dataset on your homepage so that colleagues can use it over the Internet
by typing
. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by
the Internet are small, you wish to guard against that. The solution is to create the checksum file
named mydata.sum and place that on your homepage. Your colleagues need type nothing different,
but now Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

or

. use http://www.myuni.edu/department/~joe/mydata

file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

> Example 2

Let’s use checksum on the auto dataset that is shipped with Stata. We will load the dataset and
save it to our current directory.
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. save auto
file auto.dta saved

. checksum auto.dta
Checksum for auto.dta = 2039025784, size = 5949

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 5949 2039025784

The first number is the version number (possibly used for future releases). The second number is
the file’s size in bytes, which can be used with the checksum value to ensure that the file transferred
without corruption. The third number is the checksum value. Although two different files can have
the same checksum value, two files with the same checksum value almost certainly could not have
the same file size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file
transmission error occurred during a web download. If you want to verify that your own data are
unchanged, using datasignature is better; see [D] datasignature.

d

checksum — Calculate checksum of file

35

Saved results

checksum saves the following in r():

Scalars
r(version) checksum version number
r(filelen) length of file in bytes

r(checksum) checksum value

Also see

[D] use — Load Stata dataset

[R] net — Install and manage user-written additions from the Internet

[D] datasignature — Determine whether data have changed

Title

clear — Clear memory

Syntax

clear

clear [mata | results | matrix | programs \ ado]

clear [all | *}

Description

clear, by itself, removes data and value labels from memory and is equivalent to typing
. version 12

. drop _all (see [D] drop)
. label drop _all (see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. version 12
. mata: mata clear (see [M-3] mata clear)

clear results eliminates saved results from memory and is equivalent to typing

. version 12

. return clear (see [P] return)
. ereturn clear (see [P] return)
. sreturn clear (see [P] return)
. _return drop _all (see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does
not eliminate Mata matrices from memory. clear matrix is equivalent to typing

. version 12

. return clear (see [P] return)

. ereturn clear (see [P] return)

. sreturn clear (see [P] return)

. _return drop _all (see [P] _return)

. matrix drop _all (see [P] matrix utility)
. estimates drop _all (see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. version 12
. program drop _all (see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs
defined interactively or by do-files). It is equivalent to typing

. version 12
. program drop _allado (see [P] program)

36

clear — Clear memory 37

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars,
constraints, clusters, saved results, sersets, and Mata functions and objects from memory. They also
close all open files and postfiles, clear the class system, close any open Graph windows and dialog
boxes, drop all programs from memory, and reset all timers to zero. They are equivalent to typing

. version 12

. drop _all

. label drop _all

. matrix drop _all
. scalar drop _all
. constraint drop _all
. cluster drop _all
. file close _all

. postutil clear

. _return drop _all
. discard

. program drop _all
. timer clear

. mata: mata clear

Remarks

(see [D] drop)

(see [D] label)

(see [P] matrix utility)
(see [P] scalar)

(see [R] constraint)

(see [MV] cluster utility)
(see [P] file)

(see [P] postfile)

(see [P] _return)

(see [P] discard)
(see [P] program)
(see [P] timer)
(see [M-3] mata clear)

P]
P]
P]

You can clear the entire dataset without affecting macros and programs by typing clear. You can
also type clear all. This command has the same result as clear by itself but also clears matrices,
scalars, constraints, clusters, saved results, sersets, Mata, the class system, business calendars, and
programs; closes all open files and postfiles; closes all open Graph windows and dialog boxes; and
resets all timers to zero.

> Example 1

We load the bpwide dataset to correct a mistake in the data.

. use http://www.stata-press.com/data/r12/bpwide
(fictional blood pressure data)

. list in 1/5
patient sex agegrp bp_bef~e bp_after
1 1 Male 30-45 143 153
2 2 Male 30-45 163 170
3 3 Male 30-45 153 168
4 4 Male 30-45 153 142
5 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp_after in observation 4. It is easiest
to begin again.
. clear

. use http://www.stata-press.com/data/r12/bpwide
(fictional blood pressure data)

38 clear — Clear memory

Methods and formulas

clear is implemented as an ado-file.

Also see
[D] drop — Eliminate variables or observations
[P] discard — Drop automatically loaded programs
[U] 11 Language syntax

[U] 13 Functions and expressions

Title

clonevar — Clone existing variable

Syntax

clonevar newvar = varname [zf] [zn]

Menu

Data > Create or change data > Other variable-creation commands > Clone existing variable

Description

clonevar generates newvar as an exact copy of an existing variable, varname, with the same
storage type, values, and display format as varname. varname’s variable label, value labels, notes,
and characteristics will also be copied.

Remarks

clonevar has various possible uses. Programmers may desire that a temporary variable appear
to the user exactly like an existing variable. Interactively, you might want a slightly modified copy
of an original variable, so the natural starting point is a clone of the original.

> Example 1
We have a dataset containing information on modes of travel. These data contain a variable named
mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

. use http://www.stata-press.com/data/ri2/travel
. describe mode

storage display value

variable name type format label variable label
mode byte %8.0g travel travel mode alternatives
. label list travel
travel:

1 air

2 train

3 bus

4 car

To create an identical variable identifying only observations that contain air or train, we could use
clonevar with an if qualifier.

. clonevar airtrain = mode if mode == | mode ==

(420 missing values generated)

. describe mode airtrain

storage display value
variable name type format label variable label
mode byte %8.0g travel travel mode alternatives
airtrain byte %8.0g travel travel mode alternatives

39

40 clonevar — Clone existing variable

. list mode airtrain in 1/5

mode airtrain

1. air air
2. train train
3. bus

4. car .
5. air air

The new airtrain variable has the same storage type, display format, value label, and variable
label as mode. If mode had any characteristics or notes attached to it, they would have been applied
to the new airtrain variable, too. The only differences in the two variables are their names and
values for bus and car.

N

Q Technical note

The if qualifier used with the clonevar command in example 1 referred to the values of mode
as 1 and 2. Had we wanted to refer to the values by their associated value labels, we could have
typed

. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel

For more details, see [U] 13.10 Label values.

Methods and formulas

clonevar is implemented as an ado-file.

Acknowledgments

clonevar was written by Nicholas J. Cox, Durham University, who in turn thanks Michael Blasnik,
M. Blasnik & Associates, and Ken Higbee, StataCorp, for very helpful comments on a precursor of
this command.

Also see

[D] generate — Create or change contents of variable

[D] separate — Create separate variables

Title

codebook — Describe data contents

Syntax
codebook [varlist] [lf] [m] [, options}
options Description
Options
all print complete report without missing values
header print dataset name and last saved date
notes print any notes attached to variables
mv report pattern of missing values
tabulate (#) set tables/summary statistics threshold; default is tabulate(9)
problems report potential problems in dataset
detail display detailed report on the variables; only with problems
compact display compact report on the variables
dots display a dot for each variable processed; only with compact
Languages

languages [(namelist)] use with multilingual datasets; see [D] label language for details

Menu

Data > Describe data > Describe data contents (codebook)

Description

codebook examines the variable names, labels, and data to produce a codebook describing the
dataset.

Options
__ [Options |

all is equivalent to specifying the header and notes options. It provides a complete report, which
excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset
was last saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a
CPU-intensive task.

tabulate (#) specifies the number of unique values of the variables to use to determine whether a
variable is categorical or continuous. Missing values are not included in this count. The default is
9; when there are more than nine unique values, the variable is classified as continuous. Extended
missing values will be included in the tabulation.

M

42 codebook — Describe data contents

problems specifies that a summary report is produced describing potential problems that have been
diagnosed:

Variables that are labeled with an undefined value label

Incompletely value-labeled variables
e Variables that are constant, including always missing
e Trailing, trimming, and embedded spaces in string variables
e Noninteger-valued date variables
See the discussion of these problems and advice on overcoming them following example 5.

detail may be specified only with the problems option. It specifies that the detailed report on the
variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

Languages
languages[(namelist)] is for use with multilingual datasets; see [D] label language. It indicates
that the codebook pertains to the languages in namelist or to all defined languages if no such
list is specified as an argument to languages (). The output of codebook lists the data label
and variable labels in these languages and which value labels are attached to variables in these
languages.

Problems are diagnosed in all these languages, as well. The problem report does not provide details
in which language problems occur. We advise you to rerun codebook for problematic variables;
specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages(), all output, including the
problem report, is shown in the “active” language.

Remarks

codebook, without arguments, is most usefully combined with log to produce a printed listing
for enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—Ilog files.
codebook is, however, also useful interactively, because you can specify one or a few variables.

> Example 1

codebook examines the data in producing its results. For variables that codebook thinks are
continuous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th
percentiles. For variables that it thinks are categorical, it presents a tabulation. In part, codebook
makes this determination by counting the number of unique values of the variable. If the number is
nine or fewer, codebook reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (.a
through .z, denoted by .*). If extended missing values are found, codebook reports the number
of distinct missing value codes that occurred in that variable. Missing values are ignored with the
tabulate option when determining whether a variable is treated as continuous or categorical.

codebook — Describe data contents 43

. use http://www.stata-press.com/data/r12/educ3

(ccdb46, 52-54)
. codebook fips division,

Dataset:
Last saved:
Label:
Number of variables:
Number of observations:
Size:

_dta:

all

http://www.stata-press.com/data/r12/educ3.dta
6 Mar 2011 22:20

ccdb46, 52-54

42

956

145,312 bytes ignoring labels, etc.

1. confirmed data with steve on 7/22

fips state/place code
type: numeric (long)
range: [10060,560050] units: 1
unique values: 956 missing .: 0/956
mean: 256495
std. dev: 156998
percentiles: 10% 25% 50% 75% 90%
61462 120426 252848 391360 482530
division Census Division
type: numeric (int)
label: division
range: [1,9] units: 1
unique values: 9 missing .: 4/956
unique mv codes: 2 missing .*: 2/956
tabulation: Freq. Numeric Label
69 1 N. Eng.
97 2 Mid Atl
202 3 E.N.C.
78 4 W.N.C.
115 5 S. Atl.
46 6 E.S.C.
89 7 W.S.C
59 8 Mountain
195 9 Pacific
4 .
2 .a

Because division has nine unique nonmissing values, codebook reported a tabulation. If divi-
sion had contained one more unique nonmissing value, codebook would have switched to reporting
summary statistics, unless we had included the tabulate (#) option.

> Example 2

N

The mv option is useful. It instructs codebook to search the data to determine patterns of missing
values. Different kinds of missing values are not distinguished in the patterns.

44 codebook — Describe data contents

. use http://www.stata-press.com/data/r12/citytemp

(City Temperature Data)

. codebook cooldd heatdd tempjan tempjuly, mv

cooldd Cooling degree days
type: numeric (int)
range: [0,4389] units: 1
unique values: 438 missing .: 3/956
mean: 1240.41
std. dev: 937.668
percentiles: 10% 257 50% 75% 90%
411 615 940 1566 2761
missing values: heatdd==mv <-> cooldd==mv
tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv
heatdd Heating degree days
type: numeric (int)
range: [0,10816] units: 1
unique values: 471 missing .: 3/956
mean: 4425.53
std. dev: 2199.6
percentiles: 10% 257 50% 75% 90%
1510 2460 4950 6232 6919
missing values: cooldd==mv <-> heatdd==mv
tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv
tempjan Average January temperature
type: numeric (float)
range: [2.2,72.6] units: .1
unique values: 310 missing .: 2/956
mean: 35.749
std. dev: 14.1881
percentiles: 10% 25% 50% 75% 90%
20.2 25.1 31.3 47.8 55.1
missing values: tempjuly==mv <-> tempjan==mv
tempjuly Average July temperature
type: numeric (float)
range: [58.099998,93.599998] units: O
unique values: 196 missing .: 0/956
unique mv codes: 1 missing .*: 2/956
mean: 75.0538
std. dev: 5.49504
percentiles: 10% 257 50% 75% 90%
68.8 71.8 74.25 78.7 82.3

missing values:

tempjan==mv <-> tempjuly==mv

codebook — Describe data contents 45

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for
cooldd and heatdd. In both cases, the correspondence is indicated with “<->".

For cooldd, codebook also states that “tempjan==mv --> cooldd==mv”. The one-way arrow
means that a missing tempjan value implies a missing cooldd value but that a missing cooldd
value does not necessarily imply a missing tempjan value. q

Another feature of codebook—this one for numeric variables—is that it can determine the units
of the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1,
meaning that temperature is recorded to tenths of a degree. codebook handles precision considerations
in making this determination (tempjan and tempjuly are floats; see [U] 13.11 Precision and
problems therein). If we had a variable in our dataset recorded in 100s (for example, 21,500 or
36,800), codebook would have reported the units as 100. If we had a variable that took on only
values divisible by 5 (5, 10, 15, etc.), codebook would have reported the units as 5.

> Example 3

We can use the label language command (see [D] label language) and the 1abel command (see
[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. label language en, rename
(language default renamed en)

. label language de, new
(language de now current language)

. label data "1978 Automobile Daten"

. label variable foreign "Art Auto"

. label values foreign origin_de

. label define origin_de O "Innen" 1 "Ausl&ndish"
. codebook foreign

foreign Art Auto

type: numeric (byte)
label: origin_de

range: [0,1] units: 1
unique values: 2 missing .: 0/74
tabulation: Freq. Numeric Label
52 0 Innen
22 1 Ausléndish

. codebook foreign, languages(en de)

foreign in en: Car type
in de: Art Auto

type: numeric (byte)
label in en: origin
label in de: origin_de

range: [0,1] units: 1
unique values: 2 missing .: 0/74
tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen

22 1 Foreign Auslandish

46

codebook — Describe data contents

With the languages() option, the value labels are shown in the specified active and available

languages.

> Example 4

N

codebook, compact summarizes the variables in your dataset, including variable labels. It is an
alternative to the summarize command.

. use http://www.stata-press.com/data/r12/auto

(1978 Automobile Data)

. codebook, compact

Variable Obs Unique Mean Min Max Label
make 74 74 . . . Make and Model
price 74 74 6165.257 3291 15906 Price
mpg 74 21 21.2973 12 41 Mileage (mpg)
rep78 69 5 3.405797 1 5 Repair Record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)
trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (1bs.)
length 74 47 187.9324 142 233 Length (in.)
turn 74 18 39.64865 31 61 Turn Circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear Ratio
foreign 74 2 .2972973 0 1 Car type
. summarize
Variable Obs Mean Std. Dev. Min Max
make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1
d
> Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,
for instance, for a string variable or for a numeric variable taking on many labeled values, it reports

a few examples instead.

codebook — Describe data contents 47

. use http://www.stata-press.com/data/r12/funnyvar

. codebook name

name (unlabeled)

type: string (str5), but longest is str3
unique values: 10 missing "": 0/10
examples: "1 O"
II3||
Il5ll
nn
warning: variable has embedded blanks

codebook is also on the lookout for common problems that might cause you to make errors when
dealing with the data. For string variables, this includes leading, embedded, and trailing blanks. In
the output above, codebook informed us that name includes embedded blanks. If name had leading
or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname
is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined
incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2
to “female”) or that the variable was defined incorrectly (for example, a variable gender with three
values). codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each
variable but reports only the potential problems in the data.

. codebook, problems
Potential problems in dataset http://www.stata-press.com/data/r12/funnyvar.dta

potential problem variables

constant (or all missing) vars
vars with nonexisting label

human planet
educ

incompletely labeled vars
strvars that may be compressed
string vars with leading blanks
string vars with trailing blanks
string vars with embedded blanks
noninteger-valued date vars

gender

name address city country planet
city country

planet

name address

birthdate

4

In the example above, codebook, problems reported various potential problems with the dataset.

These problems include

e Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always
missing, are often superfluous. Such variables, however, may also indicate problems.
For instance, variables that are always missing may occur when importing data with
an incorrect input specification. Such variables may also occur if you generate a new
variable for a subset of the data, selected with an expression that is false for all

observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant
variable, be sure to compress the variable to use minimal storage.

48

codebook — Describe data contents

Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.
A problem may arise if variables are linked to value labels that are not yet defined or
if an incorrect value label name was used.

Advice: Attach the correct value label or label define the value label; see [D] label.

Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no
mapping is provided for some values of the variable. An example is a variable with
values 0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an
error, either in the data or in the value label.

Advice: Change either the data or the value label.

String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] data
types. For instance, the storage type str20 indicates that 20 bytes are used per
observation. If the declared storage type exceeds your requirements, memory and disk
space is wasted.

Advice: Use compress to store the data as compactly as possible.

String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables
but are probably side effects from importing the data or from data manipulation. Spurious
leading and trailing spaces force Stata to use more memory than required. In addition,
manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing
replace s = trim(s)

See [D] functions.

e String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they
indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.

e Noninteger-valued date variables

Stata’s date formats were designed for use with integer values but will work with
noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a
variable are the consequence of roundoff error, you may want to round the variable to
the nearest integer.

replace time = round(time)

Of course, more problems not reported by codebook are possible. These might include

e Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually
be interpreted as numbers. Stata can do much more with numerical data than with
string data. Moreover, string representation usually makes less efficient use of computer
resources. destring will convert string variables to numeric.

codebook — Describe data contents 49

A string variable may contain a “field” with numeric information. An example is an
address variable that contains the street name followed by the house number. The Stata
string functions can extract the relevant substring.

e (Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that
take only a limited number of distinct values are an inefficient storage method. Use
value-labeled numeric values instead. These are easily created with encode.

e Duplicate observations
See [D] duplicates.
e Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss ()
egen function:

egen nobs = rownonmiss(varlist)
drop if nobs==

Specify _all for varlist if only observations that are always missing should be dropped.

Saved results

codebook saves the following lists of variables with potential problems in r():

Macros
r(cons) constant (or missing)
r(labelnotfound) undefined value labeled
r(notlabeled) value labeled but with unlabeled categories
r(str_type) compressible
r(str_leading) leading blanks
r(str_trailing) trailing blanks
r(str_embedded) embedded blanks
r(realdate) noninteger dates

Methods and formulas

codebook is implemented as an ado-file.

Reference
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] inspect — Display simple summary of data’s attributes
[D] labelbook — Label utilities
[D] notes — Place notes in data
[D] split — Split string variables into parts
[U] 15 Saving and printing output—log files

http://www.stata-press.com/books/wdaus.html

Title

collapse — Make dataset of summary statistics

Syntax
collapse clist [zf} [m} [weight} [, options}
where clist is either

[(stat)} varlist [[(stat)]]

[(stat)} target_var=varname [target_var=varname] [[(stat)]]

or any combination of the varlist and target_var forms, and stat is one of

mean means (default) sepoisson

median medians

pl Ist percentile sum

p2 2nd percentile rawsum

C.. 3rd—49th percentiles count

p50 50th percentile (same as median) max

C.. 51st—97th percentiles min

p98 98th percentile iqr

p99 99th percentile first

sd standard deviations last

semean standard error of the mean firstnm
(sd/sqrt(n)) lastnm

sebinomial standard error of the mean, binomial
(sqrt (p(1-p)/n))

If stat is not specified, mean is assumed.

standard error of the mean, Poisson
(sqrt(mean))

sums

sums, ignoring optionally specified weight

number of nonmissing observations

maximums

minimums

interquartile range

first value

last value

first nonmissing value

last nonmissing value

options Description
Options
by (varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations
fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below.
pweights may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with
semean, sebinomial, or sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)

. collapse (mean) age educ (median) income, by(state)

. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number], by(year)

50

collapse — Make dataset of summary statistics 51

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians, etc.

Description

collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must
refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Options
__ [Options |

by (varlist) specifies the groups over which the means, etc., are to be calculated. If this option is

not specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer
to either string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each
calculated statistic.
The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is
intended for use by programmers.

Remarks

collapse takes the dataset in memory and creates a new dataset containing summary statistics
of the original data. collapse adds meaningful variable labels to the variables in this new dataset.
Because the syntax diagram for collapse makes using it appear more complicated than it is,
collapse is best explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights

A final example

Introductory examples

> Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:

52 collapse — Make dataset of summary statistics

. use http://www.stata-press.com/data/r12/college
. describe

Contains data from http://www.stata-press.com/data/r12/college.dta

obs: 12

vars: 4 3 Jan 2011 12:05

size: 120

storage display value
variable name type format label variable label
gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3
= junior, 4 = senior

number int %9.0g number of students

Sorted by: year
. list, sep(4)

gpa hour year number
1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type
. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not
have to type (mean) to specify that we want the mean because the mean is reported by default.

. use http://www.stata-press.com/data/r12/college, clear
. collapse gpa hour [fw=number], by(year)

. list
year gpa hour
1. 1 2.788889 29.44444
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want
the median of gpa and hour to be stored as variables medgpa and medhour, respectively.

collapse — Make dataset of summary statistics 53

. use http://www.stata-press.com/data/r12/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list
year gpa hour medgpa medhour
1 1 2.788889 29.44444 2.8 29
2 2 2.991667 31.83333 2.9 30
3 3 3.233333 32.11111 3.3 33
4 4 3.257143 31.71428 3.4 32

Here we want to create a dataset containing a count of gpa and hour and the minimums of
gpa and hour. The minimums of gpa and hour will be stored as variables mingpa and minhour,
respectively.

. use http://www.stata-press.com/data/r12/college, clear
. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list

year gpa hour mingpa minhour

1 1 18 18 2.1 28
2 2 12 12 2.5 29
3 3 9 9 2.2 30
4 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use http://www.stata-press.com/data/r12/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. list, sep(4)

gpa hour year number
1. 3.2 30 1 3
2. 34 1 2
3. 28 1 9
4. 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse
uses all observations on hour for year = 1, even though gpa is missing for observations 1-3.

54 collapse — Make dataset of summary statistics

. collapse gpa hour [fw=num], by(year)

. list
year gpa hour
1 1 3.2 29.44444
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

If we repeat this process but specify the cw option, collapse ignores all observations that have
missing values.

. use http://www.stata-press.com/data/ri12/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. collapse (mean) gpa hour [fw=num], by(year) cw

. list

year gpa hour
1. 1 3.2 30
2. 2 2.991667 31.83333
3. 3 3.233333 32.11111
4. 4 3.257143 31.71428

d
> Example 2

We have individual-level data from a census in which each observation is a person. Among other
variables, the dataset contains the numeric variables age, educ, and income and the string variable
state. We want to create a 50-observation dataset containing the means of age, education, and
income for each state.

. collapse age educ income, by(state)
The resulting dataset contains means because collapse assumes that we want means if we do not
specify otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we
could have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one
variable containing the median of income—medinc. Because we typed (median) medinc=income,
Stata knew to find the median for income and to store those in a variable named medinc. This
renaming convention is necessary in this example because a variable named income containing the
mean is also being created.

N

collapse — Make dataset of summary statistics 55

Variablewise or casewise deletion

> Example 3

Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only
15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we
want summary statistics for age and income, collapse will, by default, use all 25,000 observations
when calculating the summary statistics for age. If we prefer that collapse use only the 15,000
observations for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects
only the sum, count, sd, semean, and sebinomial statistics.

Here are the definitions for count and sum with weights:

count:

unweighted: _N, the number of physical observations

aweight: _N, the number of physical observations

fweight, iweight, pweight: W = Z wj, the sum of the user-specified weights
sum:

unweighted: > x;, the sum of the variable

aweight: Zvjxj; v; = (w; normalized to sum to _N)

fweight, iweight, pweight: > w;z;

The sd statistic with weights returns the bias-corrected standard deviation, which is based on the
factor \/N/(N — 1), where N is the number of observations. Statistics sd, semean, sebinomial,
and sepoisson are not allowed with pweighted data. Otherwise, the statistic is changed by the
weights through the computation of the count (/NV), as outlined above.

For instance, consider a case in which there are 25 physical observations in the dataset and
a weighting variable that sums to 57. In the unweighted case, the weight is not specified, and
N = 25. In the analytically weighted case, N is still 25; the scale of the weight is irrelevant. In the
frequency-weighted case, however, N = 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with
zero weight will not be included in the sum.

> Example 4

Using our same census data, suppose that instead of starting with individual-level data and
aggregating to the state level, we started with state-level data and wanted to aggregate to the region
level. Also assume that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total
population, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

56 collapse — Make dataset of summary statistics

To obtain weighted means and medians of age and income, by region, along with the total
population and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=popl, by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-
weighted sum of pop. Specifying (count) age would have worked as well as (count) pop
because count merely counts the number of nonmissing observations. The counts here, however, are
frequency-weighted and equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop], by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores
the weights and sums only the specified variable, with one exception: observations with zero weight
will not be included in the sum. rawsum would have worked as the solution to all three cases.

A final example

> Example 5

We have census data containing information on each state’s median age, marriage rate, and divorce
rate. We want to form a new dataset containing various summary statistics, by region, of the variables:
. use http://www.stata-press.com/data/r12/census5, clear
(1980 Census data by state)
. describe

Contains data from http://www.stata-press.com/data/r12/censusb.dta

obs: 50 1980 Census data by state
vars: 7 6 Apr 2011 15:43

size: 1,700

storage display value

variable name type format label variable label

state strid Yl14s State

state2 str2 %-2s Two-letter state abbreviation
region int %8.0g cenreg Census region
pop long %10.0g Population
median_age float %9.2f Median age

marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region

. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=popl, by(region)

collapse — Make dataset of summary statistics 57
. list
region median~e marria~e divorc~e avgmrate avgdrate

1. NE 31.90 .0080657 .0035295 .0081472 .0035359

2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961

3. South 29.60 .0112609 .0065792 .0117082 .0059439

4. West 29.90 .0089093 .0056423 .0125199 .0063464
. describe
Contains data

obs: 4 1980 Census data by state
vars: 6

size: 88

storage display value
variable name type format label variable label
region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate
Sorted by: region
Note: dataset has changed since last saved
d

Methods and formulas

collapse is implemented as an ado-file.

Acknowledgment

We thank David Roodman for writing collapse2, which inspired several features in collapse.

Also see

[D] contract — Make dataset of frequencies and percentages

[D] egen — Extensions to generate

[D] statsby — Collect statistics for a command across a by list

[R] summarize — Summary statistics

Title

compare — Compare two variables

Syntax

compare varnamey varnames [lf] [in]

by is allowed; see [D] by.

Menu

Data > Data utilities > Compare two variables

Description

compare reports the differences and similarities between varname; and varnames.

Remarks

> Example 1

One of the more useful accountings made by compare is the pattern of missing values:

. use http://www.stata-press.com/data/r12/fullauto
(Automobile Models)

. compare rep77 rep78

difference

count minimum average maximum
rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1
jointly defined 66 -3 -.2121212 1
rep77 missing only 3
jointly missing 5
total 74

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in
3 more observations.

N

Q Technical note

compare may be used with numeric variables, string variables, or both. When used with string
variables, the summary of the differences (minimum, average, maximum) is not reported. When used
with string and numeric variables, the breakdown by <, =, and > is also suppressed.

58

compare — Compare two variables 59

Stata does not normally attach any special meaning to the string ".", but some Stata users use
the string "." to mean missing value.
a

Methods and formulas

compare is implemented as an ado-file.

Also see
[D] ¢f — Compare two datasets
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

compress — Compress data in memory

Syntax

compress [varlist }

Menu

Data > Data utilities > Optimize variable storage

Description

compress attempts to reduce the amount of memory used by your data.

Remarks

compress reduces the size of your dataset by considering demoting

doubles to 1longs, ints, or bytes
floats to ints or bytes

longs to ints or bytes

ints to bytes

strings to shorter strings

See [D] data types for an explanation of these storage types.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress
never makes a mistake, results in loss of precision, or hacks off strings.

> Example 1

If you do not specify a varlist, compress considers demoting all the variables in your dataset, so
typing compress by itself is usually enough:

. use http://www.stata-press.com/data/r12/compxmpl
. compress

mpg was float now byte

price was long now int

yenprice was double now long

weight was double now int

make was str26 now stril7

If there are no compression possibilities, compress does nothing. For instance, typing compress
again results in

. compress

Also see
[D] data types — Quick reference for data types

[D] recast — Change storage type of variable

60

Title

contract — Make dataset of frequencies and percentages

Syntax
contract varlist [zf] [in] [weight} [s options]
options Description
Options
freq(newvar) name of frequency variable; default is _freq
cfreq(newvar) create cumulative frequency variable
percent (newvar) create percentage variable
cpercent (newvar) create cumulative percentage variable
float generate percentage variables as type float
format (format) display format for new percentage variables; default is format (%8.2f)
zero include combinations with frequency zero
nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

Description

contract replaces the dataset in memory with a new dataset consisting of all combinations of
varlist that exist in the data and a new variable that contains the frequency of each combination.

Options
_ [Options |

freq(newvar) specifies a name for the frequency variable. If not specified, _freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent (newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent (newvar) specifies a name for the cumulative percentage variable. If not specified, no
cumulative percentage variable is created.

float specifies that the percentage variables specified by percent() and cpercent() will be
generated as variables of type float. If float is not specified, these variables will be generated
as variables of type double. All generated variables are compressed to the smallest storage type
possible without loss of precision; see [D] compress.

61

62 contract — Make dataset of frequencies and percentages

format (format) specifies a display format for the generated percentage variables specified by
percent () and cpercent (). If format () is not specified, these variables will have the display
format %8.2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in varlist be dropped. If
nomiss is not specified, all observations possible are used.

Remarks

contract takes the dataset in memory and creates a new dataset containing all combinations of
varlist that exist in the data and a new variable that contains the frequency of each combination.

Sometimes you may want to collapse a dataset into frequency form. Several observations that have
identical values on one or more variables will be replaced by one such observation, together with the
frequency of the corresponding set of values. For example, in certain generalized linear models, the
frequency of some combination of values is the response variable, so you would need to produce that
response variable. The set of covariate values associated with each frequency is sometimes called a
covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because
the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

> Example 1

Suppose that we wish to collapse the auto dataset to a set of frequencies of the variables rep78,
which takes values 1, 2, 3, 4, and 5, and foreign, which takes values labeled ‘Domestic’ and
‘Foreign’.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. contract rep78 foreign

. list

rep78 foreign _freq

1. 1 Domestic 2
2. 2 Domestic 8
3. 3 Domestic 27
4. 3 Foreign 3
5. 4 Domestic 9
6. 4 Foreign 9
7. 5 Domestic 2
8. 5 Foreign 9
9. Domestic 4
10. Foreign 1

By default, contract uses the variable name _freq for the new variable that contains the
frequencies. If _freq is in use, you will be reminded to specify a new variable name via the freq()
option.

Specifying the zero option requests that combinations with frequency zero also be listed.

. use http://www.stata-press.com/data/ri12/auto, clear
(1978 Automobile Data)
. contract rep78 foreign, zero

contract — Make dataset of frequencies and percentages 63

. list

rep78 foreign _freq

1. 1 Domestic 2
2. 1 Foreign 0
3. 2 Domestic 8
4. 2 Foreign 0
5. 3 Domestic 27
6 3 Foreign 3
7 4 Domestic 9
8 4 Foreign 9
9 5 Domestic 2
10 5 Foreign 9
11. . Domestic 4
12. . Foreign 1

Methods and formulas

contract is implemented as an ado-file.

Acknowledgments

contract was written by Nicholas J. Cox of Durham University (Cox 1998). The cfreqQ),
percent (), cpercent (), float, and format () options were written by Roger Newson, Imperial
College London.

Reference

Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2-3. Reprinted in Stata
Technical Bulletin Reprints, vol. 8, pp. 20-21. College Station, TX: Stata Press.

Also see
[D] expand — Duplicate observations
[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

http://www.stata.com/products/stb/journals/stb44.pdf

Title

copy — Copy file from disk or URL

Syntax

copy filenamey filenames [, options]

filename, may be a filename or a URL. filenameo may be the name of a file or a directory. If filenames

is a directory name, filename; will be copied to that directory. filenames may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the

filename contains embedded blanks.

options Description

public make filenames readable by all

text interpret filename; as text file and translate to native text format
replace may overwrite filenames

replace does not appear in the dialog box.

Description

copy copies filenamey to filenames.

Options

public specifies that filenames be readable by everyone; otherwise, the file will be created according

to the default permissions of your operating system.

text specifies that filename, be interpreted as a text file and be translated to the native form of text

files on your computer. Computers differ on how end-of-line is recorded: Unix systems record one
line-feed character, Windows computers record a carriage-return/line-feed combination, and Mac
computers record just a carriage return. text specifies that filename, be examined to determine how
it has end-of-line recorded and that the line-end characters be switched to whatever is appropriate
for your computer when the copy is made.

There is no reason to specify text when copying a file already on your computer to a different
location because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you
specify text, the copy will be useless. Most word processors produce binary files, not text files.
The term text, as it is used here, specifies a particular ASCII way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no
reason to translate end-of-line characters on that score. You specify text because you may want
to look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filenameo be replaced if it already exists.

64

copy — Copy file from disk or URL

65

Remarks

Examples:

‘Windows:

. copy
. copy
. copy
. copy
. copy
. copy
. copy

orig.dta newcopy.dta

mydir\orig.dta .

orig.dta ../../

"my document" "copy of document"

..\mydir\doc.txt document\doc.tex
http://www.stata.com/examples/simple.dta simple.dta
http://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy
. copy
. copy
. copy
. copy
. copy
. copy

Also see

orig.dta newcopy.dta

mydir/orig.dta .

orig.dta ../../

"my document" "copy of document"

../mydir/doc.txt document/doc.tex
http://www.stata.com/examples/simple.dta simple.dta
http://www.stata.com/examples/simple.txt simple.txt, text

[D] ed — Change directory

[D] dir — Display filenames

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

corr2data — Create dataset with specified correlation structure

Syntax

corr2data newvarlist [, options]

options Description
Main
clear replace the current dataset
double generate variable type as double; default is float
n(#) # of observations to be generated; default is current number
sds (vector) standard deviations of generated variables

corr (matrix | vector)
cov (matrix | vector)

correlation matrix
covariance matrix

cstorage (full) correlation/covariance structure is stored as a symmetric kX k matrix
cstorage (lower) correlation/covariance structure is stored as a lower triangular matrix
cstorage (upper) correlation/covariance structure is stored as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite

means (vector)

Options
seed (#)

means of generated variables; default is means (0)

seed for random-number generator

Menu

Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

Description

corr2data adds new variables with specified covariance (correlation) structure to the existing
dataset or creates a new dataset with a specified covariance (correlation) structure. Singular covariance
(correlation) structures are permitted. The purpose of this is to allow you to perform analyses from
summary statistics (correlations/covariances and maybe the means) when these summary statistics are
all you know and summary statistics are sufficient to obtain results. For example, these summary
statistics are sufficient for performing analysis of ¢ tests, variance, principal components, regression,
and factor analysis. The recommended process is

. clear (clear memory)

. corr2data ..., n(#) cov(...) (create artificial data)

. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

66

corr2data — Create dataset with specified correlation structure 67

The data created by corr2data are artificial; they are not the original data, and it is not a sample
from an underlying population with the summary statistics specified. See [D] drawnorm if you want
to generate a random sample. In a sample, the summary statistics will differ from the population
values and will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all
that is known are summary statistics and those summary statistics are sufficient for the analysis at
hand. The artificial data tricks the analysis command into producing the desired result. The analysis
command, being by assumption only a function of the summary statistics, extracts from the artificial
data the summary statistics, which are the same summary statistics you specified, and then makes its
calculation based on those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can
generate different artificial datasets by using different seeds of the random-number generator (see the
seed () option below) and compare the results, which should be the same within rounding error.

Options
Main

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has
not been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning §-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

n(#) specifies the number of observations to be generated; the default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
corr2data adds the new variables to the existing dataset; otherwise, corr2data replaces the
dataset in memory.

sds (vector) specifies the standard deviations of the generated variables. sds() may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kxk
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With & variables, the matrix should have k(k + 1)/2 elements in the following order:

Cll C21 C22 CSl 032 CSS R Ckl CkQ s Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With & variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12Cy3 ... Cpp C2 Cag ... Cax - Crp1x—1) Cr—1x) Crk

68 corr2data — Create dataset with specified correlation structure

Specifying cstorage(full) is optional if the matrix is square. cstorage (lower) or cstor-
age (upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks

corr2data is designed to enable analyses of correlation (covariance) matrices by commands
that expect variables rather than a correlation (covariance) matrix. corr2data creates variables with
exactly the correlation (covariance) that you want to analyze. Apart from means and covariances, all
aspects of the data are meaningless. Only analyses that depend on the correlations (covariances) and
means produce meaningful results. Thus you may perform a paired ¢ test ([R] ttest) or an ordinary
regression analysis ([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and
not on other aspects of the data, you can generate different datasets, each having the same summary
statistics but other different aspects, by specifying the seed() option. If the statistical results differ
beyond what is attributable to roundoff error, then using corr2data is inappropriate.

> Example 1

We first run a regression using the auto dataset.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress weight length trunk

Source SS df MS Number of obs = 74
F(C 2, 71) = 303.95

Model 39482774 .4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094178.4 73 604029.841 Root MSE = 254.85
weight Coef. Std. Err. t P>|t| [95% Conf. Intervall
length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means
and covariance matrices of weight, length, and trunk, and we want to do the same regression
again. The matrix of means is

corr2data — Create dataset with specified correlation structure 69

. mat list M

M[1,3]
weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. mat list V

symmetric V[3,3]
weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation
structure.

. corr2data x y z, n(74) cov(V) means(M)

. regress x y z

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482773.3 2 19741386.6 Prob > F = 0.0000
Residual 4611402.75 71 64949.3345 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094176 73 604029.809 Root MSE = 254.85

b4 Coef. Std. Err. t P>t [95% Conf. Intervall]

y 33.83435 1.949751 17.35 0.000 29.94666 37.72204

z -5.835155 10.14957 -0.57 0.567 -26.07282 14.40251

_cons -3258.84 283.3546 -11.50 0.000 -3823.833 -2693.847

The results from the regression based on the generated data are the same as those based on the real
data.

4

Methods and formulas
corr2data is implemented as an ado-file.

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,
zero-correlated dataset. The second step is to apply the desired correlation structure and the means
to the zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix
A and any vector of variables X, Var(A’X) = A’Var(X)A.

Reference

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156-189.

Also see

[D] drawnorm — Draw sample from multivariate normal distribution

[D] data types — Quick reference for data types

http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101

Title

count — Count observations satisfying specified conditions

Syntax
count [if] [in]

by is allowed; see [D] by.

Menu

Data > Data utilites > Count observations satisfying condition

Description

count counts the number of observations that satisfy the specified conditions. If no conditions are
specified, count displays the number of observations in the data.

Remarks

count may strike you as an almost useless command, but it can be one of Stata’s handiest.

> Example 1

How many times have you obtained a statistical result and then asked yourself how it was possible?
You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?”’
or “Is sex ever equal to 37” count can quickly answer those questions:

. use http://www.stata-press.com/data/r12/countxmpl
(1980 Census data by state)

. count
641

. count if income<O
0

. count if sex==
1

. by division: count if sex==

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

70

count — Count observations satisfying specified conditions 71

We have 641 observations. income is never negative. sex, however, takes on the value 3 once.
When we decompose the count by division, we see that it takes on that odd value in the Pacific
division.

4

Saved results
count saves the following in r():

Scalars
r(N) number of observations

Also see

[R] tabulate oneway — One-way tables of frequencies

Title

cross — Form every pairwise combination of two datasets

Syntax

cross using filename

Menu

Data > Combine datasets > Form every pairwise combination of two datasets

Description

cross forms every pairwise combination of the data in memory with the data in filename. If
filename is specified without a suffix, .dta is assumed.

Remarks
This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the
data in memory is merged with every observation of filename, followed by the second, and so on.
Thus the result will have N7 Ny observations, where [N; and N9 are the number of observations in
memory and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only
the values of the data in memory.

> Example 1

We wish to form a dataset containing all combinations of three age categories and two sexes to
serve as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

. input str6 sex

sex
1. male
2. female
3. end

. save sex
file sex.dta saved

. drop _all
. input agecat

agecat
20
30
40
end

W N

. cross using sex

72

cross — Form every pairwise combination of two datasets 73

. list

agecat

sex

20
30
40
20
30

O WN e

male
male
male
female
female

)]

40

female

Methods and formulas

cross is implemented as an ado-file.

References

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147-148.

Also see

[D] save — Save Stata dataset

[D] append — Append datasets

[D] fillin — Rectangularize dataset

[D] joinby — Form all pairwise combinations within groups

[D] merge — Merge datasets

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0020

Title

data types — Quick reference for data types

Description
This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.

Remarks
Closest to 0
Storage type Minimum Maximum without being 0 Bytes
byte —127 100 +1 1
int —32,767 32,740 +1 2
long —2,147,483,647 2,147,483,620 +1 4
float —1.70141173319 x 10*® 170141173319 x 1038 +10738 4
double —8.9884656743 x 10397 8.9884656743 x 1037 +107323 8

Precision for float is 3.795 x 1078.
Precision for double is 1.414 x 10716,

String Maximum

storage type length Bytes
stril 1 1
str2 2 2
str244 244 244

Also see

[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa
[D] encode — Encode string into numeric and vice versa

[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4.4 String storage types

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.11 Precision and problems therein

74

Title

datasignature — Determine whether data have changed

Syntax

datasignature
datasignature set [, reset]

datasignature confirm [, strict]

datasignature report

datasignature set, saving(ﬁlename[, replace}) [reset]

datasignature confirm using filename [, strict]

datasignature report using filename

datasignature clear

Menu
Data > Other utilites > Manage data signature

Description

These commands calculate, display, save, and verify checksums of the data, which taken together
form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597.
That signature is a function of the values of the variables and their names, and thus the signature can
be used later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset.
You should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirm displays an error message and returns a nonzero
return code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also
be stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition
to storing it as a characteristic in the dataset, also saves the signature in filename.

75

76 datasignature — Determine whether data have changed

datasignature confirm using filename verifies that the current signature matches the one
stored in filename.

datasignature report using filename displays a full report comparing the current signature
with the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in
memory.

Options

reset is used with datasignature set. It specifies that even though you have previously set a
signature, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the
signatures match, you also wish to require that the variables be in the same order and that no new
variables have been added to the dataset. (If any variables were dropped, the signatures would not
match.)

saving (ﬁlename[, replace]) is used with datasignature set. It specifies that, in addition to
storing the signature in the dataset, you want a copy of the signature saved in a separate file.
If filename is specified without a suffix, .dtasig is assumed. The replace suboption allows
filename to be replaced if it already exists.

Remarks

Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files

Interpreting data signatures

The logic of data signatures

Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the
same dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish
to guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish
to verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that
others have not changed it.

datasignature — Determine whether data have changed

77

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728) :3831085005: 1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728) :3831085005: 1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2011 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2011 14:24, except 2 variables have been added)

You can find out more by typing
. datasignature report
(data signature set on Monday 19feb2011 14:24)
Data signature summary

1. Previous data signature 74:12(71728) :3831085005: 1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)

dropped variables 0

resulting # of variables 14

(1) Added variables are agesquared logincome.

You could now either drop the added variables or decide to incorporate them:

. datasignature set

data signature already set -- specify option -reset-
r(198)
. datasignature set, reset
74:14(113906) : 1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the
signature that would be calculated today on the basis of the same variables in their original order, and
3) the signature that would be calculated today on the basis of all the variables and in their current

order.

datasignature confirm knew that new variables had been added because signature 1 was equal
to signature 2. If some variables had been dropped, however, datasignature confirm would not

be able to determine whether the remaining variables had changed.

78 datasignature — Determine whether data have changed

Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify
that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could
change both your data and the signature and might even do that in a desire to be helpful. The solution
is to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and
compare the current signature to what you have stored in mycopy.dtasig;:

. datasignature confirm using mycopy
(data unchanged since 19feb2011 15:05)

By the way, the signature is a function of the following:
e The number of observations and number of variables in the data
e The values of the variables
e The names of the variables
e The order in which the variables occur in the dataset
e The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data.
You wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate,
private file on your computer,

. datasignature set, saving(private)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file private.dtasig saved)

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2011 11:22)

Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2011 15:05
r(9);

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be
stopped if the data have changed.

datasignature — Determine whether data have changed 79

You may want to specify the strict option. strict adds two more requirements: that the
variables be in the same order and that no new variables have been added. Without strict, these
are not considered errors:

. datasignature confirm
(data unchanged since 19feb2011 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2011 15:05, but order of variables has changed)
r(9);

and

. datasignature confirm
(data unchanged since 19feb2011 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2011 15:22, except 1 variable has been added)
r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirm imme-
diately after loading each dataset is a good idea. This way, you have a permanent record that you
can use for comparison.

Interpreting data signatures

An example signature is 74:12(71728) :3831085005:1395876116. The components are
1. 74, the number of observations;
2. 12, the number of variables;
3. 71728, a checksum function of the variable names and the order in which they occur; and
4.

3831085005 and 1395876116, checksum functions of the values of the variables, calculated
two different ways.

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that
datasets containing similar values will have equal signatures. There are two data checksums, but do
not read too much into that. If either data checksum changes, even just a little, the data have changed.
Whether the change in the checksum is large or small—or in one, the other, or both—signifies
nothing.

The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one
mappings of the data onto the integers. Let’s consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 25638184 uch datasets or,
equivalently, 23°°472. The first checksum has 2%® possible values, and it can be proven that those
values are equally distributed over the 2395472 datasets. Thus there are 230472 / 248 1 = 2305424
datasets that have the same first checksum value as auto.dta. The same can be said for the second
checksum. It would be difficult to prove, but we believe that the two checksums are conditionally
independent, being based on different bit shifts and bit shuffles of the same data. Of the 2305424 _
datasets that have the same first checksum as auto.dta, the second checksum should be equally
distributed over them. Thus there are about 2305376 — 1 datasets with the same first and second
checksums as auto.dta.

80 datasignature — Determine whether data have changed

Now let’s consider those 2205376 — | other datasets. Most of them look nothing like auto.dta.

The checksum formulas guarantee that a change of one variable in 1 observation will lead to a change
in the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee
it in other cases. When it is not guaranteed, the change cannot be subtle—‘“Chevrolet” will have to
change to binary junk, or a double-precision 1 to —6.476678983751e+301, and so on. The change
will be easily detected if you summarize your data and just glance at the minimums and maximums.
If the data look at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one
variable in 1 observation and make an offsetting change in another observation so that, taken together,
they will go undetected? You can fool one of the checksums, but fooling both of them simultaneously
will prove difficult. The basic rule is that the more changes you make, the easier it is to create a
dataset with the same checksums as auto.dta, but by the time you’ve done that, the data will look
nothing like auto.dta.

Saved results

datasignature without arguments and datasignature set save the following in r():

Macros
r(datasignature) the signature

datasignature confirm saves the following in r():

Scalars

r(k_added) number of variables added
Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report saves the following in r():

Scalars
r(datetime) %tc date—time when set
r(changed) . if r(k_dropped) 7é 0, otherwise
0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, O if not reordered,
. if r(k_added) # 0 | r(k_dropped) # 0
r(k_original) number of original variables
r(k_added) number of added variables
r(k_dropped) number of dropped variables
Macros
r(origdatasignature) original signature
r(curdatasignature) current signature on same variables, if it can be calculated
r(fulldatasignature) current full-data signature
r(varsadded) variable names added
r(varsdropped) variable names dropped

datasignature clear saves nothing in r() but does clear it.
datasignature set stores the signature in the following characteristics:

Characteristic

_dta[datasignature_si] signature

_dta[datasignature_dt] %tc date—time when set in %21x format
_dta[datasignature_v11i] part 1, original variables
_dtal[datasignature_v12] part 2, original variables, if necessary

etc.

datasignature — Determine whether data have changed 81

To access the original variables stored in _dtal[datasignature_v11], etc., from an ado-file,
code

mata: ado_fromlchar("vars", _dta", "datasignature_vl")

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas

datasignature is implemented using _datasignature; see [P] _datasignature.

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

Also see

[P] _datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

http://www.stata-journal.com/sjpdf.html?articlenum=dm0024

Title

datetime — Date and time values and variables

Syntax

Syntax is presented under the following headings:

Types of dates and their human readable forms (HRFs)
Stata internal form (SIF)

HRF-to-SIF conversion functions

Displaying SIFs in HRF

Building SIFs from components

SIF-to-SIF conversion

Extracting time-of-day components from SIFs
Extracting date components from SIFs
Conveniently typing SIF values

Obtaining and working with durations

Using dates and times from other software

Also see

[D] datetime translation String to numeric date translation functions
[D] datetime display formats Display formats for dates and times

Types of dates and their human readable forms (HRFs)

Date type Examples of HRFs
datetime 20jan2010 09:15:22.120
date 20jan2010, 20/01/2010, ...
weekly date 2010w2

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the HRFs in the table above are merely examples. Perhaps you prefer 2010.01.20;
Jan. 20, 2010; 2010-1; etc.

With the exception of yearly dates, HRFs are usually stored in string variables. If you are reading
raw data, read the HRFS into strings.

HRFs are not especially useful except for reading by humans, and thus Stata provides another way
of recording dates called Stata internal form (SIF). You can convert HRF dates to SIF.

82

datetime — Date and time values and variables 83

Stata internal form (SIF)

The numeric values in the table below are equivalent to the string values in the table in the previous

section.

SIF type Examples in SIF Units

datetime/c 1,479,597,200,000 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,479,596,223,000 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960wl

monthly date 600 months since 1960m1

quarterly date 58 quarters since 1960q1

half-yearly date 100 half-years since 1960hl

yearly date 2010 years since 0000

* SIF datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two SIF datetime encodings in [D] datetime translation.

SIF values are stored as regular Stata numeric variables.

You can convert HRFs into SIFs by using HRF-to-SIF conversion functions; see the next section,
called HRF-to-SIF conversion functions.

You can make the numeric SIF readable by placing the appropriate %fmt on the numeric variable;
see Displaying SIFs in HRF, below.

You can convert from one SIF type to another by using SIF-to-SIF conversion functions; see
SIF-to-SIF conversion, below.

SIF dates are convenient because you can subtract them to obtain time between dates, for example,

datetime2 — datetimel= milliseconds between datetimel and datetime2
(divide by 1,000 to obtain seconds)

date2 — datel = days between datel and date2
week2 — weekl = weeks between weekl and week2
month2 — monthl = months between monthl and month2

half2 — halfl = half-years between halfl and half2

year2 — yearl = years between yearl and year2

84

datetime — Date and time values and variables

In the remaining text, we will use the following notation:

tc: a Stata double variable containing SIF datetime/c values
tC: a Stata double variable containing SIF datetime/C values

td: a Stata variable containing SIF date values

tw: a Stata variable containing SIF weekly date values
tm: a Stata variable containing SIF monthly date values
tq: a Stata variable containing SIF quarterly date values
th: a Stata variable containing SIF half-yearly date values
ty: a Stata variable containing SIF yearly date values

HRF-to-SIF conversion functions

Function to convert

SIF type HRF to SIF Note

datetime/c tc = clock(HRFstr, mask) tc must be double
datetime/C tC = Clock (HRFstr, mask) tC must be double

date td = date (HRFstr, mask) td may be float or long
weekly date tw = weekly (HRFstr, mask) tw may be float or int
monthly date tm = monthly (HRFstr, mask) tm may be float or int
quarterly date tq = quarterly(HRFstr, mask) tq may be float or int
half-yearly date th = halfyearly(HRFstr, mask) th may be float or int
yearly date ty = yearly (HRFstr, mask) ty may be float or int

Warning: To prevent loss of precision, datetime SIFs must be stored as doubles.

Examples:

1.

You have datetimes stored in the string variable mystr, an example being “2010.07.12
14:32”. To convert to SIF datetime/c, you type

. gen double eventtime = clock(mystr, "YMDhm")
The mask "YMDhm" specifies the order of the datetime components. In this case, they are
year, month, day, hour, and minute.
You have datetimes stored in mystr, an example being “2010.07.12 14:32:12”. You type
. gen double eventtime = clock(mystr, "YMDhms")
Mask element s specifies seconds. In example 1, there were no seconds; in this example,
there are.
You have datetimes stored in mystr, an example being “2010 Jul 12 14:32”. You type
. gen double eventtime = clock(mystr, "YMDhm")
This is the same command that you typed in example 1. In the mask, you specify the order

of the components; Stata figures out the style for itself. In example 1, months were numeric.
In this example, they are spelled out (and happen to be abbreviated).

datetime — Date and time values and variables 85

. You have datetimes stored in mystr, an example being “July 12, 2010 2:32 PM”. You

type
. gen double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without
periods.

. You have datetimes stored in mystr, an example being “7-12-10 14.32”. The 2-digit year

is to be interpreted as being prefixed with 20. You type

. gen double eventtime = clock(mystr, "MD20Yhm")

You have datetimes stored in mystr, an example being “14:32 on 7/12/2010”. You type
. gen double eventtime = clock(mystr, "hm#MDY")
The # sign between m and M means, “ignore one thing between minute and month”, which

in this case is the word “on”. Had you omitted the # from the mask, the new variable
eventtime would have contained missing values.

You have a date stored in mystr, an example being “22/7/2010”. In this case, you want
to create an SIF date instead of a datetime. You type

. gen eventdate = date(mystr, "DMY")

Typing

. gen double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

See [D] datetime translation for more information about the HRF-to-SIF conversion functions.

Displaying SIFs in HRF

Display format to

SIF type present SIF in HRF
datetime/c %tc
datetime/C #tC
date %td
weekly date htw
monthly date %tm
quarterly date %tq
half-yearly date %th
yearly date Wty

The display formats above are the simplest forms of each of the SIFs. You can control how each
type of SIF date is displayed; see [D] datetime display formats.

86 datetime — Date and time values and variables

Examples:

1. You have datetimes stored in string variable mystr, an example being “2010.07.12 14:32”.
To convert to SIF datetime/c and make the new variable readable when displayed, you type
. gen double eventtime = clock(mystr, "YMDhm")
. format eventtime %tc

2. You have a date stored in mystr, an example being “22/7/2010”. To convert to an SIF date
and make the new variable readable when displayed, you type

. gen eventdate = date(mystr, "DMY")
. format eventdate Jtd

Building SIFs from components

Function to build
SIF type from components

datetime/c tc = mdyhms (M, D, Y, h, m, s)
tc = dhms(td, h, m, s)
tc = hms(h, m, s)

datetime/C tC = Cmdyhms(M, D, Y, h, m, s)
tC = Cdhms(td, h, m, s)
tC = Chms(h, m, s)

date td =mdy(M, D, Y)
weekly date w = yw(Y, W)
monthly date tm = ym(Y, M)
quarterly date tq = yq(¥, Q)
half-yearly date th = yh(Y, H)
yearly date ty = y(¥)

Warning: SIFs for datetimes must be stored as doubles.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date
component in numeric form. To convert to SIF date, you type

. gen eventdate = mdy(mo, da, yr)
. format eventdate Jtd

2. Your dataset has two numeric variables, mo and yr. To convert to SIF date corresponding to
the first day of the month, you type

. gen eventdate = mdy(mo, 1, yr)
. format eventdate ’td

3. Your dataset has two numeric variables, da and yr, and one string variable, month,
containing the spelled-out month. In this case, do not use the building-from-component
functions. Instead, construct a new string variable containing the HRF and then convert the
string using the HRF-to-SIF conversion functions:

. gen str work = month + " " + string(da) + " " + string(yr)

. gen eventdate = date(work, "MDY")
. format eventdate %td

datetime — Date and time values and variables 87

SIF-to-SIF conversion

To:
From: datetime/c datetime/C date
datetime/c tC = Cofc(rc) td = dofc(tc)
datetime/C tc = cofC(tC) td = dofC(tC)
date tfc = cofd(1d) tC = Cofd(td)
weekly td = dofw(tw)
monthly td = dofm(tm)
quarterly td = dofq(tg)
half-yearly td = dofh (th)
yearly td = dofy(ty)
To:
From: weekly monthly quarterly
date tw = wofd (td) tm = mofd(td) tq = qofd(td)
To:
From: half-yearly yearly
date th = hofd (td) ty = yofd(«d)

To convert between missing entries, use two functions, going through date or datetime as appropriate.
For example, quarterly of monthly is tq = qofd(dofm(tm)).
Examples:

1. You have the SIF datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. gen eventdate = dofc(eventtime)
. format eventdate %td

2. You have the SIF date variable eventdate and wish to create the new SIF datetime/c variable
eventtime from it. You type

. gen double eventtime = cofd(eventdate)
. format eventtime Jtc

The time components of the new variable will be set to the default 00:00:00.000.
3. You have the SIF quarterly variable eventqtr and wish to create the new SIF date variable
eventdate from it. You type
. gen eventdate = dofq(eventqtr)

. format eventdate Jtq

The new variable, eventdate, will contain Oljan dates for quarter 1, Olapr dates for
quarter 2, 01jul dates for quarter 3, and Oloct dates for quarter 4.

4. You have the SIF datetime/c variable admittime and wish to create the new SIF quarterly
variable admitqtr from it. You type
. gen admitqtr = qofd(dofc(admittime))
. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

88 datetime — Date and time values and variables

Extracting time-of-day components from SIFs

Desired component Function Example
hour of day hh(#c) or hhC(zC) 14
minutes of day mm (#c) or mmC (zC) 42
seconds of day ss(tc) or ssC(tC) 57.123

Notes:
0 < hh(tc) <23,
0 <mm(#c) <59,
0 < ss(tc) < 60,

Example:

0 < hhC(tC) <23
0 <mmC(rC) <59

0 <ssC(tC) <61 (sic)

1. You have the SIF datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. gen admithour = hh(admittime) + mm(admittime)/60 + ss(admittime)/3600

Extracting date components from SiFs

Desired component Function Example*
calendar year year (td) 2011
calendar month month (7d) 7
calendar day day (td) 5
day of week dow (td) 2
(0=Sunday)

Julian day of year doy (td) 186
(1=first day)

week within year week (td) 27
(1=first week)

quarter within year quarter (td) 3
(1=first quarter)

half within year halfyear (¢d) 2

(1=first half)

* All examples are with td=mdy(7,5,2011).
All functions require an SIF date as an argument. To extract components from other SIFs,
use the appropriate SIF-to-SIF conversion function to convert to an SIF date, for example,

quarter (dofq(tq)).

Examples:

1. You wish to obtain the day of week Sunday, Monday, ..

variable eventdate. You type

. gen day_of_week = dow(eventdate)

The new variable, day_of _week, contains 0 for Sunday, 1 for Monday, .

., corresponding to the SIF date

.., 6 for Saturday.

datetime — Date and time values and variables 89

2. You wish to obtain the day of week Sunday, Monday, . . ., corresponding to the SIF datetime/c
variable eventtime. You type

. gen day_of_week = dow(dofc(eventtime))

3. You have the SIF date variable evdate and wish to create the new SIF date variable evdate_r
from it. evdate_r will contain the same date as evdate but rounded back to the first of
the month. You type

. gen evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month () and year ()
and used the build-from-components function mdy ().

Conveniently typing SIF values

You can type SIF values by just typing the number, such as 16,237 or 1,402,920,000,000, as in
. gen before = cond(hiredon < 16237, 1, 0) if if !missing(hiredon)
. drop if admittedon < 1402920000000
Easier to type is
. gen before = cond(hiredon < td(15jun2004), 1, 0) if !'missing(hiredon)
. drop if admittedon < tc(15jun2004 12:00:00)
You can type SIF date values by typing the date inside td (), as in td(15jun2004).

You can type SIF datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td () and tc () are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The SIF pseudofunctions and their expected component order are

Desired SIF type Pseudofunction

datetime/c tc([day-month-year| hh:mm][:ss[.sss]])
datetime/C tC([day-month-year| hh:mm]|:ss[.sss]])
date td (day-month-year)

weekly date tw (year-week)

monthly date tm (year-month)

quarterly date tq (year-quarter)

half-yearly date th (year-half)

yearly date none necessary; just type year

The day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. gen six_hrs_later = eventtime + tc(6:00)

90 datetime — Date and time values and variables

Obtaining and working with durations

SIF values are simply durations from 1960. SIF datetime/c values record the number of milliseconds
from 1jan1960 00:00:00; SIF date values record the number of days from 1jan1960, and so on.

To obtain the time between two SIF variables—the duration—subtract them:

. gen days_employed = curdate - hiredate

. gen double ms_inside = discharge_time - admit_time

To obtain a new SIF that is equal to an old SIF before or after some amount of time, just add or
subtract the desired durations:
. gen lastdate = hiredate + days_employed
. format lastdate Jtd

. gen double admit_time = discharge_time - ms_inside
. format admit_time %tc

Remember to use the units of the SIF variables. SIF dates are in terms of days, SIF weekly dates
are in terms of weeks, etc., and SIF datetimes are in terms of milliseconds. Concerning milliseconds,
it is often easier to use different units and conversion functions to convert to milliseconds:

. gen hours_inside = hours(discharge_time - admit_time)

. gen admit_time = discharge_time - msofhours(hours_inside)
. format admit_time %tc

Function hours() converts milliseconds to hours. Function msofhours() converts hours to
milliseconds. The millisecond conversion functions are

Function Purpose

hours (ms) convert milliseconds to hours
returns ms/ (60 x 60 x 1000)

minutes (ms) convert milliseconds to minutes
returns ms/ (60 x 1000

seconds (ms) convert milliseconds to seconds
returns ms/1000

msofhours (/) convert hours to milliseconds
returns 4 X 60 x 60 x 1000

msofminutes (m) convert minutes to milliseconds

returns m X 60 x 1000

msofseconds (s) convert seconds to milliseconds
returns s X 1000

If you plan on using returned values to add to or subtract from a datetime SIF, be sure they are
stored as doubles.

Using dates and times from other software

Most software stores dates and times numerically as durations from some sentinel date in specified
units, but they differ on the sentinel date and the units. If you have imported data, it is usually
possible to adjust the numeric date and datetime values to SIF.

datetime — Date and time values and variables 91

Converting SAS dates:

SAS provides dates measured as the number of days since 01jan1960. This is the same coding
as used by Stata:

. gen statadate = sasdate
. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (sastime*1000)
. format statatime %tc

It is important that variables containing SAS datetimes, such as sastime above, be imported
into Stata as doubles.

Converting SPSS dates:

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. To convert to SIF datetime/c, type

. gen double statatime = (spsstime*1000) + tc(14oct1582 00:00)
. format statatime Ytc

To convert to SIF date, type

. gen statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))
. format statadate %td

Converting R dates:
R stores dates as days since 01jan1970. To convert to SIF date, type

. gen statadate = rdate - td(01jan1970)
. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds since 01jan1970 00:00:00. To convert
to SIF datetime/C, type

. gen double statatime = rtime - tC(01jan1970 00:00)
. format statatime JtC

To convert to SIF datetime/c, type

. gen double statatime = cofC(rtime - tC(01jan1970 00:00))
. format statatime Ytc

There are issues of which you need to be aware when working with datetime/C values; see
Why there are two SIF datetime encodings and Advice on using datetime/c and datetime/C,
both in [D] datetime translation.

Converting Excel dates:

You are unlikely to encounter Excel numerically encoded dates. If you copy and paste a
spreadsheet into Stata’s editor, dates and datetimes are pasted as strings in HRF. If you use a
conversion package, most know how to convert the date for you.

Excel has used different date systems across operating systems. Excel for Windows used the
“1900 Date System”. Excel for Mac used the “1904 Date System”. More recently, Excel has
been standardizing on the 1900 Date System on all operating systems.

92 datetime — Date and time values and variables

Regardless of operating system, Excel can use either encoding. See
http://support.microsoft.com/kb/214330 for instructions on converting workbooks between date
systems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900-Date-System dates:

For dates on or after 01mar1900, Excel stores dates as days since 30dec1899. To convert to a
Stata date,

. gen statadate = exceldate + td(30dec1899)
. format statadate %td

Excel can store dates between 01jan1900 and 28feb1900, but the formula above will not handle
those two months. See http://www.cpearson.com/excel/datetime.htm for more information.

For datetimes on or after 01mar1900 00:00:00, Excel stores datetimes as days plus fraction of
day since 30dec1899 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(30dec1899))*86400)*1000
. format statatime %tc

Converting Excel 1904-Date-System dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a
Stata date,

. gen statadate = exceldate + td(01jan1904)
. format statadate %td

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus fraction of
day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime,

. gen statatime = round((exceltime+td(01jan1904))*86400)*1000
. format statatime %tc

Converting OpenOffice Dates:
OpenOffice uses the Excel 1900 Date System described above.

Description

Syntax above provides a complete overview of Stata’s date and time values. Also see [D] datetime
translation and [D] datetime display formats for additional information.

Remarks

The best way to learn about Stata’s date and time functions is to experiment with them using the
display command; see [P] display.
. display date("5-12-1998", "MDY")
14011

. display %td date("5-12-1998", "MDY")
12may1998

http://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm

datetime — Date and time values and variables 93

. display clock("5-12-1998 11:15", "MDY hm")
1.211e+12

. display %20.0gc clock("5-12-1998 11:15", "MDY hm")
1,210,590,900,000

. display %tc clock("5-12-1998 11:15", "MDY hm")
12may1998 11:15:00

With display, you can specify a format in front of the expression to specify how the result is to
be formatted.

Reference

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Also see
[D] datetime business calendars — Business calendars
[D] datetime display formats — Display formats for dates and times

[D] datetime translation — String to numeric date translation functions

http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Title

datetime business calendars — Business calendars

Syntax
Apply business calendar format

format varlist ftbcalname

Apply detailed date format with business calendar format

format varlist %tbcalname[:datetime—speciﬁers]

Convert between business dates and regular dates

{ generate |replace } bdate = bofd("calname", regulardate)

{ generate |replace } regulardate = dofb(bdate, "calname")
File calname.stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.
Business calendars are regular calendars with some dates crossed out:

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
7 &8 9 10 11 X
14 15 16 17 18 X
21 22 23 X X X
28 29 30

el

A date that appears on the business calendar is called a business date. 11nov2011 is a business
date. 12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18n0ov2011 + 1 = 21nov2011
28nov2011 — 1 = 23n0v2011

Stata’s lead and lag operators work the same way.

2. Business calendars are named.
Assume that the above business calendar is named simple.

3. Business calendars are defined in files named calname . stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the
SSC, or written yourself. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir;
see [D] bcal.

94

datetime business calendars — Business calendars 95

. Datetime format.
The date format associated with the business calendar named simple is %tbsimple, which is to
say % + t + b + calname.

% it is a format
t it is a datetime
b it is based on a business calendar

calname the calendar’s name

. Format variables the usual way.
You format variables to have business calendar formats just as you format any variable, using the
format command.

. format mydate %tbsimple
specifies that existing variable mydate contains values according to the business calendar named
simple. See [D] format.

You may format variables %tbcalname regardless of whether the corresponding stbcal-file exists.
If it does not exist, the underlying numeric values will be displayed in a %g format.

. Detailed date formats.
You may include detailed datetime format specifiers by placing a colon and the detail specifiers
after the calendar’s name.

. format mydate Ytbsimple:CCYY.NN.DD
would display 21nov2011 as 2011.11.21. See [D] datetime display formats for detailed datetime
format specifiers.

. Reading business dates.
To read files containing business dates, ignore the business date aspect and read the files as if
they contained regular dates. Convert and format those dates as %td; see HRF-to-SIF conversion
functions in [D] datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd("simple", regulardate)

. format mydate Ytbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the %tbsimple date format to the new variable mydate so that it
will display correctly.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.
For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on
the regular calendar. If the data contained 12nov2011, that would be an error. Function bofd ()
returns missing when the date does not appear on the specified calendar.

. More on conversion.
There are only two functions specific to business dates, bofd () and dofb(). Their definitions are

bdate

regulardate = dofb(bdate, "calname")

bofd ("calname”, regulardate)

bofd () returns missing if regulardate is missing or does not appear on the specified business
calendar. dofb() returns missing if bdate contains missing.

96 datetime business calendars — Business calendars

9. Obtaining day of week, etc.
You obtain day of week, etc., by converting business dates to regular dates and then using the
standard functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, "calname"))

See Extracting date components from SIFs in [D] datetime for the other extraction functions.

10. Stbcal-files.
The stbcal-file for simple, the calendar shown below,

November 2011
Su Mo Tu We Th Fr

1 2 3 4
7 &8 9 10 11
14 15 16 17 18
21 22 23 X X
28 29 30

M
S

is

begin simple.stbcal ————

*! version 1.0.0
* simple.stbcal

version 12
purpose "Example for manual"
dateformat dmy

range Olnov2011 30nov2011
centerdate 0Olnov2011

omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end simple.stbcal ————

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates
to be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25nov2011

to read
omit dowinmonth +4 Th of Nov and +1

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after
that (+1), too. See [D] datetime business calendars creation.

Description

Stata provides user-definable business calendars.

datetime business calendars — Business calendars 97

Remarks

See [D] datetime for an introduction to Stata’s date and time features.
Below we work through an example from start to finish.
Remarks are presented under the following headings:

Step 1: Read the data, date as string

Step 2: Convert date variable to %td date

Step 3: Convert %td date to %tb date

Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted

Key feature: Extracting components from %tb dates

Key feature: Merging on dates

Step 1: Read the data, date as string

File bcal_simple.raw on our website provides data, including a date variable, that is to be
interpreted according to the business calendar simple shown under Syntax above.

. type http://www.stata-press.com/data/r12/bcal_simple.raw
11/4/11 51

11/7/11 9

11/18/11 12

11/21/11 4

11/23/11 17

11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string
variable:

. infile str10 sdate float x using http://www.stata-press.com/data/r12/bcal_simple
(6 observations read)

. list

sdate X
1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17
6. 11/28/11 22

Step 2: Convert date variable to %td date

Now we create a Stata internal form (SIF) %td format date from the string date:
. generate rdate = date(sdate, "MD20Y")

. format rdate %td

See HRF-to-SIF conversion functions in [D] datetime. We verify that the conversion went well
and drop the string variable of the date:

98 datetime business calendars — Business calendars

. list
sdate X rdate
1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011
6. 11/28/11 22 28nov2011
. drop sdate

Step 3: Convert %td date to %tb date

We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax
above.

. generate mydate = bofd("simple", rdate)
. format mydate %tbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assert would have responded, “assertion is false”. Nonetheless, we will list the data to show you
that the conversion went well. We would usually drop the %td encoding of the date, but we want it
to demonstrate a feature below.

. list

X rdate mydate
1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011
6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats
. list
x rdate mydate
1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16
6. 22 18959 17

datetime business calendars — Business calendars 99

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern
yourself with the encoding. If you were curious, you could learn more about the encoding used by
%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate
. format mydate Jtbsimple

Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011
28n0v2011 — 1 = 23nov2011

That is true:

. generate tomorrow = mydate + 1
. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

X mydate tomorrow yesterday
1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011
6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L.varname and F.varname work similarly.

Key feature: Extracting components from %tb dates

You extract components such as day of week, month, day, and year from business dates using the
same extraction functions you use with Stata’s regular %td dates, namely, dow(), month(), day(),
and year (), and you use function dofb() to convert business dates to regular dates. Below we add
day of week to our data, list the data, and then drop the new variable:

100 datetime business calendars — Business calendars

. generate dow = dow(dofb(mydate, "simple"))

. list
X mydate dow
1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21inov2011 1
5. 17 23nov2011 3
6. 22 28nov2011 1
. drop dow

See Extracting date components from SIFs in [D] datetime.

Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing
regular dates, say, on economic conditions, and you want to merge them. To do that, you create a
regular date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, "simple")
. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see
[D] becal — Business calendar file manipulation
[D] datetime business calendars creation — Business calendars creation

[D] datetime — Date and time values and variables

Title

datetime business calendars creation — Business calendars creation

Syntax

Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname . stbcal, which contains the following:

* comments

version version_of_stata
purpose '"fext"

dateformat {ymd|ydm|myd|mdy|dym|dmy }

range date date

centerdate date

[from {date|.} to {date|.}] omit ... [if]

where
omit ... may be
omit date pdate [and pmlist]
omit dayofweek dowlist

omit dowinmonth pm# dow [of m()mhlist] [and pmlist}

[if] may be
if restriction [& restriction }
restriction is one of

dow (dowlist)
month (monthlist)
year (yearlist)

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2011, 12-4-2011, or 12.4.2011.

pdate is a date or it is a date with character * substituted where the year would usually
appear. If dateformat is dmy, a pdate can be 12apr2011, 12-4-2011, or 12.4.2011;
or it can be 12apr#*, 12-4-%, or 12.4.*. 12apr* means the 12th of April across all
years.

dow is a day of week, in English. It may be abbreviated to as few as 2 characters, and
capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.
Examples: Sa, (Sa), (Sa Su).

101

102 datetime business calendars creation — Business calendars creation

month is a month of the year, in English, or it is a month number. It may be abbreviated to
the minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap,
may, 6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in
parentheses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

year is a 4-digit calendar year. Examples: 1872, 1992, 2011, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.
Examples: 2011, (2011), (2011 2012).

pm# is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm#
appears in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow
in the month. omit dowinmonth +1 Th means the first Thursday of the month. omit
dowinmonth -1 Th means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.
Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist
allowed at the end of omit date and omit dowinmonth, and it specifies additional dates
to be omitted. and +1 means and the day after. and -1 means and the day before.

Description

Stata provides user-definable business calendars. Business calendars are provided by StataCorp
and by other users, and you can write your own. This entry concerns writing your own business
calendars.

See [D] datetime business calendars for an introduction to business calendars.

Remarks

Remarks are presented under the following headings:

Introduction

Concepts

The preliminary commands

The omit commands: from/to and if
The omit commands: and

The omit commands: omit date

The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Where to place stbcal-files

How to debug stbcal-files

Ideas for calendars that may not occur to you

Introduction

A business calendar is a regular calendar with some dates crossed out, such as

November 2011
Su Mo Tu We Th Fr

1 2 3 4
7 8 9 10 11
14 15 16 17 18
21 22 23 X X
28 29 30

D
XXX X |

datetime business calendars creation — Business calendars creation

103

The purpose of the stbcal-file is to
1. Specify the range of dates covered by the calendar.
2. Specify the particular date that will be encoded as date 0.
3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

version 12

range O1lnov2011 30nov2011
centerdate Olnov2011
omit date 5nov2011
omit date 6nov2011
omit date 12nov2011
omit date 13nov2011
omit date 19nov2011
omit date 20nov2011
omit date 24nov2011
omit date 25nov2011
omit date 26nov2011
omit date 27nov2011

begin example_1.stbcal ————

end example_1.stbcal ————

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays

and Sundays:

version 12

range Olnov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)
omit date 24nov2011

omit date 25nov2011

begin example_2.stbcal ————

end example_2.stbcal ————

In this particular calendar, we are omitting 24nov2011 and 25nov2011 because of the American
Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many
businesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

version 12

range Olnov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)

omit dowinmonth +4 Th of Nov and +1

begin example_3.stbcal ————

end example_3.stbcal ————

Understand that this calendar is an artificial example, and it is made all the more artificial because

it covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

104 datetime business calendars creation — Business calendars creation

Concepts

1.
2.
3.
4.

You are required to specify four things in an stbcal-file:
the version of Stata being used,

the range of the calendar,

the center date of the calendar, and

the dates to be omitted.

Version.

You specify the version of Stata to ensure forward compatibility with future versions of Stata. If
your calendar starts with the line version 12, future versions of Stata will know how to interpret
the file even if the definition of the stbcal-file language has greatly changed.

Range.

A calendar is defined over a specific range of dates, and you must explicitly state what that range
is. When you or others use your calendar, dates outside the range will be considered invalid, which
usually means that they will be treated as missing values.

Center date.

Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then
57 — 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous
statement works just as well if we substitute —12,739 for 57, and thus the particular values do
not matter except that we must agree upon what values we wish to standardize because we will
be storing these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to
the middle of your calendar. It means the date that corresponds to the center of integers, which is
to say, 0. You must choose a date within the range as the standard. The particular date you choose
does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar
uses 01jan1960, but that date will probably not be available to you because the center date must
be a date on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future.
Today, you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes.
Later, you need to expand the range, say back to 1970 or forward to 2030, or both. When you
update your calendar, do not change the center date. This way, your new calendar will be backward
compatible with your previous one.

Omitted dates.

Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be
omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.
Rules change, so learn about the from/to prefix that can be used in front of omit commands.
You can code things like

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit .

When specifying from/to, . for the first date is synonymous with the opening date of the range.
. for the second date is synonymous with the closing date.

datetime business calendars creation — Business calendars creation 105

The preliminary commands

Stbcal-files should begin with these commands:

version version_of_stata

purpose "fext"

dateformat {ymd|ydm|myd|mdy|dym|dmy }
range date date

centerdate date

version version_of_stata
At the time of this writing, you would specify version 12. Better still, type command version
in Stata to discover the version of Stata you are currently using. Specify that version, and be sure
to look at the online documentation so that you use the modern syntax correctly.

purpose "rext"
This command is optional. The purpose of purpose is not to make comments in your file. If you
want comments, include those with a * in front. The purpose sets the text that bcal describe
calname will display.

dateformat { ymd|ydm|myd|mdy |dym |dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has
nothing to do with how dates will look when variables are formatted with %tbcalname. This
command specifies how you are typing dates in this stbcal-file on the subsequent commands.
Specify the format that you find convenient.

range date date
The date range was discussed in Concepts. You must specify it.

centerdate date
The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax
[from {date|.} to {date|.}:] omit ... [if]

That is, an omit command may optionally be preceded by from/to and may optionally contain
an if at the end.

When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In
Introduction, we showed the command

omit dowinmonth +4 Th of Nov and +1

Our sample calendar covered only the month of November, but imagine that it covered a longer period
and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving
holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

106 datetime business calendars creation — Business calendars creation

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars
multiple times and for multiple reasons, and the result is still the same as if the dates were omitted
only once.

The optional if also determines when the omit statement is operational. Let’s think about the
Christmas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be
coded

omit date 24dec*
omit date 2bdec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24decx*
from . to .: omit date 2bdecx*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and
25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December
if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the
holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays
are Monday and Tuesday. The rule could be coded

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 2bdec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25dec* is one of
the specified days of the week. If 26dec* is not one of those days, the omit statement is ignored
for that year. Our focus here is on the if clause. We will explain about the and clause in the next
section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is
convenient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and
2012. You could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

or

omit date 25dec* and +1 if dow(Mo) & year (2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year ().

datetime business calendars creation — Business calendars creation 107

The omit commands: and

The other common piece of syntax that shows up on omit commands is and pmlist. We used it
above in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The
extra days are specified as how many days they are from the date being referred to. Please excuse
the inelegant “date being referred to”, but sometimes the date being referred to is implied rather than
stated explicitly. For this problem, however, the date being referred to is 25dec across a number of
years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line
omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line
omit date 25dec* and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 25dec is Sunday. The line
omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.

Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if
the year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last
Wednesday of November and December.

The omit commands: omit date

The full syntax of omit date is
[from {date|.} to {date|.}:] omit date pdate [and pmlist] [if]
You may omit specific dates,
omit date 25dec2010
or you may omit the same date across years:

omit date 2bdec*

108 datetime business calendars creation — Business calendars creation

The omit commands: omit dayofweek

The full syntax of omit dayofweek is
[from {date|.} to {date|.}:] omit dayofweek dowlist [if |
The specified days of week (Monday, Tuesday, ...) are omitted.

The omit commands: omit dowinmonth
The full syntax of omit dowinmonth is
[from {date|.} to {date|.}:] omit pm# dow [of monthlist] [and pmlist] |if]

dowinmonth stands for day of week in month and refers to days such as the first Monday, second
Monday, ..., next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo,
..., =2 Mo, and -1 Mo.

Where to place stbcal-files

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks
for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written
by other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Statal2\

UPDATES: C:\Program Files\Statal2\ado\updates\
BASE: C:\Program Files\Statal2\ado\base\
SITE: C:\Program Files\Statal2\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\
OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using
net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime,
even at inopportune moments, no output is produced. If there are errors in the file, no mention is
made of the problem, and thereafter Stata simply acts as if it had never found the file, which is to
say, variables with %tbcalname formats are displayed in %g format.

You can tell Stata to load a calendar file right now and to show you the output, including error
messages. Type

. bcal load calname
It does not matter where calname .stbcal is stored, Stata will find it. It does not matter whether

Stata has already loaded calname.stbcal, either secretly or because you previously instructed the
file be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

datetime business calendars creation — Business calendars creation 109

Ideas for calendars that may not occur to you

Business calendars obviously are not restricted to businesses, and neither do they have to be
restricted to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could
code

begin mondays.stbcal ———
version 12

purpose "Mondays only"
range 04jan1960 06jan2020
centerdate 04jan1960

omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal ———

Say you have semimonthly data and want to include the 1st and 15th of every month. You could
code

begin smnth.stbcal ————
version 12

purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960

omit date 2jan*

omit date 3janx*

omit date 14janx*
omit date 16jan*

omit date 31jan*
omit date 2febx*

end smnth.stbcal ——

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on
01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal ——
version 12

Purpose "Yitd centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal ——

Also see

[D] beal — Business calendar file manipulation
[D] datetime business calendars — Business calendars

[D] datetime — Date and time values and variables

Title

datetime display formats — Display formats for dates and times

Syntax
The formats for displaying Stata internal form (SIF) dates and times in human readable form (HRF)
are
Display format to
SIF type present SIF in HRF
datetime/c details
datetime/C C| details
date %td| details

weekly date
monthly date
quarterly date
half-yearly date
yearly date

te|]
tC|]
[]
htw [details]
%tm [details]
%tq [details]
%th [details]
ity [details]

The optional details allows you to control how results appear and is composed of a sequence of

the following codes:

Code Meaning Output

cC century-1 01-99

cc century-1 1-99

YY 2-digit year 00-99

vy 2-digit year 0-99

JJJ day within year 001-366

i3] day within year 1-366

Mon month Jan, Feb, ..., Dec

Month month January, February, ..., December
mon month jan, feb, ..., dec

month month january, february, ..., december
NN month 01-12

nn month 1-12

DD day within month 01-31

dd day within month 1-31

110

datetime display formats — Display formats for dates and times

111

DAYNAME day of week
Dayname day of week
Day day of week

Da day of week
day day of week

da day of week

h half

q quarter

WW week

wW week

HH hour

Hh hour

hH hour

hh hour

MM minute

mm minute

SS second

ss second

.s tenths

.ss hundredths

.sss thousandths

am show am or pm
a.m. show a.m. or p.m.
AM show AM or PM
A.M. show A.M. or PM.

display period
, display comma
: display colon
- display hyphen
- display space

/ display slash

\ display backslash
e display character

+ separator (see note)

Sunday, Monday, ... (aligned)
Sunday, Monday, ... (unaligned)
Sun, Mon, ...

Su, Mo, ...

sun, mon, ...

su, mo, ...

1-2
1-4
01-52
1-52

00-23
00-12
0-23
0-12

00-59
0-59

00-60 (sic, due to leap seconds)
0-60 (sic, due to leap seconds)
.0-9

.00-.99

.000-.999

am or pm
a.m. or p.m.
AM or PM
A.M. or PM.

S

Note: + displays nothing; it may be used to separate one code from the next to make the format

more readable. + is never necessary. For instance, %tchh:MM+am and %tchh:MMam have the

same meaning, as does %tc+hh+:+MM+am.

112 datetime display formats — Display formats for dates and times

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format
%tC %tCDDmonCCYY_HH:MM:SS
%tc %tcDDmonCCYY_HH:MM:SS
%td %tdDDmonCCYY

%htw %twCCYY ! www

%tm %tmCCYY ! mnn

htq %tqCCYY!qq

%th %thCCYY'!'hh

Wty %tyCCYY

That is, typing

. format mytimevar Ytc

has the same effect as typing
. format mytimevar %tcDDmonCCYY_HH:MM:SS

Format %tcDDmonCCYY_HH:MM:SS is interpreted as

% t c DDmonCCYY_HH:MM: SS
| |
all formats itis a variable formatting codes
start with % datetime format coded in specify how to
milliseconds display value
Description

Stata stores dates and times numerically in one of the eight SIFs. An SIF might be 18,282 or
even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as 20jan2010
(%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than
20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010
15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20
15:15:30 2010.

See [D] datetime for an introduction to Stata’s dates and times.

datetime display formats — Display formats for dates and times 113

Remarks

Remarks are presented under the following headings:

Specitying display formats
Times are truncated, not rounded, when displayed

Specifying display formats

Rather than using the default format 20jan2010, you could display the SIF date variable in one of
these formats:

2010.01.20
January 20, 2010
1/20/10

Likewise, rather than displaying the SIF datetime/c variable in the default format 20jan2010 15:15:30,
you could display it in one of these formats:

2010.01.20 15:15
January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010

Here is how to do it:

1. 2010.01.20
format mytdvar 7tdCCYY.NN.DD

2. January 20, 2010
format mytdvar J;tdMonth_dd,_CCYY

3. 1/20/10
format mytdvar Jtdnn/dd/YY

4. 2010.01.20 15:15
format mytcvar %tcCCYY.NN.DD_HH:MM

5. January 20, 2010 3:15 pm
format mytcvar YtcMonth_dd,_CCYY_hh:MM_am
Code am at the end indicates that am or pm should be displayed, as appropriate.

6. Wed Jan 20 15:15:30 2010
format myftcvar %tcDay_Mon_DD_HH:MM:SS_CCYY

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin
with %tc. It is important that you specify the opening correctly—namely, as % + t + third_character.
The third character indicates the particular SIF encoding type, which is to say, how the numeric value
is to be interpreted. You specify %tc... for datetime/c variables, %tC. .. for datetime/C, %td... for
date, and so on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds;
15:15:30.000 is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

%tcDDmonCCYY_HH:MM:SS.sss
or
%tCDDmonCCYY_HH:MM:SS.sss

as appropriate.

114 datetime display formats — Display formats for dates and times

Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that
are displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32
right up until the instant that it becomes 11:33.

Also see
[D] datetime — Date and time values and variables
[D] datetime business calendars — Business calendars

[D] datetime translation — String to numeric date translation functions

Title

datetime translation — String to numeric date translation functions

Syntax
The string-to-numeric date and time translation functions are
Desired SIF type String-to-numeric translation function
datetime/c clock (HRFstr, mask [, topyear])
datetime/C Clock (HRFsir, mask [, topyear|)
date date (HRFstr, mask |, topyear])
weekly date weekly (HRFstr, mask [, topyear])
monthly date monthly (HRFstr, mask [, topyear])
quarterly date quarterly (HRFstr, mask [, topyear])
half-yearly date halfyearly (HRFstr, mask |, topyear])
yearly date yearly (HRFstr, mask |, topyear])
where

HRFstr is the string value (HRF) to be translated,
topyear is described in Working with two-digit years, below,

and mask specifies the order of the date and time components and is a string composed of a
sequence of these elements:

Code Meaning
M month
day within month
Y 4-digit year
19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx
h hour of day
m minutes within hour
s seconds within minute
ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have
no significance.

115

116 datetime translation — String to numeric date translation functions

Examples of masks include

"MDY" HRFstr contains month, day, and year, in that order.

"MD19Y" means the same as "MDY" except that HRFstr may contain two-digit years, and
when it does, they are to be treated as if they are 4-digit years beginning with
19.

"MDYhms" HRFstr contains month, day, year, hour, minute, and second, in that order.

"MDY hms" means the same as "MDYhms"; the blank has no meaning.

"MDY#hms" means that one element between the year and the hour is to be ignored. For

example, HRF'str contains values like "1-1-2010 at 15:23:17" or values like
"1-1-2010 at 3:23:17 PM".

Description

These functions translate dates and times recorded as strings containing human readable form
(HRF) to the desired Stata internal form (SIF). See [D] datetime for an introduction to Stata’s date
and time features.

Also see Using dates and times from other software in [D] datetime.

Remarks

Remarks are presented under the following headings:

Introduction

Specifying the mask

How the HRF-to-SIF functions interpret the mask
Working with two-digit years

Working with incomplete dates and times
Translating run-together dates, such as 20060125
Valid times

The clock() and Clock() functions

Why there are two SIF datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred

The date() function

The other translation functions

Introduction

The HRF-to-SIF translation functions are used to translate string HRF dates, such as “08/12/06”,
“12-8-2006”, “12 Aug 067, “12aug2006 14:23”, and “12 aug06 2:23 pm”, to SIF. The HRF-to-SIF
translation functions are typically used after importing or reading data. You read the date information
into string variables and then the HRF-to-SIF functions translate the string into something Stata can
use, namely, an SIF numeric variable.

You use generate to create the SIF variables. The translation functions are used in the expressions,
such as
. generate double time_admitted = clock(time_admitted_str, "DMYhms")
. format time_admitted %tc

. generate date_hired = date(date_hired_str, "MDY")
. format date_hired %td

datetime translation — String to numeric date translation functions 117

Every translation function—such as clock() and date() above—requires these two arguments:
1. the HRF'str specifying the string to be translated
2. the mask specifying the order in which the date and time components appear in HRFstr
Notes:

1. You choose the translation function clock(), Clock(), date(), ...according to the type
of SIF value you want returned.

2. You specify the mask according to the contents of HRFstr.

Usually, you will want to translate an HRF'str containing “2006.08.13 14:23” to an SIF datetime/c
or datetime/C value and translate an HRFstr containing “2006.08.13” to an SIF date value. If you
wish, however, it can be the other way around. In that case, the detailed string would translate to
an SIF date value corresponding to just the date part, 13aug2006, and the less detailed string would
translate to an SIF datetime value corresponding to 13aug2006 00:00:00.000.

Specifying the mask

An argument mask is a string specifying the order of the date and time components in HRFstr.
Examples of HRF date strings and the mask required to translate them include the following:

HRFstr Corresponding mask
01dec2006 14:22 "DMYhm"
01-12-2006 14.22 "DMYhm"

1dec2006 14:22 "DMYhm"

1-12-2006 14:22 "DMYhm"

01dec06 14:22 "DM20Yhm"
01-12-06 14.22 "DM20Yhm"
December 1, 2006 14:22 "MDYhm"

2006 Dec 01 14:22 "YMDhm"
2006-12-01 14:22 "YMDhm"
2006-12-01 14:22:43 "YMDhms"
2006-12-01 14:22:43.2 "YMDhms "
2006-12-01 14:22:43.21 "YMDhms"
2006-12-01 14:22:43.213 "YMDhms "
2006-12-01 2:22:43.213 pm "YMDhms " (see note 1)
2006-12-01 2:22:43.213 pm. "YMDhms "
2006-12-01 2:22:43.213 p.m. "YMDhms "
2006-12-01 2:22:43.213 PM. "YMDhms "
20061201 1422 "YMDhm"

14:22 "hm" (see note 2)
2006-12-01 "YMD"

Fri Dec 01 14:22:43 CST 2006 "#MDhms#Y"

118 datetime translation — String to numeric date translation functions

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you
include code h, the HRF-to-SIF functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in HRFstr. If that is a subset of
what the selected SIF type could record, the remaining elements are set to their defaults.
clock("14:22", "hm") produces 01jan1960 14:22:00 and clock ("2006-12-01", "YMD")
produces 01dec2006 00:00:00. date("jan 2006", "MY") produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus you can
type
. generate double admit = clock(admitstr, "#MDhms#Y")
or type

. generate double admit = clock(admitstr, "# MD hms # Y")

and which one you use makes no difference.

How the HRF-to-SIF functions interpret the mask

The HRF-to-SIF functions apply the following rules when interpreting HRF'str:

1. For each HRF string to be translated, remove all punctuation except for the period separating
seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation
with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.
3. Interpret the resulting elements according to mask.
For instance, consider the string
01dec2006 14:22
Under rule 1, the string becomes
01dec2006 14 22
Under rule 2, the string becomes
01 dec 2006 14 22

Finally, the HRF-to-SIF functions apply rule 3. If the mask is "DMYhm", then the functions interpret
“01” as the day, “dec” as the month, and so on.

Or consider the string

Wed Dec 01 14:22:43 CST 2006
Under rule 1, the string becomes

Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "#MDhms#Y",
the translation function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest
of string is to be ignored. Consider translating the string

Wed Dec 01 14 22 43 CST 2006 patient 42

datetime translation — String to numeric date translation functions 119

The mask code that previously worked when “patient 42” was not part of the string, "#MDhms#Y",
will result in a missing value in this case. The functions are careful in the translation, and if the whole
string is not used, they return missing. If you end the mask in #, however, the functions ignore the
rest of the string. Changing the mask from "#MDhms#Y" to "#MDhms#Y#" will produce the desired
result.

Working with two-digit years
Consider translating the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00.
The translation functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read
by specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would
specify the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the
first year as being in 2006 and the second year as being in 1998. That is the purpose of the optional
argument fopyear:

clock(string, mask [, topyear})

When you specify topyear, you are stating that when years in string are two digits, the full year
is to be obtained by finding the largest year that does not exceed fopyear. Thus you could code

. generate double timestamp = clock(timestr, "DMYhm", 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The
two-digit year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times

The translation functions do not require that every component of the date and time be specified.
Translating 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.

Translating 14:22 with mask "hm" results in 01jan1960 14:22:00.

Translating 11-2006 with mask "MY" results in 01nov2006 00:00:00.

The default for a component, if not specified in the mask, is

Code Default (if not specified)
M 01
D 01
Y 1960
00
00
00

Thus if you have data recording “14:22”, meaning a duration of 14 hours and 22 minutes or the
time 14:22 each day, you can translate it with clock (HRFstr, "hm"). See Obtaining and working
with durations in [D] datetime.

120 datetime translation — String to numeric date translation functions

Translating run-together dates, such as 20060125

The translation functions will translate dates and times that are run together, such as 20060125,
060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not have to do anything special
to translate them:

. display %d date("20060125", "YMD")
25jan2006

. display %td date("060125", "20YMD")
25jan2006

. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15
In a data context, you could type

. gen startdate = date(startdatestr, "YMD")
. gen double starttime = clock(starttimestr, "YMDhms")

Remember to read the original date into a string. If you mistakenly read the date as numeric,
the best advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be
rounded unless they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur,
you can convert the variable from numeric to string by using the string() function, which comes
in one- and two-argument forms. You will need the two-argument form:

. gen str startdatestr = string(startdatedouble, "%10.0g")

. gen str starttimestr = string(starttimedouble, "%16.0g")

If you omitted the format, string() would produce 2.01e4-07 for 20060125 and 2.01e+13 for
20060125110215. The format we used had a width that was 2 characters larger than the length of
the integer number, although using a too-wide format does no harm.

Valid times

27:62:90 is an invalid time. If you try to convert 27:62:90 to a datetime value, you will obtain a
missing value.

24:00:00 is also invalid. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 < hh < 24, 0 < mm < 60, and 0 < ss < 60, although
sometimes 60 is allowed. 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. 31dec2005
23:59:60 includes an inserted leap second.

30dec2005 23:59:60 is invalid in both datetime encodings. 30dec2005 23:59:60 did not include an
inserted leap second. A correct datetime would be 31dec2005 00:00:00.

The clock() and Clock() functions

Stata provides two separate datetime encodings that we call SIF datetime/c and SIF datetime/C
and that others would call “times assuming 86,400 seconds per day” and “times adjusted for leap
seconds” or, equivalently, UTC times.

The syntax of the two functions is the same:
clock (HRFstr, mask [, zopyear})
Clock (HRFstr, mask [s topyear})

datetime translation — String to numeric date translation functions 121

Function Clock () is nearly identical to function clock (), except that CLlock () returns a datetime/C
value rather than a datetime/c value. For instance,

Noon of 23n0v2010 = 1,606,132,800,000 in datetime/c
= 1,606,132,824,000 in datetime/C

They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010.
Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997
23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

Why there are two SIF datetime encodings

Stata provides two different datetime encodings, SIF datetime/c and SIF datetime/C.

SIF datetime/c assumes that there are 24 x 60 x 60 x 1000 ms per day, just as an atomic clock
does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus
provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a
fancy way of saying that the measurements are based on looking at the sun. The sun should be at
its highest point at noon, right? So however you might have kept track of time—by falling grains
of sand or a wound-up spring—you would have periodically reset your clock and then gone about
your business. In olden times, it was understood that the 60 seconds per minute, 60 minutes per hour,
and 24 hours per day were theoretical goals that no mechanical device could reproduce accurately.
These days, we have more formal definitions for measurements of time. One second is 9,192,631,770
periods of the radiation corresponding to the transition between two levels of the ground state of
cesium 133. Obviously, we have better equipment than the ancients, so problem solved, right? Wrong.
There are two problems: the formal definition of a second is just a little too short to use for accurately
calculating the length of a day, and the Earth’s rotation is slowing down.

As a result, since 1972, leap seconds have been added to atomic clocks once or twice a year to
keep time measurements in synchronization with Earth’s rotation. Unlike leap years, however, there
is no formula for predicting when leap seconds will occur. Earth may be on average slowing down,
but there is a large random component to that. As a result, leap seconds are determined by committee
and announced 6 months before they are inserted. Leap seconds are added, if necessary, on the end
of the day on June 30 and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand
that leap seconds are every bit as real as every other second of the year. Once a leap second is
inserted, it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as GMT and UTC.

GMT is the old Greenwich Mean Time that is based on astronomical observation. GMT has been
replaced by UTC.

UTC stands for coordinated universal time. It is measured by atomic clocks and is occasionally
corrected for leap seconds. UTC is derived from two other times, UT1 and TAI. UT1 is the mean solar
time, with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic
time on which UTC is based. TAI is a statistical combination of various atomic chronometers and even
it has not ticked uniformly over its history; see http://www.ucolick.org/~sla/leapsecs/timescales.html
and especially http://www.ucolick.org/~sla/leapsecs/dutc.htmI#TAIL

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing.
UNK is based on a recent time observation, probably UTC, and it just assumes that there are 86,400
seconds per day after that.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

122 datetime translation — String to numeric date translation functions

The UNK standard is adequate for many purposes, and when using it you will want to use SIF
datetime/c rather than the leap second—adjusted datetime/C encoding. If you are using computer-
timestamped data, however, you need to find out whether the timestamping system accounted for
leap-second adjustment. Problems can arise even if you do not care about losing or gaining a second
here and there.

For instance, you may import from other systems timestamp values recorded in the number of
milliseconds that have passed since some agreed upon date. You may do this, but if you choose the
wrong encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more
recent times will be off by 24 seconds.

To avoid such problems, you may decide to import and export data by using HRF such as “Fri
Aug 18 14:05:36 DT 2010”. This method has advantages, but for datetime/C (UTC) encoding, times
such as 23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it
with datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th
second, Clock () verifies that the time is one of the official leap seconds. Thus when translating from
printable forms, try assuming datetime/c and check the result for missing values. If there are none,
then you can assume your use of datetime/c was valid. If there are missing values and they are due
to leap seconds and not some other error, however, you must use datetime/C Clock() to translate
the HRF. After that, if you still want to work in datetime/c units, use function cofC() to translate
datetime/C values into datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way.
The inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the
duration between dates, you must subtract the two time values involved. The other difficulty has to
do with dealing with dates in the future. Under the datetime/C (UTC) encoding, there is no set value
for any date more than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:
1. datetime/C, also known as UTC, which accounts for leap seconds
2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day)

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them.
Stata handles either situation. Here is our advice:

e If you obtain data from a system that accounts for leap seconds, import using Stata’s
datetime/C encoding.

a. If you later need to export data to a system that does not account for leap seconds,
use Stata’s cofC() function to translate time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if
necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the
second level (minute, hour, etc.), create a datetime/c variable from the datetime/C
variable (generate double fctime = cofC(tCtime)) and tsset that, specifying
the appropriate delta() if necessary. You must do that because in a datetime/C
variable, there are not necessarily 60 seconds in a minute; some minutes have 61
seconds.

datetime translation — String to numeric date translation functions 123

e If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use
Stata’s Cofc() function to translate time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate
delta().

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work
with. You can always use datetime/c if

e you do not mind having up to 1 second of error and

e you do not import or export numerical values (clock ticks) from other systems that are using
leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five
days from one date is not simply a matter of adding 5 X 24 x 60 x 60 x 1000 ms. You
might need to add another 1,000 ms. Three hundred sixty-five days from now might require
adding 1,000 or 2,000 ms. The longer the span, the more you might have to add. The best
way to add durations to datetime/C variables is to extract the components, add to them, and
then reconstruct from the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not
know what the datetime/C value of 25dec2026 00:00:00 will be because every year along the
way, the International Earth Rotation Reference Systems Service (IERS) will twice announce
whether a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be
transitory only if the rocks land back on Earth, so you need to throw them really hard. We know
what you are thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file
is updated periodically (see [R] update; the file is updated when you update all), and Stata’s
datetime/C functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date() function is
date(string, mask [, topyear])

The date () function is identical to clock() except that date () returns an SIF date value rather
than a datetime value. The date() function is the same as dofc(clock()).

124 datetime translation — String to numeric date translation functions

The other translation functions

The other translation functions are

SIF type

HRF-to-SIF translation function

weekly date
monthly date
quarterly date
half-yearly date

weekly (HRFstr, mask [, topyear])
monthly (HRFsir, mask [, topyear|)
quarterly (HRFstr, mask [, topyear])
halfyearly(HRFstr, mask |, topyear])

HRFstr is the value to be translated.
mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions translates a pair of numbers: weekly () translates a year and a week number
(1-52), monthly () translates a year and a month number (1-12), quarterly() translates a year
and a quarter number (1-4), and halfyearly() translates a year and a half number (1-2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx

W week number (weekly () only)

M month number (monthly() only)

Q quarter number (quarterly() only)

H half-year number (halfyearly() only)

The pair of numbers to be translated must be separated by a space or punctuation.
No extra characters are allowed.

Also see

[D] datetime — Date and time values and variables

[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

Title

describe — Describe data in memory or in file

Syntax
Describe data in memory

describe [varlis[] [, memory_options]

Describe data in file

describe [varlist] using filename [, ﬁle_options]

memory_options Description

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

replace make dataset, not written report, of description

clear for use with replace

varlist save r(varlist) and r(sortlist) in addition to usual saved results;

programmer’s option

varlist does not appear in the dialog box.

file_options Description

short display only general information

simple display only variable names

varlist save r(varlist) and r(sortlist) in addition to usual saved results;

programmer’s option

varlist does not appear in the dialog box.

Menu
describe

Data > Describe data > Describe data in memory

describe using

Data > Describe data > Describe data in file

125

126 describe — Describe data in memory or in file

Description

describe produces a summary of the dataset in memory or of the data stored in a Stata-format
dataset.

For a compact listing of variable names, use describe, simple.

Options to describe data in memory

simple displays only the variable names in a compact format. simple may not be combined with
other options.

short suppresses the specific information for each variable. Only the general information (number
of observations, number of variables, size, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present
an abbreviation when the variable name is longer than 15 characters. describe using always
shows the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers
is specified, variable names are abbreviated when the name is longer than eight characters. The
numbers and fullnames options may not be specified together. numbers may not be specified
with describe using.

replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information
that the report would have presented. Each observation of the new data describes a variable in the
original data; see describe, replace below.

clear may be specified only when replace is specified. clear specifies that the data in memory
be cleared and replaced with the description information, even if the original data have not been
saved to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual saved results, r (varlist)
and r (sortlist) be saved, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in file
short suppresses the specific information for each variable. Only the general information (number
of observations, number of variables, size, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with
other options.

describe — Describe data in memory or in file 127

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual saved results, r (varlist)
and r (sortlist) be saved, too. r(varlist) will contain the names of the variables in the dataset.
r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables
in a dataset for their names to be stored in r(varlist), given the current maximum length of
macros, as determined by set maxvar. Should that occur, describe using will issue the error
message “too many variables”, r(103).

Remarks

Remarks are presented under the following headings:

describe
describe, replace

describe

If describe is typed with no operands, the contents of the dataset currently in memory are
described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First,
you cannot abbreviate variable names; that is, you have to type displacement rather than displ.
However, you can use the abbreviation character (~) to indicate abbreviations, for example, displ-.
Second, you may not refer to a range of variables; specifying price-trunk is considered an error.

> Example 1

The basic description includes some general information on the number of variables and observations,
along with a description of every variable in the dataset:

. use http://www.stata-press.com/data/r12/states
(State data)

. describe, numbers

Contains data from http://www.stata-press.com/data/r12/states.dta

obs: 50 State data
vars: 5 3 Jan 2011 15:17
size: 1,100 (_dta has notes)

variable storage display value

name type format label variable label

1. state str8 Y9s

2. region int %8.0g reg Census Region

3. median~e float %9.0g Median Age

4. marria~e long %12.0g Marriages per 100,000

5. divorc~e 1long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations
on 5 variables. The dataset is labeled “State data” and was last modified on January 3, 2011, at
15:17 (3:17 p.m.). The “_dta has notes” message indicates that a note is attached to the dataset; see
[U] 12.7 Notes attached to data.

128 describe — Describe data in memory or in file

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable
has associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median-e, is stored as a float, has a display format of
%9.0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc-~e are both stored as longs and have display formats of %12.0g. These last
two variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is
variable 2 in this dataset.

4

> Example 2

To view the full variable names, we could omit the numbers option and specify the fullnames
option.
. describe, fullnames

Contains data from http://www.stata-press.com/data/r12/states.dta

obs: 50 State data
vars: 5 3 Jan 2011 15:17
size: 1,100 (_dta has notes)
storage display value
variable name type format label variable label
state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

Here we did not need to specify the fullnames option to see the unabbreviated variable names
because the longest variable name is 13 characters. Omitting the numbers option results in 15-character
variable names being displayed.

4

Q Technical note

The describe listing above also shows that the size of the dataset is 1,100. If you are curious,

(8+2+444+4) x50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and
long, respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the
dataset.

a

describe — Describe data in memory or in file 129

> Example 3

If we specify the short option, only general information about the data is presented:

. describe, short

Contains data from http://www.stata-press.com/data/r12/states.dta

obs: 50 State data
vars: 5 3 Jan 2011 15:17
size: 1,100

Sorted by: region

If we specify a varlist, only the variables in that varlist are described.

> Example 4

Let’s change datasets. The describe varlist command is particularly useful when combined with
the ‘*x’ wildcard character. For instance, we can describe all the variables whose names start with
pop by typing describe popx*:

. use http://www.stata-press.com/data/r12/census
(1980 Census data by state)

. describe pop*

storage display value
variable name type format label variable label
pop long %12.0gc Population
popltbs long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
pop18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region popl8p

storage display value
variable name type format label variable label
state strid Y-14s State
region int %-8.0g cenreg Census region
popl8p long %12.0gc Pop, 18 and older

N

Typing describe using filename describes the data stored in filename. If an extension is not
specified, .dta is assumed.

130 describe — Describe data in memory or in file

> Example 5

We can describe the contents of states.dta without disturbing the data that we currently have
in memory by typing

. describe using http://www.stata-press.com/data/r12/states

Contains data State data

obs: 50 3 Jan 2011 15:17

vars: 5

size: 1,300

storage display value

variable name type format label variable label
state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe, replace

describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describe without the replace
option. Rather than producing a written report, describe, replace produces a new dataset that
contains the same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe

(report appears; data in memory unchanged)

. list

(visual proof that data are unchanged)

. describe, replace

(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the
original data. The new variables are

1. position, a variable containing the numeric position of the original variable (1, 2, 3, ...).

2. name, a variable containing the name of the original variable, such as "make", "price",
"mpg",

3. type, a variable containing the storage type of the original variable, such as "str18",
"int", "float",

4. isnumeric, a variable equal to 1 if the original variable was numeric and equal to O if it
was string.

5. format, a variable containing the display format of the original variable, such as "%-18s",
"%8.0gc",

describe — Describe data in memory or in file 131

6. vallab, a variable containing the name of the value label associated with the original
variable, if any.

7. varlab, a variable containing the variable label of the original variable, such as "Make and
Model", "Price", "Mileage (mpg)",

In addition, the data contain the following characteristics:
_dtal[d_filename], the name of the file containing the original data.
_dtal[d_filedate], the date and time the file was written.
_dta[d_N], the number of observations in the original data.

_dta[d_sortedbyl], the variables on which the original data were sorted, if any.

Saved results

describe saves the following in r():

Scalars
r(N) number of observations
r(k) number of variables
r(width) width of dataset

r(changed) flag indicating data have changed since last saved

Macros
r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace saves nothing in r().

References

Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7-8. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 26-27. College Station, TX: Stata Press.

—— 2000. dm78: Describing variables in memory. Stata Technical Bulletin 56: 2—4. Reprinted in Stata Technical
Bulletin Reprints, vol. 10, pp. 15-17. College Station, TX: Stata Press.

——. 2001a. dm67.1: Enhancements to numbers of missing and present values. Stata Technical Bulletin 60: 2-3.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 7-9. College Station, TX: Stata Press.

——. 2001b. dm78.1: Describing variables in memory: Update to Stata 7. Stata Technical Bulletin 60: 3. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, p. 17. College Station, TX: Stata Press.

Gleason, J. R. 1998. dm61: A tool for exploring Stata datasets (Windows and Macintosh only). Stata Technical Bulletin
45: 2-5. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 22-27. College Station, TX: Stata Press.

——. 1999. dm61.1: Update to varxplor. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata.com/products/stb/journals/stb45.pdf
http://www.stata.com/products/stb/journals/stb51.pdf

132 describe — Describe data in memory or in file

Also see
[D] ds — List variables matching name patterns or other characteristics
[D] varmanage — Manage variable labels, formats, and other properties
[D] compress — Compress data in memory
[D] format — Set variables’ output format
[D] label — Manipulate labels
[D] notes — Place notes in data
[D] order — Reorder variables in dataset
[D] rename — Rename variable
[D] ¢f — Compare two datasets
[D] codebook — Describe data contents
[D] compare — Compare two variables
[D] lookfor — Search for string in variable names and labels
[SVY] svydescribe — Describe survey data

[U] 6 Managing memory

Title

destring — Convert string variables to numeric variables and vice versa

Syntax
Convert string variables to numeric variables

destring [varlist] , {generate(newvarlisl) | replace } [destring_options]

Convert numeric variables to string variables

tostring varlist , {5enerate (newvarlist) | replace } [tostring_options]

destring _options Description
* generate (newvarlist) generate newvary, ..., newvary for each variable in varlist
*;eplace replace string variables in varlist with numeric variables

ignore("chars") remove specified nonnumeric characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float

percent convert percent variables to fractional form

dpcomma convert variables with commas as decimals to period-decimal format

* Either generate (newvarlist) or replace is required.

tostring _options Description
* generate (newvarlist) generate newvary, ..., newvary, for each variable in varlist
*;eplace replace numeric variables in varlist with string variables
force force conversion ignoring information loss
format (format) convert using specified format
usedisplayformat convert using display format

* Either generate (newvarlist) or replace is required.

Menu
destring

Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring

Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to
string

133

134 destring — Convert string variables to numeric variables and vice versa

Description

destring converts variables in varlist from string to numeric. If varlist is not specified, destring
will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore ()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both
empty strings “” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, ..., “.2” as
the extended missing values .a, .b, ..., .z; see [U] 12.2.1 Missing values. destring also ignores
any leading or trailing spaces so that, for example, “ ” is equivalent to and “ . ” is equivalent to

[T}

[T

tostring converts variables in varlist from numeric to string. The most compact string format
possible is used. Variables in varlist that are already string will not be converted.

Options for destring

Either generate() or replace must be specified. With either option, if any string variable
contains nonnumeric values not specified with ignore(), then no corresponding variable will be
generated, nor will that variable be replaced (unless force is specified).

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. If varlist is
not specified, destring attempts to generate a numeric variable for each variable in the dataset;
newvarlist must then contain the same number of new variable names as there are variables in the
dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to numeric variables. If varlist is not
specified, destring attempts to convert all variables from string to numeric. Any variable labels
or characteristics will be retained.

ignore("chars") specifies nonnumeric characters to be removed. If any string variable contains any
nonnumeric characters other than those specified with ignore (), no action will take place for that
variable unless force is also specified. Note that to Stata the comma is a nonnumeric character;
see also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified
with ignore (), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] data types. destring attempts automatically to compress each new numeric
variable after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable
are divided by 100 to convert the values to fractional form. percent by itself implies that the
percent sign, “%”, is an argument to ignore (), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods
as decimal values.

Options for tostring

Either generate() or replace must be specified. If converting any numeric variable to string
would result in loss of information, no variable will be produced unless force is specified. For more
details, see force below.

destring — Convert string variables to numeric variables and vice versa 135

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. Any variable
labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels
or characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real (string(varname, “format")) is not
equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to
specify usedisplayformat or format (). In circumstance 2, value labels will be ignored in a
forced conversion. decode (see [D] encode) is the standard way to generate a string variable based
on value labels.

format (format) specifies that a numeric format be used as an argument to the string() function,
which controls the conversion of the numeric variable to string. For example, a format of %7.2f
specifies that numbers are to be rounded to two decimal places before conversion to string.
See Remarks below and [D] functions and [D] format. format () cannot be specified with
usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using U.S. Social Security numbers. usedisplayformat cannot
be specified with format ().

Remarks
Remarks are presented under the following headings:
destring
tostring

destring

> Example 1

We read in a dataset, but somehow all the variables were created as strings. The variables contain
no nonnumeric characters, and we want to convert them all from string to numeric data types.

. use http://www.stata-press.com/data/r12/destringl

. describe
Contains data from http://www.stata-press.com/data/r12/destringl.dta
obs: 10
vars: 5 3 Mar 2011 10:15
size: 200
storage display value
variable name type format label variable label
id str3 %9s
num str3 /9s
code strd /9s
total strb %9s
income strb %9s

Sorted by:

136 destring — Convert string variables to numeric variables and vice versa

. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 555 890 6543 423 19234

. destring, replace

id has all characters numeric; replaced as int

num has all characters numeric; replaced as int
code has all characters numeric; replaced as int
total has all characters numeric; replaced as long
income has all characters numeric; replaced as long

. describe

Contains data from http://www.stata-press.com/data/r12/destringl.dta

obs: 10
vars: 5 3 Mar 2011 10:15
size: 140
storage display value
variable name type format label variable label
id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g
Sorted by:
Note: dataset has changed since last saved
. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 5565 890 6543 423 19234

destring — Convert string variables to numeric variables and vice versa 137

> Example 2

Our dataset contains the variable date, which was accidentally recorded as a string because of
spaces after the year and month. We want to remove the spaces. destring will convert it to numeric
and remove the spaces.

. use http://www.stata-press.com/data/r12/destring2, clear
. describe date

storage display value
variable name type format label variable label

date stri4 ¥%10s
. list date

date

1999 12 10
2000 07 08
1997 03 02
1999 09 00
1998 10 04

g wWN e

2000 03 28
2000 08 08
1997 10 20
1998 01 16
1999 11 12

O © 0w N>

[ure

. destring date, replace ignore(" ")
date: characters space removed; replaced as long

. describe date

storage display value
variable name type format label variable label

date long %10.0g
. list date

date

19991210
20000708
19970302
19990900
19981004

O WN e

20000328
20000808
19971020
19980116
19991112

O W ~NO»

e

> Example 3

Our dataset contains the variables date, price, and percent. These variables were accidentally
read into Stata as string variables because they contain spaces, dollar signs, commas, and percent

138 destring — Convert string variables to numeric variables and vice versa

signs. We want to remove all these characters and create new variables for date, price, and percent
containing numeric values. After removing the percent sign, we want to convert the percent variable
to decimal form.

. use http://www.stata-press.com/data/ri12/destring2, clear
. describe

Contains data from http://www.stata-press.com/data/r12/destring2.dta

obs: 10
vars: 3 3 Mar 2011 22:50
size: 280
storage display value
variable name type format label variable label
date stri4 %10s
price stril Y%lis
percent str3 %9s
Sorted by:
. list
date price percent
1. 1999 12 10 $2,343.68 347,
2. 2000 07 08 $7,233.44 86%
3. 1997 03 02 $12,442.89 127,
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%
6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 457,
10. 1999 11 12 $8,282.49 1%

. destring date price percent, generate(date2 price2 percent2) ignore("$,%")
> percent

date: characters space removed; date2 generated as long

price: characters $, removed; price2 generated as double

percent: characters % removed; percent2 generated as double

. describe

Contains data from http://www.stata-press.com/data/r12/destring2.dta

obs: 10

vars: 6 3 Mar 2011 22:50

size: 480

storage display value

variable name type format label variable label
date stri4 7%10s
date2 long %10.0g
price stril Y%lls
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g
Sorted by:

Note: dataset has changed since last saved

destring — Convert string variables to numeric variables and vice versa 139

. list
date date2 price price2 percent percent2
1. 1999 12 10 19991210 $2,343.68 2343.68 347, .34
2. 2000 07 08 20000708 $7,233.44 7233.44 86% .86
3. 1997 03 02 19970302 $12,442.89 12442.89 12% .12
4. 1999 09 00 19990900 $233,325.31 233325.31 6% .06
5. 1998 10 04 19981004 $1,549.23 1549.23 6% .76
6. 2000 03 28 20000328 $23,517.03 23517.03 35% .35
7. 2000 08 08 20000808 $2.43 2.43 69% .69
8. 1997 10 20 19971020 $9,382.47 9382.47 32% .32
9. 1998 01 16 19980116 $289,209.32 289209.32 45, .45
10. 1999 11 12 19991112 $8,282.49 8282.49 1% .01

tostring

Conversion of numeric data to string equivalents can be problematic. Stata, like most software,
holds numeric data to finite precision and in binary form. See the discussion in [U] 13.11 Precision
and problems therein. If no format () is specified, tostring uses the format %12.0g. This format
is, in particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without
loss of precision.

However, users will often need to specify a format themselves, especially when the numeric data
have fractional parts and for some reason a conversion to string is required.

> Example 4

Our dataset contains a string month variable and numeric year and day variables. We want to
convert the three variables to a %td date.

. use http://www.stata-press.com/data/r12/tostring, clear

. list
id month day year
1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001
6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001
10. 123456718 jul 3 2001

. tostring year day, replace
year was float now stré
day was float now str2

. generate date = month + "/" + day + "/" + year
. generate edate = date(date, "MDY")
. format edate %td

140 destring — Convert string variables to numeric variables and vice versa

. list
id month day year date edate
1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 170ct2001
6. 123456714 nov 15 2001 nov/15/2001 15n0v2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001
10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics

Each time the destring or tostring commands are issued, an entry is made in the characteristics
list of each converted variable. You can type char list to view these characteristics.

After example 3, we could use char list to find out what characters were removed by the

destring command.

. char list
date2[destring]:

price2[destring]:
percent2[destring]:

Methods and formulas

destring and tostring are implemented as ado-files.

Acknowledgment

Characters removed were:
Characters removed were:
Characters removed were:

space
$,
%

destring and tostring were originally written by Nicholas J. Cox of Durham University.

References

Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

——. 1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

—— 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4-6.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34-37. College Station, TX: Stata Press.

Cox, N. J., and J. B. Wernow. 2000a. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8—12.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24-28. College Station, TX: Stata Press.

——. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 28-29. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata-journal.com/article.html?article=dm0054
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb57.pdf

destring — Convert string variables to numeric variables and vice versa 141

Also see
[D] generate — Create or change contents of variable
[D] split — Split string variables into parts
[D] egen — Extensions to generate
[D] encode — Encode string into numeric and vice versa

[D] functions — Functions

Title

dir — Display filenames

Syntax
{dir | ls} ["} [ﬁlespec] ["] [s Eide}

Note: Double quotes must be used to enclose filespec if the name contains spaces.

Description

dir and ls—they work the same way—Ilist the names of files in the specified directory; the
names of the commands come from names popular on Unix and Windows computers. filespec may be
any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming conventions)
and may include ‘*’ to indicate any string of characters.

Option

wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir
command—it compresses the resulting listing by placing more than one filename on a line. Under
Unix, it produces the same effect as typing 1s -F -C. Without the wide option, 1s is equivalent
to typing 1s -F -1.

Remarks

Mac and Unix: The only difference between the Stata and Unix 1s commands is that piping
through the more(1) or pg(1) filter is unnecessary— Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between
the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses
when the screen is full.

> Example 1

The only real difference between the Stata dir and DOS and Unix equivalent commands is that
output never scrolls off the screen; Stata always pauses when the screen is full.

142

dir — Display filenames 143

If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/00
0.6k 8/04/00
3.5k 7/06/98
3.4k 1/25/98
0.3k 1/26/98
0.7k 4/27/00
0.5k 5/09/97
10.3k 7/13/98

13:
10:
17:
9:
16:
11:
2:
8:

51
40
06
20
54
39
56
37

auto.dta
cancer.dta
census.dta
hsng.dta
kva.dta
sysage.dta
systolic.dta

Household Survey.dta

You could also include the wide option:

. dir *.dta, wide
3.9k auto.dta
3.4k hsng.dta
0.5k systolic.dta

0.6k cancer.dta

3.5k census.dta

0.3k kva.dta 0.7k sysage.dta
10.3k Household Survey.dta

Unix users will find it more natural to type

. 1s *.dta

-rw-

but they could type dir if they preferred. Mac

r—————

1 roger
1 roger
1 roger
1 roger

. dir *.dta

“Irw-r----- 1 roger

-rw-r----- 1 roger

-rw-r----- 1 roger

“Irw-r----- 1 roger
O Technical note

2868 Mar 4 15:

941 Apr 5 09:
19312 May 14 10:
11838 Apr 11 13:

2868 Mar 4 15:

941 Apr 5 09:
19312 May 14 10:
11838 Apr 11 13:

34 highway.dta
43 hoyle.dta
36 pl.dta

26 p2.dta

users may also type either command.

34 highway.dta
43 hoyle.dta
36 pl.dta

26 p2.dta

There is an extended macro function named dir which allows you to obtain a list of files in a
macro for later processing. See Macro extended functions for filenames and file paths in [P] macro.

Also see

[D] ed — Change directory

[D] copy — Copy file from disk or URL

[D] erase — Erase a disk file

[D] mkdir — Create directory

[D] rmdir — Remove directory

a

[D] shell — Temporarily invoke operating system

[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

drawnorm — Draw sample from multivariate normal distribution

Syntax

drawnorm newvarlist [, options]

options Description
Main
clear replace the current dataset
double generate variable type as double; default is float
n(#) # of observations to be generated; default is current number
sds (vector) standard deviations of generated variables

corr (matrix | vector)
cov (matrix | vector)

correlation matrix
covariance matrix

cstorage (full) correlation/covariance structure is stored as a symmetric kxk matrix
cstorage (lower) correlation/covariance structure is stored as a lower triangular matrix
cstorage (upper) correlation/covariance structure is stored as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite

means (vector)

means of generated variables; default is means (0)

Options

seed (#) seed for random-number generator

Menu

Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution

Description
drawnorm draws a sample from a multivariate normal distribution with desired means and covariance
matrix. The default is orthogonal data with mean O and variance 1. The covariance matrix may be

singular. The values generated are a function of the current random-number seed or the number
specified with set seed(); see [R] set seed.

Options
Main

clear specifies that the dataset in memory be replaced, even though the current dataset has not been
saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

144

drawnorm — Draw sample from multivariate normal distribution 145

n(#) specifies the number of observations to be generated. The default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
drawnorm adds the new variables to the existing dataset; otherwise, drawnorm replaces the data
in memory.

sds (vector) specifies the standard deviations of the generated variables. sds () may not be specified
with cov ().

corr (matrix | vector) specifies the correlation matrix. If neither corr () nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither cov() nor corr() is specified, the
default is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kxk
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With & variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 Cg1 Co2 C31 C32 C33 ... Cp1 Cra ... Cpp

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With & variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12 Cy3 ... C1p C22 Ca3 ... Cop - Cmin—1) Cr—1r) Crke

Specifying cstorage(full) is optional if the matrix is square. cstorage (lower) or cstor-
age (upper) is required for the vectorized storage methods. See Example 2: Storage modes for
correlation and covariance matrices.

forcepsd modifies the matrix C to be positive semidefinite (psd), and so be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the initial value of the random-number seed used by the runiform() function.
The default is the current random-number seed. Specifying seed (#) is the same as typing set
seed # before issuing the drawnorm command.

Remarks

> Example 1

Suppose that we want to draw a sample of 1,000 observations from a normal distribution N (M, V),
where M is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5

146 drawnorm — Draw sample from multivariate normal distribution

. matrix V.= (9, 5, 2\ 5, 4, 1\ 2, 1, 1)
. matrix list M

M[1,3]
cl c2 «c3
rl 5 -6 .5

. matrix list V

symmetric V[3,3]

cl c2 «c3
rl 9
r2 5 4

r3 2 1 1

. drawnorm x y z, n(1000) cov(V) means(M)

(obs 1000)
. summarize
Variable Obs Mean Std. Dev. Min Max
X 1000 5.001715 3.00608 -4.572042 13.66046
y 1000 -5.980279 2.004755 -12.08166 -.0963039
z 1000 .5271135 1.011095 -2.636946 4.102734
. correlate, cov
(obs=1000)
X y z
X 9.03652
y 5.04462 4.01904
z 2.10142 1.08773 1.02231

Q Technical note

The values generated by drawnorm are a function of the current random-number seed. To reproduce
the same dataset each time drawnorm is run with the same setup, specify the same seed number in
the seed() option.

a

> Example 2: Storage modes for correlation and covariance matrices

The three storage modes for specifying the correlation or covariance matrix in corr2data and
drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4 X 4 Stata matrix:

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000)

Elements within a row are separated by commas, and rows are separated by a backslash, \. We
use the input continuation operator /// for convenient multiline input; see [P] comments. In this
storage mode, we probably want to set the row and column names to the variable names:

matrix rownames C = price trunk headroom rep78
matrix colnames C = price trunk headroom rep78

drawnorm — Draw sample from multivariate normal distribution 147

This correlation structure can be entered more conveniently in one of the two vectorized storage
modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these
two storage modes differ only in the order in which the k(k + 1)/2 matrix elements are recorded.
The lower storage mode for C comprises a vector with 4(4 4+ 1)/2 = 10 elements, that is, a 1 x 10
or 10 x 1 Stata matrix, with one row or column,

matrix C = (1.0000, ///
0.3232, 1.0000, ///
0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

matrix ¢ = (1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1)

C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is,
alx10or 10 x 1 Stata matrix,

matrix ¢ = (1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///
1.0000, -0.1480, ///

1.0000)

or more compactly as

matrix C = (1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1)

Methods and formulas
drawnorm is implemented as an ado-file.

Results are asymptotic. The more observations generated, the closer the correlation matrix of the
dataset is to the desired correlation structure.

Let V = A’A be the desired covariance matrix and M be the desired mean matrix. We first
generate X, such that X ~ N(0,1). Let Y = A’X + M, then Y ~ N(M, V).

Also see
[D] corr2data — Create dataset with specified correlation structure

[R] set seed — Specify initial value of random-number seed

Title

drop — Eliminate variables or observations

Syntax
Drop variables

drop varlist

Drop observations

drop if exp

Drop a range of observations

drop in range [if exp]

Keep variables

keep varlist

Keep observations that satisty specified condition

keep if exp

Keep a range of observations

keep in range [if exp]

by is allowed with the second syntax of drop and the second syntax of keep; see [D] by.

Menu

Keep or drop variables
Data > Variables Manager
Keep or drop observations

Data > Create or change data > Keep or drop observations

Description

drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be
kept rather than the variables or observations to be deleted.

148

drop — Eliminate variables or observations 149

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot
read them back in again. You would need to go back to the original dataset and read it in again.
Instead of applying drop or keep for a subset analysis, consider using if or in to select subsets
temporarily. This is usually the best strategy. Alternatively, applying preserve followed in due course
by restore may be a good approach.

Remarks

You can clear the entire dataset by typing drop —all without affecting value labels, macros, and
programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

> Example 1

We will systematically eliminate data until, at the end, no data are left in memory. We begin by
describing the data:

. use http://www.stata-press.com/data/r12/censusil
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r12/censuslil.dta

obs: 50 1980 Census data by state
vars: 15 6 Apr 2011 15:43
size: 3,300
storage display value
variable name type format label variable label
state stri4 %-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
pop long %12.0gc Population
popltbs long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
popl8p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g
dvcrate float %9.0g

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop popx*:

150 drop — Eliminate variables or observations

. drop pop*
. describe

Contains data from http://www.stata-press.com/data/r12/censusll.dta

obs: 50 1980 Census data by state

vars: 9 6 Apr 2011 15:43

size: 2,100

storage display value

variable name type format label variable label

state stri4 %-14s State

state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g
dvcrate float %9.0g

Sorted by: region
Note: dataset has changed since last saved

Let’s eliminate more variables and then eliminate observations:

. drop marriage divorce mrgrate dvcrate

. describe
Contains data from http://www.stata-press.com/data/r12/censusll.dta
obs: 50 1980 Census data by state
vars: 5 6 Apr 2011 15:43
size: 1,300
storage display value
variable name type format label variable label
state strid J-14s State
state2 str2 %-2s Two-letter state abbreviation
region int %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by: region
Note: dataset has changed since last saved

Next we will drop any observation for which medage is greater than 32.
. drop if medage>32
(3 observations deleted)
Let’s drop the first observation in each region:
. by region: drop if _n==1
(4 observations deleted)
Now we drop all but the last observation in each region:

. by region: drop if _n !=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)

drop — Eliminate variables or observations 151

Finally, let’s get rid of everything:

. drop _all
. describe
Contains data

obs: 0
vars: 0
size: 0
Sorted by:

Typing keep in 10/1 is the same as typing drop in 1/9.
Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvaril
myvar?2 is the same as typing drop followed by all the variables in the dataset except myvarl and
myvar2.

Q Technical note

In addition to dropping variables and observations, drop _all removes any business calendars;
see [D] datetime business calendars.
a

Reference

Cox, N. J. 2001. dm89: Dropping variables or observations with missing values. Stata Technical Bulletin 60: 7-8.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 44-46. College Station, TX: Stata Press.

Also see
[D] clear — Clear memory
[D] varmanage — Manage variable labels, formats, and other properties
[U] 11 Language syntax

[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb60.pdf

Title

ds — List variables matching name patterns or other characteristics

Syntax
Simple syntax
ds [, glpha]

Advanced syntax

ds [varlisr] [, options}

options Description
Main
not list variables not specified in varlist
alpha list variables in alphabetical order
detail display additional details
varwidth (#) display width for variable names; default is varwidth(12)
skip(#) gap between variables; default is skip(2)
Advanced
has (spec) describe subset that matches spec
not (spec) describe subset that does not match spec
insensitive perform case-insensitive pattern matching
indent (#) indent output; seldom used

insensitive and indent (#) are not shown in the dialog box.

spec Description

type typelist specified types

format patternlist display format matching patternlist

varlabel [patternlist] variable label or variable label matching patternlist
char [patternlist] characteristic or characteristic matching patternlist
vallabel [patternlist] value label or value label matching patternlist

typelist used in has (type typelist) and not (type typelist) is a list of one or more types, each of
which may be numeric, string, byte, int, long, float, or double, or may be a numlist such
as 1/8 to mean “strl str2 ... str8”. Examples include

has(type int) is of type int

has(type byte int long) s of integer type

not (type int) s not of type int

not (type byte int long) s not of the integer types

has (type numeric) S a numeric variable

not (type string) not a string variable (same as above)

e e e e e
w

152

ds — List variables matching name patterns or other characteristics 153

has (type 1/40) is stri, str2, ..., strd0
has(type numeric 1/2) is numeric or strl or str2

patternlist used in, for instance, has (format patternlist), is a list of one or more patterns. A pattern
is the expected text with the addition of the characters * and 7. * indicates O or more characters
go here, and 7 indicates exactly 1 character goes here. Examples include

has (format *f) format is %#.#f

has(format %t*) has time or date format
has(format %-*s) is a left-justified string

has(varl *weight*) variable label includes word weight

has(varl *weight* *Weight*) variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.

has(varl "*some phrasex") variable label has some phrase

If instead you used has(varl *some phrasex), then only variables having labels ending in some
or starting with phrase would be listed.

Menu

Data > Describe data > Compactly list variable names

Description

ds lists variable names of the dataset currently in memory in a compact or detailed format, and
lets you specify subsets of variables to be listed, either by name or by properties (for example, the
variables are numeric). In addition, ds leaves behind in r (varlist) the names of variables selected
so that you can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a
compact form.

Options
Main

Is

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all
variables not starting with the letters pop be listed. The default is to list all the variables in the
dataset or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order.

detail specifies that detailed output identical to that of describe be produced. If detail is
specified, varwidth(), skip(), and indent () are ignored.

varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip(#) specifies the number of spaces between variable names, where all variable names are
assumed to be the length of the longest variable name; the default is skip(2).

154 ds — List variables matching name patterns or other characteristics

Advanced

has (spec) and not (spec) select from the dataset (or from varlist) the subset of variables that meet
or fail the specification spec. Selection may be made on the basis of storage type, variable label,
value label, display format, or characteristics. Only one not, has(), or not () option may be
specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all
string variables in the dataset, and typing ds pop*, has(type string) would list all string
variables whose names begin with the letters pop.

has(varlabel) selects variables with defined variable labels. has (varlabel *weight*) selects
variables with variable labels including the word “weight”’. not(varlabel) would select all
variables with no variable labels.

has(vallabel) selects variables with defined value labels. has(vallabel yesno) selects vari-
ables whose value label is yesno. has(vallabel *no) selects variables whose value label ends
in the letters no.

has (format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in f, which presumably would
be all %#.#£, %,0#.#£, and %—-#.#f formats. has (format *f *fc) would select all ending in £
or fc. not(format %t* %-t*) would select all variables except those with date or time-series
formats.

has(char) selects all variables with defined characteristics. has (char problem) selects all
variables with a characteristic named problem.

The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the pattern in has() and not () be case insensitive.

indent (#) specifies the amount the lines are indented.

Remarks

If ds is typed without any operands, then a compact list of the variable names for the data currently
in memory is displayed.

> Example 1
ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it
convenient even if you have considerably fewer variables.

. use http://www.stata-press.com/data/r12/educ3
(ccdbd6, 52-54)

. ds

fips popcol medhhinc t1f emp clfbls z

crimes perhspls medfinc clf empmanuf clfuebls adjinc
pcrimes perclpls state clffem emptrade famnw perman
crimrate prcolhs division clfue empserv fam2w pertrade
pop25pls medage region empgovt osigind famwsamp perserv
pophspls perwhite dc empself osigindp popl8pls perother

ds — List variables matching name patterns or other characteristics 155

> Example 2

You might wonder why you would ever specify a varlist with this command. Remember that a
varlist understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varlists.

. ds p*

pcrimes pophspls perhspls prcolhs popl8pls
pop25pls popcol perclpls perwhite perman

. ds popcol-clfue

popcol perclpls medage medhhinc state
perhspls prcolhs perwhite medfinc division

> Example 3

pertrade perother

perserv
region t1lf clffem
dc clf clfue

Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let

ds display the variable names in alphabetical order.

. ds, alpha

adjinc crimes empmanuf famwsamp osigindp
clf crimrate empself fips pcrimes
clfbls dc empserv medage perclpls
clffem division emptrade medfinc perhspls
clfue emp fam2w medhhinc perman
clfuebls empgovt famnw osigind perother

Saved results
ds saves the following in r():

Macros
r(varlist) the varlist in the order displayed

Methods and formulas

ds is implemented as an ado-file.

Reference

perserv pophspls
pertrade prcolhs
perwhite region
popl8pls state
pop25pls tlf
popcol z

Cox, N. J. 2010. Speaking Stata: Finding variables. Stata Journal 10: 281-296.

Also see
[D] compress — Compress data in memory
[D] ¢f — Compare two datasets
[D] codebook — Describe data contents
[D] compare — Compare two variables
[D] describe — Describe data in memory or in file
[D] format — Set variables’ output format

[D] label — Manipulate labels

[D] lookfor — Search for string in variable names and labels

[D] notes — Place notes in data
[D] order — Reorder variables in dataset

[D] rename — Rename variable

http://www.stata-journal.com/sjpdf.html?articlenum=dm0048

Title

duplicates — Report, tag, or drop duplicate observations

Syntax
Report duplicates

duplicates report [varlisl] [lf] [m]

List one example for each group of duplicates

duplicates examples [varlist] [lf} [m] [, options}

List all duplicates

duplicates list [varlist] [zf] [in} [, ()pti()ns]

Tag duplicates

duplicates tag [varlis[] [lf] [ln] , generate(newvar)

Drop duplicates

duplicates drop [zf] [in]

duplicates drop varlist [lf} [zn] , force

156

duplicates — Report, tag, or drop duplicate observations 157

options Description
Main
compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate (#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)
Options
table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header (#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator (#) draw a separator line every # lines; default is separator(5)
Qby(varlisl) draw a separator line whenever varlist values change
nolabel display numeric codes rather than label values
Summary
mean[(varlist)] add line reporting the mean for each of the (specified) variables
sum[(varlist)] add line reporting the sum for each of the (specified) variables
N [(varlist)} add line reporting the number of nonmissing values for each of the
(specified) variables
labvar (varname) substitute Mean, Sum, or N for value of varname in last row of table
Advanced

constant [(varlist)]

separate and list variables that are constant only once

notrim suppress string trimming
absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header
linesize(#) columns per line; default is 1inesize (79)

Menu

Data > Data utilities > Manage duplicate observations

Description

duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the
subcommand specified. Duplicates are observations with identical values either on all variables if no
varlist is specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and
indicating how many observations are “surplus” in the sense that they are the second (third, . ..) copy
of the first of each group of duplicates.

158 duplicates — Report, tag, or drop duplicate observations

duplicates examples lists one example for each group of duplicated observations. Each example

represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.

This will be 0 for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The

word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use
report, examples, 1list, or drop. The variable created by tag will have missing values for such

observations.

Options for duplicates examples and duplicates list

Main

compress, nocompress, fast, abbreviate (#), string(#); see [D] list.

table, display, header, noheader, header (#), clean, divider, separator (#),
sepby (varlist), nolabel; see [D] list.

Summary

mean[(varlist)], sum[(varlist)}, N[(varlist)], labvar (varname) ; see [D] list.

Advanced

constant [(varlist)], notrim, absolute, nodotz, subvarname, linesize (#); see [D] list.

Option for duplicates tag

generate (newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop

force specifies that observations duplicated with respect to a named varlist be dropped. The force
option is required when such a varlist is given as a reminder that information may be lost by
dropping observations, given that those observations may differ on any variable not included in

varlist.

Remarks

Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate
observations. In Stata terms, duplicates are observations with identical values, either on all variables if
no varlist is specified, or on a specified varlist; that is, 2 or more observations that are identical on all
specified variables form a group of duplicates. When the specified variables are a set of explanatory

variables, such a group is often called a covariate pattern or a covariate class.

duplicates — Report, tag, or drop duplicate observations 159

Linguistic purists will point out that duplicate observations are strictly only those that occur in
pairs, and they might prefer a more literal term, although the most obvious replacement, “replicates”,
already has another statistical meaning. However, the looser term appears in practice to be much
more frequently used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations
might have been entered more than once into your dataset. For example, some researchers deliberately
enter a dataset twice. Each entry is a check on the other, and all observations should occur as identical
pairs, assuming that one or more variables identify unique records. If there is just one copy, or more
than two copies, there has been an error in data entry.

Or duplicate observations may also arise simply because some observations just happen to be
identical, which is especially likely with categorical variables or large datasets. In this second situation,
consider whether contract, which automatically produces a count of each distinct set of observations,
is more appropriate for your problem. See [D] contract.

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus
observations in the sense that no observation may be dropped without losing information about the
contents of observations. (Information will inevitably be lost on the frequency of such observations.
Again, if recording frequency is important to you, contract is the better command to use.)
Observations that are duplicated twice or more occur as copies, and in each case, all but one copy
may be considered surplus.

This command helps you produce a dataset, usually smaller than the original, in which each
observation is unique (literally, each occurs only once) and distinct (each differs from all the others).
If you are familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you
will know the uniq command, which removes duplicate adjacent lines from a file, usually as part of

a pipe.

> Example 1

Suppose that we are given a dataset in which some observations are unique (no other observation
is identical on all variables) and other observations are duplicates (in each case, at least 1 other
observation exists that is identical). Imagine dropping all but 1 observation from each group of
duplicates, that is, dropping the surplus observations. Now all the observations are unique. This
example helps clarify the difference between 1) identifying unique observations before dropping
surplus copies and 2) identifying unique observations after dropping surplus copies (whether in truth
or merely in imagination). codebook (see [D] codebook) reports the number of unique values for
each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or
count shows that we have 202 observations in our dataset. We guess that we may have typed in 2
observations twice. duplicates report gives a quick report of the occurrence of duplicates:

. use http://www.stata-press.com/data/r12/dupxmpl
. duplicates report

Duplicates in terms of all variables

copies observations surplus

1 198 0
2 4 2

160 duplicates — Report, tag, or drop duplicate observations

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur
as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which
observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list

Duplicates in terms of all variables

group: obs: id x y
1 42 42 0 2
1 43 42 0 2
2 145 144 4 4
2 146 144 4 4

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop
Duplicates in terms of all variables

(2 observations deleted)

N

The report, list, and drop subcommands of duplicates are perhaps the most useful, especially
for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long
to be manageable, especially as you see repetitions of the same data. duplicates examples gives
you a more compact listing in which each group of duplicates is represented by just 1 observation,
the first to occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable
containing the number of duplicates for each observation. Thus unique observations are tagged with
value 0, and all duplicate observations are tagged with values greater than 0. For checking double
data entry, in which you expect just one surplus copy for each individual record, you can generate a
tag variable and then look at observations with tag not equal to 1 because both unique observations
and groups with two or more surplus copies need inspection.

. duplicates tag, gen(tag)

Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data
Browser, use the following commands:

. duplicates tag, generate(newvar)
. browse if newvar > 1

See [D] edit for details on the browse command.

Methods and formulas

duplicates is implemented as an ado-file.

duplicates — Report, tag, or drop duplicate observations 161

Acknowledgments

duplicates was written by Nicholas J. Cox, Durham University, who in turn thanks Thomas
Steichen, RIRT, for ideas contributed to an earlier jointly written program (Steichen and Cox 1998).

References

Jacobs, M. 1991. dm4: A duplicated value identification program. Stata Technical Bulletin 4: 5. Reprinted in Stata
Technical Bulletin Reprints, vol. 1, p. 30. College Station, TX: Stata Press.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin
41: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52-55. College Station, TX: Stata Press.

Wang, D. 2000. dm77: Removing duplicate observations in a dataset. Stata Technical Bulletin 54: 16-17. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 87-88. College Station, TX: Stata Press.

Also see

[D] edit — Browse or edit data with Data Editor

[D] list — List values of variables

[D] codebook — Describe data contents

[D] contract — Make dataset of frequencies and percentages

[D] isid — Check for unique identifiers

http://www.stata.com/products/stb/journals/stb4.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata.com/products/stb/journals/stb54.pdf

Title

edit — Browse or edit data with Data Editor

Syntax
Edit using Data Editor

edit [varlist] [l_'f] [m] [, Mabel}

Browse using Data Editor

browse [varlist] [lf] [in] [, @abel]

Menu
edit
Data > Data Editor > Data Editor (Edit)

browse
Data > Data Editor > Data Editor (Browse)

Description

edit brings up a spreadsheet-style data editor for entering new data and editing existing data.
edit is a better alternative to input; see [D] input.

browse is similar to edit, except that modifications to the data by editing in the grid are not
permitted. browse is a convenient alternative to 1ist; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.
This entry provides the technical details.

Option

nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to
be displayed for variables with value labels; see [D] label.

Remarks

Remarks are presented under the following headings:

Modes

The current observation and current variable
Assigning value labels to variables
Changing values of existing cells

Adding new variables

Adding new observations

Copying and pasting

Logging changes

Advice

162

edit — Browse or edit data with Data Editor 163

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on
Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If
you specify a varlist, only the specified variables are displayed in the Editor. If you specify one or
both of in range and if exp, only the observations specified are displayed.

Modes

We will refer to the Data Editor in the singular with edit and browse referring to two of its
three modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed
by a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of
variables but include in range, if exp, or both, or if you filter the data from within the Editor.
A few of the Editor’s features are turned off, most notably, the ability to sort data and the ability
to paste data into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change
the Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby
changing data, is turned off, ensuring that the data cannot accidentally be changed. One feature
that is left on may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a
change to the dataset. On the other hand, if you enter using browse and specify in range or if
exp, sorting is not allowed. You can think of this as restricted-browse mode.

Actually, the Editor does not set its mode to filtered just because you specify an in range or if
exp. It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if
the in or if would actually cause some data to be omitted. For instance, typing edit if x>0 would
result in unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable

The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations
and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.
The observation (row) of the current cell is called the current observation. The variable (column) of
the current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed
in red, value labels are displayed in blue, and all other values are displayed in black. You can change
the colors for strings and value labels by right-clicking on the Data Editor window and selecting
Preferences....

Assigning value labels to variables

You can assign a value label to a nonstring variable by right-clicking any cell on the variable
column, choosing the Value Labels menu, and selecting a value label from the Attach Value Label to
Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor window
and selecting Value Labels > Manage Value Labels.... You can also accomplish these tasks by using
the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for details.

164 edit — Browse or edit data with Data Editor

Changing values of existing cells

Make the cell you wish to change the current cell. Type the new value, and press Enter. When
updating string variables, do not type double quotes around the string. For variables that have a value
label, you can right-click on the cell to display a list of values for the value label. You can assign a
new value to the cell by selecting a value from the list.

Q Technical note

Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you
want to change the fourth observation to contain 22.5. The Data Editor will change the storage type
of the variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable
contains only missing values). This is intentional, as such a change could result in a loss of data and
is probably the result of a mistake.

a

Adding new variables

Go to the first empty column, and begin entering your data. The first entry that you make will
create the variable and determine whether that variable is numeric or string. The variable will be
given a name like var1, but you can rename it by using the Properties pane.

Q Technical note

Stata experts: The storage type will be determined automatically. If you type a number, the created
variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable,
be sure that your first entry cannot be interpreted as a number. A way to achieve this is to use
surrounding quotes so that "123" will be taken as the string "123", not the number 123. If you
want a numeric variable, do not worry about whether it is byte, int, float, etc. If a byte will
hold your first number but you need a float to hold your second number, the Editor will recast the
variable later.

a

Q Technical note

If you do not type in the first empty column but instead type in one to the right of it, the Editor
will create variables for all the intervening columns.
a

Adding new observations

Go to the first empty row, and begin entering your data. As soon as you add one cell below the
last row of the dataset, an observation will be created.

edit — Browse or edit data with Data Editor 165

Q Technical note

If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data
Editor will create observations for all the intervening rows.
Q

Copying and pasting
You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other
cells to select a range of cells. If you want to select an entire column, click once on the variable
name at the top of that column. If you want to select an entire row, click once on the observation
number at the left of that row. You can hold down the mouse button after clicking and drag to select
multiple columns or rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the
selected data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of
each column by right-clicking on the Data Editor window, selecting Preferences..., and checking or
unchecking Include variable names on copy to Clipboard.

You can choose to copy either the value labels or the underlying numeric values associated with
the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking
or unchecking Copy value labels instead of numbers. For more information about value labels, see
[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you
can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you
wish to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata
will paste the data from the Clipboard into the Editor, overwriting any data below and to the right
of the cell you selected as the top left of the paste area. If the Data Editor is in filtered mode or in
browse mode, Paste will be disabled, meaning that you cannot paste into the Data Editor. You can
have more control over how data is pasted by selecting Paste Special....

Q Technical note

If you attempt to paste one or more string values into numeric variables, the original numeric
values will be left unchanged for those cells. Stata will display a message box to let you know that
this has happened: “You attempted to paste one or more string values into numeric variables. The
contents of these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data
Editor to make sure that you pasted into the area that you intended. We recommend that you take a
snapshot of your data before pasting into Stata’s Data Editor so that you can restore the data from
the snapshot if you make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read
about snapshots.

a

166 edit — Browse or edit data with Data Editor

Logging changes
When you use edit to enter new data or change existing data, you will find output in the Stata
Results window documenting the changes that you made. For example, a line of this output might be
. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging
your results, you will have a permanent record of what you did in the Editor.

Advice

e People who care about data integrity know that editors are dangerous—it is too easy to make
changes accidentally. Never use edit when you want to browse.

e Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and
need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other
than model and mpg. Furthermore, if you know that you need to change mpg only if it is missing,
you can reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

e Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this
feature—Ilook at the log afterward, and verify that the changes you made are the changes you
wanted to make.

References

Brady, T. 1998. dm63: Dialog box window for browsing, editing, and entering observations. Stata Technical Bulletin
46: 2-6. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 28-34. College Station, TX: Stata Press.

——. 2000. dm63.1: A new version of winshow for Stata 6. Stata Technical Bulletin 53: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 15-19. College Station, TX: Stata Press.

Also see
[D] import — Overview of importing data into Stata
[D] input — Enter data from keyboard
[D] list — List values of variables
[D] save — Save Stata dataset
[GSM] 6 Using the Data Editor
[GSW] 6 Using the Data Editor
[GSU] 6 Using the Data Editor

http://www.stata.com/products/stb/journals/stb46.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

Title

egen — Extensions to generate

Syntax

by

egen [rype} newvar = fen(arguments) [lf] [in] [, options]

is allowed with some of the egen functions, as noted below.

where depending on the fcn, arguments refers to an expression, varlist, or numlist, and the options

are also fcn dependent, and where fcn is

anycount (varlist) , values (integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to O (not missing). Also see anyvalue(varname) and anymatch (varlist).

anymatch (varlist) , values (integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in
a supplied numlist and O otherwise. Values for any observations excluded by either if or in
are set to 0 (not missing). Also see anyvalue (varname) and anycount (varlist).

anyvalue (varname) , values (integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any
integer value in a supplied numlist and is missing otherwise. Also see anymatch (varlist) and
anycount (varlist) .

concat (varlist) [, format (% fint) decode maxlength(#) punct(pchars)]
may not be combined with by. It concatenates varlist to produce a string variable. Values of
string variables are unchanged. Values of numeric variables are converted to string, as is, or
are converted using a numeric format under the format (%fmt) option or decoded under the
decode option, in which case maxlength() may also be used to control the maximum label
length used. By default, variables are added end to end: punct (pchars) may be used to specify
punctuation, such as a space, punct (" "), or a comma, punct(,).

count (exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp.
Also see rownonmiss () and rowmiss().

cut (varname) , { at (#,#,...,#) \group(#) } [iﬁcodes @el]
may not be combined with by. It creates a new categorical variable coded with the left-hand
ends of the grouping intervals specified in the at () option, which expects an ascending numlist.

at (#,#,...,#) supplies the breaks for the groups, in ascending order. The list of breakpoints
may be simply a list of numbers separated by commas but can also include the syntax a(b)c,
meaning from a to c in steps of size b. If no breaks are specified, the command expects
the group() option.

group (#) specifies the number of equal frequency grouping intervals to be used in the
absence of breaks. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the
intervals.

label requests that the integer-coded values of the grouped variable be labeled with the
left-hand ends of the grouping intervals. Specifying this option automatically invokes icodes.

167

168 egen — Extensions to generate

diff (varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in
varlist are not equal and O otherwise.

ends (strvar) [, punct (pchars) trim [head |last \;ail]]
may not be combined with by. It gives the first “word” or head (with the head option), the
last “word” (with the 1ast option), or the remainder or tail (with the tail option) from string
variable strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one
space (7).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it
does not occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”.
With punct(,), the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string
if a space does not occur. The last word of “frog toad newt” is “newt” and that of “frog”
is “frog”. With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the
empty string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and
that of “frog” is "". With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

£i11 (numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or
complex repeating patterns. numlist must contain at least two numbers and may be specified
using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with £i11().

group (varlist) [, missing label lname (name) truncate (num) }

may not be combined with by. It creates one variable taking on values 1, 2, ... for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of
the two. The order of the groups is that of the sort order of varlist. missing indicates that
missing values in varlist (either . or "") are to be treated like any other value when assigning
groups, instead of as missing values being assigned to the group missing. The label option
returns integers from 1 up according to the distinct groups of varlist in sorted order. The integers
are labeled with the values of varlist or the value labels, if they exist. lname () specifies the
name to be given to the value label created to hold the labels; 1name () implies label. The
truncate() option truncates the values contributed to the label from each variable in varlist
to the length specified by the integer argument num. The truncate option cannot be used
without specifying the label option. The truncate option does not change the groups that
are formed; it changes only their labels.

iqr (exp) (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. Also see pctile ().

kurt (varname) (allows by varlist:)
returns the kurtosis (within varlist) of varname.

mad (exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

max (exp) (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp.

mdev (exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

egen — Extensions to generate 169

mean (exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

median (exp) (allows by varlist:)
creates a constant (within varlist) containing the median of exp. Also see pctile().

min (exp) (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp.

mode (varname) [, minmode maxmode nummode (integer) miﬁing] (allows by varlist:)
produces the mode (within varlist) for varname, which may be numeric or string. The mode
is the value occurring most frequently. If two or more modes exist or if varname contains
all missing values, the mode produced will be a missing value. To avoid this, the minmode,
maxmode, or nummode () option may be used to specify choices for selecting among the multiple
modes, and the missing option will treat missing values as categories. minmode returns the
lowest value, and maxmode returns the highest value. nummode (#) will return the #th mode,
counting from the lowest up. Missing values are excluded from determination of the mode
unless missing is specified. Even so, the value of the mode is recorded for observations for
which the values of varname are missing unless they are explicitly excluded, that is, by if
varname < . or if varname '="".

mtr (year income)
may not be combined with by. It returns the U.S. marginal income tax rate for a married couple
with taxable income income in year year, where 1930 < year < 2011. year and income may
be specified as variable names or constants; for example, mtr (1993 faminc), mtr (surveyyr
28000), or mtr (surveyyr faminc). A blank or comma may be used to separate income from
year.

pc (exp) [, prop] (allows by varlist:)
returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between 0 and 1.

pctile(exp) [, p(#)] (allows by varlist:)
creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified,
50 is assumed, meaning medians. Also see median().

rank (exp) [, field|track| gnique] (allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average
rank. The field option calculates the field rank of exp: the highest value is ranked 1, and there
is no correction for ties. That is, the field rank is 1 + the number of values that are higher.
The track option calculates the track rank of exp: the lowest value is ranked 1, and there is
no correction for ties. That is, the track rank is 1 + the number of values that are lower. The
unique option calculates the unique rank of exp: values are ranked 1, ..., #, and values and
ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.

rowfirst (varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowlast (varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

170 egen — Extensions to generate

rowmax (varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set
to missing.

rowmean (varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values; for example, if three variables are specified and, in some observations, one of
the variables is missing, in those observations newvar will contain the mean of the two variables
that do exist. Other observations will contain the mean of all three variables. Where none of
the variables exist, newvar is set to missing.

rowmedian (varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. Also see rowpctile().

rowmin (varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).
If all values in varlist are missing for an observation, newvar is set to missing.

rowmiss (varlist)
may not be combined with by. It gives the number of missing values in varlist for each
observation (row).

rownonmiss (varlist) [s §trok]
may not be combined with by. It gives the number of nonmissing values in varlist for each
observation (row)—this is the value used by rowmean() for the denominator in the mean
calculation.

String variables may not be specified unless the strok option is also specified. If strok is
specified, string variables will be counted as containing missing values when they contain
""", Numeric variables will be counted as containing missing when their value is “> .”.

rowpctile (varlist) [, p(#]
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. If p() is not specified, p(50) is assumed, meaning medians. Also see
rowmedian().

rowsd (varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values.

rowtotal (varlist) [, gissing]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation,
newvar is set to missing.

sd (exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean ().
seq() [, from(#) to(#) plock(#)] (allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to() (the
default is the maximum number of values) in blocks (default size 1). If to() is less than
the maximum number, sequences restart at from(). Numbering may also be separate within
groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the
sort order of observations, following three rules: 1) observations excluded by if or in are not

egen — Extensions to generate 171

counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that
when called. No arguments are specified.

skew (varname) (allows by varlist:)
returns the skewness (within varlist) of varname.

std(exp) [, mean(#) std(#)]
may not be combined with by. It creates the standardized values of exp. The options specify
the desired mean and standard deviation. The default is mean(0) and std(1), producing a
variable with mean O and standard deviation 1.

tag (varlist) [, gissing}

may not be combined with by. It tags just 1 observation in each distinct group defined by
varlist. When all observations in a group have the same value for a summary variable calculated
for the group, it will be sufficient to use just one value for many purposes. The result will be
1 if the observation is tagged and never missing, and O otherwise. Values for any observations
excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced
by egen tag = tag(varlist), the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

total (exp) [, gissing] (allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing
is specified and all values in exp are missing, newvar is set to missing. Also see mean().

Menu

Data > Create or change data > Create new variable (extended)

Description

egen creates newvar of the optionally specified storage type equal to fcn (arguments). Here fen ()
is a function specifically written for egen, as documented below or as written by users. Only egen
functions may be used with egen, and conversely, only egen may be used to run egen functions.

Depending on fen(), arguments, if present, refers to an expression, varlist, or a numlist, and the
options are similarly fcn dependent. Explicit subscripting (using _N and _n), which is commonly
used with generate, should not be used with egen; see [U] 13.7 Explicit subscripting.

Remarks

Remarks are presented under the following headings:

Summary statistics

Generating patterns

Marking differences among variables
Ranks

Standardized variables

Row functions

Categorical and integer variables
String variables

U.S. marginal income tax rate

See Mitchell (2010) for numerous examples using egen.

172 egen — Extensions to generate

Summary statistics

The functions count (), iqr(), kurt (), mad(), max(), mdev(), mean(), median(), min(),
mode (), pc(), pctile(), sd(), skew(), and total () create variables containing summary statistics.
These functions take a by ... : prefix and, if specified, calculate the summary statistics within each

by-group.

> Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation
in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that,
for each patient, records the deviation from the average across all patients:

. use http://www.stata-press.com/data/r12/egenxmpl
. egen avg = mean(chol)

. generate deviation = chol - avg q

> Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our
dataset includes dcode, a hospital—patient diagnostic code, and los, the number of days that the
patient remained in the hospital. We wish to obtain the deviation in length of stay from the median
for all patients having the same diagnostic code:

. use http://www.stata-press.com/data/r12/egenxmpl2, clear
. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay q

Q Technical note

Distinguish carefully between Stata’s sum() function and egen’s total() function. Stata’s sum()
function creates the running sum, whereas egen’s total () function creates a constant equal to the
overall sum; for example,

. clear

. set obs 5
obs was 0, now 5

. generate a = _n

. generate suml=sum(a)
. egen sum2=total(a)

. list

a suml sum?2

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

egen — Extensions to generate 173

Q Technical note

The definitions and formulas used by these functions are the same as those used by summarize;
see [R] summarize. For comparison with summarize, mean() and sd() correspond to the mean and
standard deviation. total () is the numerator of the mean, and count () is its denominator. min ()
and max () correspond to the minimum and maximum. median () —or, equally well, pctile () with
p(50) —is the median. pctile() with p(5) refers to the fifth percentile, and so on. iqr () is the

difference between the 75th and 25th percentiles. a

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode () can be applied to variables of any type. Nevertheless, the modes
of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of
a graph of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. It is possible that missing is the most common value in a
variable (whether missing is defined by the period [.] or extended missing values [.a, .b, ..., .z]
for numeric variables or the empty string [""] for string variables). However, missing values are by
default excluded from determination of modes. If you wish to include them, use the missing option.

In contrast, egen mode = mode (varname) allows the generation of nonmissing modes for obser-
vations for which varname is missing. This allows use of the mode as one simple means of imputing
categorical variables. If you want the mode to be missing whenever varname is missing, you can
specify if varname < . or if varname '= "" or, most generally, if !'missing(varname).

mad () and mdev () produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The
first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in
1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998)
and Wilcox (2003, 72-73).

Generating patterns

To create a sequence of numbers, simply “show” the £i11() function how the sequence should
look. It must be a linear progression to produce the expected results. Stata does not understand
geometric progressions. To produce repeating patterns, you present £i11() with the pattern twice in
the numlist.

> Example 3: Sequences produced by fill()

Here are some examples of ascending and descending sequences produced by £il11():

. clear

. set obs 12
obs was 0, now 12

. egen i=fill(1 2)

. egen w=fill(100 99)

. egen x=fil1(22 17)

. egen y=fill(1 1 2 2)

. egen z=fill(8 8 8 7 7 7)

174 egen — Extensions to generate

. list, sep(4)

i W X y z
1. 1 100 22 1 8
2. 2 99 17 1 8
3. 3 98 12 2 8
4. 4 97 T o2 7
5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6
9. 9 92 -18 5 6
10. 10 91 -23 5 b
11. 11 90 -28 6 b5
12. 12 89 -33 6 5

> Example 4: Patterns produced by fill()

Here are examples of patterns produced by £i11():

. clear

. set obs 12
obs was O, now 12

. egen a=fill(0 0 1 0 0 1)

. egen b=fill(1 3 8 1 3 8)

. egen c=fill(-3(3)6 -3(3)6)

. egen d=fill(10 20 to 50 10 20 to 50)
. list, sep(4)

a b c d
1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40
5. 0 3 -3 50
6. 1 8 0 10
7. 0 1 3 20
8. 0 3 6 30
9. 1 8 -3 40
10. 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

egen — Extensions to generate

175

> Example 5: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly
for quickly creating observation identifiers or automatically numbering levels of factors or categorical

variables.

. clear

. set obs 12

In the simplest case,

. egen a = seq()

is just equivalent to the common idiom

. generate a =

n

a may also be obtained from

. range a 1

(the actual value of _N may also be used).

_N

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions

int and mod.

. egen b = seq(), b(2)

produces integers in blocks of 2, whereas

. egen ¢ = seq(), t(6)

restarts the sequence after 6 is reached.

. egen d = seq(), £(10) t(12)

shows that sequences may start with integers other than 1, and

. egen e = seq(), £(3) t(1)

shows that they may decrease.

The results of these commands are shown by

. list, sep(4)

a b c d e
1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3
5. 5 3 5 11 2
6. 6 3 6 12 1
7. 7 4 1 10 3
8. 8 4 2 11 2
9. 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

176 egen — Extensions to generate

All these sequences could have been generated in one line with generate and with the use of
the int and mod functions. The variables b through e are obtained with

. genb =1+ int((_n - 1)/2)
.genc =1+ mod(_n - 1, 6)
. gend =10 + mod(_n - 1, 3)
.gene=3-mod(_n - 1, 3)

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed
values.

In general, the sequences produced depend on the sort order of observations, following three rules:
1. observations excluded by if or in are not counted;
2. observations are sorted by varlist, if specified; and
3. otherwise, the order is that specified when seq() is called.

The result of applying seq was not guaranteed to be identical from application to application
whenever sorting was required, even with identical data, because of the indeterminacy of sorting.
That is, if we sort, say, integer values, it is sufficient that all the 1s are together and are followed by
all the 2s. But there is no guarantee that the order of the 1s, as defined by any other variables, will
be identical from sort to sort.

4

The £i11 () and seq() functions are alternatives. In essence, £i11() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that £i11() can produce that seq() cannot, and vice versa. £i11()
cannot be combined with if or in, in contrast to seq(), which can.

Marking differences among variables

> Example 6: diff()

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:

. use http://www.stata-press.com/data/r12/egenxmpl3, clear
. egen byte differ = diff(incx)
. list if differ==

incl inc2 inc3 id differ
10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1
101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1
134. 26,233 26,233 26,133 234 1

egen — Extensions to generate 177

Rather than typing diff (inc*), we could have typed diff (incl inc2 inc3).

Ranks

> Example 7: rank()

Most applications of rank() will be to one variable, but the argument exp can be more gen-
eral, namely, an expression. In particular, rank (-varname) reverses ranks from those obtained by
rank (varname).

The default ranking and those obtained by using one of the track, field, and unique options
differ principally in their treatment of ties. The default is to assign the same rank to tied values
such that the sum of the ranks is preserved. The track option assigns the same rank but resembles
the convention in track events; thus, if one person had the lowest time and three persons tied for
second-lowest time, their ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5.
The field option acts similarly except that the highest is assigned rank 1, as in field events in which
the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use
is assigning ranks for a graph of ordered values. See also group() for another kind of “ranking”.

. use http://www.stata-press.com/data/ri2/auto, clear
(1978 Automobile Data)

. keep in 1/10
(64 observations deleted)

. egen rank = rank(mpg)

. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique

. egen rank_ur = rank(-mpg), unique
. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur
1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6
6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 3
9. 22 8.5 2.5 2 8 9 2
10. 26 10 1 1 10 10 1

178 egen — Extensions to generate

Standardized variables

> Example 8: std()

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:

. use http://www.stata-press.com/data/r12/statesl, clear
(State data)

. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. Dev. Min Max
age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.153336 3.047044
. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10~ is the precision of
a float and is close enough to zero for all practical purposes. If we wanted, we could have typed
egen double stdage = std(age), making stdage a double-precision variable, and the mean would
have been 10716, In any case, summarize also shows that the standard deviation is 1. correlate
shows that the new variable and the original variable are perfectly correlated.

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newagel = std(age), std(2)
. egen newage2 = std(age), mean(2) std(4)
. egen newage3 = std(age), mean(2)

. summarize age newagel-newage3

Variable Obs Mean Std. Dev. Min Max
age 50 29.54 1.693445 24.2 34.7
newagel 50 1.28e-08 2 -6.306671 6.094089
newage?2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044
. correlate age newagel-newage3
(obs=50)

age newagel newage2 newage3

age 1.0000
newagel 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

egen — Extensions to generate 179

Row functions

> Example 9: rowtotal()

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s
total() function creates a constant equal to the overall sum. egen’s rowtotal () function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all
values of exp or varlist are missing.

. use http://www.stata-press.com/data/r12/egenxmpl4, clear
. egen hsum = rowtotal(a b c)
. generate vsum = sum(hsum)

. egen sum = total (hsum)

. list
a b c hsum vsum sum
1. . 2 3 5 5 63
2. 4 . 6 10 15 63
3. 7 8 15 30 63
4. 10 11 12 33 63 63

> Example 10: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r (mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean () function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile() returns the #th percentile of the vari-
ables specified in varlist. rowsd() creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean () calculation:

. use http://www.stata-press.com/data/r12/egenxmpl4, clear
. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c¢)

. list
a b c avg median pct2b std n
1. 2 3 2.5 2.5 2 .7071068 2
2. 4 6 5 5 4 1.414214 2
3. 7 8 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

180 egen — Extensions to generate

> Example 11: rowmiss()

rowmiss () returns k —rownonmiss (), where k is the number of variables specified. rowmiss ()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use http://www.stata-press.com/data/r12/auto3, clear
(1978 Automobile Data)

. correlate price weight mpg

(obs=70)
price weight mpg
price 1.0000
weight 0.5309 1.0000
mpg -0.4478 -0.7985 1.0000

. egen excluded = rowmiss(price weight mpg)

. list make price weight mpg if excluded !=0

make price weight mpg

5. Buick Electra . 4,080 15

12. Cad. Eldorado 14,500 3,900 .

40. 0lds Starfire 4,195 . 24
51. Pont. Phoenix . 3,420

> Example 12: rowmin(), rowmax(), rowfirst(), and rowlast()

rowmin(), rowmax (), rowfirst (), and rowlast () return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use http://www.stata-press.com/data/r12/egenxmpl5, clear

. egen min = rowmin(x y z)
(1 missing value generated)

. egen max = rowmax(x y z)
(1 missing value generated)

. egen first = rowfirst(x y z)
(1 missing value generated)

. egen last = rowlast(x y z)
(1 missing value generated)

. list, sep(4)

X y z min max first last
1 -1 2 3 -1 3 -1 3
2 . -6 . -6 -6 -6 -6
3 7 -5 -5 7 7 -5
4 .
5. 4 4 4 4 4
6. 8 8 8 8 8
7. 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

egen — Extensions to generate 181

Categorical and integer variables

> Example 13: anyvalue(), anymatch(), and anycount()

anyvalue(), anymatch(), and anycount () are for categorical or other variables taking integer
values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist),
anyvalue () extracts the subset, leaving every other value missing; anymatch() defines an indicator
variable (1 if in subset, O otherwise); and anycount () counts occurrences of the subset across a set
of variables. Therefore, with just one variable, anymatch(varname) and anycount (varname) are
equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. use http://www.stata-press.com/data/ri2/auto, clear
(1978 Automobile Data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)
. generate byte ishirep = inlist(rep78,3,4,5)

However, as the specification becomes more complicated or involves several variables, the egen
functions may be more convenient.

N

> Example 14: group()

group () maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically
and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data
are 1, 2, 4, and 7, but we desire equally spaced numbers, as when the codes will be values on one
axis of a graph. group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age
groups 18-24, 25-40, 41-50, and 51 and above. Perhaps we created this coding using the recode ()
function (see [U] 13.3 Functions and [U] 25 Working with categorical data and factor variables)
from another age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)
We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp) q

182 egen — Extensions to generate

> Example 15: group() with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to
use ir (see [ST] epitab) to create a Mantel—Haenszel weighted estimate of the incidence rate. ir,
however, allows only one variable to be specified in its by () option. We type

. use http://www.stata-press.com/data/r12/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning .
for numeric variables and "" for string variables), so missing values will be handled correctly. When
we list some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female

T. Black

group() began by putting the data in the order of the grouping variables and then assigned the
numeric codes. Observations 6 and 7 were assigned to racesex==. because, in one case, race was
not known, and in the other, sex was not known. (These observations were not used by ir.)

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2=group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black 5

4

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist.

The label option produces a categorical variable with value labels. These value labels are either
the actual values of varname or any value labels of varname, if they exist. The values of varname
could be as long as those of one str244 variable, but value labels may be no longer than 80 characters.

egen — Extensions to generate 183

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition
symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces
"software", and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space
or a comma. Given numeric variables n1 and n2,

. generate newstr = sl + string(nl) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = sl1 + " " + 82 + " " + 83

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.

> Example 16: concat()

concat () allows us to do everything in one line concisely.
. egen newstr = concat(sl nl n2 s2)
carries with it an implicit instruction to convert numeric values to their string equivalents, and the
appropriate string data type is worked out within concat () by Stata’s automatic promotion. Moreover,
. egen newstr = concat(sl s2 s3), p(" ")
specifies that spaces be used as separators. (The default is to have no separation of concatenated
strings.)
As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(nl n2), format(%9.3f) p(" ")

specifies the use of format %9.3£. This is equivalent to

. generate strl newstr = ""

. replace newstr = string(n1,"%9.3f") + " " + string(n2,"%9.3f")

See [D] functions for more about string().

4

As a final flourish, the decode option instructs concat () to use value labels. With that option,
the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike
the decode command, however, concat() uses string(varname), not "", whenever values of
varname are not associated with value labels, and the format () option, whenever specified, applies
to this use of string().

> Example 17: ends()

The ends (strvar) function is used for subdividing strings. The approach is to find specified
separators by using the strpos() string function and then to extract what is desired, which either
precedes or follows the separators, using the substr () string function.

184 egen — Extensions to generate

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows
the last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each
string and are not part of the strings.

head tail last

Ilfrogll llfrogll nn "frog"

"frog toad" "frog" "toad" "toad"
"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which
two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore,
you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing
"toad newt" in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general
definitions of the head, tail, and last options are therefore interpreted in terms of whatever
separator has been specified; that is, they are relative to the first or last occurrence of the separator
in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is
"Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in

this example, which may be trimmed with trim. The punctuation (here the comma, “,”) is discarded,
just as it is with one space.

pchars, the argument of punct (), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct (: ;) would mean that words
are separated by a colon followed by a semicolon (that is, : ;). It is not implied, in particular, that the
colon and semicolon are alternatives. To do that, you would have to modify the programs presented
here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings
were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname
coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von
Neumann, John" is no problem, if the comma is specified as a separator, but the last option is
not intelligent enough to handle "Walter de la Mare" properly. For that, the best advice is to use
programs specially written for person-name extraction, such as extrname (Gould 1993).

4

U.S. marginal income tax rate

mtr (year income) (Schmidt 1993, 1994) returns the U.S. marginal income tax rate for a married
couple with taxable income income in year year, where 1930 < year < 2011.

egen — Extensions to generate 185

> Example 18: mitr()

Schmidt (1993) examines the change in the progressivity of the U.S. tax schedule over the period
from 1930 to 1990. As a measure of progressivity, he calculates the difference in the marginal tax
rates at the 75th and 25th percentiles of income, using a dataset of percentiles of taxable income
developed by Hakkio, Rush, and Schmidt (1996). (Certain aspects of the income distribution are
imputed in these data.) A subset of the data contains the following:

. describe

Contains data from incomel.dta

obs: 61
vars: 4 12 Feb 2011 03:33
size: 1,020
storage display value
variable name type format label variable label
year float %9.0g Year
inc256 float %9.0g 25th percentile
inc50 float %9.0g 50th percentile
inc75 float %9.0g 75th percentile
Sorted by:
. summarize
Variable Obs Mean Std. Dev. Min Max
year 61 1960 17.75293 1930 1990
inc25 61 6948.272 6891.921 819.4 27227.35
inc50 61 11645.15 11550.71 1373.29 45632.43
inc75 61 18166.43 18019.1 2142.33 71186.58

Given the series for income and the four-digit year, we can generate the marginal tax rates
corresponding to the 25th and 75th percentiles of income:

. egen mtr25 = mtr(year inc25)
. egen mtr75 = mtr(year inc75)

. summarize mtr25 mtr75

Variable | Obs Mean Std. Dev. Min Max
mtr25 61 .1664898 .0677949 .01125 .23
mtr75 61 .2442053 .1148427 .01125 .424625

Methods and formulas
egen is implemented as an ado-file.

Stata users have written many extra functions for egen. Type net search egen to locate Internet
sources of programs.

Acknowledgments

The mtr () function of egen was written by Timothy J. Schmidt of the Federal Reserve Bank of
Kansas City.

186 egen — Extensions to generate

The cut function was written by David Clayton, Cambridge Institute for Medical Research, and
Michael Hills, London School of Hygiene and Tropical Medicine (retired) (1999a, 1999b, 1999c).

Many of the other egen functions were written by Nicholas J. Cox, Durham University, UK.

References

Andrews, D. F, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of
Location: Survey and Advances. Princeton: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156—189.

Clayton, D. G., and M. Hills. 1999a. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49:
6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 23-25. College Station, TX: Stata Press.

——. 1999b. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 25. College Station, TX: Stata Press.

——. 1999¢c. dm66.2: Update of cut to Stata 6. Stata Technical Bulletin 51: 2-3. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 25-26. College Station, TX: Stata Press.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9-17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 34-45. College Station, TX: Stata Press.

——. 2000. dm70.1: Extensions to generate, extended: Corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press.

——. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137-157.

Cox, N. J., and R. Goldstein. 1999a. dm72: Alternative ranking procedures. Stata Technical Bulletin 51: 5-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 48-51. College Station, TX: Stata Press.

——. 1999b. dm72.1: Alternative ranking procedures: Update. Stata Technical Bulletin 52: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, p. 51. College Station, TX: Stata Press.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368-377.

Esman, R. M. 1998. dm55: Generating sequences and patterns of numeric data: An extension to egen. Stata Technical
Bulletin 43: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 4-5. College Station, TX: Stata Press.

Gould, W. W. 1993. dm13: Person name extraction. Stata Technical Bulletin 13: 6-11. Reprinted in Stata Technical
Bulletin Reprints, vol. 3, pp. 25-31. College Station, TX: Stata Press.

Hakkio, C. S., M. Rush, and T. J. Schmidt. 1996. The marginal income tax rate schedule from 1930 to 1990. Journal
of Monetary Economics 38: 117-138.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based
on Influence Functions. New York: Wiley.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3—4. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 45-48. College Station, TX: Stata Press.

——. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin 60: 3—4. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, pp. 39-41. College Station, TX: Stata Press.

Schmidt, T. J. 1993. sssl: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17-19. Reprinted
in Stata Technical Bulletin Reprints, vol. 3, pp. 197-200. College Station, TX: Stata Press.

——. 1994. sssl.1: Updated U.S. marginal income tax rate function. Stata Technical Bulletin 22: 29. Reprinted in
Stata Technical Bulletin Reprints, vol. 4, p. 224. College Station, TX: Stata Press.

Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/article.html?article=pr0046
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb13.pdf
http://www.stata-press.com/books/dmus.html
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata.com/products/stb/journals/stb15.pdf
http://www.stata.com/products/stb/journals/stb22.pdf

egen — Extensions to generate 187

Also see
[D] collapse — Make dataset of summary statistics
[D] generate — Create or change contents of variable
[U] 13.3 Functions

Title

encode — Encode string into numeric and vice versa

Syntax
String variable to numeric variable

encode varname [l_'f] [ln] , generate(newvar) [label(name) @xtend]

Numeric variable to string variable

decode varname [zj] [zn] , generate(newvar) [maxlength(#)]

Menu
encode

Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode

Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

Description

encode creates a new variable named newvar based on the string variable varname, creating, adding
to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode
if varname contains numbers that merely happen to be stored as strings; instead, use generate
newvar =real (varname) or destring; see [U] 23.2 Categorical string variables, String functions
in [D] functions, and [D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable
varname and its value label.

Options for encode

generate (newvar) is required and specifies the name of the variable to be created.

label (name) specifies the name of the value label to be created or used and added to if the named
value label already exists. If 1abel() is not specified, encode uses the same name for the label
as it does for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are
not present in label (name). By default, any values not present in label (name) will be added
to that label.

188

encode — Encode string into numeric and vice versa 189

Options for decode

generate (newvar) is required and specifies the name of the variable to be created.

maxlength(#) specifies how many characters of the value label to retain; # must be between 1 and
244. The default is maxlength(244).

Remarks
Remarks are presented under the following headings:
encode
decode

encode

encode is most useful in making string variables accessible to Stata’s statistical routines, most of
which can work only with numeric variables. encode is also useful in reducing the size of a dataset.
If you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536 (1,000 for Small Stata).
Each association in a value label maps a string of up to 244 characters to a number. If your string
has entries longer than that, only the first 244 characters are retained and are significant.

> Example 1

We have a dataset on high blood pressure, and among the variables is sex, a string variable
containing either “male” or “female”. We wish to run a regression of high blood pressure on race, sex,
and age group. We type regress hbp race sex age_grp and get the message “no observations”.

. use http://www.stata-press.com/data/r12/hbp2

. regress hbp sex race age_grp
no observations
r(2000) ;

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,
all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp

Source SS df MS Number of obs = 1121
F(3, 1117) = 15.15

Model 2.01013476 3 .67004492 Prob > F = 0.0000
Residual 49.3886164 1117 .044215413 R-squared = 0.0391
Adj R-squared = 0.0365

Total 51.3987511 1120 .045891742 Root MSE = .21027
hbp Coef. Std. Err. t P>|t] [95% Conf. Intervall
gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.06325684 -.0186322
age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

190 encode — Encode string into numeric and vice versa

encode looks at a string variable and makes an internal table of all the values it takes on, here
“male” and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1
becomes “female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a
1 where sex is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (""). It
creates a value label (also named gender) that records the mapping 1 <+ female and 2 <> male.
Finally, encode labels the values of the new variable with the value label.

4

> Example 2

It is difficult to distinguish the result of encode from the original string variable. For instance, in
our last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:

. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second
observation.

The difference does show, however, if we tell 1ist to ignore the value labels and show how the
data really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2.

3. male 2
4. male 2

We could also ask to see the underlying value label:

. label list gender
gender:
1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the
variable displays as “male” and “female”, just as the underlying string variable sex would.

d

> Example 3

We can drastically reduce the size of our dataset by encoding strings and then discarding the
underlying string variable. We have a string variable, sex, that records each person’s sex as “male”
and “female”. Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes
only 1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the
encoded variable will take only 1,130 bytes.

encode — Encode string into numeric and vice versa

191

. use http://www.stata-press.com/data/r12/hbp2, clear

. describe

Contains data from http://www.stata-press.com/data/r12/hbp2.dta

obs: 1,130

vars: 7 3 Mar 2011 06:47

size: 24,860

storage display value

variable name type format label variable label

id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte 7%8.0g yn high blood pressure
sex stré %9s
Sorted by:

. encode sex, generate(gender)

. list sex gender in 1/5

sex gender
1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
sex was long now byte

. describe

Contains data from http://www.stata-press.com/data/r12/hbp2.dta

obs: 1,130

vars: 7 3 Mar 2011 06:47

size: 19,210

storage display value

variable name type format label variable label

id stri0 %10s Record identification number
city byte 7%8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte 7%8.0g racefmt
hbp byte %8.0g yn high blood pressure
sex byte %8.0g gender
Sorted by:

Note: dataset has changed since last saved

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

192 encode — Encode string into numeric and vice versa

Q Technical note

In the examples above, the value label did not exist before encode created it, because that is not
required. If the value label does exist, encode uses your encoding as far as it can and adds new
mappings for anything not found in your value label. For instance, if you wanted “female” to be
encoded as O rather than 1 (possibly for use in linear regression), you could type

. label define gender O "female"

. encode sex, gen(gender)

You can also specify the name of the value label. If you do not, the value label is assumed to have

the same name as the newly created variable. For instance,

. label define sexlbl O
. encode sex, gen(gender) label(sexlbl)

decode

decode is used to convert numeric variables with associated value labels into true string variables.

> Example 4

We have a numeric variable named female that records the values 0 and 1. female is associated
with a value label named sex1bl that says that 0 means male and 1 means female:

"female"

. use http://www.stata-press.com/data/r12/hbp3, clear

. describe female

storage display value
variable name type format label variable label
female byte %8.0g sexlbl
. label list sexlbl
sexlbl:
0 male
1 female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated
value label describing what the numeric codes mean, so if we tabulate the variable, for instance,

it appears to contain the strings “male” and “female”:

. tabulate female

female Freq. Percent Cum.

male 695 61.61 61.61
female 433 38.39 100.00
Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:

. decode female, gen(sex)

. describe sex
stora
variable name typ

ge

e format

display value

label

variable label

sex str

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear

indistinguishable:

6

%9s

encode — Encode string into numeric and vice versa 193

. list female sex in 1/4

female sex
1. female female
2. .
3. male male
4. male male

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex
1. 1 female
2. .
3. 0 male
4. 0 male
d
> Example 5

decode is most useful in instances when we wish to match-merge two datasets on a variable that
has been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state)
takes on values such as “CA” and “NY”. The state variable was originally a string, but along the way
the variable was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for
state and the other an encoded variable or 2) although both are numeric, we are not certain that the
codings are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the

solution:
use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)
save first, replace (save the dataset)
use second (load the second dataset)
decode state, gen(st) (make a string variable)
drop state (discard the encoded variable)
sort st (sort on string)
merge 1:1 st using first (merge the data)
N
Also see

[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa
[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels

[U] 23.2 Categorical string variables

Title

erase — Erase a disk file

Syntax
{ erase | rm} ["]_ﬁlename [“}

Note: Double quotes must be used to enclose filename if the name contains spaces.

Description

The erase command erases files stored on disk. rm is a synonym for erase for the convenience
of Mac and Unix users.

Stata for Mac users: erase is permanent; the file is not moved to the Trash but is immediately
removed from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is
immediately removed from the disk.

Remarks

The only difference between Stata’s erase (rm) command and the DOS DEL or Unix rm(1) command
is that we may not specify groups of files. Stata requires that we erase files one at a time.

Mac users may prefer to discard files by dragging them to the Trash.
Windows users may prefer to discard files by dragging them to the Recycle Bin.

> Example 1

Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,
and type, or, from the Unix perspective, cd, copy, 1s, rm, mkdir, rmdir, and cat. These commands
are provided for Mac users, too. Stata users can also issue any operating system command by using
Stata’s shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate
it:

. erase mydata
file mydata not found
r(601);

. erase mydata.dta

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file
extension for you, it does not do so when you type erase. You must be explicit. Our second attempt
eliminated the file. Unix users could have typed rm mydata.dta if they preferred.

d

194

erase — Erase a disk file 195

Also see
[D] ed — Change directory
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

expand — Duplicate observations

Syntax

expand [=]exp [lf] [in] [, @erate(newvar)}

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate observations

Description

expand replaces each observation in the dataset with n copies of the observation, where n is equal
to the required expression rounded to the nearest integer. If the expression is less than 1 or equal to
missing, it is interpreted as if it were 1, and the observation is retained but not duplicated.

Option

generate (newvar) creates new variable newvar containing O if the observation originally appeared
in the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could
revert to the original observations by typing keep if newvar==0.

Remarks

> Example 1

expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for
reformatting data for survival analysis (see examples in [ST] epitab). Here is a silly use of expand:

. use http://www.stata-press.com/data/r12/expandxmpl

. list
n x
1. -1 1
2. o 2
3. 1 3
4. 2 4
5. 3 5
. expand n

(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)
(3 observations created)

196

expand — Duplicate observations 197

. list

n x
1. -1 1
2. o 2
3. 1 3
4. 2 4
5. 3 5
6 2 4
7 3 5
8 3 5

The new observations are added to the end of the dataset. expand informed us that it created 3
observations. The first 3 observations were not replicated because n was less than or equal to 1. n is
2 in the fourth observation, so expand created one replication of this observation, bringing the total
number of observations of this type to 2. expand created two replications of observation 5 because
n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations
onto the end of the dataset, we could now undo the expansion by typing drop in 6/1.

d

Also see
[D] contract — Make dataset of frequencies and percentages
[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

Title

expandcl — Duplicate clustered observations

Syntax

expandcl [=]exp [lf] [in}, cluster (varlist) generate(newvar)

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations

Description
expandcl duplicates clusters of observations and generates a new variable that identifies the
clusters uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the
required expression rounded to the nearest integer. The expression is required to be constant within
cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the
cluster is retained but not duplicated.

Options

cluster (varlist) is required and specifies the variables that identify the clusters before expanding
the data.

generate (newvar) is required and stores unique identifiers for the duplicated clusters in newvar.
newvar will identify the clusters by using consecutive integers starting from 1.

Remarks

> Example 1

We will show how expandcl works by using a small dataset with five clusters. In this dataset,
cl identifies the clusters, x contains a unique value for each observation, and n identifies how many
copies we want of each cluster.

198

expandcl — Duplicate clustered observations 199

. use http://www.stata-press.com/data/r12/expclxmpl
. list, sepby(cl)

cl X n
1. 10 1 -1
2. 10 2 -1
3. 20 3 0
4. 20 4 0
5. 30 5 1
6. 30 6 1

7. 40 7T 2.7
8. 40 8 2.7

9. 50 9 3
10. 50 10 3

11. 60 11
12. 60 12

. expandcl n, generate(newcl) cluster(cl)

(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)

(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)

(8 observations created)

. sort mewcl cl x

200 expandcl — Duplicate clustered observations

. list, sepby(newcl)

cl X n newcl

1. 10 1 -1 1
2. 10 2 -1 1
3. 20 3 0 2
4. 20 4 0 2
5. 30 5 1 3
6. 30 6 1 3
7. 40 7 2.7 4
8. 40 8 2.7 4
9. 40 7 2.7 5
10. 40 8 2.7 5
11. 40 7 2.7 6
12. 40 8 2.7 6
13. 50 9 3 7
14. 50 10 3 7
15. 50 9 3 8
16. 50 10 3 8
17. 50 9 3 9
18. 50 10 3 9
19. 60 11 . 10
20. 60 12 . 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the
total number of clusters of this type to 3. expandcl created two replications of cluster 50 because
n is 3. Finally, expandcl did not replicate the last cluster because n was missing.

4

Methods and formulas

expandcl is implemented as an ado-file.

Also see

[R] bsample — Sampling with replacement

[D] expand — Duplicate observations

Title

export — Overview of exporting data from Stata

Description

This entry provides a quick reference for determining which method to use for exporting Stata
data from memory to other formats.

Remarks

Remarks are presented under the following headings:

Summary of the different methods
export excel
outsheet
odbc
outfile
export sasxport
xmlsave

Summary of the different methods

export excel

o export excel creates Microsoft Excel worksheets in .x1s and .x1sx files.
o Entire worksheets can be exported, or custom cell ranges can be overwritten.

o See [D] import excel.

outsheet

o outsheet creates comma-separated (CSV) or tab-delimited files that many other programs can
read.

o A custom delimiter may also be specified.
o The first line of the file can optionally contain the names of the variables.

o See [D] outsheet.

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for exporting data via the odbc command and can
write to any ODBC data source on your computer.

o See [D] odbec.

201

202 export — Overview of exporting data from Stata

outfile
o outfile creates text-format datasets.
o The data can be written in space-separated or comma-separated format.
o Alternatively, the data can be written in fixed-column format.

o See [D] outfile.

export sasxport

o export sasxport saves SAS XPORT Transport format files.
o export sasxport can also write value label information to a formats.xpf XPORT file.

o See [D] import sasxport.

xmlsave

o xmlsave writes extensible markup language (XML) files—highly adaptable text-format files derived
from the standard generalized markup language (SGML).

o xmlsave can write either an Excel-format XML or a Stata-format XML file.

o See [D] xmlsave.

Also see
[D] import excel — Import and export Excel files
[D] import sasxport — Import and export datasets in SAS XPORT format
[D] outfile — Export dataset in text format
[D] outsheet — Write spreadsheet-style dataset
[D] odbe — Load, write, or view data from ODBC sources
[D] xmlsave — Export or import dataset in XML format

[D] import — Overview of importing data into Stata

Title

filefilter — Convert text or binary patterns in a file

Syntax

filefilter oldfile newfile ,

{irom(oldpattern) to(newpattern) | ascii2ebcdic | ebedic2ascii } [options]

where oldpattern and newpattern for ASCII characters are

"string" or string

string := [char[char[char(...1]1]]

char := regchar | code

regchar := ASCII 32-91, 93-128, 161-255; excludes ‘\’

code := \BS
\r
\n
\t
\M
\W
\U
\LQ
\RQ
\Q
\$
\###d
\##h

options Description

backslash

carriage return

newline

tab

Classic Mac EOL, or \r
Windows EOL, or \r\n
Unix or Mac EOL, or \n
left single quote,

right single quote, ’

double quote, ”

dollar sign, $

3-digit [0-9] decimal ASCII
2-digit [0-9, A-F] hexadecimal ASCI

* from (oldpattern) find oldpattern to be replaced

*to (newpattern) use newpattern to replace occurrences of from()
*ascii2ebcdic convert file from ASCII to EBCDIC
*ebcdic2ascii convert file from EBCDIC to ASCII

replace replace newfile if it already exists

* Both from(oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.

Description

filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found,
it is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written

to the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.
filefilter is also useful when traditional editors cannot edit a file, such as when unprintable
ASCII characters are involved. In fact, converting end-of-line characters between Mac, Classic Mac,
Windows, and Unix is convenient with the EOL codes.

203

204 filefilter — Convert text or binary patterns in a file

Unicode is not directly supported at this time, but you can attempt to operate on a Unicode file by
breaking a 2-byte character into the corresponding two-character ASCII representation. However, this
goes beyond the original design of the command and is technically unsupported. If you attempt to use
filefilter in this manner, you might encounter problems with variable-length encoded Unicode.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the
pattern from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Options
from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic
or ebcdic2ascii is specified.

to (newpattern) specifies the pattern used to replace occurrences of from(). It is required unless
ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.
from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.
from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.

Remarks
Convert Classic Mac-style EOL characters to Windows-style
. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (‘) characters to the string “left quote”

. filefilter autol.csv auto2.csv, from(\LQ) to("left quote")
Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\60h) to("left quote")

Convert the character with decimal code 96 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\096d) to("left quote")

Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character
100 followed by “Text” to an empty string (remove them from the file)

. filefilter filel.txt file2.txt, from("\6BhText\100dText") to("")

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

filefilter — Convert text or binary patterns in a file 205

Saved results

filefilter saves the following in r():

Scalars
r(occurrences) number of oldpattern found
r(bytes_from) # of bytes represented by oldpattern
r(bytes_to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290-292.

Also see
[P] file — Read and write ASCII text and binary files

[D] changeeol — Convert end-of-line characters of text file

[D] hexdump — Display hexadecimal report on file

http://www.stata-journal.com/article.html?article=pr0039

Title

fillin — Rectangularize dataset

Syntax

f£fillin varlist

Menu

Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Description

fillin adds observations with missing data so that all interactions of varlist exist, thus making
a complete rectangularization of varlist. £i1lin also adds the variable _fillin to the dataset.
_fillin is 1 for observations created by using £illin and O for previously existing observations.

Remarks

> Example 1

We have data on something by sex, race, and age group. We suspect that some of the combinations
of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables
there are in the dataset set to missing. For example, rather than having a missing observation for
black females aged 20—24, we want to create an observation that contains missing values:

. use http://www.stata-press.com/data/r12/fillini

. list
sex race age_gr~p x1 x2
1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. female black 30-34 39399 14.2

. fillin sex race age_group

206

fillin — Rectangularize dataset 207
. list, sepby(sex)

sex race age_gr~p x1 x2 _fillin
1. female white 20-24 20393 14.5 0
2. female white 25-29 1
3. female white 30-34 1
4. female black 20-24 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0
7. male white 20-24 . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 1
10. male black 20-24 1
11. male black 25-29 1
12. male black 30-34 1

d

Methods and formulas

fillin is implemented as an ado-file.

References

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135-136.

Also see

[D] save — Save Stata dataset

[D] cross — Form every pairwise combination of two datasets

[D] expand — Duplicate observations

[D] joinby — Form all pairwise combinations within groups

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0011

Title

format — Set variables’ output format

Syntax
Set formats

format varlist ¥, fimt

format % fimt varlist

Set style of decimal point

set dp {wma|&iod} [, permanently]

Display long formats

format [varlist]

w A umerical, , busi 2 1 .
here % fint can be a numerical, date, business calendar, or string format

208

format — Set variables’ output format

209

Numerical 7% fint Description Example
right-justified

W Hg general %9.0g

W H#E fixed %9.2f

Wi . #e exponential %10.7e

h21x hexadecimal h21x

%16H binary, hilo %16H

%16L binary, lohi %16L

%8H binary, hilo %8H

%8L binary, lohi %8L
right-justified with commas

W .#gc general %9.0gc

Wit #fc fixed %9.2fc
right-justified with leading zeros

HhO# #E fixed %09.2f
left-justified

h—#.#g general %-9.0g

h# #E fixed h-9.2f

h—#.#e exponential %-10.7e
left-justified with commas

h-#.#gc general %-9.0gc

h—#.#fc fixed %-9.2fc

You may substitute comma (,) for period (.) in any

of the above formats to make comma the decimal point. In
%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

date %, fint Description Example

right-justified
htc date/time %tc
%tC date/time %tC
%td date %td
htw week Wtw
%tm month %tm
htq quarter %tq
%th half-year %th
Wty year Wty
htg generic wtg

left-justified
h-tc date/time %-tc
%-tC date/time %-tC
%-td date %-td
etc.

There are many variations allowed. See [D] datetime display formats.

210 format — Set variables’ output format

business calendar % fint Description Example
%tbcalname a business %tbsimple
[:datetime-speciﬁers} calendar defined in

calname . stbcal

See [D] datetime business calendars.

string % fint Description Example
right-justified

h#s string %15s
left-justified

h-#s string %-20s
centered

ho~#ts string %~12s

The centered format is for use with display only.

Menu

Data > Variables Manager

Description

format varlist %, fimt and format % fint varlist are the same commands. They set the display format
associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g
str# Wits

set dp sets the symbol that Stata uses to represent the decimal point. The default is period,
meaning that one and a half is displayed as 1.5.

format [varlist] displays the current formats associated with the variables. format by itself lists
all variables that have formats too long to be listed in their entirety by describe. format varlist

lists the formats for the specified variables regardless of their length. format * lists the formats for
all the variables.

Option

permanently specifies that, in addition to making the change right now, the dp setting be remembered
and become the default setting when you invoke Stata.

format — Set variables’ output format

211

Remarks

Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats

The
The
The
The
The
The
The
The
The
The

%t format

%fc format

%g format

%gc format

%e format

%21x format

%16H and %16L formats
%8H and %8L formats
%t format

%s tormat

Other effects of formats
Displaying current formats

Setting formats

See [U] 12.5 Formats: Controlling how data are displayed for an explanation of % fint. To review:
Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d
(or w,d for European format), where w and d stand for two integers. The first integer, w, specifies
the width of the format. The second integer, d, specifies the number of digits that are to follow the
decimal point; d must be less than w. Finally, a character denoting the format type (e, £, or g) is
appended. For example, %9.2f specifies the £ format that is nine characters wide and has two digits
following the decimal point. For £ and g, a ¢ may also be suffixed to indicate comma formats. Other
“numeric” formats known collectively as the %t formats are used to display dates and times; see
[D] datetime display formats. String formats are denoted by %ws, where w indicates the width of

the format.

> Example 1

We have census data by region and state on median age and population in 1980.

. use http://www.stata-press.com/data/r12/census10
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r12/census10.dta

obs: 50 1980 Census data by state
vars: 4 9 Apr 2011 08:05

size: 1,200

storage display value

variable name type format label variable label
state stri4 Y14s State
region int %8.0g cenreg Census region
pop long %11.0g Population
medage float %9.0g Median age

Sorted by:

212

format — Set variables’ output format

The state variable has a display format of %14s. To left-align the state data, we type

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

. format state %-14s

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached
value label. You do the same thing to left-align a numeric variable as you do a string variable: insert
a negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
T. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

format — Set variables’ output format 213

The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for
Stata to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the
data, the next time we use it, state will still be formatted as %-14s, region will still be formatted
as %-8.0g, etc.

d

214 format — Set variables’ output format

> Example 2

Suppose that we have an employee identification variable, empid, and that we want to retain the
leading zeros when we list our data. format has a leading-zero option that allows this.

. use http://www.stata-press.com/data/r12/fmtxmpl

. describe empid

storage display value

variable name type format label variable label
empid float %9.0g
. list empid in 83/87

empid
83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f
. list empid in 83/87

empid
83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Q Technical note

The syntax of the format command allows a varlist and not just one variable name. Thus you
can attach the %9.2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

> Example 3

We have employee data that includes hiredate and login and logout times. hiredate is stored
as a float, but we were careful to store login and logout as doubles. We need to attach a date
format to these three variables.

. use http://www.stata-press.com/data/r12/fmtxmpl?2
. format hiredate login logout

variable name display format

hiredate %9.0g
login %10.0g
logout %10.0g

format — Set variables’ output format 215

. format login logout %tcDDmonCCYY_HH:MM:SS.ss
. list login logout in 1/5

login logout

08nov2006 08:16:42.30 08nov2006 05:32:23.53
08nov2006 08:07:20.53 08nov2006 05:57:13.40
08nov2006 08:10:29.48 08nov2006 06:17:07.51
08nov2006 08:30:02.19 08nov2006 05:42:23.17
08nov2006 08:29:43.25 08nov2006 05:29:39.48

g WN -

. format hiredate %td
. list hiredate in 1/5

hiredate

24jan1986
10mar1994
29sep2006
14apr2006
03dec1999

g wWwN e

We remember that the project manager requested that hire dates be presented in the same form as
they were previously.

. format hiredate %tdDD/NN/CCYY
. list hiredate in 1/5

hiredate

24/01/1986
10/03/1994
29/09/2006
14/04/2006
03/12/1999

O WN -

Setting European formats

Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be
written as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify
5’ as follows:

[}

,” rather than
. use http://www.stata-press.com/data/r12/census10
(1980 Census data by state)

. format pop %12,0gc

. format medage %9,2f

216 format — Set variables’ output format

. list in 1/8

state region pop medage
1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90
6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594 .338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc (put the formats back as they were)

. format medage %9.2f

. set dp comma (tell Stata to use European format)
list in 1/8

(same output appears as above)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make
a table, commas will be used instead of periods in the output:

. tabulate region [fw=popl]

Census
region Freq. Percent Cum.
NE | 49.135.283 21,75 21,75
N Cntrl | 58.865.670 26,06 47,81
South | 74.734.029 33,08 80,89
West | 43.172.490 19,11 100,00
Total [225.907.472 100,00

You can return to using periods by typing

. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by
list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need
to type one and a half, you must type 1.5 regardless of context.

Q Technical note

set dp comma makes drastic changes inside Stata, and we mention this because some older, user-
written programs may not be able to deal with those changes. If you are using an older, user-written
program, you might set dp comma only to find that the program does not work and instead presents
some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.

Even with set dp comma, you might still see some output with the decimal symbol shown as a
period rather than a comma. There are two places in Stata where Stata ignores set dp comma because
the features are generally used to produce what will be treated as input, and set dp comma does not
affect how Stata inputs numbers. First,

format — Set variables’ output format 217

local x = sqrt(2)

stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program
were to display ‘x’ as a string in the output, the period would be displayed. Most programs, however,
would use ‘x’ in subsequent calculations or, at the least, when the time came to display what was
in ‘x’, would display it as a number. They would code

3

display ... ‘x’ ...

and not
display ... "‘x’" ...

so the output would be
. 1,4142135 ...

The other place where Stata ignores set dp comma is the string() function. If you type
. gen res = string(numvar)
new variable res will contain the string representation of numeric variable numvar, with the decimal

symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask
that string() use European format,

. gen res = string(numvar,"%9,0g")

then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The %f format

In %w.df, w is the total output width, including sign and decimal point, and d is the number of
digits to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as

————pe———{ ——

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0£f format displays as
————te—] ——
5
%-w.df works the same way, except that the output is left-justified in the field. The number 5.139
in %-12.2f displays as

-
5.14

The %fc format

%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.
w records the total width of the result, including commas.

The number 5.139 in %12.2fc format displays as

PR -
5.14

218 format — Set variables’ output format

The number 5203.139 in %12.2fc format displays as

————te———{ -
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0£fc format
displays as

As with %f, a minus sign may be inserted to left justify the output. The number 5203.139 in
%-12.0fc format displays as

The %g format

In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format
the number of digits to be displayed to the right of the decimal point. If d # 0 is specified, then not
more than d digits will be displayed. As with %f, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal
point, and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12.0g format displays as

The number 5231371222.139 in %12.0g format displays as

————ee]
5231371222

The number 52313712223.139 displays as

——— -
5.23137e+10

The number 0.0000029394 displays as

————pe———{ ——
2.93940e-06

The %gc format

%w.dgc is %w.dg with commas. It works in the same way as the %g and %fc formats.

The %e format

%w.de displays numeric values in exponential format. w records the width of the format. d records
the number of digits to be shown after the decimal place. w should be greater than or equal to d+7
or, if 3-digit exponents are expected, d+-8.

The number 5.139 in %12.4e format is

PR -
5.1390e+00

format — Set variables’ output format 219

The number 5.139 x 10%2° is

-
5.1390e+220

The %21x format

The %21x format is for those, typically programmers, who wish to analyze routines for numerical
roundoff error. There is no better way to look at numbers than how the computer actually records
them.

The number 5.139 in %21x format is

+ 1 . 2-
+1.48e5604189375X+002

The number 5.125 is

+ 1 + 2-
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers f and e. The interpretation is f x 2°.

The %16H and %16L formats

The %16H and %16L formats show the value in the IEEE floating point, double-precision form.
%16H shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-
significant-byte-first (lohi) form.

The number 5.139 in %16H is

P -
40148e5604189375

The number 5.139 in %16L is

e e R
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal
dump of a binary file.

The %8H and %8L formats
%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.
The number 5.139 in %8H is

e
40a472b0

The number 5.139 in %8L is

e
b072a440

The %t format

The %t format displays numerical variables as dates and times. See [D] datetime display formats.

220 format — Set variables’ output format

The %s format

The %ws format displays a string in a right-justified field of width w. %-ws displays the string
left-justified.

“Mary Smith” in %16s format is

P

Mary Smith

“Mary Smith” in %-16s format is

PRI, P

Mary Smith
Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers

the string. “Mary Smith” in %-~16s format is

R I
Mary Smith

Other effects of formats
You have data on the age of employees, and you type summarize age to obtain the mean and
standard deviation. By default, Stata uses its default g format to provide as much precision as possible.

. use http://www.stata-press.com/data/r12/fmtxmpl
. summarize age
Variable | Obs Mean Std. Dev. Min Max

age | 204 30.18627 10.38067 18 66
If you attach a %9.2f format to the variable and specify the format option, Stata uses that
specification to format the results:

. format age %9.2f
. summarize age, format

Variable | Obs Mean Std. Dev. Min Max

age | 204 30.19 10.38 18.00 66.00

Displaying current formats

format varlist is not often used to display the formats associated with variables because using
describe (see [D] describe) is easier and provides more information. The exceptions are date
variables. Unless you use the default %tc, %tC, ... formats (and most people do), the format specifier
itself can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss
Such formats are too long for describe to display, so it gives up. In such cases, you can use
format to display the format:

. format admittime

variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

format — Set variables’ output format 221

References

Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11:
126-142.

Gould, W. W. 2011a. How to read the %21x format. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/

——. 2011b. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/10/how-to-read-the-percent-2 1 x-format-part-2/

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255-268.

Also see
[P] display — Display strings and values of scalar expressions
[D] datetime business calendars — Business calendars
[D] datetime display formats — Display formats for dates and times
[D] list — List values of variables
[D] varmanage — Manage variable labels, formats, and other properties
[U] 12.5 Formats: Controlling how data are displayed
[U] 12.6 Dataset, variable, and value labels

http://www.stata-journal.com/article.html?article=dm0054
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://www.stata-journal.com/article.html?article=pr0038

Title

functions — Functions

Description
This entry describes the functions allowed by Stata. For information on Mata functions, see
[M-4] intro.
A quick note about missing values: Stata denotes a numeric missing value by ., .a, .b, ...,

or .z. A string missing value is denoted by "" (the empty string). Here any one of these may be
referred to by missing. If a numeric value x is missing, then > . is true. If a numeric value x is
not missing, then x < . is true.

Functions are listed under the following headings:

Mathematical functions

Probability distributions and density functions
Random-number functions

String functions

Programming functions

Date and time functions

Selecting time spans

Matrix functions returning a matrix

Matrix functions returning a scalar

Mathematical functions

abs(x)
Domain: —8e+307 to 8e+307
Range: 0 to 8e+307
Description: returns the absolute value of x.
acos(x)
Domain: —1tol
Range: Otom
Description: returns the radian value of the arccosine of x.
acosh(x)
Domain: 1 to 8.9e+307
Range: 0 to 709.77
Description: returns the inverse hyperbolic cosine of z, acosh(z) = In(x + Va2 —1).
asin(x)
Domain: —1tol
Range: —m/2 to w/2
Description: returns the radian value of the arcsine of x.
asinh(x)
Domain: —8.9e+307 to 8.9e+307
Range: —709.77 to 709.77
Description: returns the inverse hyperbolic sine of z, asinh(z) = In(z + V22 + 1).

222

functions — Functions 223

atan(x)
Domain:
Range:

Description:

atan2(y, x)
Domain y:
Domain z:
Range:

Description:

atanh(x)
Domain:
Range:

Description:

ceil(x)
Domain:
Range:

Description:

cloglog(x)
Domain:
Range:

Description:

comb(n,k)
Domain n:
Domain k:
Range:

Description:

cos(x)
Domain:
Range:

Description:

cosh(x)
Domain:
Range:

Description:

digamma(z)
Domain:
Range:

Description:

—8e+307 to 8e+307
—7/2 to w/2
returns the radian value of the arctangent of x.

—8e+307 to 8e+307

—8e+307 to 8e+307

—mtom

returns the radian value of the arctangent of y/x, where the signs of the parameters
y and x are used to determine the quadrant of the answer.

—1tol
—8e+307 to 8e+307
returns the inverse hyperbolic tangent of z, atanh(z) = ${In(1+z) —In(1 —z)}.

—8e+307 to 8e+307

integers in —8e+307 to 8e+307

returns the unique integer n such that n — 1 < x < n.
returns x (not “.”) if x is missing, meaning that ceil(.a) = .a.

Also see floor(x), int(x), and round(x).

Otol

—8e+307 to 8e+307

returns the complementary log-log of x,
cloglog(x) = In{—In(1 — x)}.

integers 1 to 1e+305

integers 0 to n

0 to 8e+307 and missing

returns the combinatorial function n!/{k!(n — k)!}.

—1le+18 to 1e+18
—1tol
returns the cosine of x, where «x is in radians.

—709 to 709
1 to 4.11e+307
returns the hyperbolic cosine of z, cosh(x) = {exp(z) + exp(—x)}/2.

—le+15 to 8e+307
—8e+307 to 8e+307 and missing
returns the digamma () function, d InI'(x)/dx. This is the derivative of 1ngamma (x).

The digamma(z) function is sometimes called the psi function, ().

224 functions — Functions

exp(x)
Domain:
Range:
Description:

floor(x)
Domain:
Range:
Description:

int(x)
Domain:
Range:
Description:

invcloglog(z)

Domain:
Range:
Description:

invlogit(z)
Domain:
Range:
Description:

In(x)
Domain:
Range:
Description:

—8e+307 to 709
0 to 8e+307
returns the exponential function e®. This function is the inverse of 1n(x).

—8e+307 to 8e+307
integers in —8e+307 to 8e+307
returns the unique integer n such that n < x <n 4 1.

[T}

returns x (not ““.”) if x is missing, meaning that floor(.a) = .a.

Also see ceil(x), int(x), and round(z).

—8e+307 to 8e+307
integers in —8e+307 to 8e+307
returns the integer obtained by truncating = toward O; thus,

int(5.2) =5
int(-5.8) = -5
returns x (not “.”) if x is missing, meaning that int(.a) = .a.

One way to obtain the closest integer to x is int (z+sign(x)/2), which
simplifies to int (x+0.5) for x > 0. However, use of the round () function is
preferred. Also see ceil(x), int(x), and round(x).

—8e+307 to 8e+307

0 to 1 and missing

returns the inverse of the complementary log-log function of z,
invcloglog(z) = 1 — exp{—exp(z)}.

—8e+307 to 8e+307

0 to 1 and missing

returns the inverse of the logit function of z,
invlogit (x) = exp(z)/{1 + exp(x)}.

1e-323 to 8e+307
—744 to 709
returns the natural logarithm, In(z). This function is the inverse of exp(x).

The logarithm of x in base b can be calculated via log,(z) = log,(z)/ log, (D).
Hence,
logs(x) = 1n(x) /1n(5) = log(x)/log(5) = logl0(x)/logl0(5)
log,(z) = 1n(2) /1n(2) = log(x) /log(2) = logl0(x) /logl0(2)

You can calculate log;(x) by using the formula that best suits your needs.

functions — Functions 225

Infactorial(n)
Domain: integers 0 to 1e+305
Range: 0 to 8e+307
Description: returns the natural log of factorial = In(n!).
To calculate n!, use round (exp(lnfactorial(n)),1) to ensure that the result is
an integer. Logs of factorials are generally more useful than the factorials themselves
because of overflow problems.
lngamma(x)
Domain: —2,147,483,648 to 1e+305 (excluding negative integers)
Range: —8e+307 to 8e+307
Description: returns In{I'(z)}. Here the gamma function, I'(x), is defined by
[(z) = [, t“ te~"dt. For integer values of = > 0, this is In((z — 1)!).
Ingamma(x) for z < O returns a number such that exp(lngamma(x)) is equal to
the absolute value of the gamma function, I'(z). That is, 1ngamma () always returns
a real (not complex) result.
log(x)
Domain: 1e-323 to 8e+307
Range: —744 to 709
Description: returns the natural logarithm, In(z), which is a synonym for 1n(z). Also see 1n(x)
for more information.
logl0(x)
Domain: 1e-323 to 8e+307
Range: —323 to 308
Description: returns the base-10 logarithm of z.
logit(x)
Domain: 0 to 1 (exclusive)
Range: —8e+307 to 8e+307 and missing
Description: returns the log of the odds ratio of =,

max (x1,T2,..
Domain x1:
Domain xs:

Domain z,,:
Range:
Description:

logit(x) = In{z/(1 —x)}.

s Tp)

—8e+307 to 8e+307 and missing
—8e+307 to 8e+307 and missing

—8e+307 to 8e+307 and missing

—8e+307 to 8e+307 and missing

returns the maximum value of x1,x2,...,Z,. Unless all arguments are missing,
missing values are ignored.
max(2,10,.,7) = 10
max(.,.,.) = .

226 functions — Functions

min(x1,T9,...,Tn)
Domain z;: —8e+307 to 8e+307 and missing
Domain z3: —8e+307 to 8e+307 and missing

Domain z,,: —8e+307 to 8e+307 and missing

Range: —8e+307 to 8e+307 and missing

Description: returns the minimum value of x1,x9,...,x,. Unless all arguments are missing,
missing values are ignored.
min(2,10,.,7) =2
min(.,.,.) = .

mod (x,y)
Domain z: —8e+307 to 8e+307
Domain y: 0 to 8e+307
Range: 0 to 8e+307
Description: returns the modulus of = with respect to y.
mod(x,y) =x —y int(z/y)

mod(x,0) = .
reldif (z,y)
Domain z: —8e+307 to 8e+307 and missing
Domain y: —8e+307 to 8e+307 and missing
Range: —8e+307 to 8e+307 and missing

Description: returns the “relative” difference |z — y|/(|y| + 1).
returns O if both arguments are the same type of extended missing value.
returns missing if only one argument is missing or if the two arguments are
two different types of missing.

round(x,y) or round(x)
Domain z: —8e+307 to 8e+307
Domain y: —8e+307 to 8e+307
Range: —8e+307 to 8e+307
Description: returns x rounded in units of y or x rounded to the nearest integer if the argument
y is omitted.

[TL)

returns x (not “.”) if = is missing, meaning that round(.a) = .a and

w 9

round(.a,y) = .a if y is not missing; if y is missing, then “.” is returned.

For y = 1, or with y omitted, this amounts to the closest integer to x; round(5.2,1)
is 5, as is round(4.8,1); round(-5.2,1) is —5, as is round(-4.8,1). The
rounding definition is generalized for y # 1. With y = 0.01, for instance, z is
rounded to two decimal places; round(sqrt(2),.01) is 1.41. y may also be larger
than 1; round (28,5) is 30, which is 28 rounded to the closest multiple of 5.

For y = 0, the function is defined as returning = unmodified. Also see

int(x), ceil(x), and floor(x).

sign(x)
Domain: —8e+307 to 8e+307 and missing
Range: —1, 0, 1 and missing

Description: returns the sign of z: —1 if x <0, 0if x =0, 1 if z > 0, and missing
if x is missing.

functions — Functions 227

sin(x)
Domain:
Range:

Description:

sinh(x)
Domain:
Range:

Description:

sqrt(z)
Domain:
Range:

Description:

sum (x)
Domain:
Range:

Description:

tan(x)
Domain:
Range:

Description:

tanh(x)
Domain:
Range:

Description:

trigamma(x)
Domain:
Range:

Description:

—le+18 to 1e+18
—1tol
returns the sine of x, where x is in radians.

—709 to 709
—4.11e+307 to 4.11e+307
returns the hyperbolic sine of x, sinh(z) = {exp(z) — exp(—x)}/2.

0 to 8e+307
0 to le+154
returns the square root of x.

all real numbers and missing
—8e+307 to 8e+307 (excluding missing)
returns the running sum of x, treating missing values as zero.

For example, following the command generate y=sum(x), the jth observation
on y contains the sum of the first through jth observations on x. See [D] egen for
an alternative sum function, total (), that produces a constant equal to the overall
sum.

—le+18 to le+18
—1le+17 to le+17 and missing
returns the tangent of x, where x is in radians.

—8e+307 to 8e+307
—1 to 1 and missing
returns the hyperbolic tangent of x,
tanh () = {exp(z) — exp(—z)}/{exp(z) + exp(—z)}.

—le+15 to 8e+307

0 to 8e+307 and missing

returns the second derivative of 1ngamma (x) = d? In['(x)/dx?. The trigamma ()
function is the derivative of digammma(z).

trunc(x) is a synonym for int(x).

Q Technical note

The trigonometric functions are defined in terms of radians. There are 27 radians in a circle. If
you prefer to think in terms of degrees, because there are also 360 degrees in a circle, you may
convert degrees into radians by using the formula r = dn /180, where d represents degrees and r
represents radians. Stata includes the built-in constant _pi, equal to 7 to machine precision. Thus,
to calculate the sine of theta, where theta is measured in degrees, you could type

sin(theta*_pi/180)

atan() similarly returns radians, not degrees. The arccotangent can be obtained as

acot(r) =—_pi/2 - atan(x)

228 functions — Functions

Probability distributions and density functions

The probability distributions and density functions are organized under the following headings:

Beta and noncentral beta distributions

Binomial distribution

Chi-squared and noncentral chi-squared distributions
Dunnett’s multiple range distribution

F and noncentral F distributions

Gamma distribution

Hypergeometric distribution

Negative binomial distribution

Normal (Gaussian), log of the normal, and binormal distributions
Poisson distribution

Random-number functions

Student’s t distribution

Tukey’s Studentized range distribution

Beta and noncentral beta distributions

ibeta(a,b,x)
Domain a: 1e-10 to le+17
Domain b: 1le-10 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is 0 <z <1
Range: Oto 1
Description: returns the cumulative beta distribution with shape parameters a and b defined by

L(a,b) = W/Oztal(lt)“dt

returns 0 if x < 0.
returns 1 if x > 1.

ibeta() returns the regularized incomplete beta function, also known as the
incomplete beta function ratio. The incomplete beta function without
regularization is given by (gamma(a)*gamma (b) /gamma (a+b))*ibeta(a,b,)
or, better when a or b might be large,

exp(lngamma (a)+1ngamma (b) -1ngamma (a+b)) *ibeta(a,b,x).

Here is an example of the use of the regularized incomplete beta function.
Although Stata has a cumulative binomial function (see binomial()), the
probability that an event occurs k or fewer times in n trials, when the
probability of one event is p, can be evaluated as
cond(k==n,1,1-ibeta(k+1,n-k,p)). The reverse cumulative binomial
(the probability that an event occurs k or more times) can be evaluated

as cond(k==0,1,ibeta(k,n-k+1,p)). See Press et al. (2007, 270-273)
for a more complete description and for suggested uses for this function.

functions — Functions 229

betaden(a,b,x)
Domain a: 1e-323 to 8e+307
Domain b: 1e-323 to 8e+307
Domain z: 1e-323 to 8e+307
Interesting domain is 0 <z <1
Range: 0 to 8e+307
Description: returns the probability density of the beta distribution,

xa_l(l B ‘r)b_l _ F(a + b) xa—l(l _ (E)b_l
Jo (1 —t)p=tdt T(a)l(b)

betaden(a,b,z) =

where a and b are the shape parameters.
returns O if z < O or x > 1.

ibetatail(a,b,x)
Domain a: 1e-10 to le+17
Domain b: 1e-10 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is 0 <z <1
Range: Otol
Description: returns the reverse cumulative (upper tail or survivor) beta distribution with shape
parameters a and b defined by

1
ibetatail(a,b,z) =1 — ibeta(a,b,z) = / betaden(a,b,t) dt

x

returns 1 if x < 0.
returns O if x > 1.

ibetatail() is also known as the complement to the incomplete beta function
(ratio).

invibeta(a,b,p)
Domain a: 1le-10 to le+17
Domain b: 1e-10 to le+17
Domain p: 0Oto 1
Range: Oto 1
Description: returns the inverse cumulative beta distribution: if ibeta(a,b,z) = p,
then invibeta(a,b,p) = z.

invibetatail(a,b,p)
Domain a: 1le-10 to le+17
Domain b: 1e-10 to le+17
Domain p: 0O to 1
Range: 0 to 1
Description: returns the inverse reverse cumulative (upper tail or survivor) beta distribution:
if ibetatail(a,b,x) = p, then invibetatail(a,b,p) = z.

230 functions — Functions

nibetala,b,\,x)
Domain a: 1e-323 to 8e+307
Domain b: 1e-323 to 8e+307
Domain A: 0 to 1,000
Domain z: —8e+307 to 8e+307
Interesting domain is 0 <z <1
Range: Oto 1
Description: returns the cumulative noncentral beta distribution
o~ e M2\ /2) :
where a and b are shape parameters, A is the noncentrality parameter, z is the
value of a beta random variable, and I, (a,) is the cumulative beta distribution,
ibeta().
returns O if x < 0.
returns 1 if x > 1.
nibeta(a,b,0,z) =ibeta(a,b,x), but ibeta() is the preferred function
to use for the central beta distribution. nibeta() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).
nbetaden(a,b,\,x)
Domain a: 1e-323 to 8e+307
Domain b: 1e-323 to 8e+307
Domain A: 0 to 1,000
Domain z: —8e+307 to 8e+307
Interesting domain is 0 <z < 1
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral beta distribution,
%) e*A/Q()\/2)J { I‘(a +b+]) $a+j71(1 _ x)bl}
TG T+)r0)
where a and b are shape parameters, A is the noncentrality parameter, and x is
the value of a beta random variable.
returns O if z < O or z > 1.
nbetaden(a,b,0,r) =betaden(a,b,x), but betaden() is the preferred
function to use for the central beta distribution. nbetaden() is computed using an
algorithm described in Johnson, Kotz, and Balakrishnan (1995).
invnibeta(a,b,\,p)
Domain a: 1e-323 to 8e+307
Domain b: 1e-323 to 8e+307
Domain A: 0 to 1,000
Domain p: Oto 1
Range: Oto1
Description: returns the inverse cumulative noncentral beta distribution:

if nibeta(a,b,\,z) = p, then invibeta(a,b,\,p) = x.

functions — Functions 231

Binomial distribution

binomial(n,k,H)
Domain n: 0 to le+17
Domain k: —8e+307 to 8e+307
Interesting domain is 0 < k < n
Domain 6: 0 to 1
Range: Oto 1
Description: returns the probability of observing floor (k) or fewer successes in floor (n) trials
when the probability of a success on one trial is 6.
returns 0 if k& < 0.
returns 1 if k& > n.
binomialp(n,k,p)
Domain n: 1 to le+6
Domain k: 0 ton
Domain p: 0to 1
Range: Otol
Description: returns the probability of observing floor (k) successes in floor(n) trials when

the probability of a success on one trial is p.

binomialtail(n,k,0)

Domain n:
Domain k:

Domain 6:
Range:
Description:

0 to le+17

—8e+307 to 8e+307

Interesting domain is 0 < k < n

Oto1l

Otol

returns the probability of observing f1loor (k) or more successes in floor (n) trials
when the probability of a success on one trial is 6.

returns 1 if £ < 0.

returns 0 if k& > n.

invbinomial(n,k,p)

Domain n:
Domain k:
Domain p:
Range:
Description:

1 to le+17

0ton—1

0 to 1 (exclusive)

Otol

returns the inverse of the cumulative binomial; that is, it returns 6 (6 = probability
of success on one trial) such that the probability of observing floor (k) or
fewer successes in floor(n) trials is p.

invbinomialtail(n,k,p)

Domain n:
Domain k:
Domain p:
Range:
Description:

1 to le+17

lton

0 to 1 (exclusive)

Otol

returns the inverse of the right cumulative binomial; that is, it returns 6
(6 = probability of success on one trial) such that the probability of
observing floor (k) or more successes in floor(n) trials is p.

232 functions — Functions

Chi-squared and noncentral chi-squared distributions

chi2(n,x)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain z: —8e+307 to 8e+307
Interesting domain is z > 0
Range: Oto 1
Description: returns the cumulative x? distribution with n degrees of freedom.
chi2(n,x) = gammap(n/2,x/2).
returns O if x < 0.

chi2tail(n,z)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain z: —8e+307 to 8e+307
Interesting domain is z > 0
Range: Oto1l
Description: returns the reverse cumulative (upper tail or survivor) x? distribution with n degrees
of freedom. chi2tail(n,x) =1 — chi2(n,x)
returns 1 if z < 0.

invchi2(n,p)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse of chi2(): if chi2(n,x) = p, then invchi2(n,p) = x.

invchi2tail(n,p)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain p: Oto 1
Range: 0 to 8e+307
Description: returns the inverse of chi2tail(): if chi2tail(n,z) = p, then
invchi2tail(n,p) = x.

nchi2(n,\,x)
Domain n: integers 1 to 200
Domain A: 0 to 1,000
Domain z: —8e+307 to 8e+307
Interesting domain is x > 0
Range: Oto 1
Description: returns the cumulative noncentral x? distribution,

T o=t/2 p=A/2 2 tn/2+i—1)\j ;
- t
/0 22 L T(n/2+) 2% j!

where n denotes the degrees of freedom, A is the noncentrality parameter, and
x is the value of y2.
returns O if z < 0.

nchi2(n,0,x) =chi2(n,x), but chi2() is the preferred function to use for
the central 2 distribution. nchi2() is computed using the algorithm of
Haynam, Govindarajulu, and Leone (1970).

functions — Functions 233

invnchi2(n,\,p)

Domain n: integers 1 to 200

Domain A: 0 to 1,000

Domain p: 0 to 1

Range: 0 to 8e+307

Description: returns the inverse cumulative noncentral x? distribution:

if nchi2(n,\,x) = p, then invnchi2(n,\,p) = x; n must be an integer.

npnchi2(n,x,p)

Domain n: integers 1 to 200

Domain z: 0 to 8e+307

Domain p: 1e-138to 1 — 2752

Range: 0 to 1,000

Description: returns the noncentrality parameter, \, for noncentral x?:

if nchi2(n,\,z) = p, then npnchi2(n,z,p) = A.

Dunnett’s multiple range distribution

dunnettprob(k,df ,x)
Domain k: 2 to le+6
Domain df: 2 to le+6
Domain z: —8e+307 to 8e+307
Interesting domain is = > 0
Range: Oto 1
Description: returns the cumulative multiple range distribution that is used in Dunnett’s

multiple-comparison method with k ranges and df degrees of freedom.
returns O if z < 0.

dunnettprob() is computed using an algorithm described in Miller (1981).

invdunnettprob(k,df,p)

Domain k:
Domain df:
Domain p:
Range:
Description:

2 to le+6

2 to le+6

0 to 1 (right exclusive)

0 to 8e+307

returns the inverse cumulative multiple range distribution that is used in Dunnett’s
multiple-comparison method with k ranges and df degrees of freedom. If
dunnettprob(k,df ,x) = p, then invdunnettprob(k,df,p) = x.

invdunnettprob() is computed using an algorithm described in Miller (1981).

234 functions — Functions

F and noncentral F distributions

F(ni,no, f)
Domain n;: 2e-10 to 2e+17 (may be nonintegral)
Domain ngy: 2e-10 to 2e+17 (may be nonintegral)
Domain f: —8e+307 to 8e+307
Interesting domain is f > 0
Range: Oto 1
Description: returns the cumulative F' distribution with n; numerator and ny denominator
degrees of freedom: F(ny,no, f) = fof Fden(nq,ns,t) dt.
returns 0 if f < 0.

Fden(ni,na, f)
Domain n;: 1e-323 to 8e+307 (may be nonintegral)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain f: —8e+307 to 8e+307
Interesting domain is f > 0
Range: 0 to 8e+307
Description: returns the probability density function of the F' distribution with n; numerator
and ng denominator degrees of freedom:

nq

(ratne 2 n ~(natne)
Fden(n,na, f) Zr(znz)<n1> 'f;_1<1+zlf)
2

returns 0 if f < 0.

Ftail (TLl sN2, f)

Domain ny: 2e-10 to 2e+17 (may be nonintegral)

Domain ny: 2e-10 to 2e+17 (may be nonintegral)

Domain f: —8e+307 to 8e+307
Interesting domain is f > 0

Range: Oto1l

Description: returns the reverse cumulative (upper tail or survivor) F' distribution with 1 numerator

and ns denominator degrees of freedom. Ftail(ni,ns, f) = 1-F(ny,n2, f).

returns 1 if f < 0.

invF(ny,n2,p)
Domain ny: 2e-10 to 2e+17 (may be nonintegral)
Domain ny: 2e-10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative £ distribution: if F(ny,ns, f) = p,
then invF(ny,n2,p) = f.

invFtail(ni,ne,p)
Domain n;: 2e-10 to 2e+17 (may be nonintegral)
Domain ngy: 2e-10 to 2e+17 (may be nonintegral)
Domain p: 0Oto 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) F' distribution:
if Ftail(ny,ng, f) = p, then invFtail(ny,nq,p) = f.

functions — Functions 235

nFden(ny,n2,A, f)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain no: 1e-323 to 8e+307 (may be nonintegral)
Domain A: 0 to 1,000
Domain f: —8e+307 to 8e+307
Interesting domain is f > 0
Range: 0 to 8e+307
Description: returns the probability density function of the noncentral F' distribution with n;
numerator and no denominator degrees of freedom and noncentrality parameter
A
returns 0 if f < 0.

nFden(ny,n2,0,F) =Fden(ni,ns, F), but Fden() is the preferred function to
use for the central I’ distribution.

Also, if F' follows the noncentral F' distribution with n; and no degrees of freedom
and noncentrality parameter A, then

an
n2+—n1F

follows a noncentral beta distribution with shape parameters a = v / 2,b=15 / 2,
and noncentrality parameter A, as given in nbetaden(). nFden() is computed based
on this relationship.

nFtail(nl,ng,A,f)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain A: 0 to 1,000
Domain f: —8e+307 to 8e+307
Interesting domain is f > 0
Range: Oto1l
Description: returns the reverse cumulative (upper tail or survivor) noncentral F' distribution with
n1 numerator and ny denominator degrees of freedom and noncentrality
parameter \.
returns 1 if f < 0.

nFtail () is computed using nibeta() based on the relationship between the
noncentral beta and I’ distributions. See Johnson, Kotz, and Balakrishnan (1995) for
more details.

invnFtail(ny,ng,A,p)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain ny: 1e-323 to 8e+307 (may be nonintegral)
Domain A: 0 to 1,000
Domain p: 0O to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) noncentral F' distribution:
if nFtail(ny,no,A,x) = p, then invnFtail(ng,nq,A,p) = x.

236 functions — Functions

Gamma distribution

gammap (a,x)
Domain a:
Domain z:

Range:

le-10 to le+17

—8e+307 to 8e+307
Interesting domain is z > 0
Oto1

Description: returns the cumulative gamma distribution with shape parameter a defined by

1 /’” —tja—1
—_— e "t dt
L(a) Jo

returns 0 if z < 0.

The cumulative Poisson (the probability of observing k or fewer events if the
expected is x) can be evaluated as 1-gammap (k+1,z). The reverse cumulative (the
probability of observing k or more events) can be evaluated as gammap (k,z). See
Press et al. (2007, 259-266) for a more complete description and for suggested uses
for this function.

gammap () is also known as the incomplete gamma function (ratio).

Probabilities for the three-parameter gamma distribution (see gammaden()) can
be calculated by shifting and scaling x; that is, gammap(a, (z — g)/b).

gammaden(a,b,g,x)
Domain a: 1e-323 to 8e+307
Domain b: 1e-323 to 8e+307
Domain g: —8e+307 to 8e+307
Domain z: —8e+307 to 8e+307
Interesting domain is = > g
Range: 0 to 8e+307
Description: returns the probability density function of the gamma distribution defined by
1 (m _)a—le—(m—g)/b
T'(a)b® g

where a is the shape parameter, b is the scale parameter, and g is the
location parameter.
returns O if x < g.

functions — Functions 237

gammaptail (a,z)
Domain a: 1le-10 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is z > 0
Range: Oto1
Description: returns the reverse cumulative (upper tail or survivor) gamma distribution with shape
parameter a defined by

oo

gammaptail (a,2) = 1 — gammap(a,x) = / gammaden (a,t) dt

xT
returns 1 if x < 0.

gammaptail () is also known as the complement to the incomplete gamma function
(ratio).

invgammap (a,p)
Domain a: 1e-10 to le+17
Domain p: 0O to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative gamma distribution: if gammap(a,z) = p,
then invgammap(a,p) = z.

invgammaptail(a,p)
Domain a: 1e-10 to le+17
Domain p: 0 to 1
Range: 0 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) gamma distribution:
if gammaptail(a,z) = p, then invgammaptail (a,p) = x.

dgammapda (a,x)
Domain a: le-7 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is x > 0
Range: —161t0 0
Description: returns %, where P(a,z) = gammap(a,x).
returns 0 if x < 0.

dgammapdada(a,)
Domain a: 1e-7 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is = > 0

Range: —0.02 to 4.77e+5

2
Description: returns 6%3;””, where P(a,z) = gammap(a,z).

returns 0 if x < 0.

dgammapdadx(a,x)
Domain a: 1le-7 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is z > 0
Range: —0.04 to 8e+307

2
Description: returns a;ai(gf)’ where P(a,z) = gammap(a,x).

returns 0 if x < 0.

238 functions — Functions

dgammapdx (a,x)
Domain a: 1le-10 to le+17
Domain z: —8e+307 to 8e+307
Interesting domain is z > 0
Range: 0 to 8e+307
Description: returns %, where P(a,z) = gammap(a,x).
returns O if z < 0.

dgammapdxdx (a,x)
Domain a: 1e-10 to le+17
Domain xz: —8e+307 to 8e+307
Interesting domain is z > 0
Range: 0 to 1le+40
Description: returns %, where P(a,z) = gammap(a,x).
returns 0 if x < 0.

Hypergeometric distribution

hypergeometric(N,K ,n,k)

Domain N: 2 to le+5

Domain K: 1to N—1

Domain n: 1 to N—1

Domain k: max(0,n — N + K) to min(K,n)

Range: Otol

Description: returns the cumulative probability of the hypergeometric distribution. IV is the
population size, K is the number of elements in the population that have the
attribute of interest, and n is the sample size. Returned is the probability
of observing k or fewer elements from a sample of size n that have
the attribute of interest.

hypergeometricp(N,K ,n,k)

Domain N: 2 to le+5

Domain K: 1 to N—1

Domain n: 1 to N—1

Domain k: max(0,n — N + K) to min(K ,n)

Range: 0 to 1 (right exclusive)

Description: returns the hypergeometric probability of k successes (where success is obtaining
an element with the attribute of interest) out of a sample of size n, from
a population of size IV containing K elements that have the attribute of interest.

functions — Functions 239

Negative binomial distribution

nbinomial(n,k,p)

Domain n: 1e-10 to le+17 (can be nonintegral)

Domain k: 0 to 2°% — 1

Domain p: 0 to 1 (left exclusive)

Range: Oto1

Description: returns the cumulative probability of the negative binomial distribution. n can be
nonintegral. When 7 is an integer, nbinomial () returns the probability of
observing k or fewer failures before the nth success, when the probability of
a success on one trial is p.

The negative binomial distribution function is evaluated using the ibeta() function.

nbinomialp(n,k,p)

Domain n: 1le-10 to le+6 (can be nonintegral)

Domain k: 0 to le+10

Domain p: 0 to 1 (left exclusive)

Range: Oto1l

Description: returns the negative binomial probability. When n is an integer, nbinomialp ()
returns the probability of observing exactly floor (k) failures before
the nth success, when the probability of a success on one trial is p.

nbinomialtail(n,k,p)

Domain n: 1e-10 to le+17 (can be nonintegral)

Domain k: 0 to 2°% — 1

Domain p: 0 to 1 (left exclusive)

Range: Oto 1

Description: returns the reverse cumulative probability of the negative binomial distribution. When
n is an integer, nbinomialtail() returns the probability of observing k or
more failures before the nth success, when the probability of a success on one
trial is p.

The reverse negative binomial distribution function is evaluated using the
ibetatail() function.

invnbinomial(n,k,q)
Domain n: 1e-10 to le+17 (can be nonintegral)
Domain k: 0 to 253 — 1
Domain q: 0 to 1 (exclusive)
Range: Oto1l
Description: returns the value of the negative binomial parameter, p, such that
q = nbinomial(n,k,p).

invnbinomial () is evaluated using invibeta().

240 functions — Functions

invnbinomialtail(n,k,q)

Domain n:
Domain k:
Domain gq:
Range:
Description:

le-10 to le+17 (can be nonintegral)

1to2%% —1

0 to 1 (exclusive)

0 to 1 (exclusive)

returns the value of the negative binomial parameter, p, such that
q = nbinomialtail(n,k,p).

invnbinomialtail() is evaluated using invibetatail ().

Normal (Gaussian), log of the normal, and binormal distributions

binormal (h,k
Domain h:
Domain k:
Domain p:
Range:
Description:

»P)

—8e+307 to 8e+307

—8e+307 to 8e+307

—1tol

Otol

returns the joint cumulative distribution ®(h, k, p) of bivariate normal
with correlation p; cumulative over (—oo, h] x (—o0, k]:

1 bk 1
®(h,k,p) = ——— (22 -2 2) bday d
() 7p) 2WM/OO \/700 exp{ 2(1 _ p2) (1'1 pPLT1T2 +$2)} T1 aT2

normal (z)

Domain: —8e+307 to 8e+307

Range: Oto 1

Description: returns the cumulative standard normal distribution.

normal(z) = ffoo \/%e’zz/zdx

normalden(z)

Domain: —8e+307 to 8e+307

Range: 0 to 0.3989%4 ...

Description: returns the standard normal density, N (0, 1).
normalden(z,o)

Domain z: —8e+307 to 8e+307

Domain o: 1e-308 to 8e+307

Range: 0 to 8e+307

Description: returns the rescaled standard normal density, N (0, 02).

normalden(z,1) — normalden(z)
normalden(z,0) = normalden(z) /0

functions — Functions 241

normalden(x,u,0)

Domain x: —8e+307 to 8e+307

Domain p: —8e+307 to 8e+307

Domain o: 1e-308 to 8e+307

Range: 0 to 8e+307

Description: returns the normal density with mean g and standard deviation o, N (p,02):
normalden(x,0,1) = normalden(z) and
normalden(x,,0) = normalden((x — u)/o) /o
In general,

1den() L -s{=a)
normalden(z,u,0) = e v
a V2T

o
invnormal (p)
Domain: le323t0 1 —2793
Range: —38.449394 to 8.2095362

Description: returns the inverse cumulative standard normal distribution:
if normal (z) = p, then invnormal (p) = z.

lnnormal (2)
Domain: —1e+99 to 8e+307
Range: —5e+197 to 0

Description: returns the natural logarithm of the cumulative standard normal distribution:

1 1(z) =1 (/ L -2y)
nnorma. zZ) = In —€ X
—oo V2T

lnnormalden(z)
Domain: —le+154 to le+154
Range: —5e+307 to —0.91893853 = lnnormalden(0)

Description: returns the natural logarithm of the standard normal density, N (0, 1).

1nnormalden(z,0)
Domain z: —le+154 to le+154
Domain o: 1e-323 to 8e+307
Range: —5e+307 to 742.82799

Description: returns the natural logarithm of the rescaled standard normal density, N (0, ?).
lnnormalden(z,1) = lnnormalden(z)
lnnormalden(z,0) = lnnormalden(z) — In(o)

1nnormalden(z,pu,0)

Domain z: —8e+307 to 8e+307

Domain p: —8e+307 to 8e+307

Domain o: 1e-323 to 8e+307

Range: 1e-323 to 8e+307

Description: returns the natural logarithm of the normal density with mean p and standard deviation
o, N(u,0%): 1nnormalden(z,0,1) = lnnormalden(x) and
lnnormalden(z,u,0) = lnnormalden((x — p)/o) — In(o). In general,

1 ,;{@}2
lnnormalden(z,u,0) = In 21 @

e
oV 2w

242 functions — Functions

Poisson distribution

poisson(m,k)
Domain m: le-10 to 2°% — 1
Domain k: 0 to 2%% — 1
Range: 0 to 1
Description: returns the probability of observing floor (k) or fewer outcomes that are distributed
as Poisson with mean m.
The Poisson distribution function is evaluated using the gammaptail () function.
poissonp(m,k)
Domain m: 1le-10 to le+8
Domain k: 0 to le+9
Range: Oto 1
Description: returns the probability of observing floor (k) outcomes that are distributed as
Poisson with mean m.
The Poisson probability function is evaluated using the gammaden () function.
poissontail(m,k)
Domain m: le-10 to 2°% — 1
Domain k: 0 to 253 — 1
Range: Oto 1
Description: returns the probability of observing floor (k) or more outcomes that are distributed
as Poisson with mean m.
The reverse cumulative Poisson distribution function is evaluated using the gammap ()
function.
invpoisson(k,p)
Domain k: 0 to 2°3 — 1
Domain p: 0 to 1 (exclusive)
Range: 1.110e-16 to 253
Description: returns the Poisson mean such that the cumulative Poisson distribution evaluated at

k is p: if poisson(m,k) = p, then invpoisson(k,p) = m.

The inverse Poisson distribution function is evaluated using the invgammaptail ()
function.

invpoissontail(k,q)

Domain k:
Domain q:
Range:
Description:

0to2°% —1

0 to 1 (exclusive)

0 to 253 (left exclusive)

returns the Poisson mean such that the reverse cumulative Poisson distribution

evaluated at k is ¢: if poissontail(m,k) = g, then
invpoissontail(k,q) = m.

The inverse of the reverse cumulative Poisson distribution function is evaluated
using the invgammap () function.

functions — Functions 243

Random-number functions

runiform()
Range: 0 to nearly 1 (0 to 1 —273%)
Description: returns uniform random variates.

runiform() returns uniformly distributed random variates on the interval

[0,1). runiform() takes no arguments, but the parentheses must be typed.
runiform() can be seeded with the set seed command; see the technical note at
the end of this subsection. (See Matrix functions for the related matuniform()
matrix function.)

To generate random variates over the interval [a,b), use
a+(b-a)*runiform().

To generate random integers over [a,b], use a+int ((b-a+1)*runiform()).
rbeta(a,b)

Domain a: 0.05 to le+5
Domain b: 0.15 to le+5

Range: 0 to 1 (exclusive)
Description: returns beta(a,b) random variates, where a and b are the beta distribution shape
parameters.

Besides the standard methodology for generating random variates from a given
distribution, rbeta() uses the specialized algorithms of Johnk (Gentle 2003),
Atkinson and Whittaker (1970, 1976), Devroye (1986), and

Schmeiser and Babu (1980).

rbinomial (n,p)
Domain n: 1 to le+11
Domain p: 1e-8 to 1—1e-8
Range: 0ton
Description: returns binomial(n,p) random variates, where n is the number of trials and p is the
success probability.

Besides the standard methodology for generating random variates from a given
distribution, rbinomial () uses the specialized algorithms of
Kachitvichyanukul (1982), Kachitvichyanukul and Schmeiser (1988), and
Kemp (1986).

rchi2 (df)
Domain df: 2e—4 to 2e+8
Range: 0 to c(maxdouble)

Description: returns chi-squared, with df degrees of freedom, random variates.

244 functions — Functions

rgamma(a,b)
Domain a:
Domain b:
Range:
Description:

le—4 to le+8

c(smallestdouble) to c(maxdouble)

0 to c(maxdouble)

returns gamma(a,b) random variates, where a is the gamma shape parameter and b
is the scale parameter.

Methods for generating gamma variates are taken from Ahrens and Dieter (1974),
Best (1983), and Schmeiser and Lal (1980).

rhypergeometric (N, K ,n)

Domain V:
Domain K:
Domain n:
Range:
Description:

2 to le+6

1to N—1

1to N—1

max(0,n — N + K) to min (K ,n)

returns hypergeometric random variates. The distribution parameters are integer
valued, where N is the population size, K is the number of elements in
the population that have the attribute of interest, and n is the sample size.

Besides the standard methodology for generating random variates from a given
distribution, rhypergeometric () uses the specialized algorithms of
Kachitvichyanukul (1982) and Kachitvichyanukul and Schmeiser (1985).

rnbinomial (n,p)

Domain n:
Domain p:
Range:
Description:

rnormal ()
Range:

Description:

rnormal (m)
Domain m:
Range:

Description:

0.1 to le+5
le—4 to 1—1e4
0to2% —1

returns negative binomial random variates. If n is integer valued, rnbinomial ()
returns the number of failures before the nth success, where the probability of
success on a single trial is p. n can also be nonintegral.

c(mindouble) to c(maxdouble)
returns standard normal (Gaussian) random variates, that is, variates from a normal
distribution with a mean of 0 and a standard deviation of 1.

c(mindouble) to c(maxdouble)

c(mindouble) to c(maxdouble)

returns normal(m,1) (Gaussian) random variates, where m is the mean and the
standard deviation is 1.

functions — Functions 245

rnormal (m,s)
Domain m: c(mindouble) to c(maxdouble)
Domain s: c(smallestdouble) to c(maxdouble)
Range: c(mindouble) to c(maxdouble)
Description: returns normal(m,s) (Gaussian) random variates, where m is the mean and s is the
standard deviation.

The methods for generating normal (Gaussian) random variates are taken from
Knuth (1998, 122-128); Marsaglia, MacLaren, and Bray (1964); and Walker (1977).

rpoisson(m)
Domain m: 1le-6 to le+11
Range: 0to2% —1

Description: returns Poisson(m) random variates, where m is the distribution mean.

Poisson variates are generated using the probability integral transform methods
of Kemp and Kemp (1990, 1991), as well as the method of Kachitvichyanukul (1982).

rt (df)
Domain df: 1 to 2%% —1
Range: c(mindouble) to c(maxdouble)

Description: returns Student’s ¢ random variates, where df is the degrees of freedom.

Student’s ¢ variates are generated using the method of Kinderman and Monahan
(1977, 1980).

Q Technical note

The uniform pseudorandom-number function, runiform(), is based on George Marsaglia’s (G.
Marsaglia, 1994, pers. comm.) 32-bit pseudorandom-number generator KISS (keep it simple stupid).
The KISS generator is composed of two 32-bit pseudorandom-number generators and two 16-bit
generators (combined to make one 32-bit generator). The four generators are defined by the recursions

1
2

3
4

Ty = 69069 z,_1 + 1234567 mod 232
Yn = Yn_1(I + L3I + R™)(I + L?)
2n = 65184(2,—1 mod 2'%) + int(2,-1/2'°)

(
(
(
wy, = 63663 (w,—1 mod 2'%) + int (w,,—1/2'°) (

NN NN

In recursion (2), the 32-bit word v, is viewed as a 1 x 32 binary vector; L is the 32 x 32 matrix
that produces a left shift of one (L has 1s on the first left subdiagonal, Os elsewhere); and R is L
transpose, affecting a right shift by one. In recursions (3) and (4), int(x) is the integer part of .

The KISS generator produces the 32-bit random number

R, =2n+ Yn+ 2n + 2164, mod 232

232

runiform() takes the output from the KISS generator and divides it by to produce a real number

on the interval [0, 1).

246 functions — Functions

All the nonuniform random-number generators rely on uniform random numbers that are also
generated using this KISS algorithm.

The recursions (1)—(4) have, respectively, the periods

(65184 - 216 — 2)/2 ~ 231
(63663 - 216 — 2)/2 ~ 231

o~ o~ o~ o~

= \V)
—_— O Y ~—

Thus the overall period for the KISS generator is

232.(2%2 — 1) - (65184 -2'° — 1) - (63663 - 2'5 — 1) ~ 2126

When Stata first comes up, it initializes the four recursions in KISS by using the seeds

zo = 123456789
Yo = 521288629
20 = 362436069
wy = 2262615

~ o~~~
=W N
NN N

Successive calls to runiform() then produce the sequence

R, Ry R3
ﬁ7 2@, 2@,

Hence, runiform() gives the same sequence of random numbers in every Stata session (measured
from the start of the session) unless you reinitialize the seed. The full seed is the set of four numbers
(z,y,z,w), but you can reinitialize the seed by simply issuing the command

. set seed #

where # is any integer between 0 and 23! — 1, inclusive. When this command is issued, the initial
value xg is set equal to #, and the other three recursions are restarted at the seeds yp, 29, and wg
given above. The first 100 random numbers are discarded, and successive calls to runiform() give
the sequence

Rigy Ripy Rigs

932 7 932 7 932 7 ¢

However, if the command
. set seed 123456789

is given, the first 100 random numbers are not discarded, and you get the same sequence of random

numbers that runiform() produces by default; also see [R] set seed.
a

functions — Functions 247

Q Technical note
You may “capture” the current seed (x,y, z,w) by coding
. local curseed = "‘c(seed)’"
and, later in your code, reestablish that seed by coding
. set seed ‘curseed’
When the seed is set this way, the first 100 random numbers are not discarded.

c(seed) contains a 30-plus long character string similar to
X075bcd151f123bb5159a55e50022865746ad

The string contains an encoding of the four numbers (x, y, z, w) along with checksums and redundancy
to ensure that, at set seed time, it is valid.

a
Student’s t distribution
tden(n,t)
Domain n: 1e-323 to 8e+307
Domain ¢: —8e+307 to 8e+307
Range: 0 to 0.39894 ...
Description: returns the probability density function of Student’s ¢ distribution:
T 1)/2
tden(n,t) = M . (1 4 t2/n)—(n+1)/2
Vanl(n/2)
ttail(n,t)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain ¢: —8e+307 to 8e+307
Range: Otol
Description: returns the reverse cumulative (upper tail or survivor) Student’s ¢ distribution; it
returns

the probability 7" > ¢:

. Vnl(n/2)

invttail(n,p)
Domain n: 2e-10 to 2e+17 (may be nonintegral)
Domain p: 0 to 1
Range: —8e+307 to 8e+307
Description: returns the inverse reverse cumulative (upper tail or survivor) Student’s ¢ distribution:
if ttail(n,t) = p, then invttail(n,p) =t.

248 functions — Functions

Tukey’s Studentized range distribution

tukeyprob (k,df ,x)
Domain k: 2 to le+6
Domain df: 2 to le+6
Domain z: —8e+307 to 8e+307

Interesting domain is = > 0

Range: Otol
Description: returns the cumulative Tukey’s Studentized range distribution with k& ranges and
df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s .
returns 0 if x < 0.
tukeyprob() is computed using an algorithm described in Miller (1981).
invtukeyprob(k,df ,p)
Domain k: 2 to le+6
Domain df: 2 to le+6
Domain p: 0O to 1
Range: 0 to 8e+307
Description: returns the inverse cumulative Tukey’s Studentized range distribution with k ranges

String functions

and df degrees of freedom. If df is a missing value, then the normal distribution
is used instead of Student’s ¢. If tukeyprob(k,df,x) = p, then
invtukeyprob(k,df,p) = x.

invtukeyprob() is computed using an algorithm described in Miller (1981).

Stata includes the following string functions. In the display below, s indicates a string subexpression
(a string literal, a string variable, or another string expression), n indicates a numeric subexpression
(a number, a numeric variable, or another numeric expression), and re indicates a regular expression
based on Henry Spencer’s NFA algorithms and this is nearly identical to the POSIX.2 standard.

abbrev(s,n)
Domain s:
Domain n:
Range:
Description:

strings
5 to 32
strings
returns name s, abbreviated to n characters.

If any of the characters of s are a period, “.”, and n < 8, then the value of

n defaults to a value of 8. Otherwise, if n < 5, then n defaults to a value of 5.

If n is missing, abbrev() will return the entire string s. abbrev() is

typically used with variable names and variable names with factor-variable or
time-series operators (the period case). abbrev("displacement",8) is displa~t.

functions — Functions 249

char(n)
Domain: integers 1 to 255
Range: ASCII characters

Description: returns the character corresponding to ASCII code n.
returns "" if n is not in the domain.

indexnot (s1,S9)
Domain s;: strings (to be searched)
Domain sg: strings of individual characters (to search for)
Range: integers 0 to 244
Description: returns the position in s; of the first character of s; not found in sg, or 0
if all characters of s; are found in ss.

itrim(s)

Domain: strings

Range: strings with no multiple, consecutive internal blanks

Description: returns s with multiple, consecutive internal blanks collapsed to one blank.

itrim("hello there") = "hello there"

length(s)

Domain: strings

Range: integers 0 to 244

Description: returns the length of s. length("ab") =2
lower(s)

Domain: strings

Range: strings with lowercased characters

Description: returns the lowercased variant of s. lower ("THIS") = "this"
ltrim(s)

Domain: strings

Range: strings without leading blanks

Description: returns s without leading blanks. 1trim(" this") = "this"

plural(n,s) or plural(n,si,ss2)

Domain n: real numbers

Domain s: strings

Domain s;: strings

Domain ss: strings

Range: strings

Description: returns the plural of s, or s in the 3-argument case, if n # +£1.
The plural is formed by adding “s” to s if you called plural(n,s). If
you called plural(n,s;,s2) and sy begins with the character “+”, the plural
is formed by adding the remainder of sy to s;. If sy begins with the character
“=”, the plural is formed by subtracting the remainder of s from s;. If s9
begins with neither “+” nor “-”, then the plural is formed by returning so.

returns s, or sp in the 3-argument case, if n = £1.

plural(l, "horse") = "horse"
plural(2, "horse") = "horses"
plural(2, "glass", "+es") = "glasses"
plural(l, "mouse", "mice") = "mouse"
plural(2, "mouse", "mice") = "mice"

plural(2, "abcdefg", "-efg") = "abcd"

250 functions — Functions

proper(s)
Domain:
Range:
Description:

real(s)
Domain:
Range:
Description:

regexm(s,re)
Domain s:
Domain re:
Range:
Description:

strings

strings

returns a string with the first letter capitalized, and capitalizes any other letters
immediately following characters that are not letters; all other
letters converted to lowercase.
proper("mR. joHn a. sMitH") = "Mr. John A. Smith"
proper("jack o’reilly") = "Jack 0’Reilly"
proper("2-cent’s worth") = "2-Cent’S Worth"

strings

—8e+307 to 8e+307 and missing

returns s converted to numeric, or returns missing.
real("5.2")+1 = 6.2
real("hello") = .

strings

regular expression

strings

performs a match of a regular expression and evaluates to 1 if regular
expression e is satisfied by the string s, otherwise returns O.
Regular expression syntax is based on Henry Spencer’s NFA algorithm,
and this is nearly identical to the POSIX.2 standard.

regexr(sy,re,s2)

Domain si:
Domain re:
Domain so:
Range:

Description:

regexs(n)
Domain:
Range:
Description:

reverse(s)
Domain:
Range:
Description:

rtrim(s)
Domain:
Range:
Description:

strings

regular expression

strings

strings

replaces the first substring within s; that matches re with s, and returns
the resulting string. If s; contains no substring that matches re, the unaltered
S 1s returned.

0Oto9

strings

returns subexpression n from a previous regexm() match, where
0 < n < 10. Subexpression 0 is reserved for the entire string that
satisfied the regular expression.

strings
reversed strings
returns s reversed. reverse("hello") = "olleh"

strings
strings without trailing blanks
returns s without trailing blanks. rtrim("this ") = "this"

functions — Functions 251

soundex(s)
Domain:
Range:

strings
strings

Description: returns the soundex code for a string, s. The soundex code consists of a letter

followed by three numbers: the letter is the first letter of the name and the
numbers encode the remaining consonants. Similar sounding consonants are
encoded by the same number.

soundex ("Ashcraft") = "A226"
soundex ("Robert") = "R163"
soundex ("Rupert") = "R163"

soundex_nara(s)
Domain: strings
Range: strings
Description: returns the U.S. Census soundex code for a string, s. The soundex code consists

string(n)
Domain:
Range:
Description:

string(n,s)
Domain n:
Domain s:
Range:
Description:

of a letter followed by three numbers: the letter is the first letter of the
name and the numbers encode the remaining consonants. Similar sounding
consonants are encoded by the same number.

soundex_nara("Ashcraft") = "A261"

—8e+307 to 8e+307 and missing
strings
returns 1 converted to a string.

string(4)+"F" = "4F"
string(1234567) = "1234567"
string(12345678) = "1.23e+07"
string(.) ="."

—8e+307 to 8e+307 and missing

strings containing % fint numeric display format
strings

returns 1 converted to a string.

string(4,"%9.2f") = "4.00"
string(123456789,"%11.0g") = "123456789"
string(123456789,"%13.0gc") = "123,456,789"
string(0,"%td") = "01jan1960"
string(225,"%tq") = "2016q92"
string(225,"not a format") =""

strlen(s) is a synonym for length(s).

strlower (z) is a synonym for lower (x).

strltrim(z) is a synonym for 1trim(x).

252 functions — Functions

strmatch(sy, sy)
Domain s: strings
Range: Oorl
Description: returns 1 if s; matches the pattern ss; otherwise, it returns 0.
strmatch("17.4","1774") returns 1. In s5, "7?" means that one character
goes here, and "*" means that zero or more characters go here. Also see
regexm(), regexr(), and regexs().

strofreal(n) is a synonym for string(n).
strofreal(n,s) is a synonym for string(n,s).

strpos(s1,S2)
Domain s1: strings (to be searched)
Domain so: strings (to search for)
Range: integers 0 to 244
Description: returns the position in s; at which ss is first found; otherwise, it returns O.
strpos("this","is") =3
strpos("this","it") =0

strproper(z) is a synonym for proper(x).
strreverse(z) is a synonym for reverse(x).
strrtrim(z) is a synonym for rtrim(x).

strtoname (s,p)

Domain s: strings

Domain p: 0 or 1

Range: strings

Description: returns s translated into a Stata name. Each character in s that is not allowed
in a Stata name is converted to an underscore character, _. If the first character
in s is a numeric character and p is not O, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname ("name",1) — "name"
strtoname("a name",1) = "a_name"
strtoname("5",1) = "_5"
strtoname("5:30",1) = "_5_30"

strtoname("5",0) = "5"
strtoname("5:30",0) = "5_30"

strtoname (s)
Domain s: strings
Range: strings

Description: returns s translated into a Stata name. Each character in s that is not allowed
in a Stata name is converted to an underscore character, _. If the first character
in s is a numeric character, then the result is prefixed with
an underscore. The result is truncated to 32 characters.

strtoname ("name") = "name"
strtoname("a name") = "a_name"
strtoname("5") = "_5"
strtoname("5:30") = "_5_30"

strtrim(z) is a synonym for trim(x).

functions — Functions

253

strupper (z) is a synonym for upper ().

subinstr(sy,Ss,S3,Nn)

Domain sq:
Domain ss:
Domain s3:
Domain n:
Range:

Description:

strings (to be substituted into)

strings (to be substituted from)

strings (to be substituted with)

integers 0 to 244 and missing

strings

returns s1, where the first n occurrences in s; of so have been replaced

with s3. If n is missing, all occurrences are replaced.

Also see regexm(), regexr (), and regexs().
subinstr("this is this","is","X",1) = "thX is this"
subinstr("this is this","is","X",2) = "thX X this"
subinstr("this is this","is","X",.) = "thX X thX"

subinword(sy, Ss,S3,N)

Domain si:
Domain ss:
Domain s3:
Domain n:
Range:

strings (to be substituted for)
strings (to be substituted from)
strings (to be substituted with)
integers 0 to 244 and missing
strings

Description: returns s;, where the first n occurrences in s; of s2 as a word have

substr(s,ny,ns)

strings

integers 1 to 244 and —1 to —244

integers 1 to 244 and —1 to —244

strings

returns the substring of s, starting at column ny, for a length of ns.

Domain s:
Domain nq:
Domain ns:
Range:
Description:

trim(s)
Domain:
Range:

been replaced with s3. A word is defined as a space-separated token.

A token at the beginning or end of s; is considered space-separated.
If n is missing, all occurrences are replaced.
Also see regexm(), regexr (), and regexs().

subinword("this is this","is","X",1) = "this X this"
subinword("this is this","is","X",.) = "this X this"
subinword("this is this","th","X",.) = "this is this"

If n; <0, n; is interpreted as distance from the end of the string;
if ng = . (missing), the remaining portion of the string is returned.

substr("abcdef",2,3) = "bcd"
substr("abcdef",-3,2) = "de"
substr("abcdef",2,.) = "bcdef"
substr("abcdef",-3,.) = "def"
substr("abcdef",2,0) = ""
substr("abcdef",15,2) = ""

strings
strings without leading or trailing blanks

Description: returns s without leading and trailing blanks; equivalent to

ltrim(rtrim(s)). trim(" this ") = "this"

254 functions — Functions

upper (s)
Domain:
Range:
Description:

word(s, n)
Domain s:
Domain n:
Range:
Description:

wordcount (s)
Domain:
Range:
Description:

strings

strings with uppercased characters

returns the uppercased variant of s. upper ("this") = "THIS"
strings

integers ...,—2,—1,0,1,2,...

strings

returns the nth word in s. Positive numbers count words from the beginning of s,
and negative numbers count words from the end of s. (1 is the first word in s,
and -1 is the last word in s.) Returns missing ("") if n is missing.

strings

nonnegative integers 0, 1, 2, ...

returns the number of words in s. A word is a set of characters that start
and terminate with spaces, start with the beginning of the string,
or terminate with the end of the string.

Programming functions

autocode(x,n,xy,r1)

Domain z:
Domain n:
Domain zq:
Domain x1:
Range:
Description:

—8e+307 to 8e+307

integers 1 to 8e+307

—8e+307 to 8e+307

xo to 8e+307

o to T

partitions the interval from x(to z; into n equal-length intervals and
returns the upper bound of the interval that contains z. This function is an
automated version of recode() (see below).
See [U] 25 Working with categorical data and factor variables for an example.

The algorithm for autocode() is
ifm>.|zg>.|z1>.|n <0|zg > 1)
then return missing
if x > ., then return x
otherwise
fori=1ton—1
xmap = xo +i* (x1 — x0)/n
if x < xmap then return xmap
end
otherwise
return x;

functions — Functions 255

byteorder ()
Range:

1 and 2

Description: returns 1 if your computer stores numbers by using a hilo byte order and evaluates

c (name)
Domain:
Range:
Description:

_caller()
Range:
Description:

chop(x, €)
Domain z:
Domain e:
Range:
Description:

clip(z,a,b)
Domain z:
Domain a:
Domain b:
Range:
Description:

to 2 if your computer stores numbers by using a lohi byte order. Consider the
number 1 written as a 2-byte integer. On some computers (called hilo), it is
written as “00 017, and on other computers (called lohi), it is written as

“01 00” (with the least significant byte written first). There are similar issues
for 4-byte integers, 4-byte floats, and 8-byte floats. Stata automatically handles
byte-order differences for Stata-created files. Users need not be concerned about
this issue. Programmers producing customary binary files can use byteorder ()
to determine the native byte ordering; see [P] file.

names

real values, strings, and missing

returns the value of the system or constant result c(name); see [P] creturn.
Referencing c (name) will return an error if the result does not exist.

returns a scalar if the result is scalar.

returns a string of the result containing the first 244 characters.

1to12

returns version of the program or session that invoked the currently running program;
see [P] version. The current version at the time of this writing is 12, so 12
is the upper end of this range. If Stata 12.1 were the current version, 12.1 would
be the upper end of this range, and likewise, if Stata 13 were the current
version, 13 would be the upper end of this range. This is a function for use
by programmers.

—8e+307 to 8e+307

—8e+307 to 8e+307

—8e+307 to 8e+307

returns round (x) if abs(x — round(x)) < €; otherwise, returns x.
returns x if « is missing.

—8e+307 to 8e+307

—8e+307 to 8e+307

—8e+307 to 8e+307

—8e+307 to 8e+307

returns x if a < x < b, b if x > b, a if x < a, and missing if x is missing
or if a > b. If a or b is missing, this is interpreted as @ = —o0
or b = +o0, respectively.

returns x if « is missing.

256 functions — Functions

cond(x,a,b,c) or cond(x,a,b)
Domain z: —8e+307 to 8e+307 and missing; 0 = false, otherwise interpreted as true
Domain a: numbers and strings
Domain b: numbers if a is a number; strings if a is a string
Domain ¢: numbers if a is a number; strings if a is a string
Range: a, b, and ¢
Description: returns a if x is true and nonmissing, b if x is false, and c if x is missing.
returns a if ¢ is not specified and x evaluates to missing.

Note that expressions such as > 2 will never evaluate to missing.

cond (x>2,50,70) returns 50 if x > 2 (includes x > .)
cond (x>2,50,70) returns 70 if x <2

If you need a case for missing values in the above examples, try

cond(missing(x), ., cond(x>2,50,70)) returns . if x is missing,
returns 50 if x > 2, and returns 70 if x <2

If the first argument is a scalar that may contain a missing value or a
variable containing missing values, the fourth argument has an effect.

cond(wage,1,0,.) returns 1 if wage is not zero and not missing
cond(wage,1,0,.) returns O if wage is zero
cond(wage,1,0,.) returns . if wage is missing

Caution: If the first argument to cond() is a logical expression, that is,
cond(x>2,50,70, .), the fourth argument is never reached.

e (name)
Domain: names
Range: strings, scalars, matrices, and missing

Description: returns the value of saved result e (name);
see [U] 18.8 Accessing results calculated by other programs
e (name) = scalar missing if the saved result does not exist
e (name) = specified matrix if the saved result is a matrix
e (name) = scalar numeric value if the saved result is a scalar
e (name) = a string containing the first 244 characters
if the saved result is a string

e(sample)
Range: 0 and 1
Description: returns 1 if the observation is in the estimation sample and O otherwise.

epsdouble ()
Range: a double-precision number close to 0
Description: returns the machine precision of a double-precision number. If d < epsdouble ()
and (double) x = 1, then x + d = (double) 1. This function takes no
arguments, but the parentheses must be included.

functions — Functions 257

epsfloat ()
Range: a floating-point number close to 0
Description: returns the machine precision of a floating-point number. If d < epsfloat ()
and (float) x = 1, then = + d = (float) 1. This function takes no
arguments, but the parentheses must be included.

float(x)
Domain: —1le+38 to le+38
Range: —le+38 to le+38

Description: returns the value of x rounded to float precision.

Although you may store your numeric variables as byte, int, long, float, or
double, Stata converts all numbers to double before performing any calculations.
Consequently, difficulties can arise in comparing numbers that have no finite binary
representation.

For example, if the variable x is stored as a float and contains the value 1.1

(a repeating “decimal” in binary), the expression x==1.1 will evaluate to false
because the literal 1.1 is the double representation of 1.1, which is different from
the £loat representation stored in x. (They differ by 2.384 x 107%.) The
expression x==float(1.1) will evaluate to true because the float () function
converts the literal 1.1 to its float representation before it is compared with x.
(See [U] 13.11 Precision and problems therein for more information.)

fmtwidth (fimtstr)
Range: strings
Description: returns the output length of the %fint contained in fintstr.
returns missing if fintstr does not contain a valid %fint. For example,
fmtwidth("%9.2f") returns 9 and fmtwidth("%tc") returns 18.

has_eprop (name)
Domain: names
Range: Oorl
Description: returns 1 if name appears as a word in e (properties); otherwise, returns O.

inlist(z,a,b,...)
Domain: all reals or all strings
Range: Oorl
Description: returns 1 if z is a member of the remaining arguments; otherwise, returns 0.
All arguments must be reals or all must be strings. The number of
arguments is between 2 and 255 for reals and between 2 and 10 for strings.

inrange(z,a,b)
Domain: all reals or all strings
Range: Oorl

Description: returns 1 if it is known that a < z < b; otherwise, returns 0.
The following ordered rules apply:
z > . returns O.
a>.and b= . returns 1.
a > . returns 1 if 2 < b; otherwise, it returns O.
b > . returns 1 if a < z; otherwise, it returns O.
Otherwise, 1 is returned if a < z < b.
If the arguments are strings, “.” is interpreted as "".

258 functions — Functions

irecode (T ,T1,T9,L3,...,Ty)

Domain z: —8e+307 to 8e+307
Domain z;: —8e+307 to 8e+307
Range: nonnegative integers
Description: returns missing if x is missing or 21, ..., Z, is not weakly increasing.
returns 0 if z < x7.
returns 1 if 21 < x < xo.
returns 2 if xo < x < x3.
returns n if £ > x,.
Also see autocode() and recode() for other styles of recode functions.
irecode(3, -10, -5, -3, -3, 0, 15, .) =5
matrix(exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices; see scalar () function below.
maxbyte ()
Range: one integer number
Description: returns the largest value that can be stored in storage type byte. This function
takes no arguments, but the parentheses must be included.
maxdouble ()
Range: one double-precision number
Description: returns the largest value that can be stored in storage type double. This function
takes no arguments, but the parentheses must be included.
maxfloat ()
Range: one floating-point number
Description: returns the largest value that can be stored in storage type float. This function
takes no arguments, but the parentheses must be included.
maxint ()
Range: one integer number
Description: returns the largest value that can be stored in storage type int. This function
takes no arguments, but the parentheses must be included.
maxlong()
Range: one integer number
Description: returns the largest value that can be stored in storage type long. This function
takes no arguments, but the parentheses must be included.
mi(xy,T2,...,2y,) is a synonym for missing(x),22,...,2,).
minbyte ()
Range: one integer number
Description: returns the smallest value that can be stored in storage type byte. This function
takes no arguments, but the parentheses must be included.
mindouble ()
Range: one double-precision number
Description: returns the smallest value that can be stored in storage type double. This function

takes no arguments, but the parentheses must be included.

functions — Functions 259

minfloat ()
Range:
Description:

minint ()
Range:
Description:

minlong()
Range:
Description:

one floating-point number
returns the smallest value that can be stored in storage type float. This function
takes no arguments, but the parentheses must be included.

one integer number
returns the smallest value that can be stored in storage type int. This function
takes no arguments, but the parentheses must be included.

one integer number
returns the smallest value that can be stored in storage type long. This function
takes no arguments, but the parentheses must be included.

missing(xy,%2,...,Tn)

Domain z;:
Range:
Description:

r (name)
Domain:
Range:
Description:

any string or numeric expression
0 and 1
returns 1 if any z; evaluates to missing; otherwise, returns 0.

Stata has two concepts of missing values: a numeric missing value (., .a, .b,

., .z) and a string missing value (""). missing() returns 1 (meaning true) if
any expression x; evaluates to missing. If z is numeric, missing(x) is equivalent
to x > .. If z is string, missing(x) is equivalent to x=="".

names
strings, scalars, matrices, and missing
returns the value of the saved result r(name);
see [U] 18.8 Accessing results calculated by other programs
r(name) = scalar missing if the saved result does not exist
r (name) = specified matrix if the saved result is a matrix
r (name) = scalar numeric value if the saved result is a scalar
that can be interpreted as a number
r(name) = a string containing the first 244 characters
if the saved result is a string

recode (X ,X1,29,...,Tn)

Domain z:
Domain x1:
Domain zs:

Domain x,,:
Range:
Description:

—8e+307 to 8e+307 and missing
—8e+307 to 8e+307
x1 to 8e+307

T,—1 to 8e+307

i, T2, ..., Ty and missing
returns missing if x1,...,x, is not weakly increasing.
returns x if x is missing.
returns x1 if x < x1; a9 if x < x9, .. .; otherwise,
Ty if & >x, To, ..., Tp_1.

x; > . is interpreted as x; = +00.

Also see autocode() and irecode() for other styles of recode functions.

260 functions — Functions

replay()
Range: integers 0 and 1, meaning false and true, respectively
Description: returns 1 if the first nonblank character of local macro ‘0’ is a comma,
or if ‘0’ is empty. This is a function for use by programmers writing
estimation commands; see [P] ereturn.
return (name)
Domain: names
Range: strings, scalars, matrices, and missing
Description: returns the value of the to-be-saved result r (name);
see [P] return.
return(name) = scalar missing if the saved result does not exist
return(name) = specified matrix if the saved result is a matrix
return(name) = scalar numeric value if the saved result is a scalar
return(name) = a string containing the first 244 characters
if the saved result is a string
s (name)
Domain: names
Range: strings and missing
Description: returns the value of saved result s (name);
see [U] 18.8 Accessing results calculated by other programs
s (name) = . if the saved result does not exist
s (name) = a string containing the first 244 characters
if the saved result is a string
scalar (exp)
Domain: any valid expression
Range: evaluation of exp
Description: restricts name interpretation to scalars and matrices.
Names in expressions can refer to names of variables in the dataset, names of
matrices, or names of scalars. Matrices and scalars can have the same names as
variables in the dataset. If names conflict, Stata assumes that you are referring to the
name of the variable in the dataset.
matrix() and scalar() explicitly state that you are referring to matrices and
scalars. matrix() and scalar() are the same function; scalars and matrices may
not have the same names and so cannot be confused. Typing scalar(x) makes it
clear that you are referring to the scalar or matrix named x and not the variable
named x, should there happen to be a variable of that name.
smallestdouble ()
Range: a double-precision number close to 0
Description: returns the smallest double-precision number greater than zero. If

0 < d < smallestdouble(), then d does not have full double
precision; these are called the denormalized numbers. This function
takes no arguments, but the parentheses must be included.

functions — Functions 261

Date and time functions

Stata’s date and time functions are described with examples in [U] 24 Working with dates and
times and [D] datetime. What follows is a technical description. We use the following notation:

ep %tb business calendar date (days)

et htc encoded datetime (ms. since 01jan1960 00:00:00.000)

eic %tC encoded datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
eq %td encoded date (days since 01jan1960)

ew #Atw encoded weekly date (weeks since 1960w1)

em %tm encoded monthly date (months since 1960m1)

eq #tq encoded quarterly date (quarters since 1960ql)

en, %th encoded half-yearly date (half-years since 1960h1)

ey, hty encoded yearly date (years)

M month, 1-12

D day of month, 1-31

Y year, 0100-9999

h hour, 0-23

m minute, 0-59

S second, 0-59 or 60 if leap seconds
W week number, 1-52

(Q quarter number, 1-4

H half-year number, 1 or 2

The date and time functions, where integer arguments are required, allow noninteger values and use
the floor () of the value.

A Stata date-and-time (%t) variable is recorded as the milliseconds, days, weeks, etc., depending
upon the units from 01jan1960; negative values indicate dates and times before 01jan1960. Allowable
dates and times are those between 01jan0100 and 31dec9999, inclusive, but all functions are based
on the Gregorian calendar, and values do not correspond to historical dates before Friday, 150ct1582.

bofd("cal",eq)
Domain cal: business calendar names and formats
Domain ey: %td as defined by business calendar named cal
Range: as defined by business calendar named cal
Description: returns the e, business date corresponding to egq.

Cdhms(eq,h,m,s)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Domain h: integers O to 23
Domain m: integers 0 to 59
Domain s: reals 0.000 to 60.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers —58,695,840,000,000 to >253,717,919,999,999) and missing
Description: returns the e, datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
corresponding to eq, h, m, s.

262 functions — Functions

Chms (h,m,s)
Domain h:
Domain m:
Domain s:
Range:

Description:

Clock(sy, sz
Domain si:
Domain ss:
Domain Y:
Range:

Description:

clock(sy, Sy [s

Domain s7:
Domain ss:
Domain Y
Range:

Description:

integers 0 to 23

integers 0 to 59

reals 0.000 to 60.999

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999) and missing

returns the e;c datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
corresponding to h, m, s on 01jan1960.

Y

strings

strings

integers 1000 to 9998 (but probably 2001 to 2099)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999) and missing

returns the e;c datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
corresponding to s; based on sy and Y.

Function Clock () works the same as function clock() except that Clock() returns
a leap second—adjusted %tC value rather than an unadjusted %tc value. Use
Clock() only if original time values have been adjusted for leap seconds.

Y]

strings

strings

integers 1000 to 9998 (but probably 2001 to 2099)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999) and missing

returns the e, datetime (ms. since 01jan1960 00:00:00.000) corresponding to
s1 based on s5 and Y.

51 contains the date, time, or both, recorded as a string, in virtually any
format. Months can be spelled out, abbreviated (to three characters), or indicated as
numbers; years can include or exclude the century; blanks and punctuation are allowed.

So is any permutation of M, D, [##]Y, h, m, and s, with their order defining the
order that month, day, year, hour, minute, and second occur (and whether they
occur) in sy. ##, if specified, indicates the default century for two-digit years in s;.
For instance, so = "MD19Y hm" would translate s; = "11/15/91 21:14" as
15n0v1991 21:14. The space in "MD19Y hm" was not significant and the string would
have translated just as well with "MD19Yhm".

Y provides an alternate way of handling two-digit years. Y specifies the largest
year that is to be returned when a two-digit year is encountered; see function date ()
below. If neither ## nor Y is specified, clock() returns missing when it
encounters a two-digit year.

functions — Functions 263

Cmdyhms (M ,D,Y ,h,m,s)

Domain M:
Domain D:
Domain Y:
Domain h:
Domain m:
Domain s:
Range:

Description:

Cofc(es)
Domain ey.:

Range:

Description:

cofC(ei)
Domain e;¢:

Range:

Description:

Cofd(eq)
Domain eg:
Range:

Description:

cofd(ey)
Domain eg:
Range:

Description:

integers 1 to 12

integers 1 to 31

integers 0100 to 9999 (but probably 1800 to 2100)

integers 0 to 23

integers 0 to 59

reals 0.000 to 60.999

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999) and missing

returns the e, datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
corresponding to M, D, Y, h, m, s.

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)

returns the e;c datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
of e;. (ms. without leap seconds since 01jan1960 00:00:00.000).

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

returns the e;. datetime (ms. without leap seconds since 01jan1960 00:00:00.000)
of e;c (ms. with leap seconds since 01jan1960 00:00:00.000).

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)

returns the e;c datetime (ms. with leap seconds since 01jan1960 00:00:00.000)
of date ey at time 00:00:00.000.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

returns the e;. datetime (ms. since 01jan1960 00:00:00.000) of date e4 at time
00:00:00.000.

264 functions — Functions

date(sl,SQ[,Y])
Domain s;: strings
Domain sy: strings
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549) and missing
Description: returns the ey date (days since 01jan1960) corresponding to s; based on s and Y.

51 contains the date, recorded as a string, in virtually any format. Months can
be spelled out, abbreviated (to three characters), or indicated as numbers; years can
include or exclude the century; blanks and punctuation are allowed.

So is any permutation of M, D, and [##]Y, with their order defining the order

that month, day, and year occur in s;. ##, if specified, indicates the default century
for two-digit years in s;. For instance, so = "MD19Y" would translate

s1 = "11/15/91" as 15nov1991.

Y provides an alternate way of handling two-digit years. When a two-digit year
is encountered, the largest year, topyear, that does not exceed Y is returned.

date("1/15/08","MDY",1999) = 15jan1908
date("1/15/08","MDY",2019) = 15jan2008

date("1/15/51","MDY",2000) = 15jan1951
date("1/15/50","MDY",2000) = 15jan1950
date("1/15/49","MDY",2000) = 15jan1949
date("1/15/01","MDY",2050) = 15jan2001
date("1/15/00","MDY",2050) = 15jan2000

If neither ## nor Y is specified, date () returns missing when it encounters
a two-digit year. See Working with two-digit years in [D] datetime translation
for more information.

day(eq)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: integers 1 to 31 and missing

Description: returns the numeric day of the month corresponding to eq.

dhms (eq,h,m,s)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Domain h: integers O to 23
Domain m: integers O to 59
Domain s: reals 0.000 to 59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers —58,695,840,000,000 to 253,717,919,999,999) and missing
Description: returns the e, datetime (ms. since 01jan1960 00:00:00.000) corresponding to
eq, h, m, and s.

dofb(ep,"cal™)
Domain ep: %tb as defined by business calendar named cal
Domain cal: business calendar names and formats
Range: as defined by business calendar named cal
Description: returns the ey datetime corresponding to €.

functions — Functions 265

dofC(ec)

Domain e;c: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

Range:
Description:

dofc(es.)

Domain e;.:

Range:
Description:

dofh(ep)
Domain ey,:
Range:
Description:

dofm(e,,)

Domain e,,:

Range:
Description:

dofq(ey)
Domain eg:
Range:
Description:

dofw(ey)

Domain e,,:

Range:
Description:

dofy(ey)
Domain e,:
Range:
Description:

dow(eq)
Domain eg:
Range:
Description:

doy (eq)
Domain eg:
Range:
Description:

halfyear(eq)
Domain e :
Range:
Description:

(integers —58,695,840,000,000 to >253,717,919,999,999)

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)

returns the ey date (days since 01jan1960) of datetime e;c (ms. with leap
seconds since 01jan1960 00:00:00.000).

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)

returns the ey date (days since 01jan1960) of datetime e;. (ms. since 01jan1960
00:00:00.000).

%th dates 0100h1 to 9999h2 (integers —3,720 to 16,079)
%td dates 01jan0100 to 01jul9999 (integers —679,350 to 2,936,366)
returns the ey date (days since 01jan1960) of the start of half-year e,.

%tm dates 0100m1 to 9999m12 (integers —22,320 to 96,479)
%td dates 01jan0100 to 01dec9999 (integers —679,350 to 2,936,519)
returns the eq4 date (days since 01jan1960) of the start of month e,.

%tq dates 0100q1 to 9999q4 (integers —7,440 to 32,159)
%td dates 01jan0100 to 010ct9999 (integers —679,350 to 2,936,458)
returns the e4 date (days since 01jan1960) of the start of quarter e,.

%tw dates 0100w1 to 9999w52 (integers —96,720 to 418,079)
%td dates 01jan0100 to 24dec9999 (integers —679,350 to 2,936,542)
returns the ey date (days since 01jan1960) of the start of week e,,.

%ty dates 0100 to 9999 (integers 0100 to 9999)
%td dates 01jan0100 to 01jan9999 (integers —679,350 to 2,936,185)
returns the ey date (days since 01jan1960) of Oljan in year e,.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
integers 0 to 6 and missing
returns the numeric day of the week corresponding to date eg;

0 = Sunday, 1 = Monday, ..., 6 = Saturday.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
integers 1 to 366 and missing
returns the numeric day of the year corresponding to date eg.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
integers 1, 2, and missing
returns the numeric half of the year corresponding to date e .

266 functions — Functions

halfyearly(si,sa[,Y |)

Domain sq:
Domain ss:
Domain Y:
Range:

Description:

hh (etc)
Domain e;.:

Range:
Description:

hhC(ese)
Domain e;c:

Range:
Description:

hms (h,m,s)
Domain h:
Domain m:
Domain s:
Range:

Description:

hofd(ey)
Domain eg:
Range:
Description:

hours (ms)
Domain ms:
Range:
Description:

mdy (M ,D,Y)
Domain M:
Domain D:
Domain Y:
Range:
Description:

strings

strings "HY" and "YH"; Y may be prefixed with ##

integers 1000 to 9998 (but probably 2001 to 2099)

%th dates 0100h1 to 9999h2 (integers —3,720 to 16,079) and missing

returns the ep half-yearly date (half-years since 1960h1) corresponding to s; based
on sy and Y; Y specifies ropyear; see date().

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

integers O through 23, missing

returns the hour corresponding to datetime e;. (ms. since 01jan1960 00:00:00.000).

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)

integers O through 23, missing

returns the hour corresponding to datetime e;c (ms. with leap seconds since
01jan1960 00:00:00.000).

integers 0 to 23

integers 0 to 59

reals 0.000 to 59.999

datetimes 01jan1960 00:00:00.000 to 01jan1960 23:59:59.999

(integers 0 to 86,399,999 and missing)

returns the ey, datetime (ms. since 01jan1960 00:00:00.000) corresponding to
h, m, s on 01jan1960.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
%th dates 0100h1 to 9999h2 (integers —3,720 to 16,079)
returns the ep half-yearly date (half years since 1960hl) containing date eq.

real; milliseconds
real and missing
returns ms/3,600,000.

integers 1 to 12

integers 1 to 31

integers 0100 to 9999 (but probably 1800 to 2100)

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549) and missing
returns the ey date (days since 01jan1960) corresponding to M, D, Y.

functions — Functions 267

mdyhms (M ,D,Y ,h,m,s)

Domain M:
Domain D:
Domain Y:
Domain h:
Domain m:
Domain s:
Range:

Description:

minutes(ms)
Domain ms:
Range:
Description:

mm (ey.)
Domain e;.:

Range:
Description:

mmC (e¢c)
Domain e;c:

Range:
Description:

mofd(ey)
Domain eg:
Range:
Description:

month (ey)
Domain eg:
Range:
Description:

integers 1 to 12

integers 1 to 31

integers 0100 to 9999 (but probably 1800 to 2100)

integers 0 to 23

integers 0 to 59

reals 0.000 to 59.999

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999) and missing

returns the e;. datetime (ms. since 01jan1960 00:00:00.000) corresponding to
M, D,Y,h m,s.

real; milliseconds
real and missing
returns ms/60,000.

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to 253,717,919,999,999)

integers 0 through 59, missing

returns the minute corresponding to datetime e;. (ms. since 01jan1960 00:00:00.000).

datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)

integers 0 through 59, missing

returns the minute corresponding to datetime e;c (ms. with leap seconds since
01jan1960 00:00:00.000).

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
%tm dates 0100m1 to 9999m12 (integers —22,320 to 96,479)
returns the e,, monthly date (months since 1960m1) containing date eq.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
integers 1 to 12 and missing
returns the numeric month corresponding to date e .

monthly(sy, s [,Y])

Domain s1:
Domain ss:
Domain Y
Range:

Description:

msofhours (h)
Domain h:
Range:
Description:

strings

strings "MY" and "YM"; Y may be prefixed with ##

integers 1000 to 9998 (but probably 2001 to 2099)

%tm dates 0100m1 to 9999m12 (integers —22,320 to 96,479) and missing

returns the e,, monthly date (months since 1960m1) corresponding to s; based on
so and Y; Y specifies topyear; see date().

real; hours
real and missing; milliseconds
returns h x 3,600,000.

268 functions — Functions

msofminutes(m)
Domain m: real; minutes
Range: real and missing; milliseconds
Description: returns m x 60,000.

msofseconds(s)
Domain s: real; seconds
Range: real and missing; milliseconds
Description: returns s x 1,000.

qgofd(eq)
Domain eg4: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: %tq dates 0100q1 to 9999q4 (integers —7,440 to 32,159)
Description: returns the e, quarterly date (quarters since 1960ql) containing date eg.
quarter(eg)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: integers 1 to 4 and missing

Description: returns the numeric quarter of the year corresponding to date eg.

quarterly(s;,ss [Y])
Domain s;: strings
Domain sp: strings "QY" and "YQ"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %tq dates 0100q1 to 9999q4 (integers —7,440 to 32,159) and missing
Description: returns the e, quarterly date (quarters since 1960ql) corresponding to s; based on
so and Y; Y specifies topyear; see date ().

seconds (ms)
Domain ms: real; milliseconds
Range: real and missing
Description: returns ms / 1,000.

ss(ese)
Domain e;.: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers —58,695,840,000,000 to 253,717,919,999,999)
Range: real 0.000 through 59.999, missing
Description: returns the second corresponding to datetime e;. (ms. since 01jan1960 00:00:00.000).

ssC(eic)
Domain e;c: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers —58,695,840,000,000 to >253,717,919,999,999)
Range: real 0.000 through 60.999, missing
Description: returns the second corresponding to datetime e, (ms. with leap seconds since
01jan1960 00:00:00.000).

tC(D)
Domain /: datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
Range: datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999

(integers —58,695,840,000,000 to >253,717,919,999,999)
Description: convenience function to make typing dates and times in expressions easier;
same as tc (), except returns leap second—adjusted values; for example, typing
tc(29n0v2007 9:15) is equivalent to typing 1511946900000, whereas
tC(29n0v2007 9:15) is 1511946923000.

functions — Functions 269

tc()
Domain I:
Range:

Description:

td (D)
Domain I:
Range:
Description:

th(l)
Domain [:
Range:
Description:

tm(l)
Domain [:
Range:
Description:

tq()
Domain [:
Range:
Description:

tw(l)
Domain [:
Range:
Description:

week(eq)
Domain eg:
Range:
Description:

datetime literal strings 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
datetimes 01jan0100 00:00:00.000 to 31dec9999 23:59:59.999
(integers —58,695,840,000,000 to 253,717,919,999,999)
convenience function to make typing dates and times in expressions easier;
for example, typing tc(2jan1960 13:42) is equivalent to typing 135720000;
the date but not the time may be omitted, and then 01jan1960 is
assumed; the seconds portion of the time may be omitted and
is assumed to be 0.000; tc(11:02) is equivalent to typing 39720000.

date literal strings 01jan0100 to 31dec9999
%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
convenience function to make typing dates in expressions easier;

for example, typing td(2jan1960) is equivalent to typing 1.

half-year literal strings 0100h1 to 9999h2

%th dates 0100h1 to 9999h2 (integers —3,720 to 16,079)

convenience function to make typing half-yearly dates in expressions easier;
for example, typing th(1960h2) is equivalent to typing 1.

month literal strings 0100m1 to 9999m12

%tm dates 0100m1 to 9999m12 (integers —22,320 to 96,479)

convenience function to make typing monthly dates in expressions easier;
for example, typing tm(1960m2) is equivalent to typing 1.

quarter literal strings 0100q1 to 9999q4

%tq dates 0100q1 to 9999g4 (integers —7,440 to 32,159)

convenience function to make typing quarterly dates in expressions easier;
for example, typing tq(1960g2) is equivalent to typing 1.

week literal strings 0100w1 to 9999w52

%tw dates 0100w1 to 9999w52 (integers —96,720 to 418,079)

convenience function to make typing weekly dates in expressions easier;
for example, typing tw(1960w2) is equivalent to typing 1.

%td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
integers 1 to 52 and missing
returns the numeric week of the year corresponding to date eq

(the first week of a year is the first 7-day period of the year).

weekly (s, Ss [Y])

Domain s1:
Domain ss:
Domain Y:
Range:

Description:

strings

strings "WY" and "YW"; Y may be prefixed with ##

integers 1000 to 9998 (but probably 2001 to 2099)

%tw dates 0100w1 to 9999w52 (integers —96,720 to 418,079) and missing

returns the e,, weekly date (weeks since 1960w1) corresponding to s; based on so
and Y; Y specifies topyear; see date ().

270 functions — Functions

wofd(ey)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: %tw dates 0100wl to 9999w52 (integers —96,720 to 418,079)
Description: returns the e,, weekly date (weeks since 1960w1) containing date e,.
year (eq)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: integers 0100 to 9999 (but probably 1800 to 2100)

Description: returns the numeric year corresponding to date eg.

yearly(sy,So [Y])
Domain s;: strings
Domain sp: string "Y"; Y may be prefixed with ##
Domain Y: integers 1000 to 9998 (but probably 2001 to 2099)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999) and missing
Description: returns the e, yearly date (year) corresponding to s, based on sy and Y';
Y specifies topyear; see date().

yh(Y ,H)
Domain Y: integers 1000 to 9999 (but probably 1800 to 2100)
Domain H: integers 1, 2

Range: %th dates 1000h1 to 9999h2 (integers —1,920 to 16,079)
Description: returns the ej half-yearly date (half-years since 1960h1) corresponding to year Y,
half-year H.
ym(Y , M)

Domain Y: integers 1000 to 9999 (but probably 1800 to 2100)
Domain M: integers 1 to 12

Range: %tm dates 1000m1 to 9999m12 (integers —11,520 to 96,479)
Description: returns the e,,, monthly date (months since 1960m1) corresponding to year Y,
month M.
yofd(eq)
Domain eg: %td dates 01jan0100 to 31dec9999 (integers —679,350 to 2,936,549)
Range: %ty dates 0100 to 9999 (integers 0100 to 9999)

Description: returns the e, yearly date (year) containing date e .

ya(Y,Q)
Domain Y: integers 1000 to 9999 (but probably 1800 to 2100)
Domain @): integers 1 to 4

Range: %tq dates 1000q1 to 9999q4 (integers —3,840 to 32,159)
Description: returns the e, quarterly date (quarters since 1960q1) corresponding to year Y,
quarter Q).
yw (Y, W)

Domain Y: integers 1000 to 9999 (but probably 1800 to 2100)

Domain W: integers 1 to 52

Range: %tw dates 1000w1 to 9999w52 (integers —49,920 to 418,079)

Description: returns the e,, weekly date (weeks since 1960w1) corresponding to year Y,
week W.

functions — Functions 271

Selecting time spans

tin(dy,ds)
Domain dj:
Domain ds:
Range:
Description:

date or time literals recorded in units of ¢ previously tsset

date or time literals recorded in units of ¢ previously tsset

0 and 1, 1 = true

true if d; <t < ds, where t is the time variable previously tsset.

You must have previously tsset the data to use tin(); see [TS] tsset. When

you tsset the data, you specify a time variable, ¢, and the format on ¢ states how
it is recorded. You type d; and ds according to that format.

If ¢ has a %tc format, you could type tin(5jan1992 11:15, 14apr2002 12:25).
If ¢ has a %td format, you could type tin(5jan1992, 14apr2002).

If ¢ has a %tw format, you could type tin(1985w1, 2002w15).

If ¢ has a %tm format, you could type tin(1985m1, 2002m4).

If ¢ has a %tq format, you could type tin(1985q1, 2002q2).

If ¢ has a %th format, you could type tin(1985h1, 2002h1).

If ¢ has a %ty format, you could type tin(1985, 2002).

Otherwise, ¢ is just a set of integers, and you could type tin(12, 38).

The details of the %t format do not matter. If your ¢ is formatted %tdnn/dd/yy

so that 5jan1992 displays as 1/5/92, you would still type the date in day—month—year
order: tin(5jan1992, 14apr2002).

twithin(d;,d>)

Domain dj:
Domain ds:
Range:

Description:

date or time literals recorded in units of ¢ previously tsset

date or time literals recorded in units of ¢ previously tsset

0 and 1, 1 = true

true if d; <t < ds, where t is the time variable previously tsset;
see the tin() function above; twithin() is similar, except the range is
exclusive.

Matrix functions returning a matrix

In addition to the functions listed below, see [P] matrix svd for singular value decomposi-
tion, [P] matrix symeigen for eigenvalues and eigenvectors of symmetric matrices, and [P] matrix
eigenvalues for eigenvalues of nonsymmetric matrices.

272 functions — Functions

cholesky (M)
Domain:
Range:
Description:

corr (M)
Domain:
Range:
Description:

diag(v)
Domain:
Range:
Description:

n X n, positive-definite, symmetric matrices

n X n lower-triangular matrices

returns the Cholesky decomposition of the matrix:
if R = cholesky(S), then RRT = S.
RT indicates the transpose of R.
Row and column names are obtained from M.

n X m symmetric variance matrices

n X m symmetric correlation matrices

returns the correlation matrix of the variance matrix.
Row and column names are obtained from M.

1 X n and n X 1 vectors

n X n diagonal matrices

returns the square, diagonal matrix created from the row or column vector.
Row and column names are obtained from the column names of M if M is
a row vector or from the row names of M if M is a column vector.

get (systemname)

Domain:
Range:
Description:

existing names of system matrices
matrices
returns a copy of Stata internal system matrix systemname.

This function is included for backward compatibility with previous versions
of Stata.

hadamard (M, N)

Domain M:
Domain N:
Range:

Description:

I(n)
Domain:
Range:
Description:

inv(M)
Domain:
Range:
Description:

m X m matrices

m X n matrices

m X m matrices

returns a matrix whose ¢, j element is M[i, j] - N[i, 5] (if M and N
are not the same size, this function reports a conformability error).

real scalars 1 to matsize

identity matrices

returns an n X n identity matrix if n is an integer; otherwise, this function returns
the round(n) Xround(n) identity matrix.

n X n nonsingular matrices
n X n matrices
returns the inverse of the matrix M. If M is singular, this will result in an error.

The function invsym() should be used in preference to inv() because invsym()
is more accurate. The row names of the result are obtained from the column
names of M, and the column names of the result are obtained from the row names
of M.

functions — Functions 273

invsym (M)
Domain: n X m symmetric matrices
Range: n X m symmetric matrices

Description: returns the inverse of M if M is positive definite. If M is not positive definite,
rows will be inverted until the diagonal terms are zero or negative; the rows and
columns corresponding to these terms will be set to 0, producing a g2 inverse.
The row names of the result are obtained from the column names of M,
and the column names of the result are obtained from the row names of M.

J(r,c,z)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Domain z: scalars —8e+307 to 8e+307
Range: 7 X ¢ matrices
Description: returns the r X ¢ matrix containing elements z.

matuniform(r,c)
Domain r: integer scalars 1 to matsize
Domain c: integer scalars 1 to matsize
Range: T X C matrices
Description: returns the 7 X ¢ matrices containing uniformly distributed pseudorandom numbers
on the interval [0, 1).

nullmat (matname)
Domain: matrix names, existing and nonexisting
Range: matrices including null if matname does not exist
Description: nullmat () is for use with the row-join (,) and column-join (\) operators in
programming situations. Consider the following code fragment, which is an attempt
to create the vector (1,2,3,4):

forvalues i = 1/4 {
mat v = (v, ‘i’)

}

The above program will not work because, the first time through the loop, v will not
yet exist, and thus forming (v, ¢i’) makes no sense. nullmat () relaxes that
restriction:

forvalues i = 1/4 {
mat v = (nullmat(v), ‘i’)

}

The nullmat () function informs Stata that if v does not exist, the function row-join
is to be generalized. Joining nothing with ‘i’ results in (“i’). Thus the first time
through the loop, v = (1) is formed. The second time through, v does exist, so

v = (1,2) is formed, and so on.

nullmat () can be used only with the , and \ operators.

274 functions — Functions

sweep(M ,1)
Domain M: n X n matrices
Domain 4: integer scalars 1 to n
Range: 7 X 1 matrices
Description: returns matrix M with ith row/column swept. The row and column names of the
resultant matrix are obtained from M, except that the nth row and column
names are interchanged. If B = sweep(A,k), then

1
Bip = —
Agk
A,
B, = ——— £ k
ik Ak}k) 1 7&
Ap;
B = =L, k
T Agg a
A A ,
Bij:AZJ_ A j’ #km]#k
kk
vec (M)
Domain: matrices
Range: column vectors (n X 1 matrices)

Description: returns a column vector formed by listing the elements of M, starting
with the first column and proceeding column by column.

vecdiag (M)
Domain: 7 X n matrices
Range: 1 X n vectors

Description: returns the row vector containing the diagonal of matrix M.
vecdiag() is the opposite of diag(). The row name is
set to r1; the column names are obtained from the column names of M.

Matrix functions returning a scalar

colnumb (M ,s)
Domain M: matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the column number of M associated with column name s.
returns missing if the column cannot be found.

colsof (M)
Domain: matrices
Range: integer scalars 1 to matsize

Description: returns the number of columns of M.

det (M)
Domain: n X n (square) matrices
Range: scalars —8e+307 to 8e+307

Description: returns the determinant of matrix M.

functions — Functions 275

diagOcnt (M)
Domain: n X n (square) matrices
Range: integer scalars 0 to n

Description: returns the number of zeros on the diagonal of M.

el(s,%,7)
Domain s: strings containing matrix name
Domain 7: scalars 1 to matsize
Domain j: scalars 1 to matsize
Range: scalars —8e+307 to 8e+307 and missing
Description: returns s[floor (i) ,floor(j)], the 7, element of the matrix named s.
returns missing if ¢ or j are out of range or if matrix s does not exist.

issymmetric (M)
Domain M: matrices
Range: integers 0 and 1
Description: returns 1 if the matrix is symmetric; otherwise, returns 0.

matmissing (M)
Domain M: matrices
Range: integers 0 and 1
Description: returns 1 if any elements of the matrix are missing; otherwise, returns O.

mreldif (X ,Y)
Domain X: matrices
Domain Y: matrices with same number of rows and columns as X
Range: scalars —8e+307 to 8e+307
Description: returns the relative difference of X and Y, where the relative difference is
defined as max; ; (|zi; — yiz|/(|yiz| +1))-

rownumb (M, s)
Domain M: matrices
Domain s: strings
Range: integer scalars 1 to matsize and missing
Description: returns the row number of M associated with row name s.
returns missing if the row cannot be found.

rowsof (M)
Domain: matrices
Range: integer scalars 1 to matsize
Description: returns the number of rows of M.
trace (M)
Domain: n X n (square) matrices
Range: scalars —8e+307 to 8e+307

Description: returns the trace of matrix M.

Acknowledgments

We thank George Marsaglia of Florida State University for providing his KISS (keep it simple
stupid) random-number generator.

We thank John R. Gleason of Syracuse University (retired) for directing our attention to
Wichura (1988) for calculating the cumulative normal density accurately, for sharing his experi-
ences about techniques with us, and for providing C code to make the calculations.

276 functions — Functions

Jacques Salomon Hadamard (1865-1963) was born in Versailles, France. He studied at the Ecole
Normale Supérieure in Paris and obtained a doctorate in 1892 for a thesis on functions defined by
Taylor series. Hadamard taught at Bordeaux for 4 years and in a productive period published an
outstanding theorem on prime numbers, proved independently by Charles de la Vallée Poussin,
and worked on what are now called Hadamard matrices. In 1897, he returned to Paris, where he
held a series of prominent posts. In his later career, his interests extended from pure mathematics
toward mathematical physics. Hadamard produced papers and books in many different areas. He
campaigned actively against anti-Semitism at the time of the Dreyfus affair. After the fall of
France in 1940, he spent some time in the United States and then Great Britain.

References

Abramowitz, M., and I. A. Stegun, ed. 1968. Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. 7th ed. Washington, DC: National Bureau of Standards.

Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson, and binomial
distributions. Computing 12: 223-246.

Atkinson, A. C., and J. Whittaker. 1970. Algorithm AS 134: The generation of beta random variables with one
parameter greater than and one parameter less than 1. Applied Statistics 28: 90-93.

——. 1976. A switching algorithm for the generation of beta random variables with at least one parameter less than
1. Journal of the Royal Statistical Society, Series A 139: 462-467.

Best, D. J. 1983. A note on gamma variate generators with shape parameters less than unity. Computing 30: 185-188.
Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446-447.

——. 2004. Stata tip 6: Inserting awkward characters in the plot. Stata Journal 4: 95-96.

Devroye, L. 1986. Non-uniform Random Variate Generation. New York: Springer.

Gentle, J. E. 2003. Random Number Generation and Monte Carlo Methods. 2nd ed. New York: Springer.

Haynam, G. E., Z. Govindarajulu, and F. C. Leone. 1970. Tables of the cumulative noncentral chi-square distribution.
In Vol. 1 of Selected Tables in Mathematical Statistics, ed. H. L. Harter and D. B. Owen, 1-78. Providence, RI:
American Mathematical Society.

Hilbe, J. M. 2010. Creating synthetic discrete-response regression models. Stata Journal 10: 104-124.

Hilbe, J. M., and W. Linde-Zwirble. 1995. sg44: Random number generators. Stata Technical Bulletin 28: 20-21.
Reprinted in Stata Technical Bulletin Reprints, vol. 5, pp. 118-121. College Station, TX: Stata Press.

——. 1998. sg44.1: Correction to random number generators. Stata Technical Bulletin 41: 23. Reprinted in Stata
Technical Bulletin Reprints, vol. 7, p. 166. College Station, TX: Stata Press.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1995. Continuous Univariate Distributions, Vol. 2. 2nd ed. New York:
Wiley.

Kachitvichyanukul, V. 1982. Computer Generation of Poisson, Binomial, and Hypergeometric Random Variables. PhD
thesis, Purdue University.

Kachitvichyanukul, V., and B. W. Schmeiser. 1985. Computer generation of hypergeometric random variates. Journal
of Statistical Computation and Simulation 22: 127-145.

—— 1988. Binomial random variate generation. Communications of the Association for Computing Machinery 31:
216-222.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond() function. Stata Journal 5:
413-420.

Kemp, A. W,, and C. D. Kemp. 1990. A composition-search algorithm for low-parameter Poisson generation. Journal
of Statistical Computation and Simulation 35: 239-244.

Kemp, C. D. 1986. A modal method for generating binomial variates. Communications in Statistics, Theory and
Methods 15: 805-813.

Kemp, C. D., and A. W. Kemp. 1991. Poisson random variate generation. Applied Statistics 40: 143-158.

http://www.stata-journal.com/sjpdf.html?articlenum=dm0002
http://www.stata-journal.com/sjpdf.html?articlenum=dm0006
http://www.stata-journal.com/sjpdf.html?articlenum=st0186
http://www.stata.com/products/stb/journals/stb28.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=pr0016

functions — Functions 277

Kinderman, A. J., and J. F. Monahan. 1977. Computer generation of random variables using the ratio of uniform
deviates. ACM Transactions on Mathematical Software 3: 257-260.

——. 1980. New methods for generating Student’s t and gamma variables. Computing 25: 369-377.

Knuth, D. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd ed. Reading, MA:
Addison—Wesley.

Lukdacsy, K. 2011. Generating random samples from user-defined distributions. Stata Journal 11: 299-304.

Marsaglia, G., M. D. MacLaren, and T. A. Bray. 1964. A fast procedure for generating normal random variables.
Communications of the Association for Computing Machinery 7: 4-10.

Mazya, V., and T. Shaposhnikova. 1998. Jacques Hadamard, A Universal mathematician. Providence, RI: American
Mathematical Society.

Miller, R. G., Jr. 1981. Simultaneous Statistical Inference. 2nd ed. New York: Springer.
Moore, R. J. 1982. Algorithm AS 187: Derivatives of the incomplete gamma integral. Applied Statistics 31: 330-335.
Oldham, K. B., J. C. Myland, and J. Spanier. 2009. An Atlas of Functions. 2nd ed. New York: Springer.

Posten, H. O. 1993. An effective algorithm for the noncentral beta distribution function. American Statistician 47:
129-131.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 2007. Numerical Recipes in C: The Art of
Scientific Computing. 3rd ed. Cambridge: Cambridge University Press.

Rising, B. 2010. Stata tip 86: The missing() function. Stata Journal 10: 303-304.

Schmeiser, B. W., and A. J. G. Babu. 1980. Beta variate generation via exponential majorizing functions. Operations
Research 28: 917-926.

Schmeiser, B. W., and R. Lal. 1980. Squeeze methods for generating gamma variates. Journal of the American
Statistical Association 75: 679-682.

Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM
Transactions on Mathematical Software 3: 253-256.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640-642.

Wichura, M. J. 1988. Algorithm AS241: The percentage points of the normal distribution. Applied Statistics 37:
477-484.

Also see

[D] egen — Extensions to generate
[M-5] intro — Mata functions

[U] 13.3 Functions

[U] 14.8 Matrix functions

http://www.stata-journal.com/article.html?article=st0229
http://www.stata-journal.com/sjpdf.html?articlenum=dm0049
http://www.stata-journal.com/article.html?article=st0181

Title

generate — Create or change contents of variable

Syntax
Create new variable

generate [type} newvar[:lblname] =exp [zf] [m]

Replace contents of existing variable

replace oldvar =exp [zf} [in] [, @romote}

Specity default storage type assigned to new variables

set type { float | double } [, permanently]

where type is one of byte | int | long | float | double | str | strl | str2 | ... | str244.

See Description below for an explanation of str. For the other types, see [U] 12 Data.

by is allowed with generate and replace; see [D] by.

Menu
generate

Data > Create or change data > Create new variable

replace

Data > Create or change data > Change contents of variable

Description

generate creates a new variable. The values of the variable are specified by =exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a
string variable is created if the result is a string. In the latter case, a str# variable is created, where
is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a str# variable is created, where # is the smallest string
that will hold the result.

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by
generate) when the storage type is not explicitly specified.

278

generate — Create or change contents of variable 279

Options

nopromote prevents replace from promoting the variable type to accommodate the change. For
instance, consider a variable stored as an integer type (byte, int, or long), and assume that
you replace some values with nonintegers. By default, replace changes the variable type to a
floating point (float or double) and thus correctly stores the changed values. Similarly, replace
promotes byte and int variables to longer integers (int and long) if the replacement value is an
integer but is too large in absolute value for the current storage type. replace promotes strings
to longer strings. nopromote prevents replace from doing this; instead, the replacement values
are truncated to fit into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

Remarks

Remarks are presented under the following headings:

generate and replace
set type

generate and replace

generate and replace are used to create new variables and to modify the contents of existing
variables, respectively. Although the commands do the same thing, they have different names so that
you do not accidentally replace values in your data. Detailed descriptions of expressions are given in
[U] 13 Functions and expressions.

Also see [D] edit.

> Example 1

We have a dataset containing the variable age2, which we have previously defined as age~2 (that
is, age?). We have changed some of the age data and now want to correct age2 to reflect the new
values:

. use http://www.stata-press.com/data/r12/genxmpll
(Wages of women)

. generate age2=age”2

age2 already defined

r(110);

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We
could drop age2 and then re-generate it, or we could use the replace command:

. replace age2=age”2
(204 real changes made)

When we use replace, we are informed of the number of actual changes made to the dataset.

4

You can explicitly specify the storage type of the new variable being created by putting the fype,
such as byte, int, long, float, double, or str8, in front of the variable name. For example,
you could type generate double revenue = qty * price. Not specifying a type is equivalent
to specifying float if the variable is numeric, or, more correctly, it is equivalent to specifying the
default type set by the set type command; see below. If the variable is alphanumeric, not specifying
a type is equivalent to specifying str#, where # is the length of the largest string in the variable.

280 generate — Create or change contents of variable

You may also specify a value label to be associated with the new variable by including “: lblname”
after the variable name. This is seldom done because you can always associate the value label later
by using the label values command; see [U] 12.6.3 Value labels.

> Example 2

Among the variables in our dataset is name, which contains the first and last name of each person.
We wish to create a new variable called 1astname, which we will then use to sort the data. name is
a string variable.

. use http://www.stata-press.com/data/r12/genxmpl2, clear

. list name

name

Johanna Roman
Dawn Mikulin
Malinda Vela

Kevin Crow
Zachary Bimslager

g WN e

. generate lastname=word(name,2)
. describe

Contains data from http://www.stata-press.com/data/r12/genxmpl2.dta

obs: 5
vars: 2 18 Jan 2011 12:24
size: 130
storage display value
variable name type format label variable label
name stri7 417s
lastname str9 %9s
Sorted by:

Note: dataset has changed since last saved

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata
knew to create a str9 lastname variable, because the longest last name is Bimslager, which has
nine characters.

N

> Example 3

We wish to create a new variable, age2, that represents the variable age squared. We realize that
because age is an integer, age2 will also be an integer and will certainly be less than 32,740. We
therefore decide to store age2 as an int to conserve memory:

generate — Create or change contents of variable 281

. use http://www.stata-press.com/data/r12/genxmpl3, clear

. generate int age2=age~”2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating
the new variable, Stata informed us that nine missing values were generated. generate informs us
whenever it produces missing values.

4

See [U] 13 Functions and expressions and [U] 25 Working with categorical data and factor
variables for more information and examples. Also see [D] recode for a convenient way to recode
categorical variables.

Q Technical note

If you specify the if modifier or in range, the =exp is evaluated only for those observations that
meet the specified condition or are in the specified range (or both, if both if and in are specified).
The other observations of the new variable are set to missing:

. use http://www.stata-press.com/data/r12/genxmpl3, clear

. generate int age2=age”2 if age>30
(290 missing values generated)

> Example 4

replace can be used to change just one value, as well as to make sweeping changes to our data.
For instance, say that we enter data on the first five odd and even positive integers and then discover
that we made a mistake:

. use http://www.stata-press.com/data/r12/genxmpl4, clear
. list

1 1 2
2 3 4
3 -8 6
4 7 8
5 9 10

The third observation is wrong; the value of odd should be 5, not —8. We can use replace to
correct the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

282 generate — Create or change contents of variable

set type

When you create a new numeric variable and do not specify the storage type for it, say, by typing
generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would
be made a double.

Methods and formulas

You can do anything with replace that you can do with generate. The only difference between
the commands is that replace requires that the variable already exist, whereas generate requires
that the variable be new. In fact, inside Stata, generate and replace have the same code. Because
Stata is an interactive system, we force a distinction between replacing existing values and generating
new ones so that you do not accidentally replace valuable data while thinking that you are creating
a new piece of information.

References

Gleason, J. R. 1997a. dm50: Defining variables and recording their definitions. Stata Technical Bulletin 40: 9-10.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 48-49. College Station, TX: Stata Press.

——. 1997b. dm50.1: Update to defv. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, pp. 14-15. College Station, TX: Stata Press.

Newson, R. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484-485.

Weesie, J. 1997. dm43: Automatic recording of definitions. Stata Technical Bulletin 35: 6-7. Reprinted in Stata
Technical Bulletin Reprints, vol. 6, pp. 18-20. College Station, TX: Stata Press.

Also see
[D] compress — Compress data in memory
[D] rename — Rename variable
[D] corr2data — Create dataset with specified correlation structure
[D] drawnorm — Draw sample from multivariate normal distribution
[D] edit — Browse or edit data with Data Editor
[D] egen — Extensions to generate
[D] encode — Encode string into numeric and vice versa
[D] label — Manipulate labels
[D] recode — Recode categorical variables
[U] 12 Data

[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb40.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0008
http://www.stata.com/products/stb/journals/stb35.pdf

Title

gsort — Ascending and descending sort

Syntax

gsort [+|-] varname [[+|-] varname ...] [, generate(newvar) mfirst]

Menu

Data > Sort > Ascending and descending sort

Description
gsort arranges observations to be in ascending or descending order of the specified variables and
so differs from sort in that sort produces ascending-order arrangements only; see [D] sort.
Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the
name and are placed in descending order if - is typed.

Options

generate (newvar) creates newvar containing 1, 2, 3, ... for each group denoted by the ordered
data. This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist:
construct and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks

gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general
varlist with gsort. For instance, sort alpha-gamma means to sort the data in ascending order of
alpha, within equal values of alpha; sort on the next variable in the dataset (presumably beta),
within equal values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort
alpha -gamma, meaning to sort the data in ascending order of alpha and, within equal values of
alpha, in descending order of gamma.

> Example 1

The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10
lowest-priced cars in the data, we might type

. use http://www.stata-press.com/data/r12/auto
. gsort price

. list make price in 1/10

283

284 gsort — Ascending and descending sort

or, if we prefer,

. gsort +price

. list make price in 1/10

To list the 10 highest-priced cars in the data, we could type

. gsort -price

. list make price in 1/10

gsort can also be used with string variables. To list all the makes in reverse alphabetical order,
we might type
. gsort -make

. list make

> Example 2

gsort can be used with multiple variables. Given a dataset on hospital patients with multiple
observations per patient, typing

. use http://www.stata-press.com/data/r12/bp3
. gsort id time

. list id time bp

lists each patient’s blood pressures in the order the measurements were taken. If we typed

. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Q Technical note

Say that we wished to attach to each patient’s records the lowest and highest blood pressures
observed during the hospital stay. The easier way to achieve this result is with egen’s min() and
max () functions:

. egen lo_bp = min(bp), by(id)
. egen hi_bp = max(bp), by(id)

See [D] egen. Here is how we could do it with gsort:

. use http://www.stata-press.com/data/r12/bp3, clear
. gsort id bp
. by id: gen lo_bp = bp[1]
. gsort id -bp
. by id: gen hi_bp = bp[1]
. list, sepby(id)
This works, even in the presence of missing values of bp, because such missing values are placed

last within arrangements, regardless of the direction of the sort.
a

gsort — Ascending and descending sort 285

Q Technical note

Assume that we have a dataset containing x for which we wish to obtain the forward and reverse
cumulatives. The forward cumulative is defined as F'(X) = the fraction of observations such that
x < X. Again let’s ignore the easier way to obtain the forward cumulative, which would be to use
Stata’s cumul command,

. set obs 100

. generate x = rnormal()
. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x
. by x: gen cum = _N if _n==
. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort.
Next, for each observed value of x, we generated cum containing the number of observations that
take on that value (you can think of this as the discrete density). We summed the density, obtaining
the distribution, and finally normalized it to sum to 1.

The reverse cumulative G(X) is defined as the fraction of data such that x > X. To obtain this,
we could try simply reversing the sort:
. gsort -x
. by x: gen rcum = _N if _n==
. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second
line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To
remedy this problem, gsort’s generate() option will create a new grouping variable that is in
ascending order (thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines,
identical to that of the true sort variables:

. gsort -x, gen(revx)

. by revx: gen rcum = _N if _n==1

. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Methods and formulas

gsort is implemented as an ado-file.

Also see
[D] sort — Sort data

Title

hexdump — Display hexadecimal report on file

Syntax

hexdump filename [, options]

options Description

analyze display a report on the dump rather than the dump itself

tabulate display a full tabulation of the ASCII characters in the analyze report

noextended do not display printable extended ASCII characters

results save results containing the frequency with which each character code was

observed; programmer’s option

from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)

to(#) dump or analyze last byte of the file; default is to continue to the end of the file
Description

hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Options
analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of the ASCII characters also be
presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in
the range 161-254 or, equivalently, Oxal—Oxfe. (hexdump does not display characters 128—160

and 255.)
results is for programmers. It specifies that, in addition to other saved results, hexdump save r (c0),
r(cl), ..., r(c255), containing the frequency with which each character code was observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the
first byte of the file, from(0).

to (#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the
end of the file.

Remarks

hexdump is useful when you are having difficulty reading a file with infile, infix, or insheet.
Sometimes, the reason for the difficulty is that the file does not contain what you think it contains,
or that it does contain the format you have been told, and looking at the file in text mode is either
not possible or not revealing enough.

286

hexdump — Display hexadecimal report on file 287

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 0
Buick Regal 5189 20 3 O
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . O
Merc. Zephyr 3291 20 3 O
0lds Starfire 4195 24 1 O
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef 0123456789abcdef

0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 310a 5657 | 589 35 5 1.VW
20 | 2053 6369 726f 6363 6£20 2020 2036 3835 Scirocco 685
30 | 3020 2032 3520 2034 2020 310a 4d65 7263 [0 25 4 1.Merc

40 | 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 | 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 | 5265 6761 6c20 2020 2035 3138 3920 2032 | Regal 5189 2
70 | 3020 2033 2020 300a 5657 2044 6965 7365 [0 3 0.VW Diese

80 | 6c20 2020 2020 2035 3339 3720 2034 3120 | 1 5397 41

90 | 2035 2020 310a 506f 6e74 2e20 5068 6£65 5 1.Pont. Phoe
a0 | 6e69 7820 2034 3432 3420 2031 3920 202e | nix 4424 19

b0 | 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

cO | 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 | 300a 4f6c 6473 2053 7461 7266 6972 6520 | 0.0lds Starfire
e0 | 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
£0 | 4244 5720 3332 3069 2020 2020 2020 2039 | BMW 320i 9
100 | 3733 3520 2032 3520 2034 2020 310a 735 26 4 1.

288 hexdump — Display hexadecimal report on file

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary O 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 7
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270

Observed were:
\n blank . 01 23456789BDMOPRSVWZabcdefghikl
noprstuxy

Of the two forms of output, the second is often the more useful because it summarizes the file, and
the length of the summary is not a function of the length of the file. Here is the summary for a file
that is just over 4 MB long:

. hexdump bigfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EQF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary O 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196

Observed were:
\n \r blank . 012345678 9BDMOPRSVWZabcdefghi
klnoprstuxy

hexdump — Display hexadecimal report on file 289

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196

Observed were:
\0O °C "D "G\n\r 'Ublank & . 01 23456789BDEMOPRSUVW
Zabcdefghiklnoprstuvzxyl}~EAECETIEWME'P
€ é 6 255
In the above, the line length varies between 30 and 90 (we were told that each line would be 30
characters long). Also the file contains what hexdump, analyze labeled control characters. Finally,
hexdump, analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and
substituting 60 characters of binary junk. We would defy you to find the problem without using
hexdump, analyze. You would succeed, but only after much work. Remember, this file has 147,456
lines, and only two of them are bad. If you print 1,000 lines at random from the file, your chances
of listing the bad part are only 0.013472. To have a 50% chance of finding the bad lines, you would
have to list 52,000 lines, which is to say, review about 945 pages of output. On those 945 pages,
each line would need to be drawn at random. More likely, you would list lines in groups, and that
would greatly reduce your chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw
by using infile, it would complain, and here it would tell you exactly where it was complaining.
Still, at that point you might wonder whether the problem was with how you were using infile or
with the data. Moreover, our 60 bytes of binary junk experiment corresponds to transmission error.
If the problem were instead that the person who constructed the file constructed two of the lines
differently, infile might not complain, but later you would notice some odd values in your data
(because obviously you would review the summary statistics, right?). Here hexdump, analyze might
be the only way you could prove to yourself and others that the raw data need to be reconstructed.

290 hexdump — Display hexadecimal report on file

Q Technical note

In the full hexadecimal dump,

. hexdump myfile.raw

character

hex representation representation

address 01 23 45 67 89 ab cd e f | 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4

10 | 3538 3920 2033 3520 2035 2020 310d 0ab56 | 589 35 5 1..V

20 | 5720 5363 6972 6£63 636f 2020 2020 3638 | W Scirocco 68

30 | 3530 2020 3235 2020 3420 2031 0dOa 4d65 | 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means

decimal 32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*
160 2020 2020 2020 0ab6 5720 5363 6972 6£63 .VW Sciroc
170 | 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25
(output omitted)

The * in the address field indicates that

address 160 (decimal 352).

the previous line is repeated until we get to hexadecimal

a

hexdump — Display hexadecimal report on file

291

Saved results

hexdump, analyze and hexdump, results save the following in r():

Scalars
r (Windows)
r(Mac)
r(Unix)
r(blank)
r(tab)
r (comma)
r(ctl)
r(uc)
r(lc)
r(digit)
r(special)
r(extended)
r(filesize)
r(1lmin)
r(1lmax)
r (1num)
r(eoleof)
r(11)
r(12)
r(13)
r(14)
r(15)
r(c0)
r(cl)
r(c2)

£ (c255)

Macros
r(format)

Also see

number of \r\n

number of \r by itself

number of \n by itself

number of blanks

number of tab characters

number of comma (,) characters

number of binary Os; A-Z, excluding \r, \n, \t; DELs; and 128-159, 255
number of A-Z

number of a-z

number of 0-9

number of printable special characters (!@#, etc.)
number of printable extended characters (160—254)
number of characters

minimum line length

maximum line length

number of lines

1 if EOL at EOF, 0 otherwise

length of 1st line

length of 2nd line

length of 3rd line

length of 4th line

length of 5th line

number of binary Os (results only)

number of binary 1s ("A) (results only)
number of binary 2s ("B) (results only)

number of binary 255s (results only)

ASCII, EXTENDED ASCII, or BINARY

[D] filefilter — Convert text or binary patterns in a file

[D] type — Display contents of a file

Title

icd9 — ICD-9-CM diagnostic and procedure codes

Syntax
Verify that variable contains defined codes

{icd9|icd9p} check varname |, any list generate(newvar) |

Verify and clean variable

{icd9|icd9p} clean varname |, dots pad|

Generate new variable from existing variable
{icd9|icd9p} generate newvar = varname , main
{icd9|icd9p} generate newvar = varname , description [long end |

{icd9|icd9p} generate newvar = varname , range (icd9rangelist)

Display code descriptions

{icd9|icd9p} lookup icd9rangelist

Search for codes from descriptions

{icd9|icd9p} search ["]text["] [[“]text["] } [, or]

Display ICD-9 code source
{icd9|icd9p} query

where icd9rangelist is

icd9code (the particular code)
icd9code* (all codes starting with)
icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 Ex 018.02. icd9codes must be typed with
leading zeros: 1 is an error; type 001 (diagnostic code) or 01 (procedure code).

icd9 is for use with ICD-9 diagnostic codes, and icd9p is for use with procedure codes. The two commands’ syntaxes
parallel each other.

292

icd9 — ICD-9-CM diagnostic and procedure codes 293

Menu
{icd9 |icd9p} check
Data > Other utilities > ICD9 utilities > Verify variable is valid

{icd9 |icd9p} clean
Data > Other utilities > ICD9 utilities > Clean and verify variable

{icd9 |icd9p} generate

Data > Other utilities > ICD9 utilities > Generate new variable from existing

{icd9 |icd9p} lookup
Data > Other utilites > ICD9 utilities > Display code descriptions

{icd9|icd9p} search

Data > Other utilities > ICD9 utilities > Search for codes from descriptions

{icd9 |icd9p} query
Data > Other utilities > ICD9 utilities > Display ICD-9 code source

Description

icd9 and icd9p help when working with ICD-9-CM codes.

ICD-9 codes come in two forms: diagnostic codes and procedure codes. In this system, 001 (cholera)
and 941.45 (deep 3rd deg burn nose) are examples of diagnostic codes, although some people write (and
datasets record) 94145 rather than 941.45. Also, 01 (incise-excis brain/skull) and 55.01 (nephrotomy)
are examples of procedure codes, although some people write 5501 rather than 55.01. icd9 and
icd9p understand both ways of recording codes.

Important note: What constitutes a valid ICD-9 code changes over time. For the rest of this entry,
a defined code is any code that is either currently valid, was valid at some point since version V16
(effective October 1, 1998), or has meaning as a grouping of codes. Some examples would help. The
diagnosis code 001, though not valid on its own, is useful because it denotes cholera. It is kept as
a defined code whose description ends with an asterisk (*). The diagnosis code 645.01 was deleted
between versions V16 and V18. It remains as a defined code, and its description ends with a hash
mark (#).

icd9 and icd9p parallel each other; icd9 is for use with diagnostic codes, and icd9p is for use
with procedure codes.

icd9[p] check verifies that existing variable varname contains defined ICD-9 codes. If not, icd9[p]
check provides a full report on the problems. icd9[p] check is useful for tracking down problems
when any of the other icd9[p] commands tell you that the “variable does not contain ICD-9 codes”.
icd9[p] check verifies that each recorded code actually exists in the defined code list.

icd9[p] clean also verifies that existing variable varname contains valid ICD-9 codes, and, if it
does, icd9[p] clean modifies the variable to contain the codes in either of two standard formats.
All icd9[p] commands work equally well with cleaned or uncleaned codes. There are many ways
of writing the same ICD-9 code, and icd9[p] clean is designed to ensure consistency and to make
subsequent output look better.

294 icd9 — ICD-9-CM diagnostic and procedure codes

icd9[p] generate produces new variables based on existing variables containing (cleaned or
uncleaned) ICD-9 codes. icd9[p] generate, main produces newvar containing the main code.
icd9[p| generate, description produces newvar containing a textual description of the ICD-9
code. icd9[p] generate, range() produces numeric newvar containing 1 if varname records an
ICD-9 code in the range listed and O otherwise.

icd9[p| lookup and icd9[p] search are utility routines that are useful interactively. icd9[p]
lookup simply displays descriptions of the codes specified on the command line, so to find out what
diagnostic E913.1 means, you can type icd9 lookup €913.1. The data that you have in memory
are irrelevant—and remain unchanged—when you use icd9[p| lookup. icd9[p] search is similar
to icd9[p] lookup, except that it turns the problem around; icd9[p] search looks for relevant ICD-9
codes from the description given on the command line. For instance, you could type icd9 search
liver or icd9p search liver to obtain a list of codes containing the word “liver”.

icd9[p] query displays the identity of the source from which the ICD-9 codes were obtained and
the textual description that icd9[p] uses.

ICD-9 codes are commonly written in two ways: with and without periods. For instance, with
diagnostic codes, you can write 001, 86221, E8008, and V822, or you can write 001., 862.21, ES00.8,
and V82.2. With procedure codes, you can write 01, 50, 502, and 5021, or 01., 50., 50.2, and 50.21.
The icd9[p] command does not care which syntax you use or even whether you are consistent. Case
also is irrelevant: v822, v82.2, V822, and V82.2 are all equivalent. Codes may be recorded with or
without leading and trailing blanks.

icd9[p] works with V29, V28, V27, V26, V25, V24, V22, V21, V19, V18, and V16 codes.

Options for icd9[p] check

any tells icd9[p| check to verify that the codes fit the format of ICD-9 codes but not to check whether
the codes are actually defined. This makes icd9[p] check run faster. For instance, diagnostic code
230.52 (or 23052, if you prefer) looks valid, but there is no such ICD-9 code. Without the any
option, 230.52 would be flagged as an error. With any, 230.52 is not an error.

list reports any invalid codes that were found in the data by icd9[p| check. For example, 1, 1.1.1,
and perhaps 230.52, if any is not specified, are to be individually listed.

generate (newvar) specifies that icd9[p] check create new variable newvar containing, for each
observation, O if the code is defined and a number from 1 to 10 otherwise. The positive numbers
indicate the kind of problem and correspond to the listing produced by icd9[p] check. For instance,
10 means that the code could be valid, but it turns out not to be on the list of defined codes.

Options for icd9(p] clean

dots specifies whether periods are to be included in the final format. Do you want the diagnostic
codes recorded, for instance, as 86221 or 862.21? Without the dots option, the 86221 format
would be used. With the dots option, the 862.21 format would be used.

pad specifies that the codes are to be padded with spaces, front and back, to make the codes line up
vertically in listings. Specifying pad makes the resulting codes look better when used with most
other Stata commands.

icd9 — ICD-9-CM diagnostic and procedure codes 295

Options for icd9[p] generate

main, description, and range (icd9rangelist) specify what icd9[p| generate is to calculate.
varname always specifies a variable containing ICD-9 codes.

main specifies that the main code be extracted from the ICD-9 code. For procedure codes, the main
code is the first two characters. For diagnostic codes, the main code is usually the first three
or four characters (the characters before the dot if the code has dots). In any case, icd9[p]
generate does not care whether the code is padded with blanks in front or how strangely
it might be written; icd9[p] generate will find the main code and extract it. The resulting
variable is itself an ICD-9 code and may be used with the other icd9[p] subcommands. This
includes icd9[p] generate, main.

description creates newvar containing descriptions of the ICD-9 codes.

long is for use with description. It specifies that the new variable, in addition to containing
the text describing the code, contain the code, too. Without long, newvar in an observation
might contain “bronchus injury-closed”. With long, it would contain “862.21 bronchus
injury-closed”.

end modifies long (specifying end implies long) and places the code at the end of the
string: “bronchus injury-closed 862.21.

range (icd9rangelist) allows you to create indicator variables equal to 1 when the ICD-9 code is
in the inclusive range specified.

Option for icd9|p] search

or specifies that ICD-9 codes be searched for entries that contain any word specified after icd9|p]
search. The default is to list only entries that contain all the words specified.

Remarks

Let’s begin with the diagnostic codes that icd9 processes. The format of an ICD-9 diagnostic code
is

[blanks |{0-9,V.v}{0-9}{0-9}[.][0--9[0--9] | [blanks |

> [blanks | {E.e}{0-9}{0-9}{0-9}[.][0--9][blanks]

icd9 can deal with ICD-9 diagnostic codes written in any of the ways that this format allows.
Items in square brackets are optional. The code might start with some number of blanks. Braces, { }
indicate required items. The code then has a digit from 0 to 9, the letter V (uppercase or lowercase,
first line), or the letter E (uppercase or lowercase, second line). After that, it has two or more digits,
perhaps followed by a period, and then it may have up to two more digits (perhaps followed by more
blanks).

296 icd9 — ICD-9-CM diagnostic and procedure codes

All the following codes meet the above definition:

001
001.
001
001.9
0019
86222
862.22
E800.2
e8002
V82
v82.2
V822

Meeting the above definition does not make the code valid. There are 133,100 possible codes meeting
the above definition, of which fewer than 20,000 are currently defined.

Examples of currently defined diagnostic codes include

Code Description

001 cholera*

001.0 cholera d/t vib cholerae
001.1 cholera d/t vib el tor
001.9 cholera nos

999 complic medical care nec*
Vo1 communicable dis contact*®
V01.0 cholera contact

VOo1l.1 tuberculosis contact

V01.2 poliomyelitis contact
V01.3 smallpox contact

V01.4 rubella contact

V01.5 rabies contact

V01.6 venereal dis contact
Vo1.7 viral dis contact nec#
V01.71 varicella contact/exp
V01.79 viral dis contact nec
V01.8 communic dis contact nec#
V01.81 contact/exposure-anthrax
V01.82 exposure to sars

V01.83 e. coli contact/exp
V01.84 meningococcus contact
V01.89 communic dis contact nec
V01.9 communic dis contact nos
E800 rr collision nos*
E800.0 r collision nos-employ
E800.1 rr coll nos-passenger
E800.2 rr coll nos-pedestrian
E800.3 rr coll nos-ped cyclist
E800.8 rr coll nos-person nec
E800.9 rr coll nos-person nos

The main code refers to the part of the code to the left of the period. 001, 002, ..., 999; V01,

..., V82; and EB00, ..., E999 are main codes.

The main code corresponding to a detailed code can be obtained by taking the part of the code
to the left of the period, except for codes beginning with 176, 764, 765, V29, and V69. Those main
codes are not defined, yet there are more detailed codes under them:

icd9 — ICD-9-CM diagnostic and procedure codes

297

Code

Description

176
176.0
176.1
764
764.0
764.00
765
765.0
765.00
V29
V29.0
V29.1
V69
V69.0
V69.1

CODE DOES NOT EXIST:

skin - kaposi’s sarcoma
sft tisue - kpsi’s srcma

CODE DOES NOT EXIST:

It-for-dates w/o fet mal*
light-for-dates wtnos

CODE DOES NOT EXIST:

extreme immaturity*
extreme immatur wtnos

CODE DOES NOT EXIST:

nb obsrv suspct infect
nb obsrv suspct neurlgcl

CODE DOES NOT EXIST:

lack of physical exercise
inapprt diet eat habits

Our solution is to define five new codes:

Code

Description

176
764
765
V29
Ve

kaposi’s sarcoma (Stata)*
light-for-dates (Stata)*
immat & preterm (Stata)*
nb suspct cnd (Stata)*
lifestyle (Stata)*

Things are less confusing with respect to the procedure codes processed by icd9p. The format of

ICD-9 procedure codes is

[blanks | {0-9}{0-9}[.][0--9[0--9]][blanks]

Thus there are 10,000 possible procedure codes, of which fewer than 5,000 are currently valid. The
first two digits represent the main code, of which 100 are feasible and 98 are currently used (00 and

17 are not used).

Descriptions

The description given for each of the codes is as found in the original source. The procedure
codes contain the addition of five new codes created by Stata. An asterisk on the end of a description
indicates that the corresponding ICD-9 diagnostic code has subcategories. A hash mark (#) at the end
of a description denotes a code that is not valid in the most current version but that was valid at
some time between version V16 and the present version.

298 icd9 — ICD-9-CM diagnostic and procedure codes

icd9[p] query reports the original source of the information on the codes:

. icd9 query

_dta:
1. ICD9 Diagnostic Code Mapping Data for use with Stata, History
2. Vie

3. Dataset obtained 24augl999 from http://www.hcfa.gov/stats/pufiles.htm,
file http://www.hcfa.gov/stats/icd9v16.exe

4. Codes 176, 764, 765, V29, and V69 defined by StataCorp: 176 [kaposi’s
sarcoma (Stata)*], 765 [immat & preterm (Stata)*], 764 [light-for-dates
(Stata)*], V29 [nb suspct cnd (Stata)*], V69 [lifestyle (Stata)x*]

5. V18
(output omitted)
12. V19

13. Dataset obtained 3jan2002 from http://www.hcfa.gov/stats/pufiles.htm,
file http://www.hcfa.gov/stats/icd9v19.zip, file 9vi9diag.txt

14. 27feb2002: V19 put into Stata distribution

(output omitted)

. icd9p query

_dta:
1. 1ICD9 Procedure Code Mapping Data for use with Stata, History
2. Vié

3. Dataset obtained 24augl999 from http://www.hcfa.gov/stats/pufiles.htm,
file http://www.hcfa.gov/stats/icd9v16.exe

4. V18

5. Dataset obtained 10may2001 from http://www.hcfa.gov/stats/pufiles.htm,
file http://www.hcfa.gov/stats/icd9v18.zip, file V18SURG.TXT

6. 11jun2001: V18 data put into Stata distribution

7. BETWEEN V16 and V18: 9 codes added: 3971 3979 4107 4108 4109 4697 6096
6097 9975

(output omitted)

> Example 1

We have a dataset containing up to three diagnostic codes and up to two procedures on a sample
of 1,000 patients:

. use http://www.stata-press.com/data/ri12/patients
. list in 1/10

patid diagl diag2 diag3 procl proc2
1 1 65450 9383
2 2 23v.6 37456 8383 17
3 3 V10.02
4 4 102.6 629
5 5 861.01
6. 6 38601 2969 9337
7. 7 705 7309 8385
8. 8 vb3.32 7878 951
9. 9 20200 7548 E8247 0479
10. 10 464.11 20197 4641

Do not try to make sense of these data because, in constructing this example, the diagnostic and
procedure codes were randomly selected.

icd9 — ICD-9-CM diagnostic and procedure codes 299

First, variable diagl is recorded sloppily—sometimes the dot notation is used and sometimes not,
and sometimes there are leading blanks. That does not matter. We decide to begin by using icd9
clean to clean up this variable:

. icd9 clean diagl
diagl contains invalid ICD-9 codes
r(459);

icd9 clean refused because there are invalid codes among the 1,000 observations. We can use icd9
check to find and flag the problem observations (or observation, as here):

. icd9 check diagl, gen(prob)

diagl contains invalid codes:

[ure

Invalid placement of period

Too many periods

Code too short

Code too long

Invalid 1st char (not 0-9, E, or V)
Invalid 2nd char (not 0-9)

Invalid 3rd char (not 0-9)

Invalid 4th char (not 0-9)

Invalid 5th char (not 0-9)

Code not defined

O ©W 0 ~NO O WN
OO OKFr OO0OO0OOO0OOo

e

-

Total

. list patid diagl prob if prob

patid diagl prob

2. 2 23v.6 7

Let’s assume that we go back to the patient records and determine that this should have been coded
230.6:

. replace diagl = "230.6" if patid==2
(1 real change made)
. drop prob

We now try again to clean up the formatting of the variable:

. icd9 clean diagl
(643 changes made)

. list in 1/10

patid diagl diag2 diag3 procl proc2
1 1 65450 9383
2 2 2306 37456 8383 17
3 3 V1002
4 4 1026 629
5 5 86101
6. 6 38601 2969 9337
7. 7 705 7309 8385
8. 8 V5332 7878 951
9. 9 20200 7548 E8247 0479
10. 10 46411 20197 4641

300 icd9 — ICD-9-CM diagnostic and procedure codes

Perhaps we prefer the dot notation. icd9 clean can be used again on diagl, and now we will clean
up diag2 and diag3:
. icd9 clean diagl, dots

(936 changes made)

. 1cd9 clean diag2, dots
(551 changes made)

. icd9 clean diag3, dots
(100 changes made)

. list in 1/10

patid diagl diag2 diag3 procl proc2
1 1 654.50 9383
2 2 230.6 374.56 8383 17
3 3 V10.02
4 4 102.6 629
5 5 861.01
6. 6 386.01 296.9 9337
7. 7 705 7309 8385
8. 8 Vb3.32 7878 951
9. 9 202.00 754.8 E824.7 0479
10. 10 464.11 201.97 4641

We now turn to cleaning the procedure codes. We use icd9p (emphasis on the p) to clean these
codes:

. 1cd9p clean procl, dots
(816 changes made)

. icd9p clean proc2, dots
(140 changes made)

. list in 1/10

patid diagl diag2 diag3 procl proc2
1 1 654.50 93.83
2 2 230.6 374.56 83.83 17
3 3 V10.02
4 4 102.6 62.9
5 5 861.01
6. 6 386.01 296.9 93.37
7. 7 705 73.09 83.85
8. 8 Vb3.32 78.78 95.1
9. 9 202.00 754.8 E824.7 04.79
10. 10 464.11 201.97 46.41

Both icd9 clean and icd9p clean verify only that the variable being cleaned follows the
construction rules for the code; it does not check that the code is itself valid. icd9 [p] check does
that:

icd9 — ICD-9-CM diagnostic and procedure codes 301

icd9p check procl

(procl contains valid ICD-9 procedure codes; 168 missing values)

icd9p check proc2

proc2 contains invalid codes:

O 00 N O WN -

[y

Total

Invalid placement of period
Too many periods

Code too short
Code too long
Invalid 1st char
Invalid 2nd char
Invalid 3rd char
Invalid 4th char
Code not defined

(not 0-9)
(not 0-9)
(not 0-9)
(not 0-9)

HOOOOOOO0OO

ey

proc?2 has an invalid code. We could find it by using icd9p check, generate(), just as we did
above with icd9 check, generate().

icd9[p] can create new variables containing textual descriptions of our diagnostic and procedure

codes:

icd9 generate tdl = diagl, description

. sort patid

. list patid diagl tdl in 1/10

patid diagl td1l
1 1 654.50 cerv incompet preg-unsp
2 2 230.6 ca in situ anus nos
3 3 V10.02 hx-oral/pharynx malg nec
4 4 102.6 yaws of bone & joint
5 5 861.01 heart contusion-closed
6. 6 386.01 meniere dis cochlvestib
7. 7 705 disorders of sweat gland*
8. 8 Vb3.32 ftng autmtc dfibrillator
9. 9 202.00 ndlr lym unsp xtrndl org
10. 10 464.11 ac tracheitis w obstruct

icd9[p] generate, description does not preserve the
icd9[p] check, unless you specify the any option).

sort order of the data (and neither does

Procedure code proc2 had an invalid code. Even so, icd9p generate, description is willing
to create a textual description variable:

302 icd9 — ICD-9-CM diagnostic and procedure codes

. icd9p gen tp2 = proc2, description
(1 nonmissing value invalid and so could not be labeled)

. sort patid
. list patid proc2 tp2 in 1/10

patid proc2 tp2
1 1
2 2 17
3 3
4 4
5 5
6. 6
7. 7 83.85 musc/tend lng change nec
8. 8 95.1 form & structur eye exam*
9. 9
10. 10

tp2 contains nothing when proc2 is 17 because 17 is not a valid procedure code.

icd9[p] generate can also create variables containing main codes:

. 1cd9 generate mainl = diagl, main

. list patid diagl mainl in 1/10

patid diagl mainl
1 1 654.50 654
2 2 230.6 230
3 3 V10.02 V10
4 4 102.6 102
5 5 861.01 861
6. 6 386.01 386
7. 7 705 705
8. 8 V53.32 V53
9. 9 202.00 202
10. 10 464.11 464

icd9p generate, main can similarly generate main procedure codes.

Sometimes we might merely be examining an observation:

. list diag* if patid==563

diagl diag2 diag3

563. 526.4

icd9 — ICD-9-CM diagnostic and procedure codes 303

If we wondered what 526.4 was, we could type

. icd9 lookup 526.4

1 match found:
526.4 inflammation of jaw

icd9[p| lookup can list ranges of codes:

. icd9 lookup 526/526.99

15 matches found:
526 jaw diseasesx*

526.0 devel odontogenic cysts
526.1 fissural cysts of jaw
526.2 cysts of jaws nec

526.3 cent giant cell granulom
526.4 inflammation of jaw

526.5 alveolitis of jaw
526.61 perfor root canal space
526.62 endodontic overfill
526.63 endodontic underfill
526.69 periradicular path nec
526.8 other jaw diseases*
526.81 exostosis of jaw

526.89 jaw disease nec

526.9 jaw disease nos

The same result could be found by typing
. icd9 lookup 526%
icd9[p| search can find a code from the description:

. icd9 search jaw disease

4 matches found:

526 jaw diseases*

526.8 other jaw diseases*
526.89 jaw disease nec
526.9 jaw disease nos

Saved results
icd9 check and icd9p check save the following in r():

Scalars
r(e#) number of errors of type #
r (esum) total number of errors

icd9 clean and icd9p clean save the following in r():

Scalars
r(N) number of changes

304 icd9 — ICD-9-CM diagnostic and procedure codes

Methods and formulas

icd9 and icd9p are implemented as ado-files.

Reference

Gould, W. W. 2000. dm76: ICD-9 diagnostic and procedure codes. Stata Technical Bulletin 54: 8-16. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, pp. 77-87. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb54.pdf

Title

import — Overview of importing data into Stata

Description

This entry provides a quick reference for determining which method to use for reading non-Stata
data into memory. See [U] 21 Inputting and importing data for more details.

Remarks
Remarks are presented under the following headings:

Summary of the different methods
import excel
insheet
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sasxport
haver (Windows only)
xmluse
Examples

Summary of the different methods

import excel

o import excel reads worksheets from Microsoft Excel (.x1s and .x1sx) files.
o Entire worksheets can be read, or custom cell ranges can be read.

o See [D] import excel.

insheet
o insheet reads text files created by a spreadsheet or a database program.

o The data must be tab-separated or comma-separated, but not both simultaneously. A custom
delimiter may also be specified.

o An observation must be on only one line.
o The first line in the file can optionally contain the names of the variables.

o See [D] insheet.

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for importing data via the odbc command and can
read from any ODBC data source on your computer.

o See [D] odbec.

305

306 import — Overview of importing data into Stata

infile (free format)—infile without a dictionary

o The data can be space-separated, tab-separated, or comma-separated.

o Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-
separated).

o An observation can be on more than one line, or there can even be multiple observations per line.

o See [D] infile (free format).

infix (fixed format)

o The data must be in fixed-column format.
o An observation can be on more than one line.
o infix has simpler syntax than infile (fixed format).

o See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

o The data may be in fixed-column format.

o An observation can be on more than one line.

o ASCII or EBCDIC data can be read.

o infile (fixed format) has the most capabilities for reading data.

o See [D] infile (fixed format).

import sasxport

o import sasxport reads SAS XPORT Transport format files.

o import sasxport will also read value label information from a formats.xpf XPORT file, if
available.

o See [D] import sasxport.

haver (Windows only)

o haver reads Haver Analytics (http://www.haver.com/) database files.

o haver is available only for Windows and requires a corresponding DLL (DLXAPI32.DLL) available
from Haver Analytics.

o See [TS] haver.

xmluse

o xmluse reads extensible markup language (XML) files—highly adaptable text-format files derived
from the standard generalized markup language (SGML).

o xmluse can read either an Excel-format XML or a Stata-format XML file into Stata.

o See [D] xmlsave.

http://www.haver.com/

import — Overview of importing data into Stata

307

Examples

> Example 1: Tab-separated data

1 John Smith m
Paul Lin m
0 Jan Doe f

Julie McDonald f£

O O O
O OO
[SN

begin examplel.raw

contains tab-separated data. The type command with the showtabs option shows the tabs:

. type examplel.raw, showtabs

1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
O<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

. insheet a b ¢ name gender using examplel

> Example 2: Comma-separated data

,name,gender
,John Smith,m
,Paul Lin,m

Jan Doe,f

ulie McDonald,f

QO OoOrP
O, OoOOoOU
O = =0

[

end examplel.raw

begin example2.raw

could be read in by

. insheet using example2

> Example 3: Tab-separated data with double-quoted strings

1 0 1 "John Smith" m
0 0 1 "Paul Lin" m
0 1 0 "Jan Doe" £
0 0 "Julie McDonald"

end example2.raw

begin example3.raw

end example3.raw

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs
1<T>0<T>1<T>"John Smith"<T>m
0<T>0<T>1<T>"Paul Lin"<T>m
0<T>1<T>0<T>"Jan Doe"<T>f
0<T>0<T>.<T>"Julie McDonald"<T>f

It could be read in by

. infile byte (a b c) strilb name strl gender using example3

308 import — Overview of importing data into Stata

or

. insheet a b ¢ name gender using example3

or

. infile using dict3

where the dictionary dict3.dct contains

infile dictionary using example3 {

byte a
byte b
byte c

strl5 name
strl gender

begin dict3.dct

end dict3.dct

> Example 4: Space-separated data with double-quoted strings

"John Smith" m
"Paul Lin" m

"Jan Doe" f

"Julie McDonald" f

O O O
O = OO
O = =

begin example4.raw

could be read in by

. infile byte (a b c) strilb5 name strl gender using example4

or

. infile using dict4

where the dictionary dict4.dct contains

end example4.raw

infile dictionary using exampled {

byte a
byte b
byte c

strl5 name
strl gender

begin dict4.dct

> Example 5: Fixed-column format

101mJohn Smith
001mPaul Lin
010fJan Doe

00 fJulie McDonald

end dict4.dct

begin exampleS5.raw

end example5.raw

import — Overview of importing data into Stata 309

could be read in by

. infix a 1 b 2 ¢ 3 str gender 4 str name 5-19 using exampleb
or
. infix using dictba

where dictba.dct contains

begin dict5a.dct
infix dictionary using exampleb5 {
a
b 2
c 3
str gender 4
str name 5-19
}
end dictSa.dct
or
. infile using dictbb
where dict5b.dct contains
begin dictSb.dct
infile dictionary using exampleb5 {
byte a W1f
byte b %1f
byte c %1t
stri gender %ls
strib name %15s
}
end dict5b.dct

> Example 6: Fixed-column format with headings

begin example6.raw
line 1 : a heading

There are a total of 4 lines of heading.

The next line contains a useful heading:

+ 1 + 2 + 3 + 4-———+-
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 f Jan Doe
0 0 f Julie McDonald

end example6.raw

could be read in by

. infile using dict6a

310 import — Overview of importing data into Stata

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)
byte a
byte b
_column(17) byte c %1t
stril gender
_column(33) strl5 name %15s
}
end dict6a.dct

or could be read in by

. infix 5 first a 1 b

or could be read in by

. infix using dict6éb

where dict6b.dct contains

9 ¢ 17 str gender 25 str name 33-46 using example6

begin dict6b.dct
infix dictionary using example6 {
5 first
a 1
b 9
c 17
str gender 25
str name 33-46
}
end dict6b.dct

> Example 7: Fixed-column format with observations spanning multiple lines

begin example7.raw

gender name

o o

c
1
ohn Smith
1

o

aul Lin

=g
o

HhHOULUHOUTUE OuLBE ~p
of
o
(o]
(0]

Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

import — Overview of importing data into Stata 311

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)
byte a
byte Db
byte [¢
_line(2)

strl gender
_line(3)
stri5 name %15s

}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b

where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)
byte a "Question 1"
byte b "Question 2"
byte ¢ "Question 3"
_line(2)
strl gender "Gender of subject"
_line(3)
stri5 name %15s
}
end dict7b.dct

infix could also read these data,

. infix 2 first 3 lines a 1 b 3 ¢ 5 str gender 2:1 str name 3:1-15 using example7

or the data could be read in by

. infix using dict7c

where dict7c.dct contains

begin dict7c.dct

infix dictionary using example7 {

2 first
a 1
b 3
c 5
str gender 2:1
str name 3:1-15
}

end dict7c.dct

or the data could be read in by

. infix using dict7d

312 import — Overview of importing data into Stata

where dict7d.dct contains

begin dict7d.dct
infix dictionary using example7 {
2 first
a 1
b 3
c 5
/
str gender 1
/
str name 1-15
}
end dict7d.dct
Also see

[D] edit — Browse or edit data with Data Editor

[D] export — Overview of exporting data from Stata

[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] infile (free format) — Read unformatted text data

[D] infix (fixed format) — Read text data in fixed format

[D] input — Enter data from keyboard

[D] insheet — Read text data created by a spreadsheet

[D] import excel — Import and export Excel files

[D] import sasxport — Import and export datasets in SAS XPORT format
[D] odbe — Load, write, or view data from ODBC sources

[D] xmlsave — Export or import dataset in XML format

[TS] haver — Load data from Haver Analytics database

[U] 21 Inputting and importing data

Title

import excel — Import and export Excel files

Syntax
Load an Excel file

import excel [using] filename [, import_excel_options}

Load subset of variables from an Excel file

import excel extvarlist using filename [, imporz_excel_options]

Describe contents of an Excel file

import excel [using] filename, describe

Save data in memory to an Excel file

export excel [using] filename [l_'f] [zn} [, export_excel_oplions}

Save subset of variables in memory to an Excel file

export excel [varlist] using filename [zf} [m] [, exporr_excel_options]

import_excel _options Description
sheet ("sheetname") Excel worksheet to load
cellrange([start] [rend]) Excel cell range to load
firstrow treat first row of Excel data as variable names
allstring import all Excel data as strings
clear replace data in memory
export_excel_options Description
Main
sheet ("sheetname") save to Excel worksheet
cell(start) start (upper-left) cell in Excel to begin saving to
sheetmodify modify Excel worksheet
sheetreplace replace Excel worksheet
firstrow(variables |varlabels) save variable names or variable labels to first row
nolabel export values instead of value labels
replace overwrite Excel file
Advanced
datestring("datetime_format") save dates as strings with a datetime_format
missing("repval") save missing values as repval

313

314 import excel — Import and export Excel files

extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the
following:

varname
varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns
A, B, C, and D from the Excel file auto.x1sx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns
A, B, and D from the Excel file auto.x1lsx. Column C and any columns after D are skipped.

Menu
import excel
File > Import > Excel spreadsheet
export excel
File > Export > Excel spreadsheet

Description

import excel loads an Excel file, also known as a workbook, into Stata. import excel filename,
describe lists available sheets and ranges of an Excel file. export excel saves data in memory
to an Excel file. Excel 1997/2003 (.x1s) files and Excel 2007/2010 (.x1sx) files can be imported,
exported, and described using import excel, export excel, and import excel, describe.

import excel and export excel are supported on Windows, Mac, and Linux.

import excel and export excel look at the file extension, .x1s or .x1lsx, to determine which
Excel format to read or write.

For performance, import excel imposes a size limit of 50 MB for Excel 2007/2010 (.x1sx)
files. Be warned that importing large .x1sx files can severely affect your machine’s performance.

import excel auto first looks for auto.x1s and then looks for auto.xlsx if auto.x1s is not
found in the current directory.

The default file extension for export excel is .x1s if a file extension is not specified.

Options for import excel

sheet ("sheetname") imports the worksheet named sheetname in the workbook. The default is to
import the first worksheet.

cellrange([start] [:end]) specifies a range of cells within the worksheet to load. start and end
are specified using standard Excel cell notation, for example, A1, BC2000, and C23.

firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This
option cannot be used with extvarlist. £irstrow uses the first row of the cell range for variable
names if cellrange() is specified. import excel translates the names in the first row to valid
Stata variable names. The original names in the first row are stored unmodified as variable labels.

import excel — Import and export Excel files 315

allstring forces import excel to import all Excel data as string data.

clear clears data in memory before loading data from the Excel workbook.

Options for export excel
Main

sheet ("sheetname") saves to the worksheet named sheetname. If there is no worksheet named
sheetname in the workbook, a new sheet named sheetname is created. If this option is not
specified, the first worksheet of the workbook is used.

cell(start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default,
export excel saves starting in the first row and first column of the worksheet.

sheetmodify exports data to the worksheet without changing the cells outside the exported range.
sheetmodify cannot be combined with sheetreplace or replace.

sheetreplace clears the worksheet before the data are exported to it. sheetreplace cannot be
combined with sheetmodify or replace.

firstrow(variables|varlabels) specifies that the variable names or the variable labels be saved
in the first row in the Excel worksheet. The variable name is used if there is no variable label for
a given variable.

nolabel exports the underlying numeric values instead of the value labels.

replace overwrites an existing Excel workbook. replace cannot be combined with sheetmodify
or sheetreplace.

Advanced

datestring("datetime_format") exports all datetime variables as strings formatted by date-
time_format. See [D] datetime display formats.

missing("repval") exports missing values as repval. repval can be either string or numeric. Without
specifying this option, export excel exports the missing values as empty cells.

Remarks

To demonstrate the use of import excel and export excel, we will first load auto.dta and
export it as an Excel file named auto.x1s:
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. export excel auto, firstrow(variables)
file auto.xls saved

Now we can import from the auto.x1s file we just created, telling Stata to clear the current data
from memory and to treat the first row of the worksheet in the Excel file as variable names:

316

import excel — Import and export Excel files

import excel auto.xls, firstrow clear

. describe

Contains data

obs: 74

vars: 12

size: 3,922

storage display value

variable name type format label variable label
make stril7 %17s make
price int %10.0g price
mpg byte %10.0g mpg
rep78 byte 7%10.0g rep78
headroom double %10.0g headroom
trunk byte %10.0g trunk
weight int %10.0g weight
length int %10.0g length
turn byte %10.0g turn
displacement int %10.0g displacement
gear_ratio double %10.0g gear_ratio
foreign str8 %9s foreign
Sorted by:

Note:

dataset has changed since last saved

We can also import a subrange of the cells in the Excel file:

Both .x1s and .x1sx files are supported by import excel and export excel. If a file extension
is not specified with export excel, .x1s is assumed, because this format is more common and is
compatible with more applications that also can read from Excel files. To save the data in memory

import excel auto.xls, cellrange(:D70) firstrow clear

. describe

Contains data

obs: 69

vars: 4

size: 1,449

storage display value

variable name type format label variable label
make stri7 %17s make
price int %10.0g price
mpg byte 7%10.0g mpg
rep78 byte 7%10.0g rep78
Sorted by:

Note:

as a .xlsx file, specify the extension:

To export a subset of variables and overwrite the existing auto.x1ls Excel file, specify a variable

dataset has changed since last saved

. use http://www.stata-press.com/data/ri2/auto, clear
(1978 Automobile Data)

. export excel auto.xlsx
file auto.xlsx saved

list and the replace option:

. export excel make mpg weight using auto, replace
file auto.xls saved

import excel — Import and export Excel files 317

Q Technical note: Excel data size limits

For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns.
The string size limit is 255 characters.

For an Excel .x1sx-type workbook, the worksheet size limits are 1,048,576 rows by 16,384
columns. The string size limit is 32,767 characters.
Q

Q Technical note: Dates and times

Excel has two different date systems, the “1900 Date System” and the “1904 Date System”. Excel
stores a date and time as an integer representing the number of days since a start date plus a fraction
of a 24-hour day.

In the 1900 Date System, the start date is 00Jan1900; in the 1904 Date System, the start date is
01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan1900.
import excel translates 29feb1900 to 28feb1900 and 00Jan1900 to 31dec1899.

See Using dates and times from other software in [D] datetime for a discussion of the relationship
between Stata datetimes and Excel datetimes.
a

Q Technical note: Mixed data types

Because Excel’s data type is cell based, import excel may encounter a column of cells with
mixed data types. In such a case, the following rules are used to determine the variable type in Stata
of the imported column.

e If the column contains at least one cell with nonnumerical text, the entire column is imported as
a string variable.

e If an all-numerical column contains at least one cell formatted as a date or time, the entire
column is imported as a Stata date or datetime variable. import excel imports the column as

a Stata date if all date cells in Excel are dates only; otherwise, a datetime is used.
Q

Saved results

import excel filename, describe saves the following in r():

Macros
r(N_worksheet) number of worksheets in the Excel workbook
r (worksheet_#) name of worksheet # in the Excel workbook
r(range_#) available cell range for worksheet # in the Excel workbook

Methods and formulas

import excel and export excel are implemented as ado-files.

318 import excel — Import and export Excel files

Also see
[D] import — Overview of importing data into Stata
[D] export — Overview of exporting data from Stata

[D] datetime — Date and time values and variables

Title

import sasxport — Import and export datasets in SAS XPORT format

Syntax
Import SAS XPORT Transport file into Stata

import sasxport filename [, import_options]

Describe contents of SAS XPORT Transport file

import sasxport filename, describe [member(mbrname)}

Export data in memory to a SAS XPORT Transport file
export sasxport filename [zf] [m] [, export_options]

export sasxport varlist using filename [zf] [m] [, export_options]

import_options Description

Main
clear replace data in memory
novallabels ignore accompanying formats.xpf file if it exists
member (mbrname) member to use; seldom used
export_options Description

Main
rename rename variables and value labels to meet SAS XPORT restrictions
replace overwrite files if they already exist
vallabfile(xpf) save value labels in formats.xpf
vallabfile(sascode) save value labels in SAS command file
vallabfile(both) save value labels in formats.xpf and in a SAS command file
vallabfile (none) do not save value labels

Menu

import sasxport
File > Import > SAS XPORT

export sasxport
File > Export > SAS XPORT

319

320 import sasxport — Import and export datasets in SAS XPORT format

Description

import sasxport and export sasxport convert datasets from and to SAS XPORT Transport
format. The U.S. Food and Drug Administration uses SAS XPORT transport format as the format for
datasets submitted with new drug and new device applications (NDAS).

To save the data in memory as a SAS XPORT Transport file, type

. export sasxport filename

although sometimes you will want to type
. export sasxport filename, rename
It never hurts to specify the rename option. In any case, Stata will create filename.xpt as an

XPORT file containing the data and, if needed, will also create formats.xpf—an additional XPORT
file—containing the value-label definitions. These files can be easily read into SAS.

To read a SAS XPORT Transport file into Stata, type
. import sasxport filename
Stata will read into memory the XPORT file filename.xpt containing the data and, if available, will
also read the value-label definitions stored in formats.xpf or FORMATS.xpf.

import sasxport, describe describes the contents of a SAS XPORT Transport file. The display is
similar to that produced by describe. To describe a SAS XPORT Transport file, type

. import sasxport filename, describe

If filename is specified without an extension, .xpt is assumed.

Options for import sasxport

clear permits the data to be loaded, even if there is a dataset already in memory and even if that
dataset has changed since the data were last saved.

novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be
looked for or loaded. By default, if variables are labeled in filename . xpt, then import sasxport
looks for formats.xpf to obtain and load the value-label definitions. If the file is not found,
Stata looks for FORMATS.xpf. If that file is not found, a warning message is issued.

import sasxport can use only a formats.xpf or FORMATS.xpf file to obtain value-label
definitions. import sasxport cannot understand value-label definitions from a SAS command file.

member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be
loaded. It is not used much anymore, but the original XPORT definition allowed multiple datasets
to be placed in one file. The member () option allows you to read these old files. You can obtain
a list of member names using import sasxport, describe. If member () is not specified—and
it usually is not—import sasxport reads the first (and usually only) member.

Option for import sasxport, describe
Main

member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be
described. See the description of the member () option for import sasxport directly above. If
member () is not specified, all members are described, one after the other. It is rare for an XPORT
file to have more than one member.

import sasxport — Import and export datasets in SAS XPORT format 321

Options for export sasxport
Main

rename specifies that export sasxport may rename variables and value labels to meet the SAS
XPORT restrictions, which are that names be no more than eight characters long and that there be
no distinction between uppercase and lowercase letters.

We recommend specifying the rename option. If this option is specified, any name violating the
restrictions is changed to a different but related name in the file. The name changes are listed.
The new names are used only in the file; the names of the variables and value labels in memory
remain unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message
will be issued and no file will be saved. The alternative to the rename option is that you can
rename variables yourself with the rename command:

. rename mylongvariablename myname

See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename
value labels is to use label save, edit the resulting file to change the name, execute the file by
using do, and reassign the new value label to the appropriate variables by using label values:
. label save mylongvaluelabel using myfile.do
. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)

. do myfile.do
. label values myvar mlvlab

See [D] label and [R] do for more information about renaming value labels.

replace permits export sasxport to overwrite existing filename.xpt, formats.xpf, and file-
name . sas files.

vallabfile (xpf | sascode | both |none) specifies whether and how value labels are to be stored.
SAS XPORT Transport files do not really have value labels. Value-label definitions can be preserved
in one of two ways:

1. In an additional SAS XPORT Transport file whose data contain the value-label definitions
2. In a SAS command file that will create the value labels
export sasxport can create either or both of these files.

vallabfile (xpf), the default, specifies that value labels be written into a separate SAS XPORT
Transport file named formats.xpf. Thus export sas xport creates two files: filename.xpt,
containing the data, and formats.xpf, containing the value labels. No formats.xpf file is
created if there are no value labels.

SAS users can easily use the resulting .xpt and .xpf XPORT files.

See http://www.sas.com/govedu/fda/macro.html for SAS-provided macros for reading the XPORT
files. The SAS macro fromexp () reads the XPORT files into SAS. The SAS macro toexp() creates
XPORT files. When obtaining the macros, remember to save the macros at SAS’s webpage as a
plain-text file and to remove the examples at the bottom.

If the SAS macro file is saved as C: \project\macros.mac and the files mydat .xpt formats.xpf
created by export sasxport are in C:\project)\, the following SAS commands would create
the corresponding SAS dataset and format library and list the data:

http://www.sas.com/govedu/fda/macro.html

322 import sasxport — Import and export datasets in SAS XPORT format

SAS commands
%include "C:\project\macros.mac" ;
%fromexp(C:\project, C:\project) ;
libname library ’C:\project’ ;

data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data = library.mydat ;
quit ;

vallabfile(sascode) specifies that the value labels be written into a SAS command file,
filename . sas, containing SAS proc format and related commands. Thus export sasxport
creates two files: filename.xpt, containing the data, and filename.sas, containing the value
labels. SAS users may wish to edit the resulting filename . sas file to change the “libname datapath”
and “libname xptfile xport” lines at the top to correspond to the location that they desire. export
sasxport sets the location to the current working directory at the time export sasxport was
issued. No .sas file will be created if there are no value labels.

vallabfile(both) specifies that both the actions described above be taken and that three files be
created: filename .xpt, containing the data; formats.xpf, containing the value labels in XPORT
format; and filename . sas, containing the value labels in SAS command-file format.

vallabfile(none) specifies that value-label definitions not be saved. Only one file is created:
filename . xpt, which contains the data.

Remarks

All users, of course, may use these commands to transfer data between SAS and Stata, but there
are limitations in the SAS XPORT Transport format, such as the eight-character limit on the names
of variables (specifying export sasxport’s rename option works around that). For a complete
listing of limitations and issues concerning the SAS XPORT Transport format, and an explanation
of how export sasxport and import sasxport work around these limitations, see Technical
appendix below. You may find it more convenient to use translation packages such as Stat/Transfer;
see http://www.stata.com/products/transfer.html.

Remarks are presented under the following headings:

Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received from SAS

Saving XPORT files for transferring to SAS

> Example 1

To save the current dataset in mydata.xpt and the value labels in formats.xpf, type

. export sasxport mydata

To save the data as above but automatically rename variable names and value labels that are too
long or are case sensitive, type

. export sasxport mydata, rename

To allow the replacement of any preexisting files, type

. export sasxport mydata, rename replace

http://www.stata.com/products/transfer.html

import sasxport — Import and export datasets in SAS XPORT format 323

To save the current dataset in mydata.xpt and the value labels in SAS command file mydata.sas
and to automatically rename variable names and value labels, type

. export sasxport mydata, rename vallab(sas)
To save the data as above but save the value labels in both formats.xpf and mydata.sas, type

. export sasxport mydata, rename vallab(both)

To not save the value labels at all, thus creating only mydata.zxpt, type

. export sasxport mydata, rename vallab(none)

d
Determining the contents of XPORT files received from SAS
> Example 2
To determine the contents of testdata.xpt, you might type
. import sasxport testdata, describe
d

Using XPORT files received from SAS

> Example 3

To read data from testdata.xpt and obtain value labels from formats.xpf (or FORMATS. xpf),
if the file exists, you would type

. import sasxport testdata

To read the data as above and discard any data in memory, type

. import sasxport testdata, clear

Saved results

import sasxport, describe saves the following in r():

Scalars

r(N) number of observations r(size) size of data

r(k) number of variables r(n_members) number of members
Macros

r (members) names of members

324

import sasxport — Import and export datasets in SAS XPORT format

Technical appendix

Technical details concerning the SAS XPORT Transport format and how export sasxport and
import sasxport handle issues regarding the format are presented under the following headings:

Al. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

A1. Overview of SAS XPORT Transport format

A SAS XPORT Transport file may contain one or more separate datasets, known as mem-
bers. It is rare for a SAS XPORT Transport file to contain more than one member. See
http://support.sas.com/techsup/technote/ts140.html for the SAS technical document describing the layout
of the SAS XPORT Transport file.

A SAS XPORT dataset (member) is subject to certain restrictions:

1.
2.

The dataset may contain only 9,999 variables.

The names of the variables and value labels may not be longer than eight characters and
are case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.

3. Variable labels may not be longer than 40 characters.

. The contents of a variable may be numeric or string:

a. Numeric variables may be integer or floating but may not be smaller than 5.398e—
79 or greater than 9.046e+74, absolutely. Numeric variables may contain missing,
which may be ., ._, .a, .b, ..., .z.

b. String variables may not exceed 200 characters. String variables are recorded in a
“padded” format, meaning that, when variables are read, it cannot be determined
whether the variable had trailing blanks.

. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in

the data with values 0 and 1, and the values are labeled for gender (O=male, and 1=female).
When the dataset is written in SAS XPORT Transport format, you can record that the variable
label gender is associated with the sex variable, but you cannot record the association with
the value labels male and female.

Value-label definitions are typically stored in a second XPORT dataset or in a text file
containing SAS commands. You can use the vallabfile() option of export sasxport
to produce these datasets or files.

Value labels and formats are recorded in the same position in an XPORT file, meaning that
names corresponding to formats used in SAS cannot be used. Thus value labels may not be
named

best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy,
dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eu-
rdfdwn, eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm,
hour, ib, ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmyy,
monname, month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli,
pib, pibr, pk, pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu,
s370fpd, s370fpdu, s370fpib, s370frb, s370fzd, s370fzdl, s370fzds,
s370fzdt, s370fzdu, ssn, time, timeampm, tod, weekdate, weekdatx, week-
day, worddate, worddatx, wordf, words, year, yen, yymm, yymmdd, yymon,
yyq, yyar, z, zd, or any uppercase variation of these.

http://support.sas.com/techsup/technote/ts140.html

import sasxport — Import and export datasets in SAS XPORT format 325

7.

We refer to this as the “Known Reserved Word List” in this documentation. Other words
may also be reserved by SAS; the technical documentation for the SAS XPORT Transport
format provides no guidelines. This list was created by examining the formats defined in
SAS Language Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.

A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact
number of observations in a dataset. This problem can occur only if 1) all variables in the
dataset are string and 2) the sum of the lengths of all the string variables is less than 80.
Actually, the above is the restriction, assuming that the code for reading the dataset is written
well. If it is not, the flaw could occur if 1) the last variable or variables in the dataset are
string and 2) the sum of the lengths of all variables is less than 80.

To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a
string variable. This is always sufficient to avoid the problem.

There is no provision for saving the Stata concepts notes and characteristics.

A2. Implications for writing XPORT datasets from Stata

Stata datasets for the most part fit well into the SAS XPORT Transport format. With the same
numbering scheme as above,

1.
2.

Stata refuses to write the dataset if it contains more than 9,999 variables.

Stata issues an error message if any variable or label name violates the naming restrictions,
or if the rename option is specified, Stata fixes any names that violate the restrictions.

Whether or not rename is specified, names will be recorded case insensitively: you do not
have to name all your variables with all lowercase or all uppercase letters. Stata verifies
that ignoring case does not lead to problems, complaining or, if option rename is specified,
fixing them.

3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.

Stata treats variable contents as follows:

a. If a numeric variable records a value greater than 9.046e+74 in absolute value,
Stata issues an error message. If a variable records a value less than 5.398e-79 in
absolute value, 0 is written.

b. If you have string variables longer than 200 characters, Stata issues an error message.
Also, if any string variable has trailing blanks, Stata issues an error message. To
remove trailing blanks from string variable s, you can type

. replace s = rtrim(s)

To remove leading and trailing blanks, type

. replace s = trim(s)

Value-label names are written in the XPORT dataset. The contents of the value label are not
written in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is
created containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what
SAS calls format definitions). They have provided SAS macros, making the reading of .xpt
and formats.xpf files easy. See http://www.sas.com/govedu/fda/macro.html for details.

http://www.sas.com/govedu/fda/macro.html

326 import sasxport — Import and export datasets in SAS XPORT format

Alternatively, a SAS command file containing the value-label definitions can be produced.
The vallabfile() option of export sasxport is used to indicate which, if any, of the
formats to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename
option is not specified, Stata issues an error message.

If a variable has no value label, the following format information is recorded:

Stata format SAS format
%td. .. MMDDYY10.
%-td. .. MMDDYY10.
%#s $CHAR#.
%—#s $CHAR#.
% #s $CHAR#.
all other BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued.
Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset
is numeric. This is easily done. You could, for instance, type

. gen ignoreme = 0

. export sasxport ...

7. Because the XPORT file format does not support notes and characteristics, Stata ignores
them when it creates the XPORT file. You may wish to incorporate important notes into the
documentation that you provide to the user of your XPORT file.

A3. Implications for reading XPORT datasets into Stata

Reading SAS XPORT Transport format files into Stata is easy, but sometimes there are issues to
consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP
or Stata/SE, you can increase the maximum number of variables with the set maxvar
command; see [D] memory.

2. The XPORT format variable naming restrictions are more restrictive than those of Stata, so
no problems should arise. However, Stata reserves the following names:

—all, _b, byte, _coef, _cons, double, float, if, in, int, long, —n, _N, _pi,
_pred, _rc, _skip, str#, using, with

If the XPORT file contains variables with any of these names, Stata issues an error message.
Also, the error message

. import sasxport ...
already defined

indicates that the XPORT file was incorrectly prepared by some other software and that two
or more variables share the same name.

3. The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems
can arise.

import sasxport — Import and export datasets in SAS XPORT format 327

4.

5.

7.

Also see

Variable contents may cause problems:

a. The range of numeric variables in an XPORT dataset is a subset of that allowed by
Stata, so no problems can arise. All variables are brought back as doubles; we
recommend that you run compress after loading the dataset:

. import sasxport ...
. compress

See [D] compress.

Stata has no missing-value code corresponding to . _. If any value records . _, then
.u is stored.

b. String variables are brought back as recorded but with all trailing blanks stripped.

Value-label names are read directly from the XPORT dataset. Any value-label definitions are
obtained from a separate XPORT dataset, if available. If a value-label name matches any in
the Known Reserved Word List, no value-label name is recorded, and instead, the variable
display format is set to %9.0g, %10.0g, or %td.

The %td Stata format is used when the following SAS formats are encountered:

DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY,
WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOW-
NAME, EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY,
PDJULI, WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR

If the XPORT file indicates that one or more variables have value labels, import sasxport
looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find
this file, it looks for FORMATS.xpf. If this file is not found, import sasxport issues a
warning message unless the novallabels option is specified.

Stata does not allow value-label ranges or string variables with value labels. If the .xpt file
or formats.xpf file contains any of these, an error message is issued. The novallabels
option allows you to read the data, ignoring all value labels.

If a dataset is read that provokes the all-strings XPORT design flaw, the dataset with the
minimum number of possible observations is returned, and a warning message is issued.
This duplicates the behavior of SAS.

SAS XPORT format does not allow notes or characteristics, SO no issues can arise.

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

Title

infile (fixed format) — Read text data in fixed format with a dictionary

Syntax

infile using dfilename [zf] [in] [, options]

options Description
Main
using (filename) text dataset filename
clear replace data in memory
Options
automatic create value labels from nonnumeric data
ebcdic treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file
specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

begin dictionary file ———
[infile] dictionary [using ﬁlename] {

* comments may be included freely

_lrecl(#)

_firstlineoffile(#)

_lines(#)

_line(#)
_newline[(#)]

_column (#)
_skip[(#)}

[type} varname [:lblname] ['7, infmt] ["variable lahel"]

(your data might appear here)

end dictionary file ———

where % infint is { %[#[.#]]{f|gle} | %[#s | %[#S }

Menu

File > Import > Text data in fixed format with a dictionary

Description

infile using reads a dataset that is stored in either ASCII or EBCDIC text form. infile using
does this by first reading dfilename—a “dictionary” that describes the format of the data file—and
then reads the file containing the data. The dictionary is a file you create with the Do-file Editor or
an editor outside Stata. If dfilename is specified without an extension, .dct is assumed.

328

infile (fixed format) — Read text data in fixed format with a dictionary 329

If using filename is not specified, the data are assumed to begin on the line following the closing
brace. If using filename is specified, the data are assumed to be located in filename. If filename is
specified without an extension, .raw is assumed.

If dfilename or filename contains embedded spaces, remember to enclose it in double quotes.

The data may be in the same file as the dictionary or in another file. If ebcdic is specified, the
data will be converted from EBCDIC to ASCII as they are imported. The dictionary in all cases must
be ASCIIL.

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This
variation is easier to use but will not read fixed-format files. On the other hand, although infile
with a dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed
format). infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do
what you are looking for, see [D] import and [U] 21 Inputting and importing data.

Options
Main

using(filename) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using (filename) is specified, filename
is used to obtain the data, even if the dictionary says otherwise. If filename is specified without
an extension, .raw is assumed.

If filename contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infile using will refuse to read new data if other
data are already in memory. clear allows infile using to replace the data in memory. You can
also drop the data yourself by typing drop _all before reading new data.

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

ebcdic specifies that the data be stored using EBCDIC character encoding rather than ASCII, the
default, and be converted from EBCDIC to ASCII as they are imported. In all cases, dfilename, the
dictionary, must be specified using ASCII.

Dictionary directives

* marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments
can appear many times in the same dictionary.

_1recl(#) is used only for reading datasets that do not have end-of-line delimiters (carriage return,
line feed, or some combination of these). Such files are often produced by mainframe computers
and are either coded in EBCDIC or have been translated from EBCDIC into ASCIL. _1recl () specifies
the logical record length. _1recl () requests that infile act as if a line ends every # characters.

_1lrecl() appears only once, and typically not at all, in a dictionary.

330 infile (fixed format) — Read text data in fixed format with a dictionary

_firstlineoffile(#) (abbreviation _first()) is also rarely specified. It states the line of the file
where the data begin. You do not need to specify _first () when the data follow the dictionary;
Stata can figure that out for itself. However, you might specify _first () when reading data from
another file in which the first line does not contain data because of headers or other markers.

_first() appears only once, and typically not at all, in a dictionary.

_lines(#) states the number of lines per observation in the file. Simple datasets typically have
_lines(1). Large datasets often have many lines (sometimes called records) per observation.
_lines() is optional, even when there is more than one line per observation because infile
can sometimes figure it out for itself. Still, if _1ines(1) is not right for your data, it is best to
specify the correct number through _lines(#).

_lines() appears only once in a dictionary.

_line(#) tells infile to jump to line # of the observation. _1ine() is not the same as _lines().
Consider a file with _lines(4), meaning four lines per observation. _1ine(2) says to jump to
the second line of the observation. _1ine(4) says to jump to the fourth line of the observation.
You may jump forward or backward. infile does not care, and there is no inefficiency in going
forward to _line(3), reading a few variables, jumping back to _line(1), reading another
variable, and jumping forward again to _line(3).

You need not ensure that, at the end of your dictionary, you are on the last line of the observation.
infile knows how to get to the next observation because it knows where you are and it knows
_lines(), the total number of lines per observation.

_line() may appear many times in a dictionary.

_newline[(#)] is an alternative to _line(). _newline (1), which may be abbreviated _newline,
goes forward one line. _newline(2) goes forward two lines. We do not recommend using
_newline() because _line() is better. If you are currently on line 2 of an observation and want
to get to line 6, you could type _newline(4), but your meaning is clearer if you type _1ine(6).

_newline() may appear many times in a dictionary.

_column(#) jumps to column # on the current line. You may jump forward or backward within a
line. _column() may appear many times in a dictionary.

_skip[(#)] jumps forward # columns on the current line. _skip() is just an alternative to —_column().
_skip() may appear many times in a dictionary.

[type] varname [: Iblname] [, infmt] ["variable label"] instructs infile to read a variable. The simplest
form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column
1 of line 1, so pretend that is where we are. Given the simplest directive, ‘varname’, infile goes
through the following logic:

If the current column is blank, it skips forward until there is a nonblank column (or until the
end of the line). If it just skipped all the way to the end of the line, it stores a missing value in
varname. If it skipped to a nonblank column, it begins collecting what is there until it comes to
a blank column or the end of the line. These are the data for varname. Then it sets the current
column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile
might encounter a quote. If so, it then collects the characters for the data by skipping forward until
it finds the matching quote. If you specified a % infint, then infile skips the skipping-forward step
and simply collects the specified number of characters. If you specified a %S infint, then infile

infile (fixed format) — Read text data in fixed format with a dictionary 331

does not skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect,
and reset.

Remarks

Remarks are presented under the following headings:

Introduction

Reading free-format files

Reading fixed-format files

Numeric formats

String formats

Specifying column and line numbers
Examples of reading fixed-format files
Reading fixed-block files

Reading EBCDIC files

Introduction

infile using follows a two-step process to read your data. You type something like infile
using descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data;
and

2. infile using then reads the data according to the instructions recorded in descript.dct.

descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just
a text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not
matter.

Reading free-format files

Another variation of infile for reading free-format files is described in [D] infile (free format).
We will refer to this variation as infile without a dictionary. The distinction between the two
variations is in the treatment of line breaks. infile without a dictionary does not consider them
significant. infile with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations,
logical records, or logical lines), is a string of characters followed by the line terminator. If you were
to type the file, a line is what would appear on your screen if your screen were infinitely wide. Your
screen would have to be infinitely wide so that there would be no possibility that one line could take
more than one line of your screen, thus fooling you into thinking that there are multiple lines when
there is only one.

A logical line, on the other hand, is a sequence of one or more physical lines that represent one
observation of your data. infile with a dictionary does not spontaneously go to new physical lines;
it goes to a new line only between observations and when you tell it to. infile without a dictionary,
on the other hand, goes to a new line whenever it needs to, which can be right in the middle of an
observation. Thus consider the following little bit of data, which is for three variables:

54

193
2

How do you interpret these data?

332 infile (fixed format) — Read text data in fixed format with a dictionary

Here is one interpretation: There are 3 observations. The first is 5, 4, and missing. The second
is 1, 9, and 3. The third is 2, missing, and missing. That is the interpretation that infile with a
dictionary makes.

Here is another interpretation: There are 2 observations. The first is 5, 4, and 1. The second is 9,
3, and 2. That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the
line breaks significant? Do they mean anything? If the line breaks are significant, you use infile
with a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not
process comma-separated—value format. If your data are comma-separated, tab-separated, or otherwise
delimited, see [D] insheet or [D] infile (free format).

> Example 1

Outside Stata, we have typed into the file highway.dct information on the accident rate per
million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of
access points (on-ramps and off-ramps) per mile. Our file contains

begin highway.dct, example 1
infile dictionary {

acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60
1.61 . 2.
3.02 60 4.7

end highway.dct, example 1

This file can be read by typing infile using highway. Stata displays the dictionary and reads the
data:

. infile using highway

infile dictionary {
acc_rate spdlimit acc_pts

}
(4 observations read)
. list
acc_rate spdlimit acc_pts

1. 4.58 55 4.6

2. 2.86 60 4.4

3. 1.61 . 2.2

4. 3.02 60 4.7

N
> Example 2

We can include variable labels in a dictionary so that after we infile the data, the data will be
fully labeled. We could change highway.dct to read

infile (fixed format) — Read text data in fixed format with a dictionary 333

begin highway.dct, example 2

infile dictionary {

* This is a comment and will be ignored by Stata

* You might type the source of the data here.
acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

}

4.58 55 4.6

2.86 60 4.4

1.61 . 2.2

3.02 60 4.7
end highway.dct, example 2

Now when we type infile using highway, Stata not only reads the data but also labels the
variables.

4

> Example 3

We can indicate the variable types in the dictionary. For instance, if we wanted to store acc_rate
as a double and spdlimit as a byte, we could change highway.dct to read

begin highway.dct, example 3

infile dictionary {

* This is a comment and will be ignored by Stata
* You might type the source of the data here.
double acc_rate "Acc. Rate/Million Miles"
byte spdlimit "Speed Limit (mph)"

acc_pts "Access Pts/Mile"
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 3

Because we do not indicate the variable type for acc_pts, it is given the default variable type float

(or the type specified by the set type command).
d

> Example 4

By specifying the types, we can read string variables as well as numeric variables. For instance,

begin emp.dct

infile dictionary {
* data on employees

str20 name "Name"
age llAge"
int sex "Sex coded 0 male 1 female"

¥
"Lisa Gilmore" 25 1
Branton 32 1

’Bill Ross’ 27 O
end emp.dct

334 infile (fixed format) — Read text data in fixed format with a dictionary

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the
string contains no blanks or other special characters.

N

> Example 5

You may attach value labels to variables in the dictionary by using the colon notation:

begin emp2.dct ———
infile dictionary {
* data on name, sex, and age
strl6 name "Name"
sex:sexlbl "Sex"
int age "Age"
}
"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Karen Cain" Female 25

end emp2.dct ——

If you want the value labels to be created automatically, you must specify the automatic option
on the infile command. These data could be read by typing infile using emp2, automatic,
assuming the dictionary and data are stored in the file emp2.dct.

d

> Example 6

The data need not be in the same file as the dictionary. We might leave the highway data in
highway.raw and write a dictionary called highway.dct describing the data:

begin highway.dct, example 4 ——
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read "dictionary using highway.txt"
acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

end highway.dct, example 4 ——

> Example 7

The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the
following raw dataset:

begin mydata.raw ——
The following data was entered by Marsha Martinez. It was checked by

Helen Troy.

id income educ sex age

1024 25000 HS Male 28

1025 27000 C Female 24

end mydata.raw ——

infile (fixed format) — Read text data in fixed format with a dictionary 335
Our dictionary might read
begin mydata.dct
infile dictionary using mydata {
_first(4)
int id "Identification Number"
income "Annual income"
str2 educ "Highest educ level"
str6 sex
byte age
}
end mydata.dct
d
> Example 8

The _1line() and _lines() directives tell Stata how to read our data when there are multiple
records per observation. We have the following in mydata2.raw:

id income educ sex age
1024 25000 HS
Male

28

1025 27000 C
Female

24

1035 26000 HS
Male

32

1036 25000 C
Female

25

begin mydata2.raw

end mydata2.raw

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously

reads the data:

infile using mydata2, clear

infile dictionary using mydata2 {

_first(2) * Begin reading on line 2
_lines(3) * Each observation takes 3 lines.
int id "Identification Number" * Since _line is not specified, Stata
income "Annual income" * assumes that it is 1.
str2 educ "Highest educ level"
_line(2) * Go to line 2 of the observation.
str6 sex * (values for sex are located on line 2)
_line(3) * Go to line 3 of the observation.
int age * (values for age are located on line 3)
}
(4 observations read)
. list
id income educ sex age
1. 1024 25000 HS Male 28
2. 1025 27000 C Female 24
3. 1035 26000 HS Male 32
4. 1036 25000 C Female 25

336 infile (fixed format) — Read text data in fixed format with a dictionary

Here is the really good part: we read these variables in order, but that was not necessary. We could
just as well have used the dictionary:

begin mydata2p.dct
infile dictionary using mydata2 {
_first(2)
_lines(3)
_line(1) int id "Identification number"
income "Annual income"
str2 educ "Highest educ level"
_line(3) int age
_line(2) str6 sex
}
end mydata2p.dct

We would have obtained the same results just as quickly, the only difference being that our variables
in the final dataset would be in the order specified: id, income, educ, age, and sex.

N

Q Technical note

You can use _newline to specify where breaks occur, if you prefer:

begin highway.dct, example 5
infile dictionary {

acc_rate "Acc. Rate/Million Miles"

spdlimit "Speed Limit (mph)"
newline acc_pts "Access Pts/Mile"

ey}

55

NS DY
0 o U

60

W N -

MRS ITS

OoON O -
[l)

IS
~N N

end highway.dct, example 5

The line reading ‘1.61 .’ could have been read 1.61 (without the period), and the results would
have been unchanged. Because dictionaries do not go to new lines automatically, a missing value is

assumed for all values not found in the record.
Q

Reading fixed-format files

Values in formatted data are sometimes packed one against the other with no intervening blanks.
For instance, the highway data might appear as

begin highway.raw, example 6
4.58554.6
2.86604.4
1.61 2.2
3.02604.7

end highway.raw, example 6

infile (fixed format) — Read text data in fixed format with a dictionary 337

The first four columns of each record represent the accident rate; the next two columns, the speed
limit; and the last three columns, the number of access points per mile.

To read these data, you must specify the % infimt in the dictionary. Numeric 7 infints are denoted
by a leading percent sign (%) followed optionally by a string of the form w or w.d, where w and d
stand for two integers. The first integer, w, specifies the width of the format. The second integer, d,
specifies the number of digits that are to follow the decimal point. d must be less than or equal to w.
Finally, a character denoting the format type (£, g, or e) is appended. For example, %9.2f specifies
an f format that is nine characters wide and has two digits following the decimal point.

Numeric formats

The £ format indicates that infile is to attempt to read the data as a number. When you do not
specify the % infint in the dictionary, infile assumes the %f format. The width, w, being missing
means that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column
pointer to 1, indicating that it is currently on the first column. When infile processes a %f format,
it moves the column pointer forward through white space. It then collects the characters up to the
next occurrence of white space and attempts to interpret those characters as a number. The column
pointer is left at the first occurrence of white space following those characters. If the next variable
is also free format, the logic repeats.

When you explicitly specify the field width w, as in %wf, infile does not skip leading white
space. Instead, it collects the next w characters starting at the column pointer and attempts to interpret
the result as a number. The column pointer is left at the old value of the column pointer plus w, that
is, on the first character following the specified field.

> Example 9

If the data above were stored in highway.raw, we could create the following dictionary to read
the data:

begin highway.dct, example 6 ———
infile dictionary using highway {

acc_rate %4f "Acc. Rate/Million Miles"

spdlimit %2f "Speed Limit (mph)"

acc_pts %3f "Access Pts/Mile

end highway.dct, example 6 ———

When we explicitly indicate the field width, infile does not skip intervening characters. The first
four columns are used for the variable acc_rate, the next two for spdlimit, and the last three for
acc_pts.

N

Q Technical note

The d specification in the %w.df indicates the number of implied decimal places in the data. For
instance, the string 212 read in a %3.2f format represents the number 2.12. Do not specify d unless
your data have elements of this form. The w alone is sufficient to tell infile how to read data in
which the decimal point is explicitly indicated.

338 infile (fixed format) — Read text data in fixed format with a dictionary

When you specify d, Stata takes it only as a suggestion. If the decimal point is explicitly indicated
in the data, that decimal point always overrides the d specification. Decimal points are also not
implied if the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ‘2 ’, * 2°, and * 2’ are all read
as 0.2 by the %3.1f format.
a

Q Technical note

The g and e formats are the same as the £ format. You can specify any of these letters interchangeably.
The letters g and e are included as a convenience to those familiar with Fortran, in which the e
format indicates scientific notation. For example, the number 250 could be indicated as 2.5E+02
or 2.5D+02. Fortran programmers would refer to this as an E7.5 format, and in Stata, this format
would be indicated as %7.5e. In Stata, however, you need specify only the field width w, so you
could read this number by using %7£, %7g, or %7e.

The g format is really a Fortran output format that indicates a freer format than £. In Stata, the
two formats are identical.

Throughout this section, you may freely substitute the g or e formats for the £ format.

Q Technical note

Be careful to distinguish between %, fints and 7, infmts. ¥, fimts are also known as display formats—they
describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data
are displayed. % infints are also known as input formats—they describe how a variable looks when
you input it. For instance, there is an output date format, %td, but there is no corresponding input
format. (See [U] 24 Working with dates and times for recommendations on how to read dates.) For
the other formats, we have attempted to make the input and output definitions as similar as possible.
Thus we include g, e, and £ % infints, even though they all mean the same thing, because g, e, and
f are also % fints.

a

String formats

The s and S formats are used for reading strings. The syntax is %ws or %wS, where the w is
optional. If you do not specify the field width, your strings must either be enclosed in quotes (single
or double) or not contain any characters other than letters, numbers, and “_".

This may surprise you, but the s format can be used for reading numeric variables, and the f
format can be used for reading string variables! When you specify the field width, w, in the %wf
format, all embedded blanks in the field are removed before the result is interpreted. They are not
removed by the %ws format.

For instance, the %3f format would read “- 27, “-2 7, or “ -2” as the number —2. The %3s
format would not be able to read “~ 2” as a number, because the sign is separated from the digit,
but it could read “ -2” or “-2 7. The %wf format removes blanks; datasets written by some Fortran
programs separate the sign from the number.

infile (fixed format) — Read text data in fixed format with a dictionary 339

There are, however, some side effects of this practice. The string “2 2” will be read as 22 by a
%3f format. Most Fortran compilers would read this number as 202. The %3s format would issue a
warning and store a missing value.

Now consider reading the string “a b” into a string variable. Using a %3s format, Stata will store
it as it appears: a b. Using a %3f format, however, it will be stored as ab—the middle blank will
be removed.

%wsS is a special case of %ws. A string read with %ws will have leading and trailing blanks
removed, but a string read with %wS will not have them removed.

Examples using the %s format are provided below, after we discuss specifying column and line
numbers.

Specifying column and line numbers

_column() jumps to the specified column. For instance, the documentation of some dataset
indicates that the variable age is recorded as a two-digit number in column 47. You could read this
by coding

_column(47) age %2f
After typing this, you are now at column 49, so if immediately following age there were a one-digit
number recording sex as 0 or 1, you could code

_column(47) age %2f
sex %1f

or, if you wanted to be explicit about it, you could instead code

_column(47) age %2f
_column(49) sex %1f

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read
it but skip reading the sex code, you could code

_column(47) age %2f
_column(50) race %1f

You could equivalently skip forward using —_skip():

_column(47) age %2f
_skip(1) race %1f

One advantage of column() over _skip is that it lets you jump forward or backward in a record.
If you wanted to read race and then age, you could code

_column(50) race %1f
_column(47) age %2f

If the data you are reading have multiple lines per observation (sometimes said as multiple records
per observation), you can tell infile how many lines per record there are by using _lines():
_lines(4)
_lines() appears only once in a dictionary. Good style says that it should be placed near the top
of the dictionary, but Stata does not care.

When you want to go to a particular line, include the _line() directive. In our example, let’s
assume that race, sex, and age are recorded on the second line of each observation:

340 infile (fixed format) — Read text data in fixed format with a dictionary

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f

Let’s assume that id is recorded on line 1.

_lines(4)

_line(1)
_column(1) id %4f
_line(2)
_column(47) age %2f
_column(50) race %1f

_line() works like _column() in that you can jump forward or backward, so these data could just
as well be read by

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f
_line(1)
_column(1) id %4f

Remember that this dataset has four lines per observation, and yet we have never referred to 1ine(3)
or 1ine(4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is
okay, too. infile will still get to the next observation correctly.

Q Technical note

Another way to move between records is —newline(). _newline() isto _line() as _skip() is
to _column(), which is to say, _newline() can only go forward. There is one difference: _skip ()
has its uses, whereas _newline () is useful only for backward capability with older versions of Stata.

_skip() has its uses because sometimes we think in columns and sometimes we think in widths.
Some data documentation might include the sentence, “At column 54 are recorded the answers to the
25 questions, with one column allotted to each.” If we want to read the answers to questions 1 and
5, it would indeed be natural to code

_column(54) ql %1f
_skip(3)
q5 %if

Nobody has ever read data documentation with the statement, “Demographics are recorded on record
2, and two records after that are the income values.” The documentation would instead say, “Record
2 contains the demographic information and record 4, income.” The _newline() way of thinking
is based on what is convenient for the computer, which does, after all, have to move past a certain
number of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified _newline() to go forward a number
of records. They still can, so their old dictionaries will work. When you use _newline() and do
not specify _lines(), you must move past the correct number of records so that, at the end of the
dictionary, you are on the last record. In this mode, when Stata reexecutes the dictionary to process
the next observation, it goes forward one record.

a

infile (fixed format) — Read text data in fixed format with a dictionary 341

Examples of reading fixed-format files

> Example 10
In this example, each observation occupies two lines. The first 2 observations in the dataset are
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001;
that his address is 101 North 42nd Street; and that his answers to questions 1-10 were yes, no, yes,
no, yes, yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID
is 10002; that his address is 15663 Roustabout Boulevard; and that his answers to questions 1-10
were no, yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate

columns:
+ 1 +———-2 + 3 + 4 + 5 + 6 + T-———+ 8
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000

+ 1 + 2 + 3 + 4 + 5————+-——-6 + 7 + 8

Each observation in the data appears in two physical lines within our text file. We had to check in
our editor to be sure that there really were new-line characters (for example, “hard returns”) after
the address. This is important because some programs will wrap output for you so that one line may
appear as many lines. The two seemingly identical files will differ in that one has a hard return and
the other has a soft return added only for display purposes.

In our data, the name occupies columns 1-32; a person identifier occupies columns 33-37; and the
address occupies columns 40—80. Our worksheet revealed that the widest address ended in column 80.

342 infile (fixed format) — Read text data in fixed format with a dictionary

The text file containing these data is called fname.txt. Our dictionary file looks like this:

begin fname.dct
infile dictionary using fname.txt {

*

* Example reading in data where observations extend across more

* than one line. The next line tells infile there are 2 lines/obs:

*

_lines(2)

*
str50 name %32s "Name of respondent"

_column(33) long id %5f "Person id"

_skip(2) str50 addr %h4ls "Address"

_line(2)

_column(1) byte ql %1t "Question 1"
byte q2 %1t "Question 2"
byte q3 %1t "Question 3"
byte q4 %1t "Question 4"
byte q5 hif "Question 5"
byte q6 %1t "Question 6"
byte q7 %1t "Question 7"
byte q8 h1f "Question 8"
byte Q9 %1t "Question 9"
byte ql0 %1t "Question 10"

}

end fname.dct

Up to five pieces of information may be supplied in the dictionary for each variable: the location
of the data, the storage type of the variable, the name of the variable, the input format, and the
variable label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called
name, and is to have the variable label “Name of respondent”. The %32s is the input format, which
tells Stata how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells
Stata to go across 32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id,
and be labeled “Person id”. Stata should start reading the information for this variable in column 33.
The £ tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled “Address”.
The _skip(2) directs Stata to skip two columns before beginning to read the data for this variable,
and the %41s instructs Stata to read across 41 columns and not to remove embedded blanks.

line(2) instructs Stata to go to line 2 of the observation.

The remainder of the data is 0/1 coded, indicating the answers to the questions. It would be
convenient if we could use a shorthand to specify this portion of the dictionary, but we must supply
explicit directives.

N

Q Technical note

In the preceding example, there were two pieces of information about location: where the data
begin for each variable (the _column(), _skip(), _1ine()) and how many columns the data span
(the %32s, %5f, %41s, %1f). In our dictionary, some of this information was redundant. After reading
name, Stata had finished with 32 columns of information. Unless instructed otherwise, Stata would
proceed to the next column—column 33 —to begin reading information about id. The _column(33)
was unnecessary.

infile (fixed format) — Read text data in fixed format with a dictionary 343

The _skip(2) was necessary, however. Stata had read 37 columns of information and was ready
to look at column 38. Although the address information does not begin until column 40, columns 38
and 39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would
just ignore them without any trouble. The problem is with the %41s. If Stata begins reading the
address information from column 38 and reads 41 columns, Stata would stop reading in column 78
(78 — 41+ 1 = 38), but the widest address ends in column 80. We could have omitted the _skip(2)
if we had specified an input format of %43s.

The _1line(2) was necessary, although we could have read the second line by coding _newline
instead.

The _column(1) could have been omitted. After the _1ine (), Stata begins in column 1.

See the next example for a dataset in which both pieces of location information are required.
a

> Example 11

The following file contains six variables in a variety of formats. In the dictionary, we read the
variables fifth and sixth out of order by forcing the column pointer.

begin example.dct ————
infile dictionary {

first %3f
double second %2.1f
third %6£
_skip(2) strd fourth Y4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}

1.2125.7e+262abcd 1 .232
1.3135.7 52efgh2 5
1.41457 52abcd 3 100.
1.5155.7D+252efgh04 1.7
16 16 .57 52abcd 5 1.71

end example.dct ———

Assuming that the above is stored in a file called example.dct, we can infile and list it by
typing
. infile using example

infile dictionary {

first %3f
double second %2.1f
third %6%
_skip(2) str4 fourth Y4s
_column(21) sixth %4.1f
_column(18) fifth %2f

}

(5 observations read)

344 infile (fixed format) — Read text data in fixed format with a dictionary

. list

first second third fourth sixth fifth

1. 1.2 1.2 570 abcd .232 1
2. 1.3 1.3 5.7 efgh .5 2
3. 1.4 1.4 57 abcd 100 3
4. 1.5 1.5 570 efgh 1.7 4
5. 16 1.6 .57 abcd 1.71 5

Reading fixed-block files

Q Technical note

The _1recl (#) directive is used for reading datasets that do not have end-of-line delimiters (carriage
return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where
they are known as fixed block, or FB. The abbreviation LRECL is IBM mainframe jargon for logical
record length.

In a fixed-block dataset, each # characters are to be interpreted as a record. For instance, consider
the data

In fixed-block format, these data might be recorded as

begin mydata.ibm
1 212 423 63
end mydata.ibm

and you would be told, on the side, that the LRECL is 4. If you then pass along that information to
infile, it can read the data:

begin mydata.dct
infile dictionary using mydata.ibm {

_lrecl(4)
int id
int age

end mydata.dct

When you do not specify the _lrecl(#) directive, infile assumes that each line ends with
the standard ASCII delimiter (which can be a line feed, a carriage return, a line feed followed by a
carriage return, or a carriage return followed by a line feed). When you specify _lrecl(#), infile
reads the data in blocks of # characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such
as 160 when it is really 80. To understand what can happen, pretend that you thought the LRECL in
your data was 6 rather than 4. Taking the characters in groups of 6, the data appear as

1 212
423 63

infile (fixed format) — Read text data in fixed format with a dictionary 345

Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify
that you have the correct number.

The maximum LRECL infile allows is 524,275.

Reading EBCDIC files

In the previous section, we discussed the _1recl (#) directive that is often necessary for files that
originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even ASCII files, which are commonly known just as a plain-text
file. Sometimes, these files have an alternate character encoding known as extended binary coded
decimal interchange code (EBCDIC). The EBCDIC encoding was created in the 1960s by IBM for its
mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example;
it would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and
can read data from EBCDIC files.

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from
which you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically
have end-of-line delimiters) and the character positions of the fields in the file. You create a dictionary
for an EBCDIC file just as you would for an ASCII file, using the Do-file Editor or another text editor,
and being sure to use the _1recl() directive in the dictionary to specify the LRECL. You then simply
specify the ebcdic option for infile, and Stata will convert the characters in the file from EBCDIC
to ASCII on the fly:

. infile using mydict, ebcdic

References

Gleason, J. R. 1998. dm54: Capturing comments from data dictionaries.i Stata Technical Bulletin 42: 3—4. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, pp. 55-57. College Station, TX: Stata Press.

Gould, W. W. 1992. dm10: Infiling data: Automatic dictionary creation. Stata Technical Bulletin 9: 4-8. Reprinted
in Stata Technical Bulletin Reprints, vol. 2, pp. 28-34. College Station, TX: Stata Press.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Also see
[D] infile (free format) — Read unformatted text data
[D] infix (fixed format) — Read text data in fixed format
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata

[U] 21 Inputting and importing data

http://www.stata.com/products/stb/journals/stb42.pdf
http://www.stata.com/products/stb/journals/stb9.pdf
http://www.stata.com/products/stb/journals/stb20.pdf

Title

infile (free format) — Read unformatted text data

Syntax
infile varlist [_skip[(#)] [varlist [_skip[(#)] e]] } using filename [lf] [in]

[, options]

options Description
Main
clear replace data in memory
Options
automatic create value labels from nonnumeric data
byvariable (#) organize external file by variables; # is number of observations
Menu

File > Import > Unformatted text data

Description

infile reads into memory from a disk a dataset that is not in Stata format. If filename is specified
without an extension, .raw is assumed.

Note for Stata for Mac and Stata for Windows users: If your filename contains embedded spaces,
remember to enclose it in double quotes.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not
need to know the formatting information. Another variation on infile allows reading fixed-format
data; see [D] infile (fixed format). Yet another alternative is insheet, which is easier to use if your
data are tab- or comma-separated and contain 1 observation per line. Stata has other commands for
reading data, too. If you are not certain that infile will do what you are looking for, see [D] import
and [U] 21 Inputting and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Options
Main

Is

clear specifies that it is okay for the new data to replace the data that are currently in memory. To
ensure that you do not lose something important, infile will refuse to read new data if data are
already in memory. clear allows infile to replace the data in memory. You can also drop the
data yourself by typing drop _all before reading new data.

346

infile (free format) — Read unformatted text data 347

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

byvariable (#) specifies that the external data file is organized by variables rather than by observations.
All the observations on the first variable appear, followed by all the observations on the second
variable, and so on. Time-series datasets sometimes come in this format.

Remarks

This section describes infile features for reading data in free or comma-separated—value format.
Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables

Skipping observations
Reading time-series data

Reading free-format data

In free format, data are separated by one or more white-space characters—blanks, tabs, or new
lines (carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may
span any number of lines.

Numeric missing values are indicated by single periods (“.”).

> Example 1

In the file highway.raw, we have information on the accident rate per million vehicle miles along
a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps
and off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6

2.86 60 4.4

1.61 . 2.2

3.02 60

4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)

. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

348 infile (free format) — Read unformatted text data

The spacing of the numbers in the original file is irrelevant.

Q Technical note

Missing values need not be indicated by one period. The third observation on the speed limit is
missing in example 1. The raw data file indicates this by recording one period. Let’s assume, instead,
that the missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6

2.86 60 4.4

1.61 unknown 2.2

3.02 60

4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)

infile warned us that it could not read the word unknown, stored a missing, and then continued to
read the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicate missing data in the same way, this feature can be useful when
reading data. Whenever infile sees something that it does not understand, it warns you, records a
missing, and continues. If, on the other hand, the missing values were recorded not as unknown but
as, say, 99, Stata would have had no difficulty reading the number, but it would also have stored 99
rather than missing. To convert such coded missing values to true missing values, see [D] mvencode.

a

Reading comma-separated data

In comma-separated—value format, data are separated by commas. You may mix comma-separated—
value and free formats. Missing values are indicated either by single periods or by multiple commas
that serve as placeholders, or both. As with free format, 1 observation may span any number of input
lines.

> Example 2

We can modify the format of highway.raw used in example 1 without affecting infile’s ability
to read it. The dataset can be read with the same command, and the results would be the same if the
file instead contained

begin highway.raw, example 3
4.58,55 4.6

2.86, 60,4.4

1.61,,2.2

3.02,60

4.7

end highway.raw, example 3

infile (free format) — Read unformatted text data 349

Specifying variable types

The variable names you type after the word infile are new variables. The syntax for a new
variable is

[type] new_varname [H label_name]

A full discussion of this syntax can be found in [U] 11.4 varlists. As a quick review, new variables
are, by default, of type float. This default can be overridden by preceding the variable name with
a storage type (byte, int, long, float, double, or str#) or by using the set type command. A
list of variables placed in parentheses will be given the same type. For example,

double (first_var second_var ... last_var)
causes first_var second_var ... last_var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist vari-var4
is equivalent to specifying varl var2 var3 var4.

> Example 3

In the highway example, we could infile the data acc_rate, spdlimit, and acc_pts and
force the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1i-v3) using highway, clear
(4 observations read)

Reading string variables

By explicitly specifying the types, you can read string variables, as well as numeric variables.

> Example 4

Typing infile str20 name age sex using myfile would read

begin myfile.raw
"Sherri Holliday" 25 1

Branton 32 1

"Bill Ross" 27,0

begin myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 "Branton" 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

350 infile (free format) — Read unformatted text data

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes
do not count when calculating the length of strings. Quotes may be omitted altogether if the string
contains no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints. 4

Q Technical note

infile can also handle nonnumeric data by using value labels. We will briefly review value
labels, but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable
called sex in our data that represented the sex of the individual, we might code O for male and 1 for
female. We could then just remember that every time we see a value of 0 for sex, that observation
refers to a male, whereas 1 refers to a female.

Even better, we could inform Stata that O represents males and 1 represents females by typing

. label define sexfmt O "Male" 1 "Female"

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is
typically done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than O and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. Not only can it go from numeric codes to words
such as “Male” and “Female”, it can also go from the words to the numeric code. We tell infile
the value label that goes with each variable by placing a colon (:) after the variable name and typing
the name of the value label. Before we do that, we use the 1label define command to inform Stata
of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that
we wish to store numeric codes rather than the strings themselves. This will result in considerable
data compression, especially if we store the numeric code as a byte. We have a dataset named
persons.raw that contains name, sex, and age:

begin persons.raw
"Arthur Doyle" Male 22

"Mary Hope" Female 37

"Guy Fawkes" Male 48

"Carrie House" Female 25

end persons.raw

infile (free format) — Read unformatted text data 351

Here is how we read and encode it at the same time:

. label define sexfmt O "Male" 1 "Female"

. infile str16 name sex:sexfmt age using persons
(4 observations read)

. list
name sex age
1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25

The str16 in the infile command applies only to the name variable; sex is a numeric variable,
which we can prove by typing

. list, nolabel

name sex age
1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Q Technical note

When infile is directed to use a value label and it finds an entry in the file that does not match
any of the codings recorded in the label, it prints a warning message and stores missing for the
observation. By specifying the automatic option, you can instead have infile automatically add
new entries to the value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character
string; the remaining two variables, which we will just call varl and var2, contain numbers. We
have stored the data in a file called geog.raw:

begin geog.raw

"NE" 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44.33
NCntrl 22.51 55.21

end geog.raw

The easiest way to read this dataset is to type

. infile str6 region varl var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for
reading a dataset like this containing 20,000 observations. If region were numerically encoded and
stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by
100,000 bytes. We also do not want to bother with first creating the value label. Using the automatic
option, infile creates the value label automatically as it encounters new regions.

352 infile (free format) — Read unformatted text data

. infile byte region:regfmt varl var2 using geog, automatic clear
(6 observations read)

. list, sep(0)

region varl var2

NE 31.23 87.78
NCntrl 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.5 44 .33
NCntrl 22.51 55.21

o O WN -

infile automatically created and defined a new value label called regfmt. We can use the label
list command to view its contents:
. label list regfmt
regfmt:
1 NE
2 NCntrl
3 South
4 West

The value label need not be undefined before we use infile with the automatic option. If the
value label regfmt had been previously defined as

. label define regfmt 2 "West"

the result of label 1list after the infile would have been

regfmt:
2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a
dataset containing, among other things, information about an individual’s sex. We know that the sex
variable is supposed to be coded male and female. If we read the data by using the automatic
option and if one of the records contains fmlae, then infile will blindly create a third sex rather

than print a warning.
a

Skipping variables

Specifying _skip instead of a variable name directs infile to ignore the variable in that location.
This feature makes it possible to extract manageable subsets from large disk datasets. A number of
contiguous variables can be skipped by specifying _skip(#), where # is the number of variables to
ignore.

> Example 5
In the highway example from example 1, the data file contained three variables: acc_rate,
spdlimit, and acc_pts. We can read the first two variables by typing

. infile acc_rate spdlimit _skip using highway
(4 observations read)

infile (free format) — Read unformatted text data 353

We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

_skip may be specified more than once. If we had a dataset containing four variables—say, a, b,
c, and d—and we wanted to read just a and c, we could type infile a _skip ¢ _skip using
filename.

N

Skipping observations

Subsets of observations can be extracted by specifying if exp, which also makes it possible to
extract manageable subsets from large disk datasets. Do not, however, use the _variable _N in exp.
Use the in range modifier to refer to observation numbers within the disk dataset.

> Example 6

Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc_rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data

If you are dealing with time-series data, you may receive datasets organized by variables rather
than by observations. All the observations on the first variable appear, followed by all the observations
on the second variable, and so on. The byvariable (#) option specifies that the external data file is
organized in this way. You specify the number of observations in the parentheses, because infile
needs to know that number to read the data properly. You can also mark the end of one variable’s
data and the beginning of another’s data by placing a semicolon (“;”) in the raw data file. You may
then specify a number larger than the number of observations in the dataset and leave it to infile to
determine the actual number of observations. This method can also be used to read unbalanced data.

> Example 7

We have time-series data on 4 years recorded in the file time.raw. The dataset contains information
on year, amount, and cost, and is organized by variable:

354 infile (free format) — Read unformatted text data

begin time.raw
1980 1981 1982 1983

14 17 25 30

120 135 150

180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)

. list
year amount cost
1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180

If the data instead contained semicolons marking the end of each series and had no information for
amount in 1983, the raw data might appear as

1980 1981 1982 1983 ;

14 17 25 ;

120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)

. list

year amount cost
1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

4
Also see

[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] import — Overview of importing data into Stata
[D] export — Overview of exporting data from Stata

[U] 21 Inputting and importing data

Title

infix (fixed format) — Read text data in fixed format

Syntax

infix using dfilename [zf] [in] [, using(filenamey) clear}
infix specifications using filename [lf] [m] [, clear]

where dfilename, if it exists, contains

begin dictionary file
infix dictionary [using ﬁlename] {
* comments preceded by asterisk may appear freely
specifications
}
(your data might appear here)

end dictionary file

and where specifications is

firstlineoffile

lines

#:

/

[byte | int | float | long | double | str} varlist [#]#[-#}

Menu

File > Import > Text data in fixed format

Description

infix reads into memory from a disk dataset that is not in Stata format. infix requires that the
data be in fixed-column format.

If dfilename is specified without an extension, .dct is assumed. If filename is specified without
an extension, .raw is assumed. If dfilename contains embedded spaces, remember to enclose it in
double quotes.

In the first syntax, if using filenames is not specified on the command line and using filename is
not specified in the dictionary, the data are assumed to begin on the line following the closing brace.

infile and insheet are alternatives to infix. infile can also read data in fixed format—see
[D] infile (fixed format)—and it can read data in free format—see [D] infile (free format). Most
people think that infix is easier to use for reading fixed-format data, but infile has more features.
If your data are not fixed format, you can use insheet; see [D] insheet. If you are not certain that
infix will do what you are looking for, see [D] import and [U] 21 Inputting and importing data.

In its first syntax, infix reads the data in a two-step process. You first create a disk file describing
how the data are recorded. You tell infix to read that file—called a dictionary—and from there,
infix reads the data. The data can be in the same file as the dictionary or in a different file.

355

356 infix (fixed format) — Read text data in fixed format

In its second syntax, you tell infix how to read the data right on the command line with no
intermediate file.

Options
Main

using(filenamey) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using(filename) is specified, filenames
is used to obtain the data, even if the dictionary says otherwise. If filenames is specified without
an extension, .raw is assumed. If filenames contains embedded spaces, remember to enclose it in
double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infix will refuse to read new data if data are already in
memory. clear allows infix to replace the data in memory. You can also drop the data yourself
by typing drop _all before reading new data.

Specifications

firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which
the data begin. You need not specify first when the data follow the dictionary; infix can figure
that out for itself. You can specify first when only the data appear in a file and the first few
lines of that file contain headers or other markers.

first appears only once in the specifications.

lines states the number of lines per observation in the file. Simple datasets typically have “1
lines”. Large datasets often have many lines (sometimes called records) per observation. lines
is optional, even when there is more than one line per observation, because infix can sometimes
figure it out for itself. Still, if 1 1ines is not right for your data, it is best to specify the appropriate
number of lines.

lines appears only once in the specifications.

#: tells infix to jump to line # of the observation. Consider a file with 4 lines, meaning four
lines per observation. 2: says to jump to the second line of the observation. 4: says to jump
to the fourth line of the observation. You may jump forward or backward: infix does not care,
and there is no inefficiency in going forward to 3:, reading a few variables, jumping back to 1:,
reading another variable, and jumping back again to 3:.

You need not ensure that, at the end of your specification, you are on the last line of the observation.
infix knows how to get to the next observation because it knows where you are and it knows
lines, the total number of lines per observation.

#: may appear many times in the specifications.

/ is an alternative to #:. / goes forward one line. // goes forward two lines. We do not recommend
using / because #: is better. If you are currently on line 2 of an observation and want to get to
line 6, you could type ////, but your meaning is clearer if you type 6:.

/ may appear many times in the specifications.

[byte | int | float | long | double | str | varlist [#:]#[-#] instructs infix to read a variable
or, sometimes, more than one.

infix (fixed format) — Read text data in fixed format 357

The simplest form of this is varname #, such as sex 20. That says that variable varname be read
from column # of the current line; that variable sex be read from column 20; and that here, sex
is a one-digit number.

varname #-#, such as age 21-23, says that varname be read from the column range specified;
that age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variable with a storage type. str name 25-44 means to read the string variable
name from columns 25 through 44. If you do not specify str, the variable is assumed to be
numeric. You can specify the numeric subtype if you wish.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read
variables q1, 92, g3, g4, and g5 from columns 51 through 55 and store the five variables as bytes.

Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is
to be obtained from the second line, columns 21 through 23. Another way to do this is to put
together the #: directive with the input-variable directive: 2: age 21-23. There is a difference,
but not with respect to reading the variable age. Let’s consider two alternatives:

1: str name 25-44 age 2:21-23 ql-95 51-55

1: str name 25-44 2: age 21-23 ql-g95 51-55

The difference is that the first directive says that variables q1 through g5 are on line 1, whereas
the second says that they are on line 2.

When the colon is put in front, it indicates the line on which variables are to be found when we
do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under
consideration.

Remarks

Remarks are presented under the following headings:

Two ways to use infix

Reading string variables

Reading data with multiple lines per observation
Reading subsets of observations

Two ways to use infix

There are two ways to use infix. One is to type the specifications that describe how to read the
fixed-format data on the command line:

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 wusing highway.raw

The other is to type the specifications into a file,

begin highway.dct, example 1
infix dictionary using highway.raw {

acc_rate 1-4

spdlimit 6-7

acc_pts 9-11

end highway.dct, example 1

and then, in Stata, type

. infix using highway.dct

358 infix (fixed format) — Read text data in fixed format

The method you use makes no difference to Stata. The first method is more convenient if there are
only a few variables, and the second method is less prone to error if you are reading a big, complicated
file.

The second method allows two variations, the one we just showed—where the data are in another
file—and one where the data are in the same file as the dictionary:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4

spdlimit 6-7

acc_pts 9-11

.4

[o20N¢))

5
0

RSN RN
oo wwm
N~ O
I ORI

4
2.
4

[}

0

end highway.dct, example 2

Note that in the first example, the top line of the file read infix dictionary using highway.raw,
whereas in the second, the line reads simply infix dictionary. When you do not say where the
data are, Stata assumes that the data follow the dictionary.

> Example 1

So, let’s complete the example we started. We have a dataset on the accident rate per million
vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access
points per mile. We have created the dictionary file, highway.dct, which contains the dictionary
and the data:

begin highway.dct, example 2
infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
¥
4.58 55 .46
2.86 60 4.4
1.61 2.2
3.02 60 4.7

end highway.dct, example 2

We created this file outside Stata by using an editor or word processor. In Stata, we now read the
data. infix lists the dictionary so that we will know the directives it follows:

. infix using highway
infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}

(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 .46
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

infix (fixed format) — Read text data in fixed format 359

We simply typed infix using highway rather than infix using highway.dct. When we do not
specify the file extension, infix assumes that we mean .dct.

N

Reading string variables

When you do not say otherwise in your specification—either in the command line or in the
dictionary—infix assumes that variables are numeric. You specify that a variable is a string by
placing str in front of its name:

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

or

begin employee.dct
infix dictionary using employee.raw {

id 1-6

str name 7-36
age 38-39
str sex 40

end employee.dct

Reading data with multiple lines per observation

When a dataset has multiple lines per observation—sometimes called multiple records per
observation—you specify the number of lines per observation by using lines, and you specify
the line on which the elements appear by using #:. For example,

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 using emp2.raw

or
begin emp2.dct
infix dictionary using emp2.raw {
2 lines
1:
id 1-6
str name 7-36
2:
age 1-2
str sex 4

end emp2.dct

There are many different ways to do the same thing.

360 infix (fixed format) — Read text data in fixed format

> Example 2

Consider the following raw data:

begin mydata.raw
id income educ / sex age / rcode, answers to questions 1-5
1024 25000 HS

Male 28

119503
1025 27000 C

Female 24

022113
1035 26000 HS

Male 32

110321
1036 25000 C

Female 25

131232

end mydata.raw

This dataset has three lines per observation, and the first line is just a comment. One possible method
for reading these data is

begin mydatal.dct
infix dictionary using mydata {
2 first
3 lines
1: id 1-4
income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14
3: rcode 6

ql-g5 7-16

end mydatal.dct

although we prefer

begin mydata2.dct
infix dictionary using mydata {
2 first
3 lines
id 1: 1-4

income 1: 6-10
str educ 1:12-13
str sex 2: 6-11
age 2:13-14
rcode 3: 6

ql-q5 3: 7-16

end mydata2.dct

Either method will read these data, so we will use the first and then explain why we prefer the second.

infix (fixed format) — Read text data in fixed format

361

. infix using mydatal
infix dictionary using mydata {

2 first
3 lines
1: id 1-4
income 6-10
str educ 12-13
2: str sex 6-11
int age 13-14
3: rcode 6
ql-q5 7-16
¥
(4 observations read)
. list in 1/2
id income educ sex age rcode qil q2 93 g4 gb
1. 1024 25000 HS Male 28 1 1 9 5 0 3
2. 1025 27000 C Female 24 0 2 2 1 1 3

What is better about the second is that the location of each variable is completely documented on
each line—the line number and column. Because infix does not care about the order in which we
read the variables, we could take the dictionary and jumble the lines, and it would still work. For
instance,

begin mydata3.dct
infix dictionary using mydata {

2 first

3 lines
str sex 2: 6-11
rcode 3: 6
str educ 1:12-13
age 2:13-14
id 1: 1-4
ql-q5 3: 7-16
income 1: 6-10

end mydata3.dct

will also read these data even though, for each observation, we start on line 2, go forward to line
3, jump back to line 1, and end up on line 1. It is not inefficient to do this because infix does
not really jump to record 2, then record 3, then record 1 again, etc. infix takes what we say and
organizes it efficiently. The order in which we say it makes no difference, except that the order of
the variables in the resulting Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable.
Moreover, we often construct dictionaries, realize that we omitted a variable, and then go back and
modify them. By making each line complete, we can add new variables anywhere in the dictionary
and not worry that, because of our addition, something that occurs later will no longer read correctly.

N

362 infix (fixed format) — Read text data in fixed format

Reading subsets of observations

If you wanted to read only the information about males from some raw data file, you might type

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex=="M"

If your specification was instead recorded in a dictionary, you could type

. infix using employee.dct if sex=="M"

In another dataset, if you wanted to read just the first 100 observations, you could type

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 wusing emp2.raw
> in 1/100

or if the specification was instead recorded in a dictionary and you wanted observations 101-573,
you could type

. infix using emp2.dct in 101/573

Also see
[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata

[U] 21 Inputting and importing data

Title

input — Enter data from keyboard

Syntax

iﬂut [varlist} [, automatic label]

Description

input allows you to type data directly into the dataset in memory. See also [D] edit for a windowed
alternative to input.

Options

automatic causes Stata to create value labels from the nonnumeric data it encounters. It also
automatically widens the display format to fit the longest label. Specifying automatic implies
label, even if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated
with value labels. New value labels are not automatically created unless automatic is specified.

Remarks

If no data are in memory, you must specify a varlist when you type input. Stata will then prompt
you to enter the new observations until you type end.

> Example 1

We have data on the accident rate per million vehicle miles along a stretch of highway, along with
the speed limit on that highway. We wish to type these data directly into Stata:

. input
nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to
know the names of the variables we wish to create.

. input acc_rate spdlimit

acc_rate spdlimit
4.58 55

2.86 60

1.61 .

end

B wWwN -

363

364 input — Enter data from keyboard

We typed input acc_rate spdlimit, and Stata responded by repeating the variable names and
prompting us for the first observation. We entered the values for the first two observations, pressing
Return after each value was entered. For the third observation, we entered the accident rate (1.61),
but we entered a period (.) for missing because we did not know the corresponding speed limit for
the highway. After entering data for the fourth observation, we typed end to let Stata know that there
were no more observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1 4.58 55
2 2.86 60
3 1.61

N

If you have data in memory and type input without a varlist, you will be prompted to enter more
information on all the variables. This continues until you type end.

> Example 2: Adding observations

We now have another observation that we wish to add to the dataset. Typing input by itself tells
Stata that we wish to add new observations:

. input

acc_rate spdlimit
4. 3.02 60
5. end

Stata reminded us of the names of our variables and prompted us for the fourth observation. We
entered the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation.
We could add as many new observations as we wish. Because we needed to add only 1 observation,
we typed end. Our dataset now has 4 observations.

4

You may add new variables to the data in memory by typing input followed by the names of the
new variables. Stata will begin by prompting you for the first observation, then the second, and so
on, until you type end or enter the last observation.

> Example 3: Adding variables

In addition to the accident rate and speed limit, we now obtain data on the number of access points
(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts

acc_pts
.6

W N
BN D

4
.2
7

input — Enter data from keyboard 365

When we typed input acc_pts, Stata responded by prompting us for the first observation. There
are 4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us
for the second observation, and so on. We entered each of the numbers. When we entered the final
observation, Stata automatically stopped prompting us—we did not have to type end. Stata knows that
there are 4 observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the
new variables with missing. To illustrate this, we enter one more variable to our data and then list

the result:
. input junk
junk

1.1
2. 2
3. end

. list

acc_rate spdlimit acc_pts junk

1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2
4. 3.02 60 4.7

4

You can input string variables by using input, but you must remember to indicate explicitly that
the variables are strings by specifying the type of the variable before the variable’s name.

> Example 4: Inputting string variables

String variables are indicated by the types str#, where # represents the storage length, or maximum
length, of the variable. For instance, a str4 variable has a maximum length of 4, meaning that it can
contain the strings a, ab, abc, and abcd, but not abcde. Strings shorter than the maximum length
can be stored in the variable, but strings longer than the maximum length cannot. You can create
variables up to str244.

Although a str80 variable can store strings shorter than 80 characters, you should not make all
your string variables str80 because Stata allocates space for strings on the basis of their maximum
length. Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input str16 name age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. Guy Fawkes 48 male
’Fawkes’ cannot be read as a number
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable
and sex a str6 variable. Because we did not specify anything about age, Stata made it a numeric
variable.

366 input — Enter data from keyboard

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we
typed in double quotes. The double quotes are not really part of the string; they merely delimit the
beginning and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male.
We did not bother to type double quotes around the word male because it contained no blanks or
special characters. For the second observation, we typed the double quotes around female; it changed
nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us
that Fawkes could not be read as a number and reprompted us for the observation. When we omitted
the double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This
would have been okay with Stata, except for one problem: Fawkes looks nothing like a number, so
Stata complained and gave us another chance. This time, we remembered to put the double quotes
around the name.

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is
our dataset:

. list
name age sex
1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

»> Example 5: Specifying numeric storage types

Just as we indicated the string variables by placing a storage type in front of the variable name, we
can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:
byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that
the variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to
conserve memory. The default type float has plenty of precision for most circumstances because
Stata performs all calculations in double precision, no matter how the data are stored. If you were
storing nine-digit Social Security numbers, however, you would want to use a different storage type,
or the last digit would be rounded. long would be the best choice; double would work equally well,
but it would waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers
between —32,767 and 32,740, it can be stored as an int and would take only half the space. If a
variable contains only integers between —127 and 100, it can be stored as a byte, which would take
only half again as much space. For instance, in example 4 we entered data for age without explicitly
specifying the storage type; hence, it was stored as a float. It would have been better to store it as
a byte. To do that, we would have typed

. input str16 name byte age str6 sex

name age sex
"Arthur Doyle" 22 male

"Mary Hope" 37 "female"

"Guy Fawkes" 48 male

"Kriste Yeager" 25 female

end

g wWwN e

input — Enter data from keyboard 367

Stata understands several shorthands. For instance, typing

. input int(a b) ¢

allows you to input three variables—a, b, and c—and makes both a and b ints and ¢ a float.
Remember, typing

. input int a b ¢

would make a an int but both b and ¢ floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to
typing v1 v2 v3 v4. Thus typing

. input int(vi-v4)

inputs four variables and stores them as ints.

Q Technical note

The rest of this section deals with using input with value labels. If you are not familiar with
value labels, see [U] 12.6.3 Value labels.

Value labels map numbers into words and vice versa. There are two aspects to the process. First,
we must define the association between numbers and words. We might tell Stata that O corresponds
to male and 1 corresponds to female by typing label define sexlbl O "male" 1 "female".
The correspondences are named, and here we have named the 0«<»male 1<female correspondence
sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and
the variable were called sex, we would do this by typing label values sex sexlbl. We would
have entered the data by typing Os and 1s, but at least now when we list the data, we would see
the words rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with
the variable at the time we input the data and tell Stata to use the value label to interpret what we

type:
. label define sexlbl O "male" 1 "female"
. input str16 name byte(age sex:sexlbl), label

name age sex
"Arthur Doyle" 22 male

"Mary Hope" 37 "female"

"Guy Fawkes" 48 male

"Kriste Yeager" 25 female

end

g wWwN e

After defining the value label, we typed our input command. We added the label option at the
end of the command, and we typed sex:sex1bl for the name of the sex variable. The byte(...)
around age and sex:sexlbl was not really necessary; it merely forced both age and sex to be
stored as bytes.

368 input — Enter data from keyboard

Let’s first decipher sex:sex1bl. sex is the name of the variable we want to input. The :sex1bl
part tells Stata that the new variable is to be associated with the value label named sex1bl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value
label and substitute the number when it stores the data. Thus when we entered the first observation
of our data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric.
Rather than complaining that “"male" could not be read as a number”, Stata accepted what we typed,
looked up the number corresponding to male, and stored that number in the data.

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if
those words were actually stored in the dataset rather than their numeric codings:

. list
name age sex
1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female
. tabulate sex
sex Freq. Percent Cum.
male 2 50.00 50.00
female 2 50.00 100.00
Total 4 100.00

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For
instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata
would report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a
variable, we never have to do so again. If we wanted to add another observation to these data, we
could type

. input, label

name age sex
5. "Mark Esman" 26 male
6. end

Q Technical note

The automatic option automates the definition of the value label. In the previous example, we
informed Stata that male corresponds to O and female corresponds to 1 by typing label define
sexlbl 0 "male" 1 "female". It was not necessary to explicitly specify the mapping. Specifying
the automatic option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not
a number, check the value label associated with the variable in an attempt to interpret it. If an
interpretation exists, store the corresponding numeric code. If one does not exist, add a new numeric
code corresponding to what was typed. Store that new number and update the value label so that the
new correspondence is never forgotten.

input — Enter data from keyboard 369

We can use these features to reenter our age and sex data. Before reentering the data, we drop
_all and label drop _all to prove that we have nothing up our sleeve:

. drop _all
. label drop _all
. input str16 name byte(age sex:sexlbl), automatic

name age sex
"Arthur Doyle" 22 male
"Mary Hope" 37 "female"
"Guy Fawkes" 48 male
"Kriste Yeager" 25 female
end

g WN e

We previously defined the value label sex1bl so that male corresponded to 0 and female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 male

2 female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

Also see
[D] save — Save Stata dataset
[D] edit — Browse or edit data with Data Editor
[D] import — Overview of importing data into Stata

[U] 21 Inputting and importing data

http://www.stata-journal.com/sjpdf.html?articlenum=dm0010

Title

insheet — Read text data created by a spreadsheet

Syntax
insheet [varlist] using filename [s options}
options Description
[@] double override default storage type
tab tab-delimited data
comma comma-delimited data
delimiter("char") use char as delimiter
clear replace data in memory
case preserve variable name’s case
[@] names variable names are included on the first line of the file

[no]names does not appear in the dialog box.

Menu

File > Import > Text data created by a spreadsheet

Description

insheet reads into memory from a disk a dataset that is not in Stata format. insheet is intended
for reading files created by a spreadsheet or database program. Regardless of the creator of the file,
insheet reads text (ASCII) files in which there is 1 observation per line and the values are separated
by tabs or commas. Also the first line of the file can contain the variable names. If you type

. insheet using filename

insheet reads your data; that is all there is to it.

If filename is specified without an extension, .raw is assumed. If your filename contains embedded
spaces, remember to enclose it in double quotes.

Stata has other commands for reading data. If you are not sure that insheet will do what you are
looking for, see [D] import and [U] 21 Inputting and importing data. If you want to save your data
in spreadsheet-style text format, see [D] outsheet. However, export excel may be a better option;
see [D] import excel.

Options

[no] double affects the way Stata handles the storage of floating-point variables. If the default
storage type (see [D] generate) is set to £loat, specifying the double option forces Stata to store
floating-point variables as doubles rather than floats. If the default storage type has been set
to double, you must specify nodouble to have floating-point variables stored as floats rather
than doubles; see [U] 12.2.2 Numeric storage types.

370

insheet — Read text data created by a spreadsheet 371

tab tells Stata that the values are tab-separated. Specifying this option will speed insheet’s processing,
assuming that you are right. insheet can determine for itself whether the separation character is
a tab or a comma.

comma tells Stata that the values are comma-separated. Specifying this option will speed insheet’s
processing, assuming that you are right. insheet can determine for itself whether the separation
character is a comma or a tab.

delimiter("char") allows you to specify other separation characters. For instance, if values in the
file are separated by a semicolon, specify delimiter(";").

clear specifies that it is okay for the new data to replace the data that are currently in memory. To
ensure that you do not lose something important, insheet will refuse to read new data if data
are already in memory. clear allows insheet to replace the data in memory. You can also drop
the data yourself by typing drop _all before reading new data.

case preserves the variable name’s case. By default, all variable names are imported as lowercase.

The following option is available with insheet but is not shown in the dialog box:

[no] names informs Stata whether variable names are included on the first line of the file. Specifying
this option will speed insheet’s processing, assuming that you are right. insheet can determine
for itself whether the file includes variable names.

Remarks

insheet is easy. You type

. insheet using filename

and insheet reads your data. That is, it reads your data if
1. it can find the file and
2. the file meets insheet’s expectations as to its format.

Assuring 1 is easy enough; just realize that if you type insheet using myfile, Stata interprets
this as an instruction to read myfile.raw. If your file is called myfile.txt, type insheet using
myfile.txt.

As for the file’s format, most spreadsheets and some database programs write data in the form
insheet expects. It is easy enough to look—as we will show you—and it is even easier simply to
try and see what happens. If typing

. insheet using filename

does not produce the desired result, try one of Stata’s other infile commands; see [D] import.

> Example 1

We have a raw data file on automobiles called auto.raw. This file was saved by a spreadsheet
and can be read by typing

. insheet using auto
(5 vars, 10 obs)

372 insheet — Read text data created by a spreadsheet

That done, we can now look at what we just loaded:

. describe

Contains data

obs: 10
vars: 5
size: 270
storage display value
variable name type format label variable label
make stri3 %13s
price int %8.0g
mpg byte %8.0g
rep78 byte %8.0g
foreign str10 %10s
Sorted by:
Note: dataset has changed since last saved
. list
make price mpg rep78 foreign
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic
6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

These data contain a combination of string and numeric variables. insheet figured all that out by
itself.
d

Q Technical note

Now let’s back up and look at the auto.raw file. Stata’s type command will display files on the

screen:

. type auto.raw

make price mpg rep78 foreign

AMC Concord 4099 22 3 Domestic
AMC Pacer 4749 17 3 Domestic
AMC Spirit 3799 22 . Domestic
Buick Century 4816 20 3 Domestic
Buick Electra 7827 15 4 Domestic
Buick LeSabre 5788 18 3 Domestic
Buick Opel 4453 26 . Domestic
Buick Regal 5189 20 3 Domestic
Buick Riviera 10372 16 3 Domestic
Buick Skylark 4082 19 3 Domestic

These data have tab characters between values. Tab characters are invisible and are indistinguishable
from blanks. type’s showtabs option makes the tabs visible:

insheet — Read text data created by a spreadsheet 373

. type auto.raw, showtabs
make<T>price<T>mpg<T>rep78<T>foreign
AMC Concord<T>4099<T>22<T>3<T>Domestic
AMC Pacer<T>4749<T>17<T>3<T>Domestic
AMC Spirit<T>3799<T>22<T>.<T>Domestic

Buick
Buick
Buick
Buick
Buick
Buick
Buick

Century<T>4816<T>20<T>3<T>Domestic
Electra<T>7827<T>15<T>4<T>Domestic
LeSabre<T>5788<T>18<T>3<T>Domestic
Opel<T>4453<T>26<T>.<T>Domestic
Regal<T>5189<T>20<T>3<T>Domestic
Riviera<T>10372<T>16<T>3<T>Domestic
Skylark<T>4082<T>19<T>3<T>Domestic

This is an example of the kind of data that insheet is willing to read. The first line contains the
variable names, although that is not necessary. What is necessary is that the data values have tab
characters between them.

insheet would be just as happy if the data values were separated by commas. Here is another
variation on auto.raw that insheet can read:

. type auto2.raw
make,price,mpg,rep78,foreign
AMC Concord,4099,22,3,Domestic
AMC Pacer,4749,17,3,Domestic
AMC Spirit,3799,22, ,Domestic

Buick
Buick
Buick
Buick
Buick
Buick
Buick

Century,4816,20,3,Domestic
Electra,7827,15,4,Domestic
LeSabre,5788,18,3,Domestic
Opel,4453,26, ,Domestic
Regal,5189,20,3,Domestic
Riviera,10372,16,3,Domestic
Skylark,4082,19,3,Domestic

It is easier for us human beings to see the commas rather than the tabs, but computers do not care
one way or the other.

> Example 2

a

The file does not have to contain variable names. Here is another variation on auto.raw without
the first line, this time with commas rather than tabs separating the values:

. type autod.raw

AMC Concord,4099,22,3,Domestic

AMC Pacer,4749,17,3,Domestic
(output omitted)

Buick Skylark,4082,19,3,Domestic

Here is what happens when we read it:

insheet using auto3
you must start with an empty dataset

r(18)

Oops! We still have the data from the last example in memory. We need to clear the old data before
reading the new data.

374

insheet — Read text data created by a spreadsheet

insheet using auto3, clear
(5 vars, 10 obs)

. describe

Contains data

obs: 10
vars: 5
size: 270
storage display value
variable name type format label variable label
vi stri3 %13s
v2 int %8.0g
v3 byte %8.0g
vé4 byte %8.0g
v5 stri0 %10s
Sorted by:
Note: dataset has changed since last saved
. list
vl v2 v3 v4d vb
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
(output omitted)
10. Buick Skylark 4082 19 3 Domestic

The only difference in this dataset is that rather than the variables being nicely named make, price,
mpg, rep78, and foreign, they are named v1, v2, ..., v56. We could now give our variables nicer
names:

. rename v1 make

. rename v2 price

We can also specify the variable names when reading the data:

insheet make price mpg rep78 foreign using auto3, clear
(5 vars, 10 obs)

. list
make price mpg rep78 foreign
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
(output omitted)
10. Buick Skylark 4082 19 3 Domestic

If we use this approach, we must not specify too few variables,

insheet make price mpg rep78 using auto3, clear
too few variables specified
error in line 11 of file

r(102);

insheet — Read text data created by a spreadsheet 375

or too many:
insheet make price mpg rep78 foreign weight using auto3, clear
too many variables specified

error in line 11 of file
r(103);

We recommend typing

insheet using filename

It is not difficult to rename your variables afterward, should that be necessary.

> Example 3

The data may not always be appropriate for reading by insheet. Here is yet another version of
the automobile data:

. type auto4.raw, showtabs

"AMC Concord" 4099 22 3 Domestic
"AMC Pacer" 4749 17 3 Domestic
"AMC Spirit" 3799 22 . Domestic

"Buick Century" 4816 20 3 Domestic
"Buick Electra" 7827 15 4 Domestic
"Buick LeSabre" 5788 18 3 Domestic
"Buick Opel" 4453 26 . Domestic
"Buick Regal" 5189 20 3 Domestic
"Buick Riviera" 10372 16 3 Domestic
"Buick Skylark" 4082 19 3 Domestic

We specified type’s showtabs option, and no tabs are shown. These data are not tab-delimited or
comma-delimited and are not the kind of data that insheet is designed to read. Let’s try insheet
anyway:
insheet using auto4, clear
(1 var, 10 obs)
. describe

Contains data

obs: 10
vars: 1
size: 390
storage display value
variable name type format label variable label
vl str39 %39s
Sorted by:
Note: dataset has changed since last saved
. list
vl
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
(output omitted)

10. Buick Skylark 4082 19 3 Domestic

376 insheet — Read text data created by a spreadsheet

When insheet tries to read data that have no tabs or commas, it is fooled into thinking that the data
contain just one variable. If we had these data, we would have to read the data with one of Stata’s
other commands, such as infile (free format).

4

Also see
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata
[D] rename — Rename variable

[U] 21 Inputting and importing data

Title

inspect — Display simple summary of data’s attributes

Syntax
inspect [varlist] [zf] [m]

by is allowed; see [D] by.

Menu

Data > Describe data > Inspect variables

Description

The inspect command provides a quick summary of a numeric variable that differs from the
summary provided by summarize or tabulate. It reports the number of negative, zero, and positive
values; the number of integers and nonintegers; the number of unique values; and the number of
missing; and it produces a small histogram. Its purpose is not analytical but is to allow you to quickly
gain familiarity with unknown data.

Remarks

Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify
a varlist, an inspection of just those variables is presented.

> Example 1

inspect is not a replacement or substitute for summarize and tabulate. It is instead a data-
management or information tool that lets us quickly gain insight into the values stored in a variable.

For instance, we receive data that purport to be on automobiles, and among the variables in
the dataset is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We
inspect the variable,

. use http://www.stata-press.com/data/r12/auto

(1978 Automobile Data)

. inspect mpg

mpg: Mileage (mpg) Number of Observations

Total Integers Nonintegers

Negative - - -
Zero - - -
Positive 74 74 -
#
Total 74 74 -
. Missing -
12 41 74

(21 unique values)

377

378 inspect — Display simple summary of data’s attributes

and we discover that the variable is never missing; all 74 observations in the dataset have some
value for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74
observations are 21 unique (different) values. The variable ranges from 12 to 41, and we are provided
with a small histogram that suggests that the variable appears to be what it claims.

d

> Example 2

Bob, a coworker, presents us with some census data. Among the variables in the dataset is one
called region, which is labeled Census Region and is evidently a numeric variable. We inspect
this variable:

. use http://www.stata-press.com/data/r12/bobsdata

(1980 Census data by state)

. inspect region

region: Census region Number of Observations

Total Integers Nonintegers

Negative - - -
Zero - - -
Positive 50 50 -
#
Total 50 50 -
Missing -
{ 5 50

(5 unique values)
region is labeled but 1 value is NOT documented in the label.

In this dataset something may be wrong. region takes on five unique values. The variable has a
value label, however, and one of the observed values is not documented in the label. Perhaps there
is a typographical error.

4

> Example 3

There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces
now:

. use http://www.stata-press.com/data/r12/census
(1980 Census data by state)

. inspect region
region: Census region Number of Observations

Total Integers Nonintegers

Negative - - -
Zero - - -
Positive 50 50 -
#
Total 50 50 -
Missing -
i 4 50

(4 unique values)
region is labeled and all values are documented in the label.

inspect — Display simple summary of data’s attributes 379

> Example 4

We receive data on the climate in 956 U.S. cities. The variable tempjan records the Average
January temperature in degrees Fahrenheit. The results of inspect are

. use http://www.stata-press.com/data/r12/citytemp
(City Temperature Data)

. inspect tempjan

tempjan: Average January temperature Number of Observations

Total Integers Nonintegers

Negative - - -
Zero = - -
Positive 954 78 876
#
Total 954 78 876
. Missing 2

é .2 72.6 956

(More than 99 unique values)

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan,
all are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are
more than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)

4

Saved results

inspect saves the following in r():

Scalars
r(N) number of observations
r(N_neg) number of negative observations
r(N_0) number of observations equal to 0
r(N_pos) number of positive observations

r(N_negint) number of negative integer observations
r(N_posint) number of positive integer observations
r(N_unique) number of unique values or . if more than 99
r(N_undoc) number of undocumented values or . if not labeled

Also see

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] isid — Check for unique identifiers

[R] Iv — Letter-value displays

[R] summarize — Summary statistics

[R] table — Tables of summary statistics

[R] tabulate oneway — One-way tables of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] tabulate twoway — Two-way tables of frequencies

Title

ipolate — Linearly interpolate (extrapolate) values

Syntax

ipolate yvar xvar [lf] [in] , generate(newvar) [gpolate]

by is allowed; see [D] by.

Menu

Data > Create or change data > Other variable-creation commands > Linearly interpolate/extrapolate values

Description

ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.

Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied
values of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of
newvar is just yvar.

Options
generate (newvar) is required and specifies the name of the new variable to be created.

epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

Remarks

> Example 1

We have data points on y and x, although sometimes the observations on y are missing. We believe
that y is a function of x, justifying filling in the missing values by linear interpolation:

. use http://www.stata-press.com/data/r12/ipolxmpli
. list, sep(0)

x y
1. 0 .
2. 1 3
3. | 1.5

4. 2 6
5. 3

6. | 3.5 .
7. 4 18

. ipolate y x, gen(yl)
(1 missing value generated)

. ipolate y x, gen(y2) epolate

380

ipolate — Linearly interpolate (extrapolate) values 381

. list, sep(0)

X y yi y2
1. 0 0
2. 1 3 3 3
3. | 1.5 4.5 4.5
4. 2 6 6 6
5. 3 12 12
6. | 3.5 . 15 15
7. 4 18 18 18

N
> Example 2

We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the
magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year.
In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.

. use http://www.stata-press.com/data/r12/ipolxmpl2, clear

. by magazine: ipolate circ year, gen(icirc)

When the by prefix is specified, interpolation is performed separately for each group.

Methods and formulas
ipolate is implemented as an ado-file.

The value y at x is found by finding the closest points (xg,yo) and (x1,y1), such that zg < z
and x1 > x where yo and y; are observed, and calculating

Y1 — Yo
=

T —x0) + Yo
Tr1 — Xo

Y

If epolate is specified and if (x0,%) and (z1,y1) cannot be found on both sides of z, the two
closest points on the same side of z are found, and the same formula is applied.

If there are multiple observations with the same value for xg, then yq is taken as the average of
the corresponding y values for those observations. (x1,%1) is handled in the same way.

Also see
[R] lowess — Lowess smoothing

[MI] mi impute — Impute missing values

Title

isid — Check for unique identifiers

Syntax

isid varlist [using ﬁlename] [, sort missok}

Menu

Data > Data utilites > Check for unique identifiers

Description

isid checks whether the specified variables uniquely identify the observations.

Options
sort specifies that the dataset be sorted by varlist.

missok indicates that missing values are permitted in varlist.

Remarks

> Example 1

Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations
in our auto dataset.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. isid mpg
variable mpg does not uniquely identify the observations
r(459);

isid returns an error and reports that there are multiple observations with the same mileage rating.
We can locate those observations manually:

382

isid — Check for unique identifiers 383

. sort mpg
. by mpg: generate nobs = _N

. list make mpg if nobs >1, sepby(mpg)

make mpg

1. Linc. Mark V 12
2. Linc. Continental 12

(output omitted)
68. Dodge Colt 30
69. Mazda GLC 30
72. Datsun 210 35
73. Subaru 35

> Example 2

isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need
two variables to identify the observations: one that labels the individual IDs and another that labels the
periods. Before we set the data using tsset, we want to make sure that there are no duplicates with
the same panel ID and time. Suppose that we have a dataset that records the yearly gross investment
of 10 companies for 20 years. The panel and time variables are company and year.

. use http://www.stata-press.com/data/r12/grunfeld, clear

. isid company year

isid reports no error, so the two variables company and year uniquely identify the observations.
Therefore, we should be able to tsset the data successfully:

. tsset company year
panel variable: company (strongly balanced)
time variable: year, 1935 to 1954
delta: 1 year

Q Technical note

The sort option is a convenient shortcut, especially when combined with using. The command

. isid patient_id date using newdata, sort

is equivalent to

. preserve

. use newdata, clear

. sort patient_id date
. isid patient_id date
. save, replace

. restore

384 isid — Check for unique identifiers

Methods and formulas

isid is implemented as an ado-file.

Also see
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] duplicates — Report, tag, or drop duplicate observations
[D] lookfor — Search for string in variable names and labels
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

joinby — Form all pairwise combinations within groups

Syntax

joinby [varlist] using filename [, options]

options Description
Options
When observations match:
update replace missing data in memory with values from filename
replace replace all data in memory with values from filename

When observations do not match:

unmatched (none) ignore all; the default
unmatched (both) include from both datasets
unmatched (master) include from data in memory
unmatched (using) include from data in filename
_merge (varname) varname marks source of resulting observation; default is _merge
nolabel do not copy value-label definitions from filename
Menu

Data > Combine datasets > Form all pairwise combinations within groups

Description

joinby joins, within groups formed by varlist, observations of the dataset in memory with filename,
a Stata-format dataset. By join we mean to form all pairwise combinations. filename is required to
be sorted by varlist. If filename is specified without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in
memory and in filename.

Observations unique to one or the other dataset are ignored unless unmatched () specifies differently.
Whether you load one dataset and join the other or vice versa makes no difference in the number of
resulting observations.

If there are common variables between the two datasets, however, the combined dataset will
contain the values from the master data for those observations. This behavior can be modified with
the update and replace options.

385

386 joinby — Form all pairwise combinations within groups

Options

update varies the action that joinby takes when an observation is matched. By default, values from
the master data are retained when the same variables are found in both datasets. If update is
specified, however, the values from the using dataset are retained where the master dataset contains
missing.

replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced
with corresponding values from the using dataset. A nonmissing value, however, will never be
replaced with a missing value.

unmatched (none | both | master |using) specifies whether observations unique to one of the datasets
are to be kept, with the variables from the other dataset set to missing. Valid values are

none ignore all unmatched observations (default)

both include unmatched observations from the master and using data
master include unmatched observations from the master data

using include unmatched observations from the using data

_merge (varname) specifies the name of the variable that will mark the source of the resulting
observation. The default name is _merge (_merge). To preserve compatibility with earlier versions
of joinby, _merge is generated only if unmatched is specified.

nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the
dataset in memory. Even if you do not specify this option, label definitions from the disk dataset
do not replace label definitions already in memory.

Remarks

The following, admittedly artificial, example illustrates joinby.

> Example 1

We have two datasets: child.dta and parent.dta. Both contain a family_id variable, which
identifies the people who belong to the same family.

. use http://www.stata-press.com/data/r12/child
(Data on Children)

. describe

Contains data from http://www.stata-press.com/data/r12/child.dta

obs: 5 Data on Children
vars: 4 11 Dec 2010 21:08
size: 30

storage display value

variable name type format label variable label
family_id int %8.0g Family ID number
child_id byte 7%8.0g Child ID number
x1 byte %8.0g
x2 int %8.0g

Sorted by: family_id

joinby — Form all pairwise combinations within groups

387

. list
family~d child_id x1 x2
1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 156 210

. use http://www.stata-press.com/data/r12/parent
(Data on Parents)

. describe

Contains data from http://www.stata-press.com/data/r12/parent.dta

obs: 6 Data on Parents
vars: 4 11 Dec 2010 03:06
size: 84
storage display value
variable name type format label variable label
family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g
Sorted by:
. list, sep(0)
family~d parent~d x1 x3
1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

We want to join the information for the parents and their children. The data on parents are in memory,
and the data on children are posted at http://www.stata-press.com. child.dta has been sorted by
family_id, but parent.dta has not, so first we sort the parent data on family_id:

http://www.stata-press.com

388 joinby — Form all pairwise combinations within groups

. sort family_id

. joinby family_id using http://www.stata-press.com/data/r12/child

. describe

Contains data

obs: 8 Data on Parents
vars: 6

size: 136

storage display value

variable name type format label variable label
family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g
child_id byte %8.0g Child ID number
x2 int %8.0g
Sorted by:

Note: dataset has changed since last saved

. list, sepby(family_id) abbrev(12)

family_id parent_id x1 x3 child_id x2
1. 1025 12 27 721 1 300
2. 1025 12 27 721 4 275
3. 1025 12 27 721 3 320
4. 1025 11 20 643 4 275
5. 1025 11 20 643 1 300
6. 1025 11 20 643 3 320
7. 1026 13 30 760 280
8. 1026 14 26 668 2 280

1. family_id of 1027, which appears only in child.dta, and family_id of 1030, which appears
only in parent.dta, are not in the combined dataset. Observations for which the matching
variables are not in both datasets are omitted.

2. The x1 variable is in both datasets. Values for this variable in the joined dataset are the values
from parent.dta—the dataset in memory when we issued the joinby command. If we had
child.dta in memory and parent.dta on disk when we requested joinby, the values for x1
would have been those from child.dta. Values from the dataset in memory take precedence over

the dataset on disk.

Methods and formulas

joinby is implemented as an ado-file.

Acknowledgment

4

joinby was written by Jeroen Weesie, Department of Sociology, Utrecht University, The Nether-

lands.

joinby — Form all pairwise combinations within groups 389

Reference

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see
[D] save — Save Stata dataset
[D] append — Append datasets
[D] cross — Form every pairwise combination of two datasets
[D] fillin — Rectangularize dataset
[D] merge — Merge datasets
[U] 22 Combining datasets

http://www.stata-press.com/books/isp.html

Title

label — Manipulate labels

Syntax
Label dataset

label data ["label"]

Label variable

label variable varname ["label“]

Define value label

label define lblname # "label" [# "label" ... } [, add modify replace nofix]

Assign value label to variables

label values varlist [lblname| .] [s nofix}

List names of value labels

label dir

List names and contents of value labels

label list [lblname [lblname -]]

Copy value labels

label copy [blname Iblname [, replace}

Drop value labels

label drop {lblname [lblname } _all}

Save value labels in do-file

label save [lblname [lblname]] using filename [, replace]
where # is an integer or an extended missing value (.a, .b, ..., .2).
Menu
label data

Data > Data utilities > Label utilities > Label dataset

390

label — Manipulate labels 391

label variable

Data > Variables Manager

label define

Data > Variables Manager

label values

Data > Variables Manager

label list

Data > Data utilities > Label utilities > List value labels

label copy
Data > Data utilities > Label utilities > Copy value labels

label drop

Data > Variables Manager

label save

Data > Data utilities > Label utilities > Save value labels as do-file

Description

label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are
displayed when you use the dataset and when you describe it. If no label is specified, any existing
label is removed.

label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any
existing variable label is removed.

label define defines a list of up to 65,536 (1,000 for Small Stata) associations of integers and
text called value labels. Value labels are attached to variables by label values.

label values attaches a value label to varlist. If . is specified instead of [blname, any existing
value label is detached from that varlist. The value label, however, is not deleted. The syntax label
values varname (that is, nothing following the varname) acts the same as specifying the .. Value
labels may be up to 32,000 characters long.

label dir lists the names of value labels stored in memory.

label list lists the names and contents of value labels stored in memory.
label copy makes a copy of an existing value label.

label drop eliminates value labels.

label save saves value labels in a do-file. This is particularly useful for value labels that are not
attached to a variable because these labels are not saved with the data.

See [D] label language for information on the label language command.

392 label — Manipulate labels

Options

add allows you to add # < label correspondences to [blname. If add is not specified, you may create
only new [blnames. If add is specified, you may create new Iblnames or add new entries to existing
Iblnames.

modify allows you to modify or delete existing # < label correspondences and add new correspon-
dences. Specifying modify implies add, even if you do not type the add option.

replace, with label define, allows an existing value label to be redefined. replace, with label
copy, allows an existing value label to be copied over. replace, with label save, allows filename
to be replaced.

nofix prevents display formats from being widened according to the maximum length of the value
label. Consider label values myvar mylab, and say that myvar has a %9.0g display format
right now. Say that the maximum length of the strings in mylab is 12 characters. label values
would change the format of myvar from %9.0g to %12.0g. nofix prevents this.

nofix is also allowed with label define, but it is relevant only when you are modifying an
existing value label. Without the nofix option, label define finds all the variables that use this
value label and considers widening their display formats. nofix prevents this.

Remarks

See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry
deals only with details not covered there.

label dir lists the names of all defined value labels. 1label list displays the contents of a
value label.

> Example 1

Although describe shows the names of the value labels, those value labels may not exist. Stata
does not consider it an error to label the values of a variable with a nonexistent label. When this
occurs, Stata still shows the association on describe but otherwise acts as if the variable’s values
are unlabeled. This way, you can associate a value label name with a variable before creating the
corresponding label. Similarly, you can define labels that you have not yet used.

. use http://www.stata-press.com/data/r12/hbp4
. describe

Contains data from http://www.stata-press.com/data/r12/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2011 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte 7%8.0g
race byte 78.0g
hbp byte %8.0g
female byte %8.0g sex1bl

Sorted by:

label — Manipulate labels 393

The dataset is using the value label sex1bl. Let’s define the value label yesno:

. label define yesno O "no" 1 "yes"

label dir shows you the labels that you have actually defined:

. label dir
yesno
sexlbl

We have two value labels stored in memory: yesno and sexlbl.
We can display the contents of a value label with the 1abel list command:

. label list yesno
yesno:

0 no

1 yes

The value label yesno labels the values 0 as no and 1 as yes.

If you do not specify the name of the value label on the 1abel 1list command, Stata lists all the
value labels:

. label list
yesno:

0 no

1 yes
sexlbl:

0 male

1 female

Q Technical note

Because Stata can have more value labels stored in memory than are actually used in the dataset,
you may wonder what happens when you save the dataset. Stata stores only those value labels
actually associated with variables.

When you use a dataset, Stata eliminates all the value labels stored in memory before loading
the dataset.
a

You can add new codings to an existing value label by using the add option with the label
define command. You can modify existing codings by using the modify option. You can redefine
a value label by specifying the replace option.

> Example 2

The label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as
maybe. Typing label define with no options results in an error:
. label define yesno 2 maybe

label yesno already defined
r(110);

If you do not specify the add, modify, or replace options, label define can be used only to
create new value labels. The add option lets you add codings to an existing label:

394 label — Manipulate labels

. label define yesno 2 maybe, add

. label list yesno
yesno:

0 no

1 yes

2 maybe

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean “maybe” but may
instead mean “don’t know”. add does not allow you to change an existing label:

. label define yesno 2 "don’t know", add
invalid attempt to modify label
r(180);

Instead, you would specify the modify option:

. label define yesno 2 "don’t know", modify

. label list yesno
yesno:

0 no

1 yes

2 don’t know

In this way, Stata attempts to protect you from yourself. If you type label define with no
options, you can only create a new value label—you cannot accidentally change an existing one. If
you specify the add option, you can add new labels to a label, but you cannot accidentally change
any existing label. If you specify the modify option, which you may not abbreviate, you can change
any existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric
code to a null string, that is, "":

. label define yesno 2 "", modify

. label list yesno
yesno:
0 no

1 yes N
You can eliminate entire value labels by using the label drop command.

> Example 3

We currently have two value labels stored in memory—sex1bl and yesno—as shown by the
label dir command:

. label dir
yesno
sexlbl

The dataset that we have in memory uses only one of the labels—sex1bl. describe reports that
yesno is not being used:

label — Manipulate labels 395

. describe

Contains data from http://www.stata-press.com/data/r12/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2011 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte 7%8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl
Sorted by:

We can eliminate the yesno label by typing

. label drop yesno

. label dir
sexlbl

We could eliminate all the value labels in memory by typing

. label drop _all
. label dir

The value label sex1bl, which no longer exists, was associated with the variable female. Even
after dropping the value label, sex1bl is still associated with the variable:

. describe

Contains data from http://www.stata-press.com/data/r12/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2011 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte 7%8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sex1bl

Sorted by:

396 label — Manipulate labels

Stata does not mind if a nonexistent value label is associated with a variable. When Stata uses such
a variable, it simply acts as if the variable is not labeled:

. list in 1/4
id city year age_grp race hbp female
1. 8008238923 1 1993 2 2 0 1
2. 8007143470 1 1992 5 0 .
3. 8000468015 1 1988 4 2 0 0
4. 80061671563 1 1991 4 2 0 0

4

The label save command creates a do-file containing label define commands for each label
you specify. If you do not specify the lblnames, all value labels are stored in the file. If you do not
specify the extension for filename, .do is assumed.

> Example 4

label copy is useful when you want to create a new value label that is similar to an existing
value label. For example, assume that we currently have the value label yesno in memory:
. label list yesno
yesno:
1 yes
2 no
Assume that we have some variables in our dataset coded with 1 and 2 for “yes” and “no” and
that we have some other variables coded with 1 for “yes”, 2 for “no”, and 3 for “maybe”.

We could make a copy of label yesno and then add the new coding to that copy:

. label copy yesno yesnomaybe

. label define yesnomaybe 3 "maybe", add

. label list
yesnomaybe:
1 yes
2 no
3 maybe
yesno:
1 yes
2 no
d
> Example 5

Labels are automatically stored with your dataset when you save it. Conversely, the use command
drops all labels before loading the new dataset. You may occasionally wish to move a value label
from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:

. label list yesnomaybe
yesnomaybe:

1 yes

2 no

3 maybe

label — Manipulate labels 397

We have a dataset stored on disk called survey.dta to which we wish to add this value label.
We might use survey and then retype the label define yesnomaybe command. Retyping the
label would not be too tedious here but if the value label in memory mapped, say, the 50 states of
the union, retyping it would be irksome. label save provides an alternative:

. label save yesnomaybe using ynfile
file ynfile.do saved

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do
containing the definition of the yesnomaybe label.

To see the contents of the file, we can use the type command:

. type ynfile.do

label define yesnomaybe 1 ‘"yes"’, modify
label define yesnomaybe 2 ‘"no"’, modify
label define yesnomaybe 3 ‘"maybe"’, modify

We can now use our new dataset, survey.dta:

. use survey
(Household survey data)

. label dir

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe
is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing
either do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If
we type run, the file will execute silently:

. run ynfile

. label dir
yesnomaybe

The label is now restored just as if we had typed it from the keyboard.

Q Technical note

You can also use the 1abel save command to more easily edit value labels. You can save a label
in a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata.
Using do or run, you can load the edited values.

a

Saved results

label list saves the following in r():

Scalars
r (k) number of mapped values, including missings
r(min) minimum nonmissing value label
r (max) maximum nonmissing value label

r(hasemiss) 1 if extended missing values labeled, O otherwise

398 label — Manipulate labels

label dir saves the following in r():

Macros
r (names) names of value labels

References

Gleason, J. R. 1998a. dm56: A labels editor for Windows and Macintosh. Stata Technical Bulletin 43: 3—-6. Reprinted
in Stata Technical Bulletin Reprints, vol. 8, pp. 5-10. College Station, TX: Stata Press.

——. 1998b. dm56.1: Update to labedit. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Veritying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39-40. College Station, TX: Stata Press.

——. 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154-161.
——. 2005b. Multilingual datasets. Stata Journal 5: 162-187.

Also see
[D] label language — Labels for variables and values in multiple languages
[D] labelbook — Label utilities
[D] encode — Encode string into numeric and vice versa
[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.6 Dataset, variable, and value labels

http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-press.com/books/wdaus.html
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0012
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

label language — Labels for variables and values in multiple languages

Syntax
List defined languages

label language

Change labels to specified language name

label language languagename

Create new set of labels with specified language name

label language languagename, new [copy]

Rename current label set

label language languagename, rename

Delete specified label set

label language languagename, delete

Menu
Data > Data utilities > Label utilities > Set label language

Description

label language lets you create and use datasets that contain different sets of data, variable, and
value labels. A dataset might contain one set in English, another in German, and a third in Spanish.
A dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need
not use the multiple sets in this way. You could create a dataset with one set of long labels and
another set of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose
among the sets by typing

. label language languagename

When other Stata commands produce output (such as describe and tabulate), they use the
currently set language. When you define or modify the labels by using the other label commands
(see [D] label), you modify the current set.

399

400 label language — Labels for variables and values in multiple languages

label language (without arguments)
lists the available languages and the name of the current one. The current language refers to
the labels you will see if you used, say, describe or tabulate. The available languages refer
to the names of the other sets of previously created labels. For instance, you might currently
be using the labels in en (English), but labels in de (German) and es (Spanish) may also be
available.

label language languagename
changes the labels to those of the specified language. For instance, if 1abel language revealed
that en, de, and es were available, typing label language de would change the current
language to German.

label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may
name the set as you please, as long as the name does not exceed 24 characters. If the labels
correspond to spoken languages, we recommend that you use the language’s ISO 639-1 two-letter
code, such as en for English, de for German, and es for Spanish. A list of codes for popular
languages is listed in the appendix below. For a complete list, see
http://lcweb.loc.gov/standards/is0639-2/is0639jac.html.

label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default
and you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet
used label language to create a new language, the dataset will have one language, named
default.

label language languagename, delete
deletes the specified label set. If languagename is also the current language, one of the other
available languages becomes the current language.

Option

copy is used with label language, new and copies the labels from the current language to the
new language.

Remarks

Remarks are presented under the following headings:

Creating labels in the first language

Creating labels in the second and subsequent languages
Creating labels from a clean slate

Creating labels from a previously existing language
Switching languages

Changing the name of a language

Deleting a language

Appendix: Selected ISO 639-1 two-letter codes

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

label language — Labels for variables and values in multiple languages 401

Creating labels in the first language
You can begin by ignoring the label language command. You create the data, variable, and
value labels just as you would ordinarily; see [D] label.

. label data "1978 Automobile Data"
. label variable foreign "Car type"
. label values foreign origin

. label define origin O "Domestic" 1 "Foreign"

At some point—at the beginning, the middle, or the end—rename the language appropriately. For
instance, if the labels you defined were in English, type

. label language en, rename

label language, rename simply changes the name of the currently set language. You may
change the name as often as you wish.

Creating labels in the second and subsequent languages

After creating the first language, you can create a new language by typing

. label language newlanguagename, new

or by typing the two commands

. label language existinglanguagename
. label language newlanguagename, new copy

In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the
second case, you start with the labels from existinglanguagename, and you can make the changes
from there.

Creating labels from a clean slate

To create new labels in the language named de, type
. label language de, new
If you were now to type describe, you would find that there are no data, variable, or value
labels. You can define new labels in the usual way:

. label data "1978 Automobil Daten"
. label variable foreign "Art Auto"

. label values foreign origin_de
. label define origin_de O "Innen" 1 "Ausl&ndisch"

Creating labels from a previously existing language

It is sometimes easier to start with the labels from a previously existing language, which you can
then translate:

. label language en
. label language de, new copy

402 label language — Labels for variables and values in multiple languages

If you were now to type describe, you would see the English-language labels, even though the
new language is named de. You can then work to translate the labels:

. label data "1978 Automobil Daten"

. label variable foreign "Art Auto"

Typing describe, you might also discover that the variable foreign has the value label origin.
Do not change the contents of the value label. Instead, create a new value label:

. label define origin_de O "Innen" 1 "Auslandisch"
. label values foreign origin_de

Creating value labels with the copy option is no different from creating them from a clean slate,
except that you start with an existing set of labels from another language. Using describe can make
it easier to translate them.

Switching languages

You can discover the names of the previously defined languages by typing
. label language

You can switch to a previously defined language—say, to en—by typing

. label language en

Changing the name of a language

To change the name of a previously defined language make it the current language and then specify
the rename option:

. label language de
. label language German, rename

You may rename a language as often as you wish:

. label language de, rename

Deleting a language

To delete a previously defined language, such as de, type

. label language de, delete

The delete option deletes the specified language and, if the language was also the currently set
language, resets the current language to one of the other languages or to default if there are none.

Appendix: Selected ISO 639-1 two-letter codes

You may name languages as you please. You may name German labels Deutsch, German, Aleman,
or whatever else appeals to you. For consistency across datasets, if the language you are creating is
a spoken language, we suggest that you use the ISO 639-1 two-letter codes. Some of them are listed
below, and the full list can be found at http://Icweb.loc.gov/standards/is0639-2/is0639jac.html.

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

label language — Labels for variables and values in multiple languages

403

Two-letter English name of

code language

ar Arabic

cs Czech

cy Welsh

de German

el Greek

en English

es Spanish; Castillian
fa Persian

fi Finnish

fr French

ga Irish

he Hebrew

hi Hindi

is Icelandic

it Italian

ja Japanese

kl Kalaallisut; Greenlandic

It Lithuanian

Iv Latvian

nl Dutch; Flemish
no Norwegian

pl Polish

pt Portuguese

o Romanian; Moldavian
ru Russian

sk Slovak

Sr Serbian

Y Swedish

tr Turkish

uk Ukrainian

uz Uzbek

zh Chinese

Saved results

label language without arguments saves the following in r():

Scalars

r(k) number of languages defined

Macros

r(languages) list of languages, listed one after the other

r(language) name of current language

404 label language — Labels for variables and values in multiple languages

Methods and formulas

This section is included for programmers who wish to access or extend the services label
language provides.

Language sets are implemented using [P] char. The names of the languages and the name of the
current language are stored in

_dta[_lang_list] list of defined languages
_dta[_lang_c} currently set language
If these characteristics are undefined, results are as if each contained the word “default”. Do
not change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are

stored in
_dta[_lang_v_languagename] data label
varname [_lang_v_languagename] variable label
varname [_lang_l_languagename] value-label name
References

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.
Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162-187.

Also see
[D] label — Manipulate labels

[D] codebook — Describe data contents

[D] labelbook — Label utilities

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

labelbook — Label utilities

Syntax

Produce a codebook describing value labels

labelbook [lblname-list] [, labelbook_options}

Prefix numeric values to value labels

numlabel [lblname-list] s {gdd | remove } [numlabel_options]

Make dataset containing value-label information

uselabel [lblname—list] [using ﬁlename] [, clear yar}

labelbook_options

Description

alpha
length(#)
list (#)
problems
iet ail

alphabetize label mappings

check if value labels are unique to length #; default is length(12)
list maximum of # mappings; default is 1ist (32000)

describe potential problems in a summary report

do not suppress detailed report on variables or value labels

numlabel _options

Description

*add

*remove
mask (str)
force
detail

prefix numeric values to value labels

remove numeric values from value labels

mask for formatting numeric labels; default mask is "#. "
force adding or removing of numeric labels

provide details about value labels, where some labels are prefixed with
numbers and others are not

* Either add or remove must be specified.

Menu
labelbook

Data > Data utilities > Label utilities > Produce codebook of value labels

numlabel

Data > Data utilities > Label utilities > Prepend values to value labels

uselabel

Data > Data utilities > Label utilities > Create dataset from value labels

405

406 labelbook — Label utilities

Description

labelbook displays information for the value labels specified or, if no labels are specified, all the
labels in the data.

For multilingual datasets (see [D] label language), 1abelbook lists the variables to which value
labels are attached in all defined languages.

numlabel prefixes numeric values to value labels. For example, a value mapping of 2 ->
"catholic" will be changed to 2 -> "2. catholic". See option mask() for the different formats.
Stata commands that display the value labels also show the associated numeric values. Prefixes are
removed with the remove option.

uselabel is a programmer’s command that reads the value-label information from the currently
loaded dataset or from an optionally specified filename.

uselabel creates a dataset in memory that contains only that value-label information. The new
dataset has four variables named label, lname, value, and trunc; is sorted by 1name value; and
has 1 observation per mapping. Value labels can be longer than the maximum string length in Stata;
see help limits. The new variable trunc contains 1 if the value label is truncated to fit in a string
variable in the dataset created by uselabel.

uselabel complements label, save, which produces a text file of the value labels in a format
that allows easy editing of the value-label texts.

Specifying no list or —_all is equivalent to specifying all value labels. Value-label names may not
be abbreviated or specified with wildcards.

Options for labelbook
alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is
to sort the list on value.

length(#) specifies the minimum length that 1abelbook checks to determine whether shortened
value labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook
also reports whether value labels are unique at their full length.

list (#) specifies the maximum number of value-label mappings to be listed. If a value label defines
more mappings, a random subset of # mappings is displayed. By default, 1abelbook displays all
mappings. 1ist (0) suppresses the listing of the value-label definitions.

problems specifies that a summary report be produced describing potential problems that were
diagnosed:

1. Value label has gaps in mapped values (for example, values 0 and 2 are labeled, while 1 is not)
2. Value label strings contain leading or trailing blanks

3. Value label contains duplicate labels, that is, there are different values that map into the same
string

Value label contains duplicate labels at length 12
Value label contains numeric — numeric mappings

Value label contains numeric — null string mappings

N ok

Value label is not used by variables

detail may be specified only with problems. It specifies that the detailed report on the variables
or value labels not be suppressed.

labelbook — Label utilities 407

Options for numlabel

add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled
(using the same mask) are not modified.

remove specifies that numeric values be removed from the value labels. If you added numeric values
by using a nondefault mask, you must specify the same mask to remove them. Value labels that
are not numlabeled or are numlabeled using a different mask are not modified.

mask (str) specifies a mask for formatting the numeric labels. In the mask, # is replaced by the
numeric label. The default mask is "#. " so that numeric value 3 is shown as "3. ". Spaces are
relevant. For the mask " [#]", numeric value 3 would be shown as " [3]".

force specifies that adding or removing numeric labels be performed, even if some value labels are
numlabeled using the mask and others are not. Here only labels that are not numlabeled will
be modified.

detail specifies that details be provided about the value labels that are sometimes, but not always,
numlabeled using the mask.

Options for uselabel

clear permits the dataset to be created, even if the dataset already in memory has changed since it
was last saved.

var specifies that the varlists using value label vl be returned in r (vl).

Remarks
Remarks are presented under the following headings:
labelbook
Diagnosing problems
numlabel
uselabel

labelbook

labelbook produces a detailed report of the value labels in your data. You can restrict the report
to a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a
companion command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), 1abelbook lists the variables to which value
labels are attached in any of the languages.

> Example 1

We request a 1abelbook report for value labels in a large dataset on the internal organization of
households. We restrict output to three value labels: agreeb (used for five-point Likert-style items),
divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.

408

labelbook — Label utilities

. use http://www.stata-press.com/data/r12/labelbookl

. labelbook agreeb divlabor noyes

value label agreeb

values

range:

N:

gaps:
missing .*:

definition

g wWwN e

variables:

[1,5]
5

no

0

-- disagree
- disagree
indifferent
+ agree
++ agree
rs056 rs057

rs066 rs067
rs076 rs077

labels

string length:

unique at full length:
unique at length 12:
null string:
leading/trailing blanks:
numeric -> numeric:

rs058
rs068
rs078

rs059 rs060 rs061 rs062
rs069 rs070 rs071 rs072
rs079 rs080 rs081

[8,11]
yes
yes
no
no
no

rs063 rs064 rs065
rs073 rs074 rs075

value label divlabor

values

range:
N:

gaps:
missing .*:

definition

N OO WN e

variables:

[1,7]
7

no

0

wife only
wife >> husb

labels

string length:

unique at full length:
unique at length 12:
null string:
leading/trailing blanks:
numeric -> numeric:

and

wife > husband

equally

husband > wi
husband >> w
husband only

fe
ife

[7,16]
yes
yes
no
yes
no

hmO1_a hmO01_b hmO1_c hmO1_d hmO1_e hnl19 hn21 hn25_a hn25_b
hn25_c hn25_d hn25_e hn27_a hn27_b hn27_c hn27_d hn27_e hn31

hn36 hn38 hn42 hn46_a hn46_b hn46_c hn46_d hn46_e hoOl_a hoOl_b

hoO1_c hoO1_

d hoOl1_e

labelbook — Label utilities

409

value label noyes

values

range:
N:

gaps:
missing .*:

definition
1

2

.a

.b

variables:

labels
[1,2] string length:
4 unique at full length:
yes unique at length 12:
2 null string:
leading/trailing blanks:
numeric -> numeric:
no
yes

not applicable
ambiguous answer

[2,16]
yes
yes
no
no
no

hb12 hd01_a hd01_b hd03 hdO4_a hdO4_b he03_a he03_b hlat hn0O9_b
hn24_a hn34 hn49 huO5_a hu06_1c hu06_2c hx07_a hx08 hlat2
hfinish rh02 rj10_01 rki16_a rki16_b rl01 rl03 rl08_a rl08_b
rl09_a rs047 rs048 rs049 rs050 rs051 rs052 rs053 rs054 rs093

rs095 rs096 rs098

The report is largely self-explanatory. Extended missing values are denoted by “. *”. In the definition
of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to
check that the value labels still make sense after truncation. The following example emphasizes this
feature. The option alpha specifies that the value-label mappings be sorted in alphabetical order by
the label strings rather than by the mapped values.

. use http://www.stata-press.com/data/r12/labelbook2

. labelbook sports, alpha

value label sports

values

range:
N:

gaps:
missing .*:

definition
5
4
2
1

variables:

labels
[1,5] string length:
4 unique at full length:
yes unique at length 12:
0 null string:

leading/trailing blanks:
numeric -> numeric:

college baseball
college basketball
professional baseball
professional basketball

active passive

[16,23]
yes

no

no

no

no

The report includes information about potential problems in the data. These are discussed in greater
detail in the next section.

Diagnosing problems

N

labelbook can diagnose a series of potential problems in the value-label mappings. labelbook
produces warning messages for a series of problems:

1. Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur
when value labels of the intermediate values have not been defined.

410 labelbook — Label utilities

2. Leading or trailing blanks in the value labels may distort Stata output.

3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string.
Below we give you an example of the unexpected output that may result. Blank labels are most
often the result of a mistaken value-label definition, for instance, the expansion of a nonexisting
macro in the definition of a value label.

4. Stata does not require that the labels within each value label consist of unigue strings, that is, that
different values be mapped into different strings. For instance, you might accidentally define the
value label gender as

label define gender 1 female 2 female

You will probably catch most of the problems, but in more complicated value labels, it is easy to
miss the error. labelbook finds such problems and displays a warning.

5. Stata allows long value labels (32,000 characters), so labels can be long. However, some commands
may need to display truncated value labels, typically at length 12. Consequently, even if the value
labels are unique, the truncated value labels may not be, which can cause problems. labelbook
warns you for value labels that are not unique at length 12.

6. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it
can cause highly misleading output. Think about tabulating a variable for which the associated
value label incorrectly maps 1 into ‘“2”, 2 into “3”, and 3 into “1”. labelbook looks for such
problematic labels and warns you if they are found.

7. In Stata, value labels are defined as separate objects that can be associated with more than one
variable:
label define labname # str # str

label value varnamel labname
label value varname2 labname

If you forget to associate a variable label with a variable, Stata considers the label unused and
drops its definition. 1abelbook reports unused value labels so that you may fix the problem.

The related command codebook reports on two other potential problems concerning value labels:

a. A variable is value labeled, but some values of the variable are not labeled. You may have
forgotten to define a mapping for some values, or you generated a variable incorrectly;
for example, your sex variable has an unlabeled value 3, and you are not working in
experimental genetics!

b. A variable has been associated with an undefined value label.

labelbook can also be invoked with the problems option, specifying that only a report on
potential problems be displayed without the standard detailed description of the value labels.

Q Technical note

The following two examples demonstrate some features of value labels that may be difficult to
understand. In the first example, we encode a string variable with blank strings of various sizes; that
is, we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated
variable.

labelbook — Label utilities 411

. clear all

. set obs 5
obs was 0, now 5

. generate strl0 horror = substr(" ", 1, _n)
. encode horror, gen(Ihorror)

. tabulate horror

horror Freq. Percent Cum.
1 20.00 20.00
1 20.00 40.00
1 20.00 60.00
1 20.00 80.00
1 20.00 100.00
Total 5 100.00

It may look as if you have discovered a bug in Stata because there are no value labels in the first
column of the table. This happened because we encoded a variable with only blank strings, so the
associated value label maps integers into blank strings.

. label list Ihorror
Thorror:

G WN e

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because
these texts are all blank, the first column is empty. As illustrated below, labelbook would have
warned you about this odd value label.

Our second example illustrates what could go wrong with numeric values stored as string values.
We want to turn this into a numeric variable, but we incorrectly encode the variable rather than using
the appropriate command, destring.

. generate strl0 horror2 = string(_n+1)
. encode horror2, gen(Ihorror2)
. tabulate Thorror2

Thorror2 Freq. Percent Cum.
2 1 20.00 20.00
3 1 20.00 40.00
4 1 20.00 60.00
5 1 20.00 80.00
6 1 20.00 100.00
Total 5 100.00
. tabulate Thorror2, nolabel
Ihorror2 Freq. Percent Cum.
1 1 20.00 20.00
2 1 20.00 40.00
3 1 20.00 60.00
4 1 20.00 80.00
5 1 20.00 100.00

Total 5 100.00

412 labelbook — Label utilities

. label list Ihorror2
Thorror2:

GO WN e
OO WN

Q

labelbook skips the detailed descriptions of the value labels and reports only the potential
problems in the value labels if the problems option is specified. This report would have alerted you
to the problems with the value labels we just described.

. use http://www.stata-press.com/data/ri2/data_in_trouble, clear
. labelbook, problem

Potential problems in dataset http://www.stata-press.com/data/r12/
> data_in_trouble.dta

potential problem value labels

numeric -> numeric Ihorror2
leading or trailing blanks Thorror
not used by variables unused

Running labelbook, problems and codebook, problems on new data might catch a series of
annoying problems.

numlabel

The numlabel command allows you to prefix numeric codes to value labels. The reason you
might want to do this is best seen in an example using the automobile data. First, we create a value
label for the variable rep78 (repair record in 1978),

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. label define repair 1 "very poor" 2 "poor" 3 "medium" 4 good 5 "very good"

. label values rep78 repair

and tabulate it.

. tabulate rep78

Repair

Record 1978 Freq. Percent Cum.
very poor 2 2.90 2.90
poor 8 11.59 14.49
medium 30 43.48 57.97
good 18 26.09 84.06
very good 11 15.94 100.00

Total 69 100.00

Suppose that we want to recode the variable by joining the categories poor and very poor. To do
this, we need the numerical codes of the categories, not the value labels. However, Stata does not
display both the numeric codes and the value labels. We could redisplay the table with the nolabel
option. The numlabel command provides a simple alternative: it modifies the value labels so that
they also contain the numeric codes.

labelbook — Label utilities

413

. numlabel, add
. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.
1. very poor 2 2.90 2.90
2. poor 8 11.59 14.49
3. medium 30 43.48 57.97
4. good 18 26.09 84.06
5. very good 11 15.94 100.00

Total 69 100.00

If you do not like the way the numeric codes are formatted, you can use numlabel to change the
formatting. First, we remove the numeric codes again:

. numlabel repair, remove

In this example, we specified the name of the label. If we had not typed it, numlabel would have
removed the codes from all the value labels. We can include the numeric codes while specifying a

mask:

. numlabel, add mask(" [#]

. tabulate rep78

Repair Record

1978 Freq. Percent Cum.

[1] very poor 2 2.90 2.90

[2] poor 8 11.59 14.49

[3] medium 30 43.48 57.97

[4] good 18 26.09 84.06

[5] very good 11 15.94 100.00
Total 69 100.00

numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels

can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

414 labelbook — Label utilities

uselabel

uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto
dataset.

> Example 2

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. uselabel
. describe

Contains data

obs: 2
vars: 4
size: 32
storage display value

variable name type format label variable label
lname str6 %9s
value byte %9.0g
label str8 %9s
trunc byte %9.0g

Sorted by: 1lname value
Note: dataset has changed since last saved

. list
lname value label trunc
1. origin 0 Domestic 0
2. origin 1 Foreign 0

uselabel created a dataset containing the labels and values for the value label origin.

The maximum length of the text associated with a value label is 32,000 characters, whereas the
maximum length of a string variable in a Stata dataset is 244. uselabel uses only the first 244
characters of the label. The trunc variable will record a 1 if the text was truncated for this reason.

N

Saved results

labelbook saves the following in r():

Macros
r(names) Iblname-list
r(gaps) gaps in mapped values
r(blanks) leading or trailing blanks
r(null) name of value label containing null strings
r(nuniq) duplicate labels

r(nuniq—sh) duplicate labels at length 12

r(ntruniq) duplicate labels at maximum string length
r(notused) not used by any of the variables

r(numeric) name of value label containing mappings to numbers

labelbook — Label utilities 415

uselabel saves the following in r():

Macros
r (Iblname) list of variables that use value label [blname (only when var option is specified)

Methods and formulas

labelbook, numlabel, and uselabel are implemented as ado-files.

Acknowledgments

labelbook and numlabel were written by Jeroen Weesie, Department of Sociology, Utrecht
University. A command similar to numlabel was written by J. M. Lauritsen (2001).

References

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Veritying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39-40. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] encode — Encode string into numeric and vice versa
[D] label — Manipulate labels
[U] 12.6 Dataset, variable, and value labels

[U] 15 Saving and printing output—Ilog files

http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb37.pdf

Title

list — List values of variables

Syntax

list [varlist} [lf] [zn} [, options]

flist is equivalent to list with the fast option.

constant [(varlistg)]
notrim

absolute

nodotz

subvarname
linesize(#)

options Description
Main
compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate (#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)
noobs do not list observation numbers
fvall display all levels of factor variables
Options
table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header (#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator (#) draw a separator line every # lines; default is separator(5)
sepby (varlisty) draw a separator line whenever varlist, values change
nolabel display numeric codes rather than label values
Summary
mean[(varlistz)} add line reporting the mean for the (specified) variables
sum[(varliszg)} add line reporting the sum for the (specified) variables
N [(varlistg)] add line reporting the number of nonmissing values for the (specified)
variables
labvar (varname) substitute Mean, Sum, or N for value of varname in last row of table
Advanced

separate and list variables that are constant only once
suppress string trimming

display overall observation numbers when using by varlist:
display numerical values equal to .z as field of blanks
substitute characteristic for variable name in header
columns per line; default is 1inesize (79)

416

list — List values of variables 417

varlist may contain factor variables; see [U] 11.4.3 Factor variables.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with 1ist; see [D] by.

Menu
Data > Describe data > List data

Description

list displays the values of variables. If no varlist is specified, the values of all the variables are
displayed. Also see browse in [D] edit.

Options
Main

compress and nocompress change the width of the columns in both table and display formats. By
default, 1ist examines the data and allocates the needed width to each variable. For instance, a
variable might be a string with a %18s format, and yet the longest string will be only 12 characters
long. Or a numeric variable might have a %9.0g format, and yet, given the values actually present,
the widest number needs only four columns.

nocompress prevents 1list from examining the data. Widths will be set according to the display
format of each variable. Output generally looks better when nocompress is not specified, but for
very large datasets (say, 1,000,000 observations or more), nocompress can speed up the execution
of list.

compress allows 1ist to engage in a little more compression than it otherwise would by telling
list to abbreviate variable names to fewer than eight characters.

fast is a synonym for nocompress. fast may be of interest to those with very large datasets who
wish to see output appear without delay.

abbreviate (#) is an alternative to compress that allows you to specify the minimum abbreviation
of variable names to be considered. For example, you could specify abbreviate(16) if you
never wanted variables abbreviated to less than 16 characters.

string(#) specifies that when string variables are listed, they be truncated to # characters in the
output. Any value that is truncated will be appended with “. .” to indicate the truncation. string()
is useful for displaying just a part of long strings.

noobs suppresses the listing of the observation numbers.

fvall specifies that the entire dataset be used to determine how many levels are in any factor variables
specified in varlist. The default is to determine the number of levels by using only the observations
in the if and in qualifiers.

_ [Opions|
table and display determine the style of output. By default, 1ist determines whether to use table
or display on the basis of the width of your screen and the 1inesize () option, if you specify

it.

418

list — List values of variables

table forces table format. Forcing table format when 1ist would have chosen otherwise generally
produces impossible-to-read output because of the linewraps. However, if you are logging output
in SMCL format and plan to print the output on wide paper later, specifying table can be a
reasonable thing to do.

display forces display format.

header, noheader, and header (#) specify how the variable header is to be displayed.

header is the default in table mode and displays the variable header once, at the top of the table.
noheader suppresses the header altogether.

header (#) redisplays the variable header every # observations. For example, header (10) would
display a new header every 10 observations.

The default in display mode is to display the variable names interweaved with the data:

1. make price | mpg | rep78 | headroom | trunk | weight length
AMC Concord | 4,099 22 3 2.5 11 2,930 186
turn displa~t gear_r~o foreign
40 121 3.58 Domestic

However, if you specify header, the header is displayed once, at the top of the table:

make price | mpg | rep78 | headroom | trunk | weight length
turn displa~t gear_r~o foreign

1. AMC Concord | 4,099 22 3 2.5 11 2,930 186
40 121 3.58 Domestic

clean is a better alternative to table when you want to force table format and your goal is to

produce more readable output on the screen. clean implies table, and it removes all dividing
and separating lines, which is what makes wrapped table output nearly impossible to read.

divider, separator (#), and sepby (varlisty) specify how dividers and separator lines should be

displayed. These three options affect only table format.
divider specifies that divider lines be drawn between columns. The default is nodivider.
separator (#) and sepby (varlistz) indicate when separator lines should be drawn between rows.

separator (#) specifies how often separator lines should be drawn between rows. The default
is separator(5), meaning every 5 observations. You may specify separator(0) to suppress
separators altogether.

sepby (varlisty) specifies that a separator line be drawn whenever any of the variables in
sepby (varlist;) change their values; up to 10 variables may be specified. You need not make
sure the data were sorted on sepby (varlistz) before issuing the 1ist command. The variables in
sepby (varlisty) also need not be among the variables being listed.

nolabel specifies that numeric codes be displayed rather than the label values.

list — List values of variables 419

Summary

mean, sum, N, mean (varlisty), sum(varlisty), and N(varlisty) all specify that lines be added to the
output reporting the mean, sum, or number of nonmissing values for the (specified) variables. If
you do not specify the variables, all numeric variables in the varlist following 1ist are used.

labvar (varname) is for use with mean[()], sum[()], and N[()]. list displays Mean, Sum, or N
where the observation number would usually appear to indicate the end of the table—where a row
represents the calculated mean, sum, or number of observations.

labvar (varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname
would be displayed. For instance, you might type

. list group costs profits, sum(costs profits) labvar(group)

group costs profits

1. 1 47 5
2. 2 123 10
3. 3 22 2

Sum 192 17

and then also specify the noobs option to suppress the observation numbers.

Advanced

constant and constant (varlisty) specify that variables that do not vary observation by observation
be separated out and listed only once.

constant specifies that 1ist determine for itself which variables are constant.

constant (varlists) allows you to specify which of the constant variables you want listed separately.
list verifies that the variables you specify really are constant and issues an error message if they
are not.

constant and constant () respect if exp and in range. If you type
. list if group==

variable x might be constant in the selected observations, even though the variable varies in the
entire dataset.

notrim affects how string variables are listed. The default is to trim strings at the width implied
by the widest possible column given your screen width (or linesize(), if you specified that).
notrim specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is
equivalent to the clean option, so specifying either makes no difference.

absolute affects output only when list is prefixed with by varlist:. Observation numbers are
displayed, but the overall observation numbers are used rather than the observation numbers within
each by-group. For example, if the first group had 4 observations and the second had 2, by default
the observations would be numbered 1, 2, 3, 4 and 1, 2. If absolute is specified, the observations
will be numbered 1, 2, 3, 4 and 5, 6.

nodotz is a programmer’s option that specifies that numerical values equal to .z be listed as a field
of blanks rather than as .z.

subvarname is a programmer’s option. If a variable has the characteristic var[varname} set, then
the contents of that characteristic will be used in place of the variable’s name in the headers.

420 list — List values of variables

linesize(#) specifies the width of the page to be used for determining whether table or display
format should be used and for formatting the resulting table. Specifying a value of linesize()
that is wider than your screen width can produce truly ugly output on the screen, but that output
can nevertheless be useful if you are logging output and plan to print the log later on a wide

printer.

Remarks

list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist,
only those variables are listed. Specifying one or both of in range and if exp limits the observations

listed.

list respects line size. That is, if you resize the Results window (in windowed versions of Stata)
before running list, it will take advantage of the available horizontal space. Stata for Unix(console)
users can instead use the set linesize command to take advantage of this feature; see [R] log.

list may not display all the large strings. You have two choices: 1) you can specify the clean
option, which makes a different, less attractive listing, or 2) you can increase line size, as discussed

above.

> Example 1

list has two output formats, known as table and display. The table format is suitable for listing
a few variables, whereas the display format is suitable for listing an unlimited number of variables.

Stata chooses automatically between those two formats:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. list in 1/2

1. make price | mpg | rep78 | headroom | trunk | weight length
AMC Concord | 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign

40 121 3.58 Domestic
2. make price | mpg | rep78 | headroom | trunk | weight length
AMC Pacer 4,749 17 3 3.0 11 3,350 173

turn displa~t gear_r~o foreign

40 258 2.53 Domestic

. list make mpg weight displ rep78 in 1/5

make mpg weight displa~t rep78
1. AMC Concord 22 2,930 121 3
2. AMC Pacer 17 3,350 258 3
3. AMC Spirit 22 2,640 121 .
4. Buick Century 20 3,250 196 3
5. Buick Electra 15 4,080 350 4

list — List values of variables 421

The first case is an example of display format; the second is an example of table format. The
table format is more readable and takes less space, but it is effective only if the variables can fit on
one line across the screen. Stata chose to list all 12 variables in display format, but when the varlist
was restricted to five variables, Stata chose table format.

If you are dissatisfied with Stata’s choice, you can decide for yourself. You can specify the display
option to force display format and the nodisplay option to force table format.

4

Q Technical note

If you have long string variables in your data—say, str75 or longer—by default, 1ist displays
only the first 70 or so characters of each; the exact number is determined by the width of your Results
window. The first 70 or so characters will be shown followed by “...”. If you need to see the entire
contents of the string, you can

1. specify the clean option, which makes a different (and uglier) style of list, or

2. make your Results window wider [Stata for Unix(console) users: increase set linesize].
Qa

Q Technical note

Among the things that determine the widths of the columns, the variable names play a role. Left
to itself, 1ist will never abbreviate variable names to fewer than eight characters. You can use the
compress option to abbreviate variable names to fewer characters than that.

a

Q Technical note

When Stata lists a string variable in table output format, the variable is displayed right-justified
by default.

When Stata lists a string variable in display output format, it decides whether to display the
variable right-justified or left-justified according to the display format for the string variable; see
[U] 12.5 Formats: Controlling how data are displayed. In our previous example, make has a display
format of %-18s.

. describe make

storage display value
variable name type format label variable label
make stri8 %-18s Make and Model

The negative sign in the %-18s instructs Stata to left-justify this variable. If the display format had
been %18s, Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:

. describe foreign

storage display value
variable name type format label variable label

foreign byte %8.0g origin Car type

422 list — List values of variables

foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value
labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value
label by using the same rule used for string variables: it looks at the display format of the variable.
Here the display format of %8.0g tells Stata to right-justify the variable. If the display format had
been %-8.0g, Stata would have left-justified this variable.

a

Q Technical note

You can list the variables in any order. When you specify the varlist, 1ist displays the variables
in the order you specify. You may also include variables more than once in the varlist.
a

> Example 2

Sometimes you may wish to suppress the observation numbers. You do this by specifying the
noobs option:

. list make mpg weight displ foreign in 46/55, noobs

make mpg weight displa-~t foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we want to separate the “Domestic” observations from the
“Foreign” observations, so we specify sepby(foreign).

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

make mpg weight displa~t foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 3201 25 2,650 121 Foreign

list — List values of variables

423

> Example 3

We want to add vertical lines in the table to separate the variables, so we specify the divider option.
We also want to draw a horizontal line after every 2 observations, so we specify separator(2).

. list make mpg weight displ foreign in 46/55, divider separator(2)

46.
47.

48.
49.

50.
51.

52.
53.

54.
55.

make mpg | weight displa~t foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify

abbreviate(12).

. list make mpg weight displ foreign in 46/55, divider sep(2) abbreviate(12)

46.
4a7.

48.
49.

50.
51.

52.
53.

54.
55.

make mpg | weight | displacement foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

Q Technical note

You can suppress the use of value labels by specifying the nolabel option. For instance, the
foreign variable in the examples above really contains numeric codes, with 0 meaning Domestic
and 1 meaning Foreign. When we list the variable, however, we see the corresponding value

labels rather than the underlying numeric code:

424 list — List values of variables

. list foreign in 51/55

foreign
51. Domestic
52. Domestic
53. Foreign
54. Foreign
55. Foreign

Specifying the nolabel option displays the underlying numeric codes:

. list foreign in 51/55, nolabel

foreign

51.
52.
53.
54.
55.

== = OO

References
Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425-427.

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.

Riley, A. R. 1993. dm15: Interactively list values of variables. Stata Technical Bulletin 16: 2—6. Reprinted in Stata
Technical Bulletin Reprints, vol. 3, pp. 37-41. College Station, TX: Stata Press.

Royston, P, and P. Sasieni. 1994. dm16: Compact listing of a single variable. Stata Technical Bulletin 17: 7-8.
Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 41-43. College Station, TX: Stata Press.

Weesie, J. 1999. dm68: Display of variables in blocks. Stata Technical Bulletin 50: 3—4. Reprinted in Stata Technical
Bulletin Reprints, vol. 9, pp. 27-29. College Station, TX: Stata Press.

Also see

[D] edit — Browse or edit data with Data Editor
[P] display — Display strings and values of scalar expressions
[P] tabdisp — Display tables

[R] table — Tables of summary statistics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0023
http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb16.pdf
http://www.stata.com/products/stb/journals/stb17.pdf
http://www.stata.com/products/stb/journals/stb50.pdf

Title

lookfor — Search for string in variable names and labels

Syntax

lookfor string [A‘lring [...]]

Description

lookfor helps you find variables by searching for string among all variable names and labels. If
multiple strings are specified, lookfor will search for each of them separately. You may search for
a phrase by enclosing string in double quotes.

Remarks

> Example 1

lookfor finds variables by searching for string, ignoring case, among the variable names and
labels.

. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. lookfor code

storage display value
variable name type format label variable label
idcode int %8.0g NLS ID
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation

Three variable names contain the word code.

. lookfor married

storage display value
variable name type format label variable label
msp byte %8.0g 1 if married, spouse present
nev_mar byte 7%8.0g 1 if never married

Two variable labels contain the word married.

. lookfor gnp

storage display value
variable name type format label variable label
1n_wage float %9.0g 1n(wage/GNP deflator)

lookfor ignores case, so lookfor gnp found GNP in a variable label.

425

426 lookfor — Search for string in variable names and labels

> Example 2

If multiple strings are specified, all variable names or labels containing any of the strings are listed.

. lookfor code married

storage display value
variable name type format label variable label
idcode int %8.0g NLS ID
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
ind_code byte %8.0g industry of employment
occ_code byte 7%8.0g occupation

To search for a phrase, enclose string in double quotes.

. lookfor "never married"

storage display value
variable name type format label variable label
nev_mar byte %8.0g 1 if never married

Saved results

lookfor saves the following in r():

Macros
r(varlist) the varlist of found variables

Methods and formulas

lookfor is implemented as an ado-file.

Also see
[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

Title

memory — Memory management

Syntax
Display memory usage report

memory

Display memory settings

query memory

Modity memory settings

set maxvar #
set niceness #
set max_memory amt

set segmentsize amt

[]
[]
set min_memory amf |, permanently |
[]
[]

, permanently

, permanently

, permanently

, permanently

where amt is #[b|k |m|g], and the default unit is b.

Parameter Default Minimum Maximum
maxvar 5000 2048 32767
2048 2048 2048
99 99 99
niceness 5 0 10
min_memory 0 0 max_memory
max_memory 2xX segmentsize .
segmentsize 32m im 32g
16m im 1g

Notes:

1. The maximum number of variables in your dataset is limited to maxvar, which is 2,048 by
default. set maxvar is allowed with Stata/SE and Stata/MP only. In Stata/IC, maxvar is

fixed at 2,048. In Small Stata, maxvar is fixed at 99.

2. Most users do not need to read beyond this point. Stata’s memory management is completely
automatic. If, however, you are using the Linux operating system, see Serious bug in Linux

OS under Remarks below.

427

(MP and SE)
10
(Small)

(64-bit)
(32-bit)

428

memory — Memory management

10.

. The maximum number of observations is fixed at 2,147,483,647 regardless of computer size

or memory settings. Depending on the amount of memory on your computer, you may face
a lower practical limit.

max_memory specifies the maximum amount of memory Stata can use to store your data.
The default of missing (.) means all the memory the operating system is willing to supply.
There are three reasons to change the value from missing to a finite number.

1. You are a Linux user; see Serious bug in Linux OS under Remarks below.

2. You wish to reduce the chances of accidents, such as typing expand 100000 with
a large dataset in memory and actually having Stata do it. You would rather see
an insufficient-memory error message. Set max_memory to the amount of physical
memory on your computer or more than that if you are willing to use virtual
memory.

3. You are a system administrator; see Notes for system administrators under Remarks
below.

. The remaining memory parameters—niceness, min_memory, and segment_size—affect

efficiency only; they do not affect the size of datasets you can analyze.

Memory amounts for min_memory, max_memory, and segmentsize may be specified in
bytes, kilobytes, megabytes, or gigabytes; suffix b, k, m, or g to the end of the number. The
following are equivalent ways of specifying 1 gigabyte:

1073741824
1048576k
1024m

g
Suffix k is defined as (multiply by) 1024, m is defined as 10242, and g is defined as 10243,

64-bit computers can theoretically provide up to 18,446,744,073,709,551,616 bytes of memory,
equivalent to 17,179,869,184 gigabytes, 16,777,216 terabytes, 16,384 petabytes, 16 exabytes.
Real computers have less.

. 32-bit computers can theoretically provide up to 4,294,967,296 bytes of memory, equivalent

to 4,194,304 kilobytes, 4,096 megabytes, or 4 gigabytes. Most 32-bit operating systems limit
Stata to half that.

Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize
can result in more efficient use of available memory but require Stata to jump around more.
The default provides a good balance. We recommend resetting segmentsize only if your
computer has large amounts of memory.

If you have large amounts of memory and you use it to process large datasets, you may
wish to increase segmentsize. Suggested values are

memory segmentsize

32¢g 64m
64g 128m
128¢g 256m
256¢g 512m
512¢g 1g

1024¢g 2g

memory — Memory management 429

11. niceness affects how soon Stata gives back unused segments to the operating system. If
Stata releases them too soon, it often needs to turn around and get them right back. If Stata
waits too long, Stata is consuming memory that it is not using. One reason to give memory
back is to be nice to other users on multiuser systems or to be nice to yourself if you are
running other processes.

The default value of 5 is defined to provide good performance. Waiting times are currently
defined as

niceness waiting time (m:s)

10 0:00.000
9 0:00.125
8 0:00.500
7 0:01
6 0:30
5 1:00
4 5:00
3 10:00
2 15:00
1 20:00
0 30:00

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an incon-
siderate, self-centered, totally selfish jerk.

12. min_memory specifies an amount of memory Stata will not fall below. For instance, you
have a long do-file. You know that late in the do-file, you will need 8 gigabtyes. You want
to ensure that the memory will be available later. At the start of your do-file, you set
min_memory 8g.

13. Concerning min_memory and max_memory, be aware that Stata allocates memory in seg-
mentsize blocks. Both min_memory and max_memory are rounded down. Thus the actual
minimum memory Stata will reserve will be

segmentsize*trunc (min_memory/segmentsize)

The effective maximum memory is calculated similarly. (Stata does not round up min_memory
because some users set min_memory equal to max_memory.)

Description

Memory usage and settings are described here.
memory displays a report on Stata’s current memory usage.
query memory displays the current values of Stata’s memory settings.

set maxvar, set niceness, set min_memory, set max_memory, and set segmentsize Change
the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks below.

430 memory — Memory management

Options
permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

once is not shown in the syntax diagram but is allowed with set niceness, set min_memory,
set max_memory, and set segmentsize. It is for use by system administrators; see Notes for
system administrators under Remarks below.

Remarks

Remarks are presented under the following headings:

Examples
Serious bug in Linux OS
Notes for system administrators

Examples
Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:

. sysuse auto
(1978 Automobile Data)

. memory

Memory usage

used allocated
data (incl. buffers) 3,225 33,554,432
var. names, %fmts, ... 1,739 25,609
overhead 1,064,964 1,065,360
Stata matrices 0 0
ado-files 4,518 4,518
saved results 0 0
Mata matrices 0 0
Mata functions 0 0
set maxvar usage 1,391,728 1,391,728
other 1,409 1,409
total 2,466,215 36,043,056

We could then obtain the current memory-settings report by typing

. query memory

Memory settings

set maxvar 5000 2048-32767; max. vars allowed
set matsize 400 10-11000; max. # vars in models
set niceness 5 0-10

set min_memory 0 0-0

set max_memory . 16m-0 or .

set segmentsize 16m im-1g

memory — Memory management 431

Serious bug in Linux OS

If you use Linux OS, we strongly suggest that you set max_memory. Here’s why:

“By default, Linux follows an optimistic memory allocation strategy. This means that
when malloc() returns non-NULL there is no guarantee that the memory really is available.
This is a really bad bug. In case it turns out that the system is out of memory, one or
more processes will be killed by the infamous OOM Kkiller. In case Linux is employed
under circumstances where it would be less desirable to suddenly lose some randomly
picked processes, and moreover the kernel version is sufficiently recent, one can switch
off this overcommitting behavior using [...]”

— Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when
Stata uses that memory, the memory might not be available and Linux crashes Stata, or worse. The
Linux documentation writer exercised admirable restraint. This bug can cause Linux itself to crash.
It is easy.

The proponents of this behavior call it “optimistic memory allocation”. We will, like the docu-
mentation writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc
is an instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before
assuming that, we suggest using a search engine to search for “linux optimistic memory allocation”.

Alternatively, Stata can live with the bug if you set max_memory. Find out how much physical
memory is on your computer and set max_memory to that. If you want to use virtual memory, you
might set it larger, just make sure your Linux system can provide the requested memory. Specify the
option permanently so you only need to do this once. For example,

. set max_memory 16g, permanently

Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

Notes for system administrators

System administrators can set max_memory, min_memory, and niceness so that Stata users
cannot change them. You may want to do this on shared computers to prevent individual users from
hogging resources.

There is no reason you would want to do this on users’ personal computers.
You can also set segmentsize, but there is no reason to do this even on shared systems.

The instructions are to create (or edit) the text file sysprofile.do in the directory where the
Stata executable resides. Add the lines

set min_memory O, once
set max_memory 16g, once
set niceness 5, once

The file must be plain text, and there must be end-of-line characters at the end of each line, including
the last line. Blank lines at the end are recommended.

The 16g on set max_memory is merely for example. Choose an appropriate number.

The values of O for min_memory and 5 for niceness are recommended.

432 memory — Memory management

Saved results

memory saves all reported numbers in r (). StataCorp may change what memory reports, and you
should not expect the same r () results to exist in future versions of Stata. To see the saved results
from memory, type return list, all.

Reference

Sasieni, P. 1997. ip20: Checking for sufficient memory to add variables. Stata Technical Bulletin 40: 13. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, p. 86. College Station, TX: Stata Press.

Also see
[R] query — Display system parameters
[P] creturn — Return c-class values
[R] matsize — Set the maximum number of variables in a model

[U] 6 Managing memory

http://www.stata.com/products/stb/journals/stb40.pdf

Title

merge — Merge datasets

Syntax

One-to-one merge on specified key variables

merge 1:1 varlist using filename [, 0pti0ns]

Many-to-one merge on specified key variables

merge m:1 varlist using filename [, options]

One-to-many merge on specified key variables

merge 1:m varlist using filename [, options]

Many-to-many merge on specified key variables

merge m:m varlist using filename [, 0pti0ns]

One-to-one merge by observation

merge 1:1 _n using filename [, options]

options Description
Options
keepusing(varlist) variables to keep from using data; default is all
generate(newvar) name of new variable to mark merge results; default is _merge
@enera’ce do not create _merge variable
nolabel do not copy value-label definitions from using
nonotes do not copy notes from using
update update missing values of same-named variables in master with values
from using
replace replace all values of same-named variables in master with nonmissing
values from using (requires update)
noreport do not display match result summary table
force allow string/numeric variable type mismatch without error
Results
assert (results) specify required match results
keep (results) specify which match results to keep
sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

433

434 merge — Merge datasets

Menu

Data > Combine datasets > Merge two datasets

Description

merge joins corresponding observations from the dataset currently in memory (called the master
dataset) with those from filename.dta (called the using dataset), matching on one or more key
variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-
many), which are often called joins by database people. merge can also perform sequential merges,
which have no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use
merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new
observations to existing variables, then see [D] append. You use append, for instance, when adding
current discharges to past discharges.

By default, merge creates a new variable, _merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the
match results table.

If filename is specified without an extension, then .dta is assumed.

Options
[options |

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.
By default, all variables are kept. For example, if your using dataset contains 2,000 demographic
characteristics but you want only sex and age, then type merge ..., keepusing(sex age)

generate (newvar) specifies that the variable containing match results information should be named
newvar rather than _merge.

nogenerate specifies that _merge not be created. This would be useful if you also specified
keep(match), because keep (match) ensures that all values of _merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be
rare, because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard
merge, the data in the master are the authority and inviolable. For example, if the master and
using datasets both contain a variable age, then matched observations will contain values from the
master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset
with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset,
unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of
overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

merge — Merge datasets 435

force allows string/numeric variable type mismatches, resulting in missing values from the using
dataset. If omitted, merge issues an error; if specified, merge issues a warning.

_ (Fesuis|

assert (results) specifies the required match results. The possible results are

Numeric Equivalent
code word (results) Description
1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both
4 match_update observation appeared in both, missing values updated
5 match_conflict observation appeared in both, conflicting nonmissing

values

Codes 4 and 5 can arise only if the update option is specified. If codes of both
4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert () or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match_updates for match_update, and match_conflicts for
match_conflict.

Using assert (match master) specifies that the merged file is required to include only matched
master or using observations and unmatched master observations, and may not include unmatched
using observations. Specifying assert() results in merge issuing an error if there are match
results among those observations you allowed.

The order of the words or codes is not important, so all the following assert () specifications
would be the same:

assert(match master)
assert (master matches)
assert (1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the
merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep (results) specifies which observations are to be kept from the merged dataset. Using keep (match
master) specifies keeping only matched observations and unmatched master observations after
merging.

keep () differs from assert () because it selects observations from the merged dataset rather than
enforcing requirements. keep () is used to pare the merged dataset to a given set of observations
when you do not care if there are other observations in the merged dataset. assert () is used to
verify that only a given set of observations is in the merged dataset.

You can specify both assert () and keep(). If you require matched observations and unmatched
master observations but you want only the matched observations, then you could specify as-
sert (match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using
_merge directly.

. merge ..., assert(match master) keep(match)

436 merge — Merge datasets

is identical to

. merge ...
assert _merge==1 | _merge==
keep if _merge==

The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are
already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this
option is of interest only where speed is of the utmost importance.

Remarks
Remarks are presented under the following headings:
Overview
Basic description
1:1 merges

m:1 merges

I:m merges

m:m merges

Sequential merges

Treatment of overlapping variables
Sort order

Troubleshooting m:m merges
Examples

Overview

merge 1:1 varlist ... specifies a one-to-one match merge. varlist specifies variables common to
both datasets that together uniquely identify single observations in both datasets. For instance, suppose
you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in
each dataset. You would merge the two datasets by typing

. use customer
. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which
is the using matters only if there are overlapping variable names. 1:1 merges are less common than
1:m and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively.
To illustrate the two choices, suppose you have a dataset containing information about individual
hospitals, called hospitals.dta. In this dataset, each observation contains information about one
hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called
discharges.dta, which contains information on individual hospital stays by many different patients.
discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join
all the information in both datasets. There are two ways you could do this.

merge 1:m varlist ... specifies a one-to-many match merge.

. use hospitals
. merge 1:m hospitalid using discharges

merge — Merge datasets 437

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to
many observations in the using dataset.

merge m:1 varlist ... specifies a many-to-one match merge.

. use discharges
. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can
correspond to many observations in the master dataset, but uniquely identifies individual observations
in the using dataset.

merge m:m varlist ... specifies a many-to-many match merge. This is allowed for completeness,
but it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not
uniquely identify the observations in either dataset. Matching is performed by combining observations
with equal values of varlist; within matching values, the first observation in the master dataset is
matched with the first matching observation in the using dataset; the second, with the second; and
so on. If there is an unequal number of observations within a group, then the last observation of the
shorter group is used repeatedly to match with subsequent observations of the longer group. Use of
merge m:m is not encouraged.

merge 1:1 _n performs a sequential merge. _n is not a variable name; it is Stata syntax for
observation number. A sequential merge performs a one-to-one merge on observation number. The
first observation of the master dataset is matched with the first observation of the using dataset; the
second, with the second; and so on. If there is an unequal number of observations, the remaining
observations are unmatched. Sequential merges are dangerous, because they require you to rely on
sort order to know that observations belong together. Use this merge at your own risk.

Basic description

Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way
we have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename
id age id wgt
1 22 1 130
2 56 2 180
5 17 4 110

We would like to join together the age and weight information. We notice that the id variable
identifies unique observations in both datasets: if you tell me the id number, then I can tell you the
one observation that contains information about that id. This is true for both the master and the using
datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring
in the dataset from disk by typing

438 merge — Merge datasets

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result
id age id wgt id age wgt
1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)
4 . 110| (using only)

The original data in memory are called the master data. The data in filename.dta are called
the using data. After merge, the merged result is left in memory. The id variable is called the key
variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in
the merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were
found and thus each became a separate observation in the merged result. Thus each observation in
the merged result came from one of three possible sources:

Numeric Equivalent
code word Description
1 master originally appeared in master only
2 using originally appeared in using only
3 match originally appeared in both

merge encodes this information into new variable _merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result
id age id wgt id age wgt _merge
1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1
4 110 2

Note: Above we show the master and using data sorted by id before merging; this was for
illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of
the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the
master. Find the corresponding observation in the using data, if there is one. Record the matched or
unmatched result. Proceed to the next observation in the master dataset. When you finish working
through the master dataset, work through unused observations from the using data. By default,
unmatched observations are kept in the merged data, whether they come from the master dataset or
the using dataset.

Remember this formal definition. It will serve you well.

merge — Merge datasets 439

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified
each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)
corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained
by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge
14 1 0 14 1 7 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 b5 3
17 2 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies
observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time
4), and another was only in the using (subject 17 at time 2).

m:1 merges

In an m: 1 merge, the key variable or variables uniquely identify the observations in the using data,
but not necessarily in the master data. Suppose you had person-level data within regions and you
wished to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge
1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1
4 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged
dataset was constructed. For each observation in the master data, merge finds the corresponding
observation in the using data. merge combines the values of the variables in the using dataset to the
observations in the master dataset.

440 merge — Merge datasets

1:m merges

1:m merges are similar to m: 1, except that now the key variables identify unique observations in
the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a
1:m merge by reversing the roles of the master and using datasets. Here is the same example as used
previously, with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result
region x id region a region x id a _merge
1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3
5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1
5 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort
order and the contents of _merge. This time, we show the merged result sorted by region rather
than id. Reversing the roles of the files causes a reversal in the 1s and 2s for _merge: where _merge
was previously 1, it is now 2, and vice versa. These exchanged _merge values reflect the reversed
roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the
using data and then wrote down the matched or unmatched result. Once the master observations were
exhausted, merge wrote down any observations from the using data that were never used.

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges

In a sequential merge, there are no key variables. Observations are matched solely on their
observation number:

merge — Merge datasets 441

. merge 1:1 _n using filename

master + using = merged result
x2 x1 x2 _merge
10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3
3 3 2

In the example above, the using data are longer than the master, but that could be reversed. In
most cases where sequential merges are appropriate, the datasets are expected to be of equal length,
and you should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the
data.

Treatment of overlapping variables

When performing merges of any type, the master and using datasets may have variables in common
other than the key variables. We will call such variables overlapping variables. For instance, if the
variables in the master and using datasets are

master: id, region, sex, age, race

using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

By default, merge treats values from the master as inviolable. When observations match, it is the
master’s values of the overlapping variables that are recorded in the merged result.

If you specify the update option, however, then all missing values of overlapping variables in
matched observations are replaced with values from the using data. Because of this new behavior,
the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes
3,4, and 5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule
is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting
nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting
nonmissing values.

If you specify both the update and replace options, then the _merge==5 cases are updated with
values from the using data.

442 merge — Merge datasets

Sort order

As we have mentioned, in the 1:1, 1:m, and m: 1 match merges, the sort orders of the master and
using datasets do not affect the data in the merged dataset. This is not the case of m:m, which we
recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most
quickly when the master and using datasets are already sorted by the key variable(s) before merging.
You are not required to have the dataset sorted before using merge, however, because merge will
sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made
and sorted to ensure that the current sort order on disk is not affected.

All this is to reassure you that 1) your datasets on disk will not be modified by merge and 2)
despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the
scenes.

It hardly makes any difference in run times, but if you know that the master and using data are
already sorted by the key variable(s), then you can specify the sorted option. All that will be saved
is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and
sometimes useful way. If you think of datasets as tables, then the columns for the new variables
appear to the right of what was the master. If the master data originally had k variables, then the new
variables will be the (k + 1)st, (k + 2)nd, and so on. The new observations are similarly ordered so
that they all appear at the end of what was the master. If the master originally had N observations,
then the new observations, if any, are the (/V + 1)st, (N 4 2)nd, and so on. Thus the original master
data can be found from the merged result by extracting the first k& variables and first N observations.
If merge with the update option was specified, however, then be aware that the extracted master
may have some updated values.

The merged result is unsorted except for a 1:1 merge, where there are only matched observations.
Here the dataset is sorted by the key variables.

Troubleshooting m:m merges

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you
would like to match every observation in the master to every observation in the using with the same
values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations
on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename

Ask yourself if you have a variable that identifies observation within panel, such as a sequence
number or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching
the first observations within subject, the second observations within subject, and so on. If so, then
there is a concept of sequence within subject.

merge — Merge datasets 443

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering
of the observations. Here you are in a dangerous situation because any kind of sorting would lose
the identity of the first, second, and nth observation within subject. Your first goal should be to fix
this problem by creating an explicit sequence variable from the current ordering—your merge can
come later.

Start with your master data. Type

. sort subjectid, stable
. by subjectid: gen seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order
within subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type
. merge 1:m subjectid seqnum using filename
If you do not think there is a meaning to being the first, second, and nth observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the
second observations within subjectid, and so on. Would it make equal sense to match the first with
the third, the second with the fourth, or any other haphazard matching? If so, then there is no real

ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you
need to rethink your merge.

Examples

> Example 1
We have two datasets, one of which has information about the size of old automobiles, and the
other of which has information about their expense:

. use http://www.stata-press.com/data/ri2/autosize
(1978 Automobile Data)

. list

make weight length
1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165
6. Plym. Arrow 3,260 170

. use http://www.stata-press.com/data/r12/autoexpense
(1978 Automobile Data)

. list
make price mpg
1. Toyota Celica 5,899 18
2. BMW 320i 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

444 merge — Merge datasets

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We

need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each
of the two datasets, also identifies individual observations within the datasets. What this means is
that if you tell me the make of car, I can tell you the one observation that corresponds to that car.
Because this is true for both datasets, we should use a 1:1 merge.

We will start with a clean slate to show the full process:

. use http://www.stata-press.com/data/ri2/autosize

(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press

.com/data/r12/autoexpense

Result # of obs.
not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)
matched 5 (_merge==3)
. list
make weight length price mpg _merge
1. | BMW 320i 2,650 177 9,735 25 matched (3)
2. | Cad. Seville 4,290 204 15,906 21 matched (3)
3. | Datsun 210 2,020 165 4,589 35 matched (3)
4. | Plym. Arrow 3,260 170 . master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 matched (3)
6. Toyota Celica 2,410 174 5,899 18 matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car
that has only size information. If we wanted only those makes for which all information is present,

it would be up to us to drop the observations for which _merge < 3.

> Example 2

Suppose we had the same setup as in the previous example, but we erroneously think that we have
all the information on all the cars. We could tell merge that we expect only matches by using the

assert option.

. use http://www.stata-press.com/data/r12/autosize, clear

(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r12/autoexpense, assert(match)

merge: after merge, not all observations matched

(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there

were, we can tabulate _merge:

merge — Merge datasets 445

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67

matched (3) 5 83.33 100.00
Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. | Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to
rectify the mismatch in the original datasets.

N

> Example 3

Once again, suppose that we had the same datasets as before, but this time we want the final
dataset to have only those observations for which there is a match. We do not care if there are
mismatches—all that is important are the complete observations. By using the keep (match) option,
we will guarantee that this happens. Because we are keeping only those observations for which the
key variable matches, there is no need to generate the _merge variable. We could do the following:

. use http://www.stata-press.com/data/r12/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r12/autoexpense, keep(match)
> nogenerate

Result # of obs.

not matched 0

matched 5

. list
make weight length price mpg
1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18
d
> Example 4

We have two datasets: one has salespeople in regions and the other has regional data about sales.
We would like to put all the information into one dataset. Here are the datasets:

446 merge — Merge datasets

. use http://www.stata-press.com/data/r12/sforce, clear

(Sales Force)

. list
region name
1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks
6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil
10. West Charles
11. West Cobb
12. West Grant

. use http://www.stata-press.com/data/r12/dollars
(Regional Sales & Costs)

. list
region sales cost
1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time
we see that region identifies individual observations in the dollars dataset but not in the sforce
dataset. This means we will have to use either anm: 1 or a 1:m merge. Here we will open the sforce
dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not
identify individual observations in the dataset in memory but does identify them in the using dataset.

Here is the command and its result:

. use http://www.stata-press.com/data/r12/sforce

(Sales Force)

. merge m:1 region using http://www.stata-press.com/data/r12/dollars

(label region already defined)

Result # of obs.
not matched 0
matched 12

(_merge==3)

merge — Merge datasets 447

. list
region name sales cost _merge
1. N Cntrl Krantz 419,472 227,677 matched (3)
2. N Cntrl Phipps 419,472 227,677 matched (3)
3. N Cntrl Willis 419,472 227,677 matched (3)
4. NE Ecklund 360,523 138,097 matched (3)
5. NE Franks 360,523 138,097 matched (3)
6. South Anderson 532,399 330,499 matched (3)
7. South Dubnoff 532,399 330,499 matched (3)
8. South Lee 532,399 330,499 matched (3)
9. South McNeil 532,399 330,499 matched (3)
10. West Charles 310,565 165,348 matched (3)
11. West Cobb 310,565 165,348 matched (3)
12. West Grant 310,565 165,348 matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a
rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have
done a 1:m merge.

d

We would now like to use a series of examples that shows how merge treats nonkey variables,
which have the same names in the two datasets. We will call these “overlapping” variables.

> Example 5

Here are two datasets whose only purpose is for this illustration:

. use http://www.stata-press.com/data/r12/overlapl, clear
. list, sepby(id)

id seq x1 x2
1. 1 1 1 1
2. 1 2 1
3. 1 3 1 2
4. 1 4 2
5. 2 1 1
6. 2 2 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 a 1
10. 2 6 a 2
11. 3 1 .a
12. 3 2 1
13. 3 3 .
14. 3 4 a .a
15. 10 1 5 8

. use http://www.stata-press.com/data/r12/overlap2

448 merge — Merge datasets

. list
id bar x1 x2
1. 1 11 1 1
2. 2 12 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also
see that there are two overlapping variables: x1 and x2.

We will start with a simple m:1 merge:

. use http://www.stata-press.com/data/ri12/overlapl

. merge m:1 id using http://www.stata-press.com/data/r12/overlap2

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14 (_merge==3)
. list, sepby(id)
id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 11 matched (3)
3. 1 3 1 2 11 matched (3)
4. 1 4 2 11 matched (3)
5. 2 1 1 12 matched (3)
6. 2 2 . 2 12 matched (3)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 matched (3)
9. 2 5 .a 1 12 matched (3)
10. 2 6 .a 2 12 matched (3)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 . 14 matched (3)
14. 3 4 a .a 14 matched (3)
15. | 10 1 5 8 master only (1)
16. 20 . 1 1 18 using only (2)

Careful inspection shows that for the matched id, the
were originally in the overlapl dataset. This is the
master dataset is the authority and is kept intact.

values of x1 and x2 are still the values that
default behavior of merge—the data in the

4

merge — Merge datasets

449

> Example 6

Now we would like to investigate the update option. Used by itself, it will replace missing values
in the master dataset with values from the using dataset:

. use http://www.stata-press.com/data/r12/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r12/overlap2, update

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)
5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15 10 1 5 8 master only (1)
16. 20 . 1 1 18 using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the _merge variable gets its values.

The following is a listing that shows what is happening, where x1_m and x2_m come from the
master dataset (overlapl), x1_u and x2_u come from the using dataset (overlap2), and x1 and
x2 are the values that appear when using merge with the update option.

450 merge — Merge datasets

id | x1m [x1_u [x1 | x2_m | x2_u [x2 _merge
1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 1 1 2 1 2 | nonmissing conflict (5)
5. 2 1 1 1 matched (3)
6. 2 . . 2 1 2 | nonmissing conflict (5)
7. 2 1 1 1 1 1 matched (3)
8. 2 1 1 2 1 2 | nonmissing conflict (5)
9. 2 .a 1 1 1 missing updated (4)
10. 2 .a 2 1 2 | nonmissing conflict (5)
11. 3 .a .a | .a matched (3)
12. 3 1 .a 1 matched (3)
13. 3 .a | .a missing updated (4)
14. 3 a a .a | .a missing updated (4)
15. 10 5 . 5 8 . 8 master only (1)
16. | 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the
value of _merge will reflect that there was a conflict, and missing values in the master dataset are
updated by missing values in the using dataset.

N

> Example 7

We would like to see what happens if the update and replace options are specified. The replace
option extends the action of update to use nonmissing values of the using dataset to replace values
in the master dataset. The values of _merge are unaffected by using both update and replace.

. use http://www.stata-press.com/data/r12/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r12/overlap2, update replace

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 451

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 1 11 nonmissing conflict (5)
4. 1 4 1 1 11 nonmissing conflict (5)
5. 2 1 1 12 matched (3)
6. 2 2 . 1 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 1 12 nonmissing conflict (5)
9. 2 5 1 12 missing updated (4)
10. 2 6 1 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15. | 10 1 5 8 master only (1)
16. | 20 . 1 1 18 using only (2)

d
> Example 8

Suppose we would like to use the update option, as we did above, but we would like to keep
only those observations for which the value of the key variable, id, was found in both datasets. This
will be more complicated than in our earlier example, because the update option splits the matches
into matches, match_updates, and match_conflicts. We must either use all these code words
in the keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use http://www.stata-press.com/data/r12/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r12/overlap2, update keep(3 4 5)

Result # of obs.

not matched 0

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)

nonmissing conflict 5 (_merge==5)

452 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)
5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)

d
> Example 9

As a final example, we would like show one example of a 1:m merge. There is nothing conceptually
different here; what is interesting is the order of the observations in the final dataset:

. use http://www.stata-press.com/data/r12/overlap2, clear

. merge 1:m id using http://www.stata-press.com/data/r12/overlapl

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14 (_merge==3)

merge — Merge datasets 453

. list, sepby(id)

id bar x1 x2 seq _merge
1. 1 11 1 1 1 matched (3)
2. 2 12 . 1 1 matched (3)
3. 3 14 . .a 1 matched (3)
4. | 20 18 1 1 . master only (1)
5. 1 11 1 1 2 matched (3)
6. 1 11 1 1 3 matched (3)
7. 1 11 1 1 4 matched (3)
8. 2 12 1 2 matched (3)
9. 2 12 1 3 matched (3)
10. 2 12 1 4 matched (3)
11. 2 12 1 5 matched (3)
12. 2 12 1 6 matched (3)
13. 3 14 2 matched (3)
14. 3 14 . .a 3 matched (3)
15. 3 14 . .a 4 matched (3)
16. | 10 . 5 8 1 using only (2)

We can see here that the first four observations come from the master dataset, and all additional
observations, whether matched or unmatched, come below these observations. This illustrates that the
master dataset is always in the upper-left corner of the merged dataset.

4

Methods and formulas

merge is implemented as an ado-file.

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part- 1 -merges-gone-bad/

——. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Weesie, J. 2000. dm75: Safe and easy matched merging. Stata Technical Bulletin 53: 6-17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 62-77. College Station, TX: Stata Press.

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://www.stata.com/products/stb/journals/stb20.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

454 merge — Merge datasets

Also see
[D] save — Save Stata dataset
[D] sort — Sort data
[D] append — Append datasets
[D] cross — Form every pairwise combination of two datasets
[D] joinby — Form all pairwise combinations within groups

[U] 22 Combining datasets

Title

missing values — Quick reference for missing values

Description

This entry provides a quick reference for Stata’s missing values.

Remarks
Stata has 27 numeric missing values:
., the default, which is called the system missing value or sysmiss
and
.a, .b, .c, ..., .z, which are called the extended missing values.

Numeric missing values are represented by large positive values. The ordering is

all nonmissing numbers < . < .a < .b<:-- < .z

Thus the expression
age > 60

is true if variable age is greater than 60 or missing.

<

To exclude missing values, ask whether the value is less than

. list if age > 60 & age < .

3

To specify missing values, ask whether the value is greater than or equal to ‘.’. For instance,

. list if age >=.

Stata has one string missing value, which is denoted by "" (blank).

Reference
Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157-159.

Also see
[U] 12.2.1 Missing values

455

http://www.stata-journal.com/sjpdf.html?articlenum=dm0047

Title

mkdir — Create directory

Syntax

mkdir directoryname [, public}

Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname contains embedded
spaces.

Description

mkdir creates a new directory (folder).

Option

public specifies that directoryname be readable by everyone; otherwise, the directory will be created
according to the default permissions of your operating system.

Remarks
Examples:
Windows
. mkdir myproj
. mkdir c:\projects\myproj
. mkdir "c:\My Projects\Project 1"
Mac and Unix

. mkdir myproj
. mkdir ~/projects/myproj

Also see
[D] ed — Change directory
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

456

Title

mvencode — Change missing values to numeric values and vice versa

Syntax
Change missing values to numeric values

mvencode varlist [t_'f] [m] , mv(# | mvc=# [\ mve =#.] [\ else=#]) [gverride}

Change numeric values to missing values

mvdecode varlist [lf] [zn] , mv (numlist | numlist = mve [\ numlist = mvc })

where mvc is one of . | .a|.b|...|.z.

Menu
mvencode
Data > Create or change data > Other variable-transformation commands > Change missing values to numeric
mvdecode

Data > Create or change data > Other variable-transformation commands > Change numeric values to missing

Description

mvencode changes missing values in the specified varlist to numeric values.
mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.
Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, ..., .z.

String variables in varlist are ignored.

Options
Main

v (# | mve=# [\ mvc=4#.. } [\ else =#]) is required and specifies the numeric values to which
the missing values are to be changed.

mv (#) specifies that all types of missing values be changed to #.

mv (mvc=#) specifies that occurrences of missing-value code mvc be changed to # Multiple
transformation rules may be specified, separated by a backward slash (\). The list may be ter