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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[XT] xtabond
[D] reshape

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the xtabond entry in the Longitudinal-Data/Panel-Data Reference
Manual; and the third is a reference to the reshape entry in the Data-Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide
[R] Stata Base Reference Manual
[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual
[ I ] Stata Quick Reference and Index

[M] Mata Reference Manual

Detailed information about each of these manuals may be found online at

http://www.stata-press.com/manuals/

http://www.stata-press.com/manuals/




Title

intro — Introduction to base reference manual

Description
This entry describes the organization of the reference manuals.

Remarks
The complete list of reference manuals is as follows:

[R] Stata Base Reference Manual
Volume 1, A–F
Volume 2, G–M
Volume 3, N–R
Volume 4, S–Z

[D] Stata Data-Management Reference Manual
[G] Stata Graphics Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[P] Stata Programming Reference Manual
[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual
[ST] Stata Survival Analysis and Epidemiological Tables Reference Manual
[TS] Stata Time-Series Reference Manual
[ I ] Stata Quick Reference and Index

[M] Mata Reference Manual

When we refer to “reference manuals”, we mean all manuals listed above.

When we refer to the Base Reference Manual , we mean just the four-volume Base Reference
Manual, known as [R].

When we refer to the specialty manuals, we mean all the manuals listed above except [R] and [ I ],
the Stata Quick Reference and Index.

Detailed information about each of these manuals can be found online at

http://www.stata-press.com/manuals/

1
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Arrangement of the reference manuals

Each manual contains the following sections:

• Table of contents.
At the beginning of volume 1 of [R], the Base Reference Manual, is a table of contents for the
four volumes.

• Cross-referencing the documentation.
This section lists all the manuals and explains how they are cross-referenced.

• Introduction.
This entry—usually called intro—provides an overview of the manual. In the specialty manuals,
this introduction suggests entries that you might want to read first and provides information about
new features.

Each specialty manual contains an overview of the commands described in it.

• Entries.
Entries are arranged in alphabetical order. Most entries describe Stata commands, but some entries
discuss concepts, and others provide overviews.

Entries that describe estimation commands are followed by an entry discussing postestimation
commands that are available for use after the estimation command. For example, the xtlogit entry
in the [XT] manual is followed by the xtlogit postestimation entry.

• Index.
At the end of each manual is an index. The index for the entire four-volume Base Reference
Manual is found at the end of the fourth volume.

The Quick Reference and Index, [ I ], contains a combined index for all the manuals and a subject
table of contents for all the manuals and the User’s Guide. It also contains quick-reference information
on many subjects, such as the estimation commands.

To find information and commands quickly, use Stata’s search command; see [R] search (see the
entry search in the [R] manual). You can broaden your search to the Internet by using search,
all to find commands and extensions written by Stata users.

Arrangement of each entry

Entries in the Stata reference manuals, except the [M] and [SEM] manuals, generally contain the
following sections, which are explained below:

Syntax
Menu
Description
Options
Remarks
Saved results
Methods and formulas
References
Also see
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Syntax

A command’s syntax diagram shows how to type the command, indicates all possible options, and
gives the minimal allowed abbreviations for all the items in the command. For instance, the syntax
diagram for the summarize command is

summarize
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Main

detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator(#) draw separator line after every # variables; default is separator(5)

display options control spacing and base and empty cells

varlist may contain factor variables; see [U] 11.4.3 Factor variables.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed; see [D] by.
aweights, fweights, and iweights are allowed. However, iweights may not be used with the detail

option; see [U] 11.1.6 weight.

Items in the typewriter-style font should be typed exactly as they appear in the diagram,
although they may be abbreviated. Underlining indicates the shortest abbreviations where abbre-
viations are allowed. For instance, summarize may be abbreviated su, sum, summ, etc., or it may be
spelled out completely. Items in the typewriter font that are not underlined may not be abbreviated.

Square brackets denote optional items. In the syntax diagram above, varlist, if, in, weight, and the
options are optional.

The options are listed in a table immediately following the diagram, along with a brief description
of each.

Items typed in italics represent arguments for which you are to substitute variable names, observation
numbers, and the like.

The diagrams use the following symbols:

# Indicates a literal number, for example, 5; see [U] 12.2 Numbers.[ ]
Anything enclosed in brackets is optional.{ }
At least one of the items enclosed in braces must appear.

| The vertical bar separates alternatives.
%fmt Any Stata format, for example, %8.2f; see [U] 12.5 Formats: Controlling how data are

displayed.
depvar The dependent variable in an estimation command; see [U] 20 Estimation and postesti-

mation commands.
exp Any algebraic expression, for example, (5+myvar)/2; see [U] 13 Functions and ex-

pressions.
filename Any filename; see [U] 11.6 Filenaming conventions.
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indepvars The independent variables in an estimation command; see [U] 20 Estimation and
postestimation commands.

newvar A variable that will be created by the current command; see [U] 11.4.2 Lists of new
variables.

numlist A list of numbers; see [U] 11.1.8 numlist.
oldvar A previously created variable; see [U] 11.4.1 Lists of existing variables.
options A list of options; see [U] 11.1.7 options.
range An observation range, for example, 5/20; see [U] 11.1.4 in range.
"string" Any string of characters enclosed in double quotes; see [U] 12.4 Strings.
varlist A list of variable names; see [U] 11.4 varlists. If varlist allows factor variables, a note to

that effect will be shown below the syntax diagram; see [U] 11.4.3 Factor variables. If
varlist allows time-series operators, a note to that effect will be shown below the syntax
diagram; see [U] 11.4.4 Time-series varlists.

varname A variable name; see [U] 11.3 Naming conventions.
weight A [wgttype=exp] modifier; see [U] 11.1.6 weight and [U] 20.22 Weighted estimation.
xvar The variable to be displayed on the horizontal axis.
yvar The variable to be displayed on the vertical axis.

The Syntax section will indicate whether factor variables or time-series operators may be used
with a command. summarize allows factor variables and time-series operators.

If a command allows prefix commands, this will be indicated immediately following the table of
options. summarize allows by.

If a command allows weights, the types of weights allowed will be specified, with the default
weight listed first. summarize allows aweights, fweights, and iweights, and if the type of weight
is not specified, the default is aweights.

Menu

A menu indicates how the dialog box for the command may be accessed using the menu system.

Description

Following the syntax diagram is a brief description of the purpose of the command.

Options

If the command allows any options, they are explained here, and for dialog users the location of
the options in the dialog is indicated. For instance, in the logistic entry in this manual, the Options
section looks like this:

� � �
Model �

. . .

� � �
SE/Robust �

. . .
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� � �
Reporting �

. . .

� � �
Maximization �

. . .

Remarks

The explanations under Description and Options are exceedingly brief and technical; they are
designed to provide a quick summary. The remarks explain in English what the preceding technical
jargon means. Examples are used to illustrate the command.

Saved results

Commands are classified as e-class, r-class, s-class, or n-class, according to whether they save
calculated results in e(), r(), s(), or not at all. These results can then be used in subroutines by
other programs (ado-files). Such saved results are documented here; see [U] 18.8 Accessing results
calculated by other programs and [U] 18.9 Accessing results calculated by estimation commands.

Methods and formulas

The techniques and formulas used in obtaining the results are described here as tersely and
technically as possible. If a command is implemented as an ado-file, that is indicated here.

References

Published sources are listed that either were directly referenced in the preceding text or might be
of interest.

Also see

Other manual entries relating to this entry are listed that might also interest you.

Also see
[U] 1.1 Getting Started with Stata



Title

about — Display information about your Stata

Syntax
about

Menu
Help > About

Description
about displays information about your version of Stata.

Remarks
about displays information about the release number, flavor, serial number, and license for your

Stata. If you are running Stata for Windows, information about memory is also displayed:

. about

Stata/MP 12.0 for Windows (64-bit x86-64)
Revision 24 Aug 2011
Copyright 1985-2011 StataCorp LP

Total physical memory: 8388608 KB
Available physical memory: 937932 KB

10-user 32-core Stata network perpetual license:
Serial number: 5012041234

Licensed to: Alan R. Riley
StataCorp

Also see
[R] which — Display location and version for an ado-file

[U] 5 Flavors of Stata

6



Title

adoupdate — Update user-written ado-files

Syntax
adoupdate

[
pkglist

] [
, options

]
options Description

update perform update; default is to list packages that have updates, but not to
update them

all include packages that might have updates; default is to list or update
only packages that are known to have updates

ssconly check only packages obtained from SSC; default is to check all installed packages
dir(dir) check packages installed in dir; default is to check those installed in PLUS

verbose provide output to assist in debugging network problems

Description

User-written additions to Stata are called packages. These packages can add remarkable abilities
to Stata. Packages are found and installed by using ssc, findit, and net; see [R] ssc, [R] search,
and [R] net.

User-written packages are updated by their developers, just as official Stata software is updated
by StataCorp.

To determine whether your official Stata software is up to date, and to update it if it is not, you
use update; see [R] update.

To determine whether your user-written additions are up to date, and to update them if they are
not, you use adoupdate.

Options
update specifies that packages with updates be updated. The default is simply to list the packages

that could be updated without actually performing the update.

The first time you adoupdate, do not specify this option. Once you see adoupdate work, you
will be more comfortable with it. Then type

. adoupdate, update

The packages that can be updated will be listed and updated.

all is rarely specified. Sometimes, adoupdate cannot determine whether a package you previously
installed has been updated. adoupdate can determine that the package is still available over the
web but is unsure whether the package has changed. Usually, the package has not changed, but
if you want to be certain that you are using the latest version, reinstall from the source.

Specifying all does this. Typing

. adoupdate, all

7
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adds such packages to the displayed list as needing updating but does not update them. Typing

. adoupdate, update all

lists such packages and updates them.

ssconly is a popular option. Many packages are available from the Statistical Software Components
(SSC) archive—often called the Boston College Archive—which is provided at http://repec.org.
Many users find most of what they want there. See [R] ssc for more information on the SSC.

ssconly specifies that adoupdate check only packages obtained from that source. Specifying
this option is popular because SSC always provides distribution dates, and so adoupdate can be
certain whether an update exists.

dir(dir) specifies which installed packages be checked. The default is dir(PLUS), and that is
probably correct. If you are responsible for maintaining a large system, however, you may have
previously installed packages in dir(SITE), where they are shared across users. See [P] sysdir
for an explanation of these directory codewords. You may also specify an actual directory name,
such as C:\mydir.

verbose is specified when you suspect network problems. It provides more detailed output that may
help you diagnose the problem.

Remarks
Do not confuse adoupdate with update. Use adoupdate to update user-written files. Use update

to update the components (including ado-files) of the official Stata software. To use either command,
you must be connected to the Internet.

Remarks are presented under the following headings:

Using adoupdate
Possible problem the first time you run adoupdate and the solution
Notes for developers

Using adoupdate

The first time you try adoupdate, type

. adoupdate

That is, do not specify the update option. adoupdate without update produces a report but does
not update any files. The first time you run adoupdate, you may see messages such as

. adoupdate
(note: package utx was installed more than once; older copy removed)
(remaining output omitted)

Having the same packages installed multiple times is common; adoupdate cleans that up.

The second time you run adoupdate, pick one package to update. Suppose that the report indicates
that package st0008 has an update available. Type

. adoupdate st0008, update

You can specify one or many packages after the adoupdate command. You can even use wildcards
such as st* to mean all packages that start with st or st*8 to mean all packages that start with st
and end with 8. You can do that with or without the update option.

http://repec.org
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Finally, you can let adoupdate update all your user-written additions:

. adoupdate, update

Possible problem the first time you run adoupdate and the solution

The first time you run adoupdate, you might get many duplicate messages:

. adoupdate
(note: package ___ installed more than once; older copy removed)
(note: package ___ installed more than once; older copy removed)
(note: package ___ installed more than once; older copy removed)
...
(note: package ___ installed more than once; older copy removed)
(remaining output omitted)

Some users have hundreds of duplicates. You might even see the same package name repeated
more than once:

(note: package stylus installed more than once; older copy removed)
(note: package stylus installed more than once; older copy removed)

That means that the package was duplicated twice.

Stata tolerates duplicates, and you did nothing wrong when you previously installed and updated
packages. adoupdate, however, needs the duplicates removed, mainly so that it does not keep
checking the same files.

The solution is to just let adoupdate run. adoupdate will run faster next time, when there are
no (or just a few) duplicates.

Notes for developers

adoupdate reports whether an installed package is up to date by comparing its distribution date
with that of the package available over the web.

If you are distributing software, include the line

d Distribution-Date: date

somewhere in your .pkg file. The capitalization of Distribution-Date does not matter, but include
the hyphen and the colon as shown. Code the date in either of two formats:

all numeric: yyyymmdd, for example, 20110701
Stata standard: ddMONyyyy, for example, 01jul2011

Saved results
adoupdate saves the following in r():

Macros
r(pkglist) a space-separated list of package names that need updating (update not specified) or that

were updated (update specified)
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Methods and formulas
adoupdate is implemented as an ado-file.

Also see
[R] ssc — Install and uninstall packages from SSC

[R] search — Search Stata documentation

[R] net — Install and manage user-written additions from the Internet

[R] update — Update Stata



Title

alpha — Compute interitem correlations (covariances) and Cronbach’s alpha

Syntax
alpha varlist

[
if
] [

in
] [

, options
]

options Description

Options

asis take sign of each item as is
casewise delete cases with missing values
detail list individual interitem correlations and covariances
generate(newvar) save the generated scale in newvar
item display item-test and item-rest correlations
label include variable labels in output table
min(#) must have at least # observations for inclusion
reverse(varlist) reverse signs of these variables
std standardize items in the scale to mean 0, variance 1

by is allowed; see [D] by.

Menu
Statistics > Multivariate analysis > Cronbach’s alpha

Description
alpha computes the interitem correlations or covariances for all pairs of variables in varlist and

Cronbach’s α statistic for the scale formed from them. At least two variables must be specified with
alpha.

Options

� � �
Options �

asis specifies that the sense (sign) of each item be taken as presented in the data. The default is to
determine the sense empirically and reverse the scorings for any that enter negatively.

casewise specifies that cases with missing values be deleted listwise. The default is pairwise
computation of covariances and correlations.

detail lists the individual interitem correlations and covariances.

generate(newvar) specifies that the scale constructed from varlist be stored in newvar. Unless asis
is specified, the sense of items entering negatively is automatically reversed. If std is also specified,
the scale is constructed by using standardized (mean 0, variance 1) values of the individual items.
Unlike most Stata commands, generate() does not use casewise deletion. A score is created
for every observation for which there is a response to at least one item (one variable in varlist
is not missing). The summative score is divided by the number of items over which the sum is
calculated.

11
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item specifies that item-test and item-rest correlations and the effects of removing an item from the
scale be displayed. item is valid only when more than two variables are specified in varlist.

label requests that the detailed output table be displayed in a compact format that enables the
inclusion of variable labels.

min(#) specifies that only cases with at least # observations be included in the computations.
casewise is a shorthand for min(k), where k is the number of variables in varlist.

reverse(varlist) specifies that the signs (directions) of the variables (items) in varlist be reversed.
Any variables specified in reverse() that are not also included in alpha’s varlist are ignored.

std specifies that the items in the scale be standardized (mean 0, variance 1) before summing.

Remarks
Cronbach’s alpha (Cronbach 1951) assesses the reliability of a summative rating (Likert 1932)

scale composed of the variables (called items) specified. The set of items is often called a test or
battery. A scale is simply the sum of the individual item scores, reversing the scoring for statements
that have negative correlations with the factor (for example, attitude) being measured. Scales can be
formed by using the raw item scores or standardized item scores.

The reliability α is defined as the square of the correlation between the measured scale and the
underlying factor. If you think of a test as being composed of a random sample of items from a
hypothetical domain of items designed to measure the same thing, α represents the expected correlation
of one test with an alternative form containing the same number of items. The square root of α is
the estimated correlation of a test with errorless true scores (Nunnally and Bernstein 1994, 235).

In addition to reporting α, alpha generates the summative scale from the items (variables) specified
and automatically reverses the sense of any when necessary. Stata’s decision can be overridden by
specifying the reverse(varlist) option.

Because it concerns reliability in measuring an unobserved factor, α is related to factor analysis.
The test should be designed to measure one factor, and, because the scale will be composed of an
unweighted sum, the factor loadings should all contribute roughly equal information to the score.
Both of these assumptions can be verified with factor; see [MV] factor. Equality of factor loadings
can also be assessed by using the item option.

Example 1

To illustrate alpha, we apply it, first without and then with the item option, to the automobile
dataset after randomly introducing missing values:

. use http://www.stata-press.com/data/r12/automiss
(1978 Automobile Data)

. alpha price headroom rep78 trunk weight length turn displ, std

Test scale = mean(standardized items)
Reversed item: rep78

Average interitem correlation: 0.5251
Number of items in the scale: 8
Scale reliability coefficient: 0.8984

The scale derived from our somewhat arbitrarily chosen automobile items (variables) appears to be
reasonable because the estimated correlation between it and the underlying factor it measures is√

0.8984 ≈ 0.9478 and the estimated correlation between this battery of eight items and all other
eight-item batteries from the same domain is 0.8984. Because the “items” are not on the same scale,
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it is important that std was specified so that the scale and its reliability were based on the sum
of standardized variables. We could obtain the scale in a new variable called sc with the gen(sc)
option.

Though the scale appears reasonable, we include the item option to determine if all the items fit
the scale:

. alpha price headroom rep78 trunk weight length turn displ, std item

Test scale = mean(standardized items)

average
item-test item-rest interitem

Item Obs Sign correlation correlation correlation alpha

price 70 + 0.5260 0.3719 0.5993 0.9128
headroom 66 + 0.6716 0.5497 0.5542 0.8969
rep78 61 - 0.4874 0.3398 0.6040 0.9143
trunk 69 + 0.7979 0.7144 0.5159 0.8818
weight 64 + 0.9404 0.9096 0.4747 0.8635
length 69 + 0.9382 0.9076 0.4725 0.8625
turn 66 + 0.8678 0.8071 0.4948 0.8727
displacement 63 + 0.8992 0.8496 0.4852 0.8684

Test scale 0.5251 0.8984

“ Test” denotes the additive scale; here 0.5251 is the average interitem correlation, and 0.8984 is
the alpha coefficient for a test scale based on all items.

“Obs” shows the number of nonmissing values of the items; “Sign” indicates the direction in
which an item variable entered the scale; “-” denotes that the item was reversed. The remaining four
columns in the table provide information on the effect of one item on the scale.

Column four gives the item-test correlations. Apart from the sign of the correlation for items that
entered the scale in reversed order, these correlations are the same numbers as those computed by
the commands

. alpha price headroom rep78 trunk weight length turn displ, std gen(sc)

. pwcorr sc price headroom rep78 trunk weight length turn displ

Typically, the item-test correlations should be roughly the same for all items. Item-test correlations
may not be adequate to detect items that fit poorly because the poorly fitting items may distort the scale.
Accordingly, it may be more useful to consider item-rest correlations (Nunnally and Bernstein 1994),
that is, the correlation between an item and the scale that is formed by all other items. The average
interitem correlations (covariances if std is omitted) of all items, excluding one, are shown in column
six. Finally, column seven gives Cronbach’s α for the test scale, which consists of all but the one
item.

Here neither the price item nor the rep78 item seems to fit well in the scale in all respects.
The item-test and item-rest correlations of price and rep78 are much lower than those of the other
items. The average interitem correlation increases substantially by removing either price or rep78;
apparently, they do not correlate strongly with the other items. Finally, we see that Cronbach’s α
coefficient will increase from 0.8984 to 0.9128 if the price item is dropped, and it will increase
from 0.8984 to 0.9143 if rep78 is dropped. For well-fitting items, we would of course expect that
α decreases by shortening the test.
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Example 2

The variable names for the automobile data are reasonably informative. This may not always
be true; items in batteries commonly used to measure personality traits, attitudes, values, etc., are
usually named with indexed names such as item12a, item12b, etc. The label option forces alpha
to produce the same statistical information in a more compact format that leaves room to include
variable (item) labels. In this compact format, alpha excludes the number of nonmissing values of
the items, displays the statistics using fewer digits, and uses somewhat cryptic headers:

. alpha price headroom rep78 trunk weight length turn displ, std item label detail

Test scale = mean(standardized items)

Items S it-cor ir-cor ii-cor alpha label

price + 0.526 0.372 0.599 0.913 Price
headroom + 0.672 0.550 0.554 0.897 Headroom (in.)
rep78 - 0.487 0.340 0.604 0.914 Repair Record 1978
trunk + 0.798 0.714 0.516 0.882 Trunk space (cu. ft.)
weight + 0.940 0.910 0.475 0.863 Weight (lbs.)
length + 0.938 0.908 0.473 0.862 Length (in.)
turn + 0.868 0.807 0.495 0.873 Turn Circle (ft.)
displacement + 0.899 0.850 0.485 0.868 Displacement (cu. in.)

Test scale 0.525 0.898 mean(standardized items)

Interitem correlations (reverse applied) (obs=pairwise, see below)

price headroom rep78 trunk
price 1.0000

headroom 0.1174 1.0000
rep78 -0.0479 0.1955 1.0000
trunk 0.2748 0.6841 0.2777 1.0000

weight 0.5093 0.5464 0.3624 0.6486
length 0.4511 0.5823 0.3162 0.7404

turn 0.3528 0.4067 0.4715 0.5900
displacement 0.5537 0.5166 0.3391 0.6471

weight length turn displacement
weight 1.0000
length 0.9425 1.0000

turn 0.8712 0.8589 1.0000
displacement 0.8753 0.8422 0.7723 1.0000

Pairwise number of observations

price headroom rep78 trunk
price 70

headroom 62 66
rep78 59 54 61
trunk 65 61 59 69

weight 60 56 52 60
length 66 61 58 64

turn 62 58 56 62
displacement 59 58 51 58

weight length turn displacement
weight 64
length 60 69

turn 57 61 66
displacement 54 58 56 63

Because the detail option was also specified, the interitem correlation matrix was printed, together
with the number of observations used for each entry (because these varied across the matrix). Note
the negative sign attached to rep78 in the output, indicating the sense in which it entered the scale.
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Better-looking output with less-cryptic headers is produced if the linesize is set to a value of at
least 100:

. set linesize 100

. alpha price headroom rep78 trunk weight length turn displ, std item label

Test scale = mean(standardized items)

item-test item-rest interitem
Item Obs Sign corr. corr. corr. alpha Label

price 70 + 0.5260 0.3719 0.5993 0.9128 Price
headroom 62 + 0.6716 0.5497 0.5542 0.8969 Headroom (in.)
rep78 59 - 0.4874 0.3398 0.6040 0.9143 Repair Record 1978
trunk 65 + 0.7979 0.7144 0.5159 0.8818 Trunk space (cu. ft.)
weight 60 + 0.9404 0.9096 0.4747 0.8635 Weight (lbs.)
length 66 + 0.9382 0.9076 0.4725 0.8625 Length (in.)
turn 62 + 0.8678 0.8071 0.4948 0.8727 Turn Circle (ft.)
displacement 59 + 0.8992 0.8496 0.4852 0.8684 Displacement (cu. in.)

Test scale 0.5251 0.8984 mean(standardized items)

Users of alpha require some standard for judging values of α. We paraphrase Nunnally and
Bernstein (1994, 265): In the early stages of research, modest reliability of 0.70 or higher will suffice;
values in excess of 0.80 often waste time and funds. In contrast, where measurements on individuals
are of interest, a reliability of 0.80 may not be nearly high enough. Even with a reliability of 0.90,
the standard error of measurement is almost one-third as large as the standard deviation of test scores;
a reliability of 0.90 is the minimum that should be tolerated, and a reliability of 0.95 should be
considered the desirable standard.

Saved results
alpha saves the following in r():

Scalars
r(alpha) scale reliability coefficient
r(k) number of items in the scale
r(cov) average interitem covariance
r(rho) average interitem correlation if std is specified

Matrices
r(Alpha) scale reliability coefficient
r(ItemTestCorr) item-test correlation
r(ItemRestCorr) item-rest correlation
r(MeanInterItemCov) average interitem covariance
r(MeanInterItemCorr) average interitem correlation if std is specified

If the item option is specified, results are saved as row matrices for the k subscales when one
variable is removed.
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Methods and formulas
alpha is implemented as an ado-file.

Let xi, i = 1, . . . , k, be the variables over which α is to be calculated. Let si be the sign with
which xi enters the scale. If asis is specified, si = 1 for all i. Otherwise, principal-factor analysis
is performed on xi, and the first factor’s score is predicted; see [MV] factor. si is −1 if correlation
of the xi and the predicted score is negative and +1 otherwise.

Let rij be the correlation between xi and xj , cij be the covariance, and nij be the number of
observations used in calculating the correlation or covariance. The average correlation is

r =

k∑
i=2

i−1∑
j=1

sisjnijrij

k∑
i=2

i−1∑
j=1

nij

and the average covariance similarly is

c =

k∑
i=2

i−1∑
j=1

sisjnijcij

k∑
i=2

i−1∑
j=1

nij

Let cii denote the variance of xi, and define the average variance as

v =

k∑
i=1

niicii

k∑
i=1

nii

If std is specified, the scale reliability α is calculated as defined by the general form of the
Spearman–Brown Prophecy Formula (Nunnally and Bernstein 1994, 232; Allen and Yen 1979,
85–88):

α =
kr

1 + (k − 1)r

This expression corresponds to α under the assumption that the summative rating is the sum of
the standardized variables (Nunnally and Bernstein 1994, 234). If std is not specified, α is defined
(Nunnally and Bernstein 1994, 232 and 234) as

α =
kc

v + (k − 1)c

Let xij reflect the value of item i in the jth observation. If std is specified, the jth value of the
scale computed from the k xij items is

Sj =
1
kj

k∑
i=1

siS(xij)
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where S() is the function that returns the standardized (mean 0, variance 1) value if xij is not missing
and returns zero if xij is missing. kj is the number of nonmissing values in xij , i = 1, . . . , k. If
std is not specified, S() is the function that returns xij or returns missing if xij is missing.

� �
Lee Joseph Cronbach (1916–2001) was an American psychometrician and educational psychologist
who worked principally on measurement theory, program evaluation, and instruction. He taught
and researched at the State College of Washington, the University of Chicago, the University
of Illinois, and Stanford University. Cronbach’s initial paper on alpha led to a theory of test
reliability.� �
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Title

ameans — Arithmetic, geometric, and harmonic means

Syntax
ameans

[
varlist

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Main

add(#) add # to each variable in varlist
only add # only to variables with nonpositive values
level(#) set confidence level; default is level(95)

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Arith./geometric/harmonic means

Description
ameans computes the arithmetic, geometric, and harmonic means, with their corresponding

confidence intervals, for each variable in varlist or for all the variables in the data if varlist is
not specified. gmeans and hmeans are synonyms for ameans.

If you simply want arithmetic means and corresponding confidence intervals, see [R] ci.

Options

� � �
Main �

add(#) adds the value # to each variable in varlist before computing the means and confidence
intervals. This option is useful when analyzing variables with nonpositive values.

only modifies the action of the add(#) option so that it adds # only to variables with at least one
nonpositive value.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

18
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Remarks

Example 1

We have a dataset containing 8 observations on a variable named x. The eight values are 5, 4,
−4, −5, 0, 0, missing, and 7.

. ameans x

Variable Type Obs Mean [95% Conf. Interval]

x Arithmetic 7 1 -3.204405 5.204405
Geometric 3 5.192494 2.57899 10.45448
Harmonic 3 5.060241 3.023008 15.5179

. ameans x, add(5)

Variable Type Obs Mean [95% Conf. Interval]

x Arithmetic 7 6 1.795595 10.2044 *
Geometric 6 5.477226 2.1096 14.22071 *
Harmonic 6 3.540984 . . *

(*) 5 was added to the variables prior to calculating the results.
Missing values in confidence intervals for harmonic mean indicate
that confidence interval is undefined for corresponding variables.
Consult Reference Manual for details.

The number of observations displayed for the arithmetic mean is the number of nonmissing observations.
The number of observations displayed for the geometric and harmonic means is the number of
nonmissing, positive observations. Specifying the add(5) option produces 3 more positive observations.
The confidence interval for the harmonic mean is not reported; see Methods and formulas below.

Saved results
ameans saves the following in r():

Scalars
r(N) number of nonmissing observations; used for arithmetic mean
r(N pos) number of nonmissing positive observations; used for geometric and harmonic means
r(mean) arithmetic mean
r(lb) lower bound of confidence interval for arithmetic mean
r(ub) upper bound of confidence interval for arithmetic mean
r(Var) variance of untransformed data
r(mean g) geometric mean
r(lb g) lower bound of confidence interval for geometric mean
r(ub g) upper bound of confidence interval for geometric mean
r(Var g) variance of lnxi
r(mean h) harmonic mean
r(lb h) lower bound of confidence interval for harmonic mean
r(ub h) upper bound of confidence interval for harmonic mean
r(Var h) variance of 1/xi
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Methods and formulas
ameans is implemented as an ado-file.

See Armitage, Berry, and Matthews (2002) or Snedecor and Cochran (1989). For a history of the
concept of the mean, see Plackett (1958).

When restricted to the same set of values (that is, to positive values), the arithmetic mean (x) is
greater than or equal to the geometric mean, which in turn is greater than or equal to the harmonic
mean. Equality holds only if all values within a sample are equal to a positive constant.

The arithmetic mean and its confidence interval are identical to those provided by ci; see [R] ci.
To compute the geometric mean, ameans first creates uj = lnxj for all positive xj . The arithmetic

mean of the uj and its confidence interval are then computed as in ci. Let u be the resulting mean,
and let [L,U ] be the corresponding confidence interval. The geometric mean is then exp(u), and
its confidence interval is [ exp(L), exp(U) ].

The same procedure is followed for the harmonic mean, except that then uj = 1/xj . The harmonic
mean is then 1/u, and its confidence interval is [ 1/U, 1/L ] if L is greater than zero. If L is not
greater than zero, this confidence interval is not defined, and missing values are reported.

When weights are specified, ameans applies the weights to the transformed values, uj = lnxj
and uj = 1/xj , respectively, when computing the geometric and harmonic means. For details on
how the weights are used to compute the mean and variance of the uj , see [R] summarize. Without
weights, the formula for the geometric mean reduces to

exp
{ 1
n

∑
j

ln(xj)
}

Without weights, the formula for the harmonic mean is

n∑
j

1
xj

Acknowledgments
This improved version of ameans is based on the gmci command (Carlin, Vidmar, and Ramal-

heira 1998) and was written by John Carlin, University of Melbourne, Australia; Suzanna Vidmar,
University of Melbourne, Australia; and Carlos Ramalheira, Coimbra University Hospital, Portugal.

References
Armitage, P., G. Berry, and J. N. S. Matthews. 2002. Statistical Methods in Medical Research. 4th ed. Oxford:

Blackwell.

Carlin, J. B., S. Vidmar, and C. Ramalheira. 1998. sg75: Geometric means and confidence intervals. Stata Technical
Bulletin 41: 23–25. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 197–199. College Station, TX: Stata
Press.

Keynes, J. M. 1911. The principal averages and the laws of error which lead to them. Journal of the Royal Statistical
Society 74: 322–331.

Plackett, R. L. 1958. Studies in the history of probability and statistics: VII. The principle of the arithmetic mean.
Biometrika 45: 130–135.

http://www.stata.com/products/stb/journals/stb41.pdf


ameans — Arithmetic, geometric, and harmonic means 21

Snedecor, G. W., and W. G. Cochran. 1989. Statistical Methods. 8th ed. Ames, IA: Iowa State University Press.

Stigler, S. M. 1985. Arithmetric means. In Vol. 1 of Encyclopedia of Statistical Sciences, ed. S. Kotz and N. L.
Johnson, 126–129. New York: Wiley.

Also see
[R] ci — Confidence intervals for means, proportions, and counts

[R] mean — Estimate means

[R] summarize — Summary statistics

[SVY] svy estimation — Estimation commands for survey data



Title

anova — Analysis of variance and covariance

Syntax
anova varname

[
termlist

] [
if
] [

in
] [

weight
] [

, options
]

where termlist is a factor-variable list (see [U] 11.4.3 Factor variables) with the following additional
features:

• Variables are assumed to be categorical; use the c. factor-variable operator to override this.

• The | symbol (indicating nesting) may be used in place of the # symbol (indicating interaction).

• The / symbol is allowed after a term and indicates that the following term is the error term
for the preceding terms.

options Description

Model

repeated(varlist) variables in terms that are repeated-measures variables
partial use partial (or marginal) sums of squares
sequential use sequential sums of squares
noconstant suppress constant term
dropemptycells drop empty cells from the design matrix

Adv. model

bse(term) between-subjects error term in repeated-measures ANOVA
bseunit(varname) variable representing lowest unit in the between-subjects error term
grouping(varname) grouping variable for computing pooled covariance matrix

bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights and fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Analysis of variance and covariance

Description
The anova command fits analysis-of-variance (ANOVA) and analysis-of-covariance (ANCOVA) models

for balanced and unbalanced designs, including designs with missing cells; for repeated-measures
ANOVA; and for factorial, nested, or mixed designs.

The regress command (see [R] regress) will display the coefficients, standard errors, etc., of the
regression model underlying the last run of anova.

If you want to fit one-way ANOVA models, you may find the oneway or loneway command more
convenient; see [R] oneway and [R] loneway. If you are interested in MANOVA or MANCOVA, see
[MV] manova.

22
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Options

� � �
Model �

repeated(varlist) indicates the names of the categorical variables in the terms that are to be treated
as repeated-measures variables in a repeated-measures ANOVA or ANCOVA.

partial presents the ANOVA table using partial (or marginal) sums of squares. This setting is the
default. Also see the sequential option.

sequential presents the ANOVA table using sequential sums of squares.

noconstant suppresses the constant term (intercept) from the ANOVA or regression model.

dropemptycells drops empty cells from the design matrix. If c(emptycells) is set to keep (see
[R] set emptycells), this option temporarily resets it to drop before running the ANOVA model. If
c(emptycells) is already set to drop, this option does nothing.

� � �
Adv. model �

bse(term) indicates the between-subjects error term in a repeated-measures ANOVA. This option
is needed only in the rare case when the anova command cannot automatically determine the
between-subjects error term.

bseunit(varname) indicates the variable representing the lowest unit in the between-subjects error
term in a repeated-measures ANOVA. This option is rarely needed because the anova command
automatically selects the first variable listed in the between-subjects error term as the default for
this option.

grouping(varname) indicates a variable that determines which observations are grouped together in
computing the covariance matrices that will be pooled and used in a repeated-measures ANOVA.
This option is rarely needed because the anova command automatically selects the combination
of all variables except the first (or as specified in the bseunit() option) in the between-subjects
error term as the default for grouping observations.

Remarks
Remarks are presented under the following headings:

Introduction
One-way ANOVA
Two-way ANOVA
N-way ANOVA
Weighted data
ANCOVA
Nested designs
Mixed designs
Latin-square designs
Repeated-measures ANOVA

Introduction

anova uses least squares to fit the linear models known as ANOVA or ANCOVA (henceforth referred
to simply as ANOVA models).

If your interest is in one-way ANOVA, you may find the oneway command to be more convenient;
see [R] oneway.
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Structural equation modeling provides a more general framework for fitting ANOVA models; see
the Stata Structural Equation Modeling Reference Manual.

ANOVA was pioneered by Fisher. It features prominently in his texts on statistical methods and his
design of experiments (1925, 1935). Many books discuss ANOVA; see, for instance, Altman (1991); van
Belle et al. (2004); Cobb (1998); Snedecor and Cochran (1989); or Winer, Brown, and Michels (1991).
For a classic source, see Scheffé (1959). Kennedy and Gentle (1980) discuss ANOVA’s computing
problems. Edwards (1985) is concerned primarily with the relationship between multiple regression
and ANOVA. Acock (2010, chap. 9) illustrates his discussion with Stata output. Repeated-measures
ANOVA is discussed in Winer, Brown, and Michels (1991); Kuehl (2000); and Milliken and John-
son (2009). Pioneering work in repeated-measures ANOVA can be found in Box (1954); Geisser and
Greenhouse (1958); Huynh and Feldt (1976); and Huynh (1978).

One-way ANOVA

anova, entered without options, performs and reports standard ANOVA. For instance, to perform a
one-way layout of a variable called endog on exog, you would type anova endog exog.

Example 1

We run an experiment varying the amount of fertilizer used in growing apple trees. We test four
concentrations, using each concentration in three groves of 12 trees each. Later in the year, we
measure the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the
four concentrations. Instead, two of the groves were mistakenly leveled by a confused man on a large
bulldozer. We are left with the following data:

. use http://www.stata-press.com/data/r12/apple
(Apple trees)

. list, abbrev(10) sepby(treatment)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4

4. 2 48.9
5. 2 50.4
6. 2 58.9

7. 3 70.4
8. 3 86.9

9. 4 87.7
10. 4 67.3
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To obtain one-way ANOVA results, we type

. anova weight treatment

Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob > F

Model 5295.54433 3 1765.18144 21.46 0.0013

treatment 5295.54433 3 1765.18144 21.46 0.0013

Residual 493.591667 6 82.2652778

Total 5789.136 9 643.237333

We find significant (at better than the 1% level) differences among the four concentrations.

Although the output is a usual ANOVA table, let’s run through it anyway. Above the table is a
summary of the underlying regression. The model was fit on 10 observations, and the root mean
squared error (Root MSE) is 9.07. The R2 for the model is 0.9147, and the adjusted R2 is 0.8721.

The first line of the table summarizes the model. The sum of squares (Partial SS) for the model is
5295.5 with 3 degrees of freedom (df). This line results in a mean square (MS) of 5295.5/3 ≈ 1765.2.
The corresponding F statistic is 21.46 and has a significance level of 0.0013. Thus the model appears
to be significant at the 0.13% level.

The next line summarizes the first (and only) term in the model, treatment. Because there is
only one term, the line is identical to that for the overall model.

The third line summarizes the residual. The residual sum of squares is 493.59 with 6 degrees of
freedom, resulting in a mean squared error of 82.27. The square root of this latter number is reported
as the Root MSE.

The model plus the residual sum of squares equals the total sum of squares, which is reported as
5789.1 in the last line of the table. This is the total sum of squares of weight after removal of the
mean. Similarly, the model plus the residual degrees of freedom sum to the total degrees of freedom,
9. Remember that there are 10 observations. Subtracting 1 for the mean, we are left with 9 total
degrees of freedom.

Technical note
Rather than using the anova command, we could have performed this analysis by using the

oneway command. Example 1 in [R] oneway repeats this same analysis. You may wish to compare
the output.

Type regress to see the underlying regression model corresponding to an ANOVA model fit using
the anova command.

Example 2

Returning to the apple tree experiment, we found that the fertilizer concentration appears to
significantly affect the average weight of the fruit. Although that finding is interesting, we next want
to know which concentration appears to grow the heaviest fruit. One way to find out is by examining
the underlying regression coefficients.



26 anova — Analysis of variance and covariance

. regress, baselevels

Source SS df MS Number of obs = 10
F( 3, 6) = 21.46

Model 5295.54433 3 1765.18144 Prob > F = 0.0013
Residual 493.591667 6 82.2652778 R-squared = 0.9147

Adj R-squared = 0.8721
Total 5789.136 9 643.237333 Root MSE = 9.07

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

treatment
1 0 (base)
2 -59.16667 7.405641 -7.99 0.000 -77.28762 -41.04572
3 -33.25 8.279758 -4.02 0.007 -53.50984 -12.99016
4 -34.4 8.279758 -4.15 0.006 -54.65984 -14.14016

_cons 111.9 5.236579 21.37 0.000 99.08655 124.7134

See [R] regress for an explanation of how to read this table. The baselevels option of regress
displays a row indicating the base category for our categorical variable, treatment. In summary,
we find that concentration 1, the base (omitted) group, produces significantly heavier fruits than
concentration 2, 3, and 4; concentration 2 produces the lightest fruits; and concentrations 3 and 4
appear to be roughly equivalent.

Example 3

We previously typed anova weight treatment to produce and display the ANOVA table for our
apple tree experiment. Typing regress displays the regression coefficients. We can redisplay the
ANOVA table by typing anova without arguments:

. anova

Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob > F

Model 5295.54433 3 1765.18144 21.46 0.0013

treatment 5295.54433 3 1765.18144 21.46 0.0013

Residual 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Two-way ANOVA

You can include multiple explanatory variables with the anova command, and you can specify
interactions by placing ‘#’ between the variable names. For instance, typing anova y a b performs a
two-way layout of y on a and b. Typing anova y a b a#b performs a full two-way factorial layout.
The shorthand anova y a##b does the same.

With the default partial sums of squares, when you specify interacted terms, the order of the terms
does not matter. Typing anova y a b a#b is the same as typing anova y b a b#a.
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Example 4

The classic two-way factorial ANOVA problem, at least as far as computer manuals are concerned,
is a two-way ANOVA design from Afifi and Azen (1979).

Fifty-eight patients, each suffering from one of three different diseases, were randomly assigned
to one of four different drug treatments, and the change in their systolic blood pressure was recorded.
Here are the data:

Disease 1 Disease 2 Disease 3
Drug 1 42, 44, 36 33, 26, 33 31, –3, 25

13, 19, 22 21 25, 24
Drug 2 28, 23, 34 34, 33, 31 3, 26, 28

42, 13 36 32, 4, 16
Drug 3 1, 29, 19 11, 9, 7 21, 1, 9

1, –6 3
Drug 4 24, 9, 22 27, 12, 12 22, 7, 25

–2, 15 –5, 16, 15 5, 12

Let’s assume that we have entered these data into Stata and stored the data as systolic.dta.
Below we use the data, list the first 10 observations, summarize the variables, and tabulate the
control variables:

. use http://www.stata-press.com/data/r12/systolic
(Systolic Blood Pressure Data)

. list in 1/10

drug disease systolic

1. 1 1 42
2. 1 1 44
3. 1 1 36
4. 1 1 13
5. 1 1 19

6. 1 1 22
7. 1 2 33
8. 1 2 26
9. 1 2 33

10. 1 2 21

. summarize

Variable Obs Mean Std. Dev. Min Max

drug 58 2.5 1.158493 1 4
disease 58 2.017241 .8269873 1 3

systolic 58 18.87931 12.80087 -6 44

. tabulate drug disease

Patient’s Disease
Drug Used 1 2 3 Total

1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16

Total 19 19 20 58
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Each observation in our data corresponds to one patient, and for each patient we record drug,
disease, and the increase in the systolic blood pressure, systolic. The tabulation reveals that the
data are not balanced—there are not equal numbers of patients in each drug–disease cell. Stata
does not require that the data be balanced. We can perform a two-way factorial ANOVA by typing

. anova systolic drug disease drug#disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

drug 2997.47186 3 999.157287 9.05 0.0001
disease 415.873046 2 207.936523 1.88 0.1637

drug#disease 707.266259 6 117.87771 1.07 0.3958

Residual 5080.81667 46 110.452536

Total 9340.15517 57 163.862371

Although Stata’s table command does not perform ANOVA, it can produce useful summary tables
of your data (see [R] table):

. table drug disease, c(mean systolic) row col f(%8.2f)

Patient’s Disease
Drug Used 1 2 3 Total

1 29.33 28.25 20.40 26.07
2 28.00 33.50 18.17 25.53
3 16.33 4.40 8.50 8.75
4 13.60 12.83 14.20 13.50

Total 22.79 18.21 15.80 18.88

These are simple means and are not influenced by our anova model. More useful is the margins
command (see [R] margins) that provides marginal means and adjusted predictions. Because drug
is the only significant factor in our ANOVA, we now examine the adjusted marginal means for drug.

. margins drug, asbalanced

Adjusted predictions Number of obs = 58

Expression : Linear prediction, predict()
at : drug (asbalanced)

disease (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

drug
1 25.99444 2.751008 9.45 0.000 20.60257 31.38632
2 26.55556 2.751008 9.65 0.000 21.16368 31.94743
3 9.744444 3.100558 3.14 0.002 3.667462 15.82143
4 13.54444 2.637123 5.14 0.000 8.375778 18.71311

These adjusted marginal predictions are not equal to the simple drug means (see the total column from
the table command); they are based upon predictions from our ANOVA model. The asbalanced
option of margins corresponds with the interpretation of the F statistic produced by ANOVA—each
cell is given equal weight regardless of its sample size (see the following three technical notes). You
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can omit the asbalanced option and obtain predictive margins that take into account the unequal
sample sizes of the cells.

. margins drug

Predictive margins Number of obs = 58

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

drug
1 25.89799 2.750533 9.42 0.000 20.50704 31.28893
2 26.41092 2.742762 9.63 0.000 21.0352 31.78664
3 9.722989 3.099185 3.14 0.002 3.648697 15.79728
4 13.55575 2.640602 5.13 0.000 8.380261 18.73123

Technical note
How do you interpret the significance of terms like drug and disease in unbalanced data? If you

are familiar with SAS, the sums of squares and the F statistic reported by Stata correspond to SAS
type III sums of squares. (Stata can also calculate sequential sums of squares, but we will postpone
that topic for now.)

Let’s think in terms of the following table:

Disease 1 Disease 2 Disease 3
Drug 1 µ11 µ12 µ13 µ1·
Drug 2 µ21 µ22 µ23 µ2·
Drug 3 µ31 µ32 µ33 µ3·
Drug 4 µ41 µ42 µ43 µ4·

µ·1 µ·2 µ·3 µ··

In this table, µij is the mean increase in systolic blood pressure associated with drug i and disease
j, while µi· is the mean for drug i, µ·j is the mean for disease j, and µ·· is the overall mean.

If the data are balanced, meaning that there are equal numbers of observations going into the
calculation of each mean µij , the row means, µi·, are given by

µi· =
µi1 + µi2 + µi3

3

In our case, the data are not balanced, but we define the µi· according to that formula anyway. The
test for the main effect of drug is the test that

µ1· = µ2· = µ3· = µ4·

To be absolutely clear, the F test of the term drug, called the main effect of drug, is formally
equivalent to the test of the three constraints:
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µ11 + µ12 + µ13

3
=
µ21 + µ22 + µ23

3

µ11 + µ12 + µ13

3
=
µ31 + µ32 + µ33

3

µ11 + µ12 + µ13

3
=
µ41 + µ42 + µ43

3

In our data, we obtain a significant F statistic of 9.05 and thus reject those constraints.

Technical note
Stata can display the symbolic form underlying the test statistics it presents, as well as display other

test statistics and their symbolic forms; see Obtaining symbolic forms in [R] anova postestimation.
Here is the result of requesting the symbolic form for the main effect of drug in our data:

. test drug, symbolic
drug

1 -(r2+r3+r4)
2 r2
3 r3
4 r4

disease
1 0
2 0
3 0

drug#disease
1 1 -1/3 (r2+r3+r4)
1 2 -1/3 (r2+r3+r4)
1 3 -1/3 (r2+r3+r4)
2 1 1/3 r2
2 2 1/3 r2
2 3 1/3 r2
3 1 1/3 r3
3 2 1/3 r3
3 3 1/3 r3
4 1 1/3 r4
4 2 1/3 r4
4 3 1/3 r4

_cons 0

This says exactly what we said in the previous technical note.

Technical note
Saying that there is no main effect of a variable is not the same as saying that it has no effect at

all. Stata’s ability to perform ANOVA on unbalanced data can easily be put to ill use.

For example, consider the following table of the probability of surviving a bout with one of two
diseases according to the drug administered to you:
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Disease 1 Disease 2
Drug 1 1 0
Drug 2 0 1

If you have disease 1 and are administered drug 1, you live. If you have disease 2 and are
administered drug 2, you live. In all other cases, you die.

This table has no main effects of either drug or disease, although there is a large interaction effect.
You might now be tempted to reason that because there is only an interaction effect, you would
be indifferent between the two drugs in the absence of knowledge about which disease infects you.
Given an equal chance of having either disease, you reason that it does not matter which drug is
administered to you—either way, your chances of surviving are 0.5.

You may not, however, have an equal chance of having either disease. If you knew that disease 1
was 100 times more likely to occur in the population, and if you knew that you had one of the two
diseases, you would express a strong preference for receiving drug 1.

When you calculate the significance of main effects on unbalanced data, you must ask yourself
why the data are unbalanced. If the data are unbalanced for random reasons and you are making
predictions for a balanced population, the test of the main effect makes perfect sense. If, however,
the data are unbalanced because the underlying populations are unbalanced and you are making
predictions for such unbalanced populations, the test of the main effect may be practically—if not
statistically—meaningless.

Example 5

Stata can perform ANOVA not only on unbalanced populations, but also on populations that are
so unbalanced that entire cells are missing. For instance, using our systolic blood pressure data, let’s
refit the model eliminating the drug 1–disease 1 cell. Because anova follows the same syntax as all
other Stata commands, we can explicitly specify the data to be used by typing the if qualifier at the
end of the anova command. Here we want to use the data that are not for drug 1 and disease 1:

. anova systolic drug##disease if !(drug==1 & disease==1)

Number of obs = 52 R-squared = 0.4545
Root MSE = 10.1615 Adj R-squared = 0.3215

Source Partial SS df MS F Prob > F

Model 3527.95897 10 352.795897 3.42 0.0025

drug 2686.57832 3 895.526107 8.67 0.0001
disease 327.792598 2 163.896299 1.59 0.2168

drug#disease 703.007602 5 140.60152 1.36 0.2586

Residual 4233.48333 41 103.255691

Total 7761.44231 51 152.185143

Here we used drug##disease as a shorthand for drug disease drug#disease.
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Technical note
The test of the main effect of drug in the presence of missing cells is more complicated than that

for unbalanced data. Our underlying tableau now has the following form:

Disease 1 Disease 2 Disease 3
Drug 1 µ12 µ13

Drug 2 µ21 µ22 µ23 µ2·
Drug 3 µ31 µ32 µ33 µ3·
Drug 4 µ41 µ42 µ43 µ4·

µ·2 µ·3

The hole in the drug 1–disease 1 cell indicates that the mean is unobserved. Considering the main
effect of drug, the test is unchanged for the rows in which all the cells are defined:

µ2· = µ3· = µ4·

The first row, however, requires special attention. Here we want the average outcome for drug 1,
which is averaged only over diseases 2 and 3, to be equal to the average values of all other drugs
averaged over those same two diseases:

µ12 + µ13

2
=

(
µ22 + µ23

)
/2 +

(
µ32 + µ33

)
/2 +

(
µ42 + µ43

)
/2

3

Thus the test contains three constraints:

µ21 + µ22 + µ23

3
=

µ31 + µ32 + µ33

3
µ21 + µ22 + µ23

3
=

µ41 + µ42 + µ43

3
µ12 + µ13

2
=

µ22 + µ23 + µ32 + µ33 + µ42 + µ43

6

Stata can calculate two types of sums of squares, partial and sequential. If you do not specify
which sums of squares to calculate, Stata calculates partial sums of squares. The technical notes
above have gone into great detail about the definition and use of partial sums of squares. Use the
sequential option to obtain sequential sums of squares.

Technical note

Before we illustrate sequential sums of squares, consider one more feature of the partial sums. If
you know how such things are calculated, you may worry that the terms must be specified in some
particular order, that Stata would balk or, even worse, produce different results if you typed, say,
anova drug#disease drug disease rather than anova drug disease drug#disease. We assure
you that is not the case.

When you type a model, Stata internally reorganizes the terms, forms the cross-product matrix,
inverts it, converts the result to an upper-Hermite form, and then performs the hypothesis tests. As a
final touch, Stata reports the results in the same order that you typed the terms.
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Example 6

We wish to estimate the effects on systolic blood pressure of drug and disease by using sequential
sums of squares. We want to introduce disease first, then drug, and finally, the interaction of drug
and disease:

. anova systolic disease drug disease#drug, sequential

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Seq. SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

disease 488.639383 2 244.319691 2.21 0.1210
drug 3063.43286 3 1021.14429 9.25 0.0001

disease#drug 707.266259 6 117.87771 1.07 0.3958

Residual 5080.81667 46 110.452536

Total 9340.15517 57 163.862371

The F statistic on disease is now 2.21. When we fit this same model by using partial sums of
squares, the statistic was 1.88.

N-way ANOVA

You may include high-order interaction terms, such as a third-order interaction between the variables
A, B, and C, by typing A#B#C.

Example 7

We wish to determine the operating conditions that maximize yield for a manufacturing process.
There are three temperature settings, two chemical supply companies, and two mixing methods under
investigation. Three observations are obtained for each combination of these three factors.

. use http://www.stata-press.com/data/r12/manuf
(manufacturing process data)

. describe

Contains data from http://www.stata-press.com/data/r12/manuf.dta
obs: 36 manufacturing process data

vars: 4 2 Jan 2011 13:28
size: 144

storage display value
variable name type format label variable label

temperature byte %9.0g temp machine temperature setting
chemical byte %9.0g supplier chemical supplier
method byte %9.0g meth mixing method
yield byte %9.0g product yield

Sorted by:
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We wish to perform a three-way factorial ANOVA. We could type

. anova yield temp chem temp#chem meth temp#meth chem#meth temp#chem#meth

but prefer to use the ## factor-variable operator for brevity.

. anova yield temp##chem##meth

Number of obs = 36 R-squared = 0.5474
Root MSE = 2.62996 Adj R-squared = 0.3399

Source Partial SS df MS F Prob > F

Model 200.75 11 18.25 2.64 0.0227

temperature 30.5 2 15.25 2.20 0.1321
chemical 12.25 1 12.25 1.77 0.1958

temperature#chemical 24.5 2 12.25 1.77 0.1917
method 42.25 1 42.25 6.11 0.0209

temperature#method 87.5 2 43.75 6.33 0.0062
chemical#method .25 1 .25 0.04 0.8508

temperature#chemical#
method 3.5 2 1.75 0.25 0.7785

Residual 166 24 6.91666667

Total 366.75 35 10.4785714

The interaction between temperature and method appears to be the important story in these data.
A table of means for this interaction is given below.

. table method temp, c(mean yield) row col f(%8.2f)

mixing machine temperature setting
method low medium high Total

stir 7.50 6.00 6.00 6.50
fold 5.50 9.00 11.50 8.67

Total 6.50 7.50 8.75 7.58

Here our ANOVA is balanced (each cell has the same number of observations), and we obtain the
same values as in the table above (but with additional information such as confidence intervals) by
using the margins command. Because our ANOVA is balanced, using the asbalanced option with
margins would not produce different results. We request the predictive margins for the two terms
that appear significant in our ANOVA: temperature#method and method.
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. margins temperature#method method

Predictive margins Number of obs = 36

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

temperature#
method

1 1 7.5 1.073675 6.99 0.000 5.395636 9.604364
1 2 5.5 1.073675 5.12 0.000 3.395636 7.604364
2 1 6 1.073675 5.59 0.000 3.895636 8.104364
2 2 9 1.073675 8.38 0.000 6.895636 11.10436
3 1 6 1.073675 5.59 0.000 3.895636 8.104364
3 2 11.5 1.073675 10.71 0.000 9.395636 13.60436

method
1 6.5 .6198865 10.49 0.000 5.285045 7.714955
2 8.666667 .6198865 13.98 0.000 7.451711 9.881622

We decide to use the folding method of mixing and a high temperature in our manufacturing
process.

Weighted data

Like all estimation commands, anova can produce estimates on weighted data. See [U] 11.1.6 weight
for details on specifying the weight.

Example 8

We wish to investigate the prevalence of byssinosis, a form of pneumoconiosis that can afflict
workers exposed to cotton dust. We have data on 5,419 workers in a large cotton mill. We know
whether each worker smokes, his or her race, and the dustiness of the work area. The variables are

smokes smoker or nonsmoker in the last five years
race white or other
workplace 1 (most dusty), 2 (less dusty), 3 (least dusty)

We wish to fit an ANOVA model explaining the prevalence of byssinosis according to a full factorial
model of smokes, race, and workplace.

The data are unbalanced. Moreover, although we have data on 5,419 workers, the data are grouped
according to the explanatory variables, along with some other variables, resulting in 72 observations.
For each observation, we know the number of workers in the group (pop), the prevalence of byssinosis
(prob), and the values of the three explanatory variables. Thus we wish to fit a three-way factorial
model on grouped data.

We begin by showing a bit of the data, which are from Higgins and Koch (1977).
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. use http://www.stata-press.com/data/r12/byssin
(Byssinosis incidence)

. describe

Contains data from http://www.stata-press.com/data/r12/byssin.dta
obs: 72 Byssinosis incidence

vars: 5 19 Dec 2010 07:04
size: 864

storage display value
variable name type format label variable label

smokes int %8.0g smokes Smokes
race int %8.0g race Race
workplace int %8.0g workplace

Dustiness of workplace
pop int %8.0g Population size
prob float %9.0g Prevalence of byssinosis

Sorted by:

. list in 1/5, abbrev(10) divider

smokes race workplace pop prob

1. yes white most 40 .075
2. yes white less 74 0
3. yes white least 260 .0076923
4. yes other most 164 .152439
5. yes other less 88 0

The first observation in the data represents a group of 40 white workers who smoke and work
in a “most” dusty work area. Of those 40 workers, 7.5% have byssinosis. The second observation
represents a group of 74 white workers who also smoke but who work in a “less” dusty environment.
None of those workers has byssinosis.

Almost every Stata command allows weights. Here we want to weight the data by pop. We can,
for instance, make a table of the number of workers by their smoking status and race:

. tabulate smokes race [fw=pop]

Race
Smokes other white Total

no 799 1,431 2,230
yes 1,104 2,085 3,189

Total 1,903 3,516 5,419

The [fw=pop] at the end of the tabulate command tells Stata to count each observation as representing
pop persons. When making the tally, tabulate treats the first observation as representing 40 workers,
the second as representing 74 workers, and so on.

Similarly, we can make a table of the dustiness of the workplace:
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. tabulate workplace [fw=pop]

Dustiness
of

workplace Freq. Percent Cum.

least 3,450 63.66 63.66
less 1,300 23.99 87.65
most 669 12.35 100.00

Total 5,419 100.00

We can discover the average incidence of byssinosis among these workers by typing

. summarize prob [fw=pop]

Variable Obs Mean Std. Dev. Min Max

prob 5419 .0304484 .0567373 0 .287037

We discover that 3.04% of these workers have byssinosis. Across all cells, the byssinosis rates vary
from 0 to 28.7%. Just to prove that there might be something here, let’s obtain the average incidence
rates according to the dustiness of the workplace:

. table workplace smokes race [fw=pop], c(mean prob)

Dustiness Race and Smokes
of other white
workplace no yes no yes

least .0107527 .0101523 .0081549 .0162774
less .02 .0081633 .0136612 .0143149
most .0820896 .1679105 .0833333 .2295082

Let’s now fit the ANOVA model.
. anova prob workplace smokes race workplace#smokes workplace#race
> smokes#race workplace#smokes#race [aweight=pop]
(sum of wgt is 5.4190e+03)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared = 0.7948

Source Partial SS df MS F Prob > F

Model .173646538 11 .015786049 23.53 0.0000

workplace .097625175 2 .048812588 72.76 0.0000
smokes .013030812 1 .013030812 19.42 0.0001

race .001094723 1 .001094723 1.63 0.2070
workplace#smokes .019690342 2 .009845171 14.67 0.0000

workplace#race .001352516 2 .000676258 1.01 0.3718
smokes#race .001662874 1 .001662874 2.48 0.1214

workplace#smokes#race .000950841 2 .00047542 0.71 0.4969

Residual .035557766 53 .000670901

Total .209204304 64 .003268817

Of course, if we want to see the underlying regression, we could type regress.

Above we examined simple means of the cells of workplace#smokes#race. Our ANOVA shows
workplace, smokes, and their interaction as being the only significant factors in our model. We now
examine the predictive marginal mean byssinosis rates for these terms.
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. margins workplace#smokes workplace smokes

Predictive margins Number of obs = 65

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

workplace#
smokes

1 1 .0090672 .0062319 1.45 0.146 -.003147 .0212814
1 2 .0141264 .0053231 2.65 0.008 .0036934 .0245595
2 1 .0158872 .009941 1.60 0.110 -.0035967 .0353711
2 2 .0121546 .0087353 1.39 0.164 -.0049663 .0292756
3 1 .0828966 .0182151 4.55 0.000 .0471957 .1185975
3 2 .2078768 .012426 16.73 0.000 .1835222 .2322314

workplace
1 .0120701 .0040471 2.98 0.003 .0041379 .0200022
2 .0137273 .0065685 2.09 0.037 .0008533 .0266012
3 .1566225 .0104602 14.97 0.000 .1361208 .1771241

smokes
1 .0196915 .0050298 3.91 0.000 .0098332 .0295498
2 .0358626 .0041949 8.55 0.000 .0276408 .0440844

Smoking combined with the most dusty workplace produces the highest byssinosis rates.

� �
Ronald Aylmer Fisher (1890–1962) (Sir Ronald from 1952) studied mathematics at Cambridge.
Even before he finished his studies, he had published on statistics. He worked as a statistician at
Rothamsted Experimental Station (1919–1933), as professor of eugenics at University College
London (1933–1943), as professor of genetics at Cambridge (1943–1957), and in retirement at
the CSIRO Division of Mathematical Statistics in Adelaide. His many fundamental and applied
contributions to statistics and genetics mark him as one of the greatest statisticians of all time,
including original work on tests of significance, distribution theory, theory of estimation, fiducial
inference, and design of experiments.� �

ANCOVA

You can include multiple explanatory variables with the anova command, but unless you explicitly
state otherwise by using the c. factor-variable operator, all the variables are interpreted as categorical
variables. Using the c. operator, you can designate variables as continuous and thus perform ANCOVA.

Example 9

We have census data recording the death rate (drate) and median age (age) for each state. The
dataset also includes the region of the country in which each state is located (region):
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. use http://www.stata-press.com/data/r12/census2
(1980 Census data by state)

. summarize drate age region

Variable Obs Mean Std. Dev. Min Max

drate 50 84.3 13.07318 40 107
age 50 29.5 1.752549 24 35

region 50 2.66 1.061574 1 4

age is coded in integral years from 24 to 35, and region is coded from 1 to 4, with 1 standing for
the Northeast, 2 for the North Central, 3 for the South, and 4 for the West.

When we examine the data more closely, we discover large differences in the death rate across
regions of the country:

. tabulate region, summarize(drate)

Census Summary of Death Rate
region Mean Std. Dev. Freq.

NE 93.444444 7.0553368 9
N Cntrl 88.916667 5.5833899 12

South 88.3125 8.5457104 16
West 68.769231 13.342625 13

Total 84.3 13.073185 50

Naturally, we wonder if these differences might not be explained by differences in the median ages
of the populations. To find out, we fit a regression model (via anova) of drate on region and age.
In the anova example below, we treat age as a categorical variable.

. anova drate region age

Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob > F

Model 6638.86529 11 603.533208 13.21 0.0000

region 1320.00973 3 440.003244 9.63 0.0001
age 2237.24937 8 279.656171 6.12 0.0000

Residual 1735.63471 38 45.6745977

Total 8374.5 49 170.908163

We have the answer to our question: differences in median ages do not eliminate the differences in
death rates across the four regions. The ANOVA table summarizes the two terms in the model, region
and age. The region term contains 3 degrees of freedom, and the age term contains 8 degrees of
freedom. Both are significant at better than the 1% level.

The age term contains 8 degrees of freedom. Because we did not explicitly indicate that age was
to be treated as a continuous variable, it was treated as categorical, meaning that unique coefficients
were estimated for each level of age. The only clue of this labeling is that the number of degrees of
freedom associated with the age term exceeds 1. The labeling becomes more obvious if we review
the regression coefficients:
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. regress, baselevels

Source SS df MS Number of obs = 50
F( 11, 38) = 13.21

Model 6638.86529 11 603.533208 Prob > F = 0.0000
Residual 1735.63471 38 45.6745977 R-squared = 0.7927

Adj R-squared = 0.7328
Total 8374.5 49 170.908163 Root MSE = 6.7583

drate Coef. Std. Err. t P>|t| [95% Conf. Interval]

region
1 0 (base)
2 .4428387 3.983664 0.11 0.912 -7.621668 8.507345
3 -.2964637 3.934766 -0.08 0.940 -8.261981 7.669054
4 -13.37147 4.195344 -3.19 0.003 -21.8645 -4.878439

age
24 0 (base)
26 -15 9.557677 -1.57 0.125 -34.34851 4.348506
27 14.30833 7.857378 1.82 0.076 -1.598099 30.21476
28 12.66011 7.495513 1.69 0.099 -2.51376 27.83399
29 18.861 7.28918 2.59 0.014 4.104825 33.61717
30 20.87003 7.210148 2.89 0.006 6.273847 35.46621
31 29.91307 8.242741 3.63 0.001 13.22652 46.59963
32 27.02853 8.509432 3.18 0.003 9.802089 44.25498
35 38.925 9.944825 3.91 0.000 18.79275 59.05724

_cons 68.37147 7.95459 8.60 0.000 52.26824 84.47469

The regress command displayed the anova model as a regression table. We used the baselevels
option to display the dropped level (or base) for each term.

If we want to treat age as a continuous variable, we must prepend c. to age in our anova.

. anova drate region c.age

Number of obs = 50 R-squared = 0.7203
Root MSE = 7.21483 Adj R-squared = 0.6954

Source Partial SS df MS F Prob > F

Model 6032.08254 4 1508.02064 28.97 0.0000

region 1645.66228 3 548.554092 10.54 0.0000
age 1630.46662 1 1630.46662 31.32 0.0000

Residual 2342.41746 45 52.0537213

Total 8374.5 49 170.908163

The age term now has 1 degree of freedom. The regression coefficients are
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. regress, baselevels

Source SS df MS Number of obs = 50
F( 4, 45) = 28.97

Model 6032.08254 4 1508.02064 Prob > F = 0.0000
Residual 2342.41746 45 52.0537213 R-squared = 0.7203

Adj R-squared = 0.6954
Total 8374.5 49 170.908163 Root MSE = 7.2148

drate Coef. Std. Err. t P>|t| [95% Conf. Interval]

region
1 0 (base)
2 1.792526 3.375925 0.53 0.598 -5.006935 8.591988
3 .6979912 3.18154 0.22 0.827 -5.70996 7.105942
4 -13.37578 3.723447 -3.59 0.001 -20.87519 -5.876377

age 3.922947 .7009425 5.60 0.000 2.511177 5.334718
_cons -28.60281 21.93931 -1.30 0.199 -72.79085 15.58524

Although we started analyzing these data to explain the regional differences in death rate, let’s focus
on the effect of age for a moment. In our first model, each level of age had a unique death rate
associated with it. For instance, the predicted death rate in a north central state with a median age
of 28 was

0.44 + 12.66 + 68.37 ≈ 81.47

whereas the predicted death rate from our current model is

1.79 + 3.92× 28− 28.60 ≈ 82.95

Our previous model had an R2 of 0.7927, whereas our current model has an R2 of 0.7203. This
“small” loss of predictive power accompanies a gain of 7 degrees of freedom, so we suspect that the
continuous-age model is as good as the discrete-age model.

Technical note
There is enough information in the two ANOVA tables to attach a statistical significance to our

suspicion that the loss of predictive power is offset by the savings in degrees of freedom. Because
the continuous-age model is nested within the discrete-age model, we can perform a standard Chow
test. For those of us who know such formulas off the top of our heads, the F statistic is

(2342.41746− 1735.63471)/7
45.6745977

= 1.90

There is, however, a better way.

We can find out whether our continuous model is as good as our discrete model by putting age
in the model twice: once as a continuous variable and once as a categorical variable. The categorical
variable will then measure deviations around the straight line implied by the continuous variable, and
the F test for the significance of the categorical variable will test whether those deviations are jointly
zero.
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. anova drate region c.age age

Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob > F

Model 6638.86529 11 603.533208 13.21 0.0000

region 1320.00973 3 440.003244 9.63 0.0001
age 699.74137 1 699.74137 15.32 0.0004
age 606.782747 7 86.6832496 1.90 0.0970

Residual 1735.63471 38 45.6745977

Total 8374.5 49 170.908163

We find that the F test for the significance of the (categorical) age variable is 1.90, just as we
calculated above. It is significant at the 9.7% level. If we hold to a 5% significance level, we cannot
reject the null hypothesis that the effect of age is linear.

Example 10

In our census data, we still find significant differences across the regions after controlling for the
median age of the population. We might now wonder whether the regional differences are differences
in level—independent of age—or are instead differences in the regional effects of age. Just as we
can interact categorical variables with other categorical variables, we can interact categorical variables
with continuous variables.

. anova drate region c.age region#c.age

Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob > F

Model 6167.7737 7 881.110529 16.77 0.0000

region 188.713602 3 62.9045339 1.20 0.3225
age 873.425599 1 873.425599 16.62 0.0002

region#age 135.691162 3 45.2303874 0.86 0.4689

Residual 2206.7263 42 52.5411023

Total 8374.5 49 170.908163

The region#c.age term in our model measures the differences in slopes across the regions. We cannot
reject the null hypothesis that there are no such differences. The region effect is now “insignificant”.
This status does not mean that there are no regional differences in death rates because each test is a
marginal or partial test. Here, with region#c.age included in the model, region is being tested at
the point where age is zero. Apart from this value not existing in the dataset, it is also a long way
from the mean value of age, so the test of region at this point is meaningless (although it is valid
if you acknowledge what is being tested).

To obtain a more sensible test of region, we can subtract the mean from the age variable and
use this in the model.

. quietly summarize age

. generate mage = age - r(mean)
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. anova drate region c.mage region#c.mage

Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob > F

Model 6167.7737 7 881.110529 16.77 0.0000

region 1166.14735 3 388.715783 7.40 0.0004
mage 873.425599 1 873.425599 16.62 0.0002

region#mage 135.691162 3 45.2303874 0.86 0.4689

Residual 2206.7263 42 52.5411023

Total 8374.5 49 170.908163

region is significant when tested at the mean of the age variable.

Remember that we can specify interactions by typing varname#varname. We have seen examples
of interacting categorical variables with categorical variables and, in the examples above, a categorical
variable (region) with a continuous variable (age or mage).

We can also interact continuous variables with continuous variables. To include an age2 term
in our model, we could type c.age#c.age. If we also wanted to interact the categorical variable
region with the age2 term, we could type region#c.age#c.age (or even c.age#region#c.age).

Nested designs

In addition to specifying interaction terms, nested terms can also be specified in an ANOVA. A
vertical bar is used to indicate nesting: A|B is read as A nested within B. A|B|C is read as A nested
within B, which is nested within C. A|B#C is read as A is nested within the interaction of B and C.
A#B|C is read as the interaction of A and B, which is nested within C.

Different error terms can be specified for different parts of the model. The forward slash is used
to indicate that the next term in the model is the error term for what precedes it. For instance,
anova y A / B|A indicates that the F test for A is to be tested by using the mean square from B|A
in the denominator. Error terms (terms following the slash) are generally not tested unless they are
themselves followed by a slash. Residual error is the default error term.

For example, consider A / B / C, where A, B, and C may be arbitrarily complex terms. Then
anova will report A tested by B and B tested by C. If we add one more slash on the end to form
A / B / C /, then anova will also report C tested by the residual error.

Example 11

We have collected data from a manufacturer that is evaluating which of five different brands
of machinery to buy to perform a particular function in an assembly line. Twenty assembly-line
employees were selected at random for training on these machines, with four employees assigned
to learn a particular machine. The output from each employee (operator) on the brand of machine
for which he trained was measured during four trial periods. In this example, the operator is nested
within machine. Because of sickness and employee resignations, the final data are not balanced. The
following table gives the mean output and sample size for each machine and operator combination.

. use http://www.stata-press.com/data/r12/machine, clear
(machine data)
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. table machine operator, c(mean output n output) col f(%8.2f)

five
brands of operator nested in machine
machine 1 2 3 4 Total

1 9.15 9.48 8.27 8.20 8.75
2 4 3 4 13

2 15.03 11.55 11.45 11.52 12.47
3 2 2 4 11

3 11.27 10.13 11.13 10.84
3 3 3 9

4 16.10 18.97 15.35 16.60 16.65
3 3 4 3 13

5 15.30 14.35 10.43 13.63
4 4 3 11

Assuming that operator is random (that is, we wish to infer to the larger population of possible
operators) and machine is fixed (that is, only these five machines are of interest), the typical test for
machine uses operator nested within machine as the error term. operator nested within machine
can be tested by residual error. Our earlier warning concerning designs with either unplanned missing
cells or unbalanced cell sizes, or both, also applies to interpreting the ANOVA results from this
unbalanced nested example.

. anova output machine / operator|machine /

Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob > F

Model 545.822288 17 32.1071934 14.84 0.0000

machine 430.980792 4 107.745198 13.82 0.0001
operator|machine 101.353804 13 7.79644648

operator|machine 101.353804 13 7.79644648 3.60 0.0009

Residual 84.3766582 39 2.16350406

Total 630.198947 56 11.2535526

operator|machine is preceded by a slash, indicating that it is the error term for the terms before
it (here machine). operator|machine is also followed by a slash that indicates it should be tested
with residual error. The output lists the operator|machine term twice, once as the error term for
machine, and again as a term tested by residual error. A line is placed in the ANOVA table to separate
the two. In general, a dividing line is placed in the output to separate the terms into groups that are
tested with the same error term. The overall model is tested by residual error and is separated from
the rest of the table by a blank line at the top of the table.

The results indicate that the machines are not all equal and that there are significant differences
between operators.
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Example 12

Your company builds and operates sewage treatment facilities. You want to compare two particulate
solutions during the particulate reduction step of the sewage treatment process. For each solution,
two area managers are randomly selected to implement and oversee the change to the new treatment
process in two of their randomly chosen facilities. Two workers at each of these facilities are trained
to operate the new process. A measure of particulate reduction is recorded at various times during
the month at each facility for each worker. The data are described below.

. use http://www.stata-press.com/data/r12/sewage
(Sewage treatment)

. describe

Contains data from http://www.stata-press.com/data/r12/sewage.dta
obs: 64 Sewage treatment

vars: 5 9 May 2011 12:43
size: 320

storage display value
variable name type format label variable label

particulate byte %9.0g particulate reduction
solution byte %9.0g 2 particulate solutions
manager byte %9.0g 2 managers per solution
facility byte %9.0g 2 facilities per manager
worker byte %9.0g 2 workers per facility

Sorted by: solution manager facility worker

You want to determine if the two particulate solutions provide significantly different particulate
reduction. You would also like to know if manager, facility, and worker are significant effects.
solution is a fixed factor, whereas manager, facility, and worker are random factors.

In the following anova command, we use abbreviations for the variable names, which can sometimes
make long ANOVA model statements easier to read.

. anova particulate s / m|s / f|m|s / w|f|m|s /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob > F

Model 13493.6094 15 899.573958 5.54 0.0000

solution 7203.76563 1 7203.76563 17.19 0.0536
manager|solution 838.28125 2 419.140625

manager|solution 838.28125 2 419.140625 0.55 0.6166
facility|manager|

solution 3064.9375 4 766.234375

facility|manager|
solution 3064.9375 4 766.234375 2.57 0.1193

worker|facility|
manager|solution 2386.625 8 298.328125

worker|facility|
manager|solution 2386.625 8 298.328125 1.84 0.0931

Residual 7796.25 48 162.421875

Total 21289.8594 63 337.934276
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While solution is not declared significant at the 5% significance level, it is near enough to
that threshold to warrant further investigation (see example 3 in [R] anova postestimation for a
continuation of the analysis of these data).

Technical note
Why did we use the dropemptycells option with the previous anova? By default, Stata retains

empty cells when building the design matrix and currently treats | and # the same in how it
determines the possible number of cells. Retaining empty cells in an ANOVA with nested terms can
cause your design matrix to become too large. In example 12, there are 1024 = 2 × 4 × 8 × 16
cells that are considered possible for the worker|facility|manager|solution term because the
worker, facility, and manager variables are uniquely numbered. With the dropemptycells
option, the worker|facility|manager|solution term requires just 16 columns in the design
matrix (corresponding to the 16 unique workers).

Why did we not use the dropemptycells option in example 11, where operator is nested in
machine? If you look at the table presented at the beginning of that example, you will see that
operator is compactly instead of uniquely numbered (you need both operator number and machine
number to determine the operator). Here the dropemptycells option would have only reduced
our design matrix from 26 columns down to 24 columns (because there were only 3 operators instead
of 4 for machines 3 and 5).

We suggest that you specify dropemptycells when there are nested terms in your ANOVA. You
could also use the set emptycells drop command to accomplish the same thing; see [R] set.

Mixed designs

An ANOVA can consist of both nested and crossed terms. A split-plot ANOVA design provides an
example.

Example 13

Two reading programs and three skill-enhancement techniques are under investigation. Ten classes
of first-grade students were randomly assigned so that five classes were taught with one reading
program and another five classes were taught with the other. The 30 students in each class were
divided into six groups with 5 students each. Within each class, the six groups were divided randomly
so that each of the three skill-enhancement techniques was taught to two of the groups within each
class. At the end of the school year, a reading assessment test was administered to all the students.
In this split-plot ANOVA, the whole-plot treatment is the two reading programs, and the split-plot
treatment is the three skill-enhancement techniques.

. use http://www.stata-press.com/data/r12/reading
(Reading experiment data)
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. describe

Contains data from http://www.stata-press.com/data/r12/reading.dta
obs: 300 Reading experiment data

vars: 5 9 Mar 2011 18:57
size: 1,500 (_dta has notes)

storage display value
variable name type format label variable label

score byte %9.0g reading score
program byte %9.0g reading program
class byte %9.0g class nested in program
skill byte %9.0g skill enhancement technique
group byte %9.0g group nested in class and skill

Sorted by:

In this split-plot ANOVA, the error term for program is class nested within program. The error
term for skill and the program by skill interaction is the class by skill interaction nested
within program. Other terms are also involved in the model and can be seen below.

Our anova command is too long to fit on one line of this manual. Where we have chosen to break
the command into multiple lines is arbitrary. If we were typing this command into Stata, we would
just type along and let Stata automatically wrap across lines, as necessary.

. anova score prog / class|prog skill prog#skill / class#skill|prog
> / group|class#skill|prog /, dropemptycells

Number of obs = 300 R-squared = 0.3738
Root MSE = 14.6268 Adj R-squared = 0.2199

Source Partial SS df MS F Prob > F

Model 30656.5167 59 519.601977 2.43 0.0000

program 4493.07 1 4493.07 8.73 0.0183
class|program 4116.61333 8 514.576667

skill 1122.64667 2 561.323333 1.54 0.2450
program#skill 5694.62 2 2847.31 7.80 0.0043

class#skill|program 5841.46667 16 365.091667

class#skill|program 5841.46667 16 365.091667 1.17 0.3463
group|class#skill|

program 9388.1 30 312.936667

group|class#skill|
program 9388.1 30 312.936667 1.46 0.0636

Residual 51346.4 240 213.943333

Total 82002.9167 299 274.257246

The program#skill term is significant, as is the program term. Let’s look at the predictive margins
for these two terms and at a marginsplot for the first term.
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. margins, within(program skill)

Predictive margins Number of obs = 300

Expression : Linear prediction, predict()
within : program skill
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

program#
skill
1 1 68.16 2.068542 32.95 0.000 64.10573 72.21427
1 2 52.86 2.068542 25.55 0.000 48.80573 56.91427
1 3 61.54 2.068542 29.75 0.000 57.48573 65.59427
2 1 50.7 2.068542 24.51 0.000 46.64573 54.75427
2 2 56.54 2.068542 27.33 0.000 52.48573 60.59427
2 3 52.1 2.068542 25.19 0.000 48.04573 56.15427

. marginsplot, plot2opts(lp(dash) m(D)) plot3opts(lp(dot) m(T))

Variables that uniquely identify margins: program skill
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. margins, within(program)

Predictive margins Number of obs = 300

Expression : Linear prediction, predict()
within : program
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

program
1 60.85333 1.194273 50.95 0.000 58.5126 63.19407
2 53.11333 1.194273 44.47 0.000 50.7726 55.45407

Because our ANOVA involves nested terms, we used the within() option of margins; see
[R] margins.
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skill 2 produces a low score when combined with program 1 and a high score when combined
with program 2, demonstrating the interaction between the reading program and the skill-enhancement
technique. You might conclude that the first reading program and the first skill-enhancement technique
perform best when combined. However, notice the overlapping confidence interval for the first reading
program and the third skill-enhancement technique.

Technical note
There are several valid ways to write complicated anova terms. In the reading experiment

example (example 13), we had a term group|class#skill|program. This term can be read
as group nested within both class and skill and further nested within program. You can
also write this term as group|class#skill#program or group|program#class#skill or
group|skill#class|program, etc. All variations will produce the same result. Some people prefer
having only one ‘|’ in a term and would use group|class#skill#program, which is read as group
nested within class, skill, and program.

� �
Gertrude Mary Cox (1900–1978) was born on a farm near Dayton, Iowa. Initially intending to
become superintendent of an orphanage, she enrolled at Iowa State College. There she majored
in mathematics and attained the college’s first Master’s degree in statistics. After working on
her PhD in psychological statistics for two years at the University of California–Berkeley, she
decided to go back to Iowa State to work with George W. Snedecor. There she pursued her
interest in and taught a course in design of experiments. That work led to her collaboration with
W. G. Cochran, which produced a classic text. In 1940, when Snedecor shared with her his list
of men he was nominating to head the statistics department at North Carolina State College, she
wanted to know why she had not been included. He added her name, she won the position, and
she built an outstanding department at North Carolina State. Cox retired early so she could work
at the Research Triangle Institute in North Carolina. She consulted widely, served as editor of
Biometrics, and was elected to the National Academy of Sciences.� �

Latin-square designs

You can use anova to analyze a Latin-square design. Consider the following example, published
in Snedecor and Cochran (1989).

Example 14

Data from a Latin-square design are as follows:

Row Column 1 Column 2 Column 3 Column 4 Column 5
1 257(B) 230(E) 279(A) 287(C) 202(D)
2 245(D) 283(A) 245(E) 280(B) 260(C)
3 182(E) 252(B) 280(C) 246(D) 250(A)
4 203(A) 204(C) 227(D) 193(E) 259(B)
5 231(C) 271(D) 266(B) 334(A) 338(E)
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In Stata, the data might appear as follows:

. use http://www.stata-press.com/data/r12/latinsq

. list

row c1 c2 c3 c4 c5

1. 1 257 230 279 287 202
2. 2 245 283 245 280 260
3. 3 182 252 280 246 250
4. 4 203 204 227 193 259
5. 5 231 271 266 334 338

Before anova can be used on these data, the data must be organized so that the outcome
measurement is in one column. reshape is inadequate for this task because there is information
about the treatments in the sequence of these observations. pkshape is designed to reshape this type
of data; see [R] pkshape.

. pkshape row row c1-c5, order(beacd daebc ebcda acdeb cdbae)

. list

sequence outcome treat carry period

1. 1 257 1 0 1
2. 2 245 5 0 1
3. 3 182 2 0 1
4. 4 203 3 0 1
5. 5 231 4 0 1

6. 1 230 2 1 2
7. 2 283 3 5 2
8. 3 252 1 2 2
9. 4 204 4 3 2

10. 5 271 5 4 2

11. 1 279 3 2 3
12. 2 245 2 3 3
13. 3 280 4 1 3
14. 4 227 5 4 3
15. 5 266 1 5 3

16. 1 287 4 3 4
17. 2 280 1 2 4
18. 3 246 5 4 4
19. 4 193 2 5 4
20. 5 334 3 1 4

21. 1 202 5 4 5
22. 2 260 4 1 5
23. 3 250 3 5 5
24. 4 259 1 2 5
25. 5 338 2 3 5
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. anova outcome sequence period treat

Number of obs = 25 R-squared = 0.6536
Root MSE = 32.4901 Adj R-squared = 0.3073

Source Partial SS df MS F Prob > F

Model 23904.08 12 1992.00667 1.89 0.1426

sequence 13601.36 4 3400.34 3.22 0.0516
period 6146.16 4 1536.54 1.46 0.2758
treat 4156.56 4 1039.14 0.98 0.4523

Residual 12667.28 12 1055.60667

Total 36571.36 24 1523.80667

These methods will work with any type of Latin-square design, including those with replicated
measurements. For more information, see [R] pk, [R] pkcross, and [R] pkshape.

Repeated-measures ANOVA

One approach for analyzing repeated-measures data is to use multivariate ANOVA (MANOVA); see
[MV] manova. In this approach, the data are placed in wide form (see [D] reshape), and the repeated
measures enter the MANOVA as dependent variables.

A second approach for analyzing repeated measures is to use anova. However, one of the underlying
assumptions for the F tests in ANOVA is independence of observations. In a repeated-measures design,
this assumption is almost certainly violated or is at least suspect. In a repeated-measures ANOVA,
the subjects (or whatever the experimental units are called) are observed for each level of one or
more of the other categorical variables in the model. These variables are called the repeated-measure
variables. Observations from the same subject are likely to be correlated.

The approach used in repeated-measures ANOVA to correct for this lack of independence is to
apply a correction to the degrees of freedom of the F test for terms in the model that involve
repeated measures. This correction factor, ε, lies between the reciprocal of the degrees of freedom
for the repeated term and 1. Box (1954) provided the pioneering work in this area. Milliken and
Johnson (2009) refer to the lower bound of this correction factor as Box’s conservative correction
factor. Winer, Brown, and Michels (1991) call it simply the conservative correction factor.

Geisser and Greenhouse (1958) provide an estimate for the correction factor called the Greenhouse–
Geisser ε. This value is estimated from the data. Huynh and Feldt (1976) show that the Greenhouse–
Geisser ε tends to be conservatively biased. They provide a revised correction factor called the
Huynh–Feldt ε. When the Huynh–Feldt ε exceeds 1, it is set to 1. Thus there is a natural ordering
for these correction factors:

Box’s conservative ε ≤ Greenhouse–Geisser ε ≤ Huynh–Feldt ε ≤ 1

A correction factor of 1 is the same as no correction.

anova with the repeated() option computes these correction factors and displays the revised
test results in a table that follows the standard ANOVA table. In the resulting table, H-F stands for
Huynh–Feldt, G-G stands for Greenhouse–Geisser, and Box stands for Box’s conservative ε.
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Example 15

This example is taken from table 4.3 of Winer, Brown, and Michels (1991). The reaction time for
five subjects each tested with four drugs was recorded in the variable score. Here is a table of the
data (see [P] tabdisp if you are unfamiliar with tabdisp):

. use http://www.stata-press.com/data/r12/t43, clear
(T4.3 -- Winer, Brown, Michels)

. tabdisp person drug, cellvar(score)

drug
person 1 2 3 4

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30

drug is the repeated variable in this simple repeated-measures ANOVA example. The ANOVA is
specified as follows:

. anova score person drug, repeated(drug)

Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob > F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.733333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.5157895

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person

Repeated variable: drug
Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

Here the Huynh–Feldt ε is 1.0789, which is larger than 1. It is reset to 1, which is the same as making
no adjustment to the standard test computed in the main ANOVA table. The Greenhouse–Geisser ε is
0.6049, and its associated p-value is computed from an F ratio of 24.76 using 1.8147 (= 3ε) and
7.2588 (= 12ε) degrees of freedom. Box’s conservative ε is set equal to the reciprocal of the degrees
of freedom for the repeated term. Here it is 1/3, so Box’s conservative test is computed using 1 and
4 degrees of freedom for the observed F ratio of 24.76.
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Even for Box’s conservative ε, drug is significant with a p-value of 0.0076. The following table
gives the predictive marginal mean score (that is, response time) for each of the four drugs:

. margins drug

Predictive margins Number of obs = 20

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

drug
1 26.4 1.371131 19.25 0.000 23.71263 29.08737
2 25.6 1.371131 18.67 0.000 22.91263 28.28737
3 15.6 1.371131 11.38 0.000 12.91263 18.28737
4 32 1.371131 23.34 0.000 29.31263 34.68737

The ANOVA table for this example provides an F test for person, but you should ignore it. An
appropriate test for person would require replication (that is, multiple measurements for person
and drug combinations). Also, without replication there is no test available for investigating the
interaction between person and drug.

Example 16

Table 7.7 of Winer, Brown, and Michels (1991) provides another repeated-measures ANOVA example.
There are four dial shapes and two methods for calibrating dials. Subjects are nested within calibration
method, and an accuracy score is obtained. The data are shown below.

. use http://www.stata-press.com/data/r12/t77
(T7.7 -- Winer, Brown, Michels)

. tabdisp shape subject calib, cell(score)

2 methods for calibrating dials and
subject nested in calib

4 dial 1 2
shapes 1 2 3 1 2 3

1 0 3 4 4 5 7
2 0 1 3 2 4 5
3 5 5 6 7 6 8
4 3 4 2 8 6 9

The calibration method and dial shapes are fixed factors, whereas subjects are random. The
appropriate test for calibration method uses the nested subject term as the error term. Both the dial
shape and the interaction between dial shape and calibration method are tested with the dial shape
by subject interaction nested within calibration method. Here we drop this term from the anova
command, and it becomes residual error. The dial shape is the repeated variable because each subject
is tested with all four dial shapes. Here is the anova command that produces the desired results:
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. anova score calib / subject|calib shape calib#shape, repeated(shape)

Number of obs = 24 R-squared = 0.8925
Root MSE = 1.11181 Adj R-squared = 0.7939

Source Partial SS df MS F Prob > F

Model 123.125 11 11.1931818 9.06 0.0003

calib 51.0416667 1 51.0416667 11.89 0.0261
subject|calib 17.1666667 4 4.29166667

shape 47.4583333 3 15.8194444 12.80 0.0005
calib#shape 7.45833333 3 2.48611111 2.01 0.1662

Residual 14.8333333 12 1.23611111

Total 137.958333 23 5.99818841

Between-subjects error term: subject|calib
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: calib (for repeated variable)

Repeated variable: shape
Huynh-Feldt epsilon = 0.8483
Greenhouse-Geisser epsilon = 0.4751
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

shape 3 12.80 0.0005 0.0011 0.0099 0.0232
calib#shape 3 2.01 0.1662 0.1791 0.2152 0.2291

Residual 12

The repeated-measure ε corrections are applied to any terms that are tested in the main ANOVA
table and have the repeated variable in the term. These ε corrections are given in a table below the
main ANOVA table. Here the repeated-measures tests for shape and calib#shape are presented.

Calibration method is significant, as is dial shape. The interaction between calibration method and
dial shape is not significant. The repeated-measure ε corrections do not change these conclusions, but
they do change the significance level for the tests on shape and calib#shape. Here, though, unlike
in the previous example, the Huynh–Feldt ε is less than 1.

Here are the predictive marginal mean scores for calibration method and dial shapes. Because the
interaction was not significant, we request only the calib and shape predictive margins.

. margins, within(calib)

Predictive margins Number of obs = 24

Expression : Linear prediction, predict()
within : calib
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

calib
1 3 .3209506 9.35 0.000 2.370948 3.629052
2 5.916667 .3209506 18.43 0.000 5.287615 6.545718
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. margins, within(shape)

Predictive margins Number of obs = 24

Expression : Linear prediction, predict()
within : shape
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

shape
1 3.833333 .4538926 8.45 0.000 2.94372 4.722947
2 2.5 .4538926 5.51 0.000 1.610387 3.389613
3 6.166667 .4538926 13.59 0.000 5.277053 7.05628
4 5.333333 .4538926 11.75 0.000 4.44372 6.222947

Technical note
The computation of the Greenhouse–Geisser and Huynh–Feldt epsilons in a repeated-measures

ANOVA requires the number of levels and degrees of freedom for the between-subjects error term, as
well as a value computed from a pooled covariance matrix. The observations are grouped based on
all but the lowest-level variable in the between-subjects error term. The covariance over the repeated
variables is computed for each resulting group, and then these covariance matrices are pooled. The
dimension of the pooled covariance matrix is the number of levels of the repeated variable (or
combination of levels for multiple repeated variables). In example 16, there are four levels of the
repeated variable (shape), so the resulting covariance matrix is 4× 4.

The anova command automatically attempts to determine the between-subjects error term and the
lowest-level variable in the between-subjects error term to group the observations for computation of
the pooled covariance matrix. anova issues an error message indicating that the bse() or bseunit()
option is required when anova cannot determine them. You may override the default selections of
anova by specifying the bse(), bseunit(), or grouping() option. The term specified in the bse()
option must be a term in the ANOVA model.

The default selection for the between-subjects error term (the bse() option) is the interaction of the
nonrepeated categorical variables in the ANOVA model. The first variable listed in the between-subjects
error term is automatically selected as the lowest-level variable in the between-subjects error term
but can be overridden with the bseunit(varname) option. varname is often a term, such as subject
or subsample within subject, and is most often listed first in the term because of the nesting notation
of ANOVA. This term makes sense in most repeated-measures ANOVA designs when the terms of
the model are written in standard form. For instance, in example 16, there were three categorical
variables (subject, calib, and shape), with shape being the repeated variable. Here anova looked
for a term involving only subject and calib to determine the between-subjects error term. It found
subject|calib as the term with six levels and 4 degrees of freedom. anova then picked subject
as the default for the bseunit() option (the lowest variable in the between-subjects error term)
because it was listed first in the term.

The grouping of observations proceeds, based on the different combinations of values of the
variables in the between-subjects error term, excluding the lowest level variable (as found by default
or as specified with the bseunit() option). You may specify the grouping() option to change the
default grouping used in computing the pooled covariance matrix.

The between-subjects error term, number of levels, degrees of freedom, lowest variable in the
term, and grouping information are presented after the main ANOVA table and before the rest of the
repeated-measures output.
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Example 17

Data with two repeated variables are given in table 7.13 of Winer, Brown, and Michels (1991).
The accuracy scores of subjects making adjustments to three dials during three different periods are
recorded. Three subjects are exposed to a certain noise background level, whereas a different set of
three subjects is exposed to a different noise background level. Here is a table of accuracy scores for
the noise, subject, period, and dial variables:

. use http://www.stata-press.com/data/r12/t713
(T7.13 -- Winer, Brown, Michels)

. tabdisp subject dial period, by(noise) cell(score) stubwidth(11)

noise
background
and subject 10 minute time periods and dial
nested in 1 2 3
noise 1 2 3 1 2 3 1 2 3

1
1 45 53 60 40 52 57 28 37 46
2 35 41 50 30 37 47 25 32 41
3 60 65 75 58 54 70 40 47 50

2
1 50 48 61 25 34 51 16 23 35
2 42 45 55 30 37 43 22 27 37
3 56 60 77 40 39 57 31 29 46

noise, period, and dial are fixed, whereas subject is random. Both period and dial are
repeated variables. The ANOVA for this example is specified next.
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. anova score noise / subject|noise period noise#period
> / period#subject|noise dial noise#dial / dial#subject|noise
> period#dial noise#period#dial, repeated(period dial)

Number of obs = 54 R-squared = 0.9872
Root MSE = 2.81859 Adj R-squared = 0.9576

Source Partial SS df MS F Prob > F

Model 9797.72222 37 264.803303 33.33 0.0000

noise 468.166667 1 468.166667 0.75 0.4348
subject|noise 2491.11111 4 622.777778

period 3722.33333 2 1861.16667 63.39 0.0000
noise#period 333 2 166.5 5.67 0.0293

period#subject|noise 234.888889 8 29.3611111

dial 2370.33333 2 1185.16667 89.82 0.0000
noise#dial 50.3333333 2 25.1666667 1.91 0.2102

dial#subject|noise 105.555556 8 13.1944444

period#dial 10.6666667 4 2.66666667 0.34 0.8499
noise#period#dial 11.3333333 4 2.83333333 0.36 0.8357

Residual 127.111111 16 7.94444444

Total 9924.83333 53 187.261006

Between-subjects error term: subject|noise
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: noise (for repeated variables)

Repeated variable: period
Huynh-Feldt epsilon = 1.0668
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6476
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

period 2 63.39 0.0000 0.0000 0.0003 0.0013
noise#period 2 5.67 0.0293 0.0293 0.0569 0.0759

period#subject|noise 8

Repeated variable: dial
Huynh-Feldt epsilon = 2.0788
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.9171
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

dial 2 89.82 0.0000 0.0000 0.0000 0.0007
noise#dial 2 1.91 0.2102 0.2102 0.2152 0.2394

dial#subject|noise 8
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Repeated variables: period#dial
Huynh-Feldt epsilon = 1.3258
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.5134
Box’s conservative epsilon = 0.2500

Prob > F
Source df F Regular H-F G-G Box

period#dial 4 0.34 0.8499 0.8499 0.7295 0.5934
noise#period#dial 4 0.36 0.8357 0.8357 0.7156 0.5825

Residual 16

For each repeated variable and for each combination of interactions of repeated variables, there are
different ε correction values. The anova command produces tables for each applicable combination.

The two most significant factors in this model appear to be dial and period. The noise by
period interaction may also be significant, depending on the correction factor you use. Below is a
table of predictive margins for the accuracy score for dial, period, and noise by period.

. margins, within(dial)

Predictive margins Number of obs = 54

Expression : Linear prediction, predict()
within : dial
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

dial
1 37.38889 .6643478 56.28 0.000 36.08679 38.69099
2 42.22222 .6643478 63.55 0.000 40.92012 43.52432
3 53.22222 .6643478 80.11 0.000 51.92012 54.52432

. margins, within(period)

Predictive margins Number of obs = 54

Expression : Linear prediction, predict()
within : period
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

period
1 54.33333 .6643478 81.78 0.000 53.03124 55.63543
2 44.5 .6643478 66.98 0.000 43.1979 45.8021
3 34 .6643478 51.18 0.000 32.6979 35.3021
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. margins, within(noise period)

Predictive margins Number of obs = 54

Expression : Linear prediction, predict()
within : noise period
Empty cells : reweight

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

noise#period
1 1 53.77778 .9395297 57.24 0.000 51.93633 55.61922
1 2 49.44444 .9395297 52.63 0.000 47.603 51.28589
1 3 38.44444 .9395297 40.92 0.000 36.603 40.28589
2 1 54.88889 .9395297 58.42 0.000 53.04744 56.73033
2 2 39.55556 .9395297 42.10 0.000 37.71411 41.397
2 3 29.55556 .9395297 31.46 0.000 27.71411 31.397

Dial shape 3 produces the highest score, and scores decrease over the periods.

Example 17 had two repeated-measurement variables. Up to four repeated-measurement variables
may be specified in the anova command.

Saved results
anova saves the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(F) F statistic
e(rmse) root mean squared error
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ss #) sum of squares for term #
e(df #) numerator degrees of freedom for term #
e(ssdenom #) denominator sum of squares for term # (when using nonresidual error)
e(dfdenom #) denominator degrees of freedom for term # (when using nonresidual error)
e(F #) F statistic for term # (if computed)
e(N bse) number of levels of the between-subjects error term
e(df bse) degrees of freedom for the between-subjects error term
e(box#) Box’s conservative epsilon for a particular combination of repeated variables

(repeated() only)
e(gg#) Greenhouse–Geisser epsilon for a particular combination of repeated variables

(repeated() only)
e(hf#) Huynh–Feldt epsilon for a particular combination of repeated variables

(repeated() only)
e(rank) rank of e(V)
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Macros
e(cmd) anova
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varnames) names of the right-hand-side variables
e(term #) term #
e(errorterm #) error term for term # (when using nonresidual error)
e(sstype) type of sum of squares; sequential or partial
e(repvars) names of repeated variables (repeated() only)
e(repvar#) names of repeated variables for a particular combination (repeated() only)
e(model) ols
e(wtype) weight type
e(wexp) weight expression
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(Srep) covariance matrix based on repeated measures (repeated() only)

Functions
e(sample) marks estimation sample

Methods and formulas
anova is implemented as an ado-file.
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Description
The following postestimation commands are of special interest after anova:

Command Description

dfbeta DFBETA influence statistics
estat hettest tests for heteroskedasticity
estat imtest information matrix test
estat ovtest Ramsey regression specification-error test for omitted variables
estat szroeter Szroeter’s rank test for heteroskedasticity
estat vif variance inflation factors for the independent variables
acprplot augmented component-plus-residual plot
avplot added-variable plot
avplots all added-variable plots in one image
cprplot component-plus-residual plot
lvr2plot leverage-versus-squared-residual plot
rvfplot residual-versus-fitted plot
rvpplot residual-versus-predictor plot

For information about these commands, see [R] regress postestimation.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

62



anova postestimation — Postestimation tools for anova 63

Special-interest postestimation commands

In addition to the common estat commands (see [R] estat), estat hettest, estat imtest,
estat ovtest, estat szroeter, and estat vif are also available. dfbeta is also available.
The syntax for dfbeta and these estat commands is the same as after regress; see [R] regress
postestimation.

In addition to the standard syntax of test (see [R] test), test after anova has three additionally
allowed syntaxes; see below. test performs Wald tests of expressions involving the coefficients of
the underlying regression model. Simple and composite linear hypotheses are possible.

Syntax for predict
predict after anova follows the same syntax as predict after regress and can provide

predictions, residuals, standardized residuals, Studentized residuals, the standard error of the residuals,
the standard error of the prediction, the diagonal elements of the projection (hat) matrix, and Cook’s D.
See [R] regress postestimation for details.

Syntax for test after anova
In addition to the standard syntax of test (see [R] test), test after anova also allows the

following:

test, test(matname)
[
mtest

[
(opt)

]
matvlc(matname)

]
syntax a

test, showorder syntax b

test
[

term
[

term . . .
] ] [

/ term
[

term . . .
] ] [

, symbolic
]

syntax c

syntax a test expression involving the coefficients of the underlying regression model;
you provide information as a matrix

syntax b show underlying order of design matrix, which is useful when constructing
matname argument of the test() option

syntax c test effects and show symbolic forms

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Test linear hypotheses after anova

Options for test after anova
test(matname) is required with syntax a of test. The rows of matname specify linear combinations

of the underlying design matrix of the ANOVA that are to be jointly tested. The columns correspond
to the underlying design matrix (including the constant if it has not been suppressed). The column
and row names of matname are ignored.

A listing of the constraints imposed by the test() option is presented before the table containing
the tests. You should examine this table to verify that you have applied the linear combinations
you desired. Typing test, showorder allows you to examine the ordering of the columns for
the design matrix from the ANOVA.



64 anova postestimation — Postestimation tools for anova

mtest
[
(opt)

]
specifies that tests are performed for each condition separately. opt specifies the method

for adjusting p-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method
holm Holm’s method
sidak Šidák’s method
noadjust no adjustment is to be made

Specifying mtest with no argument is equivalent to mtest(noadjust).

matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear
combinations involved in the suite of tests. For the test Lb = c, what is returned in matname is
LV L′, where V is the estimated variance–covariance matrix of b.

showorder causes test to list the definition of each column in the design matrix. showorder is
not allowed with any other option.

symbolic requests the symbolic form of the test rather than the test statistic. When this option
is specified with no terms (test, symbolic), the symbolic form of the estimable functions is
displayed.

Remarks
Remarks are presented under the following headings:

Testing effects
Obtaining symbolic forms
Testing coefficients and contrasts of margins

See examples 4, 7, 8, 13, 15, 16, and 17 in [R] anova for examples that use the margins command.

Testing effects

After fitting a model using anova, you can test for the significance of effects in the ANOVA table,
as well as for effects that are not reported in the ANOVA table, by using the test or contrast
command. You follow test or contrast by the list of effects that you wish to test. By default, these
commands use the residual mean squared error in the denominator of the F ratio. You can specify
other error terms by using the slash notation, just as you would with anova. See [R] contrast for
details on this command.

Example 1

Recall our byssinosis example (example 8) in [R] anova:
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. anova prob workplace smokes race workplace#smokes workplace#race
> smokes#race workplace#smokes#race [aweight=pop]
(sum of wgt is 5.4190e+03)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared = 0.7948

Source Partial SS df MS F Prob > F

Model .173646538 11 .015786049 23.53 0.0000

workplace .097625175 2 .048812588 72.76 0.0000
smokes .013030812 1 .013030812 19.42 0.0001

race .001094723 1 .001094723 1.63 0.2070
workplace#smokes .019690342 2 .009845171 14.67 0.0000

workplace#race .001352516 2 .000676258 1.01 0.3718
smokes#race .001662874 1 .001662874 2.48 0.1214

workplace#smokes#race .000950841 2 .00047542 0.71 0.4969

Residual .035557766 53 .000670901

Total .209204304 64 .003268817

We can easily obtain a test on a particular term from the ANOVA table. Here are two examples:
. test smokes

Source Partial SS df MS F Prob > F

smokes .013030812 1 .013030812 19.42 0.0001
Residual .035557766 53 .000670901

. test smokes#race

Source Partial SS df MS F Prob > F

smokes#race .001662874 1 .001662874 2.48 0.1214
Residual .035557766 53 .000670901

Both of these tests use residual error by default and agree with the ANOVA table produced earlier.

We could have performed these same tests with contrast:
. contrast smokes

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

smokes 1 19.42 0.0001

Residual 53

. contrast smokes#race

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

smokes#race 1 2.48 0.1214

Residual 53
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Technical note
After anova, you can use the ‘/’ syntax in test or contrast to perform tests with a variety of

non-σ2I error structures. However, in most unbalanced models, the mean squares are not independent
and do not have equal expectations under the null hypothesis. Also, be warned that you assume
responsibility for the validity of the test statistic.

Example 2

We return to the nested ANOVA example (example 11) in [R] anova, where five brands of machinery
were compared in an assembly line. We can obtain appropriate tests for the nested terms using test,
even if we had run the anova command without initially indicating the proper error terms.

. use http://www.stata-press.com/data/r12/machine
(machine data)

. anova output machine operator|machine

Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob > F

Model 545.822288 17 32.1071934 14.84 0.0000

machine 430.980792 4 107.745198 49.80 0.0000
operator|machine 101.353804 13 7.79644648 3.60 0.0009

Residual 84.3766582 39 2.16350406

Total 630.198947 56 11.2535526

In this ANOVA table, machine is tested with residual error. With this particular nested design, the
appropriate error term for testing machine is operator nested within machine, which is easily
obtained from test.

. test machine / operator|machine

Source Partial SS df MS F Prob > F

machine 430.980792 4 107.745198 13.82 0.0001
operator|machine 101.353804 13 7.79644648

This result from test matches what we obtained from our anova command.

Example 3

The other nested ANOVA example (example 12) in [R] anova was based on the sewage data. The
ANOVA table is presented here again. As before, we will use abbreviations of variable names in typing
the commands.

. use http://www.stata-press.com/data/r12/sewage
(Sewage treatment)
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. anova particulate s / m|s / f|m|s / w|f|m|s /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob > F

Model 13493.6094 15 899.573958 5.54 0.0000

solution 7203.76563 1 7203.76563 17.19 0.0536
manager|solution 838.28125 2 419.140625

manager|solution 838.28125 2 419.140625 0.55 0.6166
facility|manager|

solution 3064.9375 4 766.234375

facility|manager|
solution 3064.9375 4 766.234375 2.57 0.1193

worker|facility|
manager|solution 2386.625 8 298.328125

worker|facility|
manager|solution 2386.625 8 298.328125 1.84 0.0931

Residual 7796.25 48 162.421875

Total 21289.8594 63 337.934276

In practice, it is often beneficial to pool nonsignificant nested terms to increase the power of
tests on remaining terms. One rule of thumb is to allow the pooling of a term whose p-value is
larger than 0.25. In this sewage example, the p-value for the test of manager is 0.6166. This value
indicates that the manager effect is negligible and might be ignored. Currently, solution is tested by
manager|solution, which has only 2 degrees of freedom. If we pool the manager and facility
terms and use this pooled estimate as the error term for solution, we would have a term with 6
degrees of freedom.

Below are two tests: a test of solution with the pooled manager and facility terms and a
test of this pooled term by worker.

. test s / m|s f|m|s

Source Partial SS df MS F Prob > F

solution 7203.76563 1 7203.76563 11.07 0.0159
manager|solution

facility|manager|
solution 3903.21875 6 650.536458

. test m|s f|m|s / w|f|m|s

Source Partial SS df MS F Prob > F

manager|solution
facility|manager|

solution 3903.21875 6 650.536458 2.18 0.1520
worker|facility|manager|

solution 2386.625 8 298.328125

In the first test, we included two terms after the forward slash (m|s and f|m|s). test after anova
allows multiple terms both before and after the slash. The terms before the slash are combined and
are then tested by the combined terms that follow the slash (or residual error if no slash is present).

The p-value for solution using the pooled term is 0.0159. Originally, it was 0.0536. The increase
in the power of the test is due to the increase in degrees of freedom for the pooled error term.



68 anova postestimation — Postestimation tools for anova

We can get identical results if we drop manager from the anova model. (This dataset has unique
numbers for each facility so that there is no confusion of facilities when manager is dropped.)

. anova particulate s / f|s / w|f|s /, dropemptycells

Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob > F

Model 13493.6094 15 899.573958 5.54 0.0000

solution 7203.76563 1 7203.76563 11.07 0.0159
facility|solution 3903.21875 6 650.536458

facility|solution 3903.21875 6 650.536458 2.18 0.1520
worker|facility|

solution 2386.625 8 298.328125

worker|facility|
solution 2386.625 8 298.328125 1.84 0.0931

Residual 7796.25 48 162.421875

Total 21289.8594 63 337.934276

This output agrees with our earlier test results.

In the following example, two terms from the anova are jointly tested (pooled).

Example 4

In example 10 of [R] anova, we fit the model anova drate region c.mage region#c.mage.
Now we use the contrast command to test for the overall significance of region.

. contrast region region#c.mage, overall

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

region 3 7.40 0.0004

region#c.mage 3 0.86 0.4689

Overall 6 5.65 0.0002

Residual 42

The overall F statistic associated with the region and region#c.mage terms is 5.65, and it is
significant at the 0.02% level.

In the ANOVA output, the region term, by itself, had a sum of squares of 1166.15, which, based
on 3 degrees of freedom, yielded an F statistic of 7.40 and a significance level of 0.0004. This is
the same test that is reported by contrast in the row labeled region. Likewise, the test from the
ANOVA output for the region#c.mage term is reproduced in the second row of the contrast output.
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Obtaining symbolic forms

test can produce the symbolic form of the estimable functions and symbolic forms for particular
tests.

Example 5

After fitting an ANOVA model, we type test, symbolic to obtain the symbolic form of the
estimable functions. For instance, returning to our blood pressure data introduced in example 4 of
[R] anova, let’s begin by reestimating systolic on drug, disease, and drug#disease:

. use http://www.stata-press.com/data/r12/systolic, clear
(Systolic Blood Pressure Data)

. anova systolic drug##disease

Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob > F

Model 4259.33851 11 387.212591 3.51 0.0013

drug 2997.47186 3 999.157287 9.05 0.0001
disease 415.873046 2 207.936523 1.88 0.1637

drug#disease 707.266259 6 117.87771 1.07 0.3958

Residual 5080.81667 46 110.452536

Total 9340.15517 57 163.862371

To obtain the symbolic form of the estimable functions, type

. test, symbolic
drug

1 -(r2+r3+r4-r0)
2 r2
3 r3
4 r4

disease
1 -(r6+r7-r0)
2 r6
3 r7

drug#disease
1 1 -(r2+r3+r4+r6+r7-r12-r13-r15-r16-r18-r19-r0)
1 2 r6 - (r12+r15+r18)
1 3 r7 - (r13+r16+r19)
2 1 r2 - (r12+r13)
2 2 r12
2 3 r13
3 1 r3 - (r15+r16)
3 2 r15
3 3 r16
4 1 r4 - (r18+r19)
4 2 r18
4 3 r19

_cons r0
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Example 6

To obtain the symbolic form for a particular test, we type test term [term . . . ], symbolic. For
instance, the symbolic form for the test of the main effect of drug is

. test drug, symbolic
drug

1 -(r2+r3+r4)
2 r2
3 r3
4 r4

disease
1 0
2 0
3 0

drug#disease
1 1 -1/3 (r2+r3+r4)
1 2 -1/3 (r2+r3+r4)
1 3 -1/3 (r2+r3+r4)
2 1 1/3 r2
2 2 1/3 r2
2 3 1/3 r2
3 1 1/3 r3
3 2 1/3 r3
3 3 1/3 r3
4 1 1/3 r4
4 2 1/3 r4
4 3 1/3 r4

_cons 0

If we omit the symbolic option, we instead see the result of the test:

. test drug

Source Partial SS df MS F Prob > F

drug 2997.47186 3 999.157287 9.05 0.0001
Residual 5080.81667 46 110.452536

Testing coefficients and contrasts of margins

The test command allows you to perform tests directly on the coefficients of the underly-
ing regression model. For instance, the coefficient on the third drug and the second disease
is referred to as 3.drug#2.disease. This could also be written as i3.drug#i2.disease, or
b[3.drug#2.disease], or even coef[i3.drug#i2.disease]; see [U] 13.5 Accessing coeffi-

cients and standard errors.

Example 7

Let’s begin by testing whether the coefficient on the third drug is equal to the coefficient on the
fourth in our blood pressure data. We have already fit the model anova systolic drug##disease
(equivalent to anova systolic drug disease drug#disease), and you can see the results of that
estimation in example 5. Even though we have performed many tasks since we fit the model, Stata
still remembers, and we can perform tests at any time.
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. test 3.drug = 4.drug

( 1) 3.drug - 4.drug = 0

F( 1, 46) = 0.13
Prob > F = 0.7234

We find that the two coefficients are not significantly different, at least at any significance level smaller
than 73%.

For more complex tests, the contrast command often provides a more concise way to specify
the test we are interested in and prevents us from having to write the tests in terms of the regression
coefficients. With contrast, we instead specify our tests in terms of differences in the marginal
means for the levels of a particular factor. For example, if we want to compare the third and fourth
drugs, we can test the difference in the mean impact on systolic blood pressure separately for each
disease using the @ operator. We also use the reverse adjacent operator, ar., to compare the fourth
level of drug with the previous level.

. contrast ar4.drug@disease

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

drug@disease
(4 vs 3) 1 1 0.13 0.7234
(4 vs 3) 2 1 1.76 0.1917
(4 vs 3) 3 1 0.65 0.4230

Joint 3 0.85 0.4761

Residual 46

Contrast Std. Err. [95% Conf. Interval]

drug@disease
(4 vs 3) 1 -2.733333 7.675156 -18.18262 12.71595
(4 vs 3) 2 8.433333 6.363903 -4.376539 21.24321
(4 vs 3) 3 5.7 7.050081 -8.491077 19.89108

None of the individual contrasts shows significant differences between the third drug and the
fourth drug. Likewise, the overall F statistic is 0.85, which is hardly significant. We cannot reject
the hypothesis that the third drug has the same effect as the fourth drug.

Technical note
Alternatively, we could have specified these tests based on the coefficients of the underlying

regression model using the test command. We would have needed to perform tests on the coefficients
for drug and for the coefficients on drug interacted with disease in order to test for differences in
the means mentioned above. To do this, we start with our previous test command:

. test 3.drug = 4.drug

Notice that the F statistic for this test is equivalent to the test labeled (4 vs 3) 1 in the contrast
output. Let’s now add the constraint that the coefficient on the third drug interacted with the third
disease is equal to the coefficient on the fourth drug, again interacted with the third disease. We do
that by typing the new constraint and adding the accumulate option:
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. test 3.drug#3.disease = 4.drug#3.disease, accumulate

( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0

F( 2, 46) = 0.39
Prob > F = 0.6791

So far, our test includes the equality of the two drug coefficients, along with the equality of the
two drug coefficients when interacted with the third disease. Now we add two more equations, one
for each of the remaining two diseases:

. test 3.drug#2.disease = 4.drug#2.disease, accumulate

( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0

F( 3, 46) = 0.85
Prob > F = 0.4761

. test 3.drug#1.disease = 4.drug#1.disease, accumulate

( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0
( 4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0

Constraint 4 dropped

F( 3, 46) = 0.85
Prob > F = 0.4761

The overall F statistic reproduces the one from the joint test in the contrast output.

You may notice that we also got the message “Constraint 4 dropped”. For the technically inclined,
this constraint was unnecessary, given the normalization of the model. If we specify all the constraints
involved in our test or use contrast, we need not worry about the normalization because Stata
handles this automatically.

The test() option of test provides another alternative for testing coefficients. Instead of spelling
out each coefficient involved in the test, a matrix representing the test provides the needed information.
test, showorder shows the order of the terms in the ANOVA corresponding to the order of the
columns for the matrix argument of test().

Example 8

We repeat the last test of example 7 above with the test() option. First, we view the definition
and order of the columns underlying the ANOVA performed on the systolic data.
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. test, showorder

Order of columns in the design matrix
1: (drug==1)
2: (drug==2)
3: (drug==3)
4: (drug==4)
5: (disease==1)
6: (disease==2)
7: (disease==3)
8: (drug==1)*(disease==1)
9: (drug==1)*(disease==2)

10: (drug==1)*(disease==3)
11: (drug==2)*(disease==1)
12: (drug==2)*(disease==2)
13: (drug==2)*(disease==3)
14: (drug==3)*(disease==1)
15: (drug==3)*(disease==2)
16: (drug==3)*(disease==3)
17: (drug==4)*(disease==1)
18: (drug==4)*(disease==2)
19: (drug==4)*(disease==3)
20: _cons

Columns 1–4 correspond to the four levels of drug. Columns 5–7 correspond to the three levels
of disease. Columns 8–19 correspond to the interaction of drug and disease. The last column
corresponds to cons, the constant in the model.

We construct the matrix dr3vs4 with the same four constraints as the last test shown in example 7
and then use the test(dr3vs4) option to perform the test.

. mat dr3vs4 = (0,0,1,-1, 0,0,0, 0,0,0,0,0,0,0,0,0, 0, 0, 0, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,0,1, 0, 0,-1, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,0,1,0, 0,-1, 0, 0 \
> 0,0,0, 0, 0,0,0, 0,0,0,0,0,0,1,0,0,-1, 0, 0, 0)

. test, test(dr3vs4)

( 1) 3.drug - 4.drug = 0
( 2) 3.drug#3.disease - 4.drug#3.disease = 0
( 3) 3.drug#2.disease - 4.drug#2.disease = 0
( 4) 3o.drug#1b.disease - 4o.drug#1b.disease = 0

Constraint 4 dropped

F( 3, 46) = 0.85
Prob > F = 0.4761

Here the effort involved with spelling out the coefficients is similar to that of constructing a matrix
and using it in the test() option. When the test involving coefficients is more complicated, the
test() option may be more convenient than specifying the coefficients directly in test. However,
as previously demonstrated, contrast may provide an even simpler method for testing the same
hypothesis.

After fitting an ANOVA model, various contrasts (1-degree-of-freedom tests comparing different
levels of a categorical variable) are often of interest. contrast can perform each 1-degree-of-freedom
test in addition to the combined test, even in cases in which the contrasts do not correspond to one
of the contrast operators.
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Example 9

Rencher and Schaalje (2008) illustrate 1-degree-of-freedom contrasts for an ANOVA comparing the
net weight of cans filled by five machines (labeled A–E). The data were originally obtained from
Ostle and Mensing (1975). Rencher and Schaalje use a cell-means ANOVA model approach for this
problem. We could do the same by using the noconstant option of anova; see [R] anova. Instead,
we obtain the same results by using the standard overparameterized ANOVA approach (that is, we
keep the constant in the model).

. use http://www.stata-press.com/data/r12/canfill
(Can Fill Data)

. list, sepby(machine)

machine weight

1. A 11.95
2. A 12.00
3. A 12.25
4. A 12.10

5. B 12.18
6. B 12.11

7. C 12.16
8. C 12.15
9. C 12.08

10. D 12.25
11. D 12.30
12. D 12.10

13. E 12.10
14. E 12.04
15. E 12.02
16. E 12.02

. anova weight machine

Number of obs = 16 R-squared = 0.4123
Root MSE = .087758 Adj R-squared = 0.1986

Source Partial SS df MS F Prob > F

Model .059426993 4 .014856748 1.93 0.1757

machine .059426993 4 .014856748 1.93 0.1757

Residual .084716701 11 .007701518

Total .144143694 15 .00960958

The four 1-degree-of-freedom tests of interest among the five machines are A and D versus B, C,
and E; B and E versus C; A versus D; and B versus E. We can specify these tests as user-defined
contrasts by placing the corresponding contrast coefficients into positions related to the five levels of
machine as described in User-defined contrasts of [R] contrast.
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. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

machine
(1) 1 0.75 0.4055
(2) 1 0.31 0.5916
(3) 1 4.47 0.0582
(4) 1 1.73 0.2150

Joint 4 1.93 0.1757

Residual 11

contrast produces a 1-degree-of-freedom test for each of the specified contrasts as well as a
joint test. We included the noeffects option so that the table displaying the values of the individual
contrasts with their confidence intervals was suppressed.

The significance values above are not adjusted for multiple comparisons. We could have produced
the Bonferroni-adjusted significance values by using the mcompare(bonferroni) option.

. contrast {machine 3 -2 -2 3 -2}
> {machine 0 1 -2 0 1}
> {machine 1 0 0 -1 0}
> {machine 0 1 0 0 -1}, mcompare(bonferroni) noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

Bonferroni
df F P>F P>F

machine
(1) 1 0.75 0.4055 1.0000
(2) 1 0.31 0.5916 1.0000
(3) 1 4.47 0.0582 0.2329
(4) 1 1.73 0.2150 0.8601

Joint 4 1.93 0.1757

Residual 11

Note: Bonferroni-adjusted p-values are reported for tests
on individual contrasts only.

Example 10

Here there are two factors, A and B, each with three levels. The levels are quantitative so that
linear and quadratic contrasts are of interest.
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. use http://www.stata-press.com/data/r12/twowaytrend

. anova Y A B A#B

Number of obs = 36 R-squared = 0.9304
Root MSE = 2.6736 Adj R-squared = 0.9097

Source Partial SS df MS F Prob > F

Model 2578.55556 8 322.319444 45.09 0.0000

A 2026.72222 2 1013.36111 141.77 0.0000
B 383.722222 2 191.861111 26.84 0.0000

A#B 168.111111 4 42.0277778 5.88 0.0015

Residual 193 27 7.14814815

Total 2771.55556 35 79.1873016

We can use the p. contrast operator to obtain the 1-degree-of-freedom tests for the linear and
quadratic effects of A and B.

. contrast p.A p.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

A
(linear) 1 212.65 0.0000

(quadratic) 1 70.88 0.0000
Joint 2 141.77 0.0000

B
(linear) 1 26.17 0.0000

(quadratic) 1 27.51 0.0000
Joint 2 26.84 0.0000

Residual 27

All the above tests appear to be significant. In addition to presenting the 1-degree-of-freedom tests,
the combined tests for A and B are produced and agree with the original ANOVA results.

Now we explore the interaction between A and B.

. contrast p.A#p1.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

A#B
(linear) (linear) 1 17.71 0.0003

(quadratic) (linear) 1 0.07 0.7893
Joint 2 8.89 0.0011

Residual 27

The 2-degrees-of-freedom test of the interaction of A with the linear components of B is significant
at the 0.0011 level. But, when we examine the two 1-degree-of-freedom tests that compose this result,
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the significance is due to the linear A by linear B contrast (significance level of 0.0003). A significance
value of 0.7893 for the quadratic A by linear B indicates that this factor is not significant for these
data.

. contrast p.A#p2.B, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

A#B
(linear) (quadratic) 1 2.80 0.1058

(quadratic) (quadratic) 1 2.94 0.0979
Joint 2 2.87 0.0741

Residual 27

The test of A with the quadratic components of B does not fall below the 0.05 significance level.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

References
Ostle, B., and R. W. Mensing. 1975. Statistics in Research. 3rd ed. Ames, IA: Iowa State University Press.

Rencher, A. C., and G. B. Schaalje. 2008. Linear Models in Statistics. 2nd ed. New York: Wiley.

Also see
[R] anova — Analysis of variance and covariance

[R] regress postestimation — Postestimation tools for regress

[U] 20 Estimation and postestimation commands
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areg — Linear regression with a large dummy-variable set

Syntax
areg depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, absorb(varname)

[
options

]
options Description

Model
∗absorb(varname) categorical variable to be absorbed

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics

∗absorb(varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Other > Linear regression absorbing one cat. variable

Description
areg fits a linear regression absorbing one categorical factor. areg is designed for datasets with

many groups, but not a number of groups that increases with the sample size. See the xtreg, fe
command in [XT] xtreg for an estimator that handles the case in which the number of groups increases
with the sample size.

78
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Options

� � �
Model �

absorb(varname) specifies the categorical variable, which is to be included in the regression as if
it were specified by dummy variables. absorb() is required.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

Exercise caution when using the vce(cluster clustvar) option with areg. The effective number
of degrees of freedom for the robust variance estimator is ng − 1, where ng is the number of
clusters. Thus the number of levels of the absorb() variable should not exceed the number of
clusters.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with areg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Suppose that you have a regression model that includes among the explanatory variables a large

number, k, of mutually exclusive and exhaustive dummies:

y = Xβ+ d1γ1 + d2γ2 + · · ·+ dkγk + ε

For instance, the dummy variables, di, might indicate countries in the world or states of the United
States. One solution would be to fit the model with regress, but this solution is possible only if k
is small enough so that the total number of variables (the number of columns of X plus the number
of di’s plus one for y) is sufficiently small—meaning less than matsize (see [R] matsize). For
problems with more variables than the largest possible value of matsize (100 for Small Stata, 800
for Stata/IC, and 11,000 for Stata/SE and Stata/MP), regress will not work. areg provides a way
of obtaining estimates of β—but not the γi’s—in these cases. The effects of the dummy variables
are said to be absorbed.

Example 1

So that we can compare the results produced by areg with Stata’s other regression commands,
we will fit a model in which k is small. areg’s real use, however, is when k is large.

In our automobile data, we have a variable called rep78 that is coded 1, 2, 3, 4, and 5, where 1
means poor and 5 means excellent. Let’s assume that we wish to fit a regression of mpg on weight,
gear ratio, and rep78 (parameterized as a set of dummies).
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight gear_ratio b5.rep78

Source SS df MS Number of obs = 69
F( 6, 62) = 21.31

Model 1575.97621 6 262.662702 Prob > F = 0.0000
Residual 764.226686 62 12.3262369 R-squared = 0.6734

Adj R-squared = 0.6418
Total 2340.2029 68 34.4147485 Root MSE = 3.5109

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971

rep78
1 -2.036937 2.740728 -0.74 0.460 -7.515574 3.4417
2 -2.419822 1.764338 -1.37 0.175 -5.946682 1.107039
3 -2.557432 1.370912 -1.87 0.067 -5.297846 .1829814
4 -2.788389 1.395259 -2.00 0.050 -5.577473 .0006939

_cons 36.23782 7.01057 5.17 0.000 22.22389 50.25175

To fit the areg equivalent, we type

. areg mpg weight gear_ratio, absorb(rep78)

Linear regression, absorbing indicators Number of obs = 69
F( 2, 62) = 41.64
Prob > F = 0.0000
R-squared = 0.6734
Adj R-squared = 0.6418
Root MSE = 3.5109

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0051031 .0009206 -5.54 0.000 -.0069433 -.003263
gear_ratio .901478 1.565552 0.58 0.567 -2.228015 4.030971

_cons 34.05889 7.056383 4.83 0.000 19.95338 48.1644

rep78 F(4, 62) = 1.117 0.356 (5 categories)

Both regress and areg display the same R2 values, root mean squared error, and—for weight
and gear ratio—the same parameter estimates, standard errors, t statistics, significance levels, and
confidence intervals. areg, however, does not report the coefficients for rep78, and, in fact, they
are not even calculated. This computational trick makes the problem manageable when k is large.
areg reports a test that the coefficients associated with rep78 are jointly zero. Here this test has a
significance level of 35.6%. This F test for rep78 is the same that we would obtain after regress
if we were to specify test 1.rep78 2.rep78 3.rep78 4.rep78; see [R] test.

The model F tests reported by regress and areg also differ. The regress command reports a
test that all coefficients except that of the constant are equal to zero; thus, the dummies are included
in this test. The areg output shows a test that all coefficients excluding the dummies and the constant
are equal to zero. This is the same test that can be obtained after regress by typing test weight
gear ratio.
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Technical note
areg is designed for datasets with many groups, but not a number that grows with the sample

size. Consider two different samples from the U.S. population. In the first sample, we have 10,000
individuals and we want to include an indicator for each of the 50 states, whereas in the second
sample we have 3 observations on each of 10,000 individuals and we want to include an indicator for
each individual. areg was designed for datasets similar to the first sample in which we have a fixed
number of groups, the 50 states. In the second sample, the number of groups, which is the number of
individuals, grows as we include more individuals in the sample. For an estimator designed to handle
the case in which the number of groups grows with the sample size, see the xtreg, fe command
in [XT] xtreg.

Although the point estimates produced by areg and xtreg, fe are the same, the estimated VCEs
differ when cluster() is specified because the commands make different assumptions about whether
the number of groups increases with the sample size.

Technical note

The intercept reported by areg deserves some explanation because, given k mutually exclusive
and exhaustive dummies, it is arbitrary. areg identifies the model by choosing the intercept that
makes the prediction calculated at the means of the independent variables equal to the mean of the
dependent variable: y = x β̂.

. predict yhat
(option xb assumed; fitted values)

. summarize mpg yhat if rep78 != .

Variable Obs Mean Std. Dev. Min Max

mpg 69 21.28986 5.866408 12 41
yhat 69 21.28986 4.383224 11.58643 28.07367

We had to include if rep78 < . in our summarize command because we have missing values in
our data. areg automatically dropped those missing values (as it should) in forming the estimates,
but predict with the xb option will make predictions for cases with missing rep78 because it does
not know that rep78 is really part of our model.

These predicted values do not include the absorbed effects (that is, the diγi). For predicted values
that include these effects, use the xbd option of predict (see [R] areg postestimation) or see
[XT] xtreg.

Example 2

areg, vce(robust) is a Huberized version of areg; see [P] robust. Just as areg is equivalent to
using regress with dummies, areg, vce(robust) is equivalent to using regress, vce(robust)
with dummies. You can use areg, vce(robust) when you expect heteroskedastic or nonnormal
errors. areg, vce(robust), like ordinary regression, assumes that the observations are independent,
unless the vce(cluster clustvar) option is specified. If the vce(cluster clustvar) option is
specified, this independence assumption is relaxed and only the clusters identified by equal values of
clustvar are assumed to be independent.
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Assume that we were to collect data by randomly sampling 10,000 doctors (from 100 hospitals)
and then sampling 10 patients of each doctor, yielding a total dataset of 100,000 patients in a cluster
sample. If in some regression we wished to include effects of the hospitals to which the doctors
belonged, we would want to include a dummy variable for each hospital, adding 100 variables to our
model. areg could fit this model by

. areg depvar patient vars, absorb(hospital) vce(cluster doctor)

Saved results
areg saves the following in e():

Scalars
e(N) number of observations
e(tss) total sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(df a) degrees of freedom for absorbed effect
e(rmse) root mean squared error
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(F) F statistic
e(F absorb) F statistic for absorbed effect (when vce(robust) is not specified)
e(rank) rank of e(V)

Macros
e(cmd) areg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(absvar) name of absorb variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
areg is implemented as an ado-file.

areg begins by recalculating depvar and indepvars to have mean 0 within the groups specified
by absorb(). The overall mean of each variable is then added back in. The adjusted depvar is then
regressed on the adjusted indepvars with regress, yielding the coefficient estimates. The degrees
of freedom of the variance–covariance matrix of the coefficients is then adjusted to account for the
absorbed variables—this calculation yields the same results (up to numerical roundoff error) as if the
matrix had been calculated directly by the formulas given in [R] regress.

areg with vce(robust) or vce(cluster clustvar) works similarly, calling robust after
regress to produce the Huber/White/sandwich estimator of the variance or its clustered version. See
[P] robust, particularly Introduction and Methods and formulas. The model F test uses the robust
variance estimates. There is, however, no simple computational means of obtaining a robust test of the
absorbed dummies; thus this test is not displayed when the vce(robust) or vce(cluster clustvar)
option is specified.

The number of groups specified in absorb() are included in the degrees of freedom used in
the finite-sample adjustment of the cluster–robust VCE estimator. This statement is only valid if the
number of groups is small relative to the sample size. (Technically, the number of groups must remain
fixed as the sample size grows.) For an estimator that allows the number of groups to grow with the
sample size, see the xtreg, fe command in [XT] xtreg.

Reference
Blackwell, J. L., III. 2005. Estimation and testing of fixed-effect panel-data systems. Stata Journal 5: 202–207.

Also see
[R] areg postestimation — Postestimation tools for areg

[R] regress — Linear regression

[MI] estimation — Estimation commands for use with mi estimate

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models

[U] 20 Estimation and postestimation commands
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Title

areg postestimation — Postestimation tools for areg

Description
The following postestimation commands are available after areg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

where yj = xjb + dabsorbvar + ej and statistic is

statistic Description

Main

xb xjb, fitted values; the default
stdp standard error of the prediction
dresiduals dabsorbvar + ej = yj − xjb
∗xbd xjb + dabsorbvar
∗d dabsorbvar

∗residuals residual
∗score score; equivalent to residuals

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the prediction of xjb, the fitted values, by using the average effect of the
absorbed variable. Also see xbd below.

stdp calculates the standard error of xjb.

dresiduals calculates yj − xjb, which are the residuals plus the effect of the absorbed variable.

xbd calculates xjb + dabsorbvar, which are the fitted values including the individual effects of the
absorbed variable.

d calculates dabsorbvar, the individual coefficients for the absorbed variable.

residuals calculates the residuals, that is, yj − (xjb + dabsorbvar).

score is a synonym for residuals.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] areg — Linear regression with a large dummy-variable set

[U] 20 Estimation and postestimation commands



Title

asclogit — Alternative-specific conditional logit (McFadden’s choice) model

Syntax
asclogit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, case(varname)

alternatives(varname)
[

options
]

options Description

Model
∗case(varname) use varname to identify cases
∗alternatives(varname) use varname to identify the alternatives available for each case
casevars(varlist) case-specific variables
basealternative(# | lbl | str) alternative to normalize location
noconstant suppress alternative-specific constant terms
altwise use alternativewise deletion instead of casewise deletion
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
noheader do not display the header on the coefficient table
nocnsreport do not display constraints
display options control column formats and line width

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗case(varname) and alternatives(varname) are required.
bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to cases

as a whole, not to individual observations. See Use of weights in [R] clogit.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Categorical outcomes > Alternative-specific conditional logit

Description
asclogit fits McFadden’s choice model, which is a specific case of the more general conditional

logistic regression model (McFadden 1974). asclogit requires multiple observations for each case
(individual or decision), where each observation represents an alternative that may be chosen. The cases
are identified by the variable specified in the case() option, whereas the alternatives are identified by
the variable specified in the alternatives() option. The outcome or chosen alternative is identified
by a value of 1 in depvar, whereas zeros indicate the alternatives that were not chosen. There can be
multiple alternatives chosen for each case.

asclogit allows two types of independent variables: alternative-specific variables and case-specific
variables. Alternative-specific variables vary across both cases and alternatives and are specified in
indepvars. Case-specific variables vary only across cases and are specified in the casevars() option.

See [R] clogit for a more general application of conditional logistic regression. For example,
clogit would be used when you have grouped data where each observation in a group may be
a different individual, but all individuals in a group have a common characteristic. You may use
clogit to obtain the same estimates as asclogit by specifying the case() variable as the group()
variable in clogit and generating variables that interact the casevars() in asclogit with each
alternative (in the form of an indicator variable), excluding the interaction variable associated with the
base alternative. asclogit takes care of this data-management burden for you. Also, for clogit,
each record (row in your data) is an observation, whereas in asclogit each case, consisting of
several records (the alternatives) in your data, is an observation. This last point is important because
asclogit will drop observations, by default, in a casewise fashion. That is, if there is at least one
missing value in any of the variables for each record of a case, the entire case is dropped from
estimation. To use alternativewise deletion, specify the altwise option and only the records with
missing values will be dropped from estimation.

Options

� � �
Model �

case(varname) specifies the numeric variable that identifies each case. case() is required and must
be integer valued.

alternatives(varname) specifies the variable that identifies the alternatives for each case. The
number of alternatives can vary with each case; the maximum number of alternatives cannot exceed
the limits of tabulate oneway; see [R] tabulate oneway. alternatives() is required and may
be a numeric or a string variable.

casevars(varlist) specifies the case-specific numeric variables. These are variables that are constant
for each case. If there are a maximum of J alternatives, there will be J − 1 sets of coefficients
associated with the casevars().

basealternative(# | lbl | str) specifies the alternative that normalizes the latent-variable location
(the level of utility). The base alternative may be specified as a number, label, or string depending
on the storage type of the variable indicating alternatives. The default is the alternative with the
highest frequency.

If vce(bootstrap) or vce(jackknife) is specified, you must specify the base alternative. This
is to ensure that the same model is fit with each call to asclogit.
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noconstant suppresses the J − 1 alternative-specific constant terms.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.

offset(varname), constraints(numlist |matname), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

noheader prevents the coefficient table header from being displayed.

nocnsreport; see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

technique(bhhh) is not allowed.

The initial estimates must be specified as from(matname
[
, copy

]
), where matname is the

matrix containing the initial estimates and the copy option specifies that only the position of each
element in matname is relevant. If copy is not specified, the column stripe of matname identifies
the estimates.

The following option is available with asclogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
asclogit fits McFadden’s choice model (McFadden [1974]; for a brief introduction, see Greene

[2012, sec. 18.2] or Cameron and Trivedi [2010, sec. 15.5]). In this model, we have a set of unordered
alternatives indexed by 1, 2, . . . , J . Let yij , j = 1, . . . , J , be an indicator variable for the alternative
actually chosen by the ith individual (case). That is, yij = 1 if individual i chose alternative j
and yij = 0 otherwise. The independent variables come in two forms: alternative specific and case
specific. Alternative-specific variables vary among the alternatives (as well as cases), and case-specific
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variables vary only among cases. Assume that we have p alternative-specific variables so that for
case i we have a J × p matrix, Xi. Further, assume that we have q case-specific variables so that
we have a 1× q vector zi for case i. Our random-utility model can then be expressed as

ui = Xiβ+ (ziA)′ + εi

Here β is a p×1 vector of alternative-specific regression coefficients and A = (α1, . . . ,αJ) is a q×J
matrix of case-specific regression coefficients. The elements of the J × 1 vector εi are independent
Type I (Gumbel-type) extreme-value random variables with mean γ (the Euler–Mascheroni constant,
approximately 0.577) and variance π2/6. We must fix one of the αj to the constant vector to normalize
the location. We set αk = 0, where k is specified by the basealternative() option. The vector
ui quantifies the utility that the individual gains from the J alternatives. The alternative chosen by
individual i is the one that maximizes utility.

Example 1

We have data on 295 consumers and their choice of automobile. Each consumer chose among an
American, Japanese, or European car; the variable car indicates the nationality of the car for each
alternative. We want to explore the relationship between the choice of car to the consumer’s sex
(variable sex) and income (variable income in thousands of dollars). We also have information on
the number of dealerships of each nationality in the consumer’s city in the variable dealer that we
want to include as a regressor. We assume that consumers’ preferences are influenced by the number
of dealerships in an area but that the number of dealerships is not influenced by consumer preferences
(which we admit is a rather strong assumption). The variable dealer is an alternative-specific variable
(Xi is a 3× 1 vector in our previous notation), and sex and income are case-specific variables (zi
is a 1× 2 vector). Each consumer’s chosen car is indicated by the variable choice.

Let’s list some of the data.

. use http://www.stata-press.com/data/r12/choice

. list id car choice dealer sex income in 1/12, sepby(id)

id car choice dealer sex income

1. 1 American 0 18 male 46.7
2. 1 Japan 0 8 male 46.7
3. 1 Europe 1 5 male 46.7

4. 2 American 1 17 male 26.1
5. 2 Japan 0 6 male 26.1
6. 2 Europe 0 2 male 26.1

7. 3 American 1 12 male 32.7
8. 3 Japan 0 6 male 32.7
9. 3 Europe 0 2 male 32.7

10. 4 American 0 18 female 49.2
11. 4 Japan 1 7 female 49.2
12. 4 Europe 0 4 female 49.2

We see, for example, that the first consumer, a male earning $46,700 per year, chose to purchase a
European car even though there are more American and Japanese car dealers in his area. The fourth
consumer, a female earning $49,200 per year, purchased a Japanese car.

We now fit our model.
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. asclogit choice dealer, case(id) alternatives(car) casevars(sex income)

Iteration 0: log likelihood = -273.55685
Iteration 1: log likelihood = -252.75109
Iteration 2: log likelihood = -250.78555
Iteration 3: log likelihood = -250.7794
Iteration 4: log likelihood = -250.7794

Alternative-specific conditional logit Number of obs = 885
Case variable: id Number of cases = 295

Alternative variable: car Alts per case: min = 3
avg = 3.0
max = 3

Wald chi2(5) = 15.86
Log likelihood = -250.7794 Prob > chi2 = 0.0072

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

car
dealer .0680938 .0344465 1.98 0.048 .00058 .1356076

American (base alternative)

Japan
sex -.5346039 .3141564 -1.70 0.089 -1.150339 .0811314

income .0325318 .012824 2.54 0.011 .0073973 .0576663
_cons -1.352189 .6911829 -1.96 0.050 -2.706882 .0025049

Europe
sex .5704109 .4540247 1.26 0.209 -.3194612 1.460283

income .032042 .0138676 2.31 0.021 .004862 .0592219
_cons -2.355249 .8526681 -2.76 0.006 -4.026448 -.6840501

Displaying the results as odds ratios makes interpretation easier.

. asclogit, or noheader

choice Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

car
dealer 1.070466 .0368737 1.98 0.048 1.00058 1.145232

American (base alternative)

Japan
sex .5859013 .1840647 -1.70 0.089 .3165294 1.084513

income 1.033067 .013248 2.54 0.011 1.007425 1.059361
_cons .2586735 .1787907 -1.96 0.050 .0667446 1.002508

Europe
sex 1.768994 .8031669 1.26 0.209 .7265404 4.307178

income 1.032561 .0143191 2.31 0.021 1.004874 1.061011
_cons .0948699 .0808925 -2.76 0.006 .0178376 .5045693

These results indicate that men (sex = 1) are less likely to pick a Japanese car over an American
car than women (odds ratio 0.59) but that men are more likely to choose a European car over an
American car (odds ratio 1.77). Raising a person’s income increases the likelihood that he or she
purchases a Japanese or European car; interestingly, the effect of higher income is about the same
for these two types of cars.
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Daniel Little McFadden was born in 1937 in North Carolina. He studied physics, psychology,
and economics at the University of Minnesota and has taught economics at Pittsburgh, Berkeley,
MIT, and the University of Southern California. His contributions to logit models were triggered
by a student’s project on freeway routing decisions, and his work consistently links economic
theory and applied problems. In 2000, he shared the Nobel Prize in Economics with James J.
Heckman.� �

Technical note

McFadden’s choice model is related to multinomial logistic regression (see [R] mlogit). If all the
independent variables are case specific, then the two models are identical. We verify this supposition
by running the previous example without the alternative-specific variable, dealer.

. asclogit choice, case(id) alternatives(car) casevars(sex income) nolog

Alternative-specific conditional logit Number of obs = 885
Case variable: id Number of cases = 295
Alternative variable: car Alts per case: min = 3

avg = 3.0
max = 3

Wald chi2(4) = 12.53
Log likelihood = -252.72012 Prob > chi2 = 0.0138

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

American (base alternative)

Japan
sex -.4694799 .3114939 -1.51 0.132 -1.079997 .141037

income .0276854 .0123666 2.24 0.025 .0034472 .0519236
_cons -1.962652 .6216804 -3.16 0.002 -3.181123 -.7441807

Europe
sex .5388441 .4525279 1.19 0.234 -.3480942 1.425782

income .0273669 .013787 1.98 0.047 .000345 .0543889
_cons -3.180029 .7546837 -4.21 0.000 -4.659182 -1.700876

To run mlogit, we must rearrange the dataset. mlogit requires a dependent variable that indicates
the choice—1, 2, or 3—for each individual. We will use car as our dependent variable for those
observations that represent the choice actually chosen.
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. keep if choice == 1
(590 observations deleted)

. mlogit car sex income

Iteration 0: log likelihood = -259.1712
Iteration 1: log likelihood = -252.81165
Iteration 2: log likelihood = -252.72014
Iteration 3: log likelihood = -252.72012

Multinomial logistic regression Number of obs = 295
LR chi2(4) = 12.90
Prob > chi2 = 0.0118

Log likelihood = -252.72012 Pseudo R2 = 0.0249

car Coef. Std. Err. z P>|z| [95% Conf. Interval]

American (base outcome)

Japan
sex -.4694798 .3114939 -1.51 0.132 -1.079997 .1410371

income .0276854 .0123666 2.24 0.025 .0034472 .0519236
_cons -1.962651 .6216803 -3.16 0.002 -3.181122 -.7441801

Europe
sex .5388443 .4525278 1.19 0.234 -.348094 1.425783

income .027367 .013787 1.98 0.047 .000345 .0543889
_cons -3.18003 .7546837 -4.21 0.000 -4.659182 -1.700877

The results are the same except for the model statistic: asclogit uses a Wald test and mlogit
uses a likelihood-ratio test. If you prefer the likelihood-ratio test, you can fit the constant-only model
for asclogit followed by the full model and use [R] lrtest. The following example will carry this
out.

. use http://www.stata-press.com/data/r12/choice, clear

. asclogit choice, case(id) alternatives(car)

. estimates store null

. asclogit choice, case(id) alternatives(car) casevars(sex income)

. lrtest null .

Technical note
We force you to explicitly identify the case-specific variables in the casevars() option to ensure

that the program behaves as you expect. For example, an if or in qualifier may drop observations in
such a way that (what was expected to be) an alternative-specific variable turns into a case-specific
variable. Here you would probably want asclogit to terminate instead of interacting the variable with
the alternative indicators. This situation could also occur if asclogit drops cases, or observations
if you use the altwise option, because of missing values.
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Saved results
asclogit saves the following in e():

Scalars
e(N) number of observations
e(N case) number of cases
e(k) number of parameters
e(k alt) number of alternatives
e(k indvars) number of alternative-specific variables
e(k casevars) number of case-specific variables
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(const) constant indicator
e(i base) base alternative index
e(chi2) χ2

e(F) F statistic
e(p) significance
e(alt min) minimum number of alternatives
e(alt avg) average number of alternatives
e(alt max) maximum number of alternatives
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) asclogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) alternative-specific independent variable
e(casevars) case-specific variables
e(case) variable defining cases
e(altvar) variable defining alternatives
e(alteqs) alternative equation names
e(alt#) alternative labels
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices
e(b) coefficient vector
e(stats) alternative statistics
e(altvals) alternative values
e(altfreq) alternative frequencies
e(alt casevars) indicators for estimated case-specific coefficients—e(k alt)×e(k casevars)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
asclogit is implemented as an ado-file.

In this model, we have a set of unordered alternatives indexed by 1, 2, . . . , J . Let yij , j = 1, . . . , J ,
be an indicator variable for the alternative actually chosen by the ith individual (case). That is, yij = 1
if individual i chose alternative j and yij = 0 otherwise. The independent variables come in two
forms: alternative specific and case specific. Alternative-specific variables vary among the alternatives
(as well as cases), and case-specific variables vary only among cases. Assume that we have p
alternative-specific variables so that for case i we have a J × p matrix, Xi. Further, assume that
we have q case-specific variables so that we have a 1 × q vector zi for case i. The deterministic
component of the random-utility model can then be expressed as

ηi = Xiβ+ (ziA)′

= Xiβ+ (zi ⊗ IJ) vec(A′)

= (Xi, zi ⊗ IJ)
(

β

vec(A′)

)
= X∗iβ

∗

As before, β is a p× 1 vector of alternative-specific regression coefficients, and A = (α1, . . . ,αJ)
is a q × J matrix of case-specific regression coefficients; remember that we must fix one of the αj
to the constant vector to normalize the location. Here IJ is the J × J identity matrix, vec() is the
vector function that creates a vector from a matrix by placing each column of the matrix on top of
the other (see [M-5] vec( )), and ⊗ is the Kronecker product (see [M-2] op kronecker).

We have rewritten the linear equation so that it is a form that can be used by clogit, namely,
X∗iβ

∗, where
X∗i = (Xi, zi ⊗ IJ)

β∗ =
(

β

vec(A′)

)
With this in mind, see Methods and formulas in [R] clogit for the computational details of the
conditional logit model.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.
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Also see
[R] asclogit postestimation — Postestimation tools for asclogit

[R] asmprobit — Alternative-specific multinomial probit regression

[R] asroprobit — Alternative-specific rank-ordered probit regression

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression
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Title

asclogit postestimation — Postestimation tools for asclogit

Description
The following postestimation commands are of special interest after asclogit:

Commands Description

estat alternatives alternative summary statistics
estat mfx marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Commands Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predicted probabilities, estimated linear predictor and its standard error
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample.

estat mfx computes probability marginal effects.
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability that each alternative is chosen; the default
xb linear prediction
stdp standard error of the linear prediction

options Description

Main
∗k(# | observed) condition on # alternatives per case or on observed number of alternatives
altwise use alternativewise deletion instead of casewise deletion when computing

probabilities
nooffset ignore the offset() variable specified in asclogit

∗k(# | observed) may be used only with pr.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted

only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr computes the probability of choosing each alternative conditioned on each case choosing k()
alternatives. This is the default statistic with default k(1); one alternative per case is chosen.

xb computes the linear prediction.

stdp computes the standard error of the linear prediction.

k(# | observed) conditions the probability on # alternatives per case or on the observed number of
alternatives. The default is k(1). This option may be used only with the pr option.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

nooffset is relevant only if you specified offset(varname) for asclogit. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
xβ rather than as xβ+ offset.

scores calculates the scores for each coefficient in e(b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.
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Syntax for estat alternatives
estat alternatives

Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat mfx
estat mfx

[
if
] [

in
] [

, options
]

options Description

Main

varlist(varlist) display marginal effects for varlist
at(mean

[
atlist

]
| median

[
atlist

]
) calculate marginal effects at these values

k(#) condition on the number of alternatives chosen to be #

Options

level(#) set confidence interval level; default is level(95)

nodiscrete treat indicator variables as continuous
noesample do not restrict calculation of means and medians to the

estimation sample
nowght ignore weights when calculating means and medians

Menu
Statistics > Postestimation > Reports and statistics

Options for estat mfx

� � �
Main �

varlist(varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at(mean
[

atlist
]
| median

[
atlist

]
) specifies the values at which the marginal effects are to be

calculated. atlist is[ [
alternative:variable = #

] [
variable = #

] [
alternative:offset = #

] [
. . .
] ]

The default is to calculate the marginal effects at the means of the independent variables by using
the estimation sample, at(mean). If offset() is used during estimation, the means of the offsets
(by alternative) are computed by default.

After specifying the summary statistic, you can specify a series of specific values for variables.
You can specify values for alternative-specific variables by alternative, or you can specify one
value for all alternatives. You can specify only one value for case-specific variables. You specify
values for the offset() variable (if present) the same way as for alternative-specific variables. For
example, in the choice dataset (car choice), income is a case-specific variable, whereas dealer
is an alternative-specific variable. The following would be a legal syntax for estat mfx:
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. estat mfx, at(mean American:dealer=18 income=40)

When nodiscrete is not specified, at(mean
[

atlist
]
) or at(median

[
atlist

]
) has no effect on

computing marginal effects for indicator variables, which are calculated as the discrete change in
the simulated probability as the indicator variable changes from 0 to 1.

The mean and median computations respect any if or in qualifiers, so you can restrict the data over
which the statistic is computed. You can even restrict the values to a specific case, for example,

. estat mfx if case==21

k(#) computes the probabilities conditioned on # alternatives chosen. The default is one alternative
chosen.� � �

Options �
level(#) sets the confidence level; default is level(95).

nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value 0 or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from 0 to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asclogit command.

nowght specifies that weights be ignored when calculating the medians.

Remarks
Remarks are presented under the following headings:

Predicted probabilities
Obtaining estimation statistics

Predicted probabilities

After fitting a McFadden’s choice model with alternative-specific conditional logistic regression,
you can use predict to obtain the estimated probability of alternative choices given case profiles.

Example 1

In example 1 of [R] asclogit, we fit a model of consumer choice of automobile. The alternatives are
nationality of the automobile manufacturer: American, Japanese, or European. There is one alternative-
specific variable in the model, dealer, which contains the number of dealerships of each nationality
in the consumer’s city. The case-specific variables are sex, the consumer’s sex, and income, the
consumer’s income in thousands of dollars.

. use http://www.stata-press.com/data/r12/choice

. asclogit choice dealer, case(id) alternatives(car) casevars(sex income)
(output omitted )

. predict p
(option pr assumed; Pr(car))

. predict p2, k(2)
(option pr assumed; Pr(car))

. format p p2 %6.4f
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. list car choice dealer sex income p p2 in 1/9, sepby(id)

car choice dealer sex income p p2

1. American 0 18 male 46.7 0.6025 0.8589
2. Japan 0 8 male 46.7 0.2112 0.5974
3. Europe 1 5 male 46.7 0.1863 0.5437

4. American 1 17 male 26.1 0.7651 0.9293
5. Japan 0 6 male 26.1 0.1282 0.5778
6. Europe 0 2 male 26.1 0.1067 0.4929

7. American 1 12 male 32.7 0.6519 0.8831
8. Japan 0 6 male 32.7 0.1902 0.5995
9. Europe 0 2 male 32.7 0.1579 0.5174

Obtaining estimation statistics

Here we will demonstrate the specialized estat subcommands after asclogit. Use estat
alternatives to obtain a table of alternative statistics. The table will contain the alternative values,
labels (if any), the number of cases in which each alternative is present, the frequency that the
alternative is selected, and the percent selected.

Use estat mfx to obtain marginal effects after asclogit.

Example 2

We will continue with the automobile choice example, where we first list the alternative statistics
and then compute the marginal effects at the mean income in our sample, assuming that there are
five automobile dealers for each nationality. We will evaluate the probabilities for females because
sex is coded 0 for females, and we will be obtaining the discrete change from 0 to 1.

. estat alternatives

Alternatives summary for car

Alternative Cases Frequency Percent
index value label present selected selected

1 1 American 295 192 65.08
2 2 Japan 295 64 21.69
3 3 Europe 295 39 13.22

. estat mfx, at(dealer=0 sex=0) varlist(sex income)

Pr(choice = American|1 selected) = .41964329

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

casevars
sex* .026238 .068311 0.38 0.701 -.107649 .160124 0

income -.007891 .002674 -2.95 0.003 -.013132 -.00265 42.097

(*) dp/dx is for discrete change of indicator variable from 0 to 1
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Pr(choice = Japan|1 selected) = .42696187

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

casevars
sex* -.161164 .079238 -2.03 0.042 -.316468 -.005859 0

income .005861 .002997 1.96 0.051 -.000014 .011735 42.097

(*) dp/dx is for discrete change of indicator variable from 0 to 1

Pr(choice = Europe|1 selected) = .15339484

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

casevars
sex* .134926 .076556 1.76 0.078 -.015122 .284973 0

income .00203 .001785 1.14 0.255 -.001469 .00553 42.097

(*) dp/dx is for discrete change of indicator variable from 0 to 1

The marginal effect of income indicates that there is a lower chance for a consumer to buy American
automobiles with an increase in income. There is an indication that men have a higher preference
for European automobiles than women but a lower preference for Japanese automobiles. We did not
include the marginal effects for dealer because we view these as nuisance parameters, so we adjusted
the probabilities by fixing dealer to a constant, 0.

Saved results
estat mfx saves the following in r():

Scalars
r(pr alt) scalars containing the computed probability of each alternative evaluated at the value that is

labeled X in the table output. Here alt are the labels in the macro e(alteqs).
Matrices

r(alt) matrices containing the computed marginal effects and associated statistics. There is one matrix
for each alternative, where alt are the labels in the macro e(alteqs). Column 1 of each
matrix contains the marginal effects; column 2, their standard errors; column 3, their z
statistics; and columns 4 and 5, the confidence intervals. Column 6 contains the values
of the independent variables used to compute the probabilities r(pr alt).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.



102 asclogit postestimation — Postestimation tools for asclogit

The deterministic component of the random-utility model can be expressed as

η = Xβ+ (zA)′

= Xβ+ (z⊗ IJ) vec(A′)

= (X, z⊗ IJ)
(

β

vec(A′)

)
= X∗β∗

where X is the J × p matrix containing the alternative-specific covariates, z is a 1 × q vector
of case-specific variables, β is a p × 1 vector of alternative-specific regression coefficients, and
A = (α1, . . . ,αJ) is a q × J matrix of case-specific regression coefficients (with one of the αj
fixed to the constant). Here IJ is the J × J identity matrix, vec() is the vector function that creates
a vector from a matrix by placing each column of the matrix on top of the other (see [M-5] vec( )),
and ⊗ is the Kronecker product (see [M-2] op kronecker).

We have rewritten the linear equation so that it is a form that we all recognize, namely, η = X∗β∗,
where

X∗ = (X, z⊗ IJ)

β∗ =
(

β

vec(A′)

)
To compute the marginal effects, we use the derivative of the log likelihood ∂`(y|η)/∂η, where

`(y|η) = log Pr(y|η) is the log of the probability of the choice indicator vector y given the linear
predictor vector η. Namely,

∂Pr(y|η)
∂vec(X∗)′

= Pr(y|η)
∂`(y|η)
∂η′

∂η

∂vec(X∗)′

= Pr(y|η)
∂`(y|η)
∂η′

(
β∗′ ⊗ IJ

)
The standard errors of the marginal effects are computed using the delta method.

Also see
[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model

[U] 20 Estimation and postestimation commands



Title

asmprobit — Alternative-specific multinomial probit regression

Syntax
asmprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, case(varname)

alternatives(varname)
[

options
]

options Description

Model
∗case(varname) use varname to identify cases
∗alternatives(varname) use varname to identify the alternatives available for each case
casevars(varlist) case-specific variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

correlation(correlation) correlation structure of the latent-variable errors
stddev(stddev) variance structure of the latent-variable errors
structural use the structural covariance parameterization; default is the

differenced covariance parameterization
factor(#) use the factor covariance structure with dimension #
noconstant suppress the alternative-specific constant terms
basealternative(# | lbl | str) alternative used for normalizing location
scalealternative(# | lbl | str) alternative used for normalizing scale
altwise use alternativewise deletion instead of casewise deletion

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

notransform do not transform variance–covariance estimates to the standard
deviation and correlation metric

nocnsreport do not display constraints
display options control column formats and line width

103
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Integration

intmethod(seqtype) type of quasi- or pseudouniform point set
intpoints(#) number of points in each sequence
intburn(#) starting index in the Hammersley or Halton sequence
intseed(code | #) pseudouniform random-number seed
antithetics use antithetic draws
nopivot do not use integration interval pivoting
initbhhh(#) use the BHHH optimization algorithm for the first # iterations
favor(speed | space) favor speed or space when generating integration points

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations
with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;
correlations with the basealternative() are zero

independent constrain all correlation parameters to zero
pattern matname user-specified matrix identifying the correlation pattern
fixed matname user-specified matrix identifying the fixed and free correlation

parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations
for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one
pattern matname user-specified matrix identifying the standard deviation pattern
fixed matname user-specified matrix identifying the fixed and free standard

deviations

seqtype Description

hammersley Hammersley point set
halton Halton point set
random uniform pseudorandom point set

∗case(varname) and alternatives(varname) are required.
bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Categorical outcomes > Alternative-specific multinomial probit

Description
asmprobit fits multinomial probit (MNP) models by using maximum simulated likelihood (MSL)

implemented by the Geweke–Hajivassiliou–Keane (GHK) algorithm. By estimating the variance–
covariance parameters of the latent-variable errors, the model allows you to relax the independence
of irrelevant alternatives (IIA) property that is characteristic of the multinomial logistic model.

asmprobit requires multiple observations for each case (decision), where each observation rep-
resents an alternative that may be chosen. The cases are identified by the variable specified in the
case() option, whereas the alternatives are identified by the variable specified in the alternative()
option. The outcome (chosen alternative) is identified by a value of 1 in depvar, with 0 indicating
the alternatives that were not chosen; only one alternative may be chosen for each case.

asmprobit allows two types of independent variables: alternative-specific variables and case-
specific variables. Alternative-specific variables vary across both cases and alternatives and are specified
in indepvars. Case-specific variables vary only across cases and are specified in the casevars()
option.

Options

� � �
Model �

case(varname) specifies the variable that identifies each case. This variable identifies the individuals
or entities making a choice. case() is required.

alternatives(varname) specifies the variable that identifies the alternatives for each case. The
number of alternatives can vary with each case; the maximum number of alternatives is 20.
alternatives() is required.

casevars(varlist) specifies the case-specific variables that are constant for each case(). If there are
a maximum of J alternatives, there will be J −1 sets of coefficients associated with casevars().

constraints(constraints), collinear; see [R] estimation options.

� � �
Model 2 �

correlation(correlation) specifies the correlation structure of the latent-variable errors.

correlation(unstructured) is the most general and has J(J − 3)/2 + 1 unique correlation
parameters. This is the default unless stdev() or structural are specified.

correlation(exchangeable) provides for one correlation coefficient common to all latent
variables, except the latent variable associated with the basealternative() option.

correlation(independent) assumes that all correlations are zero.

correlation(pattern matname) and correlation(fixed matname) give you more flexibility
in defining the correlation structure. See Variance structures later in this entry for more
information.

stddev(stddev) specifies the variance structure of the latent-variable errors.

stddev(heteroskedastic) is the most general and has J−2 estimable parameters. The standard
deviations of the latent-variable errors for the alternatives specified in basealternative()
and scalealternative() are fixed to one.
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stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining
the standard deviation parameters. See Variance structures later in this entry for more information.

structural requests the J×J structural covariance parameterization instead of the default J−1×J−1
differenced covariance parameterization (the covariance of the latent errors differenced with that
of the base alternative). The differenced covariance parameterization will achieve the same MSL
regardless of the choice of basealternative() and scalealternative(). On the other hand,
the structural covariance parameterization imposes more normalizations that may bound the model
away from its maximum likelihood and thus prevent convergence with some datasets or choices
of basealternative() and scalealternative().

factor(#) requests that the factor covariance structure of dimension # be used. The factor() option
can be used with the structural option but cannot be used with stddev() or correlation().
A # × J (or # × J − 1) matrix, C, is used to factor the covariance matrix as I + C′C, where
I is the identity matrix of dimension J (or J − 1). The column dimension of C depends on
whether the covariance is structural or differenced. The row dimension of C, #, must be less than
or equal to floor((J(J−1)/2−1)/(J−2)), because there are only J(J−1)/2−1 identifiable
variance–covariance parameters. This covariance parameterization may be useful for reducing the
number of covariance parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.
The column corresponding to the scale alternative has a one in the first row and zeros elsewhere.
If the covariance is differenced, the column corresponding to the scale alternative (differenced with
the base) has a one in the first row and zeros elsewhere.

noconstant suppresses the J − 1 alternative-specific constant terms.

basealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable location
(also referred to as the level of utility). The base alternative may be specified as a number, label,
or string. The standard deviation for the latent-variable error associated with the base alternative
is fixed to one, and its correlations with all other latent-variable errors are set to zero. The default
is the first alternative when sorted. If a fixed or pattern matrix is given in the stddev()
and correlation() options, the basealternative() will be implied by the fixed standard
deviations and correlations in the matrix specifications. basealternative() cannot be equal to
scalealternative().

scalealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable scale
(also referred to as the scale of utility). The scale alternative may be specified as a number,
label, or string. The default is to use the second alternative when sorted. If a fixed or pattern
matrix is given in the stddev() option, the scalealternative() will be implied by the
fixed standard deviations in the matrix specification. scalealternative() cannot be equal to
basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale
alternative are implied by the standard deviations and correlations in the matrix specifications, and
they need not be specified in the basealternative() and scalealternative() options.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify basealternative()
and scalealternative().

� � �
Reporting �

level(#); see [R] estimation options.

notransform prevents retransforming the Cholesky-factored variance–covariance estimates to the
correlation and standard deviation metric.

This option has no effect if structural is not specified because the default differenced variance–
covariance estimates have no interesting interpretation as correlations and standard deviations.
notransform also has no effect if the correlation() and stddev() options are specified with
anything other than their default values. Here it is generally not possible to factor the variance–
covariance matrix, so optimization is already performed using the standard deviation and correlation
representations.

nocnsreport; see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Integration �

intmethod(hammersley | halton | random) specifies the method of generating the point sets used in
the quasi–Monte Carlo integration of the multivariate normal density. intmethod(hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and
intmethod(random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the quasi–Monte Carlo integration. If
this option is not specified, the number of points is 50 × J if intmethod(hammersley) or
intmethod(halton) is used and 100 × J if intmethod(random) is used. Larger values of
intpoints() provide better approximations of the log likelihood, but at the cost of added
computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the
correlation between the sequences of each dimension. The default is 0. This option may not be
specified with intmethod(random).

intseed(code | #) specifies the seed to use for generating the uniform pseudorandom sequence. This
option may be specified only with intmethod(random). code refers to a string that records the
state of the random-number generator runiform(); see [R] set seed. An integer value # may
be used also. The default is to use the current seed value from Stata’s uniform random-number
generator, which can be obtained from c(seed).

antithetics specifies that antithetic draws be used. The antithetic draw for the J − 1 vector
uniform-random variables, x, is 1− x.

nopivot turns off integration interval pivoting. By default, asmprobit will pivot the wider intervals
of integration to the interior of the multivariate integration. This improves the accuracy of the
quadrature estimate. However, discontinuities may result in the computation of numerical second-
order derivatives using finite differencing (for the Newton–Raphson optimize technique, tech(nr))
when few simulation points are used, resulting in a non–positive-definite Hessian. asmprobit
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uses the Broyden–Fletcher–Goldfarb–Shanno optimization algorithm, by default, which does not
require computing the Hessian numerically using finite differencing.

initbhhh(#) specifies that the Berndt–Hall–Hall–Hausman (BHHH) algorithm be used for the initial
# optimization steps. This option is the only way to use the BHHH algorithm along with other
optimization techniques. The algorithm switching feature of ml’s technique() option cannot
include bhhh.

favor(speed | space) instructs asmprobit to favor either speed or space when generating the
integration points. favor(speed) is the default. When favoring speed, the integration points are
generated once and stored in memory, thus increasing the speed of evaluating the likelihood. This
speed increase can be seen when there are many cases or when the user specifies a large number
of integration points, intpoints(#). When favoring space, the integration points are generated
repeatedly with each likelihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed
using intmethod(random) will vary slightly between favor(speed) and favor(space). This
is because the uniform sequences will not be identical, even when initiating the sequences using the
same uniform seed, intseed(code | #). For favor(speed), ncase blocks of intpoints(#)×
J − 2 uniform points are generated, where J is the maximum number of alternatives. For
favor(space), the column dimension of the matrices of points varies with the number of
alternatives that each case has.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize.

The following options may be particularly useful in obtaining convergence with asmprobit:
difficult, technique(algorithm spec), nrtolerance(#), nonrtolerance, and
from(init specs).

If technique() contains more than one algorithm specification, bhhh cannot be one of them. To
use the BHHH algorithm with another algorithm, use the initbhhh() option and specify the other
algorithm in technique().

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with asmprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Variance structures

Introduction

The MNP model is used with discrete dependent variables that take on more than two outcomes
that do not have a natural ordering. The stochastic error terms are assumed to have a multivariate
normal distribution that is heteroskedastic and correlated. Say that you have a set of J unordered
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alternatives that are modeled by a regression of both case-specific and alternative-specific covariates.
A “case” refers to the information on one decision maker. Underlying the model is the set of J latent
variables (utilities),

ηij = xijβ+ ziαj + ξij (1)

where i denotes cases and j denotes alternatives. xij is a 1×p vector of alternative-specific variables,
β is a p× 1 vector of parameters, zi is a 1× q vector of case-specific variables, αj is a q× 1 vector
of parameters for the jth alternative, and ξi = (ξi1, . . . , ξiJ) is distributed multivariate normal with
mean zero and covariance matrix Ω. The decision maker selects the alternative whose latent variable
is highest.

Because the MNP model allows for a general covariance structure in ξij , it does not impose the
IIA property inherent in multinomial logistic and conditional logistic models. That is, the MNP model
permits the odds of choosing one alternative over another to depend on the remaining alternatives. For
example, consider the choice of travel mode between two cities: air, train, bus, or car, as a function
of the travel mode cost, travel time (alternative-specific variables), and an individual’s income (a
case-specific variable). The odds of choosing air travel over a bus may not be independent of the train
alternative because both bus and train travel are public ground transportation. That is, the probability
of choosing air travel is Pr(ηair > ηbus, ηair > ηtrain, ηair > ηcar), and the two events ηair > ηbus

and ηair > ηtrain may be correlated.

An alternative to MNP that will allow a nested correlation structure in ξij is the nested logit model
(see [R] nlogit).

The added flexibility of the MNP model does impose a significant computation burden because of
the need to evaluate probabilities from the multivariate normal distribution. These probabilities are
evaluated using simulation techniques because a closed-form solution does not exist. See Methods
and formulas for more information.

Not all the J sets of regression coefficients αj are identifiable, nor are all J(J + 1)/2 elements
of the variance–covariance matrix Ω. As described by Train (2009, sec. 2.5), the model requires
normalization because both the location (level) and scale of the latent variable are irrelevant. Increasing
the latent variables by a constant does not change which ηij is the maximum for decision maker i,
nor does multiplying them by a constant. To normalize location, we choose an alternative, indexed
by k, say, and take the difference between the latent variable k and the J − 1 others,

vijk = ηij − ηik
= (xij − xik)β+ zi(αj − αk) + ξij − ξik
= δij′β+ ziγj′ + εij′

= λij′ + εij′

(2)

where j′ = j if j < k and j′ = j − 1 if j > k, so that j′ = 1, . . . , J − 1. One can now work with
the (J − 1) × (J − 1) covariance matrix Σ(k) for ε′i = (εi1, . . . , εi,J−1). The kth alternative here
is the basealternative() in asmprobit. From (2), the probability that decision maker i chooses
alternative k, for example, is

Pr(i chooses k) = Pr(vi1k ≤ 0, . . . , vi,J−1,k ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

To normalize for scale, one of the diagonal elements of Σ(k) must be fixed to a constant. In
asmprobit, this is the error variance for the alternative specified by scalealternative(). Thus
there are a total of, at most, J(J−1)/2−1 identifiable variance–covariance parameters. See Variance
structures below for more on this issue.
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In fact, the model is slightly more general in that not all cases need to have faced all J alternatives.
The model allows for situations in which some cases chose among all possible alternatives, whereas
other cases were given a choice among a subset of them, and perhaps other cases were given a
choice among a different subset. The number of observations for each case is equal to the number
of alternatives faced.

The MNP model is often motivated using a random-utility consumer-choice framework. Equation
(1) represents the utility that consumer i receives from good j. The consumer purchases the good for
which the utility is highest. Because utility is ordinal, all that matters is the ranking of the utilities
from the alternatives. Thus one must normalize for location and scale.

Example 1

Application of MNP models is common in the analysis of transportation data. Greene (2012,
sec. 18.2.9) uses travel-mode choice data between Sydney and Melbourne to demonstrate estimating
parameters of various discrete-choice models. The data contain information on 210 individuals’
choices of travel mode. The four alternatives are air, train, bus, and car, with indices 1, 2, 3, and 4,
respectively. One alternative-specific variable is travelcost, a measure of generalized cost of travel
that is equal to the sum of in-vehicle cost and a wagelike measure times the amount of time spent
traveling. A second alternative-specific variable is the terminal time, termtime, which is zero for car
transportation. Household income, income, is a case-specific variable.

. use http://www.stata-press.com/data/r12/travel

. list id mode choice travelcost termtime income in 1/12, sepby(id)

id mode choice travel~t termtime income

1. 1 air 0 70 69 35
2. 1 train 0 71 34 35
3. 1 bus 0 70 35 35
4. 1 car 1 30 0 35

5. 2 air 0 68 64 30
6. 2 train 0 84 44 30
7. 2 bus 0 85 53 30
8. 2 car 1 50 0 30

9. 3 air 0 129 69 40
10. 3 train 0 195 34 40
11. 3 bus 0 149 35 40
12. 3 car 1 101 0 40

The model of travel choice is

ηij = β1travelcostij + β2termtimeij + α1jincomei + α0j + ξij

The alternatives can be grouped as air and ground travel. With this in mind, we set the air alternative
to be the basealternative() and choose train as the scaling alternative. Because these are the
first and second alternatives in the mode variable, they are also the defaults.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.00977 .0027834 -3.51 0.000 -.0152253 -.0043146

termtime -.0377095 .0094088 -4.01 0.000 -.0561504 -.0192686

air (base alternative)

train
income -.0291971 .0089246 -3.27 0.001 -.046689 -.0117052
_cons .5616376 .3946551 1.42 0.155 -.2118721 1.335147

bus
income -.0127503 .0079267 -1.61 0.108 -.0282863 .0027857
_cons -.0571364 .4791861 -0.12 0.905 -.9963239 .882051

car
income -.0049086 .0077486 -0.63 0.526 -.0200957 .0102784
_cons -1.833393 .8186156 -2.24 0.025 -3.43785 -.2289357

/lnl2_2 -.5502039 .3905204 -1.41 0.159 -1.31561 .2152021
/lnl3_3 -.6005552 .3353292 -1.79 0.073 -1.257788 .0566779

/l2_1 1.131518 .2124817 5.33 0.000 .7150612 1.547974
/l3_1 .9720669 .2352116 4.13 0.000 .5110606 1.433073
/l3_2 .5197214 .2861552 1.82 0.069 -.0411325 1.080575

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

. estimates store full

By default, the differenced covariance parameterization is used, so the covariance matrix for this
model is 3×3. There are two free variances to estimate and three correlations. To help ensure that the
covariance matrix remains positive definite, asmprobit uses the square root transformation, where it
optimizes on the Cholesky-factored variance–covariance. To ensure that the diagonal elements of the
Cholesky estimates remain positive, we use the log transformation. The estimates labeled /lnl2 2
and /lnl3 3 in the coefficient table are the log-transformed diagonal elements of the Cholesky
matrix. The estimates labeled /l2 1, /l3 1, and /l3 2 are the off-diagonal entries for elements
(2, 1), (3, 1), and (3, 2) of the Cholesky matrix.

Although the transformed parameters of the differenced covariance parameterization are difficult
to interpret, you can view them untransformed by using the estat command. Typing
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. estat correlation

train bus car

train 1.0000
bus 0.8909 1.0000
car 0.7895 0.8951 1.0000

Note: correlations are for alternatives differenced with air

gives the correlations, and typing

. estat covariance

train bus car

train 2
bus 1.600208 1.613068
car 1.37471 1.399703 1.515884

Note: covariances are for alternatives differenced with air

gives the (co)variances.

We can reduce the number of covariance parameters in the model by using the factor model by
Cameron and Trivedi (2005). For large models with many alternatives, the parameter reduction can
be dramatic, but for our example we will use factor(1), a one-dimension factor model, to reduce
by 3 the number of parameters associated with the covariance matrix.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) factor(1)

(output omitted )

Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 107.85
Log simulated-likelihood = -196.85094 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0093696 .0036329 -2.58 0.010 -.01649 -.0022492

termtime -.0593173 .0064585 -9.18 0.000 -.0719757 -.0466589

air (base alternative)

train
income -.0373511 .0098219 -3.80 0.000 -.0566018 -.0181004
_cons .1092322 .3949529 0.28 0.782 -.6648613 .8833257

bus
income -.0158793 .0112239 -1.41 0.157 -.0378777 .0061191
_cons -1.082181 .4678732 -2.31 0.021 -1.999196 -.1651666

car
income .0042677 .0092601 0.46 0.645 -.0138817 .0224171
_cons -3.765445 .5540636 -6.80 0.000 -4.851389 -2.6795

/c1_2 1.182805 .3060299 3.86 0.000 .5829972 1.782612
/c1_3 1.227705 .3401237 3.61 0.000 .5610747 1.894335

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

The estimates labeled /c1 2 and /c1 3 in the coefficient table are the factor loadings. These factor
loadings produce the following differenced covariance estimates:

. estat covariance

train bus car

train 2
bus 1.182805 2.399027
car 1.227705 1.452135 2.507259

Note: covariances are for alternatives differenced with air

Variance structures

The matrix Ω has J(J+1)/2 distinct elements because it is symmetric. Selecting a base alternative,
normalizing its error variance to one, and constraining the correlations between its error and the other
errors reduces the number of estimable parameters by J . Moreover, selecting a scale alternative and
normalizing its error variance to one reduces the number by one, as well. Hence, there are at most
m = J(J − 1)/2− 1 estimable parameters in Ω.
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In practice, estimating all m parameters can be difficult, so one must often place more restrictions on
the parameters. The asmprobit command provides the correlation() option to specify restrictions
on the J(J − 3)/2 + 1 correlation parameters not already restricted as a result of choosing the base
alternatives, and it provides stddev() to specify restrictions on the J − 2 standard deviations not
already restricted as a result of choosing the base and scale alternatives.

When the structural option is used, asmprobit fits the model by assuming that all m
parameters can be estimated, which is equivalent to specifying correlation(unstructured) and
stddev(heteroskedastic). The unstructured correlation structure means that all J(J − 3)/2 + 1
of the remaining correlation parameters will be estimated, and the heteroskedastic specification means
that all J − 2 standard deviations will be estimated. With these default settings, the log likelihood is
maximized with respect to the Cholesky decomposition of Ω, and then the parameters are transformed
to the standard deviation and correlation form.

The correlation(exchangeable) option forces the J(J − 3)/2 + 1 correlation parameters
to be equal, and correlation(independent) forces all the correlations to be zero. Using the
stddev(homoskedastic) option forces all J standard deviations to be one. These options may help
in obtaining convergence for a model if the default options do not produce satisfactory results. In
fact, when fitting a complex model, it may be advantageous to first fit a simple one and then proceed
with removing the restrictions one at a time.

Advanced users may wish to specify alternative variance structures of their own choosing, and the
next few paragraphs explain how to do so.

correlation(pattern matname) allows you to give the name of a J × J matrix that identifies
a correlation structure. Sequential positive integers starting at 1 are used to identify each correlation
parameter: if there are three correlation parameters, they are identified by 1, 2, and 3. The integers
can be repeated to indicate that correlations with the same number should be constrained to be equal.
A zero or a missing value (.) indicates that the correlation is to be set to zero. asmprobit considers
only the elements of the matrix below the main diagonal.

Suppose that you have a model with four alternatives, numbered 1–4, and alternative 1 is the
base. The unstructured and exchangeable correlation structures identified in the 4×4 lower triangular
matrices are

unstructured exchangeable
1 2 3 4

1 ·
2 0 ·
3 0 1 ·
4 0 2 3 ·




1 2 3 4
1 ·
2 0 ·
3 0 1 ·
4 0 1 1 ·


asmprobit labels these correlation structures unstructured and exchangeable, even though the correla-
tions corresponding to the base alternative are set to zero. More formally: these terms are appropriate
when considering the (J − 1)× (J − 1) submatrix Σ(k) defined in the Introduction above.

You can also use the correlation(fixed matname) option to specify a matrix that specifies
fixed and free parameters. Here the free parameters (those that are to be estimated) are identified by
a missing value, and nonmissing values represent correlations that are to be taken as given. Below
is a correlation structure that would set the correlations of alternative 1 to be 0.5:


1 2 3 4

1 ·
2 0.5 ·
3 0.5 · ·
4 0.5 · · ·


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The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

To specify the structure of the standard deviations—the diagonal elements of Ω—you can use the
stddev(pattern matname) option, where matname is a 1× J matrix. Sequential positive integers
starting at 1 are used to identify each standard deviation parameter. The integers can be repeated to
indicate that standard deviations with the same number are to be constrained to be equal. A missing
value indicates that the corresponding standard deviation is to be set to one. In the four-alternative
example mentioned above, suppose that you wish to set the first and second standard deviations to
one and that you wish to constrain the third and fourth standard deviations to be equal; the following
pattern matrix will do that:

(
1 2 3 4

1 · · 1 1 )
Using the stddev(fixed matname) option allows you to identify the fixed and free standard

deviations. Fixed standard deviations are entered as positive real numbers, and free parameters are
identified with missing values. For example, to constrain the first and second standard deviations to
equal one and to allow the third and fourth to be estimated, you would use this fixed matrix:

(
1 2 3 4

1 1 1 · · )

When supplying either the pattern or the fixed matrices, you must ensure that the model is
properly scaled. At least two standard deviations must be constant for the model to be scaled. A
warning is issued if asmprobit detects that the model is not scaled.

The order of the elements of the pattern or fixed matrices must be the same as the numeric
order of the alternative levels.

Example 2

In example 1, we used the differenced covariance parameterization, the default. We now use
the structural option to view the J − 2 standard deviation estimates and the (J − 1)(J − 2)/2
correlation estimates. Here we will fix the standard deviations for the air and train alternatives to
1 and the correlations between air and the rest of the alternatives to 0.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) structural

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 32.05
Log simulated-likelihood = -190.09418 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0097703 .0027834 -3.51 0.000 -.0152257 -.0043149

termtime -.0377103 .0094092 -4.01 0.000 -.056152 -.0192687

air (base alternative)

train
income -.0291975 .0089246 -3.27 0.001 -.0466895 -.0117055
_cons .5616448 .3946529 1.42 0.155 -.2118607 1.33515

bus
income -.01275 .0079266 -1.61 0.108 -.0282858 .0027858
_cons -.0571664 .4791996 -0.12 0.905 -.9963803 .8820476

car
income -.0049085 .0077486 -0.63 0.526 -.0200955 .0102785
_cons -1.833444 .8186343 -2.24 0.025 -3.437938 -.22895

/lnsigma3 -.2447428 .4953363 -0.49 0.621 -1.215584 .7260985
/lnsigma4 -.3309429 .6494493 -0.51 0.610 -1.60384 .9419543

/atanhr3_2 1.01193 .3890994 2.60 0.009 .249309 1.774551
/atanhr4_2 .5786576 .3940461 1.47 0.142 -.1936586 1.350974
/atanhr4_3 .8885204 .5600561 1.59 0.113 -.2091693 1.98621

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7829059 .3878017 .2965368 2.067
sigma4 .7182462 .4664645 .2011227 2.564989

rho3_2 .766559 .1604596 .244269 .9441061
rho4_2 .5216891 .2868027 -.1912734 .874283
rho4_3 .7106622 .277205 -.2061713 .9630403

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

When comparing this output to that of example 1, we see that we have achieved the same log
likelihood. That is, the structural parameterization using air as the base alternative and train as
the scale alternative applied no restrictions on the model. This will not always be the case. We leave
it up to you to try different base and scale alternatives, and you will see that not all the different
combinations will achieve the same log likelihood. This is not true for the differenced covariance
parameterization: it will always achieve the same log likelihood (and the maximum possible likelihood)
regardless of the base and scale alternatives. This is why it is the default parameterization.
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For an exercise, we can compute the differenced covariance displayed in example 1 by using the
following ado-code.

. estat covariance

air train bus car

air 1
train 0 1

bus 0 .6001436 .6129416
car 0 .3747012 .399619 .5158776

. return list

matrices:
r(cov) : 4 x 4

. matrix cov = r(cov)

. matrix M = (1,-1,0,0 \ 1,0,-1,0 \ 1,0,0,-1)

. matrix cov1 = M*cov*M’

. matrix list cov1

symmetric cov1[3,3]
r1 r2 r3

r1 2
r2 1.6001436 1.6129416
r3 1.3747012 1.399619 1.5158776

The slight difference in the regression coefficients between the example 1 and example 2 coefficient
tables reflects the accuracy of the [M-5] ghk( ) algorithm using 200 points from the Hammersley
sequence.

We now fit the model using the exchangeable correlation matrix and compare the models with a
likelihood-ratio test.
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. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(exchangeable)

(output omitted )
Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 53.60
Log simulated-likelihood = -190.4679 Prob > chi2 = 0.0000

choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0084636 .0020452 -4.14 0.000 -.012472 -.0044551

termtime -.0345394 .0072812 -4.74 0.000 -.0488103 -.0202684

air (base alternative)

train
income -.0290357 .0083226 -3.49 0.000 -.0453477 -.0127237
_cons .5517445 .3719913 1.48 0.138 -.177345 1.280834

bus
income -.0132562 .0074133 -1.79 0.074 -.0277859 .0012735
_cons -.0052517 .4337932 -0.01 0.990 -.8554708 .8449673

car
income -.0060878 .006638 -0.92 0.359 -.0190981 .0069224
_cons -1.565918 .6633007 -2.36 0.018 -2.865964 -.265873

/lnsigmaP1 -.3557589 .1972809 -1.80 0.071 -.7424222 .0309045
/lnsigmaP2 -1.308596 .8872957 -1.47 0.140 -3.047663 .4304719

/atanhrP1 1.116589 .3765488 2.97 0.003 .3785667 1.854611

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .7006416 .1382232 .4759596 1.031387
sigma4 .2701992 .2397466 .0474697 1.537983

rho3_2 .8063791 .131699 .3614621 .9521783
rho4_2 .8063791 .131699 .3614621 .9521783
rho4_3 .8063791 .131699 .3614621 .9521783

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

. lrtest full .

Likelihood-ratio test LR chi2(2) = 0.75
(Assumption: . nested in full) Prob > chi2 = 0.6882

The likelihood-ratio test suggests that a common correlation is a plausible hypothesis, but this could
be an artifact of the small sample size. The labeling of the standard deviation and correlation estimates
has changed from /lnsigma and /atanhr, in the previous example, to /lnsigmaP and /atanhrP.
The “P” identifies the parameter’s index in the pattern matrices used by asmprobit. The pattern
matrices are saved in e(stdpattern) and e(corpattern).
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Technical note
Another way to fit the model with the exchangeable correlation structure in example 2 is to use

the constraint command to define the constraints on the rho parameters manually and then apply
those.

. constraint 1 [atanhr3_2]_cons = [atanhr4_2]_cons

. constraint 2 [atanhr3_2]_cons = [atanhr4_3]_cons

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) constraints(1 2) structural

With this method, however, we must keep track of what parameterization of the rhos is used in
estimation, and that depends on the options specified.

Example 3

In the last example, we used the correlation(exchangeable) option, reducing the number
of correlation parameters from three to one. We can explore a two–correlation parameter model
by specifying a pattern matrix in the correlation() option. Suppose that we wish to have the
correlation between train and bus be equal to the correlation between bus and car and to have the
standard deviations for the bus and car equations be equal. We will use air as the base category and
train as the scale category.

. matrix define corpat = J(4, 4, .)

. matrix corpat[3,2] = 1

. matrix corpat[4,3] = 1

. matrix corpat[4,2] = 2

. matrix define stdpat = J(1, 4, .)

. matrix stdpat[1,3] = 1

. matrix stdpat[1,4] = 1

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income) correlation(pattern corpat) stddev(pattern stdpat)

Iteration 0: log simulated-likelihood = -201.33896
Iteration 1: log simulated-likelihood = -201.00457 (backed up)
Iteration 2: log simulated-likelihood = -200.80208 (backed up)
Iteration 3: log simulated-likelihood = -200.79758 (backed up)
Iteration 4: log simulated-likelihood = -200.55655 (backed up)
Iteration 5: log simulated-likelihood = -200.5421 (backed up)
Iteration 6: log simulated-likelihood = -196.24925

(output omitted )
Iteration 20: log simulated-likelihood = -190.12874
Iteration 21: log simulated-likelihood = -190.12871
Iteration 22: log simulated-likelihood = -190.12871

Alternative-specific multinomial probit Number of obs = 840
Case variable: id Number of cases = 210

Alternative variable: mode Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(5) = 41.67
Log simulated-likelihood = -190.12871 Prob > chi2 = 0.0000
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choice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mode
travelcost -.0100335 .0026203 -3.83 0.000 -.0151692 -.0048979

termtime -.0385731 .008608 -4.48 0.000 -.0554445 -.0217018

air (base alternative)

train
income -.029271 .0089739 -3.26 0.001 -.0468595 -.0116824
_cons .56528 .4008037 1.41 0.158 -.2202809 1.350841

bus
income -.0124658 .0080043 -1.56 0.119 -.0281539 .0032223
_cons -.0741685 .4763422 -0.16 0.876 -1.007782 .859445

car
income -.0046905 .0079934 -0.59 0.557 -.0203573 .0109763
_cons -1.897931 .7912106 -2.40 0.016 -3.448675 -.3471867

/lnsigmaP1 -.197697 .2751269 -0.72 0.472 -.7369359 .3415418

/atanhrP1 .9704403 .3286981 2.95 0.003 .3262038 1.614677
/atanhrP2 .5830923 .3690419 1.58 0.114 -.1402165 1.306401

sigma1 1 (base alternative)
sigma2 1 (scale alternative)
sigma3 .8206185 .2257742 .4785781 1.407115
sigma4 .8206185 .2257742 .4785781 1.407115

rho3_2 .7488977 .1443485 .3151056 .9238482
rho4_2 .5249094 .2673598 -.1393048 .863362
rho4_3 .7488977 .1443485 .3151056 .9238482

(mode=air is the alternative normalizing location)
(mode=train is the alternative normalizing scale)

In the call to asmprobit, we did not need to specify the basealternative() and scalealter-
native() options because they are implied by the specifications of the pattern matrices.

Technical note
If you experience convergence problems, try specifying nopivot, increasing intpoints(),

specifying antithetics, specifying technique(nr) with difficult, or specifying a switching
algorithm in the technique() option. As a last resort, you can use the nrtolerance() and
showtolerance options. Changing the base and scale alternative in the model specification can also
affect convergence if the structural option is used.

Because simulation methods are used to obtain multivariate normal probabilities, the estimates
obtained have a limited degree of precision. Moreover, the solutions are particularly sensitive to the
starting values used. Experimenting with different starting values may help in obtaining convergence,
and doing so is a good way to verify previous results.

If you wish to use the BHHH algorithm along with another maximization algorithm, you must
specify the initbhhh(#) option, where # is the number of BHHH iterations to use before switching
to the algorithm specified in technique(). The BHHH algorithm uses an outer-product-of-gradients
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approximation for the Hessian, and asmprobit must perform the gradient calculations differently
than for the other algorithms.

Technical note
If there are no alternative-specific variables in your model, the variance–covariance matrix pa-

rameters are not identifiable. For such a model to converge, you would therefore need to use cor-
relation(independent) and stddev(homoskedastic). A better alternative is to use mprobit,
which is geared specifically toward models with only case-specific variables. See [R] mprobit.

Saved results
asmprobit saves the following in e():

Scalars
e(N) number of observations
e(N case) number of cases
e(k) number of parameters
e(k alt) number of alternatives
e(k indvars) number of alternative-specific variables
e(k casevars) number of case-specific variables
e(k sigma) number of variance estimates
e(k rho) number of correlation estimates
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(ll) log simulated-likelihood
e(N clust) number of clusters
e(const) constant indicator
e(i base) base alternative index
e(i scale) scale alternative index
e(mc points) number of Monte Carlo replications
e(mc burn) starting sequence index
e(mc antithetics) antithetics indicator
e(chi2) χ2

e(p) significance
e(fullcov) unstructured covariance indicator
e(structcov) 1 if structured covariance; 0 otherwise
e(cholesky) Cholesky-factored covariance indicator
e(alt min) minimum number of alternatives
e(alt avg) average number of alternatives
e(alt max) maximum number of alternatives
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) asmprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) alternative-specific independent variable
e(casevars) case-specific variables
e(case) variable defining cases
e(altvar) variable defining alternatives
e(alteqs) alternative equation names
e(alt#) alternative labels
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(correlation) correlation structure
e(stddev) variance structure
e(cov class) class of the covariance structure
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(mc method) technique used to generate sequences
e(mc seed) random-number generator seed
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(mfx dlg) program used to implement estat mfx dialog
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(stats) alternative statistics
e(stdpattern) variance pattern
e(stdfixed) fixed and free standard deviations
e(altvals) alternative values
e(altfreq) alternative frequencies
e(alt casevars) indicators for estimated case-specific coefficients—e(k alt)×e(k casevars)
e(corpattern) correlation structure
e(corfixed) fixed and free correlations
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
asmprobit is implemented as an ado-file.

The simulated maximum likelihood estimates for the MNP are obtained using ml; see [R] ml.
The likelihood evaluator implements the GHK algorithm to approximate the multivariate distribution
function (Geweke 1989; Hajivassiliou and McFadden 1998; Keane and Wolpin 1994). The technique
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is also described in detail by Genz (1992), but Genz describes a more general algorithm where both
lower and upper bounds of integration are finite. We briefly describe the GHK simulator and refer you
to Bolduc (1999) for the score computations.

As discussed earlier, the latent variables for a J -alternative model are ηij = xijβ+ ziαj + ξij ,
for j = 1, . . . , J , i = 1, . . . , n, and ξ′i = (ξi,1, . . . , ξi,J) ∼ MVN(0,Ω). The experimenter observes
alternative k for the ith observation if k = arg max(ηij , j = 1, . . . , J). Let

vij′ = ηij − ηik
= (xij − xik)β+ zi(αj − αk) + ξij − ξik
= δij′β+ ziγj′ + εij′

where j′ = j if j < k and j′ = j − 1 if j > k, so that j′ = 1, . . . , J − 1. Further, εi =
(εi1, . . . , εi,J−1) ∼ MVN(0,Σ(k)). Σ is indexed by k because it depends on the choice made. We
denote the deterministic part of the model as λij′ = δij′β+ zjγj′ , and the probability of this event
is

Pr(yi = k) = Pr(vi1 ≤ 0, . . . , vi,J−1 ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

= (2π)−(J−1)/2 |Σ(k)|−1/2

∫ −λi1
−∞

· · ·
∫ −λi,J−1

−∞
exp

(
− 1

2z′Σ−1
(k)z

)
dz

(3)

Simulated likelihood
For clarity in the discussion that follows, we drop the index denoting case so that for an arbitrary

observation υ′ = (v1, . . . , vJ−1), λ′ = (λ1, . . . , λJ−1), and ε′ = (ε1, . . . , εJ−1).

The Cholesky-factored variance–covariance, Σ = LL′, is lower triangular,

L =


l11 0 . . . 0
l21 l22 . . . 0
...

...
...

lJ−1,1 lJ−1,2 . . . lJ−1,J−1


and the correlated latent-variable errors can be expressed as linear functions of uncorrelated normal
variates, ε = Lζ , where ζ ′ = (ζ1, . . . , ζJ−1) and ζj ∼ iid N(0, 1). We now have υ = λ+ Lζ , and
by defining

zj =


− λ1

l11
for j = 1

−
λj +

∑j−1
i=1 ljiζi
ljj

for j = 2, . . . , J − 1
(4)

we can express the probability statement (3) as the product of conditional probabilities

Pr(yi = k) = Pr (ζ1 ≤ z1) Pr (ζ2 ≤ z2 | ζ1 ≤ z1) · · ·
Pr (ζJ−1 ≤ zJ−1 | ζ1 ≤ z1, . . . , ζJ−2 ≤ zJ−2)
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because
Pr(v1 ≤ 0) = Pr(λ1 + l11ζ1 ≤ 0)

= Pr
(
ζ1 ≤ −

λ1

l11

)
Pr(v2 ≤ 0) = Pr(λ2 + l21ζ1 + l22ζ2 ≤ 0)

= Pr
(
ζ2 ≤ −

λ2 + l21ζ1
l22

| ζ1 ≤ −
λ1

l11

)
. . .

The Monte Carlo algorithm then must make draws from the truncated standard normal distribution.
It does so by generating J − 1 uniform variates, δj , j = 1, . . . , J − 1, and computing

ζ̃j =


Φ−1

{
δ1Φ

(
− λ1

l11

)}
for j = 1

Φ−1

{
δjΦ

(
−λj −

∑j−1
i=1 ljiζ̃i

ljj

)}
for j = 2, . . . , J − 1

Define z̃j by replacing ζ̃i for ζi in (4) so that the simulated probability for the lth draw is

pl =
J−1∏
j=1

Φ(z̃j)

To increase accuracy, the bounds of integration, λj , are ordered so that the largest integration intervals
are on the inside. The rows and columns of the variance–covariance matrix are pivoted accordingly
(Genz 1992).

For a more detailed description of the GHK algorithm in Stata, see Gates (2006).

Repeated draws are made, say, N , and the simulated likelihood for the ith case, denoted L̂i, is
computed as

L̂i =
1
N

N∑
l=1

pl

The overall simulated log likelihood is
∑
i log L̂i.

If the true likelihood is Li, the error bound on the approximation can be expressed as

|L̂i − Li| ≤ V (Li)DN{(δi)}

where V (Li) is the total variation of Li and DN is the discrepancy, or nonuniformity, of the set of ab-
scissas. For the uniform pseudorandom sequence, δi, the discrepancy is of orderO{(log logN/N)1/2}.
The order of discrepancy can be improved by using quasirandom sequences.

Quasi–Monte Carlo integration is carried out by asmprobit by replacing the uniform deviates
with either the Halton or the Hammersley sequences. These sequences spread the points more evenly
than the uniform random sequence and have a smaller order of discrepancy, O

[
{(logN)J−1}/N

]
and O

[
{(logN)J−2}/N

]
, respectively. The Halton sequence of dimension J − 1 is generated from

the first J − 1 primes, pk, so that on draw l we have hl = {rp1(l), rp2(l), . . . , rpJ−1(l)}, where
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rpk(l) =
q∑
j=0

bjk(l)p−j−1
k ∈ (0, 1)

is the radical inverse function of l with base pk so that
∑q
j=0 bjk(l)pjk = l, where pqk ≤ l < pq+1

k
(Fang and Wang 1994).

This function is demonstrated with base p3 = 5 and l = 33, which generates r5(33). Here q = 2,
b0,3(33) = 3, b1,5(33) = 1, and b2,5(33) = 1, so that r5(33) = 3/5 + 1/25 + 1/625.

The Hammersley sequence uses an evenly spaced set of points with the first J − 2 components
of the Halton sequence

hl =
{

2l − 1
2N

, rp1(l), rp2(l), . . . , rpJ−2(l)
}

for l = 1, . . . , N .

For a more detailed description of the Halton and Hammersley sequences, see Drukker and
Gates (2006).

Computations for the derivatives of the simulated likelihood are taken from Bolduc (1999). Bolduc
gives the analytical first-order derivatives for the log of the simulated likelihood with respect to
the regression coefficients and the parameters of the Cholesky-factored variance–covariance matrix.
asmprobit uses these analytical first-order derivatives and numerical second-order derivatives.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.
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[R] asmprobit postestimation — Postestimation tools for asmprobit

[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model

[R] asroprobit — Alternative-specific rank-ordered probit regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] mprobit — Multinomial probit regression

[U] 20 Estimation and postestimation commands
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Title

asmprobit postestimation — Postestimation tools for asmprobit

Description
The following postestimation commands are of special interest after asmprobit:

Command Description

estat alternatives alternative summary statistics
estat covariance covariance matrix of the latent-variable errors for the alternatives
estat correlation correlation matrix of the latent-variable errors for the alternatives
estat facweights covariance factor weights matrix
estat mfx marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predicted probabilities, estimated linear predictor and its standard error
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample
and provides a mapping between the index numbers that label the covariance parameters of the model
and their associated values and labels for the alternative variable.

estat covariance computes the estimated variance–covariance matrix of the latent-variable
errors for the alternatives. The estimates are displayed, and the variance–covariance matrix is stored
in r(cov).

estat correlation computes the estimated correlation matrix of the latent-variable errors for
the alternatives. The estimates are displayed, and the correlation matrix is stored in r(cor).

127
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estat facweights displays the covariance factor weights matrix and stores it in r(C).

estat mfx computes the simulated probability marginal effects.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic altwise
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability alternative is chosen; the default
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict� � �
Main �

pr, the default, calculates the probability that alternative j is chosen in case i.

xb calculates the linear prediction xijβ+ ziαj for alternative j and case i.

stdp calculates the standard error of the linear predictor.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

scores calculates the scores for each coefficient in e(b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.

Syntax for estat alternatives
estat alternatives

Menu
Statistics > Postestimation > Reports and statistics
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Syntax for estat covariance
estat covariance

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat covariance
format(% fmt) sets the matrix display format. The default is format(%9.0g).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.

Syntax for estat correlation
estat correlation

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat correlation
format(% fmt) sets the matrix display format. The default is format(%9.4f).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.

Syntax for estat facweights
estat facweights

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat facweights
format(% fmt) sets the matrix display format. The default is format(%9.0f).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.
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Syntax for estat mfx
estat mfx

[
if
] [

in
] [

, options
]

options Description

Main

varlist(varlist) display marginal effects for varlist
at(mean

[
atlist

]
| median

[
atlist

]
) calculate marginal effects at these values

Options

level(#) set confidence interval level; default is level(95)

nodiscrete treat indicator variables as continuous
noesample do not restrict calculation of means and medians to the

estimation sample
nowght ignore weights when calculating means and medians

Menu
Statistics > Postestimation > Reports and statistics

Options for estat mfx� � �
Main �

varlist(varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at(mean
[

atlist
]
| median

[
atlist

]
) specifies the values at which the marginal effects are to be

calculated. atlist is[ [
alternative:variable = #

] [
variable = #

] [
. . .
] ]

The default is to calculate the marginal effects at the means of the independent variables at the
estimation sample, at(mean).

After specifying the summary statistic, you can specify a series of specific values for variables.
You can specify values for alternative-specific variables by alternative, or you can specify one
value for all alternatives. You can specify only one value for case-specific variables. For example,
in the travel dataset, income is a case-specific variable, whereas termtime and travelcost
are alternative-specific variables. The following would be a legal syntax for estat mfx:

. estat mfx, at(mean air:termtime=50 travelcost=100 income=60)

When nodiscrete is not specified, at(mean
[

atlist
]
) or at(median

[
atlist

]
) has no effect on

computing marginal effects for indicator variables, which are calculated as the discrete change in
the simulated probability as the indicator variable changes from 0 to 1.

The mean and median computations respect any if and in qualifiers, so you can restrict the data
over which the means or medians are computed. You can even restrict the values to a specific
case; for example,

. estat mfx if case==21

� � �
Options �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
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nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value 0 or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from 0 to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asmprobit command.

nowght specifies that weights be ignored when calculating the means or medians.

Remarks
Remarks are presented under the following headings:

Predicted probabilities
Obtaining estimation statistics
Obtaining marginal effects

Predicted probabilities

After fitting an alternative-specific multinomial probit model, you can use predict to obtain the
simulated probabilities that an individual will choose each of the alternatives. When evaluating the
multivariate normal probabilities via Monte Carlo simulation, predict uses the same method to
generate the random sequence of numbers as the previous call to asmprobit. For example, if you
specified intmethod(Halton) when fitting the model, predict also uses the Halton sequence.

Example 1

In example 1 of [R] asmprobit, we fit a model of individuals’ travel-mode choices. We can obtain
the simulated probabilities that an individual chooses each alternative by using predict:

. use http://www.stata-press.com/data/r12/travel

. asmprobit choice travelcost termtime, case(id) alternatives(mode)
> casevars(income)

(output omitted )
. predict prob
(option pr assumed; Pr(mode))

. list id mode prob choice in 1/12, sepby(id)

id mode prob choice

1. 1 air .1494137 0
2. 1 train .329167 0
3. 1 bus .1320298 0
4. 1 car .3898562 1

5. 2 air .2565875 0
6. 2 train .2761054 0
7. 2 bus .0116135 0
8. 2 car .4556921 1

9. 3 air .2098406 0
10. 3 train .1081824 0
11. 3 bus .1671841 0
12. 3 car .5147822 1
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Obtaining estimation statistics

Once you have fit a multinomial probit model, you can obtain the estimated variance or correlation
matrices for the model alternatives by using the estat command.

Example 2

To display the correlations of the errors in the latent-variable equations, we type

. estat correlation

train bus car

train 1.0000
bus 0.8909 1.0000
car 0.7895 0.8951 1.0000

Note: correlations are for alternatives differenced with air

The covariance matrix can be displayed by typing

. estat covariance

train bus car

train 2
bus 1.600208 1.613068
car 1.37471 1.399703 1.515884

Note: covariances are for alternatives differenced with air

Obtaining marginal effects

The marginal effects are computed as the derivative of the simulated probability for an alternative
with respect to an independent variable. A table of marginal effects is displayed for each alternative,
with the table containing the marginal effect for each case-specific variable and the alternative for
each alternative-specific variable.

By default, the marginal effects are computed at the means of each continuous independent variable
over the estimation sample. For indicator variables, the difference in the simulated probability evaluated
at 0 and 1 is computed by default. Indicator variables will be treated as continuous variables if the
nodiscrete option is used.

Example 3

Continuing with our model from example 1, we obtain the marginal effects for alternatives air,
train, bus, and car evaluated at the mean values of each independent variable. Recall that the
travelcost and termtime variables are alternative specific, taking on different values for each
alternative, so they have a separate marginal effect for each alternative.
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. estat mfx

Pr(choice = air) = .29434926

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

travelcost
air -.002688 .000677 -3.97 0.000 -.004015 -.001362 102.65

train .0009 .000436 2.07 0.039 .000046 .001755 130.2
bus .000376 .000271 1.39 0.166 -.000155 .000908 115.26
car .001412 .00051 2.77 0.006 .000412 .002412 95.414

termtime
air -.010376 .002711 -3.83 0.000 -.015689 -.005063 61.01

train .003475 .001639 2.12 0.034 .000264 .006687 35.69
bus .001452 .001008 1.44 0.150 -.000523 .003427 41.657
car .005449 .002164 2.52 0.012 .001209 .00969 0

casevars
income .003891 .001847 2.11 0.035 .000271 .007511 34.548

Pr(choice = train) = .29531182

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

travelcost
air .000899 .000436 2.06 0.039 .000045 .001753 102.65

train -.004081 .001466 -2.78 0.005 -.006953 -.001208 130.2
bus .001278 .00063 2.03 0.042 .000043 .002513 115.26
car .001904 .000887 2.15 0.032 .000166 .003641 95.414

termtime
air .003469 .001638 2.12 0.034 .000258 .00668 61.01

train -.01575 .00247 -6.38 0.000 -.020591 -.010909 35.69
bus .004934 .001593 3.10 0.002 .001812 .008056 41.657
car .007348 .002228 3.30 0.001 .00298 .011715 0

casevars
income -.00957 .002223 -4.31 0.000 -.013927 -.005214 34.548

Pr(choice = bus) = .08880039

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

travelcost
air .00038 .000274 1.39 0.165 -.000157 .000916 102.65

train .001279 .00063 2.03 0.042 .000044 .002514 130.2
bus -.003182 .001175 -2.71 0.007 -.005485 -.00088 115.26
car .001523 .000675 2.26 0.024 .0002 .002847 95.414

termtime
air .001466 .001017 1.44 0.149 -.000526 .003459 61.01

train .004937 .001591 3.10 0.002 .001819 .008055 35.69
bus -.012283 .002804 -4.38 0.000 -.017778 -.006788 41.657
car .00588 .002255 2.61 0.009 .001461 .010299 0

casevars
income .000435 .001461 0.30 0.766 -.002428 .003298 34.548
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Pr(choice = car) = .32168607

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

travelcost
air .00141 .000509 2.77 0.006 .000411 .002408 102.65

train .001903 .000886 2.15 0.032 .000166 .003641 130.2
bus .001523 .000675 2.25 0.024 .000199 .002847 115.26
car -.004836 .001539 -3.14 0.002 -.007853 -.001819 95.414

termtime
air .005441 .002161 2.52 0.012 .001205 .009677 61.01

train .007346 .002228 3.30 0.001 .00298 .011713 35.69
bus .005879 .002256 2.61 0.009 .001456 .010301 41.657
car -.018666 .003938 -4.74 0.000 -.026385 -.010948 0

casevars
income .005246 .002166 2.42 0.015 .001002 .00949 34.548

First, we note that there is a separate marginal effects table for each alternative and that table
begins by reporting the overall probability of choosing the alternative, for example, 0.2944 for air
travel. We see in the first table that a unit increase in terminal time for air travel from 61.01 minutes
will result in a decrease in probability of choosing air travel (when the probability is evaluated at the
mean of all variables) by approximately 0.01, with a 95% confidence interval of about −0.016 to
−0.005. Travel cost has a less negative effect of choosing air travel (at the average cost of 102.65).
Alternatively, an increase in terminal time and travel cost for train, bus, or car from these mean values
will increase the chance for air travel to be chosen. Also, with an increase in income from 34.5, it
would appear that an individual would be more likely to choose air or automobile travel over bus or
train. (While the marginal effect for bus travel is positive, it is not significant.)

Example 4

Plotting the simulated probability marginal effect evaluated over a range of values for an independent
variable may be more revealing than a table of values. Below are the commands for generating the
simulated probability marginal effect of air travel for increasing air travel terminal time. We fix all
other independent variables at their medians.

. qui gen meff = .

. qui gen tt = .

. qui gen lb = .

. qui gen ub = .

. forvalues i=0/19 {
2. local termtime = 5+5*‘i’
3. qui replace tt = ‘termtime’ if _n == ‘i’+1
4. qui estat mfx, at(median air:termtime=‘termtime’) var(termtime)
5. mat air = r(air)
6. qui replace meff = air[1,1] if _n == ‘i’+1
7. qui replace lb = air[1,5] if _n == ‘i’+1
8. qui replace ub = air[1,6] if _n == ‘i’+1
9. qui replace prob = r(pr_air) if _n == ‘i’+1

10. }

. label variable tt "terminal time"
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. twoway (rarea lb ub tt, pstyle(ci)) (line meff tt, lpattern(solid)), name(meff)
> legend(off) title(" marginal effect of air travel" "terminal time and"
> "95% confidence interval", position(3))

. twoway line prob tt, name(prob) title(" probability of choosing" "air travel",
> position(3)) graphregion(margin(r+9)) ytitle("") xtitle("")

. graph combine prob meff, cols(1) graphregion(margin(l+5 r+5))
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From the graphs, we see that the simulated probability of choosing air travel decreases in an
sigmoid fashion. The marginal effects display the rate of change in the simulated probability as a
function of the air travel terminal time. The rate of change in the probability of choosing air travel
decreases until the air travel terminal time reaches about 45; thereafter, it increases.

Saved results
estat mfx saves the following in r():

Scalars
r(pr alt) scalars containing the computed probability of each alternative evaluated at the value that is

labeled X in the table output. Here alt are the labels in the macro e(alteqs).
Matrices

r(alt) matrices containing the computed marginal effects and associated statistics. There is one matrix
for each alternative, where alt are the labels in the macro e(alteqs). Column 1 of each
matrix contains the marginal effects; column 2, their standard errors; columns 3 and 4,
their z statistics and the p-values for the z statistics; and columns 5 and 6, the confidence
intervals. Column 7 contains the values of the independent variables used to compute the
probabilities r(pr alt).
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Marginal effects

The marginal effects are computed as the derivative of the simulated probability with respect to each
independent variable. A set of marginal effects is computed for each alternative; thus, for J alternatives,
there will be J tables. Moreover, the alternative-specific variables will have J entries, one for each
alternative in each table. The details of computing the effects are different for alternative-specific
variables and case-specific variables, as well as for continuous and indicator variables.

We use the latent-variable notation of asmprobit (see [R] asmprobit) for a J -alternative model
and, for notational convenience, we will drop any subscripts involving observations. We then have
the following linear functions ηj = xjβ + zαj , for j = 1, . . . , J . Let k index the alternative of
interest, and then

vj′ = ηj − ηk
= (xj − xk)β+ z(αj − αk) + εj′

where j′ = j if j < k and j′ = j − 1 if j > k, so that j′ = 1, . . . , J − 1 and εj′ ∼ MVN(0,Σ).
Denote pk = Pr(v1 ≤ 0, . . . , vJ−1 ≤ 0) as the simulated probability of choosing alternative k
given profile xk and z. The marginal effects are then ∂pk/∂xk, ∂pk/∂xj , and ∂pk/∂z, where
k = 1, . . . , J , j 6= k. asmprobit analytically computes the first-order derivatives of the simulated
probability with respect to the v’s, and the marginal effects for x’s and z are obtained via the chain
rule. The standard errors for the marginal effects are computed using the delta method.

Also see
[R] asmprobit — Alternative-specific multinomial probit regression

[U] 20 Estimation and postestimation commands



Title

asroprobit — Alternative-specific rank-ordered probit regression

Syntax
asroprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, case(varname)

alternatives(varname)
[

options
]

options Description

Model
∗case(varname) use varname to identify cases
∗alternatives(varname) use varname to identify the alternatives available for each case
casevars(varlist) case-specific variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

Model 2

correlation(correlation) correlation structure of the latent-variable errors
stddev(stddev) variance structure of the latent-variable errors
structural use the structural covariance parameterization; default is the

differenced covariance parameterization
factor(#) use the factor covariance structure with dimension #
noconstant suppress the alternative-specific constant terms
basealternative(# | lbl | str) alternative used for normalizing location
scalealternative(# | lbl | str) alternative used for normalizing scale
altwise use alternativewise deletion instead of casewise deletion
reverse interpret the lowest rank in depvar as the best; the default is the

highest rank is the best

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

notransform do not transform variance–covariance estimates to the standard
deviation and correlation metric

nocnsreport do not display constraints
display options control column formats and line width

137
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Integration

intmethod(seqtype) type of quasi- or pseudouniform sequence
intpoints(#) number of points in each sequence
intburn(#) starting index in the Hammersley or Halton sequence
intseed(code | #) pseudouniform random-number seed
antithetics use antithetic draws
nopivot do not use integration interval pivoting
initbhhh(#) use the BHHH optimization algorithm for the first # iterations
favor(speed | space) favor speed or space when generating integration points

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

correlation Description

unstructured one correlation parameter for each pair of alternatives; correlations
with the basealternative() are zero; the default

exchangeable one correlation parameter common to all pairs of alternatives;
correlations with the basealternative() are zero

independent constrain all correlation parameters to zero
pattern matname user-specified matrix identifying the correlation pattern
fixed matname user-specified matrix identifying the fixed and free correlation

parameters

stddev Description

heteroskedastic estimate standard deviation for each alternative; standard deviations
for basealternative() and scalealternative() set to one

homoskedastic all standard deviations are one
pattern matname user-specified matrix identifying the standard deviation pattern
fixed matname user-specified matrix identifying the fixed and free standard

deviations

seqtype Description

hammersley Hammersley point set
halton Halton point set
random uniform pseudorandom point set

∗case(varname) and alternatives(varname) are required.
bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Ordinal outcomes > Rank-ordered probit regression

Description
asroprobit fits rank-ordered probit (ROP) models by using maximum simulated likelihood (MSL).

The model allows you to relax the independence of irrelevant alternatives (IIA) property that is
characteristic of the rank-ordered logistic model by estimating the variance–covariance parameters
of the latent-variable errors. Each unique identifier in the case() variable has multiple alternatives
identified in the alternatives() variable, and depvar contains the ranked alternatives made by each
case. Only the order in the ranks, not the magnitude of their differences, is assumed to be relevant.
By default, the largest rank indicates the more desirable alternative. Use the reverse option if the
lowest rank should be interpreted as the more desirable alternative. Tied ranks are allowed, but they
increase the computation time because all permutations of the tied ranks are used in computing the
likelihood for each case. asroprobit allows two types of independent variables: alternative-specific
variables, in which the values of each variable vary with each alternative, and case-specific variables,
which vary with each case.

The estimation technique of asroprobit is nearly identical to that of asmprobit, and the two
routines share many of the same options; see [R] asmprobit.

Options

� � �
Model �

case(varname) specifies the variable that identifies each case. This variable identifies the individuals
or entities making a choice. case() is required.

alternatives(varname) specifies the variable that identifies the alternatives available for each case.
The number of alternatives can vary with each case; the maximum number of alternatives is 20.
alternatives() is required.

casevars(varlist) specifies the case-specific variables that are constant for each case(). If there are
a maximum of J alternatives, there will be J −1 sets of coefficients associated with casevars().

constraints(constraints), collinear; see [R] estimation options.

� � �
Model 2 �

correlation(correlation) specifies the correlation structure of the latent-variable errors.

correlation(unstructured) is the most general and has J(J − 3)/2 + 1 unique correlation
parameters. This is the default unless stddev() or structural are specified.

correlation(exchangeable) provides for one correlation coefficient common to all latent
variables, except the latent variable associated with the basealternative().

correlation(independent) assumes that all correlations are zero.

correlation(pattern matname) and correlation(fixed matname) give you more flexibil-
ity in defining the correlation structure. See Variance structures in [R] asmprobit for more
information.

stddev(stddev) specifies the variance structure of the latent-variable errors.

stddev(heteroskedastic) is the most general and has J−2 estimable parameters. The standard
deviations of the latent-variable errors for the alternatives specified in basealternative()
and scalealternative() are fixed to one.
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stddev(homoskedastic) constrains all the standard deviations to equal one.

stddev(pattern matname) and stddev(fixed matname) give you added flexibility in defining
the standard deviation parameters. See Variance structures in [R] asmprobit for more information.

structural requests the J×J structural covariance parameterization instead of the default J−1×J−1
differenced covariance parameterization (the covariance of the latent errors differenced with that of
the base alternative). The differenced covariance parameterization will achieve the same maximum
simulated likelihood regardless of the choice of basealternative() and scalealternative().
On the other hand, the structural covariance parameterization imposes more normalizations that
may bound the model away from its maximum likelihood and thus prevent convergence with some
datasets or choices of basealternative() and scalealternative().

factor(#) requests that the factor covariance structure of dimension # be used. The factor() option
can be used with the structural option but cannot be used with stddev() or correlation().
A # × J (or # × J − 1) matrix, C, is used to factor the covariance matrix as I + C′C, where
I is the identity matrix of dimension J (or J − 1). The column dimension of C depends on
whether the covariance is structural or differenced. The row dimension of C, #, must be less than
or equal to floor((J(J−1)/2−1)/(J−2)), because there are only J(J−1)/2−1 identifiable
variance–covariance parameters. This covariance parameterization may be useful for reducing the
number of covariance parameters that need to be estimated.

If the covariance is structural, the column of C corresponding to the base alternative contains zeros.
The column corresponding to the scale alternative has a one in the first row and zeros elsewhere.
If the covariance is differenced, the column corresponding to the scale alternative (differenced with
the base) has a one in the first row and zeros elsewhere.

noconstant suppresses the J − 1 alternative-specific constant terms.

basealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable location
(also referred to as the level of utility). The base alternative may be specified as a number, label,
or string. The standard deviation for the latent-variable error associated with the base alternative
is fixed to one, and its correlations with all other latent-variable errors are set to zero. The default
is the first alternative when sorted. If a fixed or pattern matrix is given in the stddev()
and correlation() options, the basealternative() will be implied by the fixed standard
deviations and correlations in the matrix specifications. basealternative() cannot be equal to
scalealternative().

scalealternative(# | lbl | str) specifies the alternative used to normalize the latent-variable scale
(also referred to as the scale of utility). The scale alternative may be specified as a number,
label, or string. The default is to use the second alternative when sorted. If a fixed or pattern
matrix is given in the stddev() option, the scalealternative() will be implied by the
fixed standard deviations in the matrix specification. scalealternative() cannot be equal to
basealternative().

If a fixed or pattern matrix is given for the stddev() option, the base alternative and scale
alternative are implied by the standard deviations and correlations in the matrix specifications, and
they need not be specified in the basealternative() and scalealternative() options.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion; that is, the entire group of
observations making up a case is deleted if any missing values are encountered. This option does
not apply to observations that are marked out by the if or in qualifier or the by prefix.

reverse directs asroprobit to interpret the rank in depvar that is smallest in value as the preferred
alternative. By default, the rank that is largest in value is the favored alternative.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify basealternative()
and scalealternative().

� � �
Reporting �

level(#); see [R] estimation options.

notransform prevents retransforming the Cholesky-factored variance–covariance estimates to the
correlation and standard deviation metric.

This option has no effect if structural is not specified because the default differenced variance–
covariance estimates have no interesting interpretation as correlations and standard deviations.
notransform also has no effect if the correlation() and stddev() options are specified with
anything other than their default values. Here it is generally not possible to factor the variance–
covariance matrix, so optimization is already performed using the standard deviation and correlation
representations.

nocnsreport; see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Integration �

intmethod(hammersley | halton | random) specifies the method of generating the point sets used in
the quasi–Monte Carlo integration of the multivariate normal density. intmethod(hammersley),
the default, uses the Hammersley sequence; intmethod(halton) uses the Halton sequence; and
intmethod(random) uses a sequence of uniform random numbers.

intpoints(#) specifies the number of points to use in the quasi–Monte Carlo integration. If
this option is not specified, the number of points is 50 × J if intmethod(hammersley) or
intmethod(halton) is used and 100 × J if intmethod(random) is used. Larger values of
intpoints() provide better approximations of the log likelihood, but at the cost of added
computation time.

intburn(#) specifies where in the Hammersley or Halton sequence to start, which helps reduce the
correlation between the sequences of each dimension. The default is 0. This option may not be
specified with intmethod(random).

intseed(code | #) specifies the seed to use for generating the uniform pseudorandom sequence. This
option may be specified only with intmethod(random). code refers to a string that records the
state of the random-number generator runiform(); see [R] set seed. An integer value # may
be used also. The default is to use the current seed value from Stata’s uniform random-number
generator, which can be obtained from c(seed).

antithetics specifies that antithetic draws be used. The antithetic draw for the J − 1 vector
uniform-random variables, x, is 1− x.

nopivot turns off integration interval pivoting. By default, asroprobit will pivot the wider intervals
of integration to the interior of the multivariate integration. This improves the accuracy of the
quadrature estimate. However, discontinuities may result in the computation of numerical second-
order derivatives using finite differencing (for the Newton–Raphson optimize technique, tech(nr))
when few simulation points are used, resulting in a non–positive-definite Hessian. asroprobit
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uses the Broyden–Fletcher–Goldfarb–Shanno optimization algorithm, by default, which does not
require computing the Hessian numerically using finite differencing.

initbhhh(#) specifies that the Berndt–Hall–Hall–Hausman (BHHH) algorithm be used for the initial
# optimization steps. This option is the only way to use the BHHH algorithm along with other
optimization techniques. The algorithm switching feature of ml’s technique() option cannot
include bhhh.

favor(speed | space) instructs asroprobit to favor either speed or space when generating the
integration points. favor(speed) is the default. When favoring speed, the integration points are
generated once and stored in memory, thus increasing the speed of evaluating the likelihood. This
speed increase can be seen when there are many cases or when the user specifies a large number
of integration points, intpoints(#). When favoring space, the integration points are generated
repeatedly with each likelihood evaluation.

For unbalanced data, where the number of alternatives varies with each case, the estimates computed
using intmethod(random) will vary slightly between favor(speed) and favor(space). This
is because the uniform sequences will not be identical, even when initiating the sequences using the
same uniform seed, intseed(code | #). For favor(speed), ncase blocks of intpoints(#)×
J − 2 uniform points are generated, where J is the maximum number of alternatives. For
favor(space), the column dimension of the matrices of points varies with the number of
alternatives that each case has.� � �

Maximization �
maximize options: difficult, technique(algorithm spec), iterate(#),

[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize.

The following options may be particularly useful in obtaining convergence with asroprobit:
difficult, technique(algorithm spec), nrtolerance(#), nonrtolerance, and
from(init specs).

If technique() contains more than one algorithm specification, bhhh cannot be one of them. To
use the BHHH algorithm with another algorithm, use the initbhhh() option and specify the other
algorithm in technique().

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

When specifying from(matname
[
, copy

]
), the values in matname associated with the latent-

variable error variances must be for the log-transformed standard deviations and inverse-hyperbolic
tangent-transformed correlations. This option makes using the coefficient vector from a previously
fitted asroprobit model convenient as a starting point.

The following option is available with asroprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The mathematical description and numerical computations of the rank-ordered probit model are

similar to that of the multinomial probit model. The only difference is that the dependent variable
of the rank-ordered probit model is ordinal, showing preferences among alternatives, as opposed to
the binary dependent variable of the multinomial probit model, indicating a chosen alternative. We
will describe how the likelihood of a ranking is computed using the latent-variable framework here,
but for details of the latent-variable parameterization of these models and the method of maximum
simulated likelihood, see [R] asmprobit.
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Consider the latent-variable parameterization of a J alternative rank-ordered probit model. Using
the notation from asmprobit, we have variables ηij , j = 1, . . . , J , such that

ηij = xijβ+ ziαj + ξij

Here the xij are the alternative-specific independent variables, the zi are the case-specific variables,
and the ξij are multivariate normal with mean zero and covariance Ω. Without loss of generality,
assume that individual i ranks the alternatives in order of the alternative indices j = 1, 2, . . . , J ,
so the alternative J is the preferred alternative and alternative 1 is the least preferred alternative.
The probability of this ranking given β and αj is the probability that ηi,J−1 − ηi,J ≤ 0 and
ηi,J−2 − ηi,J−1 ≤ 0, . . . , and ηi,1 − ηi,2 ≤ 0.

Example 1

Long and Freese (2006) provide an example of a rank-ordered logit model with alternative-specific
variables. We use this dataset to demonstrate asroprobit. The data come from the Wisconsin
Longitudinal Study. This is a study of 1957 Wisconsin high school graduates that were asked to rate
their relative preference of four job characteristics: esteem, a job other people regard highly; variety,
a job that is not repetitive and allows you to do a variety of things; autonomy, a job where your
supervisor does not check on you frequently; and security, a job with a low risk of being laid off. The
case-specific covariates are gender, female, an indicator variable for females, and score, a score
on a general mental ability test measured in standard deviations. The alternative-specific variables
are high and low, which indicate whether the respondent’s current job is high or low in esteem,
variety, autonomy, or security. This approach provides three states for a respondent’s current job
status for each alternative, (1, 0), (0, 1), and (0, 0), using the notation (high, low). The score (1, 1)
is omitted because the respondent’s current job cannot be considered both high and low in one of the
job characteristics. The (0, 0) score would indicate that the respondent’s current job does not rank
high or low (is neutral) in a job characteristic. The alternatives are ranked such that 1 is the preferred
alternative and 4 is the least preferred.

. use http://www.stata-press.com/data/r12/wlsrank
(1992 Wisconsin Longitudinal Study data on job values)

. list id jobchar rank female score high low in 1/12, sepby(id)

id jobchar rank female score high low

1. 1 security 1 1 .0492111 0 0
2. 1 autonomy 4 1 .0492111 0 0
3. 1 variety 1 1 .0492111 0 0
4. 1 esteem 3 1 .0492111 0 0

5. 5 security 2 1 2.115012 1 0
6. 5 variety 2 1 2.115012 1 0
7. 5 esteem 2 1 2.115012 1 0
8. 5 autonomy 1 1 2.115012 0 0

9. 7 autonomy 1 0 1.701852 1 0
10. 7 variety 1 0 1.701852 0 1
11. 7 esteem 4 0 1.701852 0 0
12. 7 security 1 0 1.701852 0 0

The three cases listed have tied ranks. asroprobit will allow ties, but at the cost of increased
computation time. To evaluate the likelihood of the first observation, asroprobit must compute

Pr(esteem = 3, variety = 1, autonomy = 4, security = 2)+

Pr(esteem = 3, variety = 2, autonomy = 4, security = 1)
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and both of these probabilities are estimated using simulation. In fact, the full dataset contains 7,237
tied ranks and asroprobit takes a great deal of time to estimate the parameters. For exposition, we
estimate the rank-ordered probit model by using the cases without ties. These cases are marked in
the variable noties.

The model of job preference is

ηij = β1highij + β2lowij + α1jfemalei + α2jscorei + α0j + ξij

for j = 1, 2, 3, 4. The base alternative will be esteem, so α01 = α11 = α21 = 0.
. asroprobit rank high low if noties, case(id) alternatives(jobchar)
> casevars(female score) reverse
note: variable high has 107 cases that are not alternative-specific: there is

no within-case variability
note: variable low has 193 cases that are not alternative-specific: there is

no within-case variability

Iteration 0: log simulated-likelihood = -1103.2768
Iteration 1: log simulated-likelihood = -1089.3361 (backed up)

(output omitted )
Alternative-specific rank-ordered probit Number of obs = 1660
Case variable: id Number of cases = 415

Alternative variable: jobchar Alts per case: min = 4
avg = 4.0
max = 4

Integration sequence: Hammersley
Integration points: 200 Wald chi2(8) = 34.01
Log simulated-likelihood = -1080.2206 Prob > chi2 = 0.0000

rank Coef. Std. Err. z P>|z| [95% Conf. Interval]

jobchar
high .3741029 .0925685 4.04 0.000 .192672 .5555337
low -.0697443 .1093317 -0.64 0.524 -.2840305 .1445419

esteem (base alternative)

variety
female .1351487 .1843088 0.73 0.463 -.2260899 .4963873
score .1405482 .0977567 1.44 0.151 -.0510515 .3321479
_cons 1.735016 .1451343 11.95 0.000 1.450558 2.019474

autonomy
female .2561828 .1679565 1.53 0.127 -.0730059 .5853715
score .1898853 .0875668 2.17 0.030 .0182575 .361513
_cons .7009797 .1227336 5.71 0.000 .4604262 .9415333

security
female .232622 .2057547 1.13 0.258 -.1706497 .6358938
score -.1780076 .1102115 -1.62 0.106 -.3940181 .038003
_cons 1.343766 .1600059 8.40 0.000 1.030161 1.657372

/lnl2_2 .1805151 .0757296 2.38 0.017 .0320878 .3289424
/lnl3_3 .4843091 .0793343 6.10 0.000 .3288168 .6398014

/l2_1 .6062037 .1169368 5.18 0.000 .3770117 .8353957
/l3_1 .4509217 .1431183 3.15 0.002 .1704151 .7314283
/l3_2 .2289447 .1226081 1.87 0.062 -.0113627 .4692521

(jobchar=esteem is the alternative normalizing location)
(jobchar=variety is the alternative normalizing scale)
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We specified the reverse option because a rank of 1 is the highest preference. The variance–
covariance estimates are for the Cholesky-factored variance–covariance for the latent-variable errors
differenced with that of alternative esteem. We can view the estimated correlations by entering

. estat correlation

variety autonomy security

variety 1.0000
autonomy 0.4516 1.0000
security 0.2652 0.2399 1.0000

Note: correlations are for alternatives differenced with esteem

and typing

. estat covariance

variety autonomy security

variety 2
autonomy .8573015 1.80229
security .6376996 .5475882 2.890048

Note: covariances are for alternatives differenced with esteem

gives the (co)variances. [R] mprobit explains that if the latent-variable errors are independent, then
the correlations in the differenced parameterization should be ∼0.5 and the variances should be ∼2.0,
which seems to be the case here.

The coefficient estimates for the probit models can be difficult to interpret because of the
normalization for location and scale. The regression estimates for the case-specific variables will be
relative to the base alternative and the regression estimates for both the case-specific and alternative-
specific variables are affected by the scale normalization. The more pronounced the heteroskedasticity
and correlations, the more pronounced the resulting estimate differences when choosing alternatives
to normalize for location and scale. However, when using the differenced covariance structure, you
will obtain the same model likelihood regardless of which alternatives you choose as the base and
scale alternatives. For model interpretation, you can examine the estimated probabilities and marginal
effects by using postestimation routines predict and estat mfx. See [R] asroprobit postestimation.
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Saved results
asroprobit saves the following in e():

Scalars
e(N) number of observations
e(N case) number of cases
e(N ties) number of ties
e(k) number of parameters
e(k alt) number of alternatives
e(k indvars) number of alternative-specific variables
e(k casevars) number of case-specific variables
e(k sigma) number of variance estimates
e(k rho) number of correlation estimates
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(ll) log simulated-likelihood
e(N clust) number of clusters
e(const) constant indicator
e(i base) base alternative index
e(i scale) scale alternative index
e(mc points) number of Monte Carlo replications
e(mc burn) starting sequence index
e(mc antithetics) antithetics indicator
e(reverse) 1 if minimum rank is best, 0 if maximum rank is best
e(chi2) χ2

e(p) significance
e(fullcov) unstructured covariance indicator
e(structcov) 1 if structured covariance; 0 otherwise
e(cholesky) Cholesky-factored covariance indicator
e(alt min) minimum number of alternatives
e(alt avg) average number of alternatives
e(alt max) maximum number of alternatives
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) asroprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) alternative-specific independent variable
e(casevars) case-specific variables
e(case) variable defining cases
e(altvar) variable defining alternatives
e(alteqs) alternative equation names
e(alt#) alternative labels
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(correlation) correlation structure
e(stddev) variance structure
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(mc method) Hammersley, Halton, or uniform random; technique to generate sequences
e(mc seed) random-number generator seed
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(mfx dlg) program used to implement estat mfx dialog
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(stats) alternative statistics
e(stdpattern) variance pattern
e(stdfixed) fixed and free standard deviations
e(altvals) alternative values
e(altfreq) alternative frequencies
e(alt casevars) indicators for estimated case-specific coefficients—e(k alt)×e(k casevars)
e(corpattern) correlation structure
e(corfixed) fixed and free correlations
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
asroprobit is implemented as an ado-file.

From a computational perspective, asroprobit is similar to asmprobit and the two programs
share many numerical tools. Therefore, we will use the notation from Methods and formulas in
[R] asmprobit to discuss the rank-ordered probit probability model.
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The latent variables for a J -alternative model are ηij = xijβ + ziαj + ξij , for j = 1, . . . , J ,
i = 1, . . . , n, and ξ′i = (ξi,1, . . . , ξi,J) ∼ MVN(0,Ω). Without loss of generality, assume for
the ith observation that an individual ranks the alternatives in the order of their numeric indices,
yi = (J, J − 1, . . . , 1), so the first alternative is the most preferred and the last alternative is the
least preferred. We can then difference the latent variables such that

vik = ηi,k+1 − ηi,k
= (xi,k+1 − xi,k)β+ zi(αk+1 − αk) + ξi,k+1 − ξik
= δikβ+ ziγk + εik

for k = 1, . . . , J − 1 and where εi = (εi1, . . . , εi,J−1) ∼ MVN(0,Σ(i)). Σ is indexed by i because
it is specific to the ranking of individual i. We denote the deterministic part of the model as
λik = δikβ+ zjγk, and the probability of this event is

Pr(yi) = Pr(vi1 ≤ 0, . . . , vi,J−1 ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

= (2π)−(J−1)/2 |Σ(i)|−1/2

∫ −λi1
−∞

· · ·
∫ −λi,J−1

−∞
exp

(
− 1

2z′Σ−1
(i) z

)
dz

The integral has the same form as (3) of Methods and formulas in [R] asmprobit. See [R] asmprobit
for details on evaluating this integral numerically by using simulation.

asroprobit handles tied ranks by enumeration. For k tied ranks, it will generate k! rankings,
where ! is the factorial operator k! = k(k−1)(k−2) · · · (2)(1). For two sets of tied ranks of size k1

and k2, asroprobit will generate k1!k2! rankings. The total probability is the sum of the probability
of each ranking. For example, if there are two tied ranks such that yi = (J, J, J − 2, . . . , 1), then
asroprobit will evaluate Pr(yi) = Pr(y(1)

i ) + Pr(y(2)
i ), where y(1)

i = (J, J − 1, J − 2, . . . , 1)
and y(2)

i = (J − 1, J, J − 2, . . . , 1).

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster casevar), where casevar is the variable that identifies the cases.

Reference
Long, J. S., and J. Freese. 2006. Regression Models for Categorical Dependent Variables Using Stata. 2nd ed. College

Station, TX: Stata Press.

Also see
[R] asroprobit postestimation — Postestimation tools for asroprobit

[R] asmprobit — Alternative-specific multinomial probit regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] mprobit — Multinomial probit regression

[R] oprobit — Ordered probit regression

[U] 20 Estimation and postestimation commands

http://www.stata-press.com/books/regmodcdvs.html


Title

asroprobit postestimation — Postestimation tools for asroprobit

Description
The following postestimation commands are of special interest after asroprobit:

Command Description

estat alternatives alternative summary statistics
estat covariance covariance matrix of the latent-variable errors for the alternatives
estat correlation correlation matrix of the latent-variable errors for the alternatives
estat facweights covariance factor weights matrix
estat mfx marginal effects

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predicted probabilities, estimated linear predictor and its standard error
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

estat alternatives displays summary statistics about the alternatives in the estimation sample.
The command also provides a mapping between the index numbers that label the covariance parameters
of the model and their associated values and labels for the alternative variable.

estat covariance computes the estimated variance–covariance matrix of the latent-variable
errors for the alternatives. The estimates are displayed, and the variance–covariance matrix is stored
in r(cov).

estat correlation computes the estimated correlation matrix of the latent-variable errors for
the alternatives. The estimates are displayed, and the correlation matrix is stored in r(cor).

estat facweights displays the covariance factor weights matrix and stores it in r(C).
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estat mfx computes marginal effects of a simulated probability of a set of ranked alternatives.
The probability is stored in r(pr), the matrix of rankings is stored in r(ranks), and the matrix of
marginal-effect statistics is stored in r(mfx).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic altwise
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability of each ranking, by case; the default
pr1 probability that each alternative is preferred
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict� � �
Main �

pr, the default, calculates the probability of each ranking. For each case, one probability is computed
for the ranks in e(depvar).

pr1 calculates the probability that each alternative is preferred.

xb calculates the linear prediction xijβ+ ziαj for alternative j and case i.

stdp calculates the standard error of the linear predictor.

altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb and stdp options always
use alternativewise deletion.

scores calculates the scores for each coefficient in e(b). This option requires a new variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.

Syntax for estat alternatives
estat alternatives
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Menu
Statistics > Postestimation > Reports and statistics

Syntax for estat covariance
estat covariance

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat covariance
format(% fmt) sets the matrix display format. The default is format(%9.0g).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.

Syntax for estat correlation
estat correlation

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat correlation
format(% fmt) sets the matrix display format. The default is format(%9.4f).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.

Syntax for estat facweights
estat facweights

[
, format(% fmt) border(bspec) left(#)

]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat facweights
format(% fmt) sets the matrix display format. The default is format(%9.0f).

border(bspec) sets the matrix display border style. The default is border(all). See [P] matlist.
left(#) sets the matrix display left indent. The default is left(2). See [P] matlist.
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Syntax for estat mfx
estat mfx

[
if
] [

in
] [

, options
]

options Description

Main

varlist(varlist) display marginal effects for varlist
at(median

[
atlist

]
) calculate marginal effects at these values

rank(ranklist) calculate marginal effects for the simulated probability of these ranked
alternatives

Options

level(#) set confidence interval level; default is level(95)

nodiscrete treat indicator variables as continuous
noesample do not restrict calculation of the medians to the estimation sample
nowght ignore weights when calculating medians

Menu
Statistics > Postestimation > Reports and statistics

Options for estat mfx

� � �
Main �

varlist(varlist) specifies the variables for which to display marginal effects. The default is all
variables.

at(median
[

atlist
]
) specifies the values at which the marginal effects are to be calculated. atlist is[ [

alternative:variable = #
] [

variable = #
] [

. . .
] ]
)

The marginal effects are calculated at the medians of the independent variables.

After specifying the summary statistic, you can specify specific values for variables. You can
specify values for alternative-specific variables by alternative, or you can specify one value for
all alternatives. You can specify only one value for case-specific variables. For example, in the
wlsrank dataset, female and score are case-specific variables, whereas high and low are
alternative-specific variables. The following would be a legal syntax for estat mfx:

. estat mfx, at(median high=0 esteem:high=1 low=0 security:low=1 female=1)

When nodiscrete is not specified, at(median
[

atlist
]
) has no effect on computing marginal

effects for indicator variables, which are calculated as the discrete change in the simulated probability
as the indicator variable changes from 0 to 1.

The median computations respect any if or in qualifiers, so you can restrict the data over which
the medians are computed. You can even restrict the values to a specific case, for example,

. estat mfx if case==13

rank(ranklist) specifies the ranks for the alternatives. ranklist is

alternative = # alternative = #
[
. . .
]
)
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The default is to rank the calculated latent variables. Alternatives excluded from rank() are
omitted from the analysis. You must therefore specify at least two alternatives in rank(). You
may have tied ranks in the rank specification. Only the order in the ranks is relevant.

� � �
Options �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

nodiscrete specifies that indicator variables be treated as continuous variables. An indicator variable
is one that takes on the value 0 or 1 in the estimation sample. By default, the discrete change in
the simulated probability is computed as the indicator variable changes from 0 to 1.

noesample specifies that the whole dataset be considered instead of only those marked in the
e(sample) defined by the asroprobit command.

nowght specifies that weights be ignored when calculating the medians.

Remarks
Remarks are presented under the following headings:

Predicted probabilities
Obtaining estimation statistics

Predicted probabilities

After fitting an alternative-specific rank-ordered probit model, you can use predict to obtain the
probabilities of alternative rankings or the probabilities of each alternative being preferred. When
evaluating the multivariate normal probabilities via (quasi) Monte Carlo, predict uses the same
method to generate the (quasi) random sequence of numbers as the previous call to asroprobit. For
example, if you specified intmethod(halton) when fitting the model, predict also uses Halton
sequences.

Example 1

In example 1 of [R] asroprobit, we fit a model of job characteristic preferences. This is a study
of 1957 Wisconsin high school graduates that were asked to rate their relative preference of four
job characteristics: esteem, a job other people regard highly; variety, a job that is not repetitive and
allows you to do a variety of things; autonomy, a job where your supervisor does not check on you
frequently; and security, a job with a low risk of being laid off. The case-specific covariates are
gender, female, an indicator variable for females, and score, a score on a general mental ability test
measured in standard deviations. The alternative-specific variables are high and low, which indicate
whether the respondent’s current job is high or low in esteem, variety, autonomy, or security. This
approach provides three states for a respondent’s current job status for each alternative, (1, 0), (0, 1),
and (0, 0), using the notation (high, low). The score (1, 1) is omitted because the respondent’s
current job cannot be considered both high and low in one of the job characteristics. The (0, 0)
score would indicate that the respondent’s current job does not rank high or low (is neutral) in a job
characteristic. The alternatives are ranked such that 1 is the preferred alternative and 4 is the least
preferred.

We can obtain the probabilities of the observed alternative rankings, the pr option, and the
probability of each alternative being preferred, the pr1 option, by using predict:
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. use http://www.stata-press.com/data/r12/wlsrank
(1992 Wisconsin Longitudinal Study data on job values)

. asroprobit rank high low if noties, case(id) alternatives(jobchar)
> casevars(female score) reverse

(output omitted )
. keep if e(sample)
(11244 observations deleted)

. predict prob, pr

. predict prob1, pr1

. list id jobchar prob prob1 rank female score high low in 1/12

id jobchar prob prob1 rank female score high low

1. 13 security .0421807 .2784269 3 0 .3246512 0 1
2. 13 autonomy .0421807 .1029036 1 0 .3246512 0 0
3. 13 variety .0421807 .6026725 2 0 .3246512 1 0
4. 13 esteem .0421807 .0160111 4 0 .3246512 0 1

5. 19 autonomy .0942025 .1232488 4 1 .0492111 0 0
6. 19 esteem .0942025 .0140261 3 1 .0492111 0 0
7. 19 security .0942025 .4601368 1 1 .0492111 1 0
8. 19 variety .0942025 .4025715 2 1 .0492111 0 0

9. 22 esteem .1414177 .0255264 4 1 1.426412 1 0
10. 22 variety .1414177 .4549441 1 1 1.426412 0 0
11. 22 security .1414177 .2629494 3 1 1.426412 0 0
12. 22 autonomy .1414177 .2566032 2 1 1.426412 1 0

The prob variable is constant for each case because it contains the probability of the ranking in
the rank variable. On the other hand, the prob1 variable contains the estimated probability of each
alternative being preferred. For each case, the sum of the values in prob1 will be approximately 1.0.
They do not add up to exactly 1.0 because of approximations due to the GHK algorithm.

Obtaining estimation statistics

For examples of the specialized estat subcommands covariance and correlation, see [R] asm-
probit postestimation. The entry also has a good example of computing marginal effects after asm-
probit that is applicable to asroprobit. Below we will elaborate further on marginal effects after
asroprobit where we manipulate the rank() option.

Example 2

We will continue with the preferred job characteristics example where we first compute the marginal
effects for case id = 13.
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. estat mfx if id==13, rank(security=3 autonomy=1 variety=2 esteem=4)

Pr(esteem=4 variety=2 autonomy=1 security=3) = .04218068

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

high*
esteem -.008713 .001964 -4.44 0.000 -.012562 -.004864 0

variety -.009102 .003127 -2.91 0.004 -.015231 -.002973 1
autonomy .025535 .007029 3.63 0.000 .011758 .039313 0
security -.003745 .001394 -2.69 0.007 -.006477 -.001013 0

low*
esteem .001614 .002646 0.61 0.542 -.003572 .0068 1

variety .001809 .003012 0.60 0.548 -.004094 .007712 0
autonomy -.003849 .006104 -0.63 0.528 -.015813 .008115 0
security .000582 .000985 0.59 0.554 -.001348 .002513 1

casevars
female* .009767 .009064 1.08 0.281 -.007998 .027533 0

score .008587 .004488 1.91 0.056 -.00021 .017384 .32465

(*) dp/dx is for discrete change of indicator variable from 0 to 1

Next we compute the marginal effects for the probability that autonomy is preferred given the profile
of case id = 13.

. estat mfx if id==13, rank(security=2 autonomy=1 variety=2 esteem=2)

Pr(esteem=3 variety=4 autonomy=1 security=2) +
Pr(esteem=4 variety=3 autonomy=1 security=2) +
Pr(esteem=2 variety=4 autonomy=1 security=3) +
Pr(esteem=4 variety=2 autonomy=1 security=3) +
Pr(esteem=2 variety=3 autonomy=1 security=4) +
Pr(esteem=3 variety=2 autonomy=1 security=4) = .10276103

variable dp/dx Std. Err. z P>|z| [ 95% C.I. ] X

high*
esteem -.003524 .001258 -2.80 0.005 -.005989 -.001059 0

variety -.036203 .00894 -4.05 0.000 -.053724 -.018681 1
autonomy .057279 .013801 4.15 0.000 .030231 .084328 0
security -.0128 .002665 -4.80 0.000 -.018024 -.007576 0

low*
esteem .000518 .000833 0.62 0.534 -.001116 .002151 1

variety .006409 .010588 0.61 0.545 -.014343 .027161 0
autonomy -.008818 .013766 -0.64 0.522 -.035799 .018163 0
security .002314 .003697 0.63 0.531 -.004932 .009561 1

casevars
female* .013839 .021607 0.64 0.522 -.028509 .056188 0

score .017917 .011062 1.62 0.105 -.003764 .039598 .32465

(*) dp/dx is for discrete change of indicator variable from 0 to 1

The probability computed by estat mfx matches the probability computed by predict, pr1 only
within three digits. This outcome is because of how the computation is carried out and the numeric
inaccuracy of the GHK simulator using a Hammersley point set of length 200. The computation
carried out by estat mfx literally computes all six probabilities listed in the header of the MFX
table and sums them. The computation by predict, pr1 is the same as predict after asmprobit
(multinomial probit): it computes the probability that autonomy is chosen, thus requiring only one
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call to the GHK simulator. Hence, there is a difference in the reported values even though the two
probability statements are equivalent.

Saved results
estat mfx saves the following in r():

Scalars
r(pr) scalar containing the computed probability of the ranked alternatives.

Matrices
r(ranks) column vector containing the alternative ranks. The rownames identify the alternatives.
r(mfx) matrix containing the computed marginal effects and associated statistics. Column 1 of the

matrix contains the marginal effects; column 2, their standard errors; column 3, their z
statistics; and columns 4 and 5, the confidence intervals. Column 6 contains the values of
the independent variables used to compute the probabilities r(pr).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] asroprobit — Alternative-specific rank-ordered probit regression

[R] asmprobit — Alternative-specific multinomial probit regression

[U] 20 Estimation and postestimation commands



Title

BIC note — Calculating and interpreting BIC

Description
This entry discusses a statistical issue that arises when using the Bayesian information criterion

(BIC) to compare models.

Stata calculates BIC, assuming N = e(N)—we will explain—but sometimes it would be better if
a different N were used. Commands that calculate BIC have an n() option, allowing you to specify
the N to be used.

In summary,

1. If you are comparing results estimated by the same estimation command, using the default
BIC calculation is probably fine. There is an issue, but most researchers would ignore it.

2. If you are comparing results estimated by different estimation commands, you need to be
on your guard.

a. If the different estimation commands share the same definitions of observations,
independence, and the like, you are back in case 1.

b. If they differ in these regards, you need to think about the value of N that should
be used. For example, logit and xtlogit differ in that the former assumes
independent observations and the latter, independent panels.

c. If estimation commands differ in the events being used over which the likelihood
function is calculated, the information criteria may not be comparable at all. We
say information criteria because this would apply equally to the Akaike information
criterion (AIC), as well as to BIC. For instance, streg and stcox produce such
incomparable results. The events used by streg are the actual survival times,
whereas the events used by stcox are failures within risk pools, conditional on
the times at which failures occurred.

Remarks
Remarks are presented under the following headings:

Background
The problem of determining N
The problem of conformable likelihoods
The first problem does not arise with AIC; the second problem does
Calculating BIC correctly

Background

The AIC and the BIC are two popular measures for comparing maximum likelihood models. AIC
and BIC are defined as

AIC = −2× ln(likelihood) + 2× k

BIC = −2× ln(likelihood) + ln(N)× k
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where
k = number of parameters estimated

N = number of observations

We are going to discuss AIC along with BIC because AIC has some of the problems that BIC has,
but not all.

AIC and BIC can be viewed as measures that combine fit and complexity. Fit is measured negatively
by −2 × ln(likelihood); the larger the value, the worse the fit. Complexity is measured positively,
either by 2× k (AIC) or ln(N)× k (BIC).

Given two models fit on the same data, the model with the smaller value of the information
criterion is considered to be better.

There is substantial literature on these measures: see Akaike (1974); Raftery (1995); Sakamoto,
Ishiguro, and Kitagawa (1986); and Schwarz (1978).

When Stata calculates the above measures, it uses the rank of e(V) for k and it uses e(N) for
N . e(V) and e(N) are Stata notation for results stored by the estimation command. e(V) is the
variance–covariance matrix of the estimated parameters, and e(N) is the number of observations in
the dataset used in calculating the result.

The problem of determining N

The difference between AIC and BIC is that AIC uses the constant 2 to weight k, whereas BIC uses
ln(N ).

Determining what value of N should be used is problematic. Despite appearances, the definition
“N is the number of observations” is not easy to make operational. N does not appear in the likelihood
function itself, N is not the output of a standard statistical formula, and what is an observation is
often subjective.

Example 1

Often what is meant by N is obvious. Consider a simple logit model. What is meant by N is the
number of observations that are statistically independent and that corresponds to M , the number of
observations in the dataset used in the calculation. We will write N = M .

But now assume that the same dataset has a grouping variable and the data are thought to be
clustered within group. To keep the problem simple, let’s pretend that there are G groups and m
observations within group, so that M = G×m. Because you are worried about intragroup correlation,
you fit your model with xtlogit, grouping on the grouping variable. Now you wish to calculate
BIC. What is the N that should be used? N = M or N = G?

That is a deep question. If the observations really are independent, then you should use N = M .
If the observations within group are not just correlated but are duplicates of one another, and they
had to be so, then you should use M = G. Between those two extremes, you should probably
use a number between N and G, but determining what that number should be from measured
correlations is difficult. Using N = M is conservative in that, if anything, it overweights complexity.
Conservativeness, however, is subjective, too: using N = G could be considered more conservative
in that fewer constraints are being placed on the data.

When the estimated correlation is high, our reaction would be that using N = G is probably more
reasonable. Our first reaction, however, would be that using BIC to compare models is probably a
misuse of the measure.
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Stata uses N = M . An informal survey of web-based literature suggests that N = M is the
popular choice.

There is another reason, not so good, to choose N = M . It makes across-model comparisons more
likely to be valid when performed without thinking about the issue. Say that you wish to compare
the logit and xtlogit results. Thus you need to calculate

BICp = −2× ln(likelihoodp) + ln(Np)× k

BICx = −2× ln(likelihoodx) + ln(Nx)× k

Whatever N you use, you must use the same N in both formulas. Stata’s choice of N = M at
least meets that test.

Example 2

In the above example, using N = M is reasonable. Now let’s look at when using N = M is
wrong, even if popular.

Consider a model fit by stcox. Using N = M is certainly wrong if for no other reason than
M is not even a well-defined number. The same data can be represented by different datasets with
different numbers of observations. For example, in one dataset, there might be 1 observation per
subject. In another, the same subjects could have two records each, the first recording the first half
of the time at risk and the second recording the remaining part. All statistics calculated by Stata on
either dataset would be the same, but M would be different.

Deciding on the right definition, however, is difficult. Viewed one way, N in the Cox regression
case should be the number of risk pools, R, because the Cox regression calculation is made on the
basis of the independent risk pools. Viewed another way, N should be the number of subjects, Nsubj,
because, even though the likelihood function is based on risk pools, the parameters estimated are at
the subject level.

You can decide which argument you prefer.

For parametric survival models, in single-record data, N = M is unambiguously correct. For
multirecord data, there is an argument for N = M and for N = Nsubj.

The problem of conformable likelihoods

The problem of conformable likelihoods does not concern N . Researchers sometimes use infor-
mation criteria such as BIC and AIC to make comparisons across models. For that to be valid, the
likelihoods must be conformable; that is, the likelihoods must all measure the same thing.

It is common to think of the likelihood function as the Pr(data | parameters), but in fact, the
likelihood is

Pr(particular events in the data | parameters)

You must ensure that the events are the same.

For instance, they are not the same in the semiparametric Cox regression and the various parametric
survival models. In Cox regression, the events are, at each failure time, that the subjects observed to
fail in fact failed, given that failures occurred at those times. In the parametric models, the events
are that each subject failed exactly when the subject was observed to fail.
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The formula for AIC and BIC is

measure = −2× ln(likelihood) + complexity

When you are comparing models, if the likelihoods are measuring different events, even if the
models obtain estimates of the same parameters, differences in the information measures are irrelevant.

The first problem does not arise with AIC; the second problem does

Regardless of model, the problem of defining N never arises with AIC because N is not used in
the AIC calculation. AIC uses a constant 2 to weight complexity as measured by k, rather than ln(N ).

For both AIC and BIC, however, the likelihood functions must be conformable; that is, they must
be measuring the same event.

Calculating BIC correctly

When using BIC to compare results, and especially when using BIC to compare results from different
models, you should think carefully about how N should be defined. Then specify that number by
using the n() option:

. estimates stats full sub, n(74)

Model Obs ll(null) ll(model) df AIC BIC

full 102 -45.03321 -20.59083 4 49.18167 58.39793
sub 102 -45.03321 -27.17516 3 60.35031 67.26251

Note: N = 74 used in calculating BIC

Both estimates stats and estat ic allow the n() option; see [R] estimates stats and [R] estat.

Methods and formulas
AIC and BIC are defined as

AIC = −2× ln(likelihood) + 2× k

BIC = −2× ln(likelihood) + ln(N)× k

where k is the model degrees of freedom calculated as the rank of variance–covariance matrix of
the parameters e(V) and N is the number of observations used in estimation or, more precisely, the
number of independent terms in the likelihood. Operationally, N is defined as e(N) unless the n()
option is specified.
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Also see
[R] estat — Postestimation statistics

[R] estimates stats — Model statistics



Title

binreg — Generalized linear models: Extensions to the binomial family

Syntax
binreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
or use logit link and report odds ratios
rr use log link and report risk ratios
hr use log-complement link and report health ratios
rd use identity link and report risk differences
n(# | varname) use # or varname for number of trials
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables
mu(varname) use varname as the initial estimate for the mean of depvar
init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be eim, robust, cluster clustvar, oim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

t(varname) variable name corresponding to time
vfactor(#) multiply variance matrix by scalar #
disp(#) quasi-likelihood multiplier
scale(x2 | dev | #) set the scale parameter; default is scale(1)

Reporting

level(#) set confidence level; default is level(95)

coefficients report nonexponentiated coefficients
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

irls use iterated, reweighted least-squares optimization; the default
ml use maximum likelihood optimization
maximize options control the maximization process; seldom used
fisher(#) Fisher scoring steps
search search for good starting values

coeflegend display legend instead of statistics
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see

[MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Generalized linear models > GLM for the binomial family

Description
binreg fits generalized linear models for the binomial family. It estimates odds ratios, risk ratios,

health ratios, and risk differences. The available links are

Option Implied link Parameter

or logit odds ratios = exp(β)
rr log risk ratios = exp(β)
hr log complement health ratios = exp(β)
rd identity risk differences = β

Estimates of odds, risk, and health ratios are obtained by exponentiating the appropriate coefficients.
The or option produces the same results as Stata’s logistic command, and or coefficients
yields the same results as the logit command. When no link is specified, or is assumed.

Options

� � �
Model �

noconstant; see [R] estimation options.

or requests the logit link and results in odds ratios if coefficients is not specified.

rr requests the log link and results in risk ratios if coefficients is not specified.

hr requests the log-complement link and results in health ratios if coefficients is not specified.

rd requests the identity link and results in risk differences.

n(# | varname) specifies either a constant integer to use as the denominator for the binomial family
or a variable that holds the denominator for each observation.

exposure(varname), offset(varname), constraints(constraints), collinear; see [R] estima-
tion options. constraints(constraints) and collinear are not allowed with irls.

mu(varname) specifies varname containing an initial estimate for the mean of depvar. This option
can be useful if you encounter convergence difficulties. init(varname) is a synonym.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification, that allow for intragroup correlation, that are derived from
asymptotic theory, and that use bootstrap or jackknife methods; see [R] vce option.

vce(eim), the default, uses the expected information matrix (EIM) for the variance estimator.

binreg also allows the following:

vce(hac kernel
[
#
]
) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC)

variance estimate be used. HAC refers to the general form for combining weighted matrices to
form the variance estimate. There are three kernels built into binreg. kernel is a user-written
program or one of

nwest | gallant | anderson
If # is not specified, N − 2 is assumed.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.

t(varname) specifies the variable name corresponding to time; see [TS] tsset. binreg does not
always need to know t(), though it does if vce(hac . . . ) is specified. Then you can either
specify the time variable with t(), or you can tsset your data before calling binreg. When the
time variable is required, binreg assumes that the observations are spaced equally over time.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option
allows users to match output with other packages, which may apply degrees of freedom or other
small-sample corrections to estimates of variance.

disp(#) multiplies the variance of depvar by # and divides the deviance by #. The resulting
distributions are members of the quasilikelihood family.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian
(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative
binomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and
inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson chi-squared (or generalized
chi-squared) statistic divided by the residual degrees of freedom, which was recommended by
McCullagh and Nelder (1989) as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and overdispersed
or underdispersed discrete distributions.

scale(#) sets the scale parameter to #.

� � �
Reporting �

level(#), noconstant; see [R] estimation options.

coefficients displays the nonexponentiated coefficients and corresponding standard errors and
confidence intervals. This option has no effect when the rd option is specified, because it always
presents the nonexponentiated coefficients.

nocnsreport; see [R] estimation options.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of
Newton–Raphson optimization of the log likelihood. This option is the default.

ml requests that optimization be carried out by using Stata’s ml command; see [R] ml.
maximize options: technique(algorithm spec),

[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, difficult, iterate(#), tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization method to ml, with technique() set to something other than BHHH,
changes the vcetype to vce(oim). Specifying technique(bhhh) changes vcetype to vce(opg).

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is available only
if ml is specified and is useful only for Newton–Raphson optimization.

search specifies that the command search for good starting values. This option is available only if
ml is specified and is useful only for Newton–Raphson optimization.

The following option is available with binreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Wacholder (1986) suggests methods for estimating risk ratios and risk differences from prospective

binomial data. These estimates are obtained by selecting the proper link functions in the generalized
linear-model framework. (See Methods and formulas for details; also see [R] glm.)

Example 1

Wacholder (1986) presents an example, using data from Wright et al. (1983), of an investigation
of the relationship between alcohol consumption and the risk of a low-birthweight baby. Covariates
examined included whether the mother smoked (yes or no), mother’s social class (three levels), and
drinking frequency (light, moderate, or heavy). The data for the 18 possible categories determined
by the covariates are illustrated below.

Let’s first describe the data and list a few observations.
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. use http://www.stata-press.com/data/r12/binreg

. list

cat d n alc smo soc

1. 1 11 84 3 1 1
2. 2 5 79 2 1 1
3. 3 11 169 1 1 1
4. 4 6 28 3 2 1
5. 5 3 13 2 2 1

6. 6 1 26 1 2 1
7. 7 4 22 3 1 2
8. 8 3 25 2 1 2
9. 9 12 162 1 1 2

10. 10 4 17 3 2 2

11. 11 2 7 2 2 2
12. 12 6 38 1 2 2
13. 13 0 14 3 1 3
14. 14 1 18 2 1 3
15. 15 12 91 1 1 3

16. 16 7 19 3 2 3
17. 17 2 18 2 2 3
18. 18 8 70 1 2 3

Each observation corresponds to one of the 18 covariate structures. The number of low-birthweight
babies from n in each category is given by the d variable.

We begin by estimating risk ratios:
. binreg d i.soc i.alc i.smo, n(n) rr

Iteration 1: deviance = 14.2879
Iteration 2: deviance = 13.607
Iteration 3: deviance = 13.60503
Iteration 4: deviance = 13.60503

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [Log]

BIC = -21.07943

EIM
d Risk Ratio Std. Err. z P>|z| [95% Conf. Interval]

soc
2 1.340001 .3127382 1.25 0.210 .848098 2.11721
3 1.349487 .3291488 1.23 0.219 .8366715 2.176619

alc
2 1.191157 .3265354 0.64 0.523 .6960276 2.038503
3 1.974078 .4261751 3.15 0.002 1.293011 3.013884

2.smo 1.648444 .332875 2.48 0.013 1.109657 2.448836
_cons .0630341 .0128061 -13.61 0.000 .0423297 .0938656
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By default, Stata reports the risk ratios (the exponentiated regression coefficients) estimated by the
model. We can see that the risk ratio comparing heavy drinkers with light drinkers, after adjusting
for smoking and social class, is 1.974078. That is, mothers who drink heavily during their pregnancy
have approximately twice the risk of delivering low-birthweight babies as mothers who are light
drinkers.

The nonexponentiated coefficients can be obtained with the coefficients option:

. binreg d i.soc i.alc i.smo, n(n) rr coefficients

Iteration 1: deviance = 14.2879
Iteration 2: deviance = 13.607
Iteration 3: deviance = 13.60503
Iteration 4: deviance = 13.60503

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 13.6050268 (1/df) Deviance = 1.133752
Pearson = 11.51517095 (1/df) Pearson = .9595976

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [Log]

BIC = -21.07943

EIM
d Coef. Std. Err. z P>|z| [95% Conf. Interval]

soc
2 .2926702 .2333866 1.25 0.210 -.1647591 .7500994
3 .2997244 .2439066 1.23 0.219 -.1783238 .7777726

alc
2 .1749248 .274133 0.64 0.523 -.362366 .7122156
3 .6801017 .2158856 3.15 0.002 .2569737 1.10323

2.smo .4998317 .2019329 2.48 0.013 .1040505 .8956129
_cons -2.764079 .2031606 -13.61 0.000 -3.162266 -2.365891
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Risk differences are obtained with the rd option:

. binreg d i.soc i.alc i.smo, n(n) rd

Iteration 1: deviance = 18.67277
Iteration 2: deviance = 14.94364
Iteration 3: deviance = 14.9185
Iteration 4: deviance = 14.91762
Iteration 5: deviance = 14.91758
Iteration 6: deviance = 14.91758
Iteration 7: deviance = 14.91758

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 14.91758277 (1/df) Deviance = 1.243132
Pearson = 12.60353235 (1/df) Pearson = 1.050294

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = u/n [Identity]

BIC = -19.76688

EIM
d Risk Diff. Std. Err. z P>|z| [95% Conf. Interval]

soc
2 .0263817 .0232124 1.14 0.256 -.0191137 .0718771
3 .0365553 .0268668 1.36 0.174 -.0161026 .0892132

alc
2 .0122539 .0257713 0.48 0.634 -.0382569 .0627647
3 .0801291 .0302878 2.65 0.008 .020766 .1394921

2.smo .0542415 .0270838 2.00 0.045 .0011582 .1073248
_cons .059028 .0160693 3.67 0.000 .0275327 .0905232

The risk difference between heavy drinkers and light drinkers is simply the value of the coefficient for
3.alc = 0.0801291. Because the risk differences are obtained directly from the coefficients estimated
by using the identity link, the coefficients option has no effect here.

Health ratios are obtained with the hr option. The health ratios (exponentiated coefficients for the
log-complement link) are reported directly.
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. binreg d i.soc i.alc i.smo, n(n) hr

Iteration 1: deviance = 21.15233
Iteration 2: deviance = 15.16467
Iteration 3: deviance = 15.13205
Iteration 4: deviance = 15.13114
Iteration 5: deviance = 15.13111
Iteration 6: deviance = 15.13111
Iteration 7: deviance = 15.13111

Generalized linear models No. of obs = 18
Optimization : MQL Fisher scoring Residual df = 12

(IRLS EIM) Scale parameter = 1
Deviance = 15.13110545 (1/df) Deviance = 1.260925
Pearson = 12.84203917 (1/df) Pearson = 1.07017

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(1-u/n) [Log complement]

BIC = -19.55336

EIM
d HR Std. Err. z P>|z| [95% Conf. Interval]

soc
2 .9720541 .024858 -1.11 0.268 .9245342 1.022017
3 .9597182 .0290412 -1.36 0.174 .9044535 1.01836

alc
2 .9871517 .0278852 -0.46 0.647 .9339831 1.043347
3 .9134243 .0325726 -2.54 0.011 .8517631 .9795493

2.smo .9409983 .0296125 -1.93 0.053 .8847125 1.000865
_cons .9409945 .0163084 -3.51 0.000 .9095674 .9735075

(HR) Health ratios

To see the nonexponentiated coefficients, we can specify the coefficients option.
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Saved results
binreg, irls saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) model scale parameter
e(disp) dispersion parameter
e(bic) model BIC
e(N clust) number of clusters
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(vf) factor set by vfactor(), 1 if not set
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) binreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e(wexp) weight expression
e(title fl) family–link title
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) noconstant or not set
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(opt1) optimization title, line 1
e(opt2) optimization title, line 2
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

binreg, ml saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) model scale parameter
e(aic) model AIC, if ml
e(bic) model BIC
e(ll) log likelihood, if ml
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(vf) factor set by vfactor(), 1 if not set
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) binreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eform) eform() option implied by or, rr, hr, or rd
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title fl) family–link title
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) noconstant or not set
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(opt1) optimization title, line 1
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
binreg is implemented as an ado-file.

Let πi be the probability of success for the ith observation, i = 1, . . . , N , and let Xβ be the linear
predictor. The link function relates the covariates of each observation to its respective probability
through the linear predictor.
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In logistic regression, the logit link is used:

ln
(

π

1− π

)
= Xβ

The regression coefficient βk represents the change in the logarithm of the odds associated with a
one-unit change in the value of the Xk covariate; thus exp(βk) is the ratio of the odds associated
with a change of one unit in Xk.

For risk differences, the identity link π = Xβ is used. The regression coefficient βk represents
the risk difference associated with a change of one unit in Xk. When using the identity link, you can
obtain fitted probabilities outside the interval (0, 1). As suggested by Wacholder, at each iteration,
fitted probabilities are checked for range conditions (and put back in range if necessary). For example,
if the identity link results in a fitted probability that is smaller than 1e–4, the probability is replaced
with 1e–4 before the link function is calculated.

A similar adjustment is made for the logarithmic link, which is used for estimating the risk ratio,
ln(π) = Xβ, where exp(βk) is the risk ratio associated with a change of one unit in Xk, and for
the log-complement link used to estimate the probability of no disease or health, where exp(βk)
represents the “health ratio” associated with a change of one unit in Xk.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.
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Also see
[R] binreg postestimation — Postestimation tools for binreg

[R] glm — Generalized linear models

[MI] estimation — Estimation commands for use with mi estimate

[U] 20 Estimation and postestimation commands
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Title

binreg postestimation — Postestimation tools for binreg

Description
The following postestimation commands are available after binreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

mu expected value of y; the default
xb linear prediction η = xβ̂
eta synonym for xb
stdp standard error of the linear prediction
anscombe Anscombe (1953) residuals
cooksd Cook’s distance
deviance deviance residuals
hat diagonals of the “hat” matrix as an analog to simple linear regression
likelihood weighted average of the standardized deviance and standard Pearson residuals
pearson Pearson residuals
response differences between the observed and fitted outcomes
score first derivative of the log likelihood with respect to xjβ
working working residuals

options Description

Options

nooffset modify calculations to ignore the offset variable
adjusted adjust deviance residual to speed up convergence
standardized multiply residual by the factor (1− h)1/2

studentized multiply residual by one over the square root of the estimated scale parameter
modified modify denominator of residual to be a reasonable estimate of the variance of

depvar

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

mu, the default, specifies that predict calculate the expected value of y, equal to g−1(xβ̂) [ng−1(xβ̂)
for the binomial family].

xb calculates the linear prediction η = xβ̂.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.
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anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal
distribution.

cooksd calculates Cook’s distance, which measures the aggregate change in the estimated coefficients
when each observation is left out of the estimation.

deviance calculates the deviance residuals, which are recommended by McCullagh and Nelder (1989)
and others as having the best properties for examining goodness of fit of a GLM. They are
approximately normally distributed if the model is correct and may be plotted against the fitted
values or against a covariate to inspect the model’s fit. Also see the pearson option below.

hat calculates the diagonals of the “hat” matrix as an analog to simple linear regression.

likelihood calculates a weighted average of the standardized deviance and standardized Pearson
(described below) residuals.

pearson calculates the Pearson residuals, which often have markedly skewed distributions for
nonnormal family distributions. Also see the deviance option above.

response calculates the differences between the observed and fitted outcomes.

score calculates the equation-level score, ∂lnL/∂(xjβ).

working calculates the working residuals, which are response residuals weighted according to the
derivative of the link function.

� � �
Options �

nooffset is relevant only if you specified offset(varname) for binreg. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

adjusted adjusts the deviance residual to make the convergence to the limiting normal distribution
faster. The adjustment deals with adding to the deviance residual a higher-order term depending
on the variance function family. This option is allowed only when deviance is specified.

standardized requests that the residual be multiplied by the factor (1 − h)−1/2, where h is the
diagonal of the hat matrix. This step is done to take into account the correlation between depvar
and its predicted value.

studentized requests that the residual be multiplied by one over the square root of the estimated
scale parameter.

modified requests that the denominator of the residual be modified to be a reasonable estimate
of the variance of depvar. The base residual is multiplied by the factor (k/w)−1/2, where k is
either one or the user-specified dispersion parameter and w is the specified weight (or one if left
unspecified).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

References
Anscombe, F. J. 1953. Contribution of discussion paper by H. Hotelling “New light on the correlation coefficient and

its transforms”. Journal of the Royal Statistical Society, Series B 15: 229–230.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman & Hall/CRC.

http://www.stata.com/bookstore/glm.html
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Also see
[R] binreg — Generalized linear models: Extensions to the binomial family

[U] 20 Estimation and postestimation commands



Title

biprobit — Bivariate probit regression

Syntax
Bivariate probit regression

biprobit depvar1 depvar2

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

Seemingly unrelated bivariate probit regression

biprobit equation1 equation2

[
if
] [

in
] [

weight
] [

, su options
]

where equation1 and equation2 are specified as

(
[

eqname:
]

depvar
[
=
] [

indepvars
] [

, noconstant offset(varname)
]
)

options Description

Model

noconstant suppress constant term
partial fit partial observability model
offset1(varname) offset variable for first equation
offset2(varname) offset variable for second equation
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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su options Description

Model

partial fit partial observability model
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar1, depvar2, indepvars, and depvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), noskip, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
biprobit

Statistics > Binary outcomes > Bivariate probit regression

seemingly unrelated biprobit

Statistics > Binary outcomes > Seemingly unrelated bivariate probit regression

Description
biprobit fits maximum-likelihood two-equation probit models—either a bivariate probit or a

seemingly unrelated probit (limited to two equations).
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Options

� � �
Model �

noconstant; see [R] estimation options.

partial specifies that the partial observability model be fit. This particular model commonly has
poor convergence properties, so we recommend that you use the difficult option if you want
to fit the Poirier partial observability model; see [R] maximize.

This model computes the product of the two dependent variables so that you do not have to replace
each with the product.

offset1(varname), offset2(varname), constraints(constraints), collinear; see [R] estima-
tion options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test of all the parameters in the regression equation
being zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with biprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
For a good introduction to the bivariate probit models, see Greene (2012, 738–752) and Pindyck

and Rubinfeld (1998). Poirier (1980) explains the partial observability model. Van de Ven and Van
Pragg (1981) explain the probit model with sample selection; see [R] heckprob for details.
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Example 1

We use the data from Pindyck and Rubinfeld (1998, 332). In this dataset, the variables are
whether children attend private school (private), number of years the family has been at the present
residence (years), log of property tax (logptax), log of income (loginc), and whether the head of
the household voted for an increase in property taxes (vote).

We wish to model the bivariate outcomes of whether children attend private school and whether
the head of the household voted for an increase in property tax based on the other covariates.

. use http://www.stata-press.com/data/r12/school

. biprobit private vote years logptax loginc

Fitting comparison equation 1:

Iteration 0: log likelihood = -31.967097
Iteration 1: log likelihood = -31.452424
Iteration 2: log likelihood = -31.448958
Iteration 3: log likelihood = -31.448958

Fitting comparison equation 2:

Iteration 0: log likelihood = -63.036914
Iteration 1: log likelihood = -58.534843
Iteration 2: log likelihood = -58.497292
Iteration 3: log likelihood = -58.497288

Comparison: log likelihood = -89.946246

Fitting full model:

Iteration 0: log likelihood = -89.946246
Iteration 1: log likelihood = -89.258897
Iteration 2: log likelihood = -89.254028
Iteration 3: log likelihood = -89.254028

Bivariate probit regression Number of obs = 95
Wald chi2(6) = 9.59

Log likelihood = -89.254028 Prob > chi2 = 0.1431

Coef. Std. Err. z P>|z| [95% Conf. Interval]

private
years -.0118884 .0256778 -0.46 0.643 -.0622159 .0384391

logptax -.1066962 .6669782 -0.16 0.873 -1.413949 1.200557
loginc .3762037 .5306484 0.71 0.478 -.663848 1.416255
_cons -4.184694 4.837817 -0.86 0.387 -13.66664 5.297253

vote
years -.0168561 .0147834 -1.14 0.254 -.0458309 .0121188

logptax -1.288707 .5752266 -2.24 0.025 -2.416131 -.1612839
loginc .998286 .4403565 2.27 0.023 .1352031 1.861369
_cons -.5360573 4.068509 -0.13 0.895 -8.510188 7.438073

/athrho -.2764525 .2412099 -1.15 0.252 -.7492153 .1963102

rho -.2696186 .2236753 -.6346806 .1938267

Likelihood-ratio test of rho=0: chi2(1) = 1.38444 Prob > chi2 = 0.2393

The output shows several iteration logs. The first iteration log corresponds to running the univariate
probit model for the first equation, and the second log corresponds to running the univariate probit
for the second model. If ρ = 0, the sum of the log likelihoods from these two models will equal the
log likelihood of the bivariate probit model; this sum is printed in the iteration log as the comparison
log likelihood.
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The final iteration log is for fitting the full bivariate probit model. A likelihood-ratio test of the
log likelihood for this model and the comparison log likelihood is presented at the end of the output.
If we had specified the vce(robust) option, this test would be presented as a Wald test instead of
as a likelihood-ratio test.

We could have fit the same model by using the seemingly unrelated syntax as

. biprobit (private=years logptax loginc) (vote=years logptax loginc)

Saved results
biprobit saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model (noskip only)
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) significance
e(rho) ρ

e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) biprobit
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for first equation
e(offset2) offset for second equation
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
d(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
biprobit is implemented as an ado-file.

The log likelihood, lnL, is given by

ξβj = xjβ + offsetβj
ξγj = zjγ + offsetγj

q1j =
{ 1 if y1j 6= 0
−1 otherwise

q2j =
{ 1 if y2j 6= 0
−1 otherwise

ρ∗j = q1jq2jρ

lnL =
n∑
j=1

wj lnΦ2

(
q1jξ

β
j , q2jξ

γ
j , ρ
∗
j

)
where Φ2() is the cumulative bivariate normal distribution function (with mean [ 0 0 ]′) and wj is
an optional weight for observation j. This derivation assumes that

y∗1j = xjβ + ε1j + offsetβj
y∗2j = zjγ + ε2j + offsetγj

E(ε1) = E(ε2) = 0

Var(ε1) = Var(ε2) = 1

Cov(ε1, ε2) = ρ

where y∗1j and y∗2j are the unobserved latent variables; instead, we observe only yij = 1 if y∗ij > 0
and yij = 0 otherwise (for i = 1, 2).

In the maximum likelihood estimation, ρ is not directly estimated, but atanh ρ is

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
From the form of the likelihood, if ρ = 0, then the log likelihood for the bivariate probit models

is equal to the sum of the log likelihoods of the two univariate probit models. A likelihood-ratio test
may therefore be performed by comparing the likelihood of the full bivariate model with the sum of
the log likelihoods for the univariate probit models.



184 biprobit — Bivariate probit regression

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

biprobit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

References
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Also see
[R] biprobit postestimation — Postestimation tools for biprobit

[R] mprobit — Multinomial probit regression

[R] probit — Probit regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Title

biprobit postestimation — Postestimation tools for biprobit

Description
The following postestimation commands are available after biprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvareq1 newvareq2 newvarathrho

} [
if
] [

in
]
, scores

statistic Description

Main

p11 Φ2(xjb, zjg, ρ), predicted probability Pr(y1j = 1, y2j = 1); the default
p10 Φ2(xjb,−zjg,−ρ), predicted probability Pr(y1j = 1, y2j = 0)
p01 Φ2(−xjb, zjg,−ρ), predicted probability Pr(y1j = 0, y2j = 1)
p00 Φ2(−xjb,−zjg, ρ), predicted probability Pr(y1j = 0, y2j = 0)
pmarg1 Φ(xjb), marginal success probability for equation 1
pmarg2 Φ(zjg), marginal success probability for equation 2
pcond1 Φ2(xjb, zjg, ρ)/Φ(zjg), conditional probability of success for equation 1
pcond2 Φ2(xjb, zjg, ρ)/Φ(xjb), conditional probability of success for equation 2
xb1 xjb, linear prediction for equation 1
xb2 zjg, linear prediction for equation 2
stdp1 standard error of the linear prediction for equation 1
stdp2 standard error of the linear prediction for equation 2

where Φ() is the standard normal-distribution function and Φ2() is the bivariate standard
normal-distribution function.

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

p11, the default, calculates the bivariate predicted probability Pr(y1j = 1, y2j = 1).

p10 calculates the bivariate predicted probability Pr(y1j = 1, y2j = 0).

p01 calculates the bivariate predicted probability Pr(y1j = 0, y2j = 1).

p00 calculates the bivariate predicted probability Pr(y1j = 0, y2j = 0).

pmarg1 calculates the univariate (marginal) predicted probability of success Pr(y1j = 1).

pmarg2 calculates the univariate (marginal) predicted probability of success Pr(y2j = 1).

pcond1 calculates the conditional (on success in equation 2) predicted probability of success
Pr(y1j = 1, y2j = 1)/Pr(y2j = 1).

pcond2 calculates the conditional (on success in equation 1) predicted probability of success
Pr(y1j = 1, y2j = 1)/Pr(y1j = 1).
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xb1 calculates the probit linear prediction xjb.

xb2 calculates the probit linear prediction zjg.

stdp1 calculates the standard error of the linear prediction for equation 1.

stdp2 calculates the standard error of the linear prediction for equation 2.

nooffset is relevant only if you specified offset1(varname) or offset2(varname) for biprobit.
It modifies the calculations made by predict so that they ignore the offset variables; the linear
predictions are treated as xjb rather than as xjb + offset1j and zjγ rather than as zjγ+ offset2j.

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

The third new variable will contain ∂lnL/∂(atanh ρ).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] biprobit — Bivariate probit regression

[U] 20 Estimation and postestimation commands



Title

bitest — Binomial probability test

Syntax
Binomial probability test

bitest varname== #p
[

if
] [

in
] [

weight
] [

, detail
]

Immediate form of binomial probability test

bitesti #N #succ #p
[
, detail

]
by is allowed with bitest; see [D] by.
fweights are allowed with bitest; see [U] 11.1.6 weight.

Menu
bitest

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test

bitesti

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test calculator

Description
bitest performs exact hypothesis tests for binomial random variables. The null hypothesis is that

the probability of a success on a trial is #p. The total number of trials is the number of nonmissing
values of varname (in bitest) or #N (in bitesti). The number of observed successes is the number
of 1s in varname (in bitest) or #succ (in bitesti). varname must contain only 0s, 1s, and missing.

bitesti is the immediate form of bitest; see [U] 19 Immediate commands for a general
introduction to immediate commands.

Option

� � �
Advanced �

detail shows the probability of the observed number of successes, kobs; the probability of the
number of successes on the opposite tail of the distribution that is used to compute the two-sided
p-value, kopp; and the probability of the point next to kopp. This information can be safely ignored.
See the technical note below for details.

Remarks
Remarks are presented under the following headings:

bitest
bitesti

188
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bitest

Example 1

We test 15 university students for high levels of one measure of visual quickness which, from
other evidence, we believe is present in 30% of the nonuniversity population. Included in our data is
quick, taking on the values 1 (“success”) or 0 (“failure”) depending on the outcome of the test.

. use http://www.stata-press.com/data/r12/quick

. bitest quick == 0.3

Variable N Observed k Expected k Assumed p Observed p

quick 15 7 4.5 0.30000 0.46667

Pr(k >= 7) = 0.131143 (one-sided test)
Pr(k <= 7) = 0.949987 (one-sided test)
Pr(k <= 1 or k >= 7) = 0.166410 (two-sided test)

The first part of the output reveals that, assuming a true probability of success of 0.3, the expected
number of successes is 4.5 and that we observed seven. Said differently, the assumed frequency under
the null hypothesis H0 is 0.3, and the observed frequency is 0.47.

The first line under the table is a one-sided test; it is the probability of observing seven or
more successes conditional on p = 0.3. It is a test of H0: p = 0.3 versus the alternative hypothesis
HA: p > 0.3. Said in English, the alternative hypothesis is that more than 30% of university students
score at high levels on this test of visual quickness. The p-value for this hypothesis test is 0.13.

The second line under the table is a one-sided test of H0 versus the opposite alternative hypothesis
HA: p < 0.3.

The third line is the two-sided test. It is a test of H0 versus the alternative hypothesis HA: p 6= 0.3.

Technical note
The p-value of a hypothesis test is the probability (calculated assuming H0 is true) of observing

any outcome as extreme or more extreme than the observed outcome, with extreme meaning in the
direction of the alternative hypothesis. In example 1, the outcomes k = 8, 9, . . . , 15 are clearly
“more extreme” than the observed outcome kobs = 7 when considering the alternative hypothesis
HA: p 6= 0.3. However, outcomes with only a few successes are also in the direction of this alternative
hypothesis. For two-sided hypotheses, outcomes with k successes are considered “as extreme or more
extreme” than the observed outcome kobs if Pr(k) ≤ Pr(kobs). Here Pr(k = 0) and Pr(k = 1) are
both less than Pr(k = 7), so they are included in the two-sided p-value.

The detail option allows you to see the probability (assuming that H0 is true) of the observed
successes (k = 7) and the probability of the boundary point (k = 1) of the opposite tail used for the
two-sided p-value.
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. bitest quick == 0.3, detail

Variable N Observed k Expected k Assumed p Observed p

quick 15 7 4.5 0.30000 0.46667

Pr(k >= 7) = 0.131143 (one-sided test)
Pr(k <= 7) = 0.949987 (one-sided test)
Pr(k <= 1 or k >= 7) = 0.166410 (two-sided test)

Pr(k == 7) = 0.081130 (observed)
Pr(k == 2) = 0.091560
Pr(k == 1) = 0.030520 (opposite extreme)

Also shown is the probability of the point next to the boundary point. This probability, namely,
Pr(k = 2) = 0.092, is certainly close to the probability of the observed outcome Pr(k = 7) = 0.081,
so some people might argue that k = 2 should be included in the two-sided p-value. Statisticians
(at least some we know) would reply that the p-value is a precisely defined concept and that this
is an arbitrary “fuzzification” of its definition. When you compute exact p-values according to the
precise definition of a p-value, your type I error is never more than what you say it is—so no one
can criticize you for being anticonservative. Including the point k = 2 is being overly conservative
because it makes the p-value larger yet. But it is your choice; being overly conservative, at least in
statistics, is always safe. Know that bitest and bitesti always keep to the precise definition of
a p-value, so if you wish to include this extra point, you must do so by hand or by using the r()
saved results; see Saved results below.

bitesti

Example 2

The binomial test is a function of two statistics and one parameter: N , the number of observations;
kobs, the number of observed successes; and p, the assumed probability of a success on a trial. For
instance, in a city of N = 2,500,000, we observe kobs = 36 cases of a particular disease when the
population rate for the disease is p = 0.00001.

. bitesti 2500000 36 .00001

N Observed k Expected k Assumed p Observed p

2500000 36 25 0.00001 0.00001

Pr(k >= 36) = 0.022458 (one-sided test)
Pr(k <= 36) = 0.985448 (one-sided test)
Pr(k <= 14 or k >= 36) = 0.034859 (two-sided test)

Example 3

Boice and Monson (1977) present data on breast cancer cases and person-years of observations
for women with tuberculosis who were repeatedly exposed to multiple x-ray fluoroscopies and for
women with tuberculosis who were not. The data are

Exposed Not exposed Total
Breast cancer 41 15 56
Person-years 28,010 19,017 47,027
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We can thus test whether x-ray fluoroscopic examinations are associated with breast cancer; the
assumed rate of exposure is p = 28010/47027.

. bitesti 56 41 28010/47027

N Observed k Expected k Assumed p Observed p

56 41 33.35446 0.59562 0.73214

Pr(k >= 41) = 0.023830 (one-sided test)
Pr(k <= 41) = 0.988373 (one-sided test)
Pr(k <= 25 or k >= 41) = 0.040852 (two-sided test)

Saved results
bitest and bitesti save the following in r():

Scalars
r(N) number N of trials r(k opp) opposite extreme k
r(P p) assumed probability p of success r(P k) probability of observed k (detail only)
r(k) observed number k of successes r(P oppk) probability of opposite extreme k (detail

only)
r(p l) lower one-sided p-value r(k nopp) k next to opposite extreme (detail only)
r(p u) upper one-sided p-value r(P noppk) probability of k next to opposite extreme
r(p) two-sided p-value (detail only)

Methods and formulas
bitest and bitesti are implemented as ado-files.

Let N , kobs, and p be, respectively, the number of observations, the observed number of successes,
and the assumed probability of success on a trial. The expected number of successes is Np, and the
observed probability of success on a trial is kobs/N .

bitest and bitesti compute exact p-values based on the binomial distribution. The upper
one-sided p-value is

Pr(k ≥ kobs) =
N∑

m=kobs

(
N

m

)
pm(1− p)N−m

The lower one-sided p-value is

Pr(k ≤ kobs) =
kobs∑
m=0

(
N

m

)
pm(1− p)N−m

If kobs ≥ Np, the two-sided p-value is

Pr(k ≤ kopp or k ≥ kobs)

where kopp is the largest number ≤ Np such that Pr(k = kopp) ≤ Pr(k = kobs). If kobs < Np,
the two-sided p-value is

Pr(k ≤ kobs or k ≥ kopp)

where kopp is the smallest number ≥ Np such that Pr(k = kopp) ≤ Pr(k = kobs).
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bootstrap — Bootstrap sampling and estimation

Syntax
bootstrap exp list

[
, options eform option

]
: command

options Description

Main

reps(#) perform # bootstrap replications; default is reps(50)

Options

strata(varlist) variables identifying strata
size(#) draw samples of size #; default is N

cluster(varlist) variables identifying resampling clusters
idcluster(newvar) create new cluster ID variable
saving( filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications
bca compute acceleration for BCa confidence intervals
mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)

notable suppress table of results
noheader suppress table header
nolegend suppress table legend
verbose display the full table legend
nodots suppress replication dots
noisily display any output from command
trace trace command
title(text) use text as title for bootstrap results
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells
eform option display coefficient table in exponentiated form

Advanced

nodrop do not drop observations
nowarn do not warn when e(sample) is not set
force do not check for weights or svy commands; seldom used
reject(exp) identify invalid results
seed(#) set random-number seed to #

group(varname) ID variable for groups within cluster()

jackknifeopts(jkopts) options for jackknife; see [R] jackknife
coeflegend display legend instead of statistics
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weights are not allowed in command.

group(), jackknifeopts(), and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Menu
Statistics > Resampling > Bootstrap estimation

Description

bootstrap performs bootstrap estimation. Typing

. bootstrap exp list, reps(#): command

executes command multiple times, bootstrapping the statistics in exp list by resampling observations
(with replacement) from the data in memory # times. This method is commonly referred to as the
nonparametric bootstrap.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with bootstrap, as long as they follow standard Stata syntax; see [U] 11 Lan-
guage syntax. If the bca option is supplied, command must also work with jackknife; see
[R] jackknife. The by prefix may not be part of command.

exp list specifies the statistics to be collected from the execution of command. If command changes
the contents in e(b), exp list is optional and defaults to b.

Because bootstrapping is a random process, if you want to be able to reproduce results, set the
random-number seed by specifying the seed(#) option or by typing

. set seed #

where # is a seed of your choosing, before running bootstrap; see [R] set seed.
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Many estimation commands allow the vce(bootstrap) option. For those commands, we rec-
ommend using vce(bootstrap) over bootstrap because the estimation command already handles
clustering and other model-specific details for you. The bootstrap prefix command is intended
for use with nonestimation commands, such as summarize, user-written commands, or functions of
coefficients.

bs and bstrap are synonyms for bootstrap.

Options� � �
Main �

reps(#) specifies the number of bootstrap replications to be performed. The default is 50. A total of
50–200 replications are generally adequate for estimates of standard error and thus are adequate
for normal-approximation confidence intervals; see Mooney and Duval (1993, 11). Estimates of
confidence intervals using the percentile or bias-corrected methods typically require 1,000 or more
replications.

� � �
Options �

strata(varlist) specifies the variables that identify strata. If this option is specified, bootstrap samples
are taken independently within each stratum.

size(#) specifies the size of the samples to be drawn. The default is N, meaning to draw samples of
the same size as the data. If specified, # must be less than or equal to the number of observations
within strata().

If cluster() is specified, the default size is the number of clusters in the original dataset. For
unbalanced clusters, resulting sample sizes will differ from replication to replication. For cluster
sampling, # must be less than or equal to the number of clusters within strata().

cluster(varlist) specifies the variables that identify resampling clusters. If this option is specified,
the sample drawn during each replication is a bootstrap sample of clusters.

idcluster(newvar) creates a new variable containing a unique identifier for each resampled cluster.
This option requires that cluster() also be specified.

saving( filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals. This option may be used without
the saving() option to compute the variance estimates by using double precision.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunction with saving() when command takes a long time for each replication. This
option will allow recovery of partial results should some other software crash your computer.
See [P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the
dialog box.

bca specifies that bootstrap estimate the acceleration of each statistic in exp list. This estimate
is used to construct BCa confidence intervals. Type estat bootstrap, bca to display the BCa
confidence interval generated by the bootstrap command.

mse specifies that bootstrap compute the variance by using deviations of the replicates from the
observed value of the statistics based on the entire dataset. By default, bootstrap computes the
variance by using deviations from the average of the replicates.



196 bootstrap — Bootstrap sampling and estimation

� � �
Reporting �

level(#); see [R] estimation options.

notable suppresses the display of the table of results.

noheader suppresses the display of the table header. This option implies nolegend. This option
may also be specified when replaying estimation results.

nolegend suppresses the display of the table legend. This option may also be specified when replaying
estimation results.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors
are not displayed. This option may also be specified when replaying estimation results.

nodots suppresses display of the replication dots. By default, one dot character is displayed for each
successful replication. A red ‘x’ is displayed if command returns an error or if one of the values
in exp list is missing.

noisily specifies that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(text) specifies a title to be displayed above the table of bootstrap results. The default title is
the title saved in e(title) by an estimation command, or if e(title) is not filled in, Bootstrap
results is used. title() may also be specified when replaying estimation results.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.

command determines which of the following are allowed (eform(string) and eform are always
allowed):

eform option Description

eform(string) use string for the column title
eform exponentiated coefficient, string is exp(b)

hr hazard ratio, string is Haz. Ratio

shr subhazard ratio, string is SHR

irr incidence-rate ratio, string is IRR

or odds ratio, string is Odds Ratio

rrr relative-risk ratio, string is RRR

� � �
Advanced �

nodrop prevents observations outside e(sample) and the if and in qualifiers from being dropped
before the data are resampled.
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nowarn suppresses the display of a warning message when command does not set e(sample).

force suppresses the restriction that command not specify weights or be a svy command. This is a
rarely used option. Use it only if you know what you are doing.

reject(exp) identifies an expression that indicates when results should be rejected. When exp is
true, the resulting values are reset to missing values.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following
command prior to calling bootstrap:

. set seed #

The following options are available with bootstrap but are not shown in the dialog box:

group(varname) re-creates varname containing a unique identifier for each group across the resampled
clusters. This option requires that idcluster() also be specified.

This option is useful for maintaining unique group identifiers when sampling clusters with replace-
ment. Suppose that cluster 1 contains 3 groups. If the idcluster(newclid) option is specified
and cluster 1 is sampled multiple times, newclid uniquely identifies each copy of cluster 1. If
group(newgroupid) is also specified, newgroupid uniquely identifies each copy of each group.

jackknifeopts(jkopts) identifies options that are to be passed to jackknife when it computes the
acceleration values for the BCa confidence intervals; see [R] jackknife. This option requires the
bca option and is mostly used for passing the eclass, rclass, or n(#) option to jackknife.

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Regression coefficients
Expressions
Combining bootstrap datasets
A note about macros
Achieved significance level
Bootstrapping a ratio
Warning messages and e(sample)
Bootstrapping statistics from data with a complex structure

Introduction
With few assumptions, bootstrapping provides a way of estimating standard errors and other measures

of statistical precision (Efron 1979; Efron and Stein 1981; Efron 1982; Efron and Tibshirani 1986;
Efron and Tibshirani 1993; also see Davison and Hinkley [1997]; Guan [2003]; Mooney and Duval
[1993]; Poi [2004]; and Stine [1990]). It provides a way to obtain such measures when no formula
is otherwise available or when available formulas make inappropriate assumptions. Cameron and
Trivedi (2010, chap. 13) discuss many bootstrapping topics and demonstrate how to do them in Stata.

To illustrate bootstrapping, suppose that you have a dataset containing N observations and an
estimator that, when applied to the data, produces certain statistics. You draw, with replacement, N
observations from theN -observation dataset. In this random drawing, some of the original observations
will appear once, some more than once, and some not at all. Using the resampled dataset, you apply
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the estimator and collect the statistics. This process is repeated many times; each time, a new random
sample is drawn and the statistics are recalculated.

This process builds a dataset of replicated statistics. From these data, you can calculate the standard
error by using the standard formula for the sample standard deviation

ŝe =
{

1
k − 1

∑
(θ̂i − θ)2

}1/2

where θ̂i is the statistic calculated using the ith bootstrap sample and k is the number of replications.
This formula gives an estimate of the standard error of the statistic, according to Hall and Wilson (1991).
Although the average, θ, of the bootstrapped estimates is used in calculating the standard deviation,
it is not used as the estimated value of the statistic itself. Instead, the original observed value of the
statistic, θ̂, is used, meaning the value of the statistic computed using the original N observations.

You might think that θ is a better estimate of the parameter than θ̂, but it is not. If the statistic is
biased, bootstrapping exaggerates the bias. In fact, the bias can be estimated as θ− θ̂ (Efron 1982, 33).
Knowing this, you might be tempted to subtract this estimate of bias from θ̂ to produce an unbiased
statistic. The bootstrap bias estimate has an indeterminate amount of random error, so this unbiased
estimator may have greater mean squared error than the biased estimator (Mooney and Duval 1993;
Hinkley 1978). Thus θ̂ is the best point estimate of the statistic.

The logic behind the bootstrap is that all measures of precision come from a statistic’s sampling
distribution. When the statistic is estimated on a sample of size N from some population, the sampling
distribution tells you the relative frequencies of the values of the statistic. The sampling distribution,
in turn, is determined by the distribution of the population and the formula used to estimate the
statistic.

Sometimes the sampling distribution can be derived analytically. For instance, if the underlying
population is distributed normally and you calculate means, the sampling distribution for the mean is
also normal but has a smaller variance than that of the population. In other cases, deriving the sampling
distribution is difficult, as when means are calculated from nonnormal populations. Sometimes, as in
the case of means, it is not too difficult to derive the sampling distribution as the sample size goes
to infinity (N →∞). However, such asymptotic distributions may not perform well when applied to
finite samples.

If you knew the population distribution, you could obtain the sampling distribution by simulation:
you could draw random samples of size N , calculate the statistic, and make a tally. Bootstrapping
does precisely this, but it uses the observed distribution of the sample in place of the true population
distribution. Thus the bootstrap procedure hinges on the assumption that the observed distribution
is a good estimate of the underlying population distribution. In return, the bootstrap produces an
estimate, called the bootstrap distribution, of the sampling distribution. From this, you can estimate
the standard error of the statistic, produce confidence intervals, etc.

The accuracy with which the bootstrap distribution estimates the sampling distribution depends on
the number of observations in the original sample and the number of replications in the bootstrap. A
crudely estimated sampling distribution is adequate if you are only going to extract, say, a standard
error. A better estimate is needed if you want to use the 2.5th and 97.5th percentiles of the distribution
to produce a 95% confidence interval. To extract many features simultaneously about the distribution,
an even better estimate is needed. Generally, replications on the order of 1,000 produce very good
estimates, but only 50–200 replications are needed for estimates of standard errors. See Poi (2004)
for a method to choose the number of bootstrap replications.
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Regression coefficients

Example 1

Let’s say that we wish to compute bootstrap estimates for the standard errors of the coefficients
from the following regression:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight gear foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 46.73

Model 1629.67805 3 543.226016 Prob > F = 0.0000
Residual 813.781411 70 11.6254487 R-squared = 0.6670

Adj R-squared = 0.6527
Total 2443.45946 73 33.4720474 Root MSE = 3.4096

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.006139 .0007949 -7.72 0.000 -.0077245 -.0045536
gear_ratio 1.457113 1.541286 0.95 0.348 -1.616884 4.53111

foreign -2.221682 1.234961 -1.80 0.076 -4.684735 .2413715
_cons 36.10135 6.285984 5.74 0.000 23.56435 48.63835

To run the bootstrap, we simply prefix the above regression command with the bootstrap command
(specifying its options before the colon separator). We must set the random-number seed before calling
bootstrap.

. bootstrap, reps(100) seed(1): regress mpg weight gear foreign
(running regress on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Linear regression Number of obs = 74
Replications = 100
Wald chi2(3) = 111.96
Prob > chi2 = 0.0000
R-squared = 0.6670
Adj R-squared = 0.6527
Root MSE = 3.4096

Observed Bootstrap Normal-based
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.006139 .0006498 -9.45 0.000 -.0074127 -.0048654
gear_ratio 1.457113 1.297786 1.12 0.262 -1.086501 4.000727

foreign -2.221682 1.162728 -1.91 0.056 -4.500587 .0572236
_cons 36.10135 4.71779 7.65 0.000 26.85465 45.34805

The displayed confidence interval is based on the assumption that the sampling (and hence bootstrap)
distribution is approximately normal (see Methods and formulas below). Because this confidence
interval is based on the standard error, it is a reasonable estimate if normality is approximately true,
even for a few replications. Other types of confidence intervals are available after bootstrap; see
[R] bootstrap postestimation.
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We could instead supply names to our expressions when we run bootstrap. For example,

. bootstrap diff=(_b[weight]-_b[gear]): regress mpg weight gear foreign

would bootstrap a statistic, named diff, equal to the difference between the coefficients on weight
and gear ratio.

Expressions

Example 2

When we use bootstrap, the list of statistics can contain complex expressions, as long as each
expression is enclosed in parentheses. For example, to bootstrap the range of a variable x, we could
type

. bootstrap range=(r(max)-r(min)), reps(1000): summarize x

Of course, we could also bootstrap the minimum and maximum and later compute the range.

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x

. use mybs, clear
(bootstrap: summarize)

. generate range = max - min

. bstat range, stat(19.5637501)

The difference between the maximum and minimum of x in the sample is 19.5637501.

The stat() option to bstat specifies the observed value of the statistic (range) to be summarized.
This option is useful when, as shown above, the statistic of ultimate interest is not specified directly
to bootstrap but instead is calculated by other means.

Here the observed values of r(max) and r(min) are saved as characteristics of the dataset created
by bootstrap and are thus available for retrieval by bstat; see [R] bstat. The observed range,
however, is unknown to bstat, so it must be specified.

Combining bootstrap datasets

You can combine two datasets from separate runs of bootstrap by using append (see [D] append)
and then get the bootstrap statistics for the combined datasets by running bstat. The runs must
have been performed independently (having different starting random-number seeds), and the original
dataset, command, and bootstrap statistics must have been all the same.

A note about macros

In the previous example, we executed the command

. bootstrap max=r(max) min=r(min), reps(1000) saving(mybs): summarize x
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We did not enclose r(max) and r(min) in single quotes, as we would in most other contexts, because
it would not produce what was intended:

. bootstrap ‘r(max)’ ‘r(min)’, reps(1000) saving(mybs): summarize x

To understand why, note that ‘r(max)’, like any reference to a local macro, will evaluate to a literal
string containing the contents of r(max) before bootstrap is even executed. Typing the command
above would appear to Stata as if we had typed

. bootstrap 14.5441234 33.4393293, reps(1000) saving(mybs): summarize x

Even worse, the current contents of r(min) and r(max) could be empty, producing an even more
confusing result. To avoid this outcome, refer to statistics by name (for example, r(max)) and not
by value (for example, ‘r(max)’).

Achieved significance level

Example 3

Suppose that we wish to estimate the achieved significance level (ASL) of a test statistic by using
the bootstrap. ASL is another name for p-value. An example is

ASL = Pr
(
θ̂∗ ≥ θ̂|H0

)
for an upper-tailed, alternative hypothesis, where H0 denotes the null hypothesis, θ̂ is the observed
value of the test statistic, and θ̂∗ is the random variable corresponding to the test statistic, assuming
that H0 is true.

Here we will compare the mean miles per gallon (mpg) between foreign and domestic cars by
using the two-sample t test with unequal variances. The following results indicate the p-value to be
0.0034 for the two-sided test using Satterthwaite’s approximation. Thus assuming that mean mpg is
the same for foreign and domestic cars, we would expect to observe a t statistic more extreme (in
absolute value) than 3.1797 in about 0.3% of all possible samples of the type that we observed.
Thus we have evidence to reject the null hypothesis that the means are equal.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ttest mpg, by(foreign) unequal

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

Domestic 52 19.82692 .657777 4.743297 18.50638 21.14747
Foreign 22 24.77273 1.40951 6.611187 21.84149 27.70396

combined 74 21.2973 .6725511 5.785503 19.9569 22.63769

diff -4.945804 1.555438 -8.120053 -1.771556

diff = mean(Domestic) - mean(Foreign) t = -3.1797
Ho: diff = 0 Satterthwaite’s degrees of freedom = 30.5463

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0017 Pr(|T| > |t|) = 0.0034 Pr(T > t) = 0.9983
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We also place the value of the test statistic in a scalar for later use.

. scalar tobs = r(t)

Efron and Tibshirani (1993, 224) describe an alternative to Satterthwaite’s approximation that
estimates the ASL by bootstrapping the statistic from the test of equal means. Their idea is to recenter
the two samples to the combined sample mean so that the data now conform to the null hypothesis
but that the variances within the samples remain unchanged.

. summarize mpg, meanonly

. scalar omean = r(mean)

. summarize mpg if foreign==0, meanonly

. replace mpg = mpg - r(mean) + scalar(omean) if foreign==0
mpg was int now float
(52 real changes made)

. summarize mpg if foreign==1, meanonly

. replace mpg = mpg - r(mean) + scalar(omean) if foreign==1
(22 real changes made)

. sort foreign

. by foreign: summarize mpg

-> foreign = Domestic

Variable Obs Mean Std. Dev. Min Max

mpg 52 21.2973 4.743297 13.47037 35.47038

-> foreign = Foreign

Variable Obs Mean Std. Dev. Min Max

mpg 22 21.2973 6.611187 10.52457 37.52457

Each sample (foreign and domestic) is a stratum, so the bootstrapped samples must have the same
number of foreign and domestic cars as the original dataset. This requirement is facilitated by the
strata() option to bootstrap. By typing the following, we bootstrap the test statistic using the
modified dataset and save the values in bsauto2.dta:
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. keep mpg foreign

. set seed 1

. bootstrap t=r(t), rep(1000) strata(foreign) saving(bsauto2) nodots: ttest mpg,
> by(foreign) unequal

Warning: Because ttest is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be
excluded from the resampling because of missing values or other
reasons.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results

Number of strata = 2 Number of obs = 74
Replications = 1000

command: ttest mpg, by(foreign) unequal
t: r(t)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

t 1.75e-07 1.036437 0.00 1.000 -2.031379 2.031379

We can use the data in bsauto2.dta to estimate ASL via the fraction of bootstrap test statistics
that are more extreme than 3.1797.

. use bsauto2, clear
(bootstrap: ttest)

. generate indicator = abs(t)>=abs(scalar(tobs))

. summarize indicator, meanonly

. display "ASLboot = " r(mean)
ASLboot = .005

The result is ASLboot = 0.005. Assuming that the mean mpg is the same between foreign and
domestic cars, we would expect to observe a t statistic more extreme (in absolute value) than 3.1797
in about 0.5% of all possible samples of the type we observed. This finding is still strong evidence
to reject the hypothesis that the means are equal.

Bootstrapping a ratio

Example 4

Suppose that we wish to produce a bootstrap estimate of the ratio of two means. Because summarize
saves results for only one variable, we must call summarize twice to compute the means. Actually,
we could use collapse to compute the means in one call, but calling summarize twice is much
faster. Thus we will have to write a small program that will return the results we want.
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We write the program below and save it to a file called ratio.ado (see [U] 17 Ado-files). Our
program takes two variable names as input and saves them in the local macros y (first variable)
and x (second variable). It then computes one statistic: the mean of ‘y’ divided by the mean of
‘x’. This value is returned as a scalar in r(ratio). ratio also returns the ratio of the number of
observations used to the mean for each variable.

program myratio, rclass
version 12
args y x
confirm var ‘y’
confirm var ‘x’
tempname ymean yn
summarize ‘y’, meanonly
scalar ‘ymean’ = r(mean)
return scalar n_‘y’ = r(N)
summarize ‘x’, meanonly
return scalar n_‘x’ = r(N)
return scalar ratio = ‘ymean’/r(mean)

end

Remember to test any newly written commands before using them with bootstrap.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. summarize price

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906

. scalar mean1=r(mean)

. summarize weight

Variable Obs Mean Std. Dev. Min Max

weight 74 3019.459 777.1936 1760 4840

. scalar mean2=r(mean)

. di scalar(mean1)/scalar(mean2)
2.0418412

. myratio price weight

. return list

scalars:
r(ratio) = 2.041841210168278

r(n_weight) = 74
r(n_price) = 74
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The results of running bootstrap on our program are

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. set seed 1

. bootstrap ratio=r(ratio), reps(1000) nowarn nodots: myratio price weight

Bootstrap results Number of obs = 74
Replications = 1000

command: myratio price weight
ratio: r(ratio)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratio 2.041841 .0942932 21.65 0.000 1.85703 2.226652

As mentioned previously, we should specify the saving() option if we wish to save the bootstrap
dataset.

Warning messages and e(sample)
bootstrap is not meant to be used with weighted calculations. bootstrap determines the presence

of weights by parsing the prefixed command with standard syntax. However, commands like stcox
and streg require that weights be specified in stset, and some user commands may allow weights
to be specified by using an option instead of the standard syntax. Both cases pose a problem for
bootstrap because it cannot determine the presence of weights under these circumstances. In these
cases, we can only assume that you know what you are doing.

bootstrap does not know which variables of the dataset in memory matter to the calculation at
hand. You can speed their execution by dropping unnecessary variables because, otherwise, they are
included in each bootstrap sample.

You should thus drop observations with missing values. Leaving in missing values causes no
problem in one sense because all Stata commands deal with missing values gracefully. It does,
however, cause a statistical problem. Bootstrap sampling is defined as drawing, with replacement,
samples of size N from a set of N observations. bootstrap determines N by counting the number
of observations in memory, not counting the number of nonmissing values on the relevant variables.
The result is that too many observations are resampled; the resulting bootstrap samples, because they
are drawn from a population with missing values, are of unequal sizes.

If the number of missing values relative to the sample size is small, this will make little difference.
If you have many missing values, however, you should first drop the observations that contain them.

Example 5

To illustrate, we use the previous example but replace some of the values of price with missing
values. The number of values of price used to compute the mean for each bootstrap is not constant.
This is the purpose of the Warning message.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. replace price = . if inlist(_n,1,3,5,7)
(4 real changes made, 4 to missing)

. set seed 1
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. bootstrap ratio=r(ratio) np=r(n_price) nw=r(n_weight), reps(100) nodots:
> myratio price weight

Warning: Because myratio is not an estimation command or does not set
e(sample), bootstrap has no way to determine which observations are
used in calculating the statistics and so assumes that all
observations are used. This means that no observations will be
excluded from the resampling because of missing values or other
reasons.

If the assumption is not true, press Break, save the data, and drop
the observations that are to be excluded. Be sure that the dataset
in memory contains only the relevant data.

Bootstrap results Number of obs = 74
Replications = 100

command: myratio price weight
ratio: r(ratio)

np: r(n_price)
nw: r(n_weight)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratio 2.063051 .0893669 23.09 0.000 1.887896 2.238207
np 70 1.872178 37.39 0.000 66.3306 73.6694
nw 74 . . . . .

Bootstrapping statistics from data with a complex structure

Here we describe how to bootstrap statistics from data with a complex structure, for example,
longitudinal or panel data, or matched data. bootstrap, however, is not designed to work with
complex survey data. It is important to include all necessary information about the structure of the
data in the bootstrap syntax to obtain correct bootstrap estimates for standard errors and confidence
intervals.

bootstrap offers several options identifying the specifics of the data. These options are strata(),
cluster(), idcluster(), and group(). The usage of strata() was described in example 3 above.
Below we demonstrate several examples that require specifying the other three options.

Example 6

Suppose that the auto data in example 1 above are clustered by rep78. We want to obtain
bootstrap estimates for the standard errors of the difference between the coefficients on weight and
gear ratio, taking into account clustering.

We supply the cluster(rep78) option to bootstrap to request resampling from clusters rather
than from observations in the dataset.
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. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. keep if rep78 < .
(5 observations deleted)

. bootstrap diff=(_b[weight]-_b[gear]), seed(1) cluster(rep78): regress mpg weight
> gear foreign
(running regress on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Linear regression Number of obs = 69
Replications = 50

command: regress mpg weight gear foreign
diff: _b[weight]-_b[gear]

(Replications based on 5 clusters in rep78)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

diff -1.910396 1.876778 -1.02 0.309 -5.588812 1.768021

We drop missing values in rep78 before issuing the command because bootstrap does not allow
missing values in cluster(). See the section above about using bootstrap when variables contain
missing values.

We can also obtain these same results by using the following syntax:

. bootstrap diff=(_b[weight]-_b[gear]), seed(1): regress mpg weight gear foreign,
> vce(cluster rep78)

When only clustered information is provided to the command, bootstrap can pick up the
vce(cluster clustvar) option from the main command and use it to resample from clusters.

Example 7

Suppose now that we have matched data and want to use bootstrap to obtain estimates of the
standard errors of the exponentiated difference between two coefficients (or, equivalently, the ratio
of two odds ratios) estimated by clogit. Consider the example of matched case–control data on
birthweight of infants described in example 2 of [R] clogit.

The infants are paired by being matched on mother’s age. All groups, defined by the pairid
variable, have 1:2 matching. clogit requires that the matching information, pairid, be supplied to
the group() (or, equivalently, strata()) option to be used in computing the parameter estimates.
Because the data are matched, we need to resample from groups rather than from the whole
dataset. However, simply supplying the grouping variable pairid in cluster() is not enough with
bootstrap, as it is with clustered data.
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. use http://www.stata-press.com/data/r12/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)

. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(pairid): clogit low lwt
> smoke ptd ht ui i.race, group(pairid)
(running clogit on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratio .6654095 17.71791 0.04 0.970 -34.06106 35.39187

For the syntax above, imagine that the first pair was sampled twice during a replication. Then the
bootstrap sample has four subjects with pairid equal to one, which clearly violates the original 1:2
matching design. As a result, the estimates of the coefficients obtained from this bootstrap sample
will be incorrect.

Therefore, in addition to resampling from groups, we need to ensure that resampled groups are
uniquely identified in each of the bootstrap samples. The idcluster(newcluster) option is designed
for this. It requests that at each replication bootstrap create the new variable, newcluster, containing
unique identifiers for all resampled groups. Thus, to make sure that the correct matching is preserved
during each replication, we need to specify the grouping variable in cluster(), supply a variable
name to idcluster(), and use this variable as the grouping variable with clogit, as we demonstrate
below.

. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(pairid)
> idcluster(newpairid): clogit low lwt smoke ptd ht ui i.race, group(newpairid)
(running clogit on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(newpairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 56 clusters in pairid)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratio .6654095 7.919441 0.08 0.933 -14.85641 16.18723

Note the difference between the estimates of the bootstrap standard error for the two specifications
of the bootstrap syntax.
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Technical note
Similarly, when you have panel (longitudinal) data, all resampled panels must be unique

in each of the bootstrap samples to obtain correct bootstrap estimates of statistics. Therefore,
both cluster(panelvar) and idcluster(newpanelvar) must be specified with bootstrap, and
i(newpanelvar) must be used with the main command. Moreover, you must clear the current xtset
settings by typing xtset, clear before calling bootstrap.

Example 8

Continuing with our birthweight data, suppose that we have more information about doctors
supervising women’s pregnancies. We believe that the data on the pairs of infants from the same
doctor may be correlated and want to adjust standard errors for possible correlation among the pairs.
clogit offers the vce(cluster clustvar) option to do this.

Let’s add a cluster variable to our dataset. One thing to keep in mind is that to use vce(cluster
clustvar), groups in group() must be nested within clusters.

. use http://www.stata-press.com/data/r12/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)

. set seed 12345

. by pairid, sort: egen byte doctor = total(int(2*runiform()+1)*(_n == 1))

. clogit low lwt smoke ptd ht ui i.race, group(pairid) vce(cluster doctor)

Iteration 0: log pseudolikelihood = -26.768693
Iteration 1: log pseudolikelihood = -25.810476
Iteration 2: log pseudolikelihood = -25.794296
Iteration 3: log pseudolikelihood = -25.794271
Iteration 4: log pseudolikelihood = -25.794271

Conditional (fixed-effects) logistic regression Number of obs = 112
Wald chi2(1) = .
Prob > chi2 = .

Log pseudolikelihood = -25.794271 Pseudo R2 = 0.3355

(Std. Err. adjusted for 2 clusters in doctor)

Robust
low Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwt -.0183757 .0217802 -0.84 0.399 -.0610641 .0243128
smoke 1.400656 .0085545 163.73 0.000 1.38389 1.417423

ptd 1.808009 .938173 1.93 0.054 -.0307765 3.646794
ht 2.361152 1.587013 1.49 0.137 -.7493362 5.47164
ui 1.401929 .8568119 1.64 0.102 -.2773913 3.08125

race
2 .5713643 .0672593 8.49 0.000 .4395385 .7031902
3 -.0253148 .9149785 -0.03 0.978 -1.81864 1.76801

To obtain correct bootstrap standard errors of the exponentiated difference between the two
coefficients in this example, we need to make sure that both resampled clusters and groups within
resampled clusters are unique in each of the bootstrap samples. To achieve this, bootstrap needs
the information about clusters in cluster(), the variable name of the new identifier for clusters
in idcluster(), and the information about groups in group(). We demonstrate the corresponding
syntax of bootstrap below.
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. bootstrap ratio=exp(_b[smoke]-_b[ptd]), seed(1) cluster(doctor)
> idcluster(uidoctor) group(pairid): clogit low lwt smoke ptd ht ui i.race,
> group(pairid)
(running clogit on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 112
Replications = 50

command: clogit low lwt smoke ptd ht ui i.race, group(pairid)
ratio: exp(_b[smoke]-_b[ptd])

(Replications based on 2 clusters in doctor)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ratio .6654095 .3156251 2.11 0.035 .0467956 1.284023

In the above syntax, although we specify group(pairid) with clogit, it is not the group identifiers
of the original pairid variable that are used to compute parameter estimates from bootstrap samples.
The way bootstrap works is that, at each replication, the clusters defined by doctor are resampled
and the new variable, uidoctor, uniquely identifying resampled clusters is created. After that, another
new variable uniquely identifying the (uidoctor, group) combination is created and renamed to
have the same name as the grouping variable, pairid. This newly defined grouping variable is then
used by clogit to obtain the parameter estimates from this bootstrap sample of clusters. After all
replications are performed, the original values of the grouping variable are restored.

Technical note
The same logic must be used when running bootstrap with commands designed for panel (longi-

tudinal) data that allow specifying the cluster(clustervar) option. To ensure that the combination of
(clustervar, panelvar) values are unique in each of the bootstrap samples, cluster(clustervar), id-
cluster(newclustervar), and group(panelvar) must be specified with bootstrap, and i(panelvar)
must be used with the main command.

� �
Bradley Efron was born in 1938 in Minnesota and studied mathematics and statistics at Caltech
and Stanford; he has lived in northern California since 1960. He has worked on empirical Bayes,
survival analysis, exponential families, bootstrap and jackknife methods, and confidence intervals,
in conjunction with applied work in biostatistics, astronomy, and physics.� �
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Saved results
bootstrap saves the following in e():

Scalars
e(N) sample size
e(N reps) number of complete replications
e(N misreps) number of incomplete replications
e(N strata) number of strata
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(k exp) number of standard expressions
e(k eexp) number of extended expressions (i.e., b)
e(k extra) number of extra equations beyond the original ones from e(b)
e(level) confidence level for bootstrap CIs
e(bs version) version for bootstrap results
e(rank) rank of e(V)

Macros
e(cmdname) command name from command
e(cmd) same as e(cmdname) or bootstrap
e(command) command
e(cmdline) command as typed
e(prefix) bootstrap
e(title) title in estimation output
e(strata) strata variables
e(cluster) cluster variables
e(seed) initial random-number seed
e(size) from the size(#) option
e(exp#) expression for the #th statistic
e(mse) mse, if specified
e(vce) bootstrap
e(vcetype) title used to label Std. Err.
e(properties) b V

Matrices
e(b) observed statistics
e(b bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(accel) estimated accelerations
e(ci normal) normal-approximation CIs
e(ci percentile) percentile CIs
e(ci bc) bias-corrected CIs
e(ci bca) bias-corrected and accelerated CIs
e(V) bootstrap variance–covariance matrix
e(V modelbased) model-based variance

When exp list is b, bootstrap will also carry forward most of the results already in e() from
command.

Methods and formulas
bootstrap is implemented as an ado-file.

Let θ̂ be the observed value of the statistic, that is, the value of the statistic calculated with the
original dataset. Let i = 1, 2, . . . , k denote the bootstrap samples, and let θ̂i be the value of the
statistic from the ith bootstrap sample.
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When the mse option is specified, the standard error is estimated as

ŝeMSE =
{

1
k

k∑
i=1

(θ̂i − θ̂)2

}1/2

Otherwise, the standard error is estimated as

ŝe =
{

1
k − 1

k∑
i=1

(θ̂i − θ)2

}1/2

where

θ =
1
k

k∑
i=1

θ̂i

The variance–covariance matrix is similarly computed. The bias is estimated as

b̂ias = θ − θ̂

Confidence intervals with nominal coverage rates 1− α are calculated according to the following
formulas. The normal-approximation method yields the confidence intervals[

θ̂ − z1−α/2 ŝe, θ̂ + z1−α/2 ŝe
]

where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution. If the mse option is
specified, bootstrap will report the normal confidence interval using ŝeMSE instead of ŝe. estat
bootstrap only uses ŝe in the normal confidence interval.

The percentile method yields the confidence intervals[
θ∗α/2, θ

∗
1−α/2

]
where θ∗p is the pth quantile (the 100pth percentile) of the bootstrap distribution (θ̂1, . . . , θ̂k).

Let
z0 = Φ−1{#(θ̂i ≤ θ̂)/k}

where #(θ̂i ≤ θ̂) is the number of elements of the bootstrap distribution that are less than or equal
to the observed statistic and Φ is the standard cumulative normal. z0 is known as the median bias of
θ̂. Let

a =
∑n
i=1(θ(·) − θ̂(i))3

6
{∑n

i=1(θ(·) − θ̂(i))2
}3/2

where θ̂(i) are the leave-one-out (jackknife) estimates of θ̂ and θ(·) is their mean. This expression is
known as the jackknife estimate of acceleration for θ̂. Let

p1 = Φ
{
z0 +

z0 − z1−α/2

1− a(z0 − z1−α/2)

}
p2 = Φ

{
z0 +

z0 + z1−α/2

1− a(z0 + z1−α/2)

}
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where z1−α/2 is the (1−α/2)th quantile of the normal distribution. The bias-corrected and accelerated
(BCa) method yields confidence intervals [

θ∗p1 , θ
∗
p2

]
where θ∗p is the pth quantile of the bootstrap distribution as defined previously. The bias-corrected
(but not accelerated) method is a special case of BCa with a = 0.
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Also see
[R] bootstrap postestimation — Postestimation tools for bootstrap

[R] jackknife — Jackknife estimation

[R] permute — Monte Carlo permutation tests

[R] simulate — Monte Carlo simulations

[SVY] svy bootstrap — Bootstrap for survey data

[U] 13.5 Accessing coefficients and standard errors
[U] 13.6 Accessing results from Stata commands
[U] 20 Estimation and postestimation commands



Title

bootstrap postestimation — Postestimation tools for bootstrap

Description
The following postestimation command is of special interest after bootstrap:

Command Description

estat bootstrap percentile-based and bias-corrected CI tables

For information about estat bootstrap, see below.

The following standard postestimation commands are also available:

Command Description

∗contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
∗hausman Hausman’s specification test
∗lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗margins marginal means, predictive margins, marginal effects, and average marginal effects
∗marginsplot graph the results from margins (profile plots, interaction plots, etc.)
∗nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
∗predict predictions, residuals, influence statistics, and other diagnostic measures
∗predictnl point estimates, standard errors, testing, and inference for generalized

predictions
∗pwcompare pairwise comparisons of estimates
∗test Wald tests of simple and composite linear hypotheses
∗testnl Wald tests of nonlinear hypotheses

∗This postestimation command is allowed if it may be used after command.

See the corresponding entries in the Stata Base Reference Manual for details.

Special-interest postestimation command

estat bootstrap displays a table of confidence intervals for each statistic from a bootstrap
analysis.

Syntax for predict
The syntax of predict (and even if predict is allowed) following bootstrap depends upon

the command used with bootstrap. If predict is not allowed, neither is predictnl.

215
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Syntax for estat bootstrap
estat bootstrap

[
, options

]
options Description

bc bias-corrected CIs; the default
bca bias-corrected and accelerated (BCa) CIs
normal normal-based CIs
percentile percentile CIs
all all available CIs
noheader suppress table header
nolegend suppress table legend
verbose display the full table legend

bc, bca, normal, and percentile may be used together.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat bootstrap
bc is the default and displays bias-corrected confidence intervals.

bca displays bias-corrected and accelerated confidence intervals. This option assumes that you also
specified the bca option on the bootstrap prefix command.

normal displays normal approximation confidence intervals.

percentile displays percentile confidence intervals.

all displays all available confidence intervals.

noheader suppresses display of the table header. This option implies nolegend.

nolegend suppresses display of the table legend, which identifies the rows of the table with the
expressions they represent.

verbose requests that the full table legend be displayed.

Remarks

Example 1

The estat bootstrap postestimation command produces a table containing the observed value
of the statistic, an estimate of its bias, the bootstrap standard error, and up to four different confidence
intervals.

If we were interested merely in getting bootstrap standard errors for the model coefficients, we
could use the bootstrap prefix with our estimation command. If we were interested in performing
a thorough bootstrap analysis of the model coefficients, we could use the estat bootstrap
postestimation command after fitting the model with the bootstrap prefix.
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Using example 1 from [R] bootstrap, we need many more replications for the confidence interval
types other than the normal based, so let’s rerun the estimation command. We will reset the random-
number seed—in case we wish to reproduce the results—increase the number of replications, and
save the bootstrap distribution as a dataset called bsauto.dta.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. set seed 1

. bootstrap _b, reps(1000) saving(bsauto) bca: regress mpg weight gear foreign
(output omitted )

. estat bootstrap, all

Linear regression Number of obs = 74
Replications = 1000

Observed Bootstrap
mpg Coef. Bias Std. Err. [95% Conf. Interval]

weight -.00613903 .0000567 .000628 -.0073699 -.0049082 (N)
-.0073044 -.0048548 (P)
-.0074355 -.004928 (BC)
-.0075282 -.0050258 (BCa)

gear_ratio 1.4571134 .1051696 1.4554785 -1.395572 4.309799 (N)
-1.262111 4.585372 (P)
-1.523927 4.174376 (BC)
-1.492223 4.231356 (BCa)

foreign -2.2216815 -.0196361 1.2023286 -4.578202 .1348393 (N)
-4.442199 .2677989 (P)
-4.155504 .6170642 (BC)
-4.216531 .5743973 (BCa)

_cons 36.101353 -.502281 5.4089441 25.50002 46.70269 (N)
24.48569 46.07086 (P)
25.59799 46.63227 (BC)
25.85658 47.02108 (BCa)

(N) normal confidence interval
(P) percentile confidence interval
(BC) bias-corrected confidence interval
(BCa) bias-corrected and accelerated confidence interval

The estimated standard errors here differ from our previous estimates using only 100 replications
by, respectively, 8%, 3%, 11%, and 6%; see example 1 of [R] bootstrap. So much for our advice
that 50–200 replications are good enough to estimate standard errors. Well, the more replications the
better—that advice you should believe.

Which of the methods to compute confidence intervals should we use? If the statistic is unbiased,
the percentile (P) and bias-corrected (BC) methods should give similar results. The bias-corrected
confidence interval will be the same as the percentile confidence interval when the observed value of
the statistic is equal to the median of the bootstrap distribution. Thus, for unbiased statistics, the two
methods should give similar results as the number of replications becomes large. For biased statistics,
the bias-corrected method should yield confidence intervals with better coverage probability (closer
to the nominal value of 95% or whatever was specified) than the percentile method. For statistics
with variances that vary as a function of the parameter of interest, the bias-corrected and accelerated
method (BCa) will typically have better coverage probability than the others.

When the bootstrap distribution is approximately normal, all these methods should give similar
confidence intervals as the number of replications becomes large. If we examine the normality of
these bootstrap distributions using, say, the pnorm command (see [R] diagnostic plots), we see that
they closely follow a normal distribution. Thus here, the normal approximation would also be a valid
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choice. The chief advantage of the normal-approximation method is that it (supposedly) requires fewer
replications than the other methods. Of course, it should be used only when the bootstrap distribution
exhibits normality.

We can load bsauto.dta containing the bootstrap distributions for these coefficients:

. use bsauto
(bootstrap: regress)

. describe *

storage display value
variable name type format label variable label

_b_weight float %9.0g _b[weight]
_b_gear_ratio float %9.0g _b[gear_ratio]
_b_foreign float %9.0g _b[foreign]
_b_cons float %9.0g _b[_cons]

We can now run other commands, such as pnorm, on the bootstrap distributions. As with all
standard estimation commands, we can use the bootstrap command to replay its output table. The
default variable names assigned to the statistics in exp list are bs 1, bs 2, . . . , and each variable
is labeled with the associated expression. The naming convention for the extended expressions b
and se is to prepend b and se , respectively, onto the name of each element of the coefficient
vector. Here the first coefficient is b[weight], so bootstrap named it b weight.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[U] 20 Estimation and postestimation commands



Title

boxcox — Box–Cox regression models

Syntax
boxcox depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
model(lhsonly) left-hand-side Box–Cox model; the default
model(rhsonly) right-hand-side Box–Cox model
model(lambda) both sides Box–Cox model with same parameter
model(theta) both sides Box–Cox model with different parameters
notrans(varlist) nontransformed independent variables

Reporting

level(#) set confidence level; default is level(95)

lrtest perform likelihood-ratio test

Maximization

nolog suppress full-model iteration log
nologlr suppress restricted-model lrtest iteration log
maximize options control the maximization process; seldom used

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights and iweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Box-Cox regression

Description
boxcox finds the maximum likelihood estimates of the parameters of the Box–Cox transform, the

coefficients on the independent variables, and the standard deviation of the normally distributed errors
for a model in which depvar is regressed on indepvars. You can fit the following models:
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Option Estimates

lhsonly y
(θ)
j = β1x1j + β2x2j + · · ·+ βkxkj + εj

rhsonly yj = β1x
(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + εj

rhsonly notrans() yj = β1x
(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + · · ·+ γlzlj + εj

lambda y
(λ)
j = β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + εj

lambda notrans() y
(λ)
j = β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + · · ·+ γlzlj + εj

theta y
(θ)
j = β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + εj

theta notrans() y
(θ)
j = β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + · · ·+ γlzlj + εj

Any variable to be transformed must be strictly positive.

Options

� � �
Model �

noconstant; see [R] estimation options.

model( lhsonly | rhsonly | lambda | theta ) specifies which of the four models to fit.

model(lhsonly) applies the Box–Cox transform to depvar only. model(lhsonly) is the default.

model(rhsonly) applies the transform to the indepvars only.

model(lambda) applies the transform to both depvar and indepvars, and they are transformed by
the same parameter.

model(theta) applies the transform to both depvar and indepvars, but this time, each side is
transformed by a separate parameter.

notrans(varlist) specifies that the variables in varlist be included as nontransformed independent
variables.

� � �
Reporting �

level(#); see [R] estimation options.

lrtest specifies that a likelihood-ratio test of significance be performed and reported for each
independent variable.

� � �
Maximization �

nolog suppresses the iteration log when fitting the full model.

nologlr suppresses the iteration log when fitting the restricted models required by the lrtest option.

maximize options: iterate(#) and from(init specs); see [R] maximize.

Model Initial value specification

lhsonly from(θ0, copy)
rhsonly from(λ0, copy)
lambda from(λ0, copy)
theta from(λ0 θ0, copy)
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Remarks
Remarks are presented under the following headings:

Introduction
Theta model
Lambda model
Left-hand-side-only model
Right-hand-side-only model

Introduction

The Box–Cox transform

y(λ) =
yλ − 1
λ

has been widely used in applied data analysis. Box and Cox (1964) developed the transformation and
argued that the transformation could make the residuals more closely normal and less heteroskedastic.
Cook and Weisberg (1982) discuss the transform in this light. Because the transform embeds several
popular functional forms, it has received some attention as a method for testing functional forms, in
particular,

y(λ) =


y − 1 if λ = 1
ln(y) if λ = 0
1− 1/y if λ = −1

Davidson and MacKinnon (1993) discuss this use of the transform. Atkinson (1985) also gives a good
general treatment.

Theta model
boxcox obtains the maximum likelihood estimates of the parameters for four different models.

The most general of the models, the theta model, is

y
(θ)
j = β0 + β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + γ2z2j + · · ·+ γlzlj + εj

where ε ∼ N(0, σ2). Here the dependent variable, y, is subject to a Box–Cox transform with
parameter θ. Each of the indepvars, x1, x2, . . . , xk, is transformed by a Box–Cox transform with
parameter λ. The z1, z2, . . . , zl specified in the notrans() option are independent variables that are
not transformed.

Box and Cox (1964) argued that this transformation would leave behind residuals that more closely
follow a normal distribution than those produced by a simple linear regression model. Bear in mind
that the normality of ε is assumed and that boxcox obtains maximum likelihood estimates of the
k+ l+ 4 parameters under this assumption. boxcox does not choose λ and θ so that the residuals are
approximately normally distributed. If you are interested in this type of transformation to normality,
see the official Stata commands lnskew0 and bcskew0 in [R] lnskew0. However, those commands
work on a more restrictive model in which none of the independent variables is transformed.
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Example 1

Consider an example using the auto data.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. boxcox mpg weight price, notrans(foreign) model(theta) lrtest
Fitting comparison model

Iteration 0: log likelihood = -234.39434
Iteration 1: log likelihood = -228.26891
Iteration 2: log likelihood = -228.26777
Iteration 3: log likelihood = -228.26777

Fitting full model

Iteration 0: log likelihood = -194.13727
(output omitted )

Fitting comparison models for LR tests

Iteration 0: log likelihood = -179.58214
Iteration 1: log likelihood = -177.59036
Iteration 2: log likelihood = -177.58739
Iteration 3: log likelihood = -177.58739

Iteration 0: log likelihood = -203.92855
Iteration 1: log likelihood = -201.30202
Iteration 2: log likelihood = -201.18257
Iteration 3: log likelihood = -201.18233
Iteration 4: log likelihood = -201.18233

Iteration 0: log likelihood = -178.83799
Iteration 1: log likelihood = -175.98405
Iteration 2: log likelihood = -175.97931
Iteration 3: log likelihood = -175.97931

Number of obs = 74
LR chi2(4) = 105.19

Log likelihood = -175.67343 Prob > chi2 = 0.000

mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

/lambda .7601691 .6289991 1.21 0.227 -.4726465 1.992985
/theta -.7189315 .3244439 -2.22 0.027 -1.35483 -.0830332

Estimates of scale-variant parameters

Coef. chi2(df) P>chi2(df) df of chi2

Notrans
foreign -.0114338 3.828 0.050 1

_cons 1.377399

Trans
weight -.000239 51.018 0.000 1
price -6.18e-06 0.612 0.434 1

/sigma .0143509

Test Restricted
H0: log likelihood chi2 Prob > chi2

theta=lambda = -1 -181.64479 11.94 0.001
theta=lambda = 0 -178.2406 5.13 0.023
theta=lambda = 1 -194.13727 36.93 0.000
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The output is composed of the iteration logs and three distinct tables. The first table contains
a standard header for a maximum likelihood estimator and a standard output table for the Box–
Cox transform parameters. The second table contains the estimates of the scale-variant parameters.
The third table contains the output from likelihood-ratio tests on three standard functional form
specifications.

If we were to interpret this output, the right-hand-side transformation would not significantly add
to the regression, whereas the left-hand-side transformation would make the 5% but not the 1%
cutoff. price is certainly not significant, and foreign lies right on the 5% cutoff. weight is clearly
significant. The output also shows that the linear and multiplicative inverse specifications are both
strongly rejected. A natural log specification can be rejected at the 5% level but not at the 1% level.

Technical note
Spitzer (1984) showed that the Wald tests of the joint significance of the coefficients of the

right-hand-side variables, either transformed or untransformed, are not invariant to changes in the
scale of the transformed dependent variable. Davidson and MacKinnon (1993) also discuss this point.
This problem demonstrates that Wald statistics can be manipulated in nonlinear models. Lafontaine
and White (1986) analyze this problem numerically, and Phillips and Park (1988) analyze it by using
Edgeworth expansions. See Drukker (2000b) for a more detailed discussion of this issue. Because the
parameter estimates and their Wald tests are not scale invariant, no Wald tests or confidence intervals
are reported for these parameters. However, when the lrtest option is specified, likelihood-ratio
tests are performed and reported. Schlesselman (1971) showed that, if a constant is included in the
model, the parameter estimates of the Box–Cox transforms are scale invariant. For this reason, we
strongly recommend that you not use the noconstant option.

The lrtest option does not perform a likelihood-ratio test on the constant, so no value for this
statistic is reported. Unless the data are properly scaled, the restricted model does not often converge.
For this reason, no likelihood-ratio test on the constant is performed by the lrtest option. However,
if you have a special interest in performing this test, you can do so by fitting the constrained model
separately. If problems with convergence are encountered, rescaling the data by their means may
help.

Lambda model
A less general model than the one above is called the lambda model. It specifies that the same

parameter be used in both the left-hand-side and right-hand-side transformations. Specifically,

y
(λ)
j = β0 + β1x

(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + γ2z2j + · · ·+ γlzlj + εj

where ε ∼ N(0, σ2). Here the depvar variable, y, and each of the indepvars, x1, x2, . . . , xk, is
transformed by a Box–Cox transform with the common parameter λ. Again the z1, z2, . . . , zl are
independent variables that are not transformed.
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Left-hand-side-only model

Even more restrictive than a common transformation parameter is transforming the dependent
variable only. Because the dependent variable is on the left-hand side of the equation, this model is
known as the lhsonly model. Here you are estimating the parameters of the model

y
(θ)
j = β0 + β1x1j + β2x2j + · · ·+ βkxkj + εj

where ε ∼ N(0, σ2). Here only the depvar, y, is transformed by a Box–Cox transform with the
parameter θ.

Example 2

We again hypothesize mpg to be a function of weight, price, and foreign in a Box–Cox model
in which only mpg is subject to the transform:

. boxcox mpg weight price foreign, model(lhs) lrtest nolog nologlr
Fitting comparison model

Fitting full model

Fitting comparison models for LR tests

Number of obs = 74
LR chi2(3) = 105.04

Log likelihood = -175.74705 Prob > chi2 = 0.000

mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

/theta -.7826999 .281954 -2.78 0.006 -1.33532 -.2300802

Estimates of scale-variant parameters

Coef. chi2(df) P>chi2(df) df of chi2

Notrans
weight -.0000294 58.056 0.000 1
price -4.66e-07 0.469 0.493 1

foreign -.0097564 4.644 0.031 1
_cons 1.249845

/sigma .0118454

Test Restricted LR statistic P-value
H0: log likelihood chi2 Prob > chi2

theta = -1 -176.04312 0.59 0.442
theta = 0 -179.54104 7.59 0.006
theta = 1 -194.13727 36.78 0.000

This model rejects both linear and log specifications of mpg but fails to reject the hypothesis
that 1/mpg is linear in the independent variables. These findings are in line with what an engineer
would have expected. In engineering terms, gallons per mile represents actual energy consumption,
and energy consumption should be approximately linear in weight.
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Right-hand-side-only model

The fourth model leaves the depvar alone and transforms a subset of the indepvars using the
parameter λ. This is the rhsonly model. In this model, the depvar, y, is given by

yj = β0 + β1x
(λ)
1j + β2x

(λ)
2j + · · ·+ βkx

(λ)
kj + γ1z1j + γ2z2j + · · ·+ γlzlj + εj

where ε ∼ N(0, σ2). Here each of the indepvars, x1, x2, . . . , xk, is transformed by a Box–Cox
transform with the parameter λ. Again the z1, z2, . . . , zl are independent variables that are not
transformed.

Example 3

Here is an example with the rhsonly model. price and foreign are not included in the list of
covariates. (You are invited to use the auto data and check that they fare no better here than above.)

. boxcox mpg weight, model(rhs) lrtest nolog nologlr

Fitting full model

Fitting comparison models for LR tests

Comparison model for LR test on weight is a linear regression.
Lambda is not identified in the restricted model.

Number of obs = 74
LR chi2(2) = 82.90

Log likelihood = -192.94368 Prob > chi2 = 0.000

mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

/lambda -.4460916 .6551107 -0.68 0.496 -1.730085 .8379018

Estimates of scale-variant parameters

Coef. chi2(df) P>chi2(df) df of chi2

Notrans
_cons 1359.092

Trans
weight -614.3876 82.901 0.000 1

/sigma 3.281854

Test Restricted LR statistic P-value
H0: log likelihood chi2 Prob > chi2

lambda = -1 -193.2893 0.69 0.406
lambda = 0 -193.17892 0.47 0.493
lambda = 1 -195.38869 4.89 0.027

The interpretation of the output is similar to that in all the cases above, with one caveat. As
requested, a likelihood-ratio test was performed on the lone independent variable. However, when it is
dropped to form the constrained model, the comparison model is not a right-hand-side-only Box–Cox
model but rather a simple linear regression on a constant model. When weight is dropped, there are
no longer any transformed variables. Hence, λ is not identified, and it must also be dropped. This
process leaves a linear regression on a constant as the “comparison model”. It also implies that the
test statistic has 2 degrees of freedom instead of 1. At the top of the output, a more concise warning
informs you of this point.
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A similar identification issue can also arise in the lambda and theta models when only one
independent variable is specified. In these cases, warnings also appear on the output.

Saved results
boxcox saves the following in e():

Scalars
e(N) number of observations
e(ll) log likelihood
e(chi2) LR statistic of full vs. comparison
e(df m) full model degrees of freedom
e(ll0) log likelihood of the restricted model
e(df r) restricted model degrees of freedom
e(ll t1) log likelihood of model λ=θ=1

e(chi2 t1) LR of λ=θ=1 vs. full model
e(p t1) p-value of λ=θ=1 vs. full model
e(ll tm1) log likelihood of model λ=θ=−1

e(chi2 tm1) LR of λ=θ=−1 vs. full model
e(p tm1) p-value of λ=θ=−1 vs. full model
e(ll t0) log likelihood of model λ=θ=0

e(chi2 t0) LR of λ=θ=0 vs. full model
e(p t0) p-value of λ=θ=0 vs. full model
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code

Macros
e(cmd) boxcox
e(cmdline) command as typed
e(depvar) name of dependent variable
e(model) lhsonly, rhsonly, lambda, or theta
e(wtype) weight type
e(wexp) weight expression
e(ntrans) yes if nontransformed indepvars
e(chi2type) LR; type of model χ2 test
e(lrtest) lrtest, if requested
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators (see note below)
e(pm) p-values for LR tests on indepvars
e(df) degrees of freedom of LR tests on indepvars
e(chi2m) LR statistics for tests on indepvars

Functions
e(sample) marks estimation sample

e(V) contains all zeros, except for the elements that correspond to the parameters of the Box–Cox
transform.

Methods and formulas
boxcox is implemented as an ado-file.
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In the internal computations,

y(λ) =


yλ−1
λ if |λ| > 10−10

ln(y) otherwise

The unconcentrated log likelihood for the theta model is

lnL =
(
−N

2

){
ln(2π) + ln(σ2)

}
+ (θ − 1)

N∑
i=1

ln(yi)−
(

1
2σ2

)
SSR

where

SSR =
N∑
i=1

(y(θ)
i − β0 + β1x

(λ)
i1 + β2x

(λ)
i2 + · · ·+ βkx

(λ)
ik + γ1zi1 + γ2zi2 + · · ·+ γlzil)2

Writing the SSR in matrix form,

SSR = (Y(θ) −X(λ)b′ − Zg′)′(Y(θ) −X(λ)b′ − Zg′)

where Y(θ) is an N × 1 vector of elementwise transformed data, X(λ) is an N × k matrix of
elementwise transformed data, Z is an N × l matrix of untransformed data, b is a 1× k vector of
coefficients, and g is a 1× l vector of coefficients. Letting

Wλ =
(
X(λ) Z

)
be the horizontal concatenation of X(λ) and Z and

d′ =
(

b′

g′

)
be the vertical concatenation of the coefficients yields

SSR = (Y(θ) −Wλd′)′(Y(θ) −Wλd′)

For given values of λ and θ, the solutions for d′ and σ2 are

d̂′ = (W′
λWλ)−1W′

λY
(θ)

and
σ̂ 2 =

1
N

(
Y(θ) −Wλd̂′

)′ (
Y(θ) −Wλd̂′

)
Substituting these solutions into the log-likelihood function yields the concentrated log-likelihood
function

lnLc =
(
−N

2

){
ln(2π) + 1 + ln(σ̂ 2)

}
+ (θ − 1)

N∑
i=1

ln(yi)
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Similar calculations yield the concentrated log-likelihood function for the lambda model,

lnLc =
(
−N

2

){
ln(2π) + 1 + ln(σ̂ 2)

}
+ (λ− 1)

N∑
i=1

ln(yi)

the lhsonly model,

lnLc =
(
−N

2

){
ln(2π) + 1 + ln(σ̂ 2)

}
+ (θ − 1)

N∑
i=1

ln(yi)

and the rhsonly model,

lnLc =
(
−N

2

){
ln(2π) + 1 + ln(σ̂ 2)

}
where σ̂ 2 is specific to each model and is defined analogously to that in the theta model.
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Title

boxcox postestimation — Postestimation tools for boxcox

Description
The following postestimation commands are available after boxcox:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
∗lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
∗test Wald tests of simple and composite linear hypotheses
∗testnl Wald tests of nonlinear hypotheses

∗Inference is valid only for hypotheses concerning λ and θ.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

xbt transformed linear prediction; the default
yhat predicted value of y
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xbt, the default, calculates the “linear” prediction. For all the models except model(lhsonly), all
the indepvars except those specified in the notrans() option of boxcox are transformed.
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yhat calculates the predicted value of y.

residuals calculates the residuals after the predicted value of y has been subtracted from the actual
value.

Remarks
boxcox estimates variances only for the λ and θ parameters (see the technical note in [R] boxcox),

so the extent to which postestimation commands can be used following boxcox is limited. Formulas
used in lincom, nlcom, test, and testnl are dependent on the estimated variances. Therefore,
the use of these commands is limited and generally applicable only to inferences on the λ and θ
coefficients.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] boxcox — Box–Cox regression models

[R] lnskew0 — Find zero-skewness log or Box–Cox transform

[U] 20 Estimation and postestimation commands
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brier — Brier score decomposition

Syntax
brier outcomevar forecastvar

[
if
] [

in
] [

, group(#)
]

by is allowed; see [D] by.

Menu
Statistics > Epidemiology and related > Other > Brier score decomposition

Description
brier computes the Yates, Sanders, and Murphy decompositions of the Brier Mean Probability

Score. outcomevar contains 0/1 values reflecting the actual outcome of the experiment, and forecastvar
contains the corresponding probabilities as predicted by, say, logit, probit, or a human forecaster.

Option

� � �
Main �

group(#) specifies the number of groups that will be used to compute the decomposition. group(10)
is the default.

Remarks
You have a binary (0/1) response and a formula that predicts the corresponding probabilities of

having observed a positive outcome (1). If the probabilities were obtained from logistic regression,
there are many methods that assess goodness of fit (see, for instance, estat gof in [R] logistic).
However, the probabilities might be computed from a published formula or from a model fit on
another sample, both completely unrelated to the data at hand, or perhaps the forecasts are not from
a formula at all. In any case, you now have a test dataset consisting of the forecast probabilities and
observed outcomes. Your test dataset might, for instance, record predictions made by a meteorologist
on the probability of rain along with a variable recording whether it actually rained.

The Brier score is an aggregate measure of disagreement between the observed outcome and a
prediction—the average squared error difference. The Brier score decomposition is a partition of the
Brier score into components that suggest reasons for discrepancy. These reasons fall roughly into
three groups: 1) lack of overall calibration between the average predicted probability and the actual
probability of the event in your data, 2) misfit of the data in groups defined within your sample, and
3) inability to match actual 0 and 1 responses.

Problem 1 refers to simply overstating or understating the probabilities.

Problem 2 refers to what is standardly called a goodness-of-fit test: the data are grouped, and the
predictions for the group are compared with the outcomes.
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Problem 3 refers to an individual-level measure of fit. Imagine that the grouped outcomes are predicted
on average correctly but that within the group, the outcomes are poorly predicted.

Using logit or probit analysis to fit your data will guarantee that there is no lack of fit due to problem
1, and a good model fitter will be able to avoid problem 2. Problem 3 is inherent in any prediction
exercise.

Example 1

We have data on the outcomes of 20 basketball games (win) and the probability of victory predicted
by a local pundit (for).

. use http://www.stata-press.com/data/r12/bball

. summarize win for

Variable Obs Mean Std. Dev. Min Max

win 20 .65 .4893605 0 1
for 20 .4785 .2147526 .15 .9

. brier win for, group(5)

Mean probability of outcome 0.6500
of forecast 0.4785

Correlation 0.5907
ROC area 0.8791 p = 0.0030

Brier score 0.1828
Spiegelhalter’s z-statistic -0.6339 p = 0.7369
Sanders-modified Brier score 0.1861
Sanders resolution 0.1400
Outcome index variance 0.2275
Murphy resolution 0.0875
Reliability-in-the-small 0.0461
Forecast variance 0.0438
Excess forecast variance 0.0285
Minimum forecast variance 0.0153
Reliability-in-the-large 0.0294
2*Forecast-Outcome-Covar 0.1179

The mean probabilities of forecast and outcome are simply the mean of the predicted probabilities
and the actual outcomes (wins/losses). The correlation is the product-moment correlation between
them.

The Brier score measures the total difference between the event (winning) and the forecast
probability of that event as an average squared difference. As a benchmark, a perfect forecaster would
have a Brier score of 0, a perfect misforecaster (predicts probability of win is 1 when loses and 0
when wins) would have a Brier score of 1, and a fence-sitter (forecasts every game as 50/50) would
have a Brier score of 0.25. Our pundit is doing reasonably well.

Spiegelhalter’s z statistic is a standard normal test statistic for testing whether an individual Brier
score is extreme. The ROC area is the area under the receiver operating curve, and the associated test
is a test of whether it is greater than 0.5. The more accurate the forecast probabilities, the larger the
ROC area.

The Sanders-modified Brier score measures the difference between a grouped forecast measure
and the event, where the data are grouped by sorting the sample on the forecast and dividing it into
approximately equally sized groups. The difference between the modified and the unmodified score
is typically minimal. For this and the other statistics that require grouping—the Sanders and Murphy
resolutions and reliability-in-the-small—to be well-defined, group boundaries are chosen so as not
to allocate observations with the same forecast probability to different groups. This task is done by
grouping on the forecast using xtile, n(#), with # being the number of groups; see [D] pctile.
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The Sanders resolution measures error that arises from statistical considerations in evaluating
the forecast for a group. A group with all positive or all negative outcomes would have a Sanders
resolution of 0; it would most certainly be feasible to predict exactly what happened to each member
of the group. If the group had 40% positive responses, on the other hand, a forecast that assigned
p = 0.4 to each member of the group would be a good one, and yet, there would be “errors” in
the squared difference sense. The “error” would be (1− 0.4)2 or (0− 0.4)2 for each member. The
Sanders resolution is the average across groups of such “expected” errors. The 0.1400 value in our
data from an overall Brier score of 0.1828 or 0.1861 suggests that a substantial portion of the “error”
in our data is inherent.

Outcome index variance is just the variance of the outcome variable. This is the expected value of
the Brier score if all the forecast probabilities were merely the average observed outcome. Remember
that a fence-sitter has an expected Brier score of 0.25; a smarter fence sitter (who would guess
p = 0.65 for these data) would have a Brier score of 0.2275.

The Murphy resolution measures the variation in the average outcomes across groups. If all groups
have the same frequency of positive outcomes, little information in any forecast is possible, and the
Murphy resolution is 0. If groups differ markedly, the Murphy resolution is as large as 0.25. The
0.0875 means that there is some variation but not a lot, and 0.0875 is probably higher than in most
real cases. If you had groups in your data that varied between 40% and 60% positive outcomes, the
Murphy resolution would be 0.01; between 30% and 70%, it would be 0.04.

Reliability-in-the-small measures the error that comes from the average forecast within group not
measuring the average outcome within group—a classical goodness-of-fit measure, with 0 meaning a
perfect fit and 1 meaning a complete lack of fit. The calculated value of 0.0461 shows some amount
of lack of fit. Remember, the number is squared, and we are saying that probabilities could be just
more than

√
0.0461 = 0.215 or 21.5% off.

Forecast variance measures the amount of discrimination being attempted—that is, the variation in
the forecasted probabilities. A small number indicates a fence-sitter making constant predictions. If
the forecasts were from a logistic regression model, forecast variance would tend to increase with the
amount of information available. Our pundit shows considerable forecast variance of 0.0438 (standard
deviation

√
0.0438 = 0.2093), which is in line with the reliability-in-the-small, suggesting that the

forecaster is attempting as much variation as is available in these data.

Excess forecast variance is the amount of actual forecast variance over a theoretical minimum.
The theoretical minimum—called the minimum forecast variance—corresponds to forecasts of p0

for observations ultimately observed to be negative responses and p1 for observations ultimately
observed to be positive outcomes. Moreover, p0 and p1 are set to the average forecasts made for the
ultimate negative and positive outcomes. These predictions would be just as good as the predictions
the forecaster did make, and any variation in the actual forecast probabilities above this is useless.
If this number is large, above 1%–2%, then the forecaster may be attempting more than is possible.
The 0.0285 in our data suggests this possibility.

Reliability-in-the-large measures the discrepancy between the mean forecast and the observed
fraction of positive outcomes. This discrepancy will be 0 for forecasts made by most statistical
models—at least when measured on the same sample used for estimation—because they, by design,
reproduce sample means. For our human pundit, the 0.0294 says that there is a

√
0.0294, or 17-

percentage-point, difference. (This difference can also be found by calculating the difference in the
averages of the observed outcomes and forecast probabilities: 0.65−0.4785 = 0.17.) That difference,
however, is not significant, as we would see if we typed ttest win=for; see [R] ttest. If these data
were larger and the bias persisted, this difference would be a critical shortcoming of the forecast.
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Twice the forecast-outcome covariance is a measure of how accurately the forecast corresponds to
the outcome. The concept is similar to that of R-squared in linear regression.

Saved results
brier saves the following in r():

Scalars
r(p roc) significance of ROC area r(murphy) Murphy resolution
r(roc area) ROC area r(relinsm) reliability-in-the-small
r(z) Spiegelhalter’s z statistic r(Var f) forecast variance
r(p) significance of z statistic r(Var fex) excess forecast variance
r(brier) Brier score r(Var fmin) minimum forecast variance
r(brier s) Sanders-modified Brier score r(relinla) reliability-in-the-large
r(sanders) Sanders resolution r(cov 2f) 2×forecast-outcome-covariance
r(oiv) outcome index variance

Methods and formulas
brier is implemented as an ado-file.

See Wilks (2006, 284–287, 289–292, 298–299) or Schmidt and Griffith (2005) for a discussion of
the Brier score.

Let dj , j = 1, . . . , N , be the observed outcomes with dj = 0 or dj = 1, and let fj be the
corresponding forecasted probabilities that dj is 1, 0 ≤ fj ≤ 1. Assume that the data are ordered so
that fj+1 ≥ fj (brier sorts the data to obtain this order). Divide the data into K nearly equally
sized groups, with group 1 containing observations 1 through j2− 1, group 2 containing observations
j2 through j3 − 1, and so on.

Define
f0 = average fj among dj = 0

f1 = average fj among dj = 1

f = average fj

d = average dj

f̃k = average fj in group k

d̃k = average dj in group k

ñk = number of observations in group k

The Brier score is
∑
j(dj − fj)2/N .

The Sanders-modified Brier score is
∑
j(dj − f̃k(j))2/N .

Let pj denote the true but unknown probability that dj = 1. Under the null hypothesis that pj =
fj for all j, Spiegelhalter (1986) determined that the expectation and variance of the Brier score is
given by the following:



brier — Brier score decomposition 235

E(Brier) =
1
N

N∑
j=1

fj(1− fj)

Var(Brier) =
1
N2

N∑
j=1

fj(1− fj)(1− 2fj)
2

Denoting the observed value of the Brier score by O(Brier), Spiegelhalter’s z statistic is given by

Z =
O(Brier)− E(Brier)√

Var(Brier)

The corresponding p-value is given by the upper-tail probability of Z under the standard normal
distribution.

The area under the ROC curve is estimated by applying the trapezoidal rule to the empirical ROC
curve. This area is Wilcoxon’s test statistic, so the corresponding p-value is just that of a one-sided
Wilcoxon test of the null hypothesis that the distribution of predictions is constant across the two
outcomes.

The Sanders resolution is
∑
k ñk{d̃k(1− d̃k)}/N .

The outcome index variance is d(1− d).

The Murphy resolution is
∑
k ñk(d̃k − d)2/N .

Reliability-in-the-small is
∑
k ñk(d̃k − f̃k)2/N .

The forecast variance is
∑
j(fj − f)2/N .

The minimum forecast variance is
{∑

j∈F (fj − f0)2 +
∑
j∈S(fj − f1)2

}
/N , where F is the

set of observations for which dj = 0 and S is the complement.

The excess forecast variance is the difference between the forecast variance and the minimum
forecast variance.

Reliability-in-the-large is (f − d)2.

Twice the outcome covariance is 2(f1 − f0)d(1− d).� �
Glenn Wilson Brier (1913–1998) was an American meteorological statistician who, after obtaining
degrees in physics and statistics, was for many years head of meteorological statistics at the
U.S. Weather Bureau in Washington, DC. In the latter part of his career, he was associated with
Colorado State University. Brier worked especially on verification and evaluation of predictions
and forecasts, statistical decision making, the statistical theory of turbulence, the analysis of
weather modification experiments, and the application of permutation techniques.� �
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Title

bsample — Sampling with replacement

Syntax

bsample
[

exp
] [

if
] [

in
] [

, options
]

where exp is a standard Stata expression; see [U] 13 Functions and expressions.

options Description

strata(varlist) variables identifying strata
cluster(varlist) variables identifying resampling clusters
idcluster(newvar) create new cluster ID variable
weight(varname) replace varname with frequency weights

Menu
Statistics > Resampling > Draw bootstrap sample

Description
bsample draws bootstrap samples (random samples with replacement) from the data in memory.

exp specifies the size of the sample, which must be less than or equal to the number of sampling
units in the data. The observed number of units is the default when exp is not specified.

For bootstrap sampling of the observations, exp must be less than or equal to N (the number of
observations in the data; see [U] 13.4 System variables ( variables)).

For stratified bootstrap sampling, exp must be less than or equal to N within the strata identified
by the strata() option.

For clustered bootstrap sampling, exp must be less than or equal to Nc (the number of clusters
identified by the cluster() option).

For stratified bootstrap sampling of clusters, exp must be less than or equal to Nc within the strata
identified by the strata() option.

Observations that do not meet the optional if and in criteria are dropped (not sampled).

Options
strata(varlist) specifies the variables identifying strata. If strata() is specified, bootstrap samples

are selected within each stratum.

cluster(varlist) specifies the variables identifying resampling clusters. If cluster() is specified,
the sample drawn during each replication is a bootstrap sample of clusters.

idcluster(newvar) creates a new variable containing a unique identifier for each resampled cluster.

237
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weight(varname) specifies a variable in which the sampling frequencies will be placed. varname
must be an existing variable, which will be replaced. After bsample, varname can be used as
an fweight in any Stata command that accepts fweights, which can speed up resampling for
commands like regress and summarize. This option cannot be combined with idcluster().

By default, bsample replaces the data in memory with the sampled observations; however,
specifying the weight() option causes only the specified varname to be changed.

Remarks
Below is a series of examples illustrating how bsample is used with various sampling schemes.

Example 1: Bootstrap sampling

We have data on the characteristics of hospital patients and wish to draw a bootstrap sample of
200 patients. We type

. use http://www.stata-press.com/data/r12/bsample1

. bsample 200

. count
200

Example 2: Stratified samples with equal sizes

Among the variables in our dataset is female, an indicator for the female patients. To get a
bootstrap sample of 200 female patients and 200 male patients, we type

. use http://www.stata-press.com/data/r12/bsample1, clear

. bsample 200, strata(female)

. tab female

female Freq. Percent Cum.

male 200 50.00 50.00
female 200 50.00 100.00

Total 400 100.00

Example 3: Stratified samples with unequal sizes

To sample 300 females and 200 males, we must generate a variable that is 300 for females and
200 for males and then use this variable in exp when we call bsample.

. use http://www.stata-press.com/data/r12/bsample1, clear

. gen nsamp = cond(female,300,200)

. bsample nsamp, strata(female)

. tab female

female Freq. Percent Cum.

male 200 40.00 40.00
female 300 60.00 100.00

Total 500 100.00
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Example 4: Samples satisfying a condition

For a bootstrap sample of 200 female patients, we type

. use http://www.stata-press.com/data/r12/bsample1, clear

. bsample 200 if female

. tab female

female Freq. Percent Cum.

female 200 100.00 100.00

Total 200 100.00

Example 5: Generating frequency weights

To identify the sampled observations using frequency weights instead of dropping unsampled
observations, we use the weight() option (we will need to supply it an existing variable name) and
type

. use http://www.stata-press.com/data/r12/bsample1, clear

. set seed 1234

. gen fw = .
(5810 missing values generated)

. bsample 200 if female, weight(fw)

. tabulate fw female

female
fw male female Total

0 2,392 3,221 5,613
1 0 194 194
2 0 3 3

Total 2,392 3,418 5,810

Note that (194× 1) + (3× 2) = 200.

Example 6: Oversampling observations

bsample requires the expression in exp to evaluate to a number that is less than or equal to the
number of observations. To sample twice as many male and female patients as there are already in
memory, we must expand the data before using bsample. For example,

. use http://www.stata-press.com/data/r12/bsample1, clear

. set seed 1234

. expand 2
(5810 observations created)

. bsample, strata(female)
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. tab female

female Freq. Percent Cum.

male 4,784 41.17 41.17
female 6,836 58.83 100.00

Total 11,620 100.00

Example 7: Stratified oversampling with unequal sizes

To sample twice as many female patients as male patients, we must expand the records for the
female patients because there are less than twice as many of them as there are male patients, but first
put the number of observed male patients in a local macro. After expanding the female records, we
generate a variable that contains the number of observations to sample within the two groups.

. use http://www.stata-press.com/data/r12/bsample1, clear

. set seed 1234

. count if !female
2392

. local nmale = r(N)

. expand 2 if female
(3418 observations created)

. gen nsamp = cond(female,2*‘nmale’,‘nmale’)

. bsample nsamp, strata(female)

. tab female

female Freq. Percent Cum.

male 2,392 33.33 33.33
female 4,784 66.67 100.00

Total 7,176 100.00

Example 8: Oversampling of clusters

For clustered data, sampling more clusters than are present in the original dataset requires more
than just expanding the data. To illustrate, suppose we wanted a bootstrap sample of eight clusters
from a dataset consisting of five clusters of observations.

. use http://www.stata-press.com/data/r12/bsample2, clear

. tabstat x, stat(n mean) by(group)

Summary for variables: x
by categories of: group

group N mean

A 15 -.3073028
B 10 -.00984
C 11 .0810985
D 11 -.1989179
E 29 -.095203

Total 76 -.1153269



bsample — Sampling with replacement 241

bsample will complain if we simply expand the dataset.

. use http://www.stata-press.com/data/r12/bsample2

. expand 3
(152 observations created)

. bsample 8, cluster(group)
resample size must not be greater than number of clusters
r(498);

Expanding the data will only partly solve the problem. We also need a new variable that uniquely
identifies the copied clusters. We use the expandcl command to accomplish both these tasks; see
[D] expandcl.

. use http://www.stata-press.com/data/r12/bsample2, clear

. set seed 1234

. expandcl 2, generate(expgroup) cluster(group)
(76 observations created)

. tabstat x, stat(n mean) by(expgroup)

Summary for variables: x
by categories of: expgroup

expgroup N mean

1 15 -.3073028
2 15 -.3073028
3 10 -.00984
4 10 -.00984
5 11 .0810985
6 11 .0810985
7 11 -.1989179
8 11 -.1989179
9 29 -.095203

10 29 -.095203

Total 152 -.1153269

. gen fw = .
(152 missing values generated)

. bsample 8, cluster(expgroup) weight(fw)

. tabulate fw group

group
fw A B C D E Total

0 15 10 0 0 29 54
1 15 10 22 22 0 69
2 0 0 0 0 29 29

Total 30 20 22 22 58 152

The results from tabulate on the generated frequency weight variable versus the original cluster ID
(group) show us that the bootstrap sample contains one copy of cluster A, one copy of cluster B, two
copies of cluster C, two copies of cluster D, and two copies of cluster E (1 + 1 + 2 + 2 + 2 = 8).
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Example 9: Stratified oversampling of clusters

Suppose that we have a dataset containing two strata with five clusters in each stratum, but the
cluster identifiers are not unique between the strata. To get a stratified bootstrap sample with eight
clusters in each stratum, we first use expandcl to expand the data and get a new cluster ID variable.
We use cluster(strid group) in the call to expandcl; this action will uniquely identify the
2 ∗ 5 = 10 clusters across the strata.

. use http://www.stata-press.com/data/r12/bsample2, clear

. set seed 1234

. tab group strid

strid
group 1 2 Total

A 7 8 15
B 5 5 10
C 5 6 11
D 5 6 11
E 14 15 29

Total 36 40 76

. expandcl 2, generate(expgroup) cluster(strid group)
(76 observations created)

Now we can use bsample with the expanded data, stratum ID variable, and new cluster ID variable.

. gen fw = .
(152 missing values generated)

. bsample 8, cluster(expgroup) str(strid) weight(fw)

. by strid, sort: tabulate fw group

-> strid = 1

group
fw A B C D E Total

0 0 5 0 5 14 24
1 14 5 10 5 0 34
2 0 0 0 0 14 14

Total 14 10 10 10 28 72

-> strid = 2

group
fw A B C D E Total

0 8 10 0 6 0 24
1 8 0 6 6 15 35
2 0 0 6 0 15 21

Total 16 10 12 12 30 80

The results from by strid: tabulate on the generated frequency weight variable versus the original
cluster ID (group) show us how many times each cluster was sampled for each stratum. For stratum
1, the bootstrap sample contains two copies of cluster A, one copy of cluster B, two copies of cluster
C, one copy of cluster D, and two copies of cluster E (2 + 1 + 2 + 1 + 2 = 8). For stratum 2, the
bootstrap sample contains one copy of cluster A, zero copies of cluster B, three copies of cluster C,
one copy of cluster D, and three copies of cluster E (1 + 0 + 3 + 1 + 3 = 8).
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Methods and formulas
bsample is implemented as an ado-file.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] bstat — Report bootstrap results

[R] simulate — Monte Carlo simulations

[D] sample — Draw random sample
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bstat — Report bootstrap results

Syntax

Bootstrap statistics from variables

bstat
[

varlist
] [

if
] [

in
] [

, options
]

Bootstrap statistics from file

bstat
[

namelist
] [

using filename
] [

if
] [

in
] [

, options
]

options Description

Main

stat(vector) observed values for each statistic
accel(vector) acceleration values for each statistic
mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)

n(#) # of observations from which bootstrap samples were taken
notable suppress table of results
noheader suppress table header
nolegend suppress table legend
verbose display the full table legend
title(text) use text as title for bootstrap results
display options control column formats and line width

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Resampling > Report bootstrap results

Description
bstat is a programmer’s command that computes and displays estimation results from bootstrap

statistics.

For each variable in varlist (the default is all variables), then bstat computes a covariance
matrix, estimates bias, and constructs several different confidence intervals (CIs). The following CIs
are constructed by bstat:

1. Normal CIs (using the normal approximation)

2. Percentile CIs

3. Bias-corrected (BC) CIs

4. Bias-corrected and accelerated (BCa) CIs (optional)

244
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estat bootstrap displays a table of one or more of the above confidence intervals; see
[R] bootstrap postestimation.

If there are bootstrap estimation results in e(), bstat replays them. If given the using modifier,
bstat uses the data in filename to compute the bootstrap statistics while preserving the data currently
in memory. Otherwise, bstat uses the data in memory to compute the bootstrap statistics.

The following options may be used to replay estimation results from bstat:

level(#) notable noheader nolegend verbose title(text)

For all other options and the qualifiers using, if, and in, bstat requires a bootstrap dataset.

Options

� � �
Main �

stat(vector) specifies the observed value of each statistic (that is, the value of the statistic using
the original dataset).

accel(vector) specifies the acceleration of each statistic, which is used to construct BCa CIs.

mse specifies that bstat compute the variance by using deviations of the replicates from the observed
value of the statistics. By default, bstat computes the variance by using deviations from the
average of the replicates.

� � �
Reporting �

level(#); see [R] estimation options.

n(#) specifies the number of observations from which bootstrap samples were taken. This value is
used in no calculations but improves the table header when this information is not saved in the
bootstrap dataset.

notable suppresses the display of the output table.

noheader suppresses the display of the table header. This option implies nolegend.

nolegend suppresses the display of the table legend.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

title(text) specifies a title to be displayed above the table of bootstrap results; the default title is
Bootstrap results.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Remarks
Remarks are presented under the following headings:

Bootstrap datasets
Creating a bootstrap dataset
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Bootstrap datasets

Although bstat allows you to specify the observed value and acceleration of each bootstrap
statistic via the stat() and accel() options, programmers may be interested in what bstat uses
when these options are not supplied.

When working from a bootstrap dataset, bstat first checks the data characteristics (see [P] char)
that it understands:

dta[bs version] identifies the version of the bootstrap dataset. This characteristic may be empty
(not defined), 2, or 3; otherwise, bstat will quit and display an error message. This version
tells bstat which other characteristics to look for in the bootstrap dataset.

bstat uses the following characteristics from version 3 bootstrap datasets:
dta[N]
dta[N strata]
dta[N cluster]
dta[command]

varname[observed]
varname[acceleration]
varname[expression]

bstat uses the following characteristics from version 2 bootstrap datasets:
dta[N]
dta[N strata]
dta[N cluster]

varname[observed]
varname[acceleration]

An empty bootstrap dataset version implies that the dataset was created by the bstrap
command in a version of Stata earlier than Stata 8. Here bstat expects varname[bstrap]
to contain the observed value of the statistic identified by varname (varname[observed]
in version 2). All other characteristics are ignored.

dta[N] is the number of observations in the observed dataset. This characteristic may be overruled
by specifying the n() option.

dta[N strata] is the number of strata in the observed dataset.

dta[N cluster] is the number of clusters in the observed dataset.

dta[command] is the command used to compute the observed values of the statistics.

varname[observed] is the observed value of the statistic identified by varname. To specify a different
value, use the stat() option.

varname[acceleration] is the estimate of acceleration for the statistic identified by varname. To
specify a different value, use the accel() option.

varname[expression] is the expression or label that describes the statistic identified by varname.

Creating a bootstrap dataset

Suppose that we are interested in obtaining bootstrap statistics by resampling the residuals from
a regression (which is not possible with the bootstrap command). After loading some data, we
run a regression, save some results relevant to the bstat command, and save the residuals in a new
variable, res.
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight length

Source SS df MS Number of obs = 74
F( 2, 71) = 69.34

Model 1616.08062 2 808.040312 Prob > F = 0.0000
Residual 827.378835 71 11.653223 R-squared = 0.6614

Adj R-squared = 0.6519
Total 2443.45946 73 33.4720474 Root MSE = 3.4137

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0038515 .001586 -2.43 0.018 -.0070138 -.0006891
length -.0795935 .0553577 -1.44 0.155 -.1899736 .0307867
_cons 47.88487 6.08787 7.87 0.000 35.746 60.02374

. matrix b = e(b)

. local n = e(N)

. predict res, residuals

We can resample the residual values in res by generating a random observation ID (rid), generate
a new response variable (y), and run the original regression with the new response variables.

. set seed 54321

. gen rid = int(_N*runiform())+1

. matrix score double y = b

. replace y = y + res[rid]
(74 real changes made)

. regress y weight length

Source SS df MS Number of obs = 74
F( 2, 71) = 103.41

Model 1773.23548 2 886.617741 Prob > F = 0.0000
Residual 608.747732 71 8.57391172 R-squared = 0.7444

Adj R-squared = 0.7372
Total 2381.98321 73 32.629907 Root MSE = 2.9281

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0059938 .0013604 -4.41 0.000 -.0087064 -.0032813
length -.0127875 .0474837 -0.27 0.788 -.1074673 .0818924
_cons 42.23195 5.22194 8.09 0.000 31.8197 52.6442

Instead of programming this resampling inside a loop, it is much more convenient to write a short
program and use the simulate command; see [R] simulate. In the following, mysim r requires
the user to specify a coefficient vector and a residual variable. mysim r then retrieves the list of
predictor variables (removing cons from the list), generates a new temporary response variable with
the resampled residuals, and regresses the new response variable on the predictors.
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program mysim_r
version 12
syntax name(name=bvector), res(varname)
tempvar y rid
local xvars : colnames ‘bvector’
local cons _cons
local xvars : list xvars - cons
matrix score double ‘y’ = ‘bvector’
gen long ‘rid’ = int(_N*runiform()) + 1
replace ‘y’ = ‘y’ + ‘res’[‘rid’]
regress ‘y’ ‘xvars’

end

We can now give mysim r a test run, but we first set the random-number seed (to reproduce
results).

. set seed 54321

. mysim_r b, res(res)
(74 real changes made)

Source SS df MS Number of obs = 74
F( 2, 71) = 103.41

Model 1773.23548 2 886.617741 Prob > F = 0.0000
Residual 608.747732 71 8.57391172 R-squared = 0.7444

Adj R-squared = 0.7372
Total 2381.98321 73 32.629907 Root MSE = 2.9281

__000000 Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0059938 .0013604 -4.41 0.000 -.0087064 -.0032813
length -.0127875 .0474837 -0.27 0.788 -.1074673 .0818924
_cons 42.23195 5.22194 8.09 0.000 31.8197 52.6442

Now that we have a program that will compute the results we want, we can use simulate to
generate a bootstrap dataset and bstat to display the results.

. set seed 54321

. simulate, reps(200) nodots: mysim_r b, res(res)

command: mysim_r b, res(res)

. bstat, stat(b) n(‘n’)

Bootstrap results Number of obs = 74
Replications = 200

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

_b_weight -.0038515 .0015715 -2.45 0.014 -.0069316 -.0007713
_b_length -.0795935 .0552415 -1.44 0.150 -.1878649 .0286779

_b_cons 47.88487 6.150069 7.79 0.000 35.83096 59.93879

Finally, we see that simulate created some of the data characteristics recognized by bstat. All
we need to do is correctly specify the version of the bootstrap dataset, and bstat will automatically
use the relevant data characteristics.
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. char list
_dta[seed]: X681014b5c43f462544a474abacbdd93d12a1
_dta[command]: mysim_r b, res(res)
_b_weight[is_eexp]: 1
_b_weight[colname]: weight
_b_weight[coleq]: _
_b_weight[expression]: _b[weight]
_b_length[is_eexp]: 1
_b_length[colname]: length
_b_length[coleq]: _
_b_length[expression]: _b[length]
_b_cons[is_eexp]: 1
_b_cons[colname]: _cons
_b_cons[coleq]: _
_b_cons[expression]: _b[_cons]

. char _dta[bs_version] 3

. bstat, stat(b) n(‘n’)

Bootstrap results Number of obs = 74
Replications = 200

command: mysim_r b, res(res)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0038515 .0015715 -2.45 0.014 -.0069316 -.0007713
length -.0795935 .0552415 -1.44 0.150 -.1878649 .0286779
_cons 47.88487 6.150069 7.79 0.000 35.83096 59.93879

See Poi (2004) for another example of residual resampling.
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Saved results
bstat saves the following in e():

Scalars
e(N) sample size
e(N reps) number of complete replications
e(N misreps) number of incomplete replications
e(N strata) number of strata
e(N clust) number of clusters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k exp) number of standard expressions
e(k eexp) number of extended expressions (i.e., b)
e(k extra) number of extra equations beyond the original ones from e(b)
e(level) confidence level for bootstrap CIs
e(bs version) version for bootstrap results
e(rank) rank of e(V)

Macros
e(cmd) bstat
e(command) from dta[command]
e(cmdline) command as typed
e(title) title in estimation output
e(exp#) expression for the #th statistic
e(prefix) bootstrap
e(mse) mse if specified
e(vce) bootstrap
e(vcetype) title used to label Std. Err.
e(properties) b V

Matrices
e(b) observed statistics
e(b bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(accel) estimated accelerations
e(ci normal) normal-approximation CIs
e(ci percentile) percentile CIs
e(ci bc) bias-corrected CIs
e(ci bca) bias-corrected and accelerated CIs
e(V) bootstrap variance–covariance matrix

Methods and formulas
bstat is implemented as an ado-file.

Reference
Poi, B. P. 2004. From the help desk: Some bootstrapping techniques. Stata Journal 4: 312–328.

Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] bsample — Sampling with replacement

http://www.stata-journal.com/sjpdf.html?articlenum=st0073
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centile — Report centile and confidence interval

Syntax
centile

[
varlist

] [
if
] [

in
] [

, options
]

options Description

Main

centile(numlist) report specified centiles; default is centile(50)

Options

cci binomial exact; conservative confidence interval
normal normal, based on observed centiles
meansd normal, based on mean and standard deviation
level(#) set confidence level; default is level(95)

by is allowed; see [D] by.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Centiles with CIs

Description
centile estimates specified centiles and calculates confidence intervals. If no varlist is specified,

centile calculates centiles for all the variables in the dataset. If centile() is not specified, medians
(centile(50)) are reported.

Options

� � �
Main �

centile(numlist) specifies the centiles to be reported. The default is to display the 50th centile.
Specifying centile(5) requests that the fifth centile be reported. Specifying centile(5 50
95) requests that the 5th, 50th, and 95th centiles be reported. Specifying centile(10(10)90)
requests that the 10th, 20th, . . . , 90th centiles be reported; see [U] 11.1.8 numlist.

� � �
Options �

cci (conservative confidence interval) forces the confidence limits to fall exactly on sample values.
Confidence intervals displayed with the cci option are slightly wider than those with the default
(nocci) option.

normal causes the confidence interval to be calculated by using a formula for the standard error
of a normal-distribution quantile given by Kendall and Stuart (1969, 237). The normal option is
useful when you want empirical centiles—that is, centiles based on sample order statistics rather
than on the mean and standard deviation—and are willing to assume normality.
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meansd causes the centile and confidence interval to be calculated based on the sample mean and
standard deviation, and it assumes normality.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

Remarks
The qth centile of a continuous random variable, X , is defined as the value of Cq , which fulfills

the condition Pr(X ≤ Cq) = q/100. The value of q must be in the range 0 < q < 100, though q
is not necessarily an integer. By default, centile estimates Cq for the variables in varlist and for
the values of q given in centile(numlist). It makes no assumptions about the distribution of X ,
and, if necessary, uses linear interpolation between neighboring sample values. Extreme centiles (for
example, the 99th centile in samples smaller than 100) are fixed at the minimum or maximum sample
value. An “exact” confidence interval for Cq is also given, using the binomial-based method described
below in Methods and formulas and in Conover (1999, 143–148). Again linear interpolation is used
to improve the accuracy of the estimated confidence limits, but extremes are fixed at the minimum
or maximum sample value.

You can prevent centile from interpolating when calculating binomial-based confidence intervals
by specifying cci. The resulting intervals are generally wider than with the default; that is, the
coverage (confidence level) tends to be greater than the nominal value (given as usual by level(#),
by default 95%).

If the data are believed to be normally distributed (a common case), there are two alternative
methods for estimating centiles. If normal is specified, Cq is calculated, as just described, but its
confidence interval is based on a formula for the standard error (se) of a normal-distribution quantile
given by Kendall and Stuart (1969, 237). If meansd is alternatively specified, Cq is estimated as
x+ zq × s, where x and s are the sample mean and standard deviation, and zq is the qth centile of
the standard normal distribution (for example, z95 = 1.645). The confidence interval is derived from
the se of the estimate of Cq .

Example 1

Using auto.dta, we estimate the 5th, 50th, and 95th centiles of the price variable:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. format price %8.2fc

. centile price, centile(5 50 95)

Binom. Interp.
Variable Obs Percentile Centile [95% Conf. Interval]

price 74 5 3,727.75 3,291.23 3,914.16
50 5,006.50 4,593.57 5,717.90
95 13,498.00 11,061.53 15,865.30

summarize produces somewhat different results from centile; see Methods and formulas.
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. summarize price, detail

Price

Percentiles Smallest
1% 3291 3291
5% 3748 3299

10% 3895 3667 Obs 74
25% 4195 3748 Sum of Wgt. 74

50% 5006.5 Mean 6165.257
Largest Std. Dev. 2949.496

75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188

The confidence limits produced by using the cci option are slightly wider than those produced
without this option:

. centile price, c(5 50 95) cci

Binomial Exact
Variable Obs Percentile Centile [95% Conf. Interval]

price 74 5 3,727.75 3,291.00 3,955.00
50 5,006.50 4,589.00 5,719.00
95 13,498.00 10,372.00 15,906.00

If we are willing to assume that price is normally distributed, we could include either the normal
or the meansd option:

. centile price, c(5 50 95) normal

Normal, based on observed centiles
Variable Obs Percentile Centile [95% Conf. Interval]

price 74 5 3,727.75 3,211.19 4,244.31
50 5,006.50 4,096.68 5,916.32
95 13,498.00 5,426.81 21,569.19

. centile price, c(5 50 95) meansd

Normal, based on mean and std. dev.
Variable Obs Percentile Centile [95% Conf. Interval]

price 74 5 1,313.77 278.93 2,348.61
50 6,165.26 5,493.24 6,837.27
95 11,016.75 9,981.90 12,051.59

With the normal option, the centile estimates are, by definition, the same as before. The confidence
intervals for the 5th and 50th centiles are similar to the previous ones, but the interval for the
95th centile is different. The results using the meansd option also differ from both previous sets of
estimates.

We can use sktest (see [R] sktest) to check the correctness of the normality assumption:

. sktest price

Skewness/Kurtosis tests for Normality
joint

Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

price 74 0.0000 0.0127 21.77 0.0000
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sktest reveals that price is definitely not normally distributed, so the normal assumption is not
reasonable, and the normal and meansd options are not appropriate for these data. We should rely
on the results from the default choice, which does not assume normality. If the data are normally
distributed, however, the precision of the estimated centiles and their confidence intervals will be
ordered (best) meansd > normal > [default] (worst). The normal option is useful when we really
do want empirical centiles (that is, centiles based on sample order statistics rather than on the mean
and standard deviation) but are willing to assume normality.

Saved results
centile saves the following in r():

Scalars
r(N) number of observations
r(n cent) number of centiles requested
r(c #) value of # centile
r(lb #) #-requested centile lower confidence bound
r(ub #) #-requested centile upper confidence bound

Macros
r(centiles) centiles requested

Methods and formulas
centile is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Default case
Normal case
meansd case

Default case

The calculation is based on the method of Mood and Graybill (1963, 408). Let x1 ≤ x2 ≤ · · · ≤ xn
be a sample of size n arranged in ascending order. Denote the estimated qth centile of the x’s as
cq . We require that 0 < q < 100. Let R = (n+ 1)q/100 have integer part r and fractional part f ;
that is, r = int(R) and f = R − r. (If R is itself an integer, then r = R and f = 0.) Note that
0 ≤ r ≤ n. For convenience, define x0 = x1 and xn+1 = xn. Cq is estimated by

cq = xr + f × (xr+1 − xr)

that is, cq is a weighted average of xr and xr+1. Loosely speaking, a (conservative) p% confidence
interval for Cq involves finding the observations ranked t and u, which correspond, respectively, to
the α = (100− p)/200 and 1−α quantiles of a binomial distribution with parameters n and q/100,
that is, B(n, q/100). More precisely, define the ith value (i = 0, . . . , n) of the cumulative binomial
distribution function as Fi = Pr(S ≤ i), where S has distribution B(n, q/100). For convenience,
let F−1 = 0 and Fn+1 = 1. t is found such that Ft ≤ α and Ft+1 > α, and u is found such that
1− Fu ≤ α and 1− Fu−1 > α.

With the cci option in force, the (conservative) confidence interval is (xt+1, xu+1), and its actual
coverage probability is Fu − Ft.
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The default case uses linear interpolation on the Fi as follows. Let

g = (α− Ft)/(Ft+1 − Ft)
h = {α− (1− Fu)}/{(1− Fu−1)− (1− Fu)}

= (α− 1 + Fu)/(Fu − Fu−1)

The interpolated lower and upper confidence limits (cqL, cqU ) for Cq are

cqL = xt+1 + g × (xt+2 − xt+1)

cqU = xu+1 − h× (xu+1 − xu)

Suppose that we want a 95% confidence interval for the median of a sample of size 13. n = 13,
q = 50, p = 95, α = 0.025, R = 14 × 50/100 = 7, and f = 0. Therefore, the median is the 7th
observation. Some example data, xi, and the values of Fi are as follows:

i Fi 1− Fi xi i Fi 1− Fi xi

0 0.0001 0.9999 – 7 0.7095 0.2905 33
1 0.0017 0.9983 5 8 0.8666 0.1334 37
2 0.0112 0.9888 7 9 0.9539 0.0461 45
3 0.0461 0.9539 10 10 0.9888 0.0112 59
4 0.1334 0.8666 15 11 0.9983 0.0017 77
5 0.2905 0.7095 23 12 0.9999 0.0001 104
6 0.5000 0.5000 28 13 1.0000 0.0000 211

The median is x7 = 33. Also, F2 ≤ 0.025 and F3 > 0.025, so t = 2; 1 − F10 ≤ 0.025 and
1− F9 > 0.025, so u = 10. The conservative confidence interval is therefore

(c50L, c50U ) = (xt+1, xu+1) = (x3, x11) = (10, 77)

with actual coverage F10−F2 = 0.9888−0.0112 = 0.9776 (97.8% confidence). For the interpolation
calculation, we have

g = (0.025− 0.0112)/(0.0461− 0.0112) = 0.395

h = (0.025− 1 + 0.9888)/(0.9888− 0.9539) = 0.395

So,
c50L = x3 + 0.395× (x4 − x3) = 10 + 0.395× 5 = 11.98

c50U = x11 − 0.395× (x11 − x10) = 77− 0.395× 18 = 69.89

Normal case
The value of cq is as above. Its se is given by the formula

sq =
√
q(100− q)

/{
100
√
nZ(cq;x, s)

}
where x and s are the mean and standard deviation of the xi, and

Z(Y ;µ, σ) =
(

1
/√

2πσ2
)
e−(Y−µ)2/2σ2

is the density function of a normally distributed variable Y with mean µ and standard deviation σ.
The confidence interval for Cq is (cq − z100(1−α)sq, cq + z100(1−α)sq).
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meansd case
The value of cq is x+ zq × s. Its se is given by the formula

s?q = s
√

1/n+ z2
q/(2n− 2)

The confidence interval for Cq is (cq − z100(1−α) × s?q , cq + z100(1−α) × s?q).
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Title

ci — Confidence intervals for means, proportions, and counts

Syntax
Syntax for ci

ci
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Immediate command for variable distributed as normal

cii #obs #mean #sd

[
, ciin option

]
Immediate command for variable distributed as binomial

cii #obs #succ

[
, ciib options

]
Immediate command for variable distributed as Poisson

cii #exposure #events , poisson
[

ciip options
]

options Description

Main

binomial binomial 0/1 variables; compute exact confidence intervals
poisson Poisson variables; compute exact confidence intervals
exposure(varname) exposure variable; implies poisson

exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti–Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals
total add output for all groups combined (for use with by only)
separator(#) draw separator line after every # variables; default is separator(5)

level(#) set confidence level; default is level(95)

by is allowed with ci; see [D] by.
aweights and fweights are allowed, but aweights may not be specified with the binomial or

poisson options; see [U] 11.1.6 weight.

ciin option Description

level(#) set confidence level; default is level(95)
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ciib options Description

level(#) set confidence level; default is level(95)

exact calculate exact confidence intervals; the default
wald calculate Wald confidence intervals
wilson calculate Wilson confidence intervals
agresti calculate Agresti–Coull confidence intervals
jeffreys calculate Jeffreys confidence intervals

ciip options Description

∗poisson numbers are Poisson-distributed counts
level(#) set confidence level; default is level(95)

∗poisson is required.

Menu
ci

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Confidence intervals

cii for variable distributed as normal

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Normal CI calculator

cii for variable distributed as binomial

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Binomial CI calculator

cii for variable distributed as Poisson

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Poisson CI calculator

Description
ci computes standard errors and confidence intervals for each of the variables in varlist.

cii is the immediate form of ci; see [U] 19 Immediate commands for a general discussion of
immediate commands.

In the binomial and Poisson variants of cii, the second number specified (#succ or #events) must
be an integer or between 0 and 1. If the number is between 0 and 1, Stata interprets it as the fraction
of successes or events and converts it to an integer number representing the number of successes or
events. The computation then proceeds as if two integers had been specified.

Options

� � �
Main �

binomial tells ci that the variables are 0/1 variables and that binomial confidence intervals will be
calculated. (cii produces binomial confidence intervals when only two numbers are specified.)
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poisson specifies that the variables (or numbers for cii) are Poisson-distributed counts; exact Poisson
confidence intervals will be calculated.

exposure(varname) is used only with poisson. You do not need to specify poisson if you specify
exposure(); poisson is assumed. varname contains the total exposure (typically a time or an
area) during which the number of events recorded in varlist were observed.

exact, wald, wilson, agresti, and jeffreys specify that variables are 0/1 and specify how
binomial confidence intervals are to be calculated.

exact is the default and specifies exact (also known in the literature as Clopper–Pearson [1934])
binomial confidence intervals.

wald specifies calculation of Wald confidence intervals.

wilson specifies calculation of Wilson confidence intervals.

agresti specifies calculation of Agresti–Coull confidence intervals.

jeffreys specifies calculation of Jeffreys confidence intervals.

See Brown, Cai, and DasGupta (2001) for a discussion and comparison of the different binomial
confidence intervals.

total is for use with the by prefix. It requests that, in addition to output for each by-group, output
be added for all groups combined.

separator(#) specifies how often separation lines should be inserted into the output. The default is
separator(5), meaning that a line is drawn after every five variables. separator(10) would
draw the line after every 10 variables. separator(0) suppresses the separation line.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

Remarks
Remarks are presented under the following headings:

Ordinary confidence intervals
Binomial confidence intervals
Poisson confidence intervals
Immediate form

Ordinary confidence intervals

Example 1

Without the binomial or poisson options, ci produces “ordinary” confidence intervals, meaning
those that are correct if the variable is distributed normally, and asymptotically correct for all other
distributions satisfying the conditions of the central limit theorem.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ci mpg price

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
price 74 6165.257 342.8719 5481.914 6848.6
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The standard error of the mean of mpg is 0.67, and the 95% confidence interval is [ 19.96, 22.64 ].
We can obtain wider confidence intervals, 99%, by typing

. ci mpg price, level(99)

Variable Obs Mean Std. Err. [99% Conf. Interval]

mpg 74 21.2973 .6725511 19.51849 23.07611
price 74 6165.257 342.8719 5258.405 7072.108

Example 2

by() breaks out the confidence intervals according to by-group; total adds an overall summary.
For instance,

. ci mpg, by(foreign) total

-> foreign = Domestic

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 52 19.82692 .657777 18.50638 21.14747

-> foreign = Foreign

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 22 24.77273 1.40951 21.84149 27.70396

-> Total

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Technical note
You can control the formatting of the numbers in the output by specifying a display format for

the variable; see [U] 12.5 Formats: Controlling how data are displayed. For instance,

. format mpg %9.2f

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.30 0.67 19.96 22.64

Binomial confidence intervals

Example 3

We have data on employees, including a variable marking whether the employee was promoted
last year.
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. use http://www.stata-press.com/data/r12/promo

. ci promoted, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0123485 .3169827

The above interval is the default for binomial data, known equivalently as both the exact binomial
and the Clopper–Pearson interval.

Nominally, the interpretation of a 95% confidence interval is that under repeated samples or
experiments, 95% of the resultant intervals would contain the unknown parameter in question.
However, for binomial data, the actual coverage probability, regardless of method, usually differs from
that interpretation. This result occurs because of the discreteness of the binomial distribution, which
produces only a finite set of outcomes, meaning that coverage probabilities are subject to discrete
jumps and the exact nominal level cannot always be achieved. Therefore, the term exact confidence
interval refers to its being derived from the binomial distribution, the distribution exactly generating
the data, rather than resulting in exactly the nominal coverage.

For the Clopper–Pearson interval, the actual coverage probability is guaranteed to be greater
than or equal to the nominal confidence level, here 95%. Because of the way it is calculated—see
Methods and formulas—it may also be interpreted as follows: If the true probability of being promoted
were 0.012, the chances of observing a result as extreme or more extreme than the result observed
(20× 0.1 = 2 or more promotions) would be 2.5%. If the true probability of being promoted were
0.317, the chances of observing a result as extreme or more extreme than the result observed (two
or fewer promotions) would be 2.5%.

Example 4

The Clopper–Pearson interval is desirable because it guarantees nominal coverage; however, by
dropping this restriction, you may obtain accurate intervals that are not as conservative. In this vein,
you might opt for the Wilson (1927) interval,

. ci promoted, binomial wilson

Wilson
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0278665 .3010336

the Agresti–Coull (1998) interval,

. ci promoted, binomial agresti

Agresti-Coull
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0156562 .3132439

or the Bayesian-derived Jeffreys interval (Brown, Cai, and DasGupta 2001),

. ci promoted, binomial jeffreys

Jeffreys
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 .1 .067082 .0213725 .2838533
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Picking the best interval is a matter of balancing accuracy (coverage) against precision (average
interval length) and depends on sample size and success probability. Brown, Cai, and DasGupta (2001)
recommend the Wilson or Jeffreys interval for small sample sizes (≤40) yet favor the Agresti–Coull
interval for its simplicity, decent performance for sample sizes less than or equal to 40, and performance
comparable to Wilson/Jeffreys for sample sizes greater than 40. They also deem the Clopper–Pearson
interval to be “wastefully conservative and [. . . ] not a good choice for practical use”, unless of course
one requires, at a minimum, the nominal coverage level.

Finally, the binomial Wald confidence interval is obtained by specifying the binomial and wald
options. The Wald interval is the one taught in most introductory statistics courses and for the above
is simply, for level 1− α, Mean±zα(Std. Err.), where zα is the 1− α/2 quantile of the standard
normal. Because its overall poor performance makes it impractical, the Wald interval is available
mainly for pedagogical purposes. The binomial Wald interval is also similar to the interval produced
by treating binary data as normal data and using ci without the binomial option, with two exceptions.
First, when binomial is specified, the calculation of the standard error uses denominator n rather
than n − 1, used for normal data. Second, confidence intervals for normal data are based on the
t distribution rather than the standard normal. Of course, both discrepancies vanish as sample size
increases.

Technical note

Let’s repeat example 3, but this time with data in which there are no promotions over the observed
period:

. use http://www.stata-press.com/data/r12/promonone

. ci promoted, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

promoted 20 0 0 0 .1684335*

(*) one-sided, 97.5% confidence interval

The confidence interval is [ 0, 0.168 ], and this is the confidence interval that most books publish. It
is not, however, a true 95% confidence interval because the lower tail has vanished. As Stata notes,
it is a one-sided, 97.5% confidence interval. If you wanted to put 5% in the right tail, you could type
ci promoted, binomial level(90).

Technical note
ci with the binomial option ignores any variables that do not take on the values 0 and 1

exclusively. For instance, with our automobile dataset,
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ci mpg foreign, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

foreign 74 .2972973 .0531331 .196584 .4148353

We also requested the confidence interval for mpg, but Stata ignored us. It does that so you can type
ci, binomial and obtain correct confidence intervals for all the variables that are 0/1 in your data.
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Poisson confidence intervals

Example 5

We have data on the number of bacterial colonies on a Petri dish. The dish has been divided into
36 small squares, and the number of colonies in each square has been counted. Each observation in
our dataset represents a square on the dish. The variable count records the number of colonies in
each square counted, which varies from 0 to 5.

. use http://www.stata-press.com/data/r12/petri

. ci count, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 36 2.333333 .2545875 1.861158 2.888825

ci reports that the average number of colonies per square is 2.33. If the expected number of colonies
per square were as low as 1.86, the probability of observing 2.33 or more colonies per square would
be 2.5%. If the expected number were as large as 2.89, the probability of observing 2.33 or fewer
colonies per square would be 2.5%.

Technical note
The number of “observations”—how finely the Petri dish is divided—makes no difference. The

Poisson distribution is a function only of the count. In example 4, we observed a total of 2.33×36 = 84
colonies and a confidence interval of [ 1.86× 36, 2.89× 36 ] = [ 67, 104 ]. We would obtain the same
[ 67, 104 ] confidence interval if our dish were divided into, say, 49 squares, rather than 36.

For the counts, it is not even important that all the squares be of the same size. For rates, however,
such differences do matter, but in an easy-to-calculate way. Rates are obtained from counts by dividing
by exposure, which is typically a number multiplied by either time or an area. For our Petri dishes,
we divide by an area to obtain a rate, but if our example were cast in terms of being infected by a
disease, we might divide by person-years to obtain the rate. Rates are convenient because they are
easier to compare: we might have 2.3 colonies per square inch or 0.0005 infections per person-year.

So, let’s assume that we wish to obtain the number of colonies per square inch, and, moreover,
that not all the “squares” on our dish are of equal size. We have a variable called area that records
the area of each “square”:

. ci count, exposure(area)

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 3 28 3.055051 22.3339 34.66591

The rates are now in more familiar terms. In our sample, there are 28 colonies per square inch and
the 95% confidence interval is [ 22.3, 34.7 ]. When we did not specify exposure(), ci assumed that
each observation contributed 1 to exposure.



264 ci — Confidence intervals for means, proportions, and counts

Technical note
As with the binomial option, if there were no colonies on our dish, ci would calculate a one-sided

confidence interval:

. use http://www.stata-press.com/data/r12/petrinone

. ci count, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

count 36 0 0 0 .1024689*

(*) one-sided, 97.5% confidence interval

Immediate form

Example 6

We are reading a soon-to-be-published paper by a colleague. In it is a table showing the number of
observations, mean, and standard deviation of 1980 median family income for the Northeast and West.
We correctly think that the paper would be much improved if it included the confidence intervals.
The paper claims that for 166 cities in the Northeast, the average of median family income is $19,509
with a standard deviation of $4,379:

For the Northeast:

. cii 166 19509 4379

Variable Obs Mean Std. Err. [95% Conf. Interval]

166 19509 339.8763 18837.93 20180.07

For the West:

. cii 256 22557 5003

Variable Obs Mean Std. Err. [95% Conf. Interval]

256 22557 312.6875 21941.22 23172.78

Example 7

We flip a coin 10 times, and it comes up heads only once. We are shocked and decide to obtain
a 99% confidence interval for this coin:

. cii 10 1, level(99)

Binomial Exact
Variable Obs Mean Std. Err. [99% Conf. Interval]

10 .1 .0948683 .0005011 .5442871
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Example 8

The number of reported traffic accidents in Santa Monica over a 24-hour period is 27. We need
know nothing else:

. cii 1 27, poisson

Poisson Exact
Variable Exposure Mean Std. Err. [95% Conf. Interval]

1 27 5.196152 17.79317 39.28358

Saved results
ci and cii saves the following in r():

Scalars
r(N) number of observations or exposure r(lb) lower bound of confidence interval
r(mean) mean r(ub) upper bound of confidence interval
r(se) estimate of standard error

Methods and formulas
ci and cii are implemented as ado-files.

Methods and formulas are presented under the following headings:

Ordinary
Binomial
Poisson

Ordinary

Define n, x, and s2 as, respectively, the number of observations, (weighted) average, and (unbiased)
estimated variance of the variable in question; see [R] summarize.

The standard error of the mean, sµ, is defined as
√
s2/n.

Let α be 1 − l/100, where l is the significance level specified by the user. Define tα as the
two-sided t statistic corresponding to a significance level of α with n − 1 degrees of freedom; tα
is obtained from Stata as invttail(n-1,0.5*α). The lower and upper confidence bounds are,
respectively, x− sµtα and x+ sµtα.

Binomial

Given k successes of n trials, the estimated probability is p̂ = k/nwith standard error
√
p̂(1− p̂)/n.

ci calculates the exact (Clopper–Pearson) confidence interval [ p1, p2 ] such that

Pr(K ≥ k|p = p1) = α/2

and
Pr(K ≤ k|p = p2) = α/2
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where K is distributed as binomial(n, p). The endpoints may be obtained directly by using Stata’s
invbinomial() function. If k = 0 or k = n, the calculation of the appropriate tail is skipped.

The Wald interval is p̂ ± zα
√
p̂(1− p̂)/n, where zα is the 1 − α/2 quantile of the standard

normal. The interval is obtained by inverting the acceptance region of the large-sample Wald test of
H0 : p = p0 versus the two-sided alternative. That is, the confidence interval is the set of all p0 such
that ∣∣∣∣∣ p̂− p0√

n−1p̂(1− p̂)

∣∣∣∣∣ ≤ zα
The Wilson interval is a variation on the Wald interval, using the null standard error

√
n−1p0(1− p0)

in place of the estimated standard error
√
n−1p̂(1− p̂) in the above expression. Inverting this

acceptance region is more complicated yet results in the closed form

k + z2
α/2

n+ z2
α

± zαn
1/2

n+ z2
α/2

{
p̂(1− p̂) +

z2
α

4n

}1/2

The Agresti–Coull interval is basically a Wald interval that borrows its center from the Wilson
interval. Defining k̃ = k + z2

α/2, ñ = n+ z2
α, and (hence) p̃ = k̃/ñ, the Agresti–Coull interval is

p̃± zα
√
p̃(1− p̃)/ñ

When α = 0.05, zα is near enough to 2 that p̃ can be thought of as a typical estimate of proportion
where two successes and two failures have been added to the sample (Agresti and Coull 1998).
This typical estimate of proportion makes the Agresti–Coull interval an easy-to-present alternative
for introductory statistics students.

The Jeffreys interval is a Bayesian interval and is based on the Jeffreys prior, which is the
Beta(1/2, 1/2) distribution. Assigning this prior to p results in a posterior distribution for p that is
Beta with parameters k+1/2 and n−k+1/2. The Jeffreys interval is then taken to be the 1−α central
posterior probability interval, namely, the α/2 and 1−α/2 quantiles of the Beta(k+1/2, n−k+1/2)
distribution. These quantiles may be obtained directly by using Stata’s invibeta() function.

Poisson

Given the total cases, k, the estimate of the expected count λ is k, and its standard error is
√
k.

ci calculates the exact confidence interval [λ1, λ2 ] such that

Pr(K ≥ k|λ = λ1) = α/2

and
Pr(K ≤ k|λ = λ2) = α/2

where K is Poisson with mean λ. Solution is by Newton’s method. If k = 0, the calculation of λ1

is skipped. All values are then reported as rates, which are the above numbers divided by the total
exposure.
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Harold Jeffreys (1891–1989) was born near Durham, England, and spent more than 75 years
studying and working at the University of Cambridge, principally on theoretical and observational
problems in geophysics, astronomy, mathematics, and statistics. He developed a systematic
Bayesian approach to inference in his monograph Theory of Probability.

Edwin Bidwell (E. B.) Wilson (1879–1964) majored in mathematics at Harvard and studied and
taught at Yale and MIT before returning to Harvard in 1922. He worked in mathematics, physics,
and statistics. His method for binomial intervals can be considered a precursor, for a particular
problem, of Neyman’s concept of confidence intervals.� �

� �
Jerzy Neyman (1894–1981) was born in Bendery, Russia, now Moldavia. He studied and then
taught at Kharkov University, moving from physics to mathematics. In 1921, Neyman moved
to Poland, where he worked in statistics at Bydgoszcz and then Warsaw. Neyman received a
Rockefeller Fellowship to work with Karl Pearson at University College London. There, he
collaborated with Egon Pearson, Karl’s son, on the theory of hypothesis testing. Life in Poland
became progressively more difficult, and Neyman returned to UCL to work there from 1934 to 1938.
At this time, he published on the theory of confidence intervals. He then was offered a post in
California at Berkeley, where he settled. Neyman established an outstanding statistics department
and remained highly active in research, including applications in astronomy, meteorology, and
medicine. He was one of the great statisticians of the 20th century.� �
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Title

clogit — Conditional (fixed-effects) logistic regression

Syntax
clogit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, group(varname)

[
options

]
options Description

Model
∗group(varname) matched group variable
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

nonest do not check that panels are nested within clusters

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗group(varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy are

allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nonest, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight), but they are interpreted to apply to groups

as a whole, not to individual observations. See Use of weights below.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Categorical outcomes > Conditional logistic regression

269
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Description
clogit fits what biostatisticians and epidemiologists call conditional logistic regression for matched

case–control groups (see, for example, Hosmer and Lemeshow [2000, chap. 7]) and what economists
and other social scientists call fixed-effects logit for panel data (see, for example, Chamberlain [1980]).
Computationally, these models are the same. depvar equal to nonzero and nonmissing (typically depvar
equal to one) indicates a positive outcome, whereas depvar equal to zero indicates a negative outcome.

See [R] asclogit if you want to fit McFadden’s choice model (McFadden 1974). Also see [R] logistic
for a list of related estimation commands.

Options

� � �
Model �

group(varname) is required; it specifies an identifier variable (numeric or string) for the matched
groups. strata(varname) is a synonym for group().

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

nonest, available only with vce(cluster clustvar), prevents checking that matched groups are
nested within clusters. It is the user’s responsibility to verify that the standard errors are theoretically
correct.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with clogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

Introduction
Matched case–control data
Use of weights
Fixed-effects logit

Introduction

clogit fits maximum likelihood models with a dichotomous dependent variable coded as 0/1
(more precisely, clogit interprets 0 and not 0 to indicate the dichotomy). Conditional logistic analysis
differs from regular logistic regression in that the data are grouped and the likelihood is calculated
relative to each group; that is, a conditional likelihood is used. See Methods and formulas at the end
of this entry.

Biostatisticians and epidemiologists fit these models when analyzing matched case–control studies
with 1 :1 matching, 1 :k2i matching, or k1i :k2i matching, where i denotes the ith matched group for
i = 1, 2, . . . , n, where n is the total number of groups. clogit fits a model appropriate for all these
matching schemes or for any mix of the schemes because the matching k1i :k2i can vary from group
to group. clogit always uses the true conditional likelihood, not an approximation. Biostatisticians
and epidemiologists sometimes refer to the matched groups as “strata”, but we will stick to the more
generic term “group”.

Economists and other social scientists fitting fixed-effects logit models have data that look exactly
like the data biostatisticians and epidemiologists call k1i : k2i matched case–control data. In terms
of how the data are arranged, k1i :k2i matching means that in the ith group, the dependent variable
is 1 a total of k1i times and 0 a total of k2i times. There are a total of Ti = k1i + k2i observations
for the ith group. This data arrangement is what economists and other social scientists call “panel
data”, “longitudinal data”, or “cross-sectional time-series data”.

So no matter what terminology you use, the computation and the use of the clogit command is
the same. The following example shows how your data should be arranged to use clogit.

Example 1

Suppose that we have grouped data with the variable id containing a unique identifier for each
group. Our outcome variable, y, contains 0s and 1s. If we were biostatisticians, y = 1 would indicate
a case, y = 0 would be a control, and id would be an identifier variable that indicates the groups of
matched case–control subjects.

If we were economists, y = 1 might indicate that a person was unemployed at any time during
a year and y = 0, that a person was employed all year, and id would be an identifier variable for
persons.
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If we list the first few observations of this dataset, it looks like

. use http://www.stata-press.com/data/r12/clogitid

. list y x1 x2 id in 1/11

y x1 x2 id

1. 0 0 4 1014
2. 0 1 4 1014
3. 0 1 6 1014
4. 1 1 8 1014
5. 0 0 1 1017

6. 0 0 7 1017
7. 1 1 10 1017
8. 0 0 1 1019
9. 0 1 7 1019

10. 1 1 7 1019

11. 1 1 9 1019

Pretending that we are biostatisticians, we describe our data as follows. The first group (id = 1014)
consists of four matched persons: 1 case (y = 1) and three controls (y = 0), that is, 1 :3 matching.
The second group has 1 :2 matching, and the third 2 :2.

Pretending that we are economists, we describe our data as follows. The first group consists of
4 observations (one per year) for person 1014. This person had a period of unemployment during 1
year of 4. The second person had a period of unemployment during 1 year of 3, and the third had a
period of 2 years of 4.

Our independent variables are x1 and x2. To fit the conditional (fixed-effects) logistic model, we
type

. clogit y x1 x2, group(id)
note: multiple positive outcomes within groups encountered.

Iteration 0: log likelihood = -123.42828
Iteration 1: log likelihood = -123.41386
Iteration 2: log likelihood = -123.41386

Conditional (fixed-effects) logistic regression Number of obs = 369
LR chi2(2) = 9.07
Prob > chi2 = 0.0107

Log likelihood = -123.41386 Pseudo R2 = 0.0355

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .653363 .2875215 2.27 0.023 .0898312 1.216895
x2 .0659169 .0449555 1.47 0.143 -.0221943 .1540281

Technical note
The message “note: multiple positive outcomes within groups encountered” at the top of the

clogit output for the previous example merely informs us that we have k1i : k2i matching with
k1i > 1 for at least one group. If your data should be 1 : k2i matched, this message tells you that
there is an error in the data somewhere.



clogit — Conditional (fixed-effects) logistic regression 273

We can see the distribution of k1i and Ti = k1i + k2i for the data of the previous example by
using the following steps:

. by id, sort: gen k1 = sum(y)

. by id: replace k1 = . if _n < _N
(303 real changes made, 303 to missing)

. by id: gen T = sum(y < .)

. by id: replace T = . if _n < _N
(303 real changes made, 303 to missing)

. tab k1

k1 Freq. Percent Cum.

1 48 72.73 72.73
2 12 18.18 90.91
3 4 6.06 96.97
4 2 3.03 100.00

Total 66 100.00

. tab T

T Freq. Percent Cum.

2 5 7.58 7.58
3 5 7.58 15.15
4 12 18.18 33.33
5 11 16.67 50.00
6 13 19.70 69.70
7 8 12.12 81.82
8 3 4.55 86.36
9 7 10.61 96.97

10 2 3.03 100.00

Total 66 100.00

We see that k1i ranges from 1 to 4 and Ti ranges from 2 to 10 for these data.

Technical note
For k1i :k2i matching (and hence in the general case of fixed-effects logit), clogit uses a recursive

algorithm to compute the likelihood, which means that there are no limits on the size of Ti. However,
computation time is proportional to

∑
Ti min(k1i, k2i), so clogit will take roughly 10 times longer

to fit a model with 10 :10 matching than one with 1 :10 matching. But clogit is fast, so computation
time becomes an issue only when min(k1i, k2i) is around 100 or more. See Methods and formulas
for details.

Matched case–control data
Here we give a more detailed example of matched case–control data.



274 clogit — Conditional (fixed-effects) logistic regression

Example 2

Hosmer and Lemeshow (2000, 25) present data on matched pairs of infants, each pair having
one with low birthweight and another with regular birthweight. The data are matched on age of the
mother. Several possible maternal exposures are considered: race (three categories), smoking status,
presence of hypertension, presence of uterine irritability, previous preterm delivery, and weight at the
last menstrual period.

. use http://www.stata-press.com/data/r12/lowbirth2, clear
(Applied Logistic Regression, Hosmer & Lemeshow)

. describe

Contains data from http://www.stata-press.com/data/r12/lowbirth2.dta
obs: 112 Applied Logistic Regression,

Hosmer & Lemeshow
vars: 9 26 Apr 2011 09:33
size: 1,456

storage display value
variable name type format label variable label

pairid byte %8.0g Case-control pair ID
low byte %8.0g Baby has low birthweight
age byte %8.0g Age of mother
lwt int %8.0g Mother’s last menstrual weight
smoke byte %8.0g Mother smoked during pregnancy
ptd byte %8.0g Mother had previous preterm baby
ht byte %8.0g Mother has hypertension
ui byte %8.0g Uterine irritability
race float %9.0g race of mother: 1=white, 2=black,

3=other

Sorted by:

We list the case–control indicator variable, low; the match identifier variable, pairid; and two of
the covariates, lwt and smoke, for the first 10 observations.

. list low lwt smoke pairid in 1/10

low lwt smoke pairid

1. 0 135 0 1
2. 1 101 1 1
3. 0 98 0 2
4. 1 115 0 2
5. 0 95 0 3

6. 1 130 0 3
7. 0 103 0 4
8. 1 130 1 4
9. 0 122 1 5

10. 1 110 1 5

We fit a conditional logistic model of low birthweight on mother’s weight, race, smoking behavior,
and history.
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. clogit low lwt smoke ptd ht ui i.race, group(pairid) nolog

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005

Log likelihood = -25.794271 Pseudo R2 = 0.3355

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwt -.0183757 .0100806 -1.82 0.068 -.0381333 .0013819
smoke 1.400656 .6278396 2.23 0.026 .1701131 2.631199

ptd 1.808009 .7886502 2.29 0.022 .2622828 3.353735
ht 2.361152 1.086128 2.17 0.030 .2323796 4.489924
ui 1.401929 .6961585 2.01 0.044 .0374836 2.766375

race
2 .5713643 .689645 0.83 0.407 -.7803149 1.923044
3 -.0253148 .6992044 -0.04 0.971 -1.39573 1.345101

We might prefer to see results presented as odds ratios. We could have specified the or option when
we first fit the model, or we can now redisplay results and specify or:

. clogit, or

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(7) = 26.04
Prob > chi2 = 0.0005

Log likelihood = -25.794271 Pseudo R2 = 0.3355

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

lwt .9817921 .009897 -1.82 0.068 .9625847 1.001383
smoke 4.057862 2.547686 2.23 0.026 1.185439 13.89042

ptd 6.098293 4.80942 2.29 0.022 1.299894 28.60938
ht 10.60316 11.51639 2.17 0.030 1.261599 89.11467
ui 4.06303 2.828513 2.01 0.044 1.038195 15.90088

race
2 1.770681 1.221141 0.83 0.407 .4582617 6.84175
3 .975003 .6817263 -0.04 0.971 .2476522 3.838573

Smoking, previous preterm delivery, hypertension, uterine irritability, and possibly the mother’s
weight all contribute to low birthweight. 2.race (mother black) and 3.race (mother other) are
statistically insignificant when compared with the 1.race (mother white) omitted group, although
the 2.race effect is large. We can test the joint statistical significance of 2.race and 3.race by
using test:

. test 2.race 3.race

( 1) [low]2.race = 0
( 2) [low]3.race = 0

chi2( 2) = 0.88
Prob > chi2 = 0.6436

For a more complete description of test, see [R] test. test presents results in coefficients rather
than odds ratios. Jointly testing that the coefficients on 2.race and 3.race are 0 is equivalent to
jointly testing that the odds ratios are 1.
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Here one case was matched to one control, that is, 1 :1 matching. From clogit’s point of view,
that was not important—k1 cases could have been matched to k2 controls (k1 : k2 matching), and
we would have fit the model in the same way. Furthermore, the matching can change from group
to group, which we have denoted as k1i : k2i matching, where i denotes the group. clogit does
not care. To fit the conditional logistic regression model, we specified the group(varname) option,
group(pairid). The case and control are stored in separate observations. clogit knew that they
were linked (in the same group) because the related observations share the same value of pairid.

Technical note

clogit provides a way to extend McNemar’s test to multiple controls per case (1 :k2i matching)
and to multiple controls matched with multiple cases (k1i :k2i matching).

In Stata, McNemar’s test is calculated by the mcc command; see [ST] epitab. The mcc command,
however, requires that the matched case and control appear in one observation, so the data will need to
be manipulated from 1 to 2 observations per stratum before using clogit. Alternatively, if you begin
with clogit’s 2-observations-per-group organization, you will have to change it to 1 observation
per group if you wish to use mcc. In either case, reshape provides an easy way to change the
organization of the data. We will demonstrate its use below, but we direct you to [D] reshape for a
more thorough discussion.

In the example above, we used clogit to analyze the relationship between low birthweight and
various characteristics of the mother. Assume that we now want to assess the relationship between
low birthweight and smoking, ignoring the mother’s other characteristics. Using clogit, we obtain
the following results:

. clogit low smoke, group(pairid) or

Iteration 0: log likelihood = -35.425931
Iteration 1: log likelihood = -35.419283
Iteration 2: log likelihood = -35.419282

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(1) = 6.79
Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

smoke 2.75 1.135369 2.45 0.014 1.224347 6.176763

Let’s compare our estimated odds ratio and 95% confidence interval with that produced by mcc.
We begin by reshaping the data:

. keep low smoke pairid

. reshape wide smoke, i(pairid) j(low 0 1)

Data long -> wide

Number of obs. 112 -> 56
Number of variables 3 -> 3
j variable (2 values) low -> (dropped)
xij variables:

smoke -> smoke0 smoke1
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We now have the variables smoke0 (formed from smoke and low = 0), recording 1 if the control
mother smoked and 0 otherwise; and smoke1 (formed from smoke and low = 1), recording 1 if the
case mother smoked and 0 otherwise. We can now use mcc:

. mcc smoke1 smoke0

Controls
Cases Exposed Unexposed Total

Exposed 8 22 30
Unexposed 8 18 26

Total 16 40 56

McNemar’s chi2(1) = 6.53 Prob > chi2 = 0.0106
Exact McNemar significance probability = 0.0161

Proportion with factor
Cases .5357143
Controls .2857143 [95% Conf. Interval]

difference .25 .0519726 .4480274
ratio 1.875 1.148685 3.060565
rel. diff. .35 .1336258 .5663742

odds ratio 2.75 1.179154 7.143667 (exact)

Both methods estimated the same odds ratio, and the 95% confidence intervals are similar. clogit
produced a confidence interval of [ 1.22, 6.18 ], whereas mcc produced a confidence interval of
[ 1.18, 7.14 ].

Use of weights

With clogit, weights apply to groups as a whole, not to individual observations. For example,
if there is a group in your dataset with a frequency weight of 3, there are a total of three groups
in your sample with the same values of the dependent and independent variables as this one group.
Weights must have the same value for all observations belonging to the same group; otherwise, an
error message will be displayed.

Example 3

We use the example from the above discussion of the mcc command. Here we have a total of 56
matched case–control groups, each with one case matched to one control. We had 8 matched pairs
in which both the case and the control are exposed, 22 pairs in which the case is exposed and the
control is unexposed, 8 pairs in which the case is unexposed and the control is exposed, and 18 pairs
in which they are both unexposed.

With weights, it is easy to enter these data into Stata and run clogit.
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. clear

. input id case exposed weight

id case exposed weight
1. 1 1 1 8
2. 1 0 1 8
3. 2 1 1 22
4. 2 0 0 22
5. 3 1 0 8
6. 3 0 1 8
7. 4 1 0 18
8. 4 0 0 18
9. end

. clogit case exposed [w=weight], group(id) or
(frequency weights assumed)

Iteration 0: log likelihood = -35.425931
Iteration 1: log likelihood = -35.419283
Iteration 2: log likelihood = -35.419282

Conditional (fixed-effects) logistic regression Number of obs = 112
LR chi2(1) = 6.79
Prob > chi2 = 0.0091

Log likelihood = -35.419282 Pseudo R2 = 0.0875

case Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

exposed 2.75 1.135369 2.45 0.014 1.224347 6.176763

Fixed-effects logit

The fixed-effects logit model can be written as

Pr(yit = 1 | xit) = F (αi + xitβ)

where F is the cumulative logistic distribution

F (z) =
exp(z)

1 + exp(z)

i = 1, 2, . . . , n denotes the independent units (called “groups” by clogit), and t = 1, 2, . . . , Ti
denotes the observations for the ith unit (group).

Fitting this model by using a full maximum-likelihood approach leads to difficulties, however.
When Ti is fixed, the maximum likelihood estimates for αi and β are inconsistent (Andersen 1970;
Chamberlain 1980). This difficulty can be circumvented by looking at the probability of yi =
(yi1, . . . , yiTi) conditional on

∑Ti
t=1 yit. This conditional probability does not involve the αi, so they

are never estimated when the resulting conditional likelihood is used. See Hamerle and Ronning (1995)
for a succinct and lucid development. See Methods and formulas for the estimation equation.
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Example 4

We are studying unionization of women in the United States by using the union dataset; see
[XT] xt. We fit the fixed-effects logit model:

. use http://www.stata-press.com/data/r12/union, clear
(NLS Women 14-24 in 1968)

. clogit union age grade not_smsa south black, group(idcode)
note: multiple positive outcomes within groups encountered.
note: 2744 groups (14165 obs) dropped because of all positive or

all negative outcomes.
note: black omitted because of no within-group variance.

Iteration 0: log likelihood = -4521.3385
Iteration 1: log likelihood = -4516.1404
Iteration 2: log likelihood = -4516.1385
Iteration 3: log likelihood = -4516.1385

Conditional (fixed-effects) logistic regression Number of obs = 12035
LR chi2(4) = 68.09
Prob > chi2 = 0.0000

Log likelihood = -4516.1385 Pseudo R2 = 0.0075

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0170301 .004146 4.11 0.000 .0089042 .0251561
grade .0853572 .0418781 2.04 0.042 .0032777 .1674368

not_smsa .0083678 .1127963 0.07 0.941 -.2127088 .2294445
south -.748023 .1251752 -5.98 0.000 -.9933619 -.5026842
black 0 (omitted)

We received three messages at the top of the output. The first one, “multiple positive outcomes within
groups encountered”, we expected. Our data do indeed have multiple positive outcomes (union = 1)
in many groups. (Here a group consists of all the observations for a particular individual.)

The second message tells us that 2,744 groups were “dropped” by clogit. When either union = 0
or union = 1 for all observations for an individual, this individual’s contribution to the log-likelihood
is zero. Although these are perfectly valid observations in every sense, they have no effect on the
estimation, so they are not included in the total “Number of obs”. Hence, the reported “Number of
obs” gives the effective sample size of the estimation. Here it is 12,035 observations—only 46% of
the total 26,200.

We can easily check that there are indeed 2,744 groups with union either all 0 or all 1. We will
generate a variable that contains the fraction of observations for each individual who has union = 1.
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. by idcode, sort: generate fraction = sum(union)/sum(union < .)

. by idcode: replace fraction = . if _n < _N
(21766 real changes made, 21766 to missing)

. tabulate fraction

fraction Freq. Percent Cum.

0 2,481 55.95 55.95
.0833333 30 0.68 56.63
.0909091 33 0.74 57.37

.1 53 1.20 58.57
(output omitted )

.9 10 0.23 93.59
.9090909 11 0.25 93.84
.9166667 10 0.23 94.07

1 263 5.93 100.00

Total 4,434 100.00

Because 2481 + 263 = 2744, we confirm what clogit did.

The third warning message from clogit said “black omitted because of no within-group variance”.
Obviously, race stays constant for an individual across time. Any such variables are collinear with
the αi (that is, the fixed effects), and just as the αi drop out of the conditional likelihood, so do
all variables that are unchanging within groups. Thus they cannot be estimated with the conditional
fixed-effects model.

There are several other estimators implemented in Stata that we could use with these data:

cloglog . . . , vce(cluster idcode)

logit . . . , vce(cluster idcode)

probit . . . , vce(cluster idcode)

scobit . . . , vce(cluster idcode)

xtcloglog . . .
xtgee . . . , family(binomial) link(logit) corr(exchangeable)

xtlogit . . .
xtprobit . . .

See [R] cloglog, [R] logit, [R] probit, [R] scobit, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit, and
[XT] xtprobit for details.
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Saved results
clogit saves the following in e():

Scalars
e(N) number of observations
e(N drop) number of observations dropped because of all positive or all negative outcomes
e(N group drop) number of groups dropped because of all positive or all negative outcomes
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) clogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(group) name of group() variable
e(multiple) multiple if multiple positive outcomes within group
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(gradient) gradient vector

Functions
e(sample) marks estimation sample

Methods and formulas
clogit is implemented as an ado-file.

Breslow and Day (1980, 247–279), Collett (2003, 251–267), and Hosmer and Lemeshow (2000,
223–259) provide a biostatistical point of view on conditional logistic regression. Hamerle and
Ronning (1995) give a succinct and lucid review of fixed-effects logit; Chamberlain (1980) is a
standard reference for this model. Greene (2012, chap. 17) provides a straightforward textbook
description of conditional logistic regression from an economist’s point of view, as well as a brief
description of choice models.

Let i = 1, 2, . . . , n denote the groups and let t = 1, 2, . . . , Ti denote the observations for the ith
group. Let yit be the dependent variable taking on values 0 or 1. Let yi = (yi1, . . . , yiTi) be the
outcomes for the ith group as a whole. Let xit be a row vector of covariates. Let

k1i =
Ti∑
t=1

yit

be the observed number of ones for the dependent variable in the ith group. Biostatisticians would
say that there are k1i cases matched to k2i = Ti − k1i controls in the ith group.

We consider the probability of a possible value of yi conditional on
∑Ti
t=1 yit = k1i (Hamerle

and Ronning 1995, eq. 8.33; Hosmer and Lemeshow 2000, eq. 7.4),

Pr
(
yi |

∑Ti
t=1 yit = k1i

)
=

exp
(∑Ti

t=1 yitxitβ
)∑

di∈Si exp
(∑Ti

t=1 ditxitβ
)

where dit is equal to 0 or 1 with
∑Ti
t=1 dit = k1i , and Si is the set of all possible combinations of

k1i ones and k2i zeros. Clearly, there are
(
Ti
k1i

)
such combinations, but we need not count all these

combinations to compute the denominator of the above equation. It can be computed recursively.

Denote the denominator by

fi(Ti, k1i) =
∑

di∈Si

exp
( Ti∑
t=1

ditxitβ
)

Consider, computationally, how fi changes as we go from a total of 1 observation in the group to 2
observations to 3, etc. Doing this, we derive the recursive formula

fi(T, k) = fi(T − 1, k) + fi(T − 1, k − 1) exp(xiTβ)

where we define fi(T, k) = 0 if T < k and fi(T, 0) = 1.
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The conditional log-likelihood is

lnL =
n∑
i=1

{
Ti∑
t=1

yitxitβ− log fi(Ti, k1i)

}

The derivatives of the conditional log-likelihood can also be computed recursively by taking derivatives
of the recursive formula for fi.

Computation time is roughly proportional to

p2
n∑
i=1

Ti min(k1i, k2i)

where p is the number of independent variables in the model. If min(k1i, k2i) is small, computation
time is not an issue. But if it is large—say, 100 or more—patience may be required.

If Ti is large for all groups, the bias of the unconditional fixed-effects estimator is not a concern,
and we can confidently use logit with an indicator variable for each group (provided, of course,
that the number of groups does not exceed matsize; see [R] matsize).

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster groupvar), where groupvar is the variable for the matched groups.

clogit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] clogit postestimation — Postestimation tools for clogit

[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[R] scobit — Skewed logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtgee — Fit population-averaged panel-data models by using GEE

[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models

[U] 20 Estimation and postestimation commands



Title

clogit postestimation — Postestimation tools for clogit

Description
The following standard postestimation commands are available after clogit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins2 marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

2 The default prediction statistic pc1 cannot be correctly handled by margins; however, margins can be used
after clogit with options predict(pu0) and predict(xb).

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

285
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

pc1 probability of a positive outcome; the default
pu0 probability of a positive outcome, assuming fixed effect is zero
xb linear prediction
stdp standard error of the linear prediction
∗dbeta Delta-β influence statistic
∗dx2 Delta-χ2 lack-of-fit statistic
∗gdbeta Delta-β influence statistic for each group
∗gdx2 Delta-χ2 lack-of-fit statistic for each group
∗hat Hosmer and Lemeshow leverage
∗residuals Pearson residuals
∗rstandard standardized Pearson residuals
score first derivative of the log likelihood with respect to xjβ

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

Starred statistics are available for multiple controls per case-matching design only. They are not available if vce(robust),
vce(cluster clustvar), or pweights were specified with clogit.

dbeta, dx2, gdbeta, gdx2, hat, and rstandard are not available if constraints() was specified with clogit.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pc1, the default, calculates the probability of a positive outcome conditional on one positive outcome
within group.

pu0 calculates the probability of a positive outcome, assuming that the fixed effect is zero.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

dbeta calculates the Delta-β influence statistic, a standardized measure of the difference in the
coefficient vector that is due to deletion of the observation.

dx2 calculates the Delta-χ2 influence statistic, reflecting the decrease in the Pearson chi-squared that
is due to deletion of the observation.

gdbeta calculates the approximation to the Pregibon stratum-specific Delta-β influence statistic, a
standardized measure of the difference in the coefficient vector that is due to deletion of the entire
stratum.
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gdx2 calculates the approximation to the Pregibon stratum-specific Delta-χ2 influence statistic,
reflecting the decrease in the Pearson chi-squared that is due to deletion of the entire stratum.

hat calculates the Hosmer and Lemeshow leverage or the diagonal element of the hat matrix.

residuals calculates the Pearson residuals.

rstandard calculates the standardized Pearson residuals.

score calculates the equation-level score, ∂lnL/∂(xitβ).

nooffset is relevant only if you specified offset(varname) for clogit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj . This option cannot be specified with dbeta, dx2, gdbeta, gdx2,
hat, and rstandard.

Remarks
predict may be used after clogit to obtain predicted values of the index xitβ. Predicted

probabilities for conditional logistic regression must be interpreted carefully. Probabilities are estimated
for each group as a whole, not for individual observations. Furthermore, the probabilities are conditional
on the number of positive outcomes in the group (that is, the number of cases and the number of
controls), or it is assumed that the fixed effect is zero. predict may also be used to obtain influence
and lack of fit statistics for an individual observation and for the whole group, to compute Pearson,
standardized Pearson residuals, and leverage values.

predict may be used for both within-sample and out-of-sample predictions.

Example 1

Suppose that we have 1 :k2i matched data and that we have previously fit the following model:

. use http://www.stata-press.com/data/r12/clogitid

. clogit y x1 x2, group(id)
(output omitted )

To obtain the predicted values of the index, we could type predict idx, xb to create a new
variable called idx. From idx, we could then calculate the predicted probabilities. Easier, however,
would be to type

. predict phat
(option pc1 assumed; probability of success given one success within group)

phat would then contain the predicted probabilities.

As noted previously, the predicted probabilities are really predicted probabilities for the group as
a whole (that is, they are the predicted probability of observing yit = 1 and yit′ = 0 for all t′ 6= t).
Thus, if we want to obtain the predicted probabilities for the estimation sample, it is important that,
when we make the calculation, predictions be restricted to the same sample on which we estimated
the data. We cannot predict the probabilities and then just keep the relevant ones because the entire
sample determines each probability. Thus, assuming that we are not attempting to make out-of-sample
predictions, we type

. predict phat2 if e(sample)
(option pc1 assumed; probability of success given one success within group)
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Recall that i = 1, . . . , n denote the groups and t = 1, . . . , Ti denote the observations for the ith
group.

predict produces probabilities of a positive outcome within group conditional on there being one
positive outcome (pc1),

Pr

(
yit = 1

∣∣∣∣∣
Ti∑
t=1

yit = 1

)
=

exp(xitβ)∑Ti
t=1 exp(xitβ)

or predict calculates the unconditional pu0:

Pr(yit = 1) =
exp(xitβ)

1 + exp(xitβ)

Let N =
∑n
j=1 Tj denote the total number of observations, p denote the number of covariates,

and θ̂it denote the conditional predicted probabilities of a positive outcome (pc1).

For the multiple control per case (1 : k2i) matching, Hosmer and Lemeshow (2000, 248–251)
propose the following diagnostics:

The Pearson residual is

rit =
(yit − θ̂it)√

θ̂it

The leverage (hat) value is defined as

hit = θ̂itx̃Tit(X̃
TUX̃)−1x̃it

where x̃it = xit −
∑Ti
j=1 xij θ̂ij is the 1× p row vector of centered by a weighted stratum-specific

mean covariate values, UN = diag{θ̂it}, and the rows of X̃N×p are composed of x̃it values.

The standardized Pearson residual is

rsit =
rit√

1− hit

The lack of fit and influence diagnostics for an individual observation are (respectively) computed
as

∆χ2
it = r2

sit

and

∆β̂it = ∆χ2
it

hit
1− hit

The lack of fit and influence diagnostics for the groups are the group-specific totals of the respective
individual diagnostics shown above.



clogit postestimation — Postestimation tools for clogit 289

Reference
Hosmer, D. W., Jr., and S. Lemeshow. 2000. Applied Logistic Regression. 2nd ed. New York: Wiley.

Also see
[R] clogit — Conditional (fixed-effects) logistic regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/alr.html


Title

cloglog — Complementary log-log regression

Syntax
cloglog depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, nestreg, rolling, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Binary outcomes > Complementary log-log regression
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Description
cloglog fits maximum-likelihood complementary log-log models.

See [R] logistic for a list of related estimation commands.

Options

� � �
Model �

noconstant, offset(varname); see [R] estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with cloglog but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction to complementary log-log regression
Robust standard errors
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Introduction to complementary log-log regression

cloglog fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or,
more precisely, coded as 0 and not 0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.
We wish to fit a model explaining whether a car is foreign based on its weight and mileage. Here is
an overview of our data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign

. describe

Contains data from http://www.stata-press.com/data/r12/auto.dta
obs: 74 1978 Automobile Data

vars: 4 13 Apr 2011 17:45
size: 1,702 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car type

Sorted by: foreign
Note: dataset has changed since last saved

. inspect foreign

foreign: Car type Number of Observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car,
and 1 denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = F (β0 + β1weight + β2mpg)

where F (z) = 1− exp
{
− exp(z)

}
.
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To fit this model, we type

. cloglog foreign weight mpg

Iteration 0: log likelihood = -34.054593
Iteration 1: log likelihood = -27.869915
Iteration 2: log likelihood = -27.742997
Iteration 3: log likelihood = -27.742769
Iteration 4: log likelihood = -27.742769

Complementary log-log regression Number of obs = 74
Zero outcomes = 52
Nonzero outcomes = 22

LR chi2(2) = 34.58
Log likelihood = -27.742769 Prob > chi2 = 0.0000

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0029153 .0006974 -4.18 0.000 -.0042823 -.0015483
mpg -.1422911 .076387 -1.86 0.062 -.2920069 .0074247

_cons 10.09694 3.351841 3.01 0.003 3.527448 16.66642

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are
also less likely to be foreign, at least when holding the weight of the car constant.

See [R] maximize for an explanation of the output.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except

missing) as positive outcomes (successes). Thus, if your dependent variable takes on the values 0 and
1, 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0, 1,
and 2, 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type cloglog y x, Stata fits the
model

Pr(yj 6= 0 | xj) = 1− exp
{
− exp(xjβ)

}

Robust standard errors
If you specify the vce(robust) option, cloglog reports robust standard errors, as described in

[U] 20.20 Obtaining robust variance estimates. For the model of foreign on weight and mpg, the
robust calculation increases the standard error of the coefficient on mpg by 44%:
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. cloglog foreign weight mpg, vce(robust)

Iteration 0: log pseudolikelihood = -34.054593
Iteration 1: log pseudolikelihood = -27.869915
Iteration 2: log pseudolikelihood = -27.742997
Iteration 3: log pseudolikelihood = -27.742769
Iteration 4: log pseudolikelihood = -27.742769

Complementary log-log regression Number of obs = 74
Zero outcomes = 52
Nonzero outcomes = 22

Wald chi2(2) = 29.74
Log pseudolikelihood = -27.742769 Prob > chi2 = 0.0000

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0029153 .0007484 -3.90 0.000 -.0043822 -.0014484
mpg -.1422911 .1102466 -1.29 0.197 -.3583704 .0737882

_cons 10.09694 4.317305 2.34 0.019 1.635174 18.5587

Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.076, with
a resulting confidence interval of [−0.29, 0.01 ].

The vce(cluster clustvar) option can relax the independence assumption required by the
complementary log-log estimator to being just independence between clusters. To demonstrate this
ability, we will switch to a different dataset.

We are studying unionization of women in the United States by using the union dataset; see
[XT] xt. We fit the following model, ignoring that women are observed an average of 5.9 times each
in this dataset:

. use http://www.stata-press.com/data/r12/union, clear
(NLS Women 14-24 in 1968)

. cloglog union age grade not_smsa south##c.year

Iteration 0: log likelihood = -13606.373
Iteration 1: log likelihood = -13540.726
Iteration 2: log likelihood = -13540.607
Iteration 3: log likelihood = -13540.607

Complementary log-log regression Number of obs = 26200
Zero outcomes = 20389
Nonzero outcomes = 5811

LR chi2(6) = 647.24
Log likelihood = -13540.607 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0185346 .0043616 4.25 0.000 .009986 .0270833
grade .0452772 .0057125 7.93 0.000 .0340809 .0564736

not_smsa -.1886592 .0317801 -5.94 0.000 -.2509471 -.1263712
1.south -1.422292 .3949381 -3.60 0.000 -2.196356 -.648227

year -.0133007 .0049576 -2.68 0.007 -.0230174 -.0035839

south#c.year
1 .0105659 .0049234 2.15 0.032 .0009161 .0202157

_cons -1.219801 .2952374 -4.13 0.000 -1.798455 -.6411462
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The reported standard errors in this model are probably meaningless. Women are observed repeatedly,
and so the observations are not independent. Looking at the coefficients, we find a large southern
effect against unionization and a different time trend for the south. The vce(cluster clustvar)
option provides a way to fit this model and obtains correct standard errors:

. cloglog union age grade not_smsa south##c.year, vce(cluster id) nolog

Complementary log-log regression Number of obs = 26200
Zero outcomes = 20389
Nonzero outcomes = 5811

Wald chi2(6) = 160.76
Log pseudolikelihood = -13540.607 Prob > chi2 = 0.0000

(Std. Err. adjusted for 4434 clusters in idcode)

Robust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0185346 .0084873 2.18 0.029 .0018999 .0351694
grade .0452772 .0125776 3.60 0.000 .0206255 .069929

not_smsa -.1886592 .0642068 -2.94 0.003 -.3145021 -.0628162
1.south -1.422292 .506517 -2.81 0.005 -2.415047 -.4295365

year -.0133007 .0090628 -1.47 0.142 -.0310633 .004462

south#c.year
1 .0105659 .0063175 1.67 0.094 -.0018162 .022948

_cons -1.219801 .5175129 -2.36 0.018 -2.234107 -.2054942

These standard errors are larger than those reported by the inappropriate conventional calculation.
By comparison, another way we could fit this model is with an equal-correlation population-averaged
complementary log-log model:

. xtcloglog union age grade not_smsa south##c.year, pa nolog

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: cloglog Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 234.66
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0153737 .0081156 1.89 0.058 -.0005326 .03128
grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326
1.south -1.714868 .3384558 -5.07 0.000 -2.378229 -1.051507

year -.0115881 .0084125 -1.38 0.168 -.0280763 .0049001

south#c.year
1 .0149796 .0041687 3.59 0.000 .0068091 .0231501

_cons -1.488278 .4468005 -3.33 0.001 -2.363991 -.6125652

The coefficient estimates are similar, but these standard errors are smaller than those produced by
cloglog, vce(cluster clustvar). This finding is as we would expect. If the within-panel correlation
assumptions are valid, the population-averaged estimator should be more efficient.
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In addition to this estimator, we may use the xtgee command to fit a panel estimator (with
complementary log-log link) and any number of assumptions on the within-idcode correlation.

cloglog, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That
is, it inefficiently sums within cluster for the standard-error calculation rather than attempting to exploit
what might be assumed about the within-cluster correlation (as do the xtgee population-averaged
models).

Saved results
cloglog saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(N f) number of zero outcomes
e(N s) number of nonzero outcomes
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) cloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
cloglog is implemented as an ado-file.

Complementary log-log analysis (related to the gompit model, so named because of its relationship
to the Gompertz distribution) is an alternative to logit and probit analysis, but it is unlike these other
estimators in that the transformation is not symmetric. Typically, this model is used when the positive
(or negative) outcome is rare.

The log-likelihood function for complementary log-log is

lnL =
∑
j∈S

wj lnF (xjb) +
∑
j 6∈S

wj ln
{

1− F (xjb)
}

where S is the set of all observations j such that yj 6= 0, F (z) = 1 − exp
{
− exp(z)

}
, and wj

denotes the optional weights. lnL is maximized as described in [R] maximize.

We can fit a gompit model by reversing the success–failure sense of the dependent variable and
using cloglog.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas. The scores are calculated as uj =
[exp(xjb) exp

{
− exp(xjb)

}
/F (xjb)]xj for the positive outcomes and {− exp(xjb)}xj for the

negative outcomes.

cloglog also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

Acknowledgment
We thank Joseph Hilbe of Arizona State University for providing the inspiration for the cloglog

command (Hilbe 1996, 1998).
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Also see
[R] cloglog postestimation — Postestimation tools for cloglog

[R] clogit — Conditional (fixed-effects) logistic regression

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[R] scobit — Skewed logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands



Title

cloglog postestimation — Postestimation tools for cloglog

Description
The following postestimation commands are available after cloglog:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, ∂lnL/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for cloglog. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

Remarks
Once you have fit a model, you can obtain the predicted probabilities by using the predict

command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. Here we will make only a few comments.

predict without arguments calculates the predicted probability of a positive outcome. With the
xb option, it calculates the linear combination xjb, where xj are the independent variables in the
jth observation and b is the estimated parameter vector.

With the stdp option, predict calculates the standard error of the linear prediction, which is not
adjusted for replicated covariate patterns in the data.

Example 1

In example 1 in [R] cloglog, we fit the complementary log-log model cloglog foreign weight
mpg. To obtain predicted probabilities,

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. cloglog foreign weight mpg
(output omitted )

. predict p
(option pr assumed; Pr(foreign))

. summarize foreign p

Variable Obs Mean Std. Dev. Min Max

foreign 74 .2972973 .4601885 0 1
p 74 .2928348 .29732 .0032726 .9446067

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] cloglog — Complementary log-log regression

[U] 20 Estimation and postestimation commands



Title

cnsreg — Constrained linear regression

Syntax
cnsreg depvar indepvars

[
if
] [

in
] [

weight
]
, constraints(constraints)

[
options

]
options Description

Model
∗constraints(constraints) apply specified linear constraints
collinear keep collinear variables
noconstant suppress constant term

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

mse1 force MSE to be 1
coeflegend display legend instead of statistics

∗constraints(constraints) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, statsby, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), mse1, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, pweights, and iweights are allowed; see [U] 11.1.6 weight.
mse1 and coeflegend do not appear in the dialog.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Constrained linear regression

Description
cnsreg fits constrained linear regression models.
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Options

� � �
Model �

constraints(constraints), collinear, noconstant; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following options are available with cnsreg but are not shown in the dialog box:

mse1 is used only in programs and ado-files that use cnsreg to fit models other than constrained linear
regression. mse1 sets the mean squared error to 1, thus forcing the variance–covariance matrix of
the estimators to be (X′DX)−1 (see Methods and formulas in [R] regress) and affecting calculated
standard errors. Degrees of freedom for t statistics are calculated as n rather than n−p+c, where
p is the total number of parameters (prior to restrictions and including the constant) and c is the
number of constraints.

mse1 is not allowed with the svy prefix.

coeflegend; see [R] estimation options.

Remarks
For a discussion of constrained linear regression, see Greene (2012, 121–122); Hill, Griffiths, and

Lim (2011, 231–233); or Davidson and MacKinnon (1993, 17).

Example 1

In principle, we can obtain constrained linear regression estimates by modifying the list of
independent variables. For instance, if we wanted to fit the model

mpg = β0 + β1 price + β2 weight + u

and constrain β1 = β2, we could write

mpg = β0 + β1(price + weight) + u

and run a regression of mpg on price+ weight. The estimated coefficient on the sum would be the
constrained estimate of β1 and β2. Using cnsreg, however, is easier:
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. constraint 1 price = weight

. cnsreg mpg price weight, constraint(1)

Constrained linear regression Number of obs = 74
F( 1, 72) = 37.59
Prob > F = 0.0000
Root MSE = 4.722

( 1) price - weight = 0

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

price -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
weight -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
_cons 30.36718 1.577958 19.24 0.000 27.22158 33.51278

We define constraints by using the constraint command; see [R] constraint. We fit the model with
cnsreg and specify the constraint number or numbers in the constraints() option.

Just to show that the results above are correct, here is the result of applying the constraint by hand:

. generate x = price + weight

. regress mpg x

Source SS df MS Number of obs = 74
F( 1, 72) = 37.59

Model 838.065767 1 838.065767 Prob > F = 0.0000
Residual 1605.39369 72 22.2971346 R-squared = 0.3430

Adj R-squared = 0.3339
Total 2443.45946 73 33.4720474 Root MSE = 4.722

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -.0009875 .0001611 -6.13 0.000 -.0013086 -.0006664
_cons 30.36718 1.577958 19.24 0.000 27.22158 33.51278

Example 2

Models can be fit subject to multiple simultaneous constraints. We simply define the constraints
and then include the constraint numbers in the constraints() option. For instance, say that we
wish to fit the model

mpg =β0 + β1 price + β2 weight + β3 displ + β4 gear ratio + β5 foreign+

β6 length + u

subject to the constraints
β1 = β2 = β3 = β6

β4 = −β5 = β0/20

(This model, like the one in example 1, is admittedly senseless.) We fit the model by typing

. constraint 1 price=weight

. constraint 2 displ=weight

. constraint 3 length=weight
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. constraint 5 gear_ratio = -foreign

. constraint 6 gear_ratio = _cons/20

. cnsreg mpg price weight displ gear_ratio foreign length, c(1-3,5-6)

Constrained linear regression Number of obs = 74
F( 2, 72) = 785.20
Prob > F = 0.0000
Root MSE = 4.6823

( 1) price - weight = 0
( 2) - weight + displacement = 0
( 3) - weight + length = 0
( 4) gear_ratio + foreign = 0
( 5) gear_ratio - .05 _cons = 0

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

price -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
weight -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172

displacement -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
gear_ratio 1.326114 .0687589 19.29 0.000 1.189046 1.463183

foreign -1.326114 .0687589 -19.29 0.000 -1.463183 -1.189046
length -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172
_cons 26.52229 1.375178 19.29 0.000 23.78092 29.26365

There are many ways we could have specified the constraints() option (which we abbreviated
c() above). We typed c(1-3,5-6), meaning that we want constraints 1 through 3 and 5 and 6; those
numbers correspond to the constraints we defined. The only reason we did not use the number 4
was to emphasize that constraints do not have to be consecutively numbered. We typed c(1-3,5-6),
but we could have typed c(1,2,3,5,6) or c(1-3,5,6) or c(1-2,3,5,6) or even c(1-6), which
would have worked as long as constraint 4 was not defined. If we had previously defined a constraint
4, then c(1-6) would have included it.
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Saved results
cnsreg saves the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(F) F statistic
e(rmse) root mean squared error
e(ll) log likelihood
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) cnsreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
cnsreg is implemented as an ado-file.

Let n be the number of observations, p be the total number of parameters (prior to restrictions
and including the constant), and c be the number of constraints. The coefficients are calculated as
b′ = T

{
(T′X′WXT)−1(T′X′Wy − T′X′WXa′)

}
+ a′, where T and a are as defined in

[P] makecns. W = I if no weights are specified. If weights are specified, let v: 1 × n be the
specified weights. If fweight frequency weights are specified, W = diag(v). If aweight analytic
weights are specified, then W = diag[v/(1′v)(1′1)], meaning that the weights are normalized to
sum to the number of observations.

The mean squared error is s2 = (y′Wy−2b′X′Wy +b′X′WXb)/(n−p+ c). The variance–
covariance matrix is s2T(T′X′WXT)−1T′.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Introduction and Methods and formulas.

cnsreg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Title

cnsreg postestimation — Postestimation tools for cnsreg

Description
The following postestimation commands are available after cnsreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}
score equivalent to residuals
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These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, yj − xjb.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

score is equivalent to residuals for linear regression models.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] cnsreg — Constrained linear regression

[U] 20 Estimation and postestimation commands



Title

constraint — Define and list constraints

Syntax

Define constraints

constraint
[
define

]
#
[

exp=exp | coeflist
]

List constraints

constraint dir
[

numlist | all
]

constraint list
[

numlist | all
]

Drop constraints

constraint drop
{

numlist | all
}

Programmer’s commands

constraint get #

constraint free

where coeflist is as defined in [R] test and # is restricted to the range 1–1,999, inclusive.

Menu
Statistics > Other > Manage constraints

Description
constraint defines, lists, and drops linear constraints. Constraints are for use by models that

allow constrained estimation.

Constraints are defined by the constraint command. The currently defined constraints can be
listed by either constraint list or constraint dir; both do the same thing. Existing constraints
can be eliminated by constraint drop.

constraint get and constraint free are programmer’s commands. constraint get returns
the contents of the specified constraint in macro r(contents) and returns in scalar r(defined) 0
or 1—1 being returned if the constraint was defined. constraint free returns the number of a free
(unused) constraint in macro r(free).
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Remarks
Using constraints is discussed in [R] cnsreg, [R] mlogit, and [R] reg3; this entry is concerned only

with practical aspects of defining and manipulating constraints.

Example 1

Constraints are numbered from 1 to 1,999, and we assign the number when we define the constraint:

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. constraint 2 [Indemnity]2.site = 0

The currently defined constraints can be listed by constraint list:

. constraint list
2: [indemnity]2.site = 0

constraint drop drops constraints:

. constraint drop 2

. constraint list

The empty list after constraint list indicates that no constraints are defined. Below we demonstrate
the various syntaxes allowed by constraint:

. constraint 1 [Indemnity]

. constraint 10 [Indemnity]: 1.site 2.site

. constraint 11 [Indemnity]: 3.site

. constraint 21 [Prepaid=Uninsure]: nonwhite

. constraint 30 [Prepaid]

. constraint 31 [Insure]

. constraint list
1: [Indemnity]

10: [Indemnity]: 1.site 2.site
11: [Indemnity]: 3.site
21: [Prepaid=Uninsure]: nonwhite
30: [Prepaid]
31: [Insure]

. constraint drop 21-25, 31

. constraint list
1: [Indemnity]

10: [Indemnity]: 1.site 2.site
11: [Indemnity]: 3.site
30: [Prepaid]

. constraint drop _all

. constraint list

Technical note
The constraint command does not check the syntax of the constraint itself because a constraint

can be interpreted only in the context of a model. Thus constraint is willing to define constraints
that later will not make sense. Any errors in the constraints will be detected and mentioned at the
time of estimation.
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Title

contrast — Contrasts and linear hypothesis tests after estimation

Syntax
contrast termlist

[
, options

]
where termlist is a list of factor variables or interactions that appear in the current estimation results.
The variables may be typed with or without contrast operators, and you may use any factor-variable
syntax:

. contrast sex group sex#group

. contrast r.sex

See the operators (op.) table below for the list of contrast operators.

options Description

Main

overall add a joint hypothesis test for all specified contrasts
asobserved treat all factor variables as observed
lincom treat user-defined contrasts as linear combinations

Equations

equation(eqspec) perform contrasts in termlist for equation eqspec
atequations perform contrasts in termlist within each equation

Advanced

emptycells(empspec) treatment of empty cells for balanced factors
noestimcheck suppress estimability checks

Reporting

level(#) confidence level; default is level(95)

mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)

noeffects suppress table of individual contrasts
cieffects show effects table with confidence intervals
pveffects show effects table with p-values
effects show effects table with confidence intervals and p-values
nowald suppress table of Wald tests
noatlevels report only the overall Wald test for terms that use the within @

or nested | operator
nosvyadjust compute unadjusted Wald tests for survey results
sort sort the individual contrast values in each term
post post contrasts and their VCEs as estimation results
display options control column formats, row spacing, and line width
eform option report exponentiated contrasts
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Term Description

Main effects

A joint test of the main effects of A
r.A individual contrasts that decompose A using r.

Interaction effects

A#B joint test of the two-way interaction effects of A and B

A#B#C joint test of the three-way interaction effects of A, B, and C

r.A#g.B individual contrasts for each interaction of A and B defined by r. and g.

Partial interaction effects

r.A#B joint tests of interactions of A and B within each contrast defined by r.A
A#r.B joint tests of interactions of A and B within each contrast defined by r.B

Simple effects

A@B joint tests of the effects of A within each level of B
A@B#C joint tests of the effects of A within each combination of the levels of B and C

r.A@B individual contrasts of A that decompose A@B using r.
r.A@B#C individual contrasts of A that decompose A@B#C using r.

Other conditional effects

A#B@C joint tests of the interaction effects of A and B within each level of C
A#B@C#D joint tests of the interaction effects of A and B within each combination of

the levels of C and D

r.A#g.B@C individual contrasts for each interaction of A and B that decompose A#B@C

using r. and g.

Nested effects

A|B joint tests of the effects of A nested in each level of B
A|B#C joint tests of the effects of A nested in each combination of the levels of B and C

A#B|C joint tests of the interaction effects of A and B nested in each level of C
A#B|C#D joint tests of the interaction effects of A and B nested in each

combination of the levels of C and D

r.A|B individual contrasts of A that decompose A|B using r.
r.A|B#C individual contrasts of A that decompose A|B#C using r.
r.A#g.B|C individual contrasts for each interaction of A and B defined by r. and g.

nested in each level of C

Slope effects

A#c.x joint test of the effects of A on the slopes of x
A#c.x#c.y joint test of the effects of A on the slopes of the product (interaction) of x and y

A#B#c.x joint test of the interaction effects of A and B on the slopes of x
A#B#c.x#c.y joint test of the interaction effects of A and B on the slopes of the product

(interaction) of x and y

r.A#c.x individual contrasts of A’s effects on the slopes of x using r.

Denominators

... / term2 use term2 as the denominator in the F tests of the preceding terms

... / use the residual as the denominator in the F tests of the preceding terms
(the default if no other /s are specified)
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A, B, C, and D represent any factor variable in the current estimation results.

x and y represent any continuous variable in the current estimation results.

r. and g. represent any contrast operator. See the table below.

c. specifies that a variable be treated as continuous; see [U] 11.4.3 Factor variables.

Operators are allowed on any factor variable that does not appear to the right of @ or |. Operators
decompose the effects of the associated factor variable into one-degree-of-freedom effects (contrasts).

Higher-level interactions are allowed anywhere an interaction operator (#) appears in the table.

Time-series operators are allowed if they were used in the estimation.

eqns designates the equations in manova, mlogit, mprobit, and mvreg and can be specified
anywhere a factor variable appears.

/ is allowed only after anova, cnsreg, manova, mvreg, or regress.

operators (op.) Description

r. differences from a reference (base) level; the default
a. differences from the next level (adjacent contrasts)
ar. differences from the previous level (reverse adjacent contrasts)

As-balanced operators

g. differences from the balanced grand mean
h. differences from the balanced mean of subsequent levels (Helmert contrasts)
j. differences from the balanced mean of previous levels (reverse Helmert

contrasts)
p. orthogonal polynomial in the level values
q. orthogonal polynomial in the level sequence

As-observed operators

gw. differences from the observation-weighted grand mean
hw. differences from the observation-weighted mean of subsequent levels
jw. differences from the observation-weighted mean of previous levels
pw. observation-weighted orthogonal polynomial in the level values
qw. observation-weighted orthogonal polynomial in the level sequence

One or more individual contrasts may be selected by using the op#. or op(numlist). syntax. For
example, a3.A selects the adjacent contrast for level 3 of A, and p(1/2).B selects the linear and
quadratic effects of B. Also see Orthogonal polynomial contrasts and Beyond linear models.

Custom contrasts Description

{A numlist} user-defined contrast on the levels of factor A

{A#B numlist} user-defined contrast on the levels of the interaction between A and B

Custom contrasts may be part of a term, such as {A numlist}#B, {A numlist}@B, {A numlist}|B, {A#B
numlist}, and {A numlist}#{B numlist}. The same is true of higher-order custom contrasts, such
as {A#B numlist}@C, {A#B numlist}#r.C, and {A#B numlist}#c.x.

Higher-order interactions with at most eight factor variables are allowed with custom contrasts.
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method Description

noadjust do not adjust for multiple comparisons; the default
bonferroni

[
adjustall

]
Bonferroni’s method; adjust across all terms

sidak
[
adjustall

]
Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Menu
Statistics > Postestimation > Contrasts

Description

contrast tests linear hypotheses and forms contrasts involving factor variables and their interactions
from the most recently fit model. The tests include ANOVA-style tests of main effects, simple effects,
interactions, and nested effects. contrast can use named contrasts to decompose these effects into
comparisons against reference categories, comparisons of adjacent levels, comparisons against the
grand mean, orthogonal polynomials, and such. Custom contrasts may also be specified.

contrast can be used with svy estimation results; see [SVY] svy postestimation.

Contrasts can also be computed for margins of linear and nonlinear responses; see [R] margins,
contrast.

Options

� � �
Main �

overall specifies that a joint hypothesis test over all terms be performed.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed in the
estimation sample. The default is to treat all factor covariates as though there were an equal number
of observations in each level.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require
that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

� � �
Equations �

equation(eqspec) specifies the equation from which contrasts are to be computed. The default is
to compute contrasts from the first equation.

atequations specifies that the contrasts be computed within each equation.

� � �
Advanced �

emptycells(empspec) specifies how empty cells are handled in interactions involving factor variables
that are being treated as balanced.

emptycells(strict) is the default; it specifies that contrasts involving empty cells be treated
as not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the contrast estimable but changes its interpretation.
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noestimcheck specifies that contrast not check for estimability. By default, the requested contrasts
are checked and those found not estimable are reported as such. Nonestimability is usually caused
by empty cells. If noestimcheck is specified, estimates are computed in the usual way and
reported even though the resulting estimates are manipulable, which is to say they can differ across
equivalent models having different parameterizations.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

mcompare(method) specifies the method for computing p-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, αc, to achieve a prespecified experimentwise
error rate, αe.

mcompare(noadjust) is the default; it specifies no adjustment.
αc = αe

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the
Bonferroni inequality

αe≤mαc
where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = αe/m

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

αe≤1− (1− αc)m

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = 1− (1− αe)1/m

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the F or χ2 distribution with
degrees of freedom equal to the rank of the term.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all
comparisons across all terms rather than performing multiple comparisons term by term. This
leads to more conservative adjustments when multiple variables or terms are specified in
marginslist. This option is compatible only with the bonferroni and sidak methods.

noeffects suppresses the table of individual contrasts with confidence intervals. This table is
produced by default when the mcompare() option is specified or when a term in termlist implies
all individual contrasts.

cieffects specifies that a table containing a confidence interval for each individual contrast be
reported.

pveffects specifies that a table containing a p-value for each individual contrast be reported.

effects specifies that a single table containing a confidence interval and p-value for each individual
contrast be reported.
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nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or
nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out
without the default adjustment for the design degrees of freedom. That is to say the test is carried
out as W/k ∼ F (k, d) rather than as (d − k + 1)W/(kd) ∼ F (k, d − k + 1), where k is the
dimension of the test and d is the total number of sampled PSUs minus the total number of strata.

sort specifies that the table of individual contrasts be sorted by the contrast values within each term.

post causes contrast to behave like a Stata estimation (e-class) command. contrast posts the
vector of estimated contrasts along with the estimated variance–covariance matrix to e(), so you
can treat the estimated contrasts just as you would results from any other estimation command.
For example, you could use test to perform simultaneous tests of hypotheses on the contrasts,
or you could use lincom to create linear combinations.

display options: vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated
variables from other variables in the model be suppressed.

cformat(% fmt) specifies how to format contrasts, standard errors, and confidence limits in the
table of estimated contrasts.

pformat(% fmt) specifies how to format p-values in the table of estimated contrasts.

sformat(% fmt) specifies how to format test statistics in the table of estimated contrasts.

nolstretch specifies that the width of the table of estimated contrasts not be automatically
widened to accommodate longer variable names. The default, lstretch, is to automatically
widen the table of estimated contrasts up to the width of the Results window. To change the
default, use set lstretch off. nolstretch is not shown in the dialog box.

eform option specifies that the contrasts table be displayed in exponentiated form. econtrast is
displayed rather than contrast. Standard errors and confidence intervals are also transformed. See
[R] eform option for the list of available options.
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Remarks
Remarks are presented under the following headings:

Introduction
One-way models

Estimated cell means
Testing equality of cell means
Reference category contrasts
Reverse adjacent contrasts
Orthogonal polynomial contrasts

Two-way models
Estimated interaction cell means
Simple effects
Interaction effects
Main effects
Partial interaction effects

Three-way and higher-order models
Contrast operators

Differences from a reference level (r.)
Differences from the next level (a.)
Differences from the previous level (ar.)
Differences from the grand mean (g.)
Differences from the mean of subsequent levels (h.)
Differences from the mean of previous levels (j.)
Orthogonal polynomials (p. and q.)

User-defined contrasts
Empty cells
Empty cells, ANOVA style
Nested effects
Multiple comparisons
Unbalanced data

Using observed cell frequencies
Weighted contrast operators

Testing factor effects on slopes
Chow tests
Beyond linear models
Multiple equations

Introduction

contrast performs ANOVA-style tests of main effects, interactions, simple effects, and nested
effects. It can easily decompose these tests into constituent contrasts using either named contrasts
(codings) or user-specified contrasts. Comparing levels of factor variables—whether as main effects,
interactions, or simple effects—is as easy as adding a contrast operator to the variable. The operators
can compare each level with the previous level, each level with a reference level, each level with the
mean of previous levels, and more.

contrast tests and estimates contrasts. A contrast of the parameters µ1, µ2, . . . , µp is a linear
combination

∑
i ciµi whose ci sum to zero. A difference of population means that µ1−µ2 is a contrast,

as are most other comparisons of population or model quantities (Coster 2005). Some contrasts may
be estimated with lincom, but contrast is much more powerful. contrast can handle multiple
contrasts simultaneously, and the command’s contrast operators make it easy to specify complicated
linear combinations.

Both the contrast operation and the creation of the margins for comparison can be performed as
though the data were balanced (typical for experimental designs) or using the observed frequencies
in the estimation sample (typical for observational studies). contrast can perform these analyses on
the results of almost all of Stata’s estimators, not just the linear-models estimators.
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Most of contrast’s computations can be considered comparisons of estimated cell means from
a model fit. Tests of interactions are tests of whether the cell means for the interaction are all equal.
Tests of main effects are tests of whether the marginal cell means for the factor are all equal. More
focused comparisons of cell means (for example, is level 2 equal to level 1) are specified using
contrast operators. More formally, all of contrast’s computations are comparisons of conditional
expectations; cell means are one type of conditional expectation.

All contrasts can also easily be graphed; see [R] marginsplot.
For a discussion of contrasts and testing for linear models, see Searle (1971) and Searle (1997).

For discussions specifically related to experimental design, see Kuehl (2000), Winer, Brown, and
Michels (1991), and Milliken and Johnson (2009). Rosenthal, Rosnow, and Rubin (2000) focus on
contrasts with applications in behavioral sciences.

contrast is a flexible tool for understanding the effects of categorical covariates. If your model
contains categorical covariates, and especially if it contains interactions, you will want to use contrast.

One-way models

Suppose we have collected data on cholesterol levels for individuals from five age groups. To study
the effect of age group on cholesterol, we can begin by fitting a one-way model using regress:

. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. label list ages
ages:

1 10-19
2 20-29
3 30-39
4 40-59
5 60-79

. regress chol i.agegrp

Source SS df MS Number of obs = 75
F( 4, 70) = 35.02

Model 14943.3997 4 3735.84993 Prob > F = 0.0000
Residual 7468.21971 70 106.688853 R-squared = 0.6668

Adj R-squared = 0.6477
Total 22411.6194 74 302.859722 Root MSE = 10.329

chol Coef. Std. Err. t P>|t| [95% Conf. Interval]

agegrp
2 8.203575 3.771628 2.18 0.033 .6812991 15.72585
3 21.54105 3.771628 5.71 0.000 14.01878 29.06333
4 30.15067 3.771628 7.99 0.000 22.6284 37.67295
5 38.76221 3.771628 10.28 0.000 31.23993 46.28448

_cons 180.5198 2.666944 67.69 0.000 175.2007 185.8388
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Estimated cell means

margins will show us the estimated cell means for each age group based on our fitted model:

. margins agegrp

Adjusted predictions Number of obs = 75
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

agegrp
1 180.5198 2.666944 67.69 0.000 175.2926 185.7469
2 188.7233 2.666944 70.76 0.000 183.4962 193.9504
3 202.0608 2.666944 75.76 0.000 196.8337 207.2879
4 210.6704 2.666944 78.99 0.000 205.4433 215.8975
5 219.282 2.666944 82.22 0.000 214.0548 224.5091

We can graph those means with marginsplot:

. marginsplot

Variables that uniquely identify margins: agegrp
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Testing equality of cell means

Are all the means equal? That is to say is there an effect of age group on cholesterol level? We can
answer that by asking contrast to test whether the means of the age groups are identical.

. contrast agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp 4 35.02 0.0000

Residual 70

The means are clearly different. We could have obtained this same test directly had we fit our model
using anova rather than regress.

. anova chol agegrp

Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob > F

Model 14943.3997 4 3735.84993 35.02 0.0000

agegrp 14943.3997 4 3735.84993 35.02 0.0000

Residual 7468.21971 70 106.688853

Total 22411.6194 74 302.859722

Achieving a more direct test result is why we recommend using anova instead of regress for
models where our focus is on the categorical covariates. The models fit by anova and regress are
identical; they merely parameterize the effects differently. The results of contrast will be identical
regardless of which command is used to fit the model. If, however, we were fitting models whose
responses are nonlinear functions of the covariates, such as logistic regression, then there would be
no analogue to anova, and we would appreciate contrast’s ability to quickly test main effects and
interactions.
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Reference category contrasts

Now that we know that the overall effect of age group is statistically significant, we can explore
the effects of each age group. One way to do that is to use the reference category operator, r.:

. contrast r.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 1) 1 32.62 0.0000
(4 vs 1) 1 63.91 0.0000
(5 vs 1) 1 105.62 0.0000

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 1) 21.54105 3.771628 14.01878 29.06333
(4 vs 1) 30.15067 3.771628 22.6284 37.67295
(5 vs 1) 38.76221 3.771628 31.23993 46.28448

The cell mean of each age group is compared against the base age group (group 1, ages 10–19).
The first table shows that each difference is significant. The second table gives an estimate and
confidence interval for each contrast. These are the comparisons that linear regression gives with a
factor covariate and no interactions. The contrasts are identical to the coefficients from our linear
regression.

Reverse adjacent contrasts

We have far more flexibility with contrast. Age group is ordinal, so it is interesting to compare
each age group with the preceding age group (rather than against one reference group). We specify
that analysis by using the reverse adjacent operator, ar.:

. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 2) 1 12.51 0.0007
(4 vs 3) 1 5.21 0.0255
(5 vs 4) 1 5.21 0.0255

Joint 4 35.02 0.0000

Residual 70
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Contrast Std. Err. [95% Conf. Interval]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 2) 13.33748 3.771628 5.815204 20.85976
(4 vs 3) 8.60962 3.771628 1.087345 16.1319
(5 vs 4) 8.611533 3.771628 1.089257 16.13381

Age group 2’s cholesterol level is 8.2 points higher than age group 1’s; age group 3’s is 13.3 points
higher than age group 2’s; and so on. Each age group is statistically different from the preceding age
group at the 5% level.

Orthogonal polynomial contrasts

The relationship between age group and cholesterol level looked almost linear in our graph. We
can examine that relationship further by using the orthogonal polynomial operator, p.:

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

Only the linear effect is statistically significant.

We can even perform the joint test that all effects beyond linear are zero. We do that by selecting
all polynomial contrasts above linear—that is, polynomial contrasts 2, 3, and 4.

. contrast p(2 3 4).agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(quadratic) 1 0.15 0.6962

(cubic) 1 0.37 0.5448
(quartic) 1 0.43 0.5153

Joint 3 0.32 0.8129

Residual 70

The joint test has three degrees of freedom and is clearly insignificant. A linear effect of age group
seems adequate for this model.
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Two-way models

Suppose we are investigating the effects of different dosages of a blood pressure medication and
believe that the effects may be different for men and women. We can fit the following ANOVA model
for bpchange, the change in diastolic blood pressure. Change is defined as the after measurement
minus the before measurement, so that negative values of bpchange correspond to decreases in blood
pressure.

. use http://www.stata-press.com/data/r12/bpchange
(Artificial blood pressure data)

. label list gender
gender:

1 male
2 female

. anova bpchange dose##gender

Number of obs = 30 R-squared = 0.9647
Root MSE = 1.4677 Adj R-squared = 0.9573

Source Partial SS df MS F Prob > F

Model 1411.9087 5 282.381741 131.09 0.0000

dose 963.481795 2 481.740897 223.64 0.0000
gender 355.118817 1 355.118817 164.85 0.0000

dose#gender 93.3080926 2 46.6540463 21.66 0.0000

Residual 51.699253 24 2.15413554

Total 1463.60796 29 50.4692399

Estimated interaction cell means

Everything is significant, including the interaction. So increasing dosage is effective and differs by
gender. Let’s explore the effects. First, let’s look at the estimated cell mean of blood pressure change
for each combination of gender and dosage.

. margins dose#gender

Adjusted predictions Number of obs = 30

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

dose#gender
250 1 -7.35384 .6563742 -11.20 0.000 -8.64031 -6.06737
250 2 3.706567 .6563742 5.65 0.000 2.420097 4.993037
500 1 -13.73386 .6563742 -20.92 0.000 -15.02033 -12.44739
500 2 -6.584167 .6563742 -10.03 0.000 -7.870637 -5.297697
750 1 -16.82108 .6563742 -25.63 0.000 -18.10754 -15.53461
750 2 -14.38795 .6563742 -21.92 0.000 -15.67442 -13.10148

Our data are balanced, so these results will not be affected by the many different ways that
margins can compute cell means. Moreover, because our model consists of only dose and gender,
these are also the point estimates for each combination.
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We can graph the results:

. marginsplot

Variables that uniquely identify margins: dose gender
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The lines are not parallel, which we expected because the interaction term is significant. Males
experience a greater decline in blood pressure at every dosage level, but the effect of increasing
dosage is greater for females. In fact, it is not clear if we can tell the difference between male and
female response at the maximum dosage.

Simple effects

We can contrast the male and female responses within dosage to see the simple effects of gender.
Because there are only two levels in gender, the choice of contrast operator is largely irrelevant.
Aside from orthogonal polynomials, all operators produce the same estimates, although the effects
can change signs.

. contrast r.gender@dose

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

gender@dose
(2 vs 1) 250 1 141.97 0.0000
(2 vs 1) 500 1 59.33 0.0000
(2 vs 1) 750 1 6.87 0.0150

Joint 3 69.39 0.0000

Residual 24

Contrast Std. Err. [95% Conf. Interval]

gender@dose
(2 vs 1) 250 11.06041 .9282533 9.144586 12.97623
(2 vs 1) 500 7.149691 .9282533 5.23387 9.065512
(2 vs 1) 750 2.433124 .9282533 .5173031 4.348944
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The effect for males is about 11 points higher than for females at a dosage of 250, and that shrinks
to 2.4 points higher at the maximum dosage of 750.

We can form the simple effects the other way by contrasting the effect of dose at each level of
gender:

. contrast ar.dose@gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose@gender
(500 vs 250) 1 1 47.24 0.0000
(500 vs 250) 2 1 122.90 0.0000
(750 vs 500) 1 1 11.06 0.0028
(750 vs 500) 2 1 70.68 0.0000

Joint 4 122.65 0.0000

Residual 24

Contrast Std. Err. [95% Conf. Interval]

dose@gender
(500 vs 250) 1 -6.380018 .9282533 -8.295839 -4.464198
(500 vs 250) 2 -10.29073 .9282533 -12.20655 -8.374914
(750 vs 500) 1 -3.087217 .9282533 -5.003038 -1.171396
(750 vs 500) 2 -7.803784 .9282533 -9.719605 -5.887963

Here we use the ar. reverse adjacent contrast operator so that first we are comparing a dosage
of 500 with a dosage of 250, and then we are comparing 750 with 500. We see that increasing the
dosage has a larger effect on females—10.3 points when going from 250 to 500 compared with 6.4
points for males, and 7.8 points when going from 500 to 750 versus 3.1 points for males.

Interaction effects

By specifying contrast operators on both factors, we can decompose the interaction effect into
separate interaction contrasts.

. contrast ar.dose#r.gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose#gender
(500 vs 250) (2 vs 1) 1 8.87 0.0065
(750 vs 500) (2 vs 1) 1 12.91 0.0015

Joint 2 21.66 0.0000

Residual 24
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Contrast Std. Err. [95% Conf. Interval]

dose#gender
(500 vs 250) (2 vs 1) -3.910716 1.312748 -6.620095 -1.201336
(750 vs 500) (2 vs 1) -4.716567 1.312748 -7.425947 -2.007187

Look for departures from zero to indicate an interaction effect between dose and gender. Both
contrasts are significantly different from zero. Of course, we already knew the overall interaction
was significant from our ANOVA results. The effect of increasing dose from 250 to 500 is 3.9 points
greater in females than in males, and the effect of increasing dose from 500 to 750 is 4.7 points
greater in females than in males. The confidence intervals for both estimates easily exclude zero,
meaning that there is an interaction effect.

The joint test of these two interaction effects reproduces the test of interaction effects in the anova
output. We can see that the F statistic of 21.66 matches the statistic from our original ANOVA results.

Main effects

We can perform tests of the main effects by listing each variable individually in contrast.

. contrast dose gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose 2 223.64 0.0000

gender 1 164.85 0.0000

Residual 24

The F tests are equivalent to the tests of main effects in the anova output. This is true only for
linear models. contrast provides an easy way to obtain main effects and other ANOVA-style tests
for models whose responses are not linear in the parameters—logistic, probit, glm, etc.

If we include contrast operators on the variables, we can also decompose the main effects into
individual contrasts:

. contrast ar.dose r.gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose
(500 vs 250) 1 161.27 0.0000
(750 vs 500) 1 68.83 0.0000

Joint 2 223.64 0.0000

gender 1 164.85 0.0000

Residual 24
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Contrast Std. Err. [95% Conf. Interval]

dose
(500 vs 250) -8.335376 .6563742 -9.690066 -6.980687
(750 vs 500) -5.4455 .6563742 -6.80019 -4.090811

gender
(2 vs 1) 6.881074 .5359273 5.774974 7.987173

By specifying the ar. operator on dose, we decompose the main effect for dose into two one-degree-
of-freedom contrasts, comparing the marginal mean of blood pressure change for each dosage level
with that of the previous level. Because gender has only two levels, we cannot decompose this main
effect any further. However, specifying a contrast operator on gender allowed us to calculate the
difference in the marginal means for women and men.

Partial interaction effects

At this point, we have looked at the total interaction effects and at the main effects of each variable.
The partial interaction effects are a midpoint between these two types of effects where we collect the
individual interaction effects along the levels of one of the variables and perform a joint test of those
interactions. If we think of the interaction effects as forming a table, with the levels of one factor
variable forming the rows and the levels of the other forming the columns, partial interaction effects
are joint tests of the interactions in a row or a column. To perform these tests, we specify a contrast
operator on only one of the variables in our interaction. For this particular model, these are not very
interesting because our variables have only two and three levels. Therefore, the tests of the partial
interaction effects reproduce the tests that we obtained for the total interaction effects. We specify a
contrast operator only on dose to decompose the overall test for interaction effects into joint tests
for each ar.dose contrast:

. contrast ar.dose#gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose#gender
(500 vs 250) (joint) 1 8.87 0.0065
(750 vs 500) (joint) 1 12.91 0.0015

Joint 2 21.66 0.0000

Residual 24

The first row is a joint test of all the interaction effects involving the (500 vs 250) comparison
of dosages. The second row is a joint test of all the interaction effects involving the (750 vs 500)
comparison. If we look back at our output in Interaction effects, we can see that there was only one of
each of these interaction effects. Therefore, each test labeled (joint) has only one degree-of-freedom.

We could have instead included a contrast operator on gender to compute the partial interaction
effects along the other dimension:
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. contrast dose#r.gender

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

dose#gender 2 21.66 0.0000

Residual 24

Here we obtain a joint test of all the interaction effects involving the (2 vs 1) comparison for
gender. Because gender has only two levels, the (2 vs 1) contrast is the only reference category
contrast possible. Therefore, we obtain a single joint test of all the interaction effects.

Clearly, the partial interaction effects are not interesting for this particular model. However, if our
factors had more levels, the partial interaction effects would produce tests that are not available in
the total interaction effects. For example, if our model included factors for four dosage levels and
three races, then typing

. contrast ar.dose#race

would produce three joint tests, one for each of the reverse adjacent contrasts for dosage. Each of
these tests would be a two-degree-of-freedom test because race has three levels.

Three-way and higher-order models

All the contrasts and tests that we reviewed above for two-way models can be used with models
that have more terms. For instance, we could fit a three-way full factorial model by using the anova
command:

. use http://www.stata-press.com/data/r12/cont3way

. anova y race##sex##group

We could then test the simple effects of race within each level of the interaction between sex
and group:

. contrast race@sex#group

To see the reference category contrasts that decompose these simple effects, type

. contrast r.race@sex#group

We could test the three-way interaction effects by typing

. contrast race#sex#group

or the interaction effects for the interaction of race and sex by typing

. contrast race#sex

To see the individual reference category contrasts that decompose this interaction effect, type

. contrast r.race#r.sex
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We could even obtain joint tests for the interaction of race and sex within each level of group
by typing

. contrast race#sex@group

For tests of the main effects of each factor, we can type

. contrast race sex group

We can calculate the individual reference category contrasts that decompose these main effects:

. contrast r.race r.sex r.group

For the partial interaction effects, we could type

. contrast r.race#group

to obtain a joint test of the two-way interaction effects of race and group for each of the individual
r.race contrasts.

We could type

. contrast r.race#sex#group

to obtain a joint test of all the three-way interaction terms for each of the individual r.race contrasts.

Contrast operators

contrast recognizes a set of contrast operators that are used to specify commonly used contrasts.
When these operators are used, contrast will report a test for each individual contrast in addition
to the joint test for the term. We have already seen a few of these, like r. and ar., in the previous
examples. Here we will take a closer look at each of the unweighted operators.

Here we use the cholesterol dataset and the one-way ANOVA model from the example in One-way
models:

. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. anova chol agegrp
(output omitted )

The margins command reports the estimated cell means, µ̂1, . . . , µ̂5, for each of the five age
groups.

. margins agegrp

Adjusted predictions Number of obs = 75

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

agegrp
1 180.5198 2.666944 67.69 0.000 175.2926 185.7469
2 188.7233 2.666944 70.76 0.000 183.4962 193.9504
3 202.0608 2.666944 75.76 0.000 196.8337 207.2879
4 210.6704 2.666944 78.99 0.000 205.4433 215.8975
5 219.282 2.666944 82.22 0.000 214.0548 224.5091
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Contrast operators provide an easy way to make certain types of comparisons of these cell means.
We use the ordinal factor agegrp to demonstrate these operators because some types of contrasts are
only meaningful when the levels of the factor have a natural ordering. We demonstrate these contrast
operators using a one-way model; however, they are equally applicable to main effects, simple effects,
and interactions for more complicated models.

Differences from a reference level (r.)

The r. operator specifies that each level of the attached factor variable be compared with a
reference level. These are referred to as reference-level or reference-category contrasts (or effects),
and r. is the reference-level operator.

In the following, we use the r. operator to test the effect of each category of age group when
that category is compared with a reference category.

. contrast r.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 1) 1 32.62 0.0000
(4 vs 1) 1 63.91 0.0000
(5 vs 1) 1 105.62 0.0000

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 1) 21.54105 3.771628 14.01878 29.06333
(4 vs 1) 30.15067 3.771628 22.6284 37.67295
(5 vs 1) 38.76221 3.771628 31.23993 46.28448

In the first table, the row labeled (2 vs 1) is a test of µ2 = µ1, a test that the mean cholesterol
levels for the 10–19 age group (agegrp = 1) and the 20–29 age group (agegrp = 2) are equal.
The tests in the next three rows are defined similarly. The row labeled Joint provides the joint test
for these four hypotheses, which is just the test of the main effects of age group.

The second table provides the contrasts of each category with the reference category along with
confidence intervals. The contrast in the row labeled (2 vs 1) is the difference in the cell means of
the second age group and the first age group, µ̂2 − µ̂1.

The first level of a factor is the default reference level, but we can specify a different reference level
by using the b. operator; see [U] 11.4.3.2 Base levels. Here we use the last age group, agegrp = 5,
instead of the first as the reference category. We also include the nowald option so that only the
table of contrasts and their confidence intervals is produced.
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. contrast rb5.agegrp, nowald

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

agegrp
(1 vs 5) -38.76221 3.771628 -46.28448 -31.23993
(2 vs 5) -30.55863 3.771628 -38.08091 -23.03636
(3 vs 5) -17.22115 3.771628 -24.74343 -9.698877
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

Now the first row is labeled (1 vs 5) and is the difference in the cell means of the first and fifth
age groups.

Differences from the next level (a.)

The a. operator specifies that each level of the attached factor variable be compared with the next
level. These are referred to as adjacent contrasts (or effects), and a. is the adjacent operator. This
operator is only meaningful with factor variables that have a natural ordering in the levels.

We can use the a. operator to perform tests that each level of age group differs from the next
adjacent level.

. contrast a.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(1 vs 2) 1 4.73 0.0330
(2 vs 3) 1 12.51 0.0007
(3 vs 4) 1 5.21 0.0255
(4 vs 5) 1 5.21 0.0255

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(1 vs 2) -8.203575 3.771628 -15.72585 -.6812991
(2 vs 3) -13.33748 3.771628 -20.85976 -5.815204
(3 vs 4) -8.60962 3.771628 -16.1319 -1.087345
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

In the first table, the row labeled (1 vs 2) tests the effect of belonging to the 10–19 age group
instead of the 20–29 age group. Likewise, the rows labeled (2 vs 3), (3 vs 4), and (4 vs 5) are
tests for the effects of being in the younger of the two age groups instead of the older one.

In the second table, the contrast in the row labeled (1 vs 2) is the difference in the cell means
of the first and second age groups, µ̂1 − µ̂2. The contrasts in the other rows are defined similarly.
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Differences from the previous level (ar.)

The ar. operator specifies that each level of the attached factor variable be compared with the
previous level. These are referred to as reverse adjacent contrasts (or effects), and ar. is the reverse
adjacent operator. As with the a. operator, this operator is only meaningful with factor variables that
have a natural ordering in the levels.

In the following, we use the ar. operator to report tests for the individual reverse adjacent effects
of agegrp.

. contrast ar.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs 2) 1 12.51 0.0007
(4 vs 3) 1 5.21 0.0255
(5 vs 4) 1 5.21 0.0255

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs 2) 13.33748 3.771628 5.815204 20.85976
(4 vs 3) 8.60962 3.771628 1.087345 16.1319
(5 vs 4) 8.611533 3.771628 1.089257 16.13381

Here the Wald tests in the first table for the individual reverse adjacent effects are equivalent to the
tests for the adjacent effects in the previous example. However, if we compare values of the contrasts
in the bottom tables, we see the difference between the r. and the ar. operators. This time, the
contrast in the first row is labeled (2 vs 1) and is the difference in the cell means of the second and
first age groups, µ̂2 − µ̂1. This is the estimated effect of belonging to the 20–29 age group instead
of the 10–19 age group. The remaining rows make similar comparisons to the previous level.

Differences from the grand mean (g.)

The g. operator specifies that each level of a factor variable be compared with the grand mean of
all levels. For this operator, the grand mean is computed using a simple average of the cell means.
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Here are the grand mean effects of agegrp:

. contrast g.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(1 vs mean) 1 68.42 0.0000
(2 vs mean) 1 23.36 0.0000
(3 vs mean) 1 0.58 0.4506
(4 vs mean) 1 19.08 0.0000
(5 vs mean) 1 63.65 0.0000

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(1 vs mean) -19.7315 2.385387 -24.48901 -14.974
(2 vs mean) -11.52793 2.385387 -16.28543 -6.770423
(3 vs mean) 1.809552 2.385387 -2.947953 6.567057
(4 vs mean) 10.41917 2.385387 5.661668 15.17668
(5 vs mean) 19.0307 2.385387 14.2732 23.78821

There are five age groups in our estimation sample. Thus the row labeled (1 vs mean) tests
µ1 = (µ1+µ2+µ3+µ4+µ5)/5. The row labeled (2 vs mean) tests µ2 = (µ1+µ2+µ3+µ4+µ5)/5.
The remaining rows perform similar tests for the third, fourth, and fifth age groups. In our example,
the means for all age groups except group 3 (30–39 age group) are statistically different from the
grand mean.

Differences from the mean of subsequent levels (h.)

The h. operator specifies that each level of the attached factor variable be compared with the mean
of subsequent levels. These are referred to as Helmert contrasts (or effects), and h. is the Helmert
operator. For this operator, the mean is computed using a simple average of the cell means. This
operator is only meaningful with factor variables that have a natural ordering in the levels.

Here are the Helmert contrasts for agegrp:

. contrast h.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(1 vs >1) 1 68.42 0.0000
(2 vs >2) 1 50.79 0.0000
(3 vs >3) 1 15.63 0.0002
(4 vs 5) 1 5.21 0.0255

Joint 4 35.02 0.0000

Residual 70
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Contrast Std. Err. [95% Conf. Interval]

agegrp
(1 vs >1) -24.66438 2.981734 -30.61126 -18.7175
(2 vs >2) -21.94774 3.079522 -28.08965 -15.80583
(3 vs >3) -12.91539 3.266326 -19.42987 -6.400905
(4 vs 5) -8.611533 3.771628 -16.13381 -1.089257

The row labeled (1 vs >1) tests µ1 = (µ2 + µ3 + µ4 + µ5)/4, that is, that the cell mean for the
youngest age group is equal to the average of the cell means for the older age groups. The row
labeled (2 vs >2) tests µ2 = (µ3 + µ4 + µ5)/3. The tests in the other rows are defined similarly.

Differences from the mean of previous levels (j.)

The j. operator specifies that each level of the attached factor variable be compared with the
mean of the previous levels. These are referred to as reverse Helmert contrasts (or effects), and j.
is the reverse Helmert operator. For this operator, the mean is computed using a simple average of
the cell means. This operator is only meaningful with factor variables that have a natural ordering in
the levels.

Here are the reverse Helmert contrasts of agegrp:

. contrast j.agegrp

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(2 vs 1) 1 4.73 0.0330
(3 vs <3) 1 28.51 0.0000
(4 vs <4) 1 43.18 0.0000
(5 vs <5) 1 63.65 0.0000

Joint 4 35.02 0.0000

Residual 70

Contrast Std. Err. [95% Conf. Interval]

agegrp
(2 vs 1) 8.203575 3.771628 .6812991 15.72585
(3 vs <3) 17.43927 3.266326 10.92479 23.95375
(4 vs <4) 20.2358 3.079522 14.09389 26.37771
(5 vs <5) 23.78838 2.981734 17.8415 29.73526

The row labeled (2 vs 1) tests µ2 = µ1, that is, that the cell means for the 20–29 and the 10–19
age groups are equal. The row labeled (3 vs <3) tests µ3 = (µ1 +µ2)/2, that is, that the cell mean
for the 30–39 age group is equal to the average of the cell means for the 10–19 and 20–29 age
groups. The tests in the remaining rows are defined similarly.
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Orthogonal polynomials (p. and q.)

The p. and q. operators specify that orthogonal polynomials be applied to the attached factor
variable. Orthogonal polynomial contrasts allow us to partition the effects of a factor variable into
linear, quadratic, cubic, and higher-order polynomial components. The p. operator applies orthogonal
polynomials using the values of the factor variable. The q. operator applies orthogonal polynomials
using the level indices. If the level values of the factor variable are equally spaced, as with our agegrp
variable, then the p. and q. operators yield the same result. These operators are only meaningful
with factor variables that have a natural ordering in the levels.

Because agegrp has five levels, contrast can test the linear, quadratic, cubic, and quartic effects
of agegrp.

. contrast p.agegrp, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

The row labeled (linear) tests the linear effect of agegrp, the only effect that appears to be
significant in this case.

The labels for our agegrp variable show the age ranges that correspond to each level.

. label list ages
ages:

1 10-19
2 20-29
3 30-39
4 40-59
5 60-79

Notice that these groups do not have equal widths. Now let’s refit our model using the agemidpt
variable. The values of agemidpt indicate the midpoint of each age group that was defined by the
agegrp variable and are, therefore, not equally spaced.

. anova chol agemidpt

Number of obs = 75 R-squared = 0.6668
Root MSE = 10.329 Adj R-squared = 0.6477

Source Partial SS df MS F Prob > F

Model 14943.3997 4 3735.84993 35.02 0.0000

agemidpt 14943.3997 4 3735.84993 35.02 0.0000

Residual 7468.21971 70 106.688853

Total 22411.6194 74 302.859722
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Now if we use the q. operator, we will obtain the same results as above because the level indices
of agemidpt are equivalent to the values of agegrp.

. contrast q.agemidpt, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agemidpt
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

However, if we use the p. operator, we will instead fit an orthogonal polynomial to the midpoint
values.

. contrast p.agemidpt, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agemidpt
(linear) 1 133.45 0.0000

(quadratic) 1 5.40 0.0230
(cubic) 1 0.05 0.8198

(quartic) 1 1.16 0.2850
Joint 4 35.02 0.0000

Residual 70

Using the values of the midpoints, the quadratic effect is also significant at the 5% level.

Technical note

We used the noeffects option when working with orthogonal polynomial contrasts. Apart from
perhaps the sign of the contrast, the values of the individual contrasts are not meaningful for orthogonal
polynomial contrasts. In addition, many textbooks provide tables with contrast coefficients that can be
used to compute orthogonal polynomial contrasts where the levels of a factor are equally spaced. If
we use these coefficients and calculate the contrasts manually with user-defined contrasts, as described
below, the Wald tests for the polynomial terms will be equivalent, but the values of the individual
contrasts will not necessarily match those that we obtain when using the polynomial contrast operator.
When we use one of these contrast operators, an algorithm is used to calculate the coefficients of the
polynomial contrast that will allow for unequal spacing in the levels of the factor as well as in the
weights for the cell frequencies (when using pw. or qw.), as described in Methods and formulas.
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User-defined contrasts
In the previous examples, we performed tests using contrast operators. When there is not a contrast

operator available to calculate the contrast in which we are interested, we can specify custom contrasts.

Here we fit a one-way model for cholesterol on the factor race, which has three levels:

. label list race
race:

1 black
2 white
3 other

. anova chol race

Number of obs = 75 R-squared = 0.0299
Root MSE = 17.3775 Adj R-squared = 0.0029

Source Partial SS df MS F Prob > F

Model 669.278235 2 334.639117 1.11 0.3357

race 669.278235 2 334.639117 1.11 0.3357

Residual 21742.3412 72 301.976961

Total 22411.6194 74 302.859722

margins calculates the estimated cell mean cholesterol level for each race:

. margins race

Adjusted predictions Number of obs = 75

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

race
1 204.4279 3.475497 58.82 0.000 197.6161 211.2398
2 197.6132 3.475497 56.86 0.000 190.8014 204.425
3 198.7127 3.475497 57.18 0.000 191.9008 205.5245

Suppose we want to test the following linear combination:

3∑
i=1

ciµi

where µi is the cell mean of chol when race is equal to its ith level (the means estimated using
margins above). Assuming the ci elements sum to zero, this linear combination is a contrast. We
can specify this type of custom contrast by using the following syntax:

{race c1 c2 c3}

The null hypothesis for the test of the main effects of race is

H0race: µ1 = µ2 = µ3
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Although H0race can be tested using any of several different contrasts on the cell means, we will test
it by comparing the second and third cell means with the first. To test that the cell means for blacks
and whites are equal, µ1 = µ2, we can specify the contrast

{race -1 1 0}

To test that the cell means for blacks and other races are equal, µ1 = µ3, we can specify the contrast

{race -1 0 1}

We can use both in a single call to contrast.

. contrast {race -1 1 0} {race -1 0 1}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(1) 1 1.92 0.1699
(2) 1 1.35 0.2488

Joint 2 1.11 0.3357

Residual 72

Contrast Std. Err. [95% Conf. Interval]

race
(1) -6.814717 4.915095 -16.61278 2.983345
(2) -5.715261 4.915095 -15.51332 4.082801

The row labeled (1) is the test for µ1 = µ2, the first specified contrast. The row labeled (2) is the
test for µ1 = µ3, the second specified contrast. The row labeled Joint is the overall test for the
main effects of race.

Now let’s fit a model with two factors, race and age group:

. anova chol race##agegrp

Number of obs = 75 R-squared = 0.7524
Root MSE = 9.61785 Adj R-squared = 0.6946

Source Partial SS df MS F Prob > F

Model 16861.438 14 1204.38843 13.02 0.0000

race 669.278235 2 334.639117 3.62 0.0329
agegrp 14943.3997 4 3735.84993 40.39 0.0000

race#agegrp 1248.76005 8 156.095006 1.69 0.1201

Residual 5550.18143 60 92.5030238

Total 22411.6194 74 302.859722

The null hypothesis for the test of the main effects of race is now

H0race: µ1· = µ2· = µ3·

where µi· is the marginal mean of chol when race is equal to its ith level.
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We can use the same syntax as above to perform this test by specifying contrasts on the marginal
means of race:

. contrast {race -1 1 0} {race -1 0 1}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(1) 1 6.28 0.0150
(2) 1 4.41 0.0399

Joint 2 3.62 0.0329

Residual 60

Contrast Std. Err. [95% Conf. Interval]

race
(1) -6.814717 2.720339 -12.2562 -1.37323
(2) -5.715261 2.720339 -11.15675 -.2737739

Custom contrasts may be specified on the cell means of interactions, too. Here we use margins
to calculate the mean of chol for each cell in the interaction of race and agegrp:

. margins race#agegrp

Adjusted predictions Number of obs = 75

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

race#agegrp
1 1 179.2309 4.301233 41.67 0.000 170.8006 187.6611
1 2 196.4777 4.301233 45.68 0.000 188.0474 204.908
1 3 210.6694 4.301233 48.98 0.000 202.2391 219.0996
1 4 214.097 4.301233 49.78 0.000 205.6668 222.5273
1 5 221.6646 4.301233 51.54 0.000 213.2344 230.0949
2 1 186.0727 4.301233 43.26 0.000 177.6425 194.503
2 2 184.6714 4.301233 42.93 0.000 176.2411 193.1017
2 3 196.2633 4.301233 45.63 0.000 187.833 204.6936
2 4 209.9953 4.301233 48.82 0.000 201.5651 218.4256
2 5 211.0633 4.301233 49.07 0.000 202.633 219.4935
3 1 176.2556 4.301233 40.98 0.000 167.8254 184.6859
3 2 185.0209 4.301233 43.02 0.000 176.5906 193.4512
3 3 199.2498 4.301233 46.32 0.000 190.8195 207.68
3 4 207.9189 4.301233 48.34 0.000 199.4887 216.3492
3 5 225.118 4.301233 52.34 0.000 216.6877 233.5483

Now we are interested in testing the following linear combination of these cell means:

3∑
i=1

5∑
j=1

cijµij
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We can specify this type of custom contrast using the following syntax:

{race#agegrp c11 c12 . . . c15 c21 c22 . . . c25 c31 c32 . . . c35}

Because the marginal means of chol for each level of race are linear combinations of the cell
means, we can compose the test for the main effects of race in terms of the cell means directly.
The constraint that the marginal means for blacks and whites are equal, µ1· = µ2·, translates to the
following constraint on the cell means:

1
5

(µ11 + µ12 + µ13 + µ14 + µ15) =
1
5

(µ21 + µ22 + µ23 + µ24 + µ25)

Ignoring the common factor, we can specify this contrast as

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1 0 0 0 0 0}

contrast will fill in the trailing zeros for us if we neglect to specify them, so

{race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}

is also allowed. The other constraint, µ1· = µ3·, translates to

1
5

(µ11 + µ12 + µ13 + µ14 + µ15) =
1
5

(µ31 + µ32 + µ33 + µ34 + µ35)

This can be specified to contrast as

{race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}

The following call to contrast yields the same test results as above.

. contrast {race#agegrp -1 -1 -1 -1 -1 1 1 1 1 1}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race#agegrp
(1) (1) 1 6.28 0.0150
(2) (2) 1 4.41 0.0399

Joint 2 3.62 0.0329

Residual 60

The row labeled (1) (1) is the test for

µ11 + µ12 + µ13 + µ14 + µ15 = µ21 + µ22 + µ23 + µ24 + µ25

It was the first specified contrast. The row labeled (2) (2) is the test for

µ11 + µ12 + µ13 + µ14 + µ15 = µ31 + µ32 + µ33 + µ34 + µ35

It was the second specified contrast. The row labeled Joint tests (1) (1) and (2) (2) simultaneously.
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We used the noeffects option above to suppress the table of contrasts. We can omit the 1/5
from the equations for µ1· = µ2· and µ1· = µ3· and still obtain the appropriate tests. However, if
we want to calculate the differences in the marginal means, we must include the 1/5 = 0.2 on each
of the contrast coefficients as follows:

. contrast {race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2
0.2 0.2 0.2 0.2 0.2}

{race#agegrp -0.2 -0.2 -0.2 -0.2 -0.2
0 0 0 0 0

0.2 0.2 0.2 0.2 0.2}

So far, we have reproduced the reference category contrasts by specifying user-defined contrasts
on the marginal means and then on the cell means. For this test, it would have been easier to use the
r. contrast operator:

. contrast r.race, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(2 vs 1) 1 6.28 0.0150
(3 vs 1) 1 4.41 0.0399

Joint 2 3.62 0.0329

Residual 60

In most cases, we can use contrast operators to perform tests. However, if we want to compare,
for instance, the second and third age groups with the fourth and fifth age groups with the test

1
2

(µ·2 + µ·3) =
1
2

(µ·4 + µ·5)

there is not a contrast operator that corresponds to this particular contrast. A custom contrast is
necessary.

. contrast {agegrp 0 -0.5 -0.5 0.5 0.5}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp 1 62.19 0.0000

Residual 60

Contrast Std. Err. [95% Conf. Interval]

agegrp
(1) 19.58413 2.483318 14.61675 24.5515
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Empty cells

An empty cell is a combination of the levels of factor variables that is not observed in the estimation
sample. In the previous examples, we have seen data with three levels of race, five levels of agegrp,
and all level combinations of race and agegrp present. Suppose there are no observations for white
individuals in the second age group (ages 20–29).

. use http://www.stata-press.com/data/r12/cholesterol2
(Artificial cholesterol data, empty cells)

. label list
race:

1 black
2 white
3 other

ages:
1 10-19
2 20-29
3 30-39
4 40-59
5 60-79

. regress chol race##agegrp
note: 2.race#2.agegrp identifies no observations in the sample

Source SS df MS Number of obs = 70
F( 13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coef. Std. Err. t P>|t| [95% Conf. Interval]

race
2 12.84185 5.989703 2.14 0.036 .8430383 24.84067
3 -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
2 17.24681 5.989703 2.88 0.006 5.247991 29.24562
3 31.43847 5.989703 5.25 0.000 19.43966 43.43729
4 34.86613 5.989703 5.82 0.000 22.86732 46.86495
5 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
2 2 0 (empty)
2 3 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
2 4 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
2 5 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
3 2 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
3 3 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
3 4 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
3 5 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153
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Now let’s use contrast to test the main effects of race:

. contrast race

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race (not testable)

Residual 56

By “not testable”, contrast means that it cannot form a test for the main effects of race based
on estimable functions of the model coefficients. agegrp has five levels, so contrast constructs an
estimate of the ith margin for race as

µ̂i· =
1
5

5∑
j=1

µ̂ij = µ̂0 + α̂i +
1
5

5∑
j=1

{
β̂j + (α̂β)ij

}

but (α̂β)22 was constrained to zero because of the empty cell, so µ̂2· is not an estimable function
of the model coefficients.

See Estimable functions in Methods and formulas of [R] margins for a technical description of
estimable functions. The emptycells(reweight) option causes contrast to estimate µ2· by

µ̂2· =
µ̂21 + µ̂23 + µ̂24 + µ̂25

4

which is an estimable function of the model coefficients.

. contrast race, emptycells(reweight)

Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F

race 2 3.17 0.0498

Residual 56
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We can reconstruct the effect of the emptycells(reweight) option by using custom contrasts.

. contrast {race#agegrp -4 -4 -4 -4 -4 5 0 5 5 5}
> {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race#agegrp
(1) (1) 1 1.06 0.3080
(2) (2) 1 2.37 0.1291

Joint 2 3.17 0.0498

Residual 56

The row labeled (1) (1) is the test for

1
5

(µ11 + µ12 + µ13 + µ14 + µ15) =
1
4

(µ21 + µ23 + µ24 + µ25)

It was the first specified contrast. The row labeled (2) (2) is the test for

µ11 + µ12 + µ13 + µ14 + µ15 = µ31 + µ32 + µ33 + µ34 + µ35

It was the second specified contrast. The row labeled Joint is the overall test of the main effects of
race.

Empty cells, ANOVA style

Let’s refit the linear model from the previous example with anova to compare with contrast’s
test for the main effects of race.

. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582
Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob > F

Model 15751.6113 13 1211.66241 13.51 0.0000

race 305.49046 2 152.74523 1.70 0.1914
agegrp 14387.8559 4 3596.96397 40.10 0.0000

race#agegrp 795.807574 7 113.686796 1.27 0.2831

Residual 5022.71559 56 89.6913498

Total 20774.3269 69 301.077201

contrast and anova handled the empty cell differently; the F statistic reported by contrast
was 3.17, but anova reported 1.70. To see how they differ, consider the following table of the cell
means and margins for our situation.
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agegrp
1 2 3 4 5

1 µ11 µ12 µ13 µ14 µ15 µ1·
race 2 µ21 µ23 µ24 µ25

3 µ31 µ32 µ33 µ34 µ35 µ3·
µ·1 µ·3 µ·4 µ·5

For testing the main effects of race, we know that we will be testing the equality of the marginal
means for rows 1 and 3, that is, µ1· = µ3·. This translates into the following constraint:

µ11 + µ12 + µ13 + µ14 + µ15 = µ31 + µ32 + µ33 + µ34 + µ35

Because row 2 contains an empty cell in column 2, anova dropped column 2 and tested the equality
of the marginal mean for row 2 with the average of the marginal means from rows 1 and 3, using
only the remaining cell means. This translates into the following constraint:

2(µ21 + µ23 + µ24 + µ25) = µ11 + µ13 + µ14 + µ15 + µ31 + µ33 + µ34 + µ35 (1)

Now that we know the constraints that anova used to test for the main effects of race, we can use
custom contrasts to reproduce the anova test result.

. contrast {race#agegrp -1 -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1}
> {race#agegrp 1 0 1 1 1 -2 0 -2 -2 -2 1 0 1 1 1}, noeffects

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race#agegrp
(1) (1) 1 2.37 0.1291
(2) (2) 1 1.03 0.3138

Joint 2 1.70 0.1914

Residual 56

The row labeled (1) (1) is the test for µ1· = µ3·; it was the first specified contrast. The row labeled
(2) (2) is the test for the constraint in (1); it was the second specified contrast. The row labeled
Joint is an overall test for the main effects of race.

Nested effects

contrast has the | operator for computing simple effects when the levels of one factor are nested
within the levels of another. Here is a fictional example where we are interested in the effect of
five methods of teaching algebra on students’ scores for the math portion of the SAT. Suppose three
algebra classes are randomly sampled from classes using each of the five methods so that class is
nested in method as demonstrated in the following tabulation.
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. use http://www.stata-press.com/data/r12/SAT
(Artificial SAT data)

. tabulate class method

method
class 1 2 3 4 5 Total

1 5 0 0 0 0 5
2 5 0 0 0 0 5
3 5 0 0 0 0 5
4 0 5 0 0 0 5
5 0 5 0 0 0 5
6 0 5 0 0 0 5
7 0 0 5 0 0 5
8 0 0 5 0 0 5
9 0 0 5 0 0 5

10 0 0 0 5 0 5
11 0 0 0 5 0 5
12 0 0 0 5 0 5
13 0 0 0 0 5 5
14 0 0 0 0 5 5
15 0 0 0 0 5 5

Total 15 15 15 15 15 75

We will consider method as fixed and class nested in method as random. To use class nested
in method as the error term for method, we can specify the following anova model:

. anova score method / class|method /

Number of obs = 75 R-squared = 0.7599
Root MSE = 71.8517 Adj R-squared = 0.7039

Source Partial SS df MS F Prob > F

Model 980312 14 70022.2857 13.56 0.0000

method 905872 4 226468 30.42 0.0000
class|method 74440 10 7444

class|method 74440 10 7444 1.44 0.1845

Residual 309760 60 5162.66667

Total 1290072 74 17433.4054

Like anova, contrast allows the | operator, which specifies that one variable is nested in the
levels of another. We can use contrast to test the main effects of method and the simple effects
of class within method.
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. contrast method class|method

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

method (not testable)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Residual 60

Although contrast was able to perform the individual tests for the simple effects of class within
method, empty cells in the interaction between method and class prevented contrast from testing
for a main effect of method. Here we add the emptycells(reweight) option so that contrast
can take the empty cells into account when computing the marginal means for method.

. contrast method class|method, emptycells(reweight)

Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F

method 4 43.87 0.0000

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Residual 60

Now contrast does report a test for the main effects of method. However, if we compare this with
the anova results, we will see that the results are different. They are different because contrast
uses the residual error term to compute the F test by default. Using notation similar to anova, we
can use the / operator to specify a different error term for the test. Therefore, we can reproduce the
test of main effects from our anova command by typing
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. contrast method / class|method /, emptycells(reweight)

Contrasts of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

df F P>F

method 4 30.42 0.0000

class|method 10 (denominator)

class|method
1 2 2.80 0.0687
2 2 0.91 0.4089
3 2 1.10 0.3390
4 2 0.22 0.8025
5 2 2.18 0.1221

Joint 10 1.44 0.1845

Residual 60

Multiple comparisons

We have seen that contrast can report the individual linear combinations that make up the
requested effects. Depending upon the specified option, contrast will report confidence intervals,
p-values, or both in the effects table. By default, the reported confidence intervals and p-values are
not adjusted for multiple comparisons. Use the mcompare() option to adjust the confidence intervals
and p-values for multiple comparisons of the individual effects.

Let’s compute the grand mean effects of race using the g. operator. We also specify the mcom-
pare(bonferroni) option to compute p-values and confidence intervals using Bonferroni’s adjust-
ment.

. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. anova chol race##agegrp
(output omitted )

. contrast g.race, mcompare(bonferroni)

Contrasts of marginal linear predictions

Margins : asbalanced

Bonferroni
df F P>F P>F

race
(1 vs mean) 1 7.07 0.0100 0.0301
(2 vs mean) 1 2.82 0.0982 0.2947
(3 vs mean) 1 0.96 0.3312 0.9936

Joint 2 3.62 0.0329

Residual 60

Note: Bonferroni-adjusted p-values are reported for tests
on individual contrasts only.
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Number of
Comparisons

race 3

Bonferroni
Contrast Std. Err. [95% Conf. Interval]

race
(1 vs mean) 4.17666 1.570588 .3083743 8.044945
(2 vs mean) -2.638058 1.570588 -6.506343 1.230227
(3 vs mean) -1.538602 1.570588 -5.406887 2.329684

The last table reports a Bonferroni-adjusted confidence interval for each individual contrast. (Use
the effects option to add p-values to the last table.) The first table includes a Bonferroni-adjusted
p-value for each test that is not a joint test.

Joint tests are never adjusted for multiple comparisons. For example,

. contrast race@agegrp, mcompare(bonferroni)

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race@agegrp
1 2 1.37 0.2620
2 2 2.44 0.0958
3 2 3.12 0.0512
4 2 0.53 0.5889
5 2 2.90 0.0628

Joint 10 2.07 0.0409

Residual 60

Note: Bonferroni-adjusted p-values are reported
for tests on individual contrasts only.

Number of
Comparisons

race@agegrp 10
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Bonferroni
Contrast Std. Err. [95% Conf. Interval]

race@agegrp
(2 vs base) 1 6.841855 6.082862 -10.88697 24.57068
(2 vs base) 2 -11.80631 6.082862 -29.53513 5.922513
(2 vs base) 3 -14.40607 6.082862 -32.13489 3.322751
(2 vs base) 4 -4.101691 6.082862 -21.83051 13.62713
(2 vs base) 5 -10.60137 6.082862 -28.33019 7.127448
(3 vs base) 1 -2.975244 6.082862 -20.70407 14.75358
(3 vs base) 2 -11.45679 6.082862 -29.18561 6.272031
(3 vs base) 3 -11.41958 6.082862 -29.1484 6.309244
(3 vs base) 4 -6.17807 6.082862 -23.90689 11.55075
(3 vs base) 5 3.453375 6.082862 -14.27545 21.1822

Here we have five tests of simple effects with two degrees of freedom each. No Bonferroni-adjusted
p-values are available for these tests, but the confidence intervals for the individual contrasts are
adjusted.

Unbalanced data
By default, contrast treats all factors as balanced when computing marginal means. By balanced,

we mean that contrast assumes an equal number of observations in each level of each factor and
an equal number of observations in each cell of each interaction. If our data are balanced, there
is no issue. If, however, our data are not balanced, we might prefer that contrast use the actual
cell frequencies from our data in computing marginal means. We instruct contrast to use observed
frequencies by adding the asobserved option.

Even if our data are unbalanced, we might still want contrast to compute balanced marginal
means. It depends on what we want to test and what our data represent. If we have data from a designed
experiment that started with an equal number of males and females but the data became unbalanced
because the data from a few males were unusable, we might still want our margins computed as
though the data were balanced. If, however, we have a representative sample of individuals from Los
Angeles with 40% of European descent, 34% African-American, 25% Hispanic, and 1% Australian,
we probably want our margins computed using these representative frequencies. We do not want
Australians receiving the same weight as Europeans.

The following examples will use an unbalanced version of our dataset.

. use http://www.stata-press.com/data/r12/cholesterol3
(Artificial cholesterol data, unbalanced)

. tab race agegrp

agegrp
race 10-19 20-29 30-39 40-59 60-79 Total

black 1 5 5 4 3 18
white 4 5 7 4 4 24
other 3 7 6 5 4 25

Total 8 17 18 13 11 67

The row labeled Total gives observed cell frequencies for age group. These can be obtained
by summing frequencies from the cells in the corresponding column. In this respect, we can also
refer to them as marginal frequencies. We use the terms marginal frequencies and cell frequencies
interchangeably below.
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We begin by fitting the two-factor model with an interaction.

. anova chol race##agegrp

Number of obs = 67 R-squared = 0.8179
Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob > F

Model 16379.9926 14 1169.99947 16.68 0.0000

race 230.754396 2 115.377198 1.64 0.2029
agegrp 13857.9877 4 3464.49693 49.39 0.0000

race#agegrp 857.815209 8 107.226901 1.53 0.1701

Residual 3647.2774 52 70.13995

Total 20027.27 66 303.443485

Using observed cell frequencies

Recall that the marginal means are computed from the cell means. Treating the factors as balanced
yields the following marginal means for race:

η1· =
1
5

(µ11 + µ12 + µ13 + µ14 + µ15)

η2· =
1
5

(µ21 + µ22 + µ23 + µ24 + µ25)

η3· =
1
5

(µ31 + µ32 + µ33 + µ34 + µ35)

If we have a fixed population and unbalanced cells, then the ηi· do not represent population means. If,
however, our data are representative of the population, we can use the frequencies from our estimation
sample to estimate the population marginal means, denoted µi·.

Here are the results of testing for a main effect of race, treating all the factors as balanced.

. contrast r.race

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(2 vs 1) 1 3.28 0.0757
(3 vs 1) 1 1.50 0.2263

Joint 2 1.64 0.2029

Residual 52

Contrast Std. Err. [95% Conf. Interval]

race
(2 vs 1) -5.324254 2.93778 -11.21934 .5708338
(3 vs 1) -3.596867 2.93778 -9.491955 2.298221

The row labeled (2 vs 1) is the test for η2· = η1·. The row labeled (3 vs 1) is the test for η3· = η1·.
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If the observed marginal frequencies are representative of the distribution of the levels of agegrp,
we can use them to form the marginal means of chol for each of the levels of race from the cell
means.

µ1· =
1
67

(8µ11 + 17µ12 + 18µ13 + 13µ14 + 11µ15)

µ2· =
1
67

(8µ21 + 17µ22 + 18µ23 + 13µ24 + 11µ25)

µ3· =
1
67

(8µ31 + 17µ32 + 18µ33 + 13µ34 + 11µ35)

Here are the results of testing for the main effects of race, using the observed marginal frequencies:

. contrast r.race, asobserved

Contrasts of marginal linear predictions

Margins : asobserved

df F P>F

race
(2 vs 1) 1 7.25 0.0095
(3 vs 1) 1 3.89 0.0538

Joint 2 3.74 0.0304

Residual 52

Contrast Std. Err. [95% Conf. Interval]

race
(2 vs 1) -7.232433 2.686089 -12.62246 -1.842402
(3 vs 1) -5.231198 2.651203 -10.55123 .0888295

The row labeled (2 vs 1) is the test for µ2· = µ1·. The row labeled (3 vs 1) is the test for µ3· = µ1·.
Both tests were insignificant when we tested the cell means resulting from balanced frequencies;
however, when we tested the cell means from observed frequencies, the first test is significant beyond
the 5% level (and the second test is nearly so).

Here we reproduce the results of the asobserved option with custom contrasts. Because we are
modifying the way that the marginal means are constructed from the cell means, we will specify the
contrasts on the predicted cell means. We use macro expansion, =exp, to evaluate the fractions instead
of approximating them with decimals. Macro expansion guarantees that the contrast coefficients sum
to zero. For more information, see Macro expansion operators and function in [P] macro.
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. contrast {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}
> {race#agegrp -‘=8/67’ -‘=17/67’ -‘=18/67’ -‘=13/67’ -‘=11/67’
> 0 0 0 0 0
> ‘=8/67’ ‘=17/67’ ‘=18/67’ ‘=13/67’ ‘=11/67’}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race#agegrp
(1) (1) 1 7.25 0.0095
(2) (2) 1 3.89 0.0538

Joint 2 3.74 0.0304

Residual 52

Contrast Std. Err. [95% Conf. Interval]

race#agegrp
(1) (1) -7.232433 2.686089 -12.62246 -1.842402
(2) (2) -5.231198 2.651203 -10.55123 .0888295

Weighted contrast operators

contrast provides observation-weighted versions of five of the contrast operators—gw., hw.,
jw., pw., and qw.. The first three of these operators perform comparisons of means across cells, and
like the marginal means just discussed, these means can be computed in two ways: 1) as though the
cell frequencies were equal or 2) using the observed cell frequencies from the estimation sample. The
weighted operators provide versions of the standard (as balanced) operators that weight these means
by their cell frequencies. The two orthogonal polynomial operators involve similar adjustments for
weighting.

Let’s examine what this means by using the gw. operator. The gw. operator is a weighted version
of the g. operator. The gw. operator computes the grand mean using the cell frequencies for race
obtained from the model fit.

Here we test the effects of race, comparing each level with the weighted grand mean but otherwise
treating the factors as balanced in the marginal mean calculations.

. contrast gw.race

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(1 vs mean) 1 2.78 0.1014
(2 vs mean) 1 2.06 0.1573
(3 vs mean) 1 0.06 0.8068

Joint 2 1.64 0.2029

Residual 52
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Contrast Std. Err. [95% Conf. Interval]

race
(1 vs mean) 3.24931 1.948468 -.6605779 7.159198
(2 vs mean) -2.074944 1.44618 -4.976915 .8270276
(3 vs mean) -.347557 1.414182 -3.18532 2.490206

The observed marginal frequencies of race are 18, 24, and 25. Thus the row labeled (1 vs mean) tests
η1· = (18η1·+24η2·+25η3·)/67; the row labeled (2 vs mean) tests η2· = (18η1·+24η2·+25η3·)/67;
and the row labeled (3 vs mean) tests η3· = (18η1· + 24η2· + 25η3·)/67.

Now we reproduce the above results using custom contrasts. We are weighting the calculation
of the grand mean from the marginal means for each of the races, but we are not weighting the
calculation of the marginal means themselves. Therefore, we can specify the custom contrast on the
marginal means for race instead of on the cell means.

. contrast {race ‘=49/67’ -‘=24/67’ -‘=25/67’}
> {race -‘=18/67’ ‘=43/67’ -‘=25/67’}
> {race -‘=18/67’ -‘=24/67’ ‘=42/67’}

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

race
(1) 1 2.78 0.1014
(2) 1 2.06 0.1573
(3) 1 0.06 0.8068

Joint 2 1.64 0.2029

Residual 52

Contrast Std. Err. [95% Conf. Interval]

race
(1) 3.24931 1.948468 -.6605779 7.159198
(2) -2.074944 1.44618 -4.976915 .8270276
(3) -.347557 1.414182 -3.18532 2.490206

Now we will test for each race the difference between the marginal mean and the weighted grand
mean, treating the factors as observed in the marginal mean calculations.
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. contrast gw.race, asobserved wald ci

Contrasts of marginal linear predictions

Margins : asobserved

df F P>F

race
(1 vs mean) 1 6.81 0.0118
(2 vs mean) 1 3.74 0.0587
(3 vs mean) 1 0.26 0.6099

Joint 2 3.74 0.0304

Residual 52

Contrast Std. Err. [95% Conf. Interval]

race
(1 vs mean) 4.542662 1.740331 1.050432 8.034891
(2 vs mean) -2.689771 1.39142 -5.481859 .1023172
(3 vs mean) -.6885363 1.341261 -3.379973 2.002901

The row labeled (1 vs mean) tests µ1· = (18µ1· + 24µ2· + 25µ3·)/67; the row labeled (2
vs mean) tests µ2· = (18µ1· + 24µ2· + 25µ3·)/67; and the row labeled (3 vs mean) tests
µ3· = (18µ1· + 24µ2· + 25µ3·)/67.

Here we use a custom contrast to reproduce the above result testing µ1· = (18µ1· + 24µ2· +
25µ3·)/67. Because both the calculation of the marginal means and the calculation of the grand mean
are adjusted, we specify the custom contrast on the cell means.

. contrast {race#agegrp ‘=49/67*8/67’ ‘=49/67*17/67’ ‘=49/67*18/67’
> ‘=49/67*13/67’ ‘=49/67*11/67’
> -‘=24/67*8/67’ -‘=24/67*17/67’ -‘=24/67*18/67’
> -‘=24/67*13/67’ -‘=24/67*11/67’
> -‘=25/67*8/67’ -‘=25/67*17/67’ -‘=25/67*18/67’
> -‘=25/67*13/67’ -‘=25/67*11/67’}, nowald

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

race#agegrp
(1) (1) 4.542662 1.740331 1.050432 8.034891

The Helmert and reverse Helmert contrasts also involve calculating averages of the marginal means;
therefore, weighted versions of these parameters are available as well. The hw. operator is a weighted
version of the h. operator that computes the mean of the subsequent levels using the cell frequencies
obtained from the model fit. The jw. operator is a weighted version of the j. operator that computes
the mean of the previous levels using the cell frequencies obtained from the model fit.

For orthogonal polynomials, we can use the pw. and qw. operators, which are the weighted
versions of the p. and q. operators. In this case, the cell frequencies from the model fit are used in
the calculation of the orthogonal polynomial contrast coefficients.
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Testing factor effects on slopes

For linear models where the independent variables are all factor variables, the linear prediction
at fixed levels of the factor variables turns out to be a cell mean. With these models, contrast
computes and tests the effects of the factor variables on the expected mean of the dependent variable.
When factor variables are interacted with continuous variables, contrast distinguishes factor effects
on the intercept from factor effects on the slope.

Here we have 1980 census data including information on the birth rate (brate), the median age
(medage), and the region of the country (region) for each of the 50 states. We can fit an ANCOVA
model for brate using main effects of the factor variable region and the continuous variable medage.

. use http://www.stata-press.com/data/r12/census3
(1980 Census data by state)

. label list cenreg
cenreg:

1 NE
2 N Cntrl
3 South
4 West

. anova brate i.region c.medage

Number of obs = 50 R-squared = 0.8264
Root MSE = 12.7575 Adj R-squared = 0.8110

Source Partial SS df MS F Prob > F

Model 34872.8589 4 8718.21473 53.57 0.0000

region 2197.75453 3 732.584844 4.50 0.0076
medage 15327.423 1 15327.423 94.18 0.0000

Residual 7323.96108 45 162.754691

Total 42196.82 49 861.159592

For those more comfortable with linear regression, this is equivalent to the regression model

. regress brate i.region c.medage

You may use either.

We can use contrast to compute reference category effects for region. These contrasts compare
the adjusted means of regions 2, 3, and 4 with the adjusted mean of region 1.

. contrast r.region

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

region
(2 vs 1) 1 2.24 0.1417
(3 vs 1) 1 0.78 0.3805
(4 vs 1) 1 10.33 0.0024

Joint 3 4.50 0.0076

Residual 45
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Contrast Std. Err. [95% Conf. Interval]

region
(2 vs 1) 9.061063 6.057484 -3.139337 21.26146
(3 vs 1) 5.06991 5.72396 -6.458738 16.59856
(4 vs 1) 21.71328 6.755616 8.106774 35.31979

Let’s add the interaction between region and medage to the model.

. anova brate region##c.medage

Number of obs = 50 R-squared = 0.9000
Root MSE = 10.0244 Adj R-squared = 0.8833

Source Partial SS df MS F Prob > F

Model 37976.3149 7 5425.18784 53.99 0.0000

region 3405.07044 3 1135.02348 11.30 0.0000
medage 5279.71448 1 5279.71448 52.54 0.0000

region#medage 3103.45597 3 1034.48532 10.29 0.0000

Residual 4220.5051 42 100.488217

Total 42196.82 49 861.159592

The parameterization for the expected value of brate as a function of region and medage is given
by

E(brate|region = i, medage) = α0 + αi + β0medage + βimedage

where α0 is the intercept and β0 is the slope of medage. We are modeling the effects of region
in two different ways. The αi parameters measure the effect of region on the intercept, and the βi
parameters measure the effect of region on the slope of medage.

contrast computes and tests effects on slopes separately from effects on intercepts. First, we
will compute the reference category effects of region on the intercept:

. contrast r.region

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

region
(2 vs 1) 1 0.09 0.7691
(3 vs 1) 1 0.01 0.9389
(4 vs 1) 1 8.50 0.0057

Joint 3 11.30 0.0000

Residual 42

Contrast Std. Err. [95% Conf. Interval]

region
(2 vs 1) -49.38396 167.1281 -386.6622 287.8942
(3 vs 1) -9.058983 117.424 -246.0302 227.9123
(4 vs 1) 343.0024 117.6547 105.5656 580.4393
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Now we will compute the reference category effects of region on the slope of medage:

. contrast r.region#c.medage

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

region#c.medage
(2 vs 1) 1 0.16 0.6917
(3 vs 1) 1 0.03 0.8558
(4 vs 1) 1 8.18 0.0066

Joint 3 10.29 0.0000

Residual 42

Contrast Std. Err. [95% Conf. Interval]

region#c.medage
(2 vs 1) 2.208539 5.530981 -8.953432 13.37051
(3 vs 1) .6928008 3.788735 -6.953175 8.338777
(4 vs 1) -10.94649 3.827357 -18.67041 -3.22257

At the 5% level, the slope of medage for the fourth region differs from that of the first region,
but at that level of significance, we cannot say that the slope for the second or third region differs
from that of the first.

This model is simple enough that the reference category contrasts reproduce the coefficients for
region and for the interactions in an equivalent model fit by regress.

. regress brate region##c.medage

Source SS df MS Number of obs = 50
F( 7, 42) = 53.99

Model 37976.3149 7 5425.18784 Prob > F = 0.0000
Residual 4220.5051 42 100.488217 R-squared = 0.9000

Adj R-squared = 0.8833
Total 42196.82 49 861.159592 Root MSE = 10.024

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

region
2 -49.38396 167.1281 -0.30 0.769 -386.6622 287.8942
3 -9.058983 117.424 -0.08 0.939 -246.0302 227.9123
4 343.0024 117.6547 2.92 0.006 105.5656 580.4393

medage -8.802707 3.462865 -2.54 0.015 -15.79105 -1.814362

region#
c.medage

2 2.208539 5.530981 0.40 0.692 -8.953432 13.37051
3 .6928008 3.788735 0.18 0.856 -6.953175 8.338777
4 -10.94649 3.827357 -2.86 0.007 -18.67041 -3.22257

_cons 411.8268 108.2084 3.81 0.000 193.4533 630.2002

This will not be the case for models that are more complicated.
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Chow tests
Now let’s suppose we are fitting a model for birth rates on median age and marriage rate. We are

also interested in whether the regression coefficients differ for states in the east versus states in the
west. We use census divisions to create a new variable, west, that indicates which states are in the
western half of the United States.

. generate west = inlist(division, 4, 7, 8, 9)

We fit a model that includes a separate intercept for west as well as an interaction between west
and each of the other variables in our model.

. regress brate i.west##c.medage i.west##c.mrgrate

Source SS df MS Number of obs = 50
F( 5, 44) = 92.09

Model 38516.2172 5 7703.24344 Prob > F = 0.0000
Residual 3680.60281 44 83.6500639 R-squared = 0.9128

Adj R-squared = 0.9029
Total 42196.82 49 861.159592 Root MSE = 9.146

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.west 327.8733 58.71793 5.58 0.000 209.5351 446.2115
medage -7.532304 1.387624 -5.43 0.000 -10.32888 -4.735731

west#
c.medage

1 -10.11443 1.849103 -5.47 0.000 -13.84105 -6.387808

mrgrate 828.6813 643.3443 1.29 0.204 -467.8939 2125.257

west#
c.mrgrate

1 -800.8036 645.488 -1.24 0.221 -2101.699 500.092

_cons 366.5325 47.08904 7.78 0.000 271.6308 461.4343

We can test the effects of west on the intercept and on the slopes of medage and mrgrate. We will
specify all these effects in a single contrast command and include the overall option to obtain
a joint test of effects, that is, a test that the coefficients for eastern states and for western states are
equal.

. contrast west west#c.medage west#c.mrgrate, overall

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

west 1 31.18 0.0000

west#c.medage 1 29.92 0.0000

west#c.mrgrate 1 1.54 0.2213

Overall 3 22.82 0.0000

Residual 44

This overall test is referred to as a Chow test in econometrics (Chow 1960).
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Beyond linear models

contrast may be used after almost any estimation command, with the added benefit that contrast
provides direct support for testing main and interaction effects that is not available in most estimation
commands. To illustrate, we will use contrast with results from a logistic regression. Stata’s logit
command fits logistic regression models, reporting the fitted regression coefficients. The logistic
command fits the same models but reports odds ratios. Although contrast can report odds ratios for
the computed effects, the tests are all computed from linear combinations of the model coefficients
regardless of which estimation command we used.

Suppose we have data on patient satisfaction for three hospitals in a city. Let’s begin by fitting a
model for satisfied, whether the patient was satisfied with his or her treatment, using the main
effects of hospital:

. use http://www.stata-press.com/data/r12/hospital, clear
(Artificial hospital satisfaction data)

. logit satisfied i.hospital

Iteration 0: log likelihood = -393.72216
Iteration 1: log likelihood = -387.55736
Iteration 2: log likelihood = -387.4768
Iteration 3: log likelihood = -387.47679

Logistic regression Number of obs = 802
LR chi2(2) = 12.49
Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coef. Std. Err. z P>|z| [95% Conf. Interval]

hospital
2 .5348129 .2136021 2.50 0.012 .1161604 .9534654
3 .7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431

Because there are no other independent variables in this model, the reference category effects of
hospital computed by contrast will match the fitted model coefficients, assuming a common
reference level.

. contrast r.hospital

Contrasts of marginal linear predictions

Margins : asbalanced

df chi2 P>chi2

hospital
(2 vs 1) 1 6.27 0.0123
(3 vs 1) 1 10.96 0.0009

Joint 2 12.55 0.0019

Contrast Std. Err. [95% Conf. Interval]

hospital
(2 vs 1) .5348129 .2136021 .1161604 .9534654
(3 vs 1) .7354519 .2221929 .2999618 1.170942
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We see that the reference category effects are equal to the fitted coefficients. They also have the same
interpretation, the difference in log odds from the reference category. The top table also provides a
joint test of these effects, a test of the main effects of hospital.

We also have information on the condition for which each patient is being treated in the variable
illness. Here we fit a logistic regression using a two-way crossed model of hospital and illness.

. label list illness
illness:

1 heart attack
2 stroke
3 pneumonia
4 lung disease
5 kidney failure

. logistic satisfied hospital##illness

Logistic regression Number of obs = 802
LR chi2(14) = 38.51
Prob > chi2 = 0.0004

Log likelihood = -374.46865 Pseudo R2 = 0.0489

satisfied Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

hospital
2 1.226496 .5492177 0.46 0.648 .509921 2.950049
3 1.711111 .8061016 1.14 0.254 .6796395 4.308021

illness
2 1.328704 .6044214 0.62 0.532 .544779 3.240678
3 .7993827 .3408305 -0.53 0.599 .3466015 1.843653
4 1.231481 .5627958 0.46 0.649 .5028318 3.016012
5 1.25 .5489438 0.51 0.611 .5285676 2.956102

hospital#
illness

2 2 2.434061 1.768427 1.22 0.221 .5860099 10.11016
2 3 4.045805 2.868559 1.97 0.049 1.008058 16.23769
2 4 .54713 .3469342 -0.95 0.342 .1578866 1.89599
2 5 1.594425 1.081104 0.69 0.491 .4221288 6.022312
3 2 .5416535 .3590089 -0.93 0.355 .1477555 1.985635
3 3 1.579502 1.042504 0.69 0.489 .4332209 5.758783
3 4 3.137388 2.595748 1.38 0.167 .6198955 15.87881
3 5 1.672727 1.226149 0.70 0.483 .3976256 7.036812

_cons 2.571429 .8099239 3.00 0.003 1.386983 4.767358

Using contrast, we can obtain an ANOVA-style table of tests for the main effects and interaction
effects of hospital and illness.
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. contrast hospital##illness

Contrasts of marginal linear predictions

Margins : asbalanced

df chi2 P>chi2

hospital 2 14.92 0.0006

illness 4 4.09 0.3937

hospital#illness 8 20.45 0.0088

Our interaction effect is significant, so we decide to evaluate the simple reference category effects of
hospital within illness. We are particularly interested in patient satisfaction when being treated
for a heart attack or stroke, so we will use the i. operator to limit our output to simple effects within
the first two illnesses.

. contrast r.hospital@i(1 2).illness, nowald

Contrasts of marginal linear predictions

Margins : asbalanced

Contrast Std. Err. [95% Conf. Interval]

hospital@illness
(2 vs 1) 1 .2041611 .4477942 -.6734995 1.081822
(2 vs 1) 2 1.093722 .5721288 -.0276296 2.215074
(3 vs 1) 1 .5371429 .4710983 -.3861928 1.460479
(3 vs 1) 2 -.0759859 .4662325 -.9897847 .8378129

The row labeled (2 vs 1) 1 estimates simple effects on the log odds when comparing hospital 2
with hospital 1 for patients having heart attacks. These effects are differences in the cell means of
the linear predictions.

We can add the or option to report an odds ratio for each of these simple effects:

. contrast r.hospital@i(1 2).illness, nowald or

Contrasts of marginal linear predictions

Margins : asbalanced

Odds Ratio Std. Err. [95% Conf. Interval]

hospital@illness
(2 vs 1) 1 1.226496 .5492177 .509921 2.950049
(2 vs 1) 2 2.985366 1.708014 .9727486 9.162089
(3 vs 1) 1 1.711111 .8061016 .6796395 4.308021
(3 vs 1) 2 .9268293 .4321179 .3716567 2.311306

These odds ratios are just the exponentiated version of the contrasts in the previous table.

For contrasts of the margins of nonlinear predictions, such as predicted probabilities, see [R] margins,
contrast.
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Multiple equations

contrast works with models containing multiple equations. Commands such as intreg and
gnbreg allow their ancillary parameters to be modeled as functions of independent variables, and
contrast can compute and test effects within these equations. In addition, contrast allows a special
pseudofactor for equation—called eqns—when working with results from manova, mvreg, mlogit,
and mprobit.

In example 4 of [MV] manova, we fit a two-way MANOVA model using data from Woodard (1931).
Here we will fit this model using mvreg. The data represent patients with jaw fractures. y1 is the
patient’s age, y2 is blood lymphocytes, and y3 is blood polymorphonuclears. Two factor variables,
gender and fracture, are used as independent variables.

. use http://www.stata-press.com/data/r12/jaw
(Table 4.6 Two-Way Unbalanced Data for Fractures of the Jaw -- Rencher (1998))

. mvreg y1 y2 y3 = gender##fracture, vsquish

Equation Obs Parms RMSE "R-sq" F P

y1 27 6 10.21777 0.4086 2.902124 0.0382
y2 27 6 5.268768 0.4743 3.78967 0.0133
y3 27 6 4.993647 0.4518 3.460938 0.0195

Coef. Std. Err. t P>|t| [95% Conf. Interval]

y1
2.gender -17.5 11.03645 -1.59 0.128 -40.45156 5.451555
fracture

2 -12.625 5.518225 -2.29 0.033 -24.10078 -1.149222
3 5.666667 5.899231 0.96 0.348 -6.601456 17.93479

gender#
fracture

2 2 21.375 12.68678 1.68 0.107 -5.008595 47.75859
2 3 8.833333 13.83492 0.64 0.530 -19.93796 37.60463

_cons 39.5 4.171386 9.47 0.000 30.82513 48.17487

y2
2.gender 20.5 5.69092 3.60 0.002 8.665083 32.33492
fracture

2 -3.125 2.84546 -1.10 0.285 -9.042458 2.792458
3 .6666667 3.041925 0.22 0.829 -5.659362 6.992696

gender#
fracture

2 2 -19.625 6.541907 -3.00 0.007 -33.22964 -6.02036
2 3 -23.66667 7.133946 -3.32 0.003 -38.50252 -8.830813

_cons 35.5 2.150966 16.50 0.000 31.02682 39.97318

y3
2.gender -18.16667 5.393755 -3.37 0.003 -29.38359 -6.949739
fracture

2 1.083333 2.696877 0.40 0.692 -4.52513 6.691797
3 -3 2.883083 -1.04 0.310 -8.9957 2.9957

gender#
fracture

2 2 19.91667 6.200305 3.21 0.004 7.022426 32.81091
2 3 23.5 6.76143 3.48 0.002 9.438837 37.56116

_cons 61.16667 2.038648 30.00 0.000 56.92707 65.40627

contrast computes Wald tests using the coefficients from the first equation by default.
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. contrast gender##fracture

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880

gender#fracture 2 1.69 0.2085

Residual 21

Here we use the equation() option to compute the Wald tests in the y2 equation:

. contrast gender##fracture, equation(y2)

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027

gender#fracture 2 5.97 0.0088

Residual 21

Here we use the equation index to compute the Wald tests in the third equation:

. contrast gender##fracture, equation(#3)

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069

gender#fracture 2 6.66 0.0058

Residual 21

Here we use the atequations option to compute Wald tests for each equation in the model. We
also use the vsquish option to suppress the extra blank lines between terms.
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. contrast gender##fracture, atequations vsquish

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

y1
gender 1 2.16 0.1569

fracture 2 2.74 0.0880
gender#fracture 2 1.69 0.2085

y2
gender 1 5.41 0.0301

fracture 2 7.97 0.0027
gender#fracture 2 5.97 0.0088

y3
gender 1 2.23 0.1502

fracture 2 6.36 0.0069
gender#fracture 2 6.66 0.0058

Residual 21

Because we are investigating the results from mvreg, we can use the special eqns factor to test
for a marginal effect on the means among the dependent variables:

. contrast _eqns

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

_eqns 2 49.19 0.0000

Residual 21

Here we test whether the main effects of gender differ among the dependent variables:

. contrast gender#_eqns

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

gender#_eqns 2 3.61 0.0448

Residual 21
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Although it is not terribly interesting in this case, we can even calculate contrasts across equations:

. contrast gender#r._eqns

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

gender#_eqns
(joint) (2 vs 1) 1 5.82 0.0251
(joint) (3 vs 1) 1 0.40 0.5352

Joint 2 3.61 0.0448

Residual 21

Saved results
contrast saves the following in r():

Scalars
r(df r) variance degrees of freedom, from original estimation results
r(k terms) number of terms in termlist
r(level) confidence level of confidence intervals

Macros
r(cmd) contrast
r(cmdline) command as typed
r(est cmd) e(cmd) from original estimation results
r(est cmdline) e(cmdline) from original estimation results
r(title) title in output
r(overall) overall or empty
r(emptycells) empspec from emptycells()
r(mcmethod) method from mcompare()
r(mctitle) title for method from mcompare()
r(mcadjustall) adjustall or empty
r(margin method) asbalanced or asobserved

Matrices
r(b) contrast estimates
r(V) variance–covariance matrix of the contrast estimates
r(error) contrast estimability codes;

0 means estimable,
8 means not estimable

r(L) matrix of contrasts applied to the model coefficients
r(table) matrix containing the contrasts with their standard errors,

test statistics, p-values, and confidence intervals
r(F) vector of F statistics; r(df r) present
r(chi2) vector of χ2 statistics; r(df r) not present
r(p) vector of p-values corresponding to r(F) or r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)
r(df2) vector of denominator degrees of freedom corresponding to r(F)
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contrast with the post option saves the following in e():

Scalars
e(df r) variance degrees of freedom, from original estimation results
e(k terms) number of terms in termlist

Macros
e(cmd) contrast
e(cmdline) command as typed
e(est cmd) e(cmd) from original estimation results
e(est cmdline) e(cmdline) from original estimation results
e(title) title in output
e(overall) overall or empty
e(emptycells) empspec from emptycells()
e(margin method) asbalanced or asobserved
e(properties) b V

Matrices
e(b) contrast estimates
e(V) variance–covariance matrix of the contrast estimates
e(error) contrast estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix of contrasts applied to the model coefficients
e(F) vector of F statistics; e(df r) present
e(chi2) vector of χ2 statistics; e(df r) not present
e(p) vector of p-values corresponding to e(F) or e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)
e(df2) vector of denominator degrees of freedom corresponding to e(F)

Methods and formulas
contrast is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Marginal linear predictions
Contrast operators

Reference level contrasts
Adjacent contrasts
Grand mean contrasts
Helmert contrasts
Reverse Helmert contrasts
Orthogonal polynomial contrasts

Contrasts within interactions
Multiple comparisons

Marginal linear predictions

contrast treats intercept effects separately from slope effects. To illustrate, consider the following
parameterization for a quadratic regression of y on x that also models the effects of two factor variables
A and B, where the levels of A are indexed by i = 1, . . . , ka and the levels of B are indexed by
j = 1, . . . , kb.

E(y|A = i, B = j, x) = η0ij + η1ijx+ η2ijx
2

η0ij = η0 + α0i + β0j + (αβ)0ij
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η1ij = η1 + α1i + β1j + (αβ)1ij

η2ij = η2 + α2i + β2j + (αβ)2ij

We have partitioned the coefficients into three groups of parameters: η0ij is a cell prediction for the
intercept, η1ij is a cell prediction for the slope on x, and η2ij is a cell prediction for the slope on
x2. For the intercept parameters, η0 is the intercept, α0i represents a main effect for factor A at its
ith level, β0j represents a main effect for factor B at its jth level, and (αβ)0ij represents an effect
for the interaction of A and B at the ijth level. The individual coefficients in η1ij and η2ij have
similar interpretations, but the effects are on the slopes of x and x2, respectively.

The marginal intercepts for A are given by

η0i. =
kb∑
j=1

fijη0ij

where fij is a marginal relative frequency of the jth level of B and is controlled by the asobserved
and emptycells(reweight) options according to

fij =


1/kb, default
w.j/w.., asobserved

1/(kb − ei.), emptycells(reweight)

wij/wi., emptycells(reweight) and asobserved

Above, wij is the number of individuals with A at its ith level and B at its jth,

wi. =
kb∑
j=1

wij

w.j =
ka∑
i=1

wij

w.. =
ka∑
i=1

kb∑
j=1

wij

and ei. is the number of empty cells where A is at its ith level. The marginal intercepts for B and
marginal slopes on x and x2 are similarly defined.

Estimates for the cell intercepts and slopes are computed using the corresponding linear combination
of the coefficients from the fitted model. For example, the estimated cell intercepts are computed
using

η̂0ij = η̂0 + α̂0i + β̂0j + (α̂β)0ij

and the estimated marginal intercepts for A are computed as
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η̂0i. =
kb∑
j=1

fij η̂0ij

Contrast operators

contrast performs Wald tests using linear combinations of marginal linear predictions. For
example, the following linear combination can be used to test for a specific effect of factor A on the
marginal intercepts.

ka∑
i=1

ciη0i.

If the ci elements sum to zero, the linear combination is called a contrast. If the factor A is represented
by a variable named A, then we specify this contrast using the following syntax:

{A c1 c2 ... cka}

Similarly, the following linear combination can be used to test for a specific interaction effect of
factors A and B on the marginal slope of x.

ka∑
i=1

kb∑
j=1

cijη1ij

If the factor B is represented by a variable named B, then we specify this contrast using the following
syntax:

{A#B c11 c12 ... c1kb c21 ... ckakb}

contrast has variable operators for several commonly used contrasts. Each contrast operator
specifies a matrix of linear combinations that yield the requested set of contrasts to be applied to the
marginal linear predictions associated with the attached factor variable.

Reference level contrasts

The r. operator compares each level with a reference level. Let R be the corresponding contrast
matrix for factor A, and then R is a (ka − 1)× ka matrix with elements

Rij =


−1, if j is the reference level

1, if i = j and j is less than the reference level
1, if i+ 1 = j and j is greater than the reference level
0, otherwise
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If ka = 5 and the reference level is the third level of A (specified as rb(#3).A), then

R =


1 0 −1 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 −1 0 1



Adjacent contrasts

The a. operator compares each level with the next level. Let A be the corresponding contrast
matrix for factor A, and then A is a (ka − 1)× ka matrix with elements

Aij =

{ 1, if i = j
−1, if i+ 1 = j

0, otherwise

If ka = 5, then

A =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1


The ar. operator compares each level with the previous level. If A is the contrast matrix for the

a. operator, then −A is the corresponding contrast matrix for the ar. operator.

Grand mean contrasts

The g. operator compares each level with the mean of all the levels. Let G be the corresponding
contrast matrix for factor A, and then G is a ka × ka matrix with elements

Gij =
{

1− 1/ka, if i = j
− 1/ka, if i 6= j

If ka = 5, then

G =


4/5 −1/5 −1/5 −1/5 −1/5
−1/5 4/5 −1/5 −1/5 −1/5
−1/5 −1/5 4/5 −1/5 −1/5
−1/5 −1/5 −1/5 4/5 −1/5
−1/5 −1/5 −1/5 −1/5 4/5


The gw. operator compares each level with the weighted mean of all the levels. The weights are

taken from the observed weighted cell frequencies in the estimation sample of the fitted model. Let
Gw be the corresponding contrast matrix for factor A, and then Gw is a ka×ka matrix with elements
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Gij =
{

1− wi/w·, if i = j
− wj/w·, if i 6= j

where wi is a marginal weight representing the number of individuals with A at its ith level and
w· =

∑
i wi.

Helmert contrasts

The h. operator compares each level with the mean of the subsequent levels. Let H be the
corresponding contrast matrix for factor A, and then H is a (ka − 1)× ka matrix with elements

Hij =

{ 1, if i = j
−1/(ka − i), if i < j

0, otherwise

If ka = 5, then

H =


1 −1/4 −1/4 −1/4 −1/4
0 1 −1/3 −1/3 −1/3
0 0 1 −1/2 −1/2
0 0 0 1 −1


The hw. operator compares each level with the weighted mean of the subsequent levels. Let Hw

be the corresponding contrast matrix for factor A, and then Hw is a (ka − 1) × ka matrix with
elements

Hwij =

{ 1, if i = j
−wj/

∑ka
l=j wl, if i < j

0, otherwise

Reverse Helmert contrasts

The j. operator compares each level with the mean of the previous levels. Let J be the corresponding
contrast matrix for factor A, and then J is a (ka − 1)× ka matrix with elements

Jij =

{ 1, if i+ 1 = j
−1/i, if j ≤ i

0, otherwise

If ka = 5, then

H =


−1 1 0 0 0
−1/2 −1/2 1 0 0
−1/3 −1/3 −1/3 1 0
−1/4 −1/4 −1/4 −1/4 1


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The jw. operator compares each level with the weighted mean of the previous levels. Let Jw be
the corresponding contrast matrix for factor A, and then Jw is a (ka− 1)× ka matrix with elements

Jwij =

{ 1, if i+ 1 = j
−wj/

∑i
l=1 wl, if i ≤ j

0, otherwise

Orthogonal polynomial contrasts

The p. operator applies orthogonal polynomial contrasts using the level values of the attached
factor variable. The q. operator applies orthogonal polynomial contrasts using the level indices of
the attached factor variable. These two operators are equivalent when the level values of the attached
factor are equally spaced. The pw. and qw. operators are weighted versions of p. and q., where
the weights are taken from the observed weighted cell frequencies in the estimation sample of the
fitted model. contrast uses the Christoffel–Darboux recurrence formula for computing orthogonal
polynomial contrasts (Abramowitz and Stegun 1972). The elements of the contrasts are normalized
such that

Q′WQ =
1
w·

I

where W is a diagonal matrix of the marginal cell weights w1, w2, . . . , wk of the attached factor
variable (all 1 for p. and q.), and w· is the sum of the weights (the number of levels k for p. and
q.).

Contrasts within interactions
Contrast operators are allowed to be specified on factor variables participating in interactions. In

such cases, contrast applies the proper matrix product of the contrast matrices to the cell margins
of the interacted factor variables.

For example, consider the contrasts implied by specifying r.A#h.B. Let M be the matrix of
estimated cell margins for the levels of A and B, where the rows of M are indexed by the levels of
A and the columns are indexed by the levels of B. contrast puts the estimated cell margins in the
following vector form:

v = vec(M′) =



M11

M12
...

M1kb

M21

M22
...

M2kb
...

Mkakb


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The individual contrasts are then given by the elements of

(R⊗H)v

where ⊗ denotes the Kronecker direct product.

Multiple comparisons

See [R] pwcompare for details on the methods and formulas used to adjust p-values and confidence
intervals for multiple comparisons. The formulas for Bonferroni’s method and Šidák’s method are
presented with m = k(k − 1)/2, the number of pairwise comparisons for a factor term with k
levels. For contrasts, m is instead the number of contrasts being performed on the factor term; often,
m = k − 1 for a term with k levels.
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Also see
[R] contrast postestimation — Postestimation tools for contrast

[R] lincom — Linear combinations of estimators

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, contrast — Contrasts of margins

[R] pwcompare — Pairwise comparisons

[R] test — Test linear hypotheses after estimation

[U] 20 Estimation and postestimation commands
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Title

contrast postestimation — Postestimation tools for contrast

Description

The following postestimation commands are available after contrast, post:

Command Description

estat VCE; estat vce only
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks
In Orthogonal polynomial contrasts in [R] contrast, we used the p. operator to test the orthogonal

polynomial effects of age group.

. contrast p.agegrp, noeffects

We then used a second contrast command,

. contrast p(2 3 4).agegrp, noeffects

selecting levels to test whether the quadratic, cubic, and quartic contrasts were jointly significant.

We can perform the same joint test by using the test command after specifying the post option
with our first contrast command.
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. use http://www.stata-press.com/data/r12/cholesterol
(Artificial cholesterol data)

. anova chol agegrp
(output omitted )

. contrast p.agegrp, noeffects post

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

agegrp
(linear) 1 139.11 0.0000

(quadratic) 1 0.15 0.6962
(cubic) 1 0.37 0.5448

(quartic) 1 0.43 0.5153
Joint 4 35.02 0.0000

Residual 70

. test p2.agegrp p3.agegrp p4.agegrp

( 1) p2.agegrp = 0
( 2) p3.agegrp = 0
( 3) p4.agegrp = 0

F( 3, 70) = 0.32
Prob > F = 0.8129

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[U] 20 Estimation and postestimation commands



Title

copyright — Display copyright information

Syntax
copyright

Description
copyright presents copyright notifications concerning tools, libraries, etc., used in the construction

of Stata.

Remarks
The correct form for a copyright notice is

Copyright dates by author/owner

The word “Copyright” is spelled out. You can use the c© symbol, but “(C)” has never been given
legal recognition. The phrase “All Rights Reserved” was historically required but is no longer needed.

Currently, most works are copyrighted from the moment they are written, and no copyright notice
is required. Copyright concerns the protection of the expression and structure of facts and ideas, not
the facts and ideas themselves. Copyright concerns the ownership of the expression and not the name
given to the expression, which is covered under trademark law.

Copyright law as it exists today began in England in 1710 with the Statute of Anne, An Act for
the Encouragement of Learning, by Vesting the Copies of Printed Books in the Authors or Purchases
of Such Copies, during the Times therein mentioned . In 1672, Massachusetts introduced the first
copyright law in what was to become the United States. After the Revolutionary War, copyright was
introduced into the U.S. Constitution in 1787 and went into effect on May 31, 1790. On June 9,
1790, the first copyright in the United States was registered for The Philadelphia Spelling Book by
John Barry.

There are significant differences in the understanding of copyright in the English- and non–English-
speaking world. The Napoleonic or Civil Code, the dominant legal system in the non–English-speaking
world, splits the rights into two classes: the author’s economic rights and the author’s moral rights.
Moral rights are available only to “natural persons”. Legal persons (corporations) have economic
rights but not moral rights.

Also see
Copyright page of this book
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Title

copyright boost — Boost copyright notification

Description
Stata uses portions of Boost, a library used by JagPDF, which helps create PDF files, with the

express permission of the authors pursuant to the following notice:

Boost Software License - Version 1.0 - August 17, 2003

Permission is hereby granted, free of charge, to any person or organization obtaining
a copy of the software and accompanying documentation covered by this license (the
“Software”) to use, reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit third-parties to whom
the Software is furnished to do so, all subject to the following:

The copyright notices in the Software and this entire statement, including the above
license grant, this restriction and the following disclaimer, must be included in all
copies of the Software, in whole or in part, and all derivative works of the Software,
unless such copies or derivative works are solely in the form of machine-executable
object code generated by a source language processor.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Title

copyright freetype — FreeType copyright notification

Description
Stata uses portions of FreeType, a library used by JagPDF, which helps create PDF files, with the

express permission of the authors.

StataCorp thanks and acknowledges the authors of FreeType for producing FreeType and allowing
its use in Stata and other software.

For more information about FreeType, visit http://www.freetype.org/.

The full FreeType copyright notice is

Legal Terms

0. Definitions
Throughout this license, the terms ‘package’, ‘FreeType Project’, and ‘FreeType archive’
refer to the set of files originally distributed by the authors (David Turner, Robert Wilhelm,
and Werner Lemberg) as the ‘FreeType Project’, be they named as alpha, beta or final
release.

‘You’ refers to the licensee, or person using the project, where ‘using’ is a generic term
including compiling the project’s source code as well as linking it to form a ‘program’
or ‘executable’. This program is referred to as ‘a program using the FreeType engine’.

This license applies to all files distributed in the original FreeType Project, including all
source code, binaries and documentation, unless otherwise stated in the file in its original,
unmodified form as distributed in the original archive. If you are unsure whether or not
a particular file is covered by this license, you must contact us to verify this.

This license applies to all files distributed in the original FreeType Project, including all
source code, binaries and documentation, unless otherwise stated in the file in its original,
unmodified form as distributed in the original archive. If you are unsure whether or not
a particular file is covered by this license, you must contact us to verify this.

The FreeType Project is copyright c© 1996–2000 by David Turner, Robert Wilhelm, and
Werner Lemberg. All rights reserved except as specified below.

1. No Warranty

THE FREETYPE PROJECT IS PROVIDED ‘AS IS’ WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL ANY OF THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY DAMAGES CAUSED BY THE USE OR THE INABILITY TO
USE, OF THE FREETYPE PROJECT.
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2. Redistribution

This license grants a worldwide, royalty-free, perpetual and irrevocable right and license
to use, execute, perform, compile, display, copy, create derivative works of, distribute and
sublicense the FreeType Project (in both source and object code forms) and derivative
works thereof for any purpose; and to authorize others to exercise some or all of the
rights granted herein, subject to the following conditions:

• Redistribution of source code must retain this license file (‘FTL.TXT’) unaltered;
any additions, deletions or changes to the original files must be clearly indicated in
accompanying documentation. The copyright notices of the unaltered, original files
must be preserved in all copies of source files.

• Redistribution in binary form must provide a disclaimer that states that the software is
based in part of the work of the FreeType Team, in the distribution documentation. We
also encourage you to put an URL to the FreeType web page in your documentation,
though this isn’t mandatory.

These conditions apply to any software derived from or based on the FreeType Project,
not just the unmodified files. If you use our work, you must acknowledge us. However,
no fee need be paid to us.

3. Advertising

Neither the FreeType authors and contributors nor you shall use the name of the other for
commercial, advertising, or promotional purposes without specific prior written permission.

We suggest, but do not require, that you use one or more of the following phrases to
refer to this software in your documentation or advertising materials: ‘FreeType Project’,
‘FreeType Engine’, ‘FreeType library’, or ‘FreeType Distribution’.

As you have not signed this license, you are not required to accept it. However, as the
FreeType Project is copyrighted material, only this license, or another one contracted with
the authors, grants you the right to use, distribute, and modify it. Therefore, by using,
distributing, or modifying the FreeType Project, you indicate that you understand and
accept all the terms of this license.

4. Contacts
There are two mailing lists related to FreeType:

• freetype@nongnu.org

Discusses general use and applications of FreeType, as well as future and wanted
additions to the library and distribution. If you are looking for support, start in this
list if you haven’t found anything to help you in the documentation.

• freetype-devel@nongnu.org

Discusses bugs, as well as engine internals, design issues, specific licenses, porting,
etc.

Our home page can be found at

http://www.freetype.org

http://www.freetype.org
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Also see
[R] copyright — Display copyright information



Title

copyright icu — ICU copyright notification

Description
Stata uses portions of ICU, a library used by JagPDF, which helps create PDF files, with the express

permission of the authors pursuant to the following notice:

COPYRIGHT AND PERMISSION NOTICE

Copyright c© 1995–2011 International Business Machines Corporation and others

All Rights Reserved

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, provided that the above copyright notice(s) and
this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LI-
ABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

Also see
[R] copyright — Display copyright information
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Title

copyright jagpdf — JagPDF copyright notification

Description
Stata uses portions of JagPDF, a library for creating PDF files, with the express permission of the

author pursuant to the following notice:

The JagPDF Library is

Copyright c© 2005–2009 Jaroslav Gresula

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Also see
[R] copyright — Display copyright information
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Title

copyright lapack — LAPACK copyright notification

Description
Stata uses portions of LAPACK, a linear algebra package, with the express permission of the authors

pursuant to the following notice:

Copyright c© 1992–2008 The University of Tennessee. All rights reserved.

• Redistributions of source code must retain the above copyright notice, this list of
conditions, and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the following disclaimer, listed in this license in the documentation
or other materials provided with the distribution or both.

• Neither the names of the copyright holders nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Also see
[R] copyright — Display copyright information
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copyright libpng — libpng copyright notification

Description
Stata uses portions of libpng, a library used by JagPDF, which helps create PDF files, with the

express permission of the authors.

For the purposes of this acknowledgement, “Contributing Authors” is as defined by the copyright
notice below.

StataCorp thanks and acknowledges the Contributing Authors of libpng and Group 42, Inc. for
producing libpng and allowing its use in Stata and other software.

For more information about libpng, visit http://www.libpng.org/.

The full libpng copyright notice is

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:

If you modify libpng you may insert additional notices immediately following this
sentence.

This code is released under the libpng license.

libpng versions 1.2.6, August 15, 2004, through 1.5.2, March 31, 2011, are Copyright
c© 2004, 2006–2011 Glenn Randers-Pehrson, and are distributed according to the

same disclaimer and license as libpng-1.2.5 with the following individual added to the
list of Contributing Authors

Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are Copyright
c© 2000–2002 Glenn Randers-Pehrson, and are distributed according to the same

disclaimer and license as libpng-1.0.6 with the following individuals added to the list
of Contributing Authors

Simon-Pierre Cadieux

Eric S. Raymond

Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your enjoyment of the library or against
infringement. There is no warranty that our efforts or the library will fulfill any of
your particular purposes or needs. This library is provided with all faults, and the
entire risk of satisfactory quality, performance, accuracy, and effort is with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright
c© 1998, 1999 Glenn Randers-Pehrson, and are distributed according to the same

disclaimer and license as libpng-0.96, with the following individuals added to the list
of Contributing Authors:

Tom Lane

Glenn Randers-Pehrson

Willem van Schaik
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libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright c© 1996,
1997 Andreas Dilger Distributed according to the same disclaimer and license as
libpng-0.88, with the following individuals added to the list of Contributing Authors:

John Bowler

Kevin Bracey

Sam Bushell

Magnus Holmgren

Greg Roelofs

Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are Copyright c© 1995,
1996 Guy Eric Schalnat, Group 42, Inc.

For the purposes of this copyright and license, “Contributing Authors” is defined as
the following set of individuals:

Andreas Dilger

Dave Martindale

Guy Eric Schalnat

Paul Schmidt

Tim Wegner

The PNG Reference Library is supplied “AS IS”. The Contributing Authors and Group 42,
Inc. disclaim all warranties, expressed or implied, including, without limitation, the
warranties of merchantability and of fitness for any purpose. The Contributing Authors
and Group 42, Inc. assume no liability for direct, indirect, incidental, special, exemplary,
or consequential damages, which may result from the use of the PNG Reference Library,
even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or
portions hereof, for any purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and must not be misrepresented
as being the original source.

3. This Copyright notice may not be removed or altered from any source or altered
source distribution.

The Contributing Authors and Group 42, Inc. specifically permit, without fee, and
encourage the use of this source code as a component to supporting the PNG file format
in commercial products. If you use this source code in a product, acknowledgment is
not required but would be appreciated.

Also see
[R] copyright — Display copyright information
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copyright scintilla — Scintilla copyright notification

Description
Stata uses portions of Scintilla with the express permission of the author, pursuant to the following

notice:

Copyright c© 1998–2002 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAM-
AGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Also see
[R] copyright — Display copyright information
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copyright ttf2pt1 — ttf2pt1 copyright notification

Description
Stata uses portions of ttf2pt1 to convert TrueType fonts to PostScript fonts, with express permission

of the authors, pursuant to the following notice:

Copyright c© 1997–2003 by the AUTHORS:

Andrew Weeks <ccsaw@bath.ac.uk>

Frank M. Siegert <fms@this.net>

Mark Heath <mheath@netspace.net.au>

Thomas Henlich <thenlich@rcs.urz.tu-dresden.de>

Sergey Babkin <babkin@users.sourceforge.net>, <sab123@hotmail.com>

Turgut Uyar <uyar@cs.itu.edu.tr>

Rihardas Hepas <rch@WriteMe.Com>

Szalay Tamas <tomek@elender.hu>

Johan Vromans <jvromans@squirrel.nl>

Petr Titera <P.Titera@sh.cvut.cz>

Lei Wang <lwang@amath8.amt.ac.cn>

Chen Xiangyang <chenxy@sun.ihep.ac.cn>

Zvezdan Petkovic <z.petkovic@computer.org>

Rigel <rigel863@yahoo.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: This product includes software developed by the TTF2PT1 Project and its
contributors.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
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DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Also see
[R] copyright — Display copyright information



Title

copyright zlib — zlib copyright notification

Description
Stata uses portions of zlib, a library used by JagPDF, which helps create PDF files, with the express

permission of the authors.

StataCorp thanks and acknowledges the authors of zlib, Jean-loup Gailly and Mark Adler, for
producing zlib and allowing its use in Stata and other software.

For more information about zlib, visit http://www.zlib.net/.

The full zlib copyright notice is

Copyright c© 1995–2010 Jean-loup Gailly and Mark Adler

This software is provided ’as-is’, without any express or implied warranty. In no event
will the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1. The origin of this software must not be misrepresented; you must not claim
that you wrote the original software. If you use this software in a product, an
acknowledgment in the product documentation would be appreciated but is not
required.

2. Altered source versions must be plainly marked as such, and must not be misrep-
resented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly
Mark Adler

Also see
[R] copyright — Display copyright information
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Title

correlate — Correlations (covariances) of variables or coefficients

Syntax

Display correlation matrix or covariance matrix

correlate
[

varlist
] [

if
] [

in
] [

weight
] [

, correlate options
]

Display all pairwise correlation coefficients

pwcorr
[

varlist
] [

if
] [

in
] [

weight
] [

, pwcorr options
]

correlate options Description

Options

means display means, standard deviations, minimums, and maximums with matrix
noformat ignore display format associated with variables
covariance display covariances
wrap allow wide matrices to wrap

pwcorr options Description

Main

obs print number of observations for each entry
sig print significance level for each entry
listwise use listwise deletion to handle missing values
casewise synonym for listwise
print(#) significance level for displaying coefficients
star(#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Šidák-adjusted significance level

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with correlate and pwcorr; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
correlate

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Correlations and covariances

pwcorr

Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Pairwise correlations
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Description

The correlate command displays the correlation matrix or covariance matrix for a group of
variables. If varlist is not specified, the matrix is displayed for all variables in the dataset. Also see
the estat vce command in [R] estat.

pwcorr displays all the pairwise correlation coefficients between the variables in varlist or, if
varlist is not specified, all the variables in the dataset.

Options for correlate

� � �
Options �

means displays summary statistics (means, standard deviations, minimums, and maximums) with the
matrix.

noformat displays the summary statistics requested by the means option in g format, regardless of
the display formats associated with the variables.

covariance displays the covariances rather than the correlation coefficients.

wrap requests that no action be taken on wide correlation matrices to make them readable. It prevents
Stata from breaking wide matrices into pieces to enhance readability. You might want to specify
this option if you are displaying results in a window wider than 80 characters. Then you may need
to set linesize to however many characters you can display across a line; see [R] log.

Options for pwcorr

� � �
Main �

obs adds a line to each row of the matrix reporting the number of observations used to calculate the
correlation coefficient.

sig adds a line to each row of the matrix reporting the significance level of each correlation coefficient.

listwise handles missing values through listwise deletion, meaning that the entire observation is
omitted from the estimation sample if any of the variables in varlist is missing for that observation.
By default, pwcorr handles missing values by pairwise deletion; all available observations are
used to calculate each pairwise correlation without regard to whether variables outside that pair
are missing.

correlate uses listwise deletion. Thus listwise allows users of pwcorr to mimic correlate’s
treatment of missing values while retaining access to pwcorr’s features.

casewise is a synonym for listwise.

print(#) specifies the significance level of correlation coefficients to be printed. Correlation coeffi-
cients with larger significance levels are left blank in the matrix. Typing pwcorr, print(.10)
would list only correlation coefficients significant at the 10% level or better.

star(#) specifies the significance level of correlation coefficients to be starred. Typing pwcorr,
star(.05) would star all correlation coefficients significant at the 5% level or better.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option affects
printed significance levels and the print() and star() options. Thus pwcorr, print(.05)
bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.
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sidak makes the Šidák adjustment to calculated significance levels. This option affects printed
significance levels and the print() and star() options. Thus pwcorr, print(.05) sidak
prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

Remarks
Remarks are presented under the following headings:

correlate
pwcorr

correlate

Typing correlate by itself produces a correlation matrix for all variables in the dataset. If you
specify the varlist, a correlation matrix for just those variables is displayed.

Example 1

We have state data on demographic characteristics of the population. To obtain a correlation matrix,
we type

. use http://www.stata-press.com/data/r12/census13
(1980 Census data by state)

. correlate
(obs=50)

state brate pop medage division region mrgrate

state 1.0000
brate 0.0208 1.0000

pop -0.0540 -0.2830 1.0000
medage -0.0624 -0.8800 0.3294 1.0000

division -0.1345 0.6356 -0.1081 -0.5207 1.0000
region -0.1339 0.6086 -0.1515 -0.5292 0.9688 1.0000

mrgrate 0.0509 0.0677 -0.1502 -0.0177 0.2280 0.2490 1.0000
dvcrate -0.0655 0.3508 -0.2064 -0.2229 0.5522 0.5682 0.7700

medagesq -0.0621 -0.8609 0.3324 0.9984 -0.5162 -0.5239 -0.0202

dvcrate medagesq

dvcrate 1.0000
medagesq -0.2192 1.0000

Because we did not specify the wrap option, Stata did its best to make the result readable by breaking
the table into two parts.
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To obtain the correlations between mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage
(obs=50)

mrgrate dvcrate medage

mrgrate 1.0000
dvcrate 0.7700 1.0000
medage -0.0177 -0.2229 1.0000

Example 2

The pop variable in our previous example represents the total population of the state. Thus, to
obtain population-weighted correlations among mrgrate, dvcrate, and medage, we type

. correlate mrgrate dvcrate medage [w=pop]
(analytic weights assumed)
(sum of wgt is 2.2591e+08)
(obs=50)

mrgrate dvcrate medage

mrgrate 1.0000
dvcrate 0.5854 1.0000
medage -0.1316 -0.2833 1.0000

With the covariance option, correlate can be used to obtain covariance matrices, as well as
correlation matrices, for both weighted and unweighted data.

Example 3

To obtain the matrix of covariances between mrgrate, dvcrate, and medage, we type correlate
mrgrate dvcrate medage, covariance:

. correlate mrgrate dvcrate medage, covariance
(obs=50)

mrgrate dvcrate medage

mrgrate .000662
dvcrate .000063 1.0e-05
medage -.000769 -.001191 2.86775

We could have obtained the pop-weighted covariance matrix by typing correlate mrgrate
dvcrate medage [w=pop], covariance.

pwcorr
correlate calculates correlation coefficients by using casewise deletion; when you request

correlations of variables x1, x2, . . . , xk, any observation for which any of x1, x2, . . . , xk is missing
is not used. Thus if x3 and x4 have no missing values, but x2 is missing for half the data, the
correlation between x3 and x4 is calculated using only the half of the data for which x2 is not
missing. Of course, you can obtain the correlation between x3 and x4 by using all the data by typing
correlate x3 x4.

pwcorr makes obtaining such pairwise correlation coefficients easier.
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Example 4

Using auto.dta, we investigate the correlation between several of the variables.

. use http://www.stata-press.com/data/r12/auto1
(Automobile Models)

. pwcorr mpg price rep78 foreign, obs sig

mpg price rep78 foreign

mpg 1.0000

74

price -0.4594 1.0000
0.0000

74 74

rep78 0.3739 0.0066 1.0000
0.0016 0.9574

69 69 69

foreign 0.3613 0.0487 0.5922 1.0000
0.0016 0.6802 0.0000

74 74 69 74

. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) star(.01)

mpg price headroom rear_s~t trunk rep78 foreign

mpg 1.0000
price -0.4594* 1.0000

headroom -0.4220* 1.0000
rear_seat -0.5213* 0.4194* 0.5238* 1.0000

trunk -0.5703* 0.3143* 0.6620* 0.6480* 1.0000
rep78 0.3739* 1.0000

foreign 0.3613* -0.2939 -0.2409 -0.3594* 0.5922* 1.0000

. pwcorr mpg price headroom rear_seat trunk rep78 foreign, print(.05) bon

mpg price headroom rear_s~t trunk rep78 foreign

mpg 1.0000
price -0.4594 1.0000

headroom -0.4220 1.0000
rear_seat -0.5213 0.4194 0.5238 1.0000

trunk -0.5703 0.6620 0.6480 1.0000
rep78 0.3739 1.0000

foreign 0.3613 -0.3594 0.5922 1.0000

Technical note
The correlate command will report the correlation matrix of the data, but there are occasions

when you need the matrix stored as a Stata matrix so that you can further manipulate it. You can
obtain the matrix by typing

. matrix accum R = varlist, nocons dev

. matrix R = corr(R)

The first line places the cross-product matrix of the data in matrix R. The second line converts that
to a correlation matrix. Also see [P] matrix define and [P] matrix accum.
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Saved results
correlate saves the following in r():

Scalars
r(N) number of observations
r(rho) ρ (first and second variables)
r(cov 12) covariance (covariance only)
r(Var 1) variance of first variable (covariance only)
r(Var 2) variance of second variable (covariance only)

Matrices
r(C) correlation or covariance matrix

pwcorr will leave in its wake only the results of the last call that it makes internally to correlate
for the correlation between the last variable and itself. Only rarely is this feature useful.

Methods and formulas
pwcorr is implemented as an ado-file.

For a discussion of correlation, see, for instance, Snedecor and Cochran (1989, 177–195); for an
introductory explanation using Stata examples, see Acock (2010, 186–192).

According to Snedecor and Cochran (1989, 180), the term “co-relation” was first proposed by
Galton (1888). The product-moment correlation coefficient is often called the Pearson product-moment
correlation coefficient because Pearson (1896) and Pearson and Filon (1898) were partially responsible
for popularizing its use. See Stigler (1986) for information on the history of correlation.

The estimate of the product-moment correlation coefficient, ρ, is

ρ̂ =
∑n
i=1 wi(xi − x)(yi − y)√∑n

i=1 wi(xi − x)2
√∑n

i=1 wi(yi − y)2

where wi are the weights, if specified, or wi = 1 if weights are not specified. x = (
∑
wixi)/(

∑
wi)

is the mean of x, and ȳ is similarly defined.

The unadjusted significance level is calculated by pwcorr as

p = 2 ∗ ttail(n− 2, |ρ̂|
√
n− 2 /

√
1− ρ̂2 )

Let v be the number of variables specified so that k = v(v−1)/2 correlation coefficients are to be
estimated. If bonferroni is specified, the adjusted significance level is p′ = min(1, kp). If sidak
is specified, p′ = min

{
1, 1 − (1 − p)k

}
. In both cases, see Methods and formulas in [R] oneway

for a more complete description of the logic behind these adjustments.
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Carlo Emilio Bonferroni (1892–1960) studied in Turin and taught there and in Bari and Florence.
He published on actuarial mathematics, probability, statistics, analysis, geometry, and mechanics.
His work on probability inequalities has been applied to simultaneous statistical inference, although
the method known as Bonferroni adjustment usually relies only on an inequality established
earlier by Boole.

Karl Pearson (1857–1936) studied mathematics at Cambridge. He was professor of applied math-
ematics (1884–1911) and eugenics (1911–1933) at University College London. His publications
include literary, historical, philosophical, and religious topics. Statistics became his main interest
in the early 1890s after he learned about its application to biological problems. His work centered
on distribution theory, the method of moments, correlation, and regression. Pearson introduced
the chi-squared test and the terms coefficient of variation, contingency table, heteroskedastic,
histogram, homoskedastic, kurtosis, mode, random sampling, random walk, skewness, standard
deviation, and truncation. Despite many strong qualities, he also fell into prolonged disagreements
with others, most notably, William Bateson and R. A. Fisher.

Zbyněk Šidák (1933–1999) was a notable Czech statistician and probabilist. He worked on
Markov chains, rank tests, multivariate distribution theory and multiple-comparison methods, and
he served as the chief editor of Applications of Mathematics.� �
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Title

cumul — Cumulative distribution

Syntax
cumul varname

[
if
] [

in
] [

weight
]
, generate(newvar)

[
options

]
options Description

Main
∗generate(newvar) create variable newvar
freq use frequency units for cumulative
equal generate equal cumulatives for tied values

∗generate(newvar) is required.
by is allowed; see [D] by.
fweights and aweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Generate cumulative distribution

Description
cumul creates newvar, defined as the empirical cumulative distribution function of varname.

Options

� � �
Main �

generate(newvar) is required. It specifies the name of the new variable to be created.

freq specifies that the cumulative be in frequency units; otherwise, it is normalized so that newvar
is 1 for the largest value of varname.

equal requests that observations with equal values in varname get the same cumulative value in
newvar.� �
Jean Baptiste Joseph Fourier (1768–1830) was born in Auxerre in France. As a young man,
Fourier became entangled in the complications of the French Revolution. As a result, he was
arrested and put into prison, where he feared he might meet his end at the guillotine. When
he was not in prison, he was studying, researching, and teaching mathematics. Later, he served
Napolean’s army in Egypt as a scientific adviser. Upon his return to France in 1801, he was
appointed Prefect of the Department of Isère. While prefect, Fourier worked on the mathematical
basis of the theory of heat, which is based on what are now called Fourier series. This work
was published in 1822, despite the skepticism of Lagrange, Laplace, Legendre, and others—who
found the work lacking in generality and even rigor—and disagreements of both priority and
substance with Biot and Poisson.� �
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Remarks

Example 1

cumul is most often used with graph to graph the empirical cumulative distribution. For instance,
we have data on the median family income of 957 U.S. cities:

. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)

. cumul faminc, gen(cum)

. sort cum

. line cum faminc, ylab(, grid) ytitle("") xlab(, grid)
> title("Cumulative of median family income")
> subtitle("1980 Census, 957 U.S. Cities")
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Cumulative of median family income

It would have been enough to type line cum faminc, but we wanted to make the graph look better;
see [G-2] graph twoway line.

If we had wanted a weighted cumulative, we would have typed cumul faminc [w=pop] at the
first step.

Example 2

To graph two (or more) cumulatives on the same graph, use cumul and stack; see [D] stack. For
instance, we have data on the average January and July temperatures of 956 U.S. cities:
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. use http://www.stata-press.com/data/r12/citytemp, clear
(City Temperature Data)

. cumul tempjan, gen(cjan)

. cumul tempjuly, gen(cjuly)

. stack cjan tempjan cjuly tempjuly, into(c temp) wide clear

. line cjan cjuly temp, sort ylab(, grid) ytitle("") xlab(, grid)
> xtitle("Temperature (F)")
> title("Cumulatives:" "Average January and July Temperatures")
> subtitle("956 U.S. Cities") clstyle(. dot)
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0 20 40 60 80 100
Temperature (F)

cjan cjuly

956 U.S. Cities

Cumulatives:
Average January and July Temperatures

As before, it would have been enough to type line cjan cjuly temp, sort. See [D] stack for an
explanation of how the stack command works.

Technical note
According to Beniger and Robyn (1978), Fourier (1821) published the first graph of a cumulative

frequency distribution, which was later given the name “ogive” by Galton (1875).

Methods and formulas
cumul is implemented as an ado-file.

Acknowledgment
The equal option was added by Nicholas J. Cox, Durham University, Durham, UK.
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[D] stack — Stack data

[R] diagnostic plots — Distributional diagnostic plots

[R] kdensity — Univariate kernel density estimation

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb51.pdf


Title

cusum — Graph cumulative spectral distribution

Syntax
cusum yvar xvar

[
if
] [

in
] [

, options
]

options Description

Main

generate(newvar) save cumulative sum in newvar
yfit(fitvar) calculate cumulative sum against fitvar
nograph suppress the plot
nocalc suppress cusum test statistics

Cusum plot

connect options affect the rendition of the plotted line

Add plots

addplot(plot) add plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Other > Quality control > Cusum plots and tests for binary variables

Description
cusum graphs the cumulative sum (cusum) of a binary (0/1) variable, yvar, against a (usually)

continuous variable, xvar.

Options

� � �
Main �

generate(newvar) saves the cusum in newvar.

yfit(fitvar) calculates a cusum against fitvar, that is, the running sums of the “residuals” fitvar
minus yvar. Typically, fitvar is the predicted probability of a positive outcome obtained from a
logistic regression analysis.

nograph suppresses the plot.

nocalc suppresses calculation of the cusum test statistics.

� � �
Cusum plot �

connect options affect the rendition of the plotted line; see [G-3] connect options.
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� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
The cusum is the running sum of the proportion of ones in the sample, a constant number, minus

yvar,

cj =
j∑

k=1

f − yvar(k), 1 ≤ j ≤ N

where f = (
∑

yvar)/N and yvar(k) refers to the corresponding value of yvar when xvar is placed in
ascending order: xvar(k+1) ≥ xvar(k). Tied values of xvar are broken at random. If you want them
broken the same way in two runs, you must set the random-number seed to the same value before
giving the cusum command; see [R] set seed.

A U-shaped or inverted U-shaped cusum indicates, respectively, a negative or a positive trend of
yvar with xvar. A sinusoidal shape is evidence of a nonmonotonic (for example, quadratic) trend.
cusum displays the maximum absolute cusum for monotonic and nonmonotonic trends of yvar on
xvar. These are nonparametric tests of departure from randomness of yvar with respect to xvar.
Approximate values for the tests are given.

Example 1

For the automobile dataset, auto.dta, we wish to investigate the relationship between foreign
(0 = domestic, 1 = foreign) and car weight as follows:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. cusum foreign weight
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Variable Obs Pr(1) CusumL zL Pr>zL CusumQ zQ Pr>zQ

foreign 74 0.2973 10.30 3.963 0.000 3.32 0.469 0.320

The resulting plot, which is U-shaped, suggests a negative monotonic relationship. The trend is
confirmed by a highly significant linear cusum statistic, labeled CusumL in the output above.

Some 29.73% of the cars are foreign (coded 1). The proportion of foreign cars diminishes with
increasing weight. The domestic cars are crudely heavier than the foreign ones. We could have
discovered that by typing table foreign, stats(mean weight), but such an approach does not
give the full picture of the relationship. The quadratic cusum (CusumQ) is not significant, so we
do not suspect any tendency for the very heavy cars to be foreign rather than domestic. A slightly
enhanced version of the plot shows the preponderance of domestic (coded 0) cars at the heavy end
of the weight axis:

. label values foreign

. cusum foreign weight, s(none) recast(scatter) mlabel(foreign) mlabp(0)
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Variable Obs Pr(1) CusumL zL Pr>zL CusumQ zQ Pr>zQ

foreign 74 0.2973 10.30 3.963 0.000 2.92 0.064 0.475

The example is, of course, artificial, because we would not really try to model the probability of a
car being foreign given its weight.

Saved results
cusum saves the following in r():

Scalars
r(N) number of observations r(P zl) p-value for test (linear)
r(prop1) proportion of positive outcomes r(cusumq) quadratic cusum
r(cusuml) cusum r(zq) test (quadratic)
r(zl) test (linear) r(P zq) p-value for test (quadratic)
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Methods and formulas
cusum is implemented as an ado-file.

Acknowledgment
cusum was written by Patrick Royston, MRC Clinical Trials Unit, London.
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Also see
[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression
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Title

db — Launch dialog

Syntax

Syntax for db

db commandname

For programmers

db commandname
[
, message(string) debug dryrun

]
Set system parameter

set maxdb #
[
, permanently

]
where # must be between 5 and 1,000.

Description
db is the command-line way to launch a dialog for a Stata command.

The second syntax (which is the same but includes options) is for use by programmers.

If you wish to allow the launching of dialogs from a help file, see [P] smcl for information on the
dialog SMCL directive.

set maxdb sets the maximum number of dialog boxes whose contents are remembered from one
invocation to the next during a session. The default value of maxdb is 50.

Options
message(string) specifies that string be passed to the dialog box, where it can be referred to from

the MESSAGE STRING property.

debug specifies that the underlying dialog box be loaded with debug messaging turned on.

dryrun specifies that, rather than launching the dialog, db show the commands it would issue to
launch the dialog.

permanently specifies that, in addition to making the change right now, the maxdb setting be
remembered and become the default setting when you invoke Stata.

Remarks
The usual way to launch a dialog is to open the Data, Graphics, or Statistics menu and to make

your selection from there. When you know the name of the command that you want to run, however,
db provides a way to invoke the dialog from the command line.

db follows the same abbreviation rules that Stata’s command-line interface follows. So, to launch
the dialog for regress, you can type
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. db regress

or

. db reg

Say that you use the dialog box for regress, either by selecting

Statistics > Linear models and related > Linear regression

or by typing

. db regress

You fit a regression.

Much later during the session, you return to the regress dialog box. It will have the contents
as you left them if 1) you have not typed clear all between the first and second invocations; 2)
you have not typed discard between the two invocations; and 3) you have not used more than 50
different dialog boxes—regardless of how many times you have used each—between the first and
second invocations of regress. If you use 51 or more, the contents of the regress dialog box will
be forgotten.

set maxdb determines how many different dialog boxes are remembered. A dialog box takes, on
average, about 20 KB of memory, so the 50 default corresponds to allowing dialog boxes to consume
about 1 MB of memory.

Methods and formulas
db is implemented as an ado-file.

Also see
[R] query — Display system parameters



Title

diagnostic plots — Distributional diagnostic plots

Syntax

Symmetry plot

symplot varname
[

if
] [

in
] [

, options1

]
Ordered values of varname against quantiles of uniform distribution

quantile varname
[

if
] [

in
] [

, options1

]
Quantiles of varname1 against quantiles of varname2

qqplot varname1 varname2

[
if
] [

in
] [

, options1

]
Quantiles of varname against quantiles of normal distribution

qnorm varname
[

if
] [

in
] [

, options2

]
Standardized normal probability plot

pnorm varname
[

if
] [

in
] [

, options2

]
Quantiles of varname against quantiles of χ2 distribution

qchi varname
[

if
] [

in
] [

, options3

]
χ2 probability plot

pchi varname
[

if
] [

in
] [

, options3

]
options1 Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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options2 Description

Main

grid add grid lines

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

options3 Description

Main

grid add grid lines
df(#) degrees of freedom of χ2 distribution; default is df(1)

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

Menu
symplot

Statistics > Summaries, tables, and tests > Distributional plots and tests > Symmetry plot

quantile

Statistics > Summaries, tables, and tests > Distributional plots and tests > Quantiles plot

qqplot

Statistics > Summaries, tables, and tests > Distributional plots and tests > Quantile-quantile plot
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qnorm

Statistics > Summaries, tables, and tests > Distributional plots and tests > Normal quantile plot

pnorm

Statistics > Summaries, tables, and tests > Distributional plots and tests > Normal probability plot, standardized

qchi

Statistics > Summaries, tables, and tests > Distributional plots and tests > Chi-squared quantile plot

pchi

Statistics > Summaries, tables, and tests > Distributional plots and tests > Chi-squared probability plot

Description
symplot graphs a symmetry plot of varname.

quantile plots the ordered values of varname against the quantiles of a uniform distribution.

qqplot plots the quantiles of varname1 against the quantiles of varname2 (Q–Q plot).

qnorm plots the quantiles of varname against the quantiles of the normal distribution (Q–Q plot).

pnorm graphs a standardized normal probability plot (P–P plot).

qchi plots the quantiles of varname against the quantiles of a χ2 distribution (Q–Q plot).

pchi graphs a χ2 probability plot (P–P plot).

See [R] regress postestimation for regression diagnostic plots and [R] logistic postestimation for
logistic regression diagnostic plots.

Options for symplot, quantile, and qqplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).
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Options for qnorm and pnorm

� � �
Main �

grid adds grid lines at the 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 quantiles when specified with
qnorm. With pnorm, grid is equivalent to yline(.25,.5,.75) xline(.25,.5,.75).

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Options for qchi and pchi

� � �
Main �

grid adds grid lines at the 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and .95 quantiles when specified with
qchi. With pchi, grid is equivalent to yline(.25,.5,.75) xline(.25,.5,.75).

df(#) specifies the degrees of freedom of the χ2 distribution. The default is df(1).

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affect the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

symplot
quantile
qqplot
qnorm
pnorm
qchi
pchi

symplot

Example 1

We have data on 74 automobiles. To make a symmetry plot of the variable price, we type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. symplot price
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All points would lie along the reference line (defined as y = x) if car prices were symmetrically
distributed. The points in this plot lie above the reference line, indicating that the distribution of car
prices is skewed to the right—the most expensive cars are far more expensive than the least expensive
cars are inexpensive.

The logic works as follows: a variable, z, is distributed symmetrically if

median− z(i) = z(N+1−i) −median
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where z(i) indicates the ith-order statistic of z. symplot graphs yi = median − z(i) versus xi =
z(N+1−i) −median.

For instance, consider the largest and smallest values of price in the example above. The most
expensive car costs $15,906 and the least expensive, $3,291. Let’s compare these two cars with the
typical car in the data and see how much more it costs to buy the most expensive car, and compare
that with how much less it costs to buy the least expensive car. If the automobile price distribution
is symmetric, the price differences would be the same.

Before we can make this comparison, we must agree on a definition for the word “typical”. Let’s
agree that “typical” means median. The price of the median car is $5,006.50, so the most expensive
car costs $10,899.50 more than the median car, and the least expensive car costs $1,715.50 less than
the median car. We now have one piece of evidence that the car price distribution is not symmetric.
We can repeat the experiment for the second-most-expensive car and the second-least-expensive car.
We find that the second-most-expensive car costs $9,494.50 more than the median car, and the
second-least-expensive car costs $1,707.50 less than the median car. We now have more evidence.
We can continue doing this with the third most expensive and the third least expensive, and so on.

Once we have all these numbers, we want to compare each pair and ask how similar, on average,
they are. The easiest way to do that is to plot all the pairs.

quantile

Example 2

We have data on the prices of 74 automobiles. To make a quantile plot of price, we type

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. quantile price, rlopts(clpattern(dash))
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We changed the pattern of the reference line by specifying rlopts(clpattern(dash)).
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In a quantile plot, each value of the variable is plotted against the fraction of the data that
have values less than that fraction. The diagonal line is a reference line. If automobile prices were
rectangularly distributed, all the data would be plotted along the line. Because all the points are below
the reference line, we know that the price distribution is skewed right.

qqplot

Example 3

We have data on the weight and country of manufacture of 74 automobiles. We wish to compare
the distributions of weights for domestic and foreign automobiles:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. generate weightd=weight if !foreign
(22 missing values generated)

. generate weightf=weight if foreign
(52 missing values generated)

. qqplot weightd weightf

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

w
e

ig
h

td

1500 2000 2500 3000 3500
weightf

Quantile−Quantile Plot

qnorm

Example 4

Continuing with our price data on 74 automobiles, we now wish to compare the distribution of
price with the normal distribution:
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. qnorm price, grid ylabel(, angle(horizontal) axis(1))
> ylabel(, angle(horizontal) axis(2))

3,748

5,006.5

13,466

0

5,000

10,000

15,000

P
ri
c
e

6,165.3 11,0171,313.8

0 5,000 10,000 15,000
Inverse Normal

Grid lines are 5, 10, 25, 50, 75, 90, and 95 percentiles

The result shows that the distributions are different.

Technical note
The idea behind qnorm is recommended strongly by Miller (1997): he calls it probit plotting. His

recommendations from much practical experience should interest many users. “My recommendation
for detecting nonnormality is probit plotting” (Miller 1997, 10). “If a deviation from normality cannot
be spotted by eye on probit paper, it is not worth worrying about. I never use the Kolmogorov–Smirnov
test (or one of its cousins) or the χ2 test as a preliminary test of normality. They do not tell you how
the sample is differing from normality, and I have a feeling they are more likely to detect irregularities
in the middle of the distribution than in the tails” (Miller 1997, 13–14).

pnorm

Example 5

Quantile–normal plots emphasize the tails of the distribution. Normal probability plots put the
focus on the center of the distribution:
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. pnorm price, grid
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qchi

Example 6

Suppose that we want to examine the distribution of the sum of squares of price and mpg,
standardized for their variances.

. egen c1 = std(price)

. egen c2 = std(mpg)

. generate ch = c1^2 + c2^2

. qchi ch, df(2) grid ylabel(, alt axis(2)) xlabel(, alt axis(2))
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The quadratic form is clearly not χ2 with 2 degrees of freedom.
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pchi

Example 7

We can focus on the center of the distribution by doing a probability plot:

. pchi ch, df(2) grid
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Methods and formulas
symplot, quantile, qqplot, qnorm, pnorm, qchi, and pchi are implemented as ado-files. Let

x(1), x(2), . . . , x(N) be the data sorted in ascending order.

If a continuous variable, x, has a cumulative distribution function F (x) = P (X ≤ x) = p, the
quantiles xpi are such that F (xpi) = pi. For example, if pi = 0.5, then x0.5 is the median. When
we plot data, the probabilities, pi, are often referred to as plotting positions. There are many different
conventions for choice of plotting positions, given x(1) ≤ · · · ≤ x(N). Most belong to the family
(i− a)/(N − 2a+ 1). a = 0.5 (suggested by Hazen) and a = 0 (suggested by Weibull) are popular
choices.

For a wider discussion of the calculation of plotting positions, see Cox (2002).

symplot plots median− x(i) versus x(N+1−i) −median.

quantile plots x(i) versus (i− 0.5)/N (the Hazen position).

qnorm plots x(i) against qi, where qi = Φ−1(pi), Φ is the cumulative normal distribution, and
pi = i/(N + 1) (the Weibull position).

pnorm plots Φ
{

(xi − µ̂)/σ̂
}

versus pi = i/(N + 1), where µ̂ is the mean of the data and σ̂ is
the standard deviation.

qchi and pchi are similar to qnorm and pnorm; the cumulative χ2 distribution is used in place
of the cumulative normal distribution.
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qqplot is just a two-way scatterplot of one variable against the other after both variables have been
sorted into ascending order, and both variables have the same number of nonmissing observations. If
the variables have unequal numbers of nonmissing observations, interpolated values of the variable
with more data are plotted against the variable with fewer data.

� �
Ramanathan Gnanadesikan (1932– ) was born in Madras. He obtained degrees from the Univer-
sities of Madras and North Carolina. He worked in industry at Procter & Gamble, Bell Labs, and
Bellcore, as well as in universities, retiring from Rutgers in 1998. Among many contributions
to statistics he is especially well known for work on probability plotting, robustness, outlier
detection, clustering, classification, and pattern recognition.

Martin Bradbury Wilk (1922– ) was born in Montreal. He obtained degrees in chemical engineering
and statistics from McGill and Iowa State Universities. After holding several statistics-related
posts in industry and at universities (including periods at Princeton, Bell Labs, and Rutgers),
Wilk was appointed Chief Statistician at Statistics Canada (1980–1986). He is especially well
known for his work with Gnanadesikan on probability plotting and with Shapiro on tests for
normality.� �
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Title

display — Substitute for a hand calculator

Syntax
display exp

Description
display displays strings and values of scalar expressions.

display really has many more features and a more complex syntax diagram, but the diagram
shown above is adequate for interactive use. For a full discussion of display’s capabilities, see
[P] display.

Remarks
display can be used as a substitute for a hand calculator.

Example 1

display 2+2 produces the output 4. Stata variables may also appear in the expression, such as in
display myvar/2. Because display works only with scalars, the resulting calculation is performed
only for the first observation. You could type display myvar[10]/2 to display the calculation for
the 10th observation. Here are more examples:

. display sqrt(2)/2

.70710678

. display normal(-1.1)

.13566606

. di (57.2-3)/(12-2)
5.42

. display myvar/10
7

. display myvar[10]/2
3.5

Also see
[P] display — Display strings and values of scalar expressions

[U] 13 Functions and expressions
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Title

do — Execute commands from a file

Syntax{
do | run

}
filename

[
arguments

] [
, nostop

]
Menu

File > Do...

Description

do and run cause Stata to execute the commands stored in filename just as if they were entered
from the keyboard. do echoes the commands as it executes them, whereas run is silent. If filename
is specified without an extension, .do is assumed.

Option
nostop allows the do-file to continue executing even if an error occurs. Normally, Stata stops executing

the do-file when it detects an error (nonzero return code).

Remarks
You can create filename (called a do-file) using Stata’s Do-file Editor; see [R] doedit. This file

will be a standard ASCII (text) file. A complete discussion of do-files can be found in [U] 16 Do-files.

You can also create filename by using a non-Stata text editor; see [D] shell for a way to invoke
your favorite editor from inside Stata. Make sure that you save the file in ASCII format.

If the path or filename contains spaces, it should be enclosed in double quotes.

Reference
Jenkins, S. P. 2006. Stata tip 32: Do not stop. Stata Journal 6: 281.

Also see
[R] doedit — Edit do-files and other text files

[P] include — Include commands from file

[GSM] 13 Using the Do-file Editor—automating Stata
[GSU] 13 Using the Do-file Editor—automating Stata
[GSW] 13 Using the Do-file Editor—automating Stata
[U] 15 Saving and printing output—log files
[U] 16 Do-files
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Title

doedit — Edit do-files and other text files

Syntax
doedit

[
filename

]
Menu

Window > Do-file Editor

Description

doedit opens a text editor that lets you edit do-files and other text files.

The Do-file Editor lets you submit several commands to Stata at once.

Remarks
Clicking on the Do-file Editor button is equivalent to typing doedit.

doedit, typed by itself, invokes the Editor with an empty document. If you specify filename, that
file is displayed in the Editor.

You may have more than one Do-file Editor open at once. Each time you submit the doedit
command, a new window will be opened.

A tutorial discussion of doedit can be found in the Getting Started with Stata manual. Read
[U] 16 Do-files for an explanation of do-files, and then read [GSW] 13 Using the Do-file Editor—
automating Stata to learn how to use the Do-file Editor to create and execute do-files.

Also see
[GSM] 13 Using the Do-file Editor—automating Stata
[GSU] 13 Using the Do-file Editor—automating Stata
[GSW] 13 Using the Do-file Editor—automating Stata
[U] 16 Do-files
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Title

dotplot — Comparative scatterplots

Syntax

Dotplot of varname, with one column per value of groupvar

dotplot varname
[

if
] [

in
] [

, options
]

Dotplot for each variable in varlist, with one column per variable

dotplot varlist
[

if
] [

in
] [

, options
]

options Description

Options

over(groupvar) display one columnar dotplot for each value of groupvar
nx(#) horizontal dot density; default is nx(0)

ny(#) vertical dot density; default is ny(35)

incr(#) label every # group; default is incr(1)

mean | median plot a horizontal line of pluses at the mean or median
bounded use minimum and maximum as boundaries
bar plot horizontal dashed lines at shoulders of each group
nogroup use the actual values of yvar
center center the dot for each column

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Graphics > Distributional graphs > Distribution dotplot

Description
A dotplot is a scatterplot with values grouped together vertically (“binning”, as in a histogram)

and with plotted points separated horizontally. The aim is to display all the data for several variables
or groups in one compact graphic.

In the first syntax, dotplot produces a columnar dotplot of varname, with one column per value
of groupvar. In the second syntax, dotplot produces a columnar dotplot for each variable in varlist,
with one column per variable; over(groupvar) is not allowed. In each case, the “dots” are plotted
as small circles to increase readability.

426
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Options

� � �
Options �

over(groupvar) identifies the variable for which dotplot will display one columnar dotplot for
each value of groupvar.

nx(#) sets the horizontal dot density. A larger value of # will increase the dot density, reducing the
horizontal separation between dots. This option will increase the separation between columns if
two or more groups or variables are used.

ny(#) sets the vertical dot density (number of “bins” on the y axis). A larger value of # will result
in more bins and a plot that is less spread out horizontally. # should be determined in conjunction
with nx() to give the most pleasing appearance.

incr(#) specifies how the x axis is to be labeled. incr(1), the default, labels all groups. incr(2)
labels every second group.[

mean | median
]

plots a horizontal line of pluses at the mean or median of each group.

bounded forces the minimum and maximum of the variable to be used as boundaries of the smallest
and largest bins. It should be used with one variable whose support is not the whole of the real
line and whose density does not tend to zero at the ends of its support, for example, a uniform
random variable or an exponential random variable.

bar plots horizontal dashed lines at the “shoulders” of each group. The shoulders are taken to be
the upper and lower quartiles unless mean has been specified; here they will be the mean plus or
minus the standard deviation.

nogroup uses the actual values of yvar rather than grouping them (the default). This option may be
useful if yvar takes on only a few values.

center centers the dots for each column on a hidden vertical line.

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
dotplot produces a figure that has elements of a boxplot, a histogram, and a scatterplot. Like a

boxplot, it is most useful for comparing the distributions of several variables or the distribution of 1
variable in several groups. Like a histogram, the figure provides a crude estimate of the density, and,
as with a scatterplot, each symbol (dot) represents 1 observation.
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Example 1

dotplot may be used as an alternative to Stata’s histogram graph for displaying the distribution
of one variable.

. set seed 123456789

. set obs 1000

. generate norm = rnormal()

. dotplot norm, title("Normal distribution, sample size 1000")
−

4
−

2
0

2
4

n
o

rm

0 20 40 60 80
Frequency

Normal distribution, sample size 1000

Example 2

The over() option lets us use dotplot to compare the distribution of one variable within different
levels of a grouping variable. The center, median, and bar options create a graph that may be
compared with Stata’s boxplot; see [G-2] graph box. The next graph illustrates this option with Stata’s
automobile dataset.
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. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. dotplot mpg, over(foreign) nx(25) ny(10) center median bar
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Example 3

The second version of dotplot lets us compare the distribution of several variables. In the next
graph, all 10 variables contain measurements on tumor volume.

. use http://www.stata-press.com/data/r12/dotgr

. dotplot g1r1-g1r10, ytitle("Tumor volume, cu mm")
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Example 4

When using the first form with the over() option, we can encode a third dimension in a dotplot
by using a different plotting symbol for different groups. The third dimension cannot be encoded
with a varlist. The example is of a hypothetical matched case–control study. The next graph shows
the exposure of each individual in each matched stratum. Cases are marked by the letter ‘x’, and
controls are marked by the letter ‘o’.

. use http://www.stata-press.com/data/r12/dotdose

. label define symbol 0 "o" 1 "x"

. label values case symbol

. dotplot dose, over(strata) m(none) mlabel(case) mlabp(0) center
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Example 5

dotplot can also be used with two virtually continuous variables as an alternative to jittering the
data to distinguish ties. We must use the xlabel() option, because otherwise dotplot will attempt
to label too many points on the x axis. It is often useful in such instances to use a value of nx that
is smaller than the default. That was not necessary in this example, partly because of our choice of
symbols.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. generate byte hi_price = (price>10000) if price < .

. label define symbol 0 "|" 1 "o"

. label values hi_price symbol
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. dotplot weight, over(gear_ratio) m(none) mlabel(hi_price) mlabp(0) center
> xlabel(#5)
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Example 6
The following figure is included mostly for aesthetic reasons. It also demonstrates dotplot’s

ability to cope with even very large datasets. The sample size for each variable is 10,000, so it may
take a long time to print.

. clear all

. set seed 123456789

. set obs 10000

. gen norm0 = rnormal()

. gen norm1 = rnormal() + 1

. gen norm2 = rnormal() + 2

. label variable norm0 "N(0,1)"

. label variable norm1 "N(1,1)"

. label variable norm2 "N(2,1)"

. dotplot norm0 norm1 norm2
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Saved results
dotplot saves the following in r():

Scalars
r(nx) horizontal dot density
r(ny) vertical dot density

Methods and formulas
dotplot is implemented as an ado-file.
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Title

dstdize — Direct and indirect standardization

Syntax

Direct standardization

dstdize charvar popvar stratavars
[

if
] [

in
]
, by(groupvars)

[
dstdize options

]
Indirect standardization

istdize casevars popvars stratavars
[

if
] [

in
]
using filename,{

popvars(casevarp popvarp) | rate(ratevarp
{

# | crudevarp
}
)
}[

istdize options
]

dstdize options Description

Main
∗by(groupvars) study populations
using( filename) use standard population from Stata dataset
base(# | string) use standard population from a value of grouping variable
level(#) set confidence level; default is level(95)

Options

saving( filename) save computed standard population distribution as a Stata dataset
format(% fmt) final summary table display format; default is %10.0g

print include table summary of standard population in output
nores suppress saving results in r()

∗by(groupvars) is required.

istdize options Description

Main
∗popvars(casevarp popvarp) for standard population, casevarp is number of cases and

popvarp is number of individuals
∗rate(ratevarp

{
# | crudevarp

}
) ratevarp is stratum-specific rates and # or crudevarp is the

crude case rate value or variable
level(#) set confidence level; default is level(95)

Options

by(groupvars) variables identifying study populations
format(% fmt) final summary table display format; default is %10.0g

print include table summary of standard population in output

∗Either popvars(casevarp popvarp) or rate(ratevarp {# | crudevarp}) must be specified.

433
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Menu
dstdize

Statistics > Epidemiology and related > Other > Direct standardization

istdize

Statistics > Epidemiology and related > Other > Indirect standardization

Description

dstdize produces standardized rates for charvar, which are defined as a weighted average of the
stratum-specific rates. These rates can be used to compare the characteristic charvar across different
populations identified by groupvars. Weights used in the standardization are given by popvar; the
strata across which the weights are to be averaged are defined by stratavars.

istdize produces indirectly standardized rates for a study population based on a standard popu-
lation. This standardization method is appropriate when the stratum-specific rates for the population
being studied are either unavailable or based on small samples and thus are unreliable. The standard-
ization uses the stratum-specific rates of a standard population to calculate the expected number of
cases in the study population(s), sums them, and then compares them with the actual number of cases
observed. The standard population is in another Stata data file specified by using filename, and it
must contain popvar and stratavars.

In addition to calculating rates, the indirect standardization command produces point estimates and
exact confidence intervals of the study population’s standardized mortality ratio (SMR), if death is the
event of interest, or the standardized incidence ratio (SIR) for studies of incidence. Here we refer to
both ratios as SMR.

casevars is the variable name for the study population’s number of cases (usually deaths). It must
contain integers, and for each group, defined by groupvar, each subpopulation identified by stratavars
must have the same values or missing.

popvars identifies the number of subjects represented by each observation in the study population.

stratavars define the strata.

Options for dstdize

� � �
Main �

by(groupvars) is required for the dstdize command; it specifies the variables identifying the study
populations. If base() is also specified, there must be only one variable in the by() group. If
you do not have a variable for this option, you can generate one by using something like gen
newvar=1 and then use newvar as the argument to this option.

using(filename) or base(# | string) may be used to specify the standard population. You may not
specify both options. using( filename) supplies the name of a .dta file containing the standard
population. The standard population must contain the popvar and the stratavars. If using() is
not specified, the standard population distribution will be obtained from the data. base(# | string)
lets you specify one of the values of groupvar—either a numeric value or a string—to be used
as the standard population. If neither base() nor using() is specified, the entire dataset is used
to determine an estimate of the standard population.
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level(#) specifies the confidence level, as a percentage, for a confidence interval of the adjusted
rate. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals.

� � �
Options �

saving( filename) saves the computed standard population distribution as a Stata dataset that can be
used in further analyses.

format(% fmt) specifies the format in which to display the final summary table. The default is
%10.0g.

print includes a table summary of the standard population before displaying the study population
results.

nores suppresses saving results in r(). This option is seldom specified. Some saved results are stored
in matrices. If there are more groups than matsize, dstdize will report “matsize too small”.
Then you can either increase matsize or specify nores. The nores option does not change how
results are calculated but specifies that results need not be left behind for use by other programs.

Options for istdize

� � �
Main �

popvars(casevarp popvarp) or rate(ratevarp # | ratevarp crudevarp) must be specified with ist-
dize. Only one of these two options is allowed. These options are used to describe the standard
population’s data.

With popvars(casevarp popvarp), casevarp records the number of cases (deaths) for each stratum
in the standard population, and popvarp records the total number of individuals in each stratum
(individuals at risk).

With rate(ratevarp
{

# | crudevarp
}
), ratevarp contains the stratum-specific rates. # | crudevarp

specifies the crude case rate either by a variable name or by the crude case rate value. If a crude
rate variable is used, it must be the same for all observations, although it could be missing for
some.

level(#) specifies the confidence level, as a percentage, for a confidence interval of the adjusted
rate. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals.

� � �
Options �

by(groupvars) specifies variables identifying study populations when more than one exists in the
data. If this option is not specified, the entire study population is treated as one group.

format(% fmt) specifies the format in which to display the final summary table. The default is
%10.0g.

print outputs a table summary of the standard population before displaying the study population
results.
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Remarks
Remarks are presented under the following headings:

Direct standardization
Indirect standardization

In epidemiology and other fields, you will often need to compare rates for some characteristic
across different populations. These populations often differ on factors associated with the characteristic
under study; thus directly comparing overall rates may be misleading.

See van Belle et al. (2004, 642–684), Fleiss, Levin, and Paik (2003, chap. 19), or Kirkwood and
Sterne (2003, chap. 25) for a discussion of direct and indirect standardization.

Direct standardization
The direct method of adjusting for differences among populations involves computing the overall

rates that would result if, instead of having different distributions, all populations had the same
standard distribution. The standardized rate is defined as a weighted average of the stratum-specific
rates, with the weights taken from the standard distribution. Direct standardization may be applied
only when the specific rates for a given population are available.

dstdize generates adjusted summary measures of occurrence, which can be used to compare
prevalence, incidence, or mortality rates between populations that may differ on certain characteristics
(for example, age, gender, race). These underlying differences may affect the crude prevalence,
mortality, or incidence rates.

Example 1

We have data (Rothman 1986, 42) on mortality rates for Sweden and Panama for 1962, and we
wish to compare mortality in these two countries:

. use http://www.stata-press.com/data/r12/mortality
(1962 Mortality, Sweden & Panama)

. describe

Contains data from http://www.stata-press.com/data/r12/mortality.dta
obs: 6 1962 Mortality, Sweden & Panama

vars: 4 14 Apr 2011 16:18
size: 90

storage display value
variable name type format label variable label

nation str6 %9s Nation
age_category byte %9.0g age_lbl Age Category
population float %10.0gc Population in Age Category
deaths float %9.0gc Deaths in Age Category

Sorted by:
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. list, sepby(nation) abbrev(12) divider

nation age_category population deaths

1. Sweden 0 - 29 3145000 3,523
2. Sweden 30 - 59 3057000 10,928
3. Sweden 60+ 1294000 59,104

4. Panama 0 - 29 741,000 3,904
5. Panama 30 - 59 275,000 1,421
6. Panama 60+ 59,000 2,456

We divide the total number of cases in the population by the population to obtain the crude rate:

. collapse (sum) pop deaths, by(nation)

. list, abbrev(10) divider

nation population deaths

1. Panama 1075000 7,781
2. Sweden 7496000 73,555

. generate crude = deaths/pop

. list, abbrev(10) divider

nation population deaths crude

1. Panama 1075000 7,781 .0072381
2. Sweden 7496000 73,555 .0098126

If we examine the total number of deaths in the two nations, the total crude mortality rate in
Sweden is higher than that in Panama. From the original data, we see one possible explanation:
Swedes are older than Panamanians, making direct comparison of the mortality rates difficult.

Direct standardization lets us remove the distortion caused by the different age distributions. The
adjusted rate is defined as the weighted sum of the crude rates, where the weights are given by the
standard distribution. Suppose that we wish to standardize these mortality rates to the following age
distribution:

. use http://www.stata-press.com/data/r12/1962, clear
(Standard Population Distribution)

. list, abbrev(12) divider

age_category population

1. 0 - 29 .35
2. 30 - 59 .35
3. 60+ .3

. sort age_cat

. save 1962, replace
file 1962.dta saved

If we multiply the above weights for the age strata by the crude rate for the corresponding age
category, the sum gives us the standardized rate.
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. use http://www.stata-press.com/data/r12/mortality
(1962 Mortality, Sweden & Panama)

. generate crude=deaths/pop

. drop pop

. sort age_cat

. merge m:1 age_cat using 1962
age_category was byte now float

Result # of obs.

not matched 0
matched 6 (_merge==3)

. list, sepby(age_category) abbrev(12)

nation age_category deaths crude population _merge

1. Sweden 0 - 29 3,523 .0011202 .35 matched (3)
2. Panama 0 - 29 3,904 .0052686 .35 matched (3)

3. Sweden 30 - 59 10,928 .0035747 .35 matched (3)
4. Panama 30 - 59 1,421 .0051673 .35 matched (3)

5. Panama 60+ 2,456 .0416271 .3 matched (3)
6. Sweden 60+ 59,104 .0456754 .3 matched (3)

. generate product = crude*pop

. by nation, sort: egen adj_rate = sum(product)

. drop _merge

. list, sepby(nation)

nation age_ca~y deaths crude popula~n product adj_rate

1. Panama 30 - 59 1,421 .0051673 .35 .0018085 .0161407
2. Panama 0 - 29 3,904 .0052686 .35 .001844 .0161407
3. Panama 60+ 2,456 .0416271 .3 .0124881 .0161407

4. Sweden 0 - 29 3,523 .0011202 .35 .0003921 .0153459
5. Sweden 60+ 59,104 .0456754 .3 .0137026 .0153459
6. Sweden 30 - 59 10,928 .0035747 .35 .0012512 .0153459

Comparing the standardized rates indicates that the Swedes have a slightly lower mortality rate.
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To perform the above analysis with dstdize, type

. use http://www.stata-press.com/data/r12/mortality, clear
(1962 Mortality, Sweden & Panama)

. dstdize deaths pop age_cat, by(nation) using(1962)

-> nation= Panama
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

0 - 29 741000 3904 0.689 0.0053 0.350 0.0018
30 - 59 275000 1421 0.256 0.0052 0.350 0.0018

60+ 59000 2456 0.055 0.0416 0.300 0.0125

Totals: 1075000 7781 Adjusted Cases: 17351.2
Crude Rate: 0.0072

Adjusted Rate: 0.0161
95% Conf. Interval: [0.0156, 0.0166]

-> nation= Sweden
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

0 - 29 3145000 3523 0.420 0.0011 0.350 0.0004
30 - 59 3057000 10928 0.408 0.0036 0.350 0.0013

60+ 1294000 59104 0.173 0.0457 0.300 0.0137

Totals: 7496000 73555 Adjusted Cases: 115032.5
Crude Rate: 0.0098

Adjusted Rate: 0.0153
95% Conf. Interval: [0.0152, 0.0155]

Summary of Study Populations:
nation N Crude Adj_Rate Confidence Interval

Panama 1075000 0.007238 0.016141 [ 0.015645, 0.016637]
Sweden 7496000 0.009813 0.015346 [ 0.015235, 0.015457]

The summary table above lets us make a quick inspection of the results within the study populations,
and the detail tables give the behavior among the strata within the study populations.

Example 2

We have individual-level data on persons in four cities over several years. Included in the data is
a variable indicating whether the person has high blood pressure, together with information on the
person’s age, sex, and race. We wish to obtain standardized high blood pressure rates for each city
for 1990 and 1992, using, as the standard, the age, sex, and race distribution of the four cities and
two years combined.
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Our dataset contains

. use http://www.stata-press.com/data/r12/hbp

. describe

Contains data from http://www.stata-press.com/data/r12/hbp.dta
obs: 1,130

vars: 7 21 Feb 2011 06:42
size: 19,210

storage display value
variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
sex byte %8.0g sexfmt
age_group byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte %8.0g yn high blood pressure

Sorted by:

The dstdize command is designed to work with aggregate data but will work with individual-
level data only if we create a variable recording the population represented by each observation. For
individual-level data, this is one:

. gen pop = 1

On the next page, we specify print to obtain a listing of the standard population and level(90)
to request 90% rather than 95% confidence intervals. Typing if year==1990 | year==1992 restricts
the data to the two years for both summary tables and the standard population.



dstdize — Direct and indirect standardization 441

. dstdize hbp pop age race sex if year==1990 | year==1992, by(city year) print
> level(90)

Standard Population
Stratum Pop. Dist.

15 - 19 Black Female 35 0.077
15 - 19 Black Male 44 0.097
15 - 19 Hispanic Female 5 0.011
15 - 19 Hispanic Male 10 0.022
15 - 19 White Female 7 0.015
15 - 19 White Male 5 0.011
20 - 24 Black Female 43 0.095
20 - 24 Black Male 67 0.147
20 - 24 Hispanic Female 14 0.031
20 - 24 Hispanic Male 13 0.029
20 - 24 White Female 4 0.009
20 - 24 White Male 21 0.046
25 - 29 Black Female 17 0.037
25 - 29 Black Male 44 0.097
25 - 29 Hispanic Female 7 0.015
25 - 29 Hispanic Male 13 0.029
25 - 29 White Female 9 0.020
25 - 29 White Male 16 0.035
30 - 34 Black Female 16 0.035
30 - 34 Black Male 32 0.070
30 - 34 Hispanic Female 2 0.004
30 - 34 Hispanic Male 3 0.007
30 - 34 White Female 5 0.011
30 - 34 White Male 23 0.051

Total: 455
(6 observations excluded because of missing values)

-> city year= 1 1990
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 6 2 0.128 0.3333 0.077 0.0256
15 - 19 Black Male 6 0 0.128 0.0000 0.097 0.0000
15 - 19 Hispanic Male 1 0 0.021 0.0000 0.022 0.0000
20 - 24 Black Female 3 0 0.064 0.0000 0.095 0.0000
20 - 24 Black Male 11 0 0.234 0.0000 0.147 0.0000
25 - 29 Black Female 4 0 0.085 0.0000 0.037 0.0000
25 - 29 Black Male 6 1 0.128 0.1667 0.097 0.0161
25 - 29 Hispanic Female 2 0 0.043 0.0000 0.015 0.0000
25 - 29 White Female 1 0 0.021 0.0000 0.020 0.0000
30 - 34 Black Female 1 0 0.021 0.0000 0.035 0.0000
30 - 34 Black Male 6 0 0.128 0.0000 0.070 0.0000

Totals: 47 3 Adjusted Cases: 2.0
Crude Rate: 0.0638

Adjusted Rate: 0.0418
90% Conf. Interval: [0.0074, 0.0761]



442 dstdize — Direct and indirect standardization

-> city year= 1 1992
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 3 0 0.054 0.0000 0.077 0.0000
15 - 19 Black Male 9 0 0.161 0.0000 0.097 0.0000
15 - 19 Hispanic Male 1 0 0.018 0.0000 0.022 0.0000
20 - 24 Black Female 7 0 0.125 0.0000 0.095 0.0000
20 - 24 Black Male 9 0 0.161 0.0000 0.147 0.0000
20 - 24 Hispanic Female 1 0 0.018 0.0000 0.031 0.0000
25 - 29 Black Female 2 0 0.036 0.0000 0.037 0.0000
25 - 29 Black Male 11 1 0.196 0.0909 0.097 0.0088
25 - 29 Hispanic Male 1 0 0.018 0.0000 0.029 0.0000
30 - 34 Black Female 7 0 0.125 0.0000 0.035 0.0000
30 - 34 Black Male 4 0 0.071 0.0000 0.070 0.0000
30 - 34 White Female 1 0 0.018 0.0000 0.011 0.0000

Totals: 56 1 Adjusted Cases: 0.5
Crude Rate: 0.0179

Adjusted Rate: 0.0088
90% Conf. Interval: [0.0000, 0.0226]

-> city year= 2 1990
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 5 0 0.078 0.0000 0.077 0.0000
15 - 19 Black Male 7 1 0.109 0.1429 0.097 0.0138
15 - 19 Hispanic Male 1 0 0.016 0.0000 0.022 0.0000
20 - 24 Black Female 7 1 0.109 0.1429 0.095 0.0135
20 - 24 Black Male 8 0 0.125 0.0000 0.147 0.0000
20 - 24 Hispanic Female 5 0 0.078 0.0000 0.031 0.0000
20 - 24 Hispanic Male 2 0 0.031 0.0000 0.029 0.0000
20 - 24 White Male 2 0 0.031 0.0000 0.046 0.0000
25 - 29 Black Female 3 0 0.047 0.0000 0.037 0.0000
25 - 29 Black Male 9 0 0.141 0.0000 0.097 0.0000
25 - 29 Hispanic Female 2 0 0.031 0.0000 0.015 0.0000
25 - 29 White Female 1 0 0.016 0.0000 0.020 0.0000
25 - 29 White Male 2 1 0.031 0.5000 0.035 0.0176
30 - 34 Black Female 1 0 0.016 0.0000 0.035 0.0000
30 - 34 Black Male 5 0 0.078 0.0000 0.070 0.0000
30 - 34 Hispanic Female 2 0 0.031 0.0000 0.004 0.0000
30 - 34 White Female 1 0 0.016 0.0000 0.011 0.0000
30 - 34 White Male 1 0 0.016 0.0000 0.051 0.0000

Totals: 64 3 Adjusted Cases: 2.9
Crude Rate: 0.0469

Adjusted Rate: 0.0449
90% Conf. Interval: [0.0091, 0.0807]
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-> city year= 2 1992
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 1 0 0.015 0.0000 0.077 0.0000
15 - 19 Black Male 5 0 0.075 0.0000 0.097 0.0000
15 - 19 Hispanic Female 3 0 0.045 0.0000 0.011 0.0000
15 - 19 Hispanic Male 1 0 0.015 0.0000 0.022 0.0000
15 - 19 White Male 1 0 0.015 0.0000 0.011 0.0000
20 - 24 Black Female 8 0 0.119 0.0000 0.095 0.0000
20 - 24 Black Male 11 0 0.164 0.0000 0.147 0.0000
20 - 24 Hispanic Female 6 0 0.090 0.0000 0.031 0.0000
20 - 24 Hispanic Male 4 2 0.060 0.5000 0.029 0.0143
20 - 24 White Female 1 0 0.015 0.0000 0.009 0.0000
20 - 24 White Male 2 0 0.030 0.0000 0.046 0.0000
25 - 29 Black Female 2 0 0.030 0.0000 0.037 0.0000
25 - 29 Black Male 3 0 0.045 0.0000 0.097 0.0000
25 - 29 Hispanic Female 2 0 0.030 0.0000 0.015 0.0000
25 - 29 Hispanic Male 4 0 0.060 0.0000 0.029 0.0000
25 - 29 White Female 4 0 0.060 0.0000 0.020 0.0000
25 - 29 White Male 2 0 0.030 0.0000 0.035 0.0000
30 - 34 Black Female 1 0 0.015 0.0000 0.035 0.0000
30 - 34 Black Male 2 0 0.030 0.0000 0.070 0.0000
30 - 34 Hispanic Male 1 0 0.015 0.0000 0.007 0.0000
30 - 34 White Female 2 0 0.030 0.0000 0.011 0.0000
30 - 34 White Male 1 0 0.015 0.0000 0.051 0.0000

Totals: 67 2 Adjusted Cases: 1.0
Crude Rate: 0.0299

Adjusted Rate: 0.0143
90% Conf. Interval: [0.0025, 0.0260]

-> city year= 3 1990
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 3 0 0.043 0.0000 0.077 0.0000
15 - 19 Black Male 1 0 0.014 0.0000 0.097 0.0000
15 - 19 Hispanic Female 1 0 0.014 0.0000 0.011 0.0000
15 - 19 White Female 3 0 0.043 0.0000 0.015 0.0000
15 - 19 White Male 1 0 0.014 0.0000 0.011 0.0000
20 - 24 Black Female 1 0 0.014 0.0000 0.095 0.0000
20 - 24 Black Male 9 0 0.130 0.0000 0.147 0.0000
20 - 24 Hispanic Male 3 0 0.043 0.0000 0.029 0.0000
20 - 24 White Female 2 0 0.029 0.0000 0.009 0.0000
20 - 24 White Male 8 1 0.116 0.1250 0.046 0.0058
25 - 29 Black Female 1 0 0.014 0.0000 0.037 0.0000
25 - 29 Black Male 8 3 0.116 0.3750 0.097 0.0363
25 - 29 Hispanic Male 4 0 0.058 0.0000 0.029 0.0000
25 - 29 White Female 1 0 0.014 0.0000 0.020 0.0000
25 - 29 White Male 6 0 0.087 0.0000 0.035 0.0000
30 - 34 Black Male 6 2 0.087 0.3333 0.070 0.0234
30 - 34 White Male 11 5 0.159 0.4545 0.051 0.0230

Totals: 69 11 Adjusted Cases: 6.1
Crude Rate: 0.1594

Adjusted Rate: 0.0885
90% Conf. Interval: [0.0501, 0.1268]
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-> city year= 3 1992
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 2 0 0.054 0.0000 0.077 0.0000
15 - 19 Hispanic Male 3 0 0.081 0.0000 0.022 0.0000
15 - 19 White Female 2 0 0.054 0.0000 0.015 0.0000
15 - 19 White Male 1 0 0.027 0.0000 0.011 0.0000
20 - 24 Black Male 3 0 0.081 0.0000 0.147 0.0000
20 - 24 Hispanic Female 1 0 0.027 0.0000 0.031 0.0000
20 - 24 Hispanic Male 3 0 0.081 0.0000 0.029 0.0000
20 - 24 White Female 1 0 0.027 0.0000 0.009 0.0000
20 - 24 White Male 6 1 0.162 0.1667 0.046 0.0077
25 - 29 Hispanic Male 1 0 0.027 0.0000 0.029 0.0000
25 - 29 White Male 5 1 0.135 0.2000 0.035 0.0070
30 - 34 Black Male 1 0 0.027 0.0000 0.070 0.0000
30 - 34 White Male 8 5 0.216 0.6250 0.051 0.0316

Totals: 37 7 Adjusted Cases: 1.7
Crude Rate: 0.1892

Adjusted Rate: 0.0463
90% Conf. Interval: [0.0253, 0.0674]

-> city year= 5 1990
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 9 0 0.196 0.0000 0.077 0.0000
15 - 19 Black Male 7 0 0.152 0.0000 0.097 0.0000
15 - 19 Hispanic Male 1 0 0.022 0.0000 0.022 0.0000
15 - 19 White Male 1 0 0.022 0.0000 0.011 0.0000
20 - 24 Black Female 4 0 0.087 0.0000 0.095 0.0000
20 - 24 Black Male 6 0 0.130 0.0000 0.147 0.0000
20 - 24 Hispanic Female 1 0 0.022 0.0000 0.031 0.0000
25 - 29 Black Female 3 1 0.065 0.3333 0.037 0.0125
25 - 29 Black Male 5 0 0.109 0.0000 0.097 0.0000
25 - 29 Hispanic Female 1 0 0.022 0.0000 0.015 0.0000
25 - 29 White Female 2 1 0.043 0.5000 0.020 0.0099
30 - 34 Black Female 2 0 0.043 0.0000 0.035 0.0000
30 - 34 Black Male 3 0 0.065 0.0000 0.070 0.0000
30 - 34 White Male 1 0 0.022 0.0000 0.051 0.0000

Totals: 46 2 Adjusted Cases: 1.0
Crude Rate: 0.0435

Adjusted Rate: 0.0223
90% Conf. Interval: [0.0020, 0.0426]
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-> city year= 5 1992
Unadjusted Std.

Pop. Stratum Pop.
Stratum Pop. Cases Dist. Rate[s] Dst[P] s*P

15 - 19 Black Female 6 0 0.087 0.0000 0.077 0.0000
15 - 19 Black Male 9 0 0.130 0.0000 0.097 0.0000
15 - 19 Hispanic Female 1 0 0.014 0.0000 0.011 0.0000
15 - 19 Hispanic Male 2 0 0.029 0.0000 0.022 0.0000
15 - 19 White Female 2 0 0.029 0.0000 0.015 0.0000
15 - 19 White Male 1 0 0.014 0.0000 0.011 0.0000
20 - 24 Black Female 13 0 0.188 0.0000 0.095 0.0000
20 - 24 Black Male 10 0 0.145 0.0000 0.147 0.0000
20 - 24 Hispanic Male 1 0 0.014 0.0000 0.029 0.0000
20 - 24 White Male 3 0 0.043 0.0000 0.046 0.0000
25 - 29 Black Female 2 0 0.029 0.0000 0.037 0.0000
25 - 29 Black Male 2 0 0.029 0.0000 0.097 0.0000
25 - 29 Hispanic Male 3 0 0.043 0.0000 0.029 0.0000
25 - 29 White Male 1 0 0.014 0.0000 0.035 0.0000
30 - 34 Black Female 4 0 0.058 0.0000 0.035 0.0000
30 - 34 Black Male 5 0 0.072 0.0000 0.070 0.0000
30 - 34 Hispanic Male 2 0 0.029 0.0000 0.007 0.0000
30 - 34 White Female 1 0 0.014 0.0000 0.011 0.0000
30 - 34 White Male 1 1 0.014 1.0000 0.051 0.0505

Totals: 69 1 Adjusted Cases: 3.5
Crude Rate: 0.0145

Adjusted Rate: 0.0505
90% Conf. Interval: [0.0505, 0.0505]

Summary of Study Populations:
city
year N Crude Adj_Rate Confidence Interval

1
1990 47 0.063830 0.041758 [ 0.007427, 0.076089]

1
1992 56 0.017857 0.008791 [ 0.000000, 0.022579]

2
1990 64 0.046875 0.044898 [ 0.009072, 0.080724]

2
1992 67 0.029851 0.014286 [ 0.002537, 0.026035]

3
1990 69 0.159420 0.088453 [ 0.050093, 0.126813]

3
1992 37 0.189189 0.046319 [ 0.025271, 0.067366]

5
1990 46 0.043478 0.022344 [ 0.002044, 0.042644]

5
1992 69 0.014493 0.050549 [ 0.050549, 0.050549]
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Indirect standardization

Standardization of rates can be performed via the indirect method whenever the stratum-specific
rates are either unknown or unreliable. If the stratum-specific rates are known, the direct standardization
method is preferred.

To apply the indirect method, you must have the following information:

• The observed number of cases in each population to be standardized, O. For example, if death
rates in two states are being standardized using the U.S. death rate for the same period, you must
know the total number of deaths in each state.

• The distribution across the various strata for the population being studied, n1, . . . , nk. If you are
standardizing the death rate in the two states, adjusting for age, you must know the number of
individuals in each of the k age groups.

• The stratum-specific rates for the standard population, p1, . . . , pk. For example, you must have
the U.S. death rate for each stratum (age group).

• The crude rate of the standard population, C. For example, you must have the U.S. mortality rate
for the year.

The indirect adjusted rate is then

Rindirect = C
O

E

where E is the expected number of cases (deaths) in each population. See Methods and formulas for
a more detailed description of calculations.

Example 3

This example is borrowed from Kahn and Sempos (1989, 95–105). We want to compare 1970
mortality rates in California and Maine, adjusting for age. Although we have age-specific population
counts for the two states, we lack age-specific death rates. Direct standardization is not feasible here.
We can use the U.S. population census data for the same year to produce indirectly standardized rates
for these two states.

From the U.S. census, the standard population for this example was entered into Stata and saved
in popkahn.dta.

. use http://www.stata-press.com/data/r12/popkahn, clear

. list age pop deaths rate, sep(4)

age population deaths rate

1. <15 57,900,000 103,062 .00178
2. 15-24 35,441,000 45,261 .00128
3. 25-34 24,907,000 39,193 .00157
4. 35-44 23,088,000 72,617 .00315

5. 45-54 23,220,000 169,517 .0073
6. 55-64 18,590,000 308,373 .01659
7. 65-74 12,436,000 445,531 .03583
8. 75+ 7,630,000 736,758 .09656
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The standard population contains for each age stratum the total number of individuals (pop) and
both the age-specific mortality rate (rate) and the number of deaths. The standard population need
not contain all three. If we have only the age-specific mortality rate, we can use the rate(ratevarp
crudevarp) or rate(ratevarp #) option, where crudevarp refers to the variable containing the total
population’s crude death rate or # is the total population’s crude death rate.

Now let’s look at the states’ data (study population):

. use http://www.stata-press.com/data/r12/kahn

. list, sep(4)

state age populat~n death st death_~e

1. California <15 5,524,000 166,285 1 .0016
2. California 15-24 3,558,000 166,285 1 .0013
3. California 25-34 2,677,000 166,285 1 .0015
4. California 35-44 2,359,000 166,285 1 .0028

5. California 45-54 2,330,000 166,285 1 .0067
6. California 55-64 1,704,000 166,285 1 .0154
7. California 65-74 1,105,000 166,285 1 .0328
8. California 75+ 696,000 166,285 1 .0917

9. Maine <15 286,000 11,051 2 .0019
10. Maine 15-24 168,000 . 2 .0011
11. Maine 25-34 110,000 . 2 .0014
12. Maine 35-44 109,000 . 2 .0029

13. Maine 45-54 110,000 . 2 .0069
14. Maine 55-64 94,000 . 2 .0173
15. Maine 65-74 69,000 . 2 .039
16. Maine 75+ 46,000 . 2 .1041

For each state, the number of individuals in each stratum (age group) is contained in the pop variable.
The death variable is the total number of deaths observed in the state during the year. It must have
the same value for all observations in the group, as for California, or it could be missing in all but
one observation per group, as for Maine.

To match these two datasets, the strata variables must have the same name in both datasets and
ideally the same levels. If a level is missing from either dataset, that level will not be included in the
standardization.

With kahn.dta in memory, we now execute the command. We will use the print option to
obtain the standard population’s summary table, and because we have both the standard population’s
age-specific count and deaths, we will specify the popvars(casevarp popvarp) option. Or, we could
specify the rate(rate 0.00945) option because we know that 0.00945 is the U.S. crude death rate
for 1970.
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. istdize death pop age using http://www.stata-press.com/data/r12/popkahn,
> by(state) pop(deaths pop) print

Standard Population
Stratum Rate

<15 0.00178
15-24 0.00128
25-34 0.00157
35-44 0.00315
45-54 0.00730
55-64 0.01659
65-74 0.03583

75+ 0.09656

Standard population’s crude rate: 0.00945

-> state= California
Indirect Standardization
Standard

Population Observed Cases
Stratum Rate Population Expected

<15 0.0018 5524000 9832.72
15-24 0.0013 3558000 4543.85
25-34 0.0016 2677000 4212.46
35-44 0.0031 2359000 7419.59
45-54 0.0073 2330000 17010.10
55-64 0.0166 1704000 28266.14
65-74 0.0358 1105000 39587.63

75+ 0.0966 696000 67206.23

Totals: 19953000 178078.73

Observed Cases: 166285
SMR (Obs/Exp): 0.93

SMR exact 95% Conf. Interval: [0.9293, 0.9383]
Crude Rate: 0.0083

Adjusted Rate: 0.0088
95% Conf. Interval: [0.0088, 0.0089]

-> state= Maine
Indirect Standardization
Standard

Population Observed Cases
Stratum Rate Population Expected

<15 0.0018 286000 509.08
15-24 0.0013 168000 214.55
25-34 0.0016 110000 173.09
35-44 0.0031 109000 342.83
45-54 0.0073 110000 803.05
55-64 0.0166 94000 1559.28
65-74 0.0358 69000 2471.99

75+ 0.0966 46000 4441.79

Totals: 992000 10515.67

Observed Cases: 11051
SMR (Obs/Exp): 1.05

SMR exact 95% Conf. Interval: [1.0314, 1.0707]
Crude Rate: 0.0111

Adjusted Rate: 0.0099
95% Conf. Interval: [0.0097, 0.0101]
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Summary of Study Populations (Rates):

Cases
state Observed Crude Adj_Rate Confidence Interval

California 166285 0.008334 0.008824 [0.008782, 0.008866]
Maine 11051 0.011140 0.009931 [0.009747, 0.010118]

Summary of Study Populations (SMR):

Cases Cases Exact
state Observed Expected SMR Confidence Interval

California 166285 178078.73 0.934 [0.929290, 0.938271]
Maine 11051 10515.67 1.051 [1.031405, 1.070688]

Saved results
dstdize saves the following in r():
Scalars

r(k) number of populations
Macros

r(by) variable names specified in by()
r(c#) values of r(by) for #th group

Matrices
r(se) standard errors of adjusted rates
r(ub) upper bounds of confidence intervals for adjusted rates
r(lb) lower bounds of confidence intervals for adjusted rates
r(Nobs) 1×k vector of number of observations
r(crude) 1×k vector of crude rates (*)
r(adj) 1×k vector of adjusted rates (*)

(*) If, in a group, the number of observations is 0, then 9 is stored for the corresponding crude and adjusted rates.

Methods and formulas
dstdize and istdize are implemented as ado-files.

The directly standardized rate, SR, is defined by

SR =

k∑
i=1

wiRi

k∑
i=1

wi

(Rothman 1986, 44), where Ri is the stratum-specific rate in stratum i and wi is the weight for
stratum i derived from the standard population.

If ni is the population of stratum i, the standard error, se(SR), in stratified sampling for proportions
(ignoring the finite population correction) is

se(SR) =
1∑
wi

√√√√ k∑
i=1

wi2Ri(1−Ri)
ni

(Cochran 1977, 108), from which the confidence intervals are calculated.
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For indirect standardization, define O as the observed number of cases in each population to be
standardized; n1, . . . , nk as the distribution across the various strata for the population being studied;
R1, . . . , Rk as the stratum-specific rates for the standard population; and C as the crude rate of the
standard population. The expected number of cases (deaths), E, in each population is obtained by
applying the standard population stratum-specific rates, R1, . . . , Rk, to the study populations:

E =
k∑
i=1

niRi

The indirectly adjusted rate is then

Rindirect = C
O

E

and O/E is the study population’s SMR if death is the event of interest or the SIR for studies of
disease (or other) incidence.

The exact confidence interval is calculated for each estimated SMR by assuming a Poisson process
as described in Breslow and Day (1987, 69–71). These intervals are obtained by first calculating
the upper and lower bounds for the confidence interval of the Poisson-distributed observed events,
O—say, L and U, respectively—and then computing SMRL = L/E and SMRU = U/E.
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Title

dydx — Calculate numeric derivatives and integrals

Syntax

Derivatives of numeric functions

dydx yvar xvar
[

if
] [

in
]
, generate(newvar)

[
dydx options

]
Integrals of numeric functions

integ yvar xvar
[

if
] [

in
] [

, integ options
]

dydx options Description

Main
∗generate(newvar) create variable named newvar
replace overwrite the existing variable

∗generate(newvar) is required.

integ options Description

Main

generate(newvar) create variable named newvar
trapezoid use trapezoidal rule to compute integrals; default is cubic splines
initial(#) initial value of integral; default is initial(0)

replace overwrite the existing variable

by is allowed with dydx and integ; see [D] by.

Menu
dydx

Data > Create or change data > Other variable-creation commands > Calculate numerical derivatives

integ

Data > Create or change data > Other variable-creation commands > Calculate numeric integrals

Description
dydx and integ calculate derivatives and integrals of numeric “functions”.

452
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Options

� � �
Main �

generate(newvar) specifies the name of the new variable to be created. It must be specified with
dydx.

trapezoid requests that the trapezoidal rule [the sum of (xi − xi−1)(yi + yi−1)/2
]

be used to
compute integrals. The default is cubic splines, which give superior results for most smooth
functions; for irregular functions, trapezoid may give better results.

initial(#) specifies the initial condition for calculating definite integrals; see Methods and formulas
below. The default is initial(0).

replace specifies that if an existing variable is specified for generate(), it should be overwritten.

Remarks
dydx and integ lets you extend Stata’s graphics capabilities beyond data analysis and into

mathematics. (See Gould [1993] for another command that draws functions.)

Example 1

We graph y = e−x/6sin(x) over the interval [ 0, 12.56 ]:

. range x 0 12.56 100
obs was 0, now 100

. generate y = exp(-x/6)*sin(x)

. label variable y "exp(-x/6)*sin(x)"

. twoway connected y x, connect(i) yline(0)
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We estimate the derivative by using dydx and compute the relative difference between this estimate
and the true derivative.

. dydx y x, gen(dy)

. generate dytrue = exp(-x/6)*(cos(x) - sin(x)/6)

. generate error = abs(dy - dytrue)/dytrue
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The error is greatest at the endpoints, as we would expect. The error is approximately 0.5% at each
endpoint, but the error quickly falls to less than 0.01%.

. label variable error "Error in derivative estimate"

. twoway line error x, ylabel(0(.002).006)
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We now estimate the integral by using integ:

. integ y x, gen(iy)

number of points = 100

integral = .85316396

. generate iytrue = (36/37)*(1 - exp(-x/6)*(cos(x) + sin(x)/6))

. display iytrue[_N]

.85315901

. display abs(r(integral) - iytrue[_N])/iytrue[_N]
5.799e-06

. generate diff = iy - iytrue

The relative difference between the estimate [stored in r(integral)] and the true value of the
integral is about 6× 10−6. A graph of the absolute difference (diff) is shown below. Here error is
cumulative. Again most of the error is due to a relatively poorer fit near the endpoints.

. label variable diff "Error in integral estimate"

. twoway line diff x, ylabel(0(5.00e-06).00001)
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Saved results
dydx saves the following in r():

Macros
r(y) name of yvar

integ saves the following in r():

Scalars
r(N points) number of unique x points
r(integral) estimate of the integral

Methods and formulas
dydx and integ are implemented as ado-files.

Consider a set of data points, (x1, y1), . . . , (xn, yn), generated by a function y = f(x). dydx and
integ first fit these points with a cubic spline, which is then analytically differentiated (integrated)
to give an approximation for the derivative (integral) of f .

The cubic spline (see, for example, Press et al. [2007]) consists of n− 1 cubic polynomials Pi(x),
with the ith one defined on the interval [xi, xi+1],

Pi(x) = yiai(x) + yi+1bi(x) + y′′i ci(x) + y′′i+1di(x)
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where

ai(x) =
xi+1 − x
xi+1 − xi

ci(x) =
1
6

(xi+1 − xi)2ai(x)[{ai(x)}2 − 1]

bi(x) =
x− xi

xi+1 − xi

di(x) =
1
6

(xi+1 − xi)2bi(x)[{bi(x)}2 − 1]

and y′′i and y′′i+1 are constants whose values will be determined as described below. The notation for
these constants is justified because P ′′i (xi) = y′′i and P ′′i (xi+1) = y′′i+1.

Because ai(xi) = 1, ai(xi+1) = 0, bi(xi) = 0, and bi(xi+1) = 1. Therefore, Pi(xi) = yi, and
Pi(xi+1) = yi+1. Thus the Pi jointly define a function that is continuous at the interval boundaries.
The first derivative should be continuous at the interval boundaries; that is,

P ′i (xi+1) = P ′i+1(xi+1)

The above n− 2 equations (one equation for each point except the two endpoints) and the values of
the first derivative at the endpoints, P ′1(x1) and P ′n−1(xn), determine the n constants y′′i .

The value of the first derivative at an endpoint is set to the value of the derivative obtained by
fitting a quadratic to the endpoint and the two adjacent points; namely, we use

P ′1(x1) =
y1 − y2

x1 − x2
+
y1 − y3

x1 − x3
− y2 − y3

x2 − x3

and a similar formula for the upper endpoint.

dydx approximates f ′(xi) by using P ′i (xi).

integ approximates F (xi) = F (x1) +
∫ xi
x1

f(x) dx by using

I0 +
i−1∑
k=1

∫ xk+1

xk

Pk(x) dx

where I0 (an estimate of F (x1)) is the value specified by the initial(#) option. If the trapezoid
option is specified, integ approximates the integral by using the trapezoidal rule:

I0 +
i−1∑
k=1

1
2

(xk+1 − xk)(yk+1 + yk)

If there are ties among the xi, the mean of yi is computed at each set of ties and the cubic spline
is fit to these values.
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Also see
[D] obs — Increase the number of observations in a dataset

[D] range — Generate numerical range
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Title

eform option — Displaying exponentiated coefficients

Description
An eform option causes the coefficient table to be displayed in exponentiated form: for each

coefficient, eb rather than b is displayed. Standard errors and confidence intervals (CIs) are also
transformed.

An eform option is one of the following:

eform option Description

eform(string) use string for the column title

eform exponentiated coefficient, string is exp(b)

hr hazard ratio, string is Haz. Ratio

shr subhazard ratio, string is SHR

irr incidence-rate ratio, string is IRR

or odds ratio, string is Odds Ratio

rrr relative-risk ratio, string is RRR

Remarks

Example 1

Here is a simple example of the or option with svy: logit. The CI for the odds ratio is computed
by transforming (by exponentiating) the endpoints of the CI for the corresponding coefficient.

. use http://www.stata-press.com/data/r12/nhanes2d

. svy, or: logit highbp female black
(running logit on estimation sample)

(output omitted )

Linearized
highbp Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]

female .693628 .048676 -5.21 0.000 .6011298 .8003593
black 1.509156 .2089571 2.97 0.006 1.137873 2.001588
_cons .1350642 .0107783 -25.09 0.000 .1147774 .1589367

We also could have specified the following command and received the same results as above:

. svy: logit highbp female black, or

Also see
[R] ml — Maximum likelihood estimation
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eivreg — Errors-in-variables regression

Syntax
eivreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

reliab(indepvar #
[

indepvar #
[
. . .
] ]

)

specify measurement reliability for each indepvar measured with error

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Errors-in-variables regression

Description
eivreg fits errors-in-variables regression models.

Options

� � �
Model �

reliab(indepvar #
[

indepvar #
[
. . .
] ]
) specifies the measurement reliability for each independent

variable measured with error. Reliabilities are specified as pairs consisting of an independent
variable name (a name that appears in indepvars) and the corresponding reliability r, 0 < r ≤ 1.
Independent variables for which no reliability is specified are assumed to have reliability 1. If the
option is not specified, all variables are assumed to have reliability 1, and the result is thus the
same as that produced by regress (the ordinary least-squares results).
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� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with eivreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
For an introduction to errors-in-variables regression, see Draper and Smith (1998, 89–91) or

Kmenta (1997, 352–357). Treiman (2009, 258–261) compares the results of errors-in-variables re-
gression with conventional regression.

Errors-in-variables regression models are useful when one or more of the independent variables are
measured with additive noise. Standard regression (as performed by regress) would underestimate
the effect of the variable, and the other coefficients in the model can be biased to the extent that
they are correlated with the poorly measured variable. You can adjust for the biases if you know the
reliability:

r = 1− noise variance
total variance

That is, given the model y = Xβ + u, for some variable xi in X, the xi is observed with error,
xi = x∗i + e, and the noise variance is the variance of e. The total variance is the variance of xi.

Example 1

Say that in our automobile data, the weight of cars was measured with error, and the reliability
of our measured weight is 0.85. The result of this would be to underestimate the effect of weight
in a regression of, say, price on weight and foreign, and it would also bias the estimate of the
coefficient on foreign (because being of foreign manufacture is correlated with the weight of cars).
We would ignore all of this if we fit the model with regress:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress price weight foreign

Source SS df MS Number of obs = 74
F( 2, 71) = 35.35

Model 316859273 2 158429637 Prob > F = 0.0000
Residual 318206123 71 4481776.38 R-squared = 0.4989

Adj R-squared = 0.4848
Total 635065396 73 8699525.97 Root MSE = 2117

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.320737 .3958784 8.39 0.000 2.531378 4.110096
foreign 3637.001 668.583 5.44 0.000 2303.885 4970.118

_cons -4942.844 1345.591 -3.67 0.000 -7625.876 -2259.812
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With eivreg, we can account for our measurement error:

. eivreg price weight foreign, r(weight .85)

assumed Errors-in-variables regression
variable reliability

Number of obs = 74
weight 0.8500 F( 2, 71) = 50.37

* 1.0000 Prob > F = 0.0000
R-squared = 0.6483
Root MSE = 1773.54

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 4.31985 .431431 10.01 0.000 3.459601 5.180099
foreign 4637.32 624.5362 7.43 0.000 3392.03 5882.609

_cons -8257.017 1452.086 -5.69 0.000 -11152.39 -5361.639

The effect of weight is increased—as we knew it would be—and here the effect of foreign manufacture
is also increased. A priori, we knew only that the estimate of foreign might be biased; we did not
know the direction.

Technical note
Swept under the rug in our example is how we would determine the reliability, r. We can easily

see that a variable is measured with error, but we may not know the reliability because the ingredients
for calculating r depend on the unobserved noise.

For our example, we made up a value for r, and in fact we do not believe that weight is measured
with error at all, so the reported eivreg results have no validity. The regress results were the
statistically correct results here.

But let’s say that we do suspect that weight is measured with error and that we do not know r.
We could then experiment with various values of r to describe the sensitivity of our estimates to
possible error levels. We may not know r, but r does have a simple interpretation, and we could
probably produce a sensible range for r by thinking about how the data were collected.

If the reliability, r, is less than the R2 from a regression of the poorly measured variable on all
the other variables, including the dependent variable, the information might as well not have been
collected; no adjustment to the final results is possible. For our automobile data, running a regression
of weight on foreign and price would result in an R2 of 0.6743. Thus the reliability must be at
least 0.6743 here. If we specify a reliability that is too small, eivreg will inform us and refuse to
fit the model:

. eivreg price weight foreign, r(weight .6742)
reliability r() too small
r(399);

Returning to our problem of how to estimate r, too small or not, if the measurements are summaries
of scaled items, the reliability may be estimated using the alpha command; see [R] alpha. If the
score is computed from factor analysis and the data are scored using predict’s default options (see
[MV] factor postestimation), the square of the standard deviation of the score is an estimate of the
reliability.
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Technical note
Consider a model with more than one variable measured with error. For instance, say that our

model is that price is a function of weight, foreign, and mpg and that both weight and mpg are
measured with error.

. eivreg price weight foreign mpg, r(weight .85 mpg .9)

assumed Errors-in-variables regression
variable reliability

Number of obs = 74
weight 0.8500 F( 3, 70) = 429.14

mpg 0.9000 Prob > F = 0.0000
* 1.0000 R-squared = 0.9728

Root MSE = 496.41

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 12.88302 .6820532 18.89 0.000 11.52271 14.24333
foreign 8268.951 352.8719 23.43 0.000 7565.17 8972.732

mpg 999.2043 73.60037 13.58 0.000 852.413 1145.996
_cons -56473.19 3710.015 -15.22 0.000 -63872.58 -49073.8

Saved results
eivreg saves the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(r2) R-squared
e(F) F statistic
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) eivreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(rellist) indepvars and associated reliabilities
e(wtype) weight type
e(wexp) weight expression
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
eivreg is implemented as an ado-file.

Let the model to be fit be
y = X∗β+ e

X = X∗ + U

where X∗ are the true values and X are the observed values. Let W be the user-specified weights. If
no weights are specified, W = I. If weights are specified, let v be the specified weights. If fweight
frequency weights are specified, then W = diag(v). If aweight analytic weights are specified,
then W = diag{v/(1′v)(1′1)}, meaning that the weights are normalized to sum to the number of
observations.

The estimates b of β are obtained as A−1X′Wy, where A = X′WX − S. S is a diagonal
matrix with elements N(1−ri)s2

i . N is the number of observations, ri is the user-specified reliability
coefficient for the ith explanatory variable or 1 if not specified, and s2

i is the (appropriately weighted)
variance of the variable.

The variance–covariance matrix of the estimators is obtained as s2A−1X′WXA−1, where the
root mean squared error s2 = (y′Wy − bAb′)/(N − p), where p is the number of estimated
parameters.

References
Draper, N., and H. Smith. 1998. Applied Regression Analysis. 3rd ed. New York: Wiley.
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Title

eivreg postestimation — Postestimation tools for eivreg

Description
The following postestimation commands are available after eivreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, yj − xjb.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation and is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] eivreg — Errors-in-variables regression

[U] 20 Estimation and postestimation commands



Title

error messages — Error messages and return codes

Description
Whenever Stata detects that something is wrong—that what you typed is uninterpretable, that you

are trying to do something you should not be trying to do, or that you requested the impossible—Stata
responds by typing a message describing the problem, together with a return code. For instance,

. lsit
unrecognized command: lsit
r(199);

. list myvar
variable myvar not found
r(111);

. test a=b
last estimates not found
r(301);

In each case, the message is probably sufficient to guide you to a solution. When we typed
lsit, Stata responded with “unrecognized command”. We meant to type list. When we typed
list myvar, Stata responded with “variable myvar not found”. There is no variable named myvar
in our data. When we typed test a=b, Stata responded with “last estimates not found”. test tests
hypotheses about previously fit models, and we have not yet fit a model.

The numbers in parentheses in the r(199), r(111), and r(301) messages are called the return
codes. To find out more about these messages, type search rc #, where # is the number returned
in the parentheses.

Example 1

. search rc 301

[P] error messages . . . . . . . . . . . . . . . . . . . . Return code 301
last estimates not found;
You typed an estimation command such as regress without arguments
or attempted to perform a test or typed predict, but there were no
previous estimation results.

Programmers should see [P] error for details on programming error messages.

Also see
[R] search — Search Stata documentation
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estat — Postestimation statistics

Syntax
Common subcommands

Display information criteria

estat ic
[
, n(#)

]
Summarize estimation sample

estat summarize
[

eqlist
] [

, estat summ options
]

Display covariance matrix estimates

estat vce
[
, estat vce options

]
Command-specific subcommands

estat subcommand1

[
, options1

]
estat subcommand2

[
, options2

]
. . .

estat summ options Description

equation display summary by equation
group display summary by group; only after sem
labels display variable labels
noheader suppress the header
noweights ignore weights
display options control spacing and display of omitted variables and base and

empty cells

eqlist is rarely used and specifies the variables, with optional equation name, to be summarized. eqlist may be
varlist or (eqname1: varlist) (eqname2: varlist) . . . . varlist may contain time-series operators; see
[U] 11.4.4 Time-series varlists.

estat vce options Description

covariance display as covariance matrix; the default
correlation display as correlation matrix
equation(spec) display only specified equations
block display submatrices by equation
diag display submatrices by equation; diagonal blocks only
format(% fmt) display format for covariances and correlations
nolines suppress lines between equations
display options control display of omitted variables and base and empty cells

467



468 estat — Postestimation statistics

Menu
Statistics > Postestimation > Reports and statistics

Description

estat displays scalar- and matrix-valued statistics after estimation; it complements predict,
which calculates variables after estimation. Exactly what statistics estat can calculate depends on
the previous estimation command.

Three sets of statistics are so commonly used that they are available after all estimation commands
that store the model log likelihood. estat ic displays Akaike’s and Schwarz’s Bayesian information
criteria. estat summarize summarizes the variables used by the command and automatically restricts
the sample to e(sample); it also summarizes the weight variable and cluster structure, if specified.
estat vce displays the covariance or correlation matrix of the parameter estimates of the previous
model.

Option for estat ic

n(#) specifies the N to be used in calculating BIC; see [R] BIC note.

Options for estat summarize
equation requests that the dependent variables and the independent variables in the equations be

displayed in the equation-style format of estimation commands, repeating the summary information
about variables entered in more than one equation.

group displays summary information separately for each group. group is only allowed after sem
with a group() variable specified.

labels displays variable labels.

noheader suppresses the header.

noweights ignores the weights, if any, from the previous estimation command. The default when
weights are present is to perform a weighted summarize on all variables except the weight variable
itself. An unweighted summarize is performed on the weight variable.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels; see [R] es-
timation options.

Options for estat vce
covariance displays the matrix as a variance–covariance matrix; this is the default.

correlation displays the matrix as a correlation matrix rather than a variance–covariance matrix.
rho is a synonym.

equation(spec) selects part of the VCE to be displayed. If spec is eqlist, the VCE for the listed
equations is displayed. If spec is eqlist1 \ eqlist2, the part of the VCE associated with the equations
in eqlist1 (rowwise) and eqlist2 (columnwise) is displayed. If spec is *, all equations are displayed.
equation() implies block if diag is not specified.

block displays the submatrices pertaining to distinct equations separately.
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diag displays the diagonal submatrices pertaining to distinct equations separately.

format(% fmt) specifies the number format for displaying the elements of the matrix. The default is
format(%10.0g) for covariances and format(%8.4f) for correlations. See [U] 12.5 Formats:
Controlling how data are displayed for more information.

nolines suppresses lines between equations.

display options: noomitted, noemptycells, baselevels, allbaselevels; see [R] estimation
options.

Remarks
estat displays a variety of scalar- and matrix-valued statistics after you have estimated the

parameters of a model. Exactly what statistics estat can calculate depends on the estimation
command used, and command-specific statistics are detailed in that command’s postestimation manual
entry. The rest of this entry discusses three sets of statistics that are available after all estimation
commands.

Remarks are presented under the following headings:

estat ic
estat summarize
estat vce

estat ic

estat ic calculates two information criteria used to compare models. Unlike likelihood-ratio,
Wald, and similar testing procedures, the models need not be nested to compare the information
criteria. Because they are based on the log-likelihood function, information criteria are available only
after commands that report the log likelihood.

In general, “smaller is better”: given two models, the one with the smaller AIC fits the data better
than the one with the larger AIC. As with the AIC, a smaller BIC indicates a better-fitting model. For
AIC and BIC formulas, see Methods and formulas.

Example 1

In [R] mlogit, we fit a model explaining the type of insurance a person has on the basis of age,
gender, race, and site of study. Here we refit the model with and without the site dummies and
compare the models.

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mlogit insure age male nonwhite
(output omitted )

. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 615 -555.8545 -545.5833 8 1107.167 1142.54

Note: N=Obs used in calculating BIC; see [R] BIC note

. mlogit insure age male nonwhite i.site
(output omitted )
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. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 615 -555.8545 -534.3616 12 1092.723 1145.783

Note: N=Obs used in calculating BIC; see [R] BIC note

The AIC indicates that the model including the site dummies fits the data better, whereas the BIC
indicates the opposite. As is often the case, different model-selection criteria have led to conflicting
conclusions.

Technical note
glm and binreg, ml report a slightly different version of AIC and BIC; see [R] glm for the

formulas used. That version is commonly used within the GLM literature; see, for example, Hardin
and Hilbe (2007). The literature on information criteria is vast; see, among others, Akaike (1973),
Sawa (1978), and Raftery (1995). Judge et al. (1985) contains a discussion of using information criteria
in econometrics. Royston and Sauerbrei (2008, chap. 2) examine the use of information criteria as
an alternative to stepwise procedures for selecting model variables.

estat summarize
Often when fitting a model, you will also be interested in obtaining summary statistics, such as

the sample means and standard deviations of the variables in the model. estat summarize makes
this process simple. The output displayed is similar to that obtained by typing

. summarize varlist if e(sample)

without the need to type the varlist containing the dependent and independent variables.

Example 2

Continuing with the previous multinomial logit model, here we summarize the variables by using
estat summarize.

. estat summarize, noomitted

Estimation sample mlogit Number of obs = 615

Variable Mean Std. Dev. Min Max

insure 1.596748 .6225846 1 3

age 44.46832 14.18523 18.1109 86.0725
male .2504065 .4335998 0 1

nonwhite .196748 .3978638 0 1

site
2 .3707317 .4833939 0 1
3 .3138211 .4644224 0 1
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The output in the previous example contains all the variables in one table, though mlogit presents
its results in a multiple-equation format. For models in which the same variables appear in all
equations, that is fine; but for other multiple-equation models, we may prefer to have the variables
separated by the equation in which they appear. The equation option makes this possible.

Example 3

Systems of simultaneous equations typically have different variables in each equation, and the
equation option of estat summarize is helpful in such situations. In example 2 of [R] reg3, we
have a model of supply and demand. We first refit the model and then call estat summarize.

. use http://www.stata-press.com/data/r12/supDem

. reg3 (Demand:quantity price pcompete income) (Supply:quantity price praw),
> endog(price)

(output omitted )
. estat summarize, equation

Estimation sample reg3 Number of obs = 49

Variable Mean Std. Dev. Min Max

depvar
quantity 12.61818 2.774952 7.71069 20.0477
quantity 12.61818 2.774952 7.71069 20.0477

Demand
price 32.70944 2.882684 26.3819 38.4769

pcompete 5.929975 3.508264 .207647 11.5549
income 7.811735 4.18859 .570417 14.0077

Supply
price 32.70944 2.882684 26.3819 38.4769
praw 4.740891 2.962565 .151028 9.79881

The first block of the table contains statistics on the dependent (or, more accurately, left-hand-side)
variables, and because we specified quantity as the left-hand-side variable in both equations, it is
listed twice. The second block refers to the variables in the first equation we specified, which we
labeled “Demand” in our call to reg3; and the final block refers to the supply equation.

estat vce
estat vce allows you to display the VCE of the parameters of the previously fit model, as either

a covariance matrix or a correlation matrix.
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Example 4

Returning to the mlogit example, we type

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mlogit insure age male nonwhite, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(6) = 20.54
Prob > chi2 = 0.0022

Log likelihood = -545.58328 Pseudo R2 = 0.0185

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0111915 .0060915 -1.84 0.066 -.0231305 .0007475

male .5739825 .2005221 2.86 0.004 .1809665 .9669985
nonwhite .7312659 .218978 3.34 0.001 .302077 1.160455

_cons .1567003 .2828509 0.55 0.580 -.3976773 .7110778

Uninsure
age -.0058414 .0114114 -0.51 0.609 -.0282073 .0165245

male .5102237 .3639793 1.40 0.161 -.2031626 1.22361
nonwhite .4333141 .4106255 1.06 0.291 -.371497 1.238125

_cons -1.811165 .5348606 -3.39 0.001 -2.859473 -.7628578

. estat vce, block

Covariance matrix of coefficients of mlogit model

covariances of equation Indemnity

age male nonwhite _cons

age 0
male 0 0

nonwhite 0 0 0
_cons 0 0 0 0

covariances of equation Prepaid (row) by equation Indemnity (column)

age male nonwhite _cons

age 0
male 0 0

nonwhite 0 0 0
_cons 0 0 0 0

covariances of equation Prepaid

age male nonwhite _cons

age .00003711
male -.00015303 .0402091

nonwhite -.00008948 .00470608 .04795135
_cons -.00159095 -.00398961 -.00628886 .08000462

covariances of equation Uninsure (row) by equation Indemnity (column)

age male nonwhite _cons

age 0
male 0 0

nonwhite 0 0 0
_cons 0 0 0 0
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covariances of equation Uninsure (row) by equation Prepaid (column)

age male nonwhite _cons

age .00001753 -.00007926 -.00004564 -.00076886
male -.00007544 .02188398 .0023186 -.00145923

nonwhite -.00004577 .00250588 .02813553 -.00263872
_cons -.00077045 -.00130535 -.00257593 .03888032

covariances of equation Uninsure

age male nonwhite _cons

age .00013022
male -.00050406 .13248095

nonwhite -.00026145 .01505449 .16861327
_cons -.00562159 -.01686629 -.02474852 .28607591

The block option is particularly useful for multiple-equation estimators. The first block of output
here corresponds to the VCE of the estimated parameters for the first equation—the square roots of
the diagonal elements of this matrix are equal to the standard errors of the first equation’s parameters.
Similarly, the final block corresponds to the VCE of the parameters for the second equation. The middle
block shows the covariances between the estimated parameters of the first and second equations.

Saved results
estat ic saves the following in r():

Matrices
r(S) 1 × 6 matrix of results:

1. sample size
2. log likelihood of null model
3. log likelihood of full model
4. degrees of freedom
5. AIC
6. BIC

estat summarize saves the following in r():
Scalars

r(N groups) number of groups (group only)

Matrices
r(stats) k × 4 matrix of means, standard deviations, minimums, and maximums
r(stats

[
#
]
) k × 4 matrix of means, standard deviations, minimums, and maximums for group # (group

only)

estat vce saves the following in r():
Matrices

r(V) VCE or correlation matrix

Methods and formulas
estat is implemented as an ado-file.

Akaike’s (1974) information criterion is defined as

AIC = −2 lnL+ 2k

where lnL is the maximized log-likelihood of the model and k is the number of parameters estimated.
Some authors define the AIC as the expression above divided by the sample size.
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Schwarz’s (1978) Bayesian information criterion is another measure of fit defined as

BIC = −2 lnL+ k lnN

whereN is the sample size. See [R] BIC note for additional information on calculating and interpreting
BIC.� �

Hirotugu Akaike (1927–2009) was born in Fujinomiya City, Shizuoka Prefecture, Japan. He was
the son of a silkworm farmer. He gained BA and DSc degrees from the University of Tokyo.
Akaike’s career from 1952 at the Institute of Statistical Mathematics in Japan culminated in
service as Director General; after 1994, he was Professor Emeritus. His best known work in a
prolific career is on what is now known as the Akaike information criterion (AIC), which was
formulated to help selection of the most appropriate model from a number of candidates.

Gideon E. Schwarz (1933–2007) was a professor of Statistics at the Hebrew University, Jerusalem.
He was born in Salzburg, Austria, and obtained an MSc in 1956 from the Hebrew University and
a PhD in 1961 from Columbia University. His interests included stochastic processes, sequential
analysis, probability, and geometry. He is best known for the Bayesian information criterion
(BIC).� �
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Title

estimates — Save and manipulate estimation results

Syntax

Command Reference

Save and use results from disk

estimates save filename [R] estimates save
estimates use filename [R] estimates save

estimates describe using filename [R] estimates describe

estimates esample: . . . [R] estimates save

Store and restore estimates in memory

estimates store name [R] estimates store
estimates restore name [R] estimates store

estimates query [R] estimates store
estimates dir [R] estimates store

estimates drop namelist [R] estimates store
estimates clear [R] estimates store

Set titles and notes

estimates title: text [R] estimates title
estimates title [R] estimates title

estimates notes: text [R] estimates notes
estimates notes [R] estimates notes
estimates notes list . . . [R] estimates notes
estimates notes drop . . . [R] estimates notes

Report

estimates describe
[

name
]

[R] estimates describe
estimates replay

[
namelist

]
[R] estimates replay

Tables and statistics

estimates table
[

namelist
]

[R] estimates table
estimates stats

[
namelist

]
[R] estimates stats

estimates for namelist: . . . [R] estimates for
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Description

estimates allows you to store and manipulate estimation results:

• You can save estimation results in a file for use in later sessions.

• You can store estimation results in memory so that you can

a. switch among separate estimation results and

b. form tables combining separate estimation results.

Remarks
estimates is for use after you have fit a model, be it with regress, logistic, etc. You can

use estimates after any estimation command, whether it be an official estimation command of Stata
or a user-written one.

estimates has three separate but related capabilities:

1. You can save estimation results in a file on disk so that you can use them later, even in a
different Stata session.

2. You can store up to 300 estimation results in memory so that they are at your fingertips.

3. You can make tables comparing any results you have stored in memory.

Remarks are presented under the following headings:

Saving and using estimation results
Storing and restoring estimation results
Comparing estimation results
Jargon

Saving and using estimation results

After you have fit a model, say, with regress, type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ foreign
(output omitted )

You can save the results in a file:

. estimates save basemodel
(file basemodel.ster saved)

Later, say, in a different session, you can reload those results:

. estimates use basemodel

The situation is now nearly identical to what it was immediately after you fit the model. You can
replay estimation results:

. regress
(output omitted )

You can perform tests:

. test foreign==0
(output omitted )
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And you can use any postestimation command or postestimation capability of Stata. The only difference
is that Stata no longer knows what the estimation sample, e(sample) in Stata jargon, was. When
you reload the estimation results, you might not even have the original data in memory. That is okay.
Stata will know to refuse to calculate anything that can be calculated only on the original estimation
sample.

If it is important that you use a postestimation command that can be used only on the original
estimation sample, there is a way you can do that. You use the original data and then use estimates
esample to tell Stata what the original sample was.

See [R] estimates save for details.

Storing and restoring estimation results

Storing and restoring estimation results in memory is much like saving them to disk. You type
. estimates store base

to save the current estimation results under the name base, and you type
. estimates restore base

to get them back later. You can find out what you have stored by typing
. estimates dir

Saving estimation results to disk is more permanent than storing them in memory, so why would
you want merely to store them? The answer is that, once they are stored, you can use other estimates
commands to produce tables and reports from them.

See [R] estimates store for details about the estimates store and restore commands.

Comparing estimation results

Let’s say that you have done the following:
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ
(output omitted )

. estimates store base

. regress mpg weight displ foreign
(output omitted )

. estimates store alt

You can now get a table comparing the coefficients:
. estimates table base alt

Variable base alt

weight -.00656711 -.00677449
displacement .00528078 .00192865

foreign -1.6006312
_cons 40.084522 41.847949

estimates table can do much more; see [R] estimates table. Also see [R] estimates stats.
estimates stats works similarly to estimates table but produces model comparisons in terms
of BIC and AIC.
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Jargon

You know that if you fit a model, say, by typing

. regress mpg weight displacement

then you can later replay the results by typing

. regress

and you can do tests and calculate other postestimation statistics by typing

. test displacement==0

. estat vif

. predict mpghat

As a result, we often refer to the estimation results or the current estimation results or the most
recent estimation results or the last estimation results or the estimation results in memory.

With estimates store and estimates restore, you can have many estimation results in
memory. One set of those, the set most recently estimated, or the set most recently restored, are the
current or active estimation results, which you can replay, which you can test, or from which you
can calculate postestimation statistics.

Current and active are the two words we will use interchangeably from now on.

Also see
[P] estimates — Manage estimation results



Title

estimates describe — Describe estimation results

Syntax
estimates describe

estimates describe name

estimates describe using filename
[
, number(#)

]
Menu

Statistics > Postestimation > Manage estimation results > Describe results

Description
estimates describe describes the current (active) estimates. Reported are the command line

that produced the estimates, any title that was set by estimates title (see [R] estimates title), and
any notes that were added by estimates notes (see [R] estimates notes).

estimates describe name does the same but reports results for estimates stored by estimates
store (see [R] estimates store).

estimates describe using filename does the same but reports results for estimates saved by
estimates save (see [R] estimates save). If filename contains multiple sets of estimates (saved in
it by estimates save, append), the number of sets of estimates is also reported. If filename is
specified without an extension, .ster is assumed.

Option
number(#) specifies that the #th set of estimation results from filename be described. This assumes

that multiple sets of estimation results have been saved in filename by estimates save, append.
The default is number(1).

Remarks
estimates describe can be used to describe the estimation results currently in memory,

. estimates describe

Estimation results produced by

. regress mpg weight displ if foreign

or to describe results saved by estimates save in a .ster file:
. estimates describe using final

Estimation results "Final results" saved on 12apr2011 14:20, produced by

. logistic myopic age sex drug1 drug2 if complete==1

Notes:
1. Used file patient.dta
2. "datasignature myopic age sex drug1 drug2 if complete==1"

reports 148:5(58763):2252897466:3722318443
3. must be reviewed by rgg
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Example 1

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ if foreign
(output omitted )

. estimates notes: file ‘c(filename)’

. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature report ‘r(datasignature)’

. estimates save foreign
file foreign.ster saved

. regress mpg weight displ if !foreign
(output omitted )

. estimates describe using foreign

Estimation results saved on 02may2011 10:33, produced by

. regress mpg weight displ if foreign

Notes:
1. file http://www.stata-press.com/data/r12/auto.dta
2. datasignature report 74:12(71728):3831085005:1395876116

Saved results
estimates describe and estimates describe name save the following in r():

Macros
r(title) title
r(cmdline) original command line

estimates describe using filename saves the above and the following in r():

Scalars
r(datetime) %tc value of date/time file saved
r(nestresults) number of sets of estimation results in file

Methods and formulas
estimates describe is implemented as an ado-file.

Also see
[R] estimates — Save and manipulate estimation results



Title

estimates for — Repeat postestimation command across models

Syntax
estimates for namelist

[
, options

]
: postestimation command

where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)
estimates. all and * mean the same thing.

options Description

noheader do not display title
nostop do not stop if command fails

Description

estimates for performs postestimation command on each estimation result specified.

Options
noheader suppresses the display of the header as postestimation command is executed each time.

nostop specifies that execution of postestimation command is to be performed on the remaining
models even if it fails on some.

Remarks
In the example that follows, we fit a model two different ways, store the results, and then use

estimates for to perform the same test on both of them:

Example 1

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. gen fwgt = foreign*weight

. gen dwgt = !foreign*weight

. gen gpm = 1/mpg

. regress gpm fwgt dwgt displ foreign
(output omitted )

. estimates store reg

. qreg gpm fwgt dwgt displ foreign
(output omitted )

. estimates store qreg

481



482 estimates for — Repeat postestimation command across models

. estimates for reg qreg: test fwgt==dwgt

Model reg

( 1) fwgt - dwgt = 0

F( 1, 69) = 4.87
Prob > F = 0.0307

Model qreg

( 1) fwgt - dwgt = 0

F( 1, 69) = 0.07
Prob > F = 0.7937

Methods and formulas
estimates for is implemented as an ado-file.

Also see
[R] estimates — Save and manipulate estimation results
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estimates notes — Add notes to estimation results

Syntax
estimates notes: text

estimates notes

estimates notes list
[
in noterange

]
estimates notes drop in noterange

where noterange is # or #/# and where # may be a number, the letter f (meaning first), or the letter
l (meaning last).

Description
estimates notes: text adds a note to the current (active) estimation results.

estimates notes and estimates notes list list the current notes.

estimates notes drop in noterange eliminates the specified notes.

Remarks
After adding or removing notes, if estimates have been stored, do not forget to store them again.

If estimates have been saved, do not forget to save them again.

Notes are most useful when you intend to save estimation results in a file; see [R] estimates save.
For instance, after fitting a model, you might type

. estimates note: I think these are final

. estimates save lock2

and then, later when going through your files, you could type

. estimates use lock2

. estimates notes
1. I think these are final

Up to 9,999 notes can be attached to estimation results. If estimation results are important, we
recommend that you add a note identifying the .dta dataset you used. The best way to do that is to
type

. estimates notes: file ‘c(filename)’

because ‘c(filename)’ will expand to include not just the name of the file but also its full path;
see [P] creturn.

If estimation results took a long time to estimate—say, they were produced by asmprobit or
gllamm (see [R] asmprobit and http://www.gllamm.org)—it is also a good idea to add a data signature.
A data signature takes less time to compute than reestimation when you need proof that you really
have the right dataset. The easy way to do that is to type
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. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature reports ‘r(datasignature)’

Now when you ask to see the notes, you will see

. estimates notes
1. I think these are final
2. file C:\project\one\pat4.dta
3. datasignature reports 74:12(71728):3831085005:1395876116

See [D] datasignature.

Notes need not be positive. You might set a note to be, “I need to check that age is defined
correctly.”

Example 1

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ if foreign
(output omitted )

. estimates notes: file ‘c(filename)’

. datasignature
74:12(71728):3831085005:1395876116

. estimates notes: datasignature report ‘r(datasignature)’

. estimates save foreign
file foreign.ster saved

. estimates notes list in 1/2
1. file http://www.stata-press.com/data/r12/auto.dta
2. datasignature report 74:12(71728):3831085005:1395876116

. estimates notes drop in 2
(1 note dropped)

. estimates notes
1. file http://www.stata-press.com/data/r12/auto.dta

Methods and formulas
estimates notes is implemented as an ado-file.

Also see
[R] estimates — Save and manipulate estimation results



Title

estimates replay — Redisplay estimation results

Syntax
estimates replay

estimates replay namelist

where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)
estimates. all and * mean the same thing.

Menu
Statistics > Postestimation > Manage estimation results > Redisplay estimation output

Description
estimates replay redisplays the current (active) estimation results, just as typing the name of

the estimation command would do.

estimates replay namelist redisplays each specified estimation result. The active estimation
results are left unchanged.

Remarks
In the example that follows, we fit a model two different ways, store the results, use estimates

for to perform the same test on both of them, and then replay the results:

Example 1

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. gen fwgt = foreign*weight

. gen dwgt = !foreign*weight

. gen gpm = 1/mpg

. regress gpm fwgt dwgt displ foreign
(output omitted )

. estimates store reg

. qreg gpm fwgt dwgt displ foreign
(output omitted )

. estimates store qreg

. estimates for reg qreg: test fwgt==dwgt

Model reg

( 1) fwgt - dwgt = 0

F( 1, 69) = 4.87
Prob > F = 0.0307
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Model qreg

( 1) fwgt - dwgt = 0

F( 1, 69) = 0.07
Prob > F = 0.7937

. estimates replay

Model qreg

Median regression Number of obs = 74
Raw sum of deviations .7555689 (about .05)
Min sum of deviations .3201479 Pseudo R2 = 0.5763

gpm Coef. Std. Err. t P>|t| [95% Conf. Interval]

fwgt .0000155 2.87e-06 5.40 0.000 9.76e-06 .0000212
dwgt .0000147 1.88e-06 7.81 0.000 .0000109 .0000184

displacement .0000179 .0000147 1.22 0.226 -.0000113 .0000471
foreign .0065352 .0078098 0.84 0.406 -.009045 .0221153

_cons .0003134 .0042851 0.07 0.942 -.0082351 .0088618

. estimates replay reg

Model reg

Source SS df MS Number of obs = 74
F( 4, 69) = 61.62

Model .009342436 4 .002335609 Prob > F = 0.0000
Residual .002615192 69 .000037901 R-squared = 0.7813

Adj R-squared = 0.7686
Total .011957628 73 .000163803 Root MSE = .00616

gpm Coef. Std. Err. t P>|t| [95% Conf. Interval]

fwgt .00002 3.27e-06 6.12 0.000 .0000135 .0000265
dwgt .0000123 2.30e-06 5.36 0.000 7.75e-06 .0000169

displacement .0000296 .0000187 1.58 0.119 -7.81e-06 .000067
foreign -.0117756 .0086088 -1.37 0.176 -.0289497 .0053986

_cons .0053352 .0046748 1.14 0.258 -.0039909 .0146612

Methods and formulas
estimates replay is implemented as an ado-file.

Also see
[R] estimates — Save and manipulate estimation results
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estimates save — Save and use estimation results

Syntax

estimates save filename
[
, append replace

]
estimates use filename

[
, number(#)

]
estimates esample:

[
varlist

] [
if
] [

in
] [

weight
][

, replace stringvars(varlist) zeroweight
]

estimates esample

Menu
estimates save

Statistics > Postestimation > Manage estimation results > Save to disk

estimates use

Statistics > Postestimation > Manage estimation results > Load from disk

Description
estimates save filename saves the current (active) estimation results in filename.

estimates use filename loads the results saved in filename into the current (active) estimation
results.

In both cases, if filename is specified without an extension, .ster is assumed.

estimates esample: (note the colon) resets e(sample). After estimates use filename,
e(sample) is set to contain 0, meaning that none of the observations currently in memory was used
in obtaining the estimates.

estimates esample (without a colon) displays how e(sample) is currently set.

Options
append, used with estimates save, specifies that results be appended to an existing file. If the file

does not already exist, a new file is created.

replace, used with estimates save, specifies that filename can be replaced if it already exists.

number(#), used with estimates use, specifies that the #th set of estimation results from filename
be loaded. This assumes that multiple sets of estimation results have been saved in filename by
estimates save, append. The default is number(1).
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replace, used with estimates esample:, specifies that e(sample) can be replaced even if it is
already set.

stringvars(varlist), used with estimates esample:, specifies string variables. Observations
containing variables that contain "" will be omitted from e(sample).

zeroweight, used with estimates esample:, specifies that observations with zero weights are to
be included in e(sample).

Remarks
See [R] estimates for an overview of the estimates commands.

For a description of estimates save and estimates use, see Saving and using estimation
results in [R] estimates.

The rest of this entry concerns e(sample).

Remarks are presented under the following headings:

Setting e(sample)
Resetting e(sample)
Determining who set e(sample)

Setting e(sample)

After estimates use filename, the situation is nearly identical to what it was immediately after
you fit the model. The one difference is that e(sample) is set to 0.

e(sample) is Stata’s function to mark which observations among those currently in memory were
used in producing the estimates. For instance, you might type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ if foreign
(output omitted )

. summarize mpg if e(sample)
(output omitted )

and summarize would report the summary statistics for the observations regress in fact used, which
would exclude not only observations for which foreign = 0 but also any observations for which
mpg, weight, or displ was missing.

If you saved the above estimation results and then reloaded them, however, summarize mpg if
e(sample) would produce

. summarize mpg if e(sample)

Variable Obs Mean Std. Dev. Min Max

mpg 0

Stata thinks that none of these observations was used in producing the estimates currently loaded.

What else could Stata think? When you estimates use filename, you do not have to have the
original data in memory. Even if you do have data in memory that look like the original data, it might
not be. Setting e(sample) to 0 is the safe thing to do. There are some postestimation statistics, for
instance, that are appropriate only when calculated on the estimation sample. Setting e(sample) to
0 ensures that, should you ask for one of them, you will get back a null result.
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We recommend that you leave e(sample) set to 0. But what if you really need to calculate that
postestimation statistic? Well, you can get it, but you are going to take responsibility for setting
e(sample) correctly. Here we just happen to know that all the foreign observations were used, so
we can type

. estimates esample: if foreign

If all the observations had been used, we could simply type

. estimates esample:

The safe thing to do, however, is to look at the estimation command—estimates describe will
show it to you—and then type

. estimates esample: mpg weight displ if foreign

Resetting e(sample)

estimates esample: will allow you to not only set but also reset e(sample). If e(sample)
has already been set (say that you just fit the model) and you try to set it, you will see

. estimates esample: mpg weight displ if foreign
no; e(sample) already set
r(322);

Here you can specify the replace option:

. estimates esample: mpg weight displ if foreign, replace

We do not recommend resetting e(sample), but the situation can arise where you need to. Imagine
that you estimates use filename, you set e(sample), and then you realize that you set it wrong.
Here you would want to reset it.

Determining who set e(sample)

estimates esample without a colon will report whether and how e(sample) was set. You might
see

. estimates esample
e(sample) set by estimation command

or

. estimates esample
e(sample) set by user

or

. estimates esample
e(sample) not set (0 assumed)

Saved results
estimates esample without the colon saves macro r(who), which will contain cmd, user, or

zero’d.
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Methods and formulas
estimates save, estimates use, estimates esample:, and estimates esample are imple-

mented as ado-files.

Also see
[R] estimates — Save and manipulate estimation results



Title

estimates stats — Model statistics

Syntax
estimates stats

[
namelist

] [
, n(#)

]
where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

Menu
Statistics > Postestimation > Manage estimation results > Table of fit statistics

Description
estimates stats reports model-selection statistics, including the Akaike information criterion

(AIC) and the Bayesian information criterion (BIC). These measures are appropriate for maximum
likelihood models.

If estimates stats is used for a non–likelihood-based model, such as qreg, missing values are
reported.

Option
n(#) specifies the N to be used in calculating BIC; see [R] BIC note.

Remarks
If you type estimates stats without arguments, a table for the most recent estimation results

will be shown:
. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. logistic foreign mpg weight displ
(output omitted )

. estimates stats

Model Obs ll(null) ll(model) df AIC BIC

. 74 -45.03321 -20.59083 4 49.18167 58.39793

Note: N=Obs used in calculating BIC; see [R] BIC note

Regarding the note at the bottom of the table, N is an ingredient in the calculation of BIC; see
[R] BIC note. The note changes if you specify the n() option, which tells estimates stats what
N to use. N = Obs is the default.

Regarding the table itself, ll(null) is the log likelihood for the constant-only model, ll(model)
is the log likelihood for the model, df is the number of degrees of freedom, and AIC and BIC are
the Akaike and Bayesian information criteria.

Models with smaller values of an information criterion are considered preferable.
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estimates stats can compare estimation results:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. logistic foreign mpg weight displ
(output omitted )

. estimates store full

. logistic foreign mpg weight
(output omitted )

. estimates store sub

. estimates stats full sub

Model Obs ll(null) ll(model) df AIC BIC

full 74 -45.03321 -20.59083 4 49.18167 58.39793
sub 74 -45.03321 -27.17516 3 60.35031 67.26251

Note: N=Obs used in calculating BIC; see [R] BIC note

Saved results
estimates stats saves the following in r():

Matrices
r(S) matrix with 6 columns (N, ll0, ll, df, AIC, and BIC) and rows corresponding to models in table

Methods and formulas
estimates stats is implemented as an ado-file.

See [R] BIC note.

Also see
[R] estimates — Save and manipulate estimation results



Title

estimates store — Store and restore estimation results

Syntax
estimates store name

[
, nocopy

]
estimates restore name

estimates query

estimates dir
[

namelist
]

estimates drop namelist

estimates clear

where namelist is a name, a list of names, all, or *. all and * mean the same thing.

Menu
estimates store

Statistics > Postestimation > Manage estimation results > Store in memory

estimates restore

Statistics > Postestimation > Manage estimation results > Restore from memory

estimates dir

Statistics > Postestimation > Manage estimation results > List results stored in memory

estimates drop

Statistics > Postestimation > Manage estimation results > Drop from memory

Description
estimates store name saves the current (active) estimation results under the name name.

estimates restore name loads the results saved under name into the current (active) estimation
results.

estimates query tells you whether the current (active) estimates have been stored and, if so,
the name.

estimates dir displays a list of the stored estimates.

estimates drop namelist drops the specified stored estimation results.

estimates clear drops all stored estimation results.
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estimates clear, estimates drop all, and estimates drop * do the same thing. estimates
drop and estimates clear do not eliminate the current (active) estimation results.

Option
nocopy, used with estimates store, specifies that the current (active) estimation results are to be

moved into name rather than copied. Typing

. estimates store hold, nocopy

is the same as typing

. estimates store hold

. ereturn clear

except that the former is faster. The nocopy option is sometimes used by programmers.

Remarks
estimates store stores estimation results in memory so that you can access them later.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ
(output omitted )

. estimates store myreg

. ... you do other things, including fitting other models ...

. estimates restore myreg

. regress
(same output shown again)

After estimates restore myreg, things are once again just as they were, estimationwise, just
after you typed regress mpg weight displ.

estimates store stores results in memory. When you exit Stata, those stored results vanish. If
you wish to make a permanent copy of your estimation results, see [R] estimates save.

The purpose of making copies in memory is 1) so that you can quickly switch between them and
2) so that you can make tables comparing estimation results. Concerning the latter, see [R] estimates
table and [R] estimates stats.

Saved results
estimates dir saves the following in r():

Macros
r(names) names of stored results

Methods and formulas
estimates store, estimates restore, estimates query, estimates dir, estimates drop,

and estimates clear are implemented as ado-files.
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References
Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–308.

. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

Also see
[R] estimates — Save and manipulate estimation results

http://www.stata-journal.com/sjpdf.html?articlenum=st0085
http://www.stata-journal.com/sjpdf.html?articlenum=st0085_1


Title

estimates table — Compare estimation results

Syntax
estimates table

[
namelist

] [
, options

]
where namelist is a name, a list of names, all, or *. A name may be ., meaning the current (active)

estimates. all and * mean the same thing.

options Description

Main

stats(scalarlist) report scalarlist in table
star

[
(#1 #2 #3)

]
use stars to denote significance levels

Options

keep(coeflist) report coefficients in order specified
drop(coeflist) omit specified coefficients from table
equations(matchlist) match equations of models as specified

Numerical formats

b
[
(% fmt)

]
how to format coefficients, which are always reported

se
[
(% fmt)

]
report standard errors and use optional format

t
[
(% fmt)

]
report t or z and use optional format

p
[
(% fmt)

]
report p-values and use optional format

stfmt(% fmt) how to format scalar statistics

General format

varwidth(#) use # characters to display variable names and statistics
modelwidth(#) use # characters to display model names

eform display coefficients in exponentiated form
label display variable labels rather than variable names
newpanel display statistics in separate table from coefficients

style(oneline) put vertical line after variable names; the default
style(columns) put vertical line separating every column
style(noline) suppress all vertical lines

coded display compact table

Reporting

display options control row spacing and display of omitted variables and
base and empty cells

title(string) title for table

title() does not appear in the dialog box.
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where

• A scalarlist is a list of any or all of the names of scalars stored in e(), plus aic, bic, and
rank.

• #1 #2 #3 are three numbers such as .05 .01 .001.

• A coeflist is a list of coefficient names, each name of which may be simple (for example,
price), an equation name followed by a colon (for example, mean:), or a full name (for
example, mean:price). Names are separated by blanks.

• A matchlist specifies how equations from different estimation results are to be matched. If
you need to specify a matchlist, the solution is usually 1, as in equations(1). The full
syntax is

matchlist := term
[
, term . . .

]
term :=

[
eqname =

]
#:#. . . :#[

eqname =
]

#

See equations() under Options below.

Menu
Statistics > Postestimation > Manage estimation results > Table of estimation results

Description
estimates table displays a table of coefficients and statistics for one or more sets of estimation

results.

Options

� � �
Main �

stats(scalarlist) specifies one or more scalar statistics to be displayed in the table. scalarlist may
contain

aic Akaike’s information criterion
bic Schwarz’s Bayesian information criterion
rank rank of e(V) (# of free parameters in model)

along with the names of any scalars stored in e(). The specified statistics do not have to be
available for all estimation results being displayed.

For example, stats(N ll chi2 aic) specifies that e(N), e(ll), e(chi2), and AIC be included.
In Stata, e(N) records the number of observations; e(ll), the log likelihood; and e(chi2), the
chi-squared test that all coefficients in the first equation of the model are equal to zero.

star and star(#1 #2 #3) specify that stars (asterisks) are to be used to mark significance. The
second syntax specifies the significance levels for one, two, and three stars. If you specify simply
star, that is equivalent to specifying star(.05 .01 .001), which means one star (*) if p < 0.05,
two stars (**) if p < 0.01, and three stars (***) if p < 0.001.

The star and star() options may not be combined with se, t, or p option.
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� � �
Options �

keep(coeflist) and drop(coeflist) are alternatives; they specify coefficients to be included or omitted
from the table. The default is to display all coefficients.

If keep() is specified, it specifies not only the coefficients to be included but also the order in
which they appear.

A coeflist is a list of coefficient names, each name of which may be simple (for example, price),
an equation name followed by a colon (for example, mean:), or a full name (for example,
mean:price). Names are separated from each other by blanks.

When full names are not specified, all coefficients that match the partial specification are included.
For instance, drop( cons) would omit cons for all equations.

equations(matchlist) specifies how the equations of the models in namelist are to be matched. The
default is to match equations by name. Matching by name usually works well when all results were
fit by the same estimation command. When you are comparing results from different estimation
commands, however, specifying equations() may be necessary.

The most common usage is equations(1), which indicates that all first equations are to be
matched into one equation named #1.

matchlist has the syntax

term
[
, term . . .

]
where term is[

eqname =
]

#:#. . .:# (syntax 1)[
eqname =

]
# (syntax 2)

In syntax 1, each # is a number or a period (.). If a number, it specifies the position of the equation
in the corresponding model; 1:3:1 would indicate that equation 1 in the first model matches
equation 3 in the second, which matches equation 1 in the third. A period indicates that there
is no corresponding equation in the model; 1:.:1 indicates that equation 1 in the first matches
equation 1 in the third.

In syntax 2, you specify just one number, say, 1 or 2, and that is shorthand for 1:1. . . :1 or
2:2. . . :2, meaning that equation 1 matches across all models specified or that equation 2 matches
across all models specified.

Now that you can specify a term, you can put that together into a matchlist by separating one term
from the other by commas. In what follows, we will assume that three names were specified,

. estimates table alpha beta gamma, ...

equations(1) is equivalent to equations(1:1:1); we would be saying that the first equations
match across the board.

equations(1:.:1) would specify that equation 1 matches in models alpha and gamma but that
there is nothing corresponding in model beta.

equations(1,2) is equivalent to equations(1:1:1, 2:2:2). We would be saying that the first
equations match across the board and so do the second equations.

equations(1, 2:.:2) would specify that the first equations match across the board, that the
second equations match for models alpha and gamma, and that there is nothing equivalent to
equation 2 in model beta.

If equations() is specified, equations not matched by position are matched by name.
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� � �
Numerical formats �

b(% fmt) specifies how the coefficients are to be displayed. You might specify b(%9.2f) to make
decimal points line up. There is also a b option, which specifies that coefficients are to be displayed,
but that is just included for consistency with the se, t, and p options. Coefficients are always
displayed.

se, t, and p specify that standard errors, t or z statistics, and significance levels are to be displayed.
The default is not to display them. se(% fmt), t(% fmt), and p(% fmt) specify that each is to be
displayed and specifies the display format to be used to format them.

stfmt(% fmt) specifies the format for displaying the scalar statistics included by the stats() option.

� � �
General format �

varwidth(#) specifies the number of character positions used to display the names of the variables
and statistics. The default is 12.

modelwidth(#) specifies the number of character positions used to display the names of the models.
The default is 12.

eform displays coefficients in exponentiated form. For each coefficient, exp(β) rather than β is
displayed, and standard errors are transformed appropriately. Display of the intercept, if any, is
suppressed.

label specifies that variable labels be displayed instead of variable names.

newpanel specifies that the statistics be displayed in a table separated by a blank line from the table
with coefficients rather than in the style of another equation in the table of coefficients.

style(stylespec) specifies the style of the coefficient table.

style(oneline) specifies that a vertical line be displayed after the variables but not between
the models. This is the default.

style(columns) specifies that vertical lines be displayed after each column.

style(noline) specifies that no vertical lines be displayed.

coded specifies that a compact table be displayed. This format is especially useful for comparing
variables that are included in a large collection of models.

� � �
Reporting �

display options: noomitted, vsquish, noemptycells, baselevels, and allbaselevels; see
[R] estimation options.

The following option is available with estimates table but is not shown in the dialog box:

title(string) specifies the title to appear above the table.

Remarks
If you type estimates table without arguments, a table of the most recent estimation results

will be shown:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ
(output omitted )
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. estimates table

Variable active

weight -.00656711
displacement .00528078

_cons 40.084522

The real use of estimates table, however, is for comparing estimation results, and that requires
using it after estimates store:

. regress mpg weight displ
(output omitted )

. estimates store base

. regress mpg weight displ foreign
(output omitted )

. estimates store alt

. qreg mpg weight displ foreign
(output omitted )

. estimates store qreg

. estimates table base alt qreg, stats(r2)

Variable base alt qreg

weight -.00656711 -.00677449 -.00595056
displacement .00528078 .00192865 .00018552

foreign -1.6006312 -2.1326004
_cons 40.084522 41.847949 39.213348

r2 .6529307 .66287957

Saved results
estimates table saves the following in r():

Macros
r(names) names of results used

Matrices
r(coef) matrix M : n× 2∗m

M [i, 2j−1] = ith parameter estimate for model j;
M [i, 2j] = variance of M [i, 2j−1]; i=1,...,n; j=1,...,m

r(stats) matrix S: k×m (if option stats() specified)
S[i, j] = ith statistic for model j; i=1,...,k; j=1,...,m

Methods and formulas
estimates table is implemented as an ado-file.

Reference
Weiss, M. 2010. Stata tip 90: Displaying partial results. Stata Journal 10: 500–502.

http://www.stata-journal.com/article.html?article=st0206
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Also see
[R] estimates — Save and manipulate estimation results



Title

estimates title — Set title for estimation results

Syntax
estimates title:

[
text
]

estimates title

Menu
Statistics > Postestimation > Manage estimation results > Title/retitle results

Description
estimates title: (note the colon) sets or clears the title for the current estimation results. The

title is used by estimates table and estimates stats (see [R] estimates table and [R] estimates
stats).

estimates title without the colon displays the current title.

Remarks
After setting the title, if estimates have been stored, do not forget to store them again:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg gear turn
(output omitted )

. estimates store reg

Now let’s add a title:

. estimates title: "My regression"

. estimates store reg

Methods and formulas
estimates title: and estimates title are implemented as ado-files.

Also see
[R] estimates — Save and manipulate estimation results
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estimation options — Estimation options

Description
This entry describes the options common to many estimation commands. Not all the options

documented below work with all estimation commands. See the documentation for the particular
estimation command; if an option is listed there, it is applicable.

Options

� � �
Model �

noconstant suppresses the constant term (intercept) in the model.

offset(varname) specifies that varname be included in the model with the coefficient constrained
to be 1.

exposure(varname) specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; ln(varname) with coefficient constrained to be 1 is
entered into the log-link function.

constraints(numlist |matname) specifies the linear constraints to be applied during estimation.
The default is to perform unconstrained estimation. See [R] reg3 for the use of constraints in
multiple-equation contexts.

constraints(numlist) specifies the constraints by number after they have been defined by using
the constraint command; see [R] constraint. Some commands (for example, slogit) allow
only constraints(numlist).

constraints(matname) specifies a matrix containing the constraints; see [P] makecns.

constraints(clist) is used by some estimation commands, such as mlogit, where clist has the
form #

[
-#
] [

, #
[
-#
]
. . .
]
.

collinear specifies that the estimation command not omit collinear variables. Usually, there is no
reason to leave collinear variables in place, and, in fact, doing so usually causes the estimation
to fail because of the matrix singularity caused by the collinearity. However, with certain models,
the variables may be collinear, yet the model is fully identified because of constraints or other
features of the model. In such cases, using the collinear option allows the estimation to take
place, leaving the equations with collinear variables intact. This option is seldom used.

force specifies that estimation be forced even though the time variable is not equally spaced.
This is relevant only for correlation structures that require knowledge of the time variable. These
correlation structures require that observations be equally spaced so that calculations based on lags
correspond to a constant time change. If you specify a time variable indicating that observations
are not equally spaced, the (time dependent) model will not be fit. If you also specify force,
the model will be fit, and it will be assumed that the lags based on the data ordered by the time
variable are appropriate.

� � �
Correlation �

corr(correlation) specifies the within-group correlation structure; the default corresponds to the
equal-correlation model, corr(exchangeable).
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When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s
name with or without a blank; for example, corr(ar 1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the
assumed correlations following the word fixed, for example, corr(fixed myr).

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test of all the parameters in the regression equation
being zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport specifies that no constraints be reported. The default is to display user-specified
constraints above the coefficient table.

noomitted specifies that variables that were omitted because of collinearity not be displayed. The
default is to include in the table any variables omitted because of collinearity and to label them
as “(omitted)”.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated variables
from other variables in the model be suppressed.

noemptycells specifies that empty cells for interactions of factor variables not be displayed. The
default is to include in the table interaction cells that do not occur in the estimation sample and
to label them as “(empty)”.

baselevels and allbaselevels control whether the base levels of factor variables and interactions
are displayed. The default is to exclude from the table all base categories.

baselevels specifies that base levels be reported for factor variables and for interactions whose
bases cannot be inferred from their component factor variables.

allbaselevels specifies that all base levels of factor variables and interactions be reported.

cformat(% fmt) specifies how to format coefficients, standard errors, and confidence limits in the
coefficient table.

pformat(% fmt) specifies how to format p-values in the coefficient table.

sformat(% fmt) specifies how to format test statistics in the coefficient table.

nolstretch specifies that the width of the coefficient table not be automatically widened to accom-
modate longer variable names. The default, lstretch, is to automatically widen the coefficient
table up to the width of the Results window. To change the default, use set lstretch off.
nolstretch is not shown in the dialog box.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for the random-effects model. It
accepts one of three arguments: mvaghermite, the default, performs mean and variance adaptive
Gauss–Hermite quadrature first on every and then on alternate iterations; aghermite performs
mode and curvature adaptive Gauss–Hermite quadrature on the first iteration only; ghermite
performs nonadaptive Gauss–Hermite quadrature.
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intpoints(#) specifies the number of integration points to use for integration by quadrature. The
default is intpoints(12); the maximum is intpoints(195). Increasing this value improves
the accuracy but also increases computation time. Computation time is roughly proportional to its
value.

The following option is not shown in the dialog box:

coeflegend specifies that the legend of the coefficients and how to specify them in an expression
be displayed rather than displaying the statistics for the coefficients.

Also see
[U] 20 Estimation and postestimation commands



Title

exit — Exit Stata

Syntax
exit

[
, clear

]
Description

Typing exit causes Stata to stop processing and return control to the operating system. If the
dataset in memory has changed since the last save command, you must specify the clear option
before Stata will let you exit.

exit may also be used for exiting do-files or programs; see [P] exit.
Stata for Windows users may also exit Stata by clicking on the Close button or by pressing Alt+F4.

Stata for Mac users may also exit Stata by pressing Command+Q.

Stata(GUI) users may also exit Stata by clicking on the Close button.

Option
clear permits you to exit, even if the current dataset has not been saved.

Remarks
Type exit to leave Stata and return to the operating system. If the dataset in memory has changed

since the last time it was saved, however, Stata will refuse. At that point, you can either save the
dataset and then type exit, or type exit, clear:

. exit
no; data in memory would be lost
r(4);

. exit, clear

Also see
[P] exit — Exit from a program or do-file
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Title

exlogistic — Exact logistic regression

Syntax
exlogistic depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

condvars(varlist) condition on variables in varlist
group(varname) groups/strata are stratified by unique values of varname
binomial(varname | #) data are in binomial form and the number of trials is contained in

varname or in #
estconstant estimate constant term; do not condition on the number of successes
noconstant suppress constant term

Terms

terms(termsdef) terms definition

Options

memory(#
[
b | k | m | g

]
) set limit on memory usage; default is memory(10m)

saving(filename) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)

coef report estimated coefficients
test(testopt) report significance of observed sufficient statistic, conditional scores test,

or conditional probabilities test
mue(varlist) compute the median unbiased estimates for varlist
midp use the mid-p-value rule
nolog do not display the enumeration log

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Exact statistics > Exact logistic regression

Description
exlogistic fits an exact logistic regression model of depvar on indepvars.

exlogistic is an alternative to logistic, the standard maximum-likelihood–based logistic
regression estimator; see [R] logistic. exlogistic produces more-accurate inference in small samples
because it does not depend on asymptotic results and exlogistic can better deal with one-way
causation, such as the case where all females are observed to have a positive outcome.
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exlogistic with the group(varname) option is an alternative to clogit, the conditional logistic
regression estimator; see [R] clogit. Like clogit, exlogistic conditions on the number of positive
outcomes within stratum.

depvar can be specified in two ways. It can be zero/nonzero, with zero indicating failure and
nonzero representing positive outcomes (successes), or if you specify the binomial(varname | #)
option, depvar may contain the number of positive outcomes within each trial.

exlogistic is computationally intensive. Unlike most estimators, rather than calculating coef-
ficients for all independent variables at once, results for each independent variable are calculated
separately with the other independent variables temporarily conditioned out. You can save considerable
computer time by skipping the parameter calculations for variables that are not of direct interest.
Specify such variables in the condvars() option rather than among the indepvars; see condvars()
below.

Unlike Stata’s other estimation commands, you may not use test, lincom, or other postestimation
commands after exlogistic. Given the method used to calculate estimates, hypothesis tests must
be performed during estimation by using exlogistic’s terms() option; see terms() below.

Options

� � �
Model �

condvars(varlist) specifies variables whose parameter estimates are not of interest to you. You can
save substantial computer time and memory moving such variables from indepvars to condvars().
Understand that you will get the same results for x1 and x3 whether you type

. exlogistic y x1 x2 x3 x4

or

. exlogistic y x1 x3, condvars(x2 x4)

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for
each stratum identified in varname, and the sufficient statistics for indepvars are conditioned on
the observed number of successes within each group. This makes the model estimated equivalent
to that estimated by clogit, Stata’s conditional logistic regression command (see [R] clogit).
group() may not be specified with noconstant or estconstant.

binomial(varname | #) indicates that the data are in binomial form and depvar contains the number
of successes. varname contains the number of trials for each observation. If all observations have
the same number of trials, you can instead specify the number as an integer. The number of trials
must be a positive integer at least as great as the number of successes. If binomial() is not
specified, the data are assumed to be Bernoulli, meaning that depvar equaling zero or nonzero
records one failure or success.

estconstant estimates the constant term. By default, the models are assumed to have an intercept
(constant), but the value of the intercept is not calculated. That is, the conditional distribution of
the sufficient statistics for the indepvars is computed given the number of successes in depvar,
thus conditioning out the constant term of the model. Use estconstant if you want the estimate
of the intercept reported. estconstant may not be specified with group().

noconstant; see [R] estimation options. noconstant may not be specified with group().
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� � �
Terms �

terms(termname = variable . . . variable
[
, termname = variable . . . variable . . .

]
) defines additional

terms of the model on which you want exlogistic to perform joint-significance hypothesis tests.
By default, exlogistic reports tests individually on each variable in indepvars. For instance,
if variables x1 and x3 are in indepvars, and you want to jointly test their significance, specify
terms(t1=x1 x3). To also test the joint significance of x2 and x4, specify terms(t1=x1 x3,
t2=x2 x4). Each variable can be assigned to only one term.

Joint tests are computed only for the conditional scores tests and the conditional probabilities tests.
See the test() option below.

� � �
Options �

memory(#
[
b | k | m | g

]
) sets a limit on the amount of memory exlogistic can use when computing

the conditional distribution of the parameter sufficient statistics. The default is memory(10m),
where m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for
byte; k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is
equal to 1,024 megabytes. The minimum setting allowed is 1m and the maximum is 2048m or
2g, but do not attempt to use more memory than is available on your computer. Also see the first
technical note under example 4 on counting the conditional distribution.

saving(filename
[
, replace

]
) saves the joint conditional distribution to filename. This distribution

is conditioned on those variables specified in condvars(). Use replace to replace an existing
file with filename. A Stata data file is created containing all the feasible values of the parameter
sufficient statistics. The variable names are the same as those in indepvars, in addition to a variable
named f containing the feasible value frequencies (sometimes referred to as the condition
numbers).

� � �
Reporting �

level(#); see [R] estimation options. The level(#) option will not work on replay because
confidence intervals are based on estimator-specific enumerations. To change the confidence level,
you must refit the model.

coef reports the estimated coefficients rather than odds ratios (exponentiated coefficients). coef may
be specified when the model is fit or upon replay. coef affects only how results are displayed and
not how they are estimated.

test(sufficient | score | probability) reports the significance level of the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default
is test(sufficient). If terms() is included in the specification, the conditional scores test
and the conditional probabilities test are applied to each term providing conditional inference for
several parameters simultaneously. All the statistics are computed at estimation time regardless of
which is specified. Each statistic may thus also be displayed postestimation without having to refit
the model; see [R] exlogistic postestimation.

mue(varlist) specifies that median unbiased estimates (MUEs) be reported for the variables in varlist.
By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those
parameters for which the CMLEs are infinite. Specify mue( all) if you want MUEs for all the
indepvars.

midp instructs exlogistic to use the mid-p-value rule when computing the MUEs, significance
levels, and confidence intervals. This adjustment is for the discreteness of the distribution and
halves the value of the discrete probability of the observed statistic before adding it to the p-value.
The mid-p-value rule cannot be applied to MUEs whose corresponding parameter CMLE is infinite.
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nolog prevents the display of the enumeration log. By default, the enumeration log is displayed,
showing the progress of computing the conditional distribution of the sufficient statistics.

Remarks
Exact logistic regression is the estimation of the logistic model parameters by using the conditional

distribution of the parameter sufficient statistics. The estimates are referred to as the conditional
maximum likelihood estimates (CMLEs). This technique was first introduced by Cox and Snell (1989)
as an alternative to using maximum likelihood estimation, which can perform poorly for small sample
sizes. For stratified data, exact logistic regression is a small-sample alternative to conditional logistic
regression. See [R] logit, [R] logistic, and [R] clogit to obtain maximum likelihood estimates (MLEs)
for the logistic model and the conditional logistic model. For a comprehensive overview of exact
logistic regression, see Mehta and Patel (1995).

Let Yi denote a Bernoulli random variable where we observe the outcome Yi = yi, i = 1, . . . , n.
Associated with each independent observation is a 1 × p vector of covariates, xi. We will denote
πi = Pr (Yi | xi) and let the logit function model the relationship between Yi and xi,

log
(

πi
1− πi

)
= θ + xiβ

where the constant term θ and the p × 1 vector of regression parameters β are unknown. The
probability of observing Yi = yi, i = 1, . . . , n, is

Pr(Y = y) =
n∏
i=1

πyii (1− πi)1−yi

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). The MLEs for θ and β maximize the log of this
function.

The sufficient statistics for θ and βj , j = 1, . . . , p, are M =
∑n
i=1 Yi and Tj =

∑n
i=1 Yixij ,

respectively, and we observe M = m and Tj = tj . By default, exlogistic tallies the conditional

distribution of T = (T1, . . . , Tp) given M = m. This distribution will have a size of
(
n

m

)
. (It

would have a size of 2n without conditioning on M = m.) Denote one of these vectors T(k) =
(t(k)

1 , . . . , t
(k)
p ), k = 1, . . . , N , with combinatorial coefficient (frequency) ck,

∑N
k=1 ck =

(
n
m

)
.

For each independent variable xj , j = 1, . . . , p, we reduce the conditional distribution further by
conditioning on all other observed sufficient statistics Tl = tl, l 6= j. The conditional probability of
observing Tj = tj has the form

Pr(Tj = tj | Tl = tl, l 6= j,M = m) =
c etjβj∑
k cke

t
(k)
j
βj
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where the sum is over the subset of T vectors such that (T (k)
1 = t1, . . . , T

(k)
j = t

(k)
j , . . . , T

(k)
p = tp)

and c is the combinatorial coefficient associated with the observed t. The CMLE for βj maximizes
the log of this function.

Specifying nuisance variables in condvars() will reduce the size of the conditional distribution by
conditioning on their observed sufficient statistics as well as conditioning on M = m. This reduces
the amount of memory consumed at the cost of not obtaining regression estimates for those variables
specified in condvars().

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may
not be valid. On the other hand, inferences from the CMLEs are exact in the sense that they use the
conditional distribution of the sufficient statistics outlined above.

For small datasets, it is common for the dependent variable to be completely determined by the
data. Here the MLEs and the CMLEs are unbounded. exlogistic will instead compute the MUE,
the regression estimate that places the observed sufficient statistic at the median of the conditional
distribution.

Example 1

One example presented by Mehta and Patel (1995) is data from a prospective study of perinatal
infection and human immunodeficiency virus type 1 (HIV-1). We use a variation of this dataset. There
was an investigation Hutto et al. (1991) into whether the blood serum levels of glycoproteins CD4
and CD8 measured in infants at 6 months of age might predict their development of HIV infection.
The blood serum levels are coded as ordinal values 0, 1, and 2.

. use http://www.stata-press.com/data/r12/hiv1
(prospective study of perinatal infection of HIV-1)

. list

hiv cd4 cd8

1. 1 0 0
2. 0 0 0
3. 1 0 2
4. 1 1 0
5. 0 1 0

(output omitted )
46. 0 2 1
47. 0 2 2

We first obtain the MLEs from logistic so that we can compare the estimates and associated statistics
with the CMLEs from exlogistic.

. logistic hiv cd4 cd8, coef

Logistic regression Number of obs = 47
LR chi2(2) = 15.75
Prob > chi2 = 0.0004

Log likelihood = -20.751687 Pseudo R2 = 0.2751

hiv Coef. Std. Err. z P>|z| [95% Conf. Interval]

cd4 -2.541669 .8392231 -3.03 0.002 -4.186517 -.8968223
cd8 1.658586 .821113 2.02 0.043 .0492344 3.267938

_cons .5132389 .6809007 0.75 0.451 -.8213019 1.84778
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. exlogistic hiv cd4 cd8, coef

Enumerating sample-space combinations:
observation 1: enumerations = 2
observation 2: enumerations = 3

(output omitted )
observation 46: enumerations = 601
observation 47: enumerations = 326

Exact logistic regression Number of obs = 47
Model score = 13.34655
Pr >= score = 0.0006

hiv Coef. Score Pr(Suff.) [95% Conf. Interval]

cd4 -2.387632 10 0.0004 -4.699633 -.8221807
cd8 1.592366 12 0.0528 -.0137905 3.907876

exlogistic produced a log showing how many records are generated as it processes each observation.
The primary purpose of the log is to provide feedback because generating the distribution can be time
consuming, but we also see from the last entry that the joint distribution for the sufficient statistics
for cd4 and cd8 conditioned on the total number of successes has 326 unique values (but a size of(

47
14

)
= 341,643,774,795).

The statistics for logistic are based on asymptotics: for a large sample size, each Z statistic
will be approximately normally distributed (with a mean of zero and a standard deviation of one)
if the associated regression parameter is zero. The question is whether a sample size of 47 is large
enough.

On the other hand, the p-values computed by exlogistic are from the conditional distributions
of the sufficient statistics for each parameter given the sufficient statistics for all other parameters.
In this sense, these p-values are exact. By default, exlogistic reports the sufficient statistics for
the regression parameters and the probability of observing a more extreme value. These are single-
parameter tests for H0: βcd4 = 0 and H0: βcd8 = 0 versus the two-sided alternatives. The conditional
scores test, located in the coefficient table header, is testing that both H0: βcd4 = 0 and H0: βcd8 = 0.
We find these p-values to be in fair agreement with the Wald and likelihood-ratio tests from logistic.

The confidence intervals for exlogistic are computed from the exact conditional distributions.
The exact confidence intervals are asymmetrical about the estimate and are wider than the normal-based
confidence intervals from logistic.

Both estimation techniques indicate that the incidence of HIV infection decreases with increasing
CD4 blood serum levels and increases with increasing CD8 blood serum levels. The constant term is
missing from the exact logistic coefficient table because we conditioned out its observed sufficient
statistic when tallying the joint distribution of the sufficient statistics for the cd4 and cd8 parameters.

The test() option provides two other test statistics used in exact logistic: the conditional scores
test, test(score), and the conditional probabilities test, test(probability). For comparison, we
display the individual parameter conditional scores tests.
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. exlogistic, test(score) coef

Exact logistic regression Number of obs = 47
Model score = 13.34655
Pr >= score = 0.0006

hiv Coef. Score Pr>=Score [95% Conf. Interval]

cd4 -2.387632 12.88022 0.0003 -4.699633 -.8221807
cd8 1.592366 4.604816 0.0410 -.0137905 3.907876

For the probabilities test, the probability statistic is computed from (1) in Methods and formulas
with β = 0. For this example, the significance of the probabilities tests matches the scores tests so
they are not displayed here.

Technical note
Typically, the value of θ, the constant term, is of little interest, as well as perhaps some of the

parameters in β, but we need to include all parameters in the model to correctly specify it. By
conditioning out the nuisance parameters, we can reduce the size of the joint conditional distribution
that is used to estimate the regression parameters of interest. The condvars() option allows you to
specify a varlist of nuisance variables. By default, exlogistic conditions on the sufficient statistic
of θ, which is the number of successes. You can save computation time and computer memory by
using the condvars() option because infeasible values of the sufficient statistics associated with the
variables in condvars() can be dropped from consideration before all n observations are processed.

Specifying some of your independent variables in condvars() will not change the estimated
regression coefficients of the remaining independent variables. For instance, in example 1, if we
instead type

. exlogistic hiv cd4, condvars(cd8) coef

the regression coefficient for cd4 (as well as all associated inference) will be identical.

One reason to have multiple variables in indepvars is to make conditional inference of several
parameters simultaneously by using the terms() option. If you do not wish to test several parameters
simultaneously, it may be more efficient to obtain estimates for individual variables by calling
exlogistic multiple times with one variable in indepvars and all other variables listed in condvars().
The estimates will be the same as those with all variables in indepvars.

Technical note
If you fit a clogit (see [R] clogit) model to the HIV data from example 1, you will find that

the estimates differ from those with exlogistic. (To fit the clogit model, you will have to create
a group variable that includes all observations.) The regression estimates will be different because
clogit conditions on the constant term only, whereas the estimates from exlogistic condition on
the sufficient statistic of the other regression parameter as well as the constant term.

Example 2

The HIV data presented in table IV of Mehta and Patel (1995) are in a binomial form, where the
variable hiv contains the HIV cases that tested positive and the variable n contains the number of
individuals with the same CD4 and CD8 levels, the binomial number-of-trials parameter. Here depvar
is hiv, and we use the binomial(n) option to identify the number-of-trials variable.
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. use http://www.stata-press.com/data/r12/hiv_n
(prospective study of perinatal infection of HIV-1; binomial form)

. list

cd4 cd8 hiv n

1. 0 2 1 1
2. 1 2 2 2
3. 0 0 4 7
4. 1 1 4 12
5. 2 2 1 3

6. 1 0 2 7
7. 2 0 0 2
8. 2 1 0 13

Further, the cd4 and cd8 variables of the hiv dataset are actually factor variables, where each has
the ordered levels of (0, 1, 2). Another approach to the analysis is to use indicator variables, and
following Mehta and Patel (1995), we used a 0–1 coding scheme that will give us the odds ratio of
level 0 versus 2 and level 1 versus 2.

. gen byte cd4_0 = (cd4==0)

. gen byte cd4_1 = (cd4==1)

. gen byte cd8_0 = (cd8==0)

. gen byte cd8_1 = (cd8==1)

. exlogistic hiv cd4_0 cd4_1 cd8_0 cd8_1, terms(cd4=cd4_0 cd4_1,
> cd8=cd8_0 cd8_1) binomial(n) test(probability) saving(dist) nolog
note: saving distribution to file dist.dta
note: CMLE estimate for cd4_0 is +inf; computing MUE
note: CMLE estimate for cd4_1 is +inf; computing MUE
note: CMLE estimate for cd8_0 is -inf; computing MUE
note: CMLE estimate for cd8_1 is -inf; computing MUE

Exact logistic regression Number of obs = 47
Binomial variable: n Model prob. = 3.19e-06

Pr <= prob. = 0.0011

hiv Odds Ratio Prob. Pr<=Prob. [95% Conf. Interval]

cd4 .0007183 0.0055
cd4_0 18.82831* .007238 0.0072 1.714079 +Inf
cd4_1 11.53732* .0063701 0.0105 1.575285 +Inf

cd8 .0053212 0.0323
cd8_0 .1056887* .0289948 0.0290 0 1.072531
cd8_1 .0983388* .0241503 0.0242 0 .9837203

(*) median unbiased estimates (MUE)

. matrix list e(sufficient)

e(sufficient)[1,4]
cd4_0 cd4_1 cd8_0 cd8_1

r1 5 8 6 4

. display e(n_possible)
1091475

Here we used terms() to specify two terms in the model, cd4 and cd8, that make up the cd4 and cd8
indicator variables. By doing so, we obtained a conditional probabilities test for cd4, simultaneously
testing both cd4 0 and cd4 1, and for cd8, simultaneously testing both cd8 0 and cd8 1. The
significance levels for the two terms are 0.0055 and 0.0323, respectively.
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This example also illustrates instances where the dependent variable is completely determined by
the independent variables and CMLEs are infinite. If we try to obtain MLEs, logistic will drop each
variable and then terminate with a no-data error, error number 2000.

. use http://www.stata-press.com/data/r12/hiv_n, clear
(prospective study of perinatal infection of HIV-1; binomial form)

. gen byte cd4_0 = (cd4==0)

. gen byte cd4_1 = (cd4==1)

. gen byte cd8_0 = (cd8==0)

. gen byte cd8_1 = (cd8==1)

. expand n
(39 observations created)

. logistic hiv cd4_0 cd4_1 cd8_0 cd8_1
note: cd4_0 != 0 predicts success perfectly

cd4_0 dropped and 8 obs not used

note: cd4_1 != 0 predicts success perfectly
cd4_1 dropped and 21 obs not used

note: cd8_0 != 0 predicts failure perfectly
cd8_0 dropped and 2 obs not used

outcome = cd8_1 <= 0 predicts data perfectly
r(2000);

In the previous example, exlogistic generated the joint conditional distribution of Tcd4 0, Tcd4 1,
Tcd8 0, and Tcd8 1 given M = 14 (the number of individuals that tested positive), and for reference,
we listed the observed sufficient statistics that are stored in the matrix e(sufficient). Below we
take that distribution and further condition on Tcd4 1 = 8, Tcd8 0 = 6, and Tcd8 1 = 4, giving the
conditional distribution of Tcd4 0. Here we see that the observed sufficient statistic Tcd4 0 = 5 is last
in the sorted listing or, equivalently, Tcd4 0 is at the domain boundary of the conditional probability
distribution. When this occurs, the conditional probability distribution is monotonically increasing in
βcd4 0 and a maximum does not exist.

. use dist, clear

. keep if cd4_1==8 & cd8_0==6 & cd8_1==4
(4139 observations deleted)

. list, sep(0)

_f_ cd4_0 cd4_1 cd8_0 cd8_1

1. 1668667 0 8 6 4
2. 18945542 1 8 6 4
3. 55801053 2 8 6 4
4. 55867350 3 8 6 4
5. 17423175 4 8 6 4
6. 1091475 5 8 6 4

When the CMLEs are infinite, the MUEs are computed (Hirji, Tsiatis, and Mehta 1989). For the cd4 0

estimate, we compute the value βcd4 0 such that

Pr(Tcd4 0 ≥ 5 | βcd4 0 = βcd4 0, Tcd4 1 = 8, Tcd8 0 = 6, Tcd8 1 = 4,M = 14) = 1/2

using (1) in Methods and formulas.
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The output is in agreement with example 1: there is an increase in risk of HIV infection for a CD4
blood serum level of 0 relative to a level of 2 and for a level of 1 relative to a level of 2; there is a
decrease in risk of HIV infection for a CD8 blood serum level of 0 relative to a level of 2 and for a
level of 1 relative to a level of 2.

We also displayed e(n possible). This is the combinatorial coefficient associated with the
observed sufficient statistics. The same value is found in the f variable of the conditional distribution

dataset listed above. The size of the distribution is
(

47
14

)
= 341,643,774,795. This can be verified

by summing the f variable of the generated conditional distribution dataset.

. use dist, clear

. summarize _f_, meanonly

. di %15.1f r(sum)
341643774795.0

Example 3

One can think of exact logistic regression as a covariate-adjusted exact binomial. To demonstrate
this point, we will use exlogistic to compute a binomial confidence interval for m successes of
n trials, by fitting the constant-only model, and we will compare it with the confidence interval
computed by ci (see [R] ci). We will use the saving() option to retain the dataset containing the
feasible values for the constant term sufficient statistic, namely, the number of successes, m, given

n trials and their associated combinatorial coefficients
(
n

m

)
, m = 0, 1, . . . , n.

. input y

y
1. 1
2. 0
3. 1
4. 0
5. 1
6. 1
7. end

. ci y, binomial

Binomial Exact
Variable Obs Mean Std. Err. [95% Conf. Interval]

y 6 .6666667 .1924501 .2227781 .9567281

. exlogistic y, estconstant nolog coef saving(binom)
note: saving distribution to file binom.dta

Exact logistic regression
Number of obs = 6

y Coef. Suff. 2*Pr(Suff.) [95% Conf. Interval]

_cons .6931472 4 0.6875 -1.24955 3.096017

We use the postestimation program estat predict to transform the estimated constant term and its
confidence bounds by using the inverse logit function, invlogit() (see [D] functions). The standard
error for the estimated probability is computed using the delta method.
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. estat predict

y Predicted Std. Err. [95% Conf. Interval]

Probability 0.6667 0.1925 0.2228 0.9567

. use binom, replace

. list, sep(0)

_f_ _cons_

1. 1 0
2. 6 1
3. 15 2
4. 20 3
5. 15 4
6. 6 5
7. 1 6

Examining the listing of the generated data, the values contained in the variable cons are the

feasible values of M , and the values contained in the variable f are the binomial coefficients
(

6
m

)
with total

6∑
m=0

(
6
m

)
= 26 = 64. In the coefficient table, the sufficient statistic for the constant term,

labeled Suff., is m = 4. This value is located at record 5 of the dataset. Therefore, the two-tailed
probability of the sufficient statistic is computed as 0.6875 = 2(15 + 6 + 1)/64.

The constant term is the value of θ that maximizes the probability of observing M = 4; see (1)
of Methods and formulas:

Pr(M = 4|θ) =
15e4α

1 + 6eα + 15e2α + 20e3α + 15e4α + 6e5α + e6α

The maximum is at the value θ = log 2, which is demonstrated in the figure below.
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The lower and upper confidence bounds are the values of θ such that Pr(M ≥ 4|θ) = 0.025
and Pr(M ≤ 4|θ) = 0.025, respectively. These probabilities are plotted in the figure below for
θ ∈ [−2, 4].
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Example 4

This example demonstrates the group() option, which allows the analysis of stratified data. Here
the logistic model is

log
(

πik
1− πik

)
= θk + xkiβ

where k indexes the s strata, k = 1, . . . , s, and θk is the strata-specific constant term whose sufficient
statistic is Mk =

∑nk
i=1 Yki.

Mehta and Patel (1995) use a case–control study to demonstrate this model, which is useful in
comparing the estimates from exlogistic and clogit. This study was intended to determine the role
of birth complications in people with schizophrenia (Garsd 1988). Siblings from seven families took
part in the study, and each individual was classified as normal or schizophrenic. A birth complication
index is recorded for each individual that ranges from 0, an uncomplicated birth, to 15, a very
complicated birth. Some of the frequencies contained in variable f are greater than 1, and these count
different births at different times where the individual has the same birth complications index, found
in variable BCindex.
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. use http://www.stata-press.com/data/r12/schizophrenia, clear
(case-control study on birth complications for people with schizophrenia)

. list, sepby(family)

family BCindex schizo f

1. 1 6 0 1
2. 1 7 0 1
3. 1 3 0 2
4. 1 2 0 3
5. 1 5 0 1
6. 1 0 0 1
7. 1 15 1 1

8. 2 2 1 1
9. 2 0 0 1

10. 3 2 0 1
11. 3 9 1 1
12. 3 1 0 1

13. 4 2 1 1
14. 4 0 0 4

15. 5 3 1 1
16. 5 6 0 1
17. 5 0 1 1

18. 6 3 0 1
19. 6 0 1 1
20. 6 0 0 2

21. 7 2 0 1
22. 7 6 1 1

. exlogistic schizo BCindex [fw=f], group(family) test(score) coef

Enumerating sample-space combinations:
observation 1: enumerations = 2
observation 2: enumerations = 3
observation 3: enumerations = 4
observation 4: enumerations = 5
observation 5: enumerations = 6

(output omitted )
observation 21: enumerations = 72
observation 22: enumerations = 40

Exact logistic regression Number of obs = 29
Group variable: family Number of groups = 7

Obs per group: min = 2
avg = 4.1
max = 10

Model score = 6.32803
Pr >= score = 0.0167

schizo Coef. Score Pr>=Score [95% Conf. Interval]

BCindex .3251178 6.328033 0.0167 .0223423 .7408832
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The asymptotic alternative for this model can be estimated using clogit (equivalently, xtlogit,
fe) and is listed below for comparison. We must expand the data because clogit will not accept
frequency weights if they are not constant within the groups.

. expand f
(7 observations created)

. clogit schizo BCindex, group(family) nolog
note: multiple positive outcomes within groups encountered.

Conditional (fixed-effects) logistic regression Number of obs = 29
LR chi2(1) = 5.20
Prob > chi2 = 0.0226

Log likelihood = -6.2819819 Pseudo R2 = 0.2927

schizo Coef. Std. Err. z P>|z| [95% Conf. Interval]

BCindex .3251178 .1678981 1.94 0.053 -.0039565 .654192

Both techniques compute the same regression estimate for the BCindex, which might not be too
surprising because both estimation techniques condition on the total number of successes in each group.
The difference lies in the p-values and confidence intervals. The p-value testing H0 : βBCindex = 0
is approximately 0.0167 for the exact conditional scores test and 0.053 for the asymptotic Wald test.
Moreover, the exact confidence interval is asymmetric about the estimate and does not contain zero.

Technical note
The memory(#) option limits the amount of memory that exlogistic will consume when

computing the conditional distribution of the parameter sufficient statistics. memory() is independent
of the data maximum memory setting (see set max memory in [D] memory), and it is possible
for exlogistic to exceed the memory limit specified in set max memory without terminating.
By default, a log is provided that displays the number of enumerations (the size of the conditional
distribution) after processing each observation. Typically, you will see the number of enumerations
increase, and then at some point they will decrease as the multivariate shift algorithm (Hirji, Mehta,
and Patel 1987) determines that some of the enumerations cannot achieve the observed sufficient
statistics of the conditioning variables. When the algorithm is complete, however, it is necessary
to store the conditional distribution of the parameter sufficient statistics as a dataset. It is possible,
therefore, to get a memory error when the algorithm has completed if there is not enough memory
to store the conditional distribution.

Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, exlogistic
will make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is
used. Be careful if you use recast to promote a single-precision variable to double precision (see
[D] recast). You might try listing the data in full precision (maybe %20.15g; see [D] format) to make
sure that this is really what you want. See [D] data types for information on precision of numeric
storage types.
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Saved results
exlogistic saves the following in e():

Scalars
e(N) number of observations
e(k groups) number of groups
e(n possible) number of distinct possible outcomes where sum(sufficient) equals observed

e(sufficient)
e(n trials) binomial number-of-trials parameter
e(sum y) sum of depvar
e(k indvars) number of independent variables
e(k terms) number of model terms
e(k condvars) number of conditioning variables
e(condcons) conditioned on the constant(s) indicator
e(midp) mid-p-value rule indicator
e(eps) relative difference tolerance

Macros
e(cmd) exlogistic
e(cmdline) command as typed
e(title) title in estimation output
e(depvar) name of dependent variable
e(indvars) independent variables
e(condvars) conditional variables
e(groupvar) group variable
e(binomial) binomial number-of-trials variable
e(level) confidence level
e(wtype) weight type
e(wexp) weight expression
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE
e(se) e(b) standard errors (CMLEs only)
e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group
e(sufficient) sufficient statistics for e(b)
e(p sufficient) p-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars
e(p scoretest) p-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars
e(p probtest) p-value for e(probtest)
e(scoretest m) conditional scores tests for model terms
e(p scoretest m) p-value for e(scoretest m)
e(probtest m) conditional probabilities tests for model terms
e(p probtest m) p-value for e(probtest m)

Functions
e(sample) marks estimation sample

Methods and formulas
exlogistic is implemented as an ado-file.
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Methods and formulas are presented under the following headings:
Sufficient statistics
Conditional distribution and CMLE
Median unbiased estimates and exact CI
Conditional hypothesis tests
Sufficient-statistic p-value

Sufficient statistics
Let {Y1, Y2, . . . , Yn} be a set of n independent Bernoulli random variables, each of which can

realize two outcomes, {0, 1}. For each i = 1, . . . , n, we observe Yi = yi, and associated with each
observation is the covariate row vector of length p, xi = (xi1, . . . , xip). Denote β = (β1, . . . , βp)T to
be the column vector of regression parameters and θ to be the constant. The sufficient statistic for βj is
Tj =

∑n
i=1 Yixij , j = 1, . . . , p, and for θ is M =

∑n
i=1 Yi. We observe Tj = tj , tj =

∑n
i=1 yixij ,

and M = m, m =
∑n
i=1 yi. The probability of observing (Y1 = y1, Y2 = y2, . . . , Yn = yn) is

Pr(Y1 = y1, . . . , Yn = yn | β,X) =
exp(mθ + tβ)∏n

i=1{1 + exp(θ + xiβ)}

where t = (t1, . . . , tp) and X = (xT1 , . . . ,x
T
n )T .

The joint distribution of the sufficient statistics T is obtained by summing over all possible binary
sequences Y1, . . . , Yn such that T = t and M = m. This probability function is

Pr(T1 = t1, . . . , Tp = tp,M = m | β,X) =
c(t,m) exp(mθ + tβ)∏n
i=1{1 + exp(θ + xiβ)}

where c(t,m) is the combinatorial coefficient of (t,m) or the number of distinct binary sequences
Y1, . . . , Yn such that T = t and M = m (Cox and Snell 1989).

Conditional distribution and CMLE
Without loss of generality, we will restrict our discussion to computing the CMLE of β1. If we

condition on observing M = m and T2 = t2, . . . , Tp = tp, the probability function of (T1 | β1, T2 =
t2, . . . , Tp = tp,M = m) is

Pr(T1 = t1 | β1, T2 = t2, . . . , Tp = tp,M = m) =
c(t,m)et1β1∑

u c(u, t2, . . . , tp,m)euβ1
(1)

where the sum in the denominator is over all possible values of T1 such that M = m and
T2 = t2, . . . , Tp = tp and c(u, t2, . . . , tp,m) is the combinatorial coefficient of (u, t2, . . . , tp,m)
(Cox and Snell 1989). The CMLE for β1 is the value β̂1 that maximizes the log of (1). This optimization
task is carried out by ml, using the conditional frequency distribution of (T1 | T2 = t2, . . . , Tp =
tp,M = m) as a dataset. Generating the joint conditional distribution is efficiently computed using
the multivariate shift algorithm described by Hirji, Mehta, and Patel (1987).

Difficulties in computing β̂1 arise if the observed (T1 = t1, . . . , Tp = tp,M = m) lies on
the boundaries of the distribution of (T1 | T2 = t2, . . . , Tp = tp,M = m), where the conditional
probability function is monotonically increasing (or decreasing) in β1. Here the CMLE is plus infinity if
it is on the upper boundary, Pr(T1 ≤ t1| T2 = t2, . . . , Tp = tp,M = m) = 1, and is minus infinity
if it is on the lower boundary of the distribution, Pr(T1 ≥ t1| T2 = t2, . . . , Tp = tp,M = m) = 1.
This concept is demonstrated in example 2. When infinite CMLEs occur, the MUE is computed.
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Median unbiased estimates and exact CI
The MUE is computed using the technique outlined by Hirji, Tsiatis, and Mehta (1989). First, we

find the values of β(u)
1 and β(l)

1 such that

Pr(T1 ≤ t1 | β1 = β
(u)
1 , T2 = t2, . . . , Tp = tp,M = m) =

Pr(T1 ≥ t1 | β1 = β
(l)
1 , T2 = t2, . . . , Tp = tp,M = m) = 1/2

(2)

The MUE is then β1 =
(
β

(l)
1 + β

(u)
1

)
/2. However, if T1 is equal to the minimum of the domain of

the conditional distribution, β(l) does not exist and β1 = β(u). If T1 is equal to the maximum of the
domain of the conditional distribution, β(u) does not exist and β1 = β(l).

Confidence bounds for β are computed similarly, except that we substitute α/2 for 1/2 in (2),
where 1− α is the confidence level. Here β(l)

1 would then be the lower confidence bound and β(u)
1

would be the upper confidence bound (see example 3).

Conditional hypothesis tests

To test H0: β1 = 0 versus H1 : β1 6= 0, we obtain the exact p-value from
∑
u∈E f1(u)−f1(t1)/2

if the mid-p-value rule is used and
∑
u∈E f1(u) otherwise. Here E is a critical region, and we define

f1(u) = Pr(T1 = u | β1 = 0, T2 = t2, . . . , Tp = tp,M = m) for ease of notation. There are two
popular ways to define the critical region: the conditional probabilities test and the conditional scores
test (Mehta and Patel 1995). The critical region when using the conditional probabilities test is all
values of the sufficient statistic for β1 that have a probability less than or equal to that of the observed
t1, Ep = {u : f1(u) ≤ f1(t1)}. The critical region of the conditional scores test is defined as all
values of the sufficient statistic for β1 such that its score is greater than or equal to that of t1,

Es =
{
u : (u− µ1)2/σ2

1 ≥ (t1 − µ1)2/σ2
1)
}

Here µ1 and σ2
1 are the mean and variance of (T1 | β1 = 0, T2 = t2, . . . , Tp = tp,M = m).

The score statistic is defined as

{
∂`(β)
∂β

}2 [
−E

{
∂2`(β)
∂β2

}]−1

evaluated at H0: β = 0, where ` is the log of (1). The score test simplifies to (t−E [T |β])2/var(T |β)
(Hirji 2006), where the mean and variance are computed from the conditional distribution of the
sufficient statistic with β = 0 and t is the observed sufficient statistic.

Sufficient-statistic p-value

The p-value for testing H0 : β1 = 0 versus the two-sided alternative when (T1 = t1|T2 =
t2, . . . , Tp = tp) is computed as 2×min(pl, pu), where

pl =

∑
u≤t1 c(u, t2, . . . , tp,m)∑
u c(u, t2, . . . , tp,m)

pu =

∑
u≥t1 c(u, t2, . . . , tp,m)∑
u c(u, t2, . . . , tp,m)

It is the probability of observing a more extreme T1.
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Also see
[R] exlogistic postestimation — Postestimation tools for exlogistic

[R] binreg — Generalized linear models: Extensions to the binomial family

[R] clogit — Conditional (fixed-effects) logistic regression

[R] expoisson — Exact Poisson regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[U] 20 Estimation and postestimation commands



Title

exlogistic postestimation — Postestimation tools for exlogistic

Description
The following postestimation commands are of special interest after exlogistic:

Command Description

estat predict single-observation prediction
estat se report ORs or coefficients and their asymptotic standard errors

For information about these commands, see below.

The following standard postestimation command is also available:

Command Description

estat summarize estimation sample summary

estat summarize is not allowed if the binomial() option was specified in exlogistic.

See [R] estat for details.

Special-interest postestimation commands

estat predict computes a predicted probability (or linear predictor), its asymptotic standard
error, and its exact confidence interval for 1 observation. Predictions are carried out by estimating the
constant coefficient after shifting the independent variables and conditioned variables by the values
specified in the at() option or by their medians. Therefore, predictions must be done with the
estimation sample in memory. If a different dataset is used or if the dataset is modified, then an error
will result.

estat se reports odds ratio or coefficients and their asymptotic standard errors. The estimates are
stored in the matrix r(estimates).

Syntax for estat predict

estat predict
[
, options

]
options Description

pr probability; the default
xb linear effect
at(atspec) use the specified values for the indepvars and condvars()

level(#) set confidence level for the predicted value; default is level(95)

memory(#
[
b | k | m | g

]
) set limit on memory usage; default is memory(10m)

nolog do not display the enumeration log

These statistics are available only for the estimation sample.

525
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for estat predict
pr, the default, calculates the probability.

xb calculates the linear effect.

at(varname = #
[ [

varname = #
] [

. . .
] ]
) specifies values to use in computing the predicted

value. Here varname is one of the independent variables, indepvars, or the conditioned variables,
condvars(). The default is to use the median of each independent and conditioned variable.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

memory(#
[
b | k | m | g

]
) sets a limit on the amount of memory estat predict can use when

generating the conditional distribution of the constant parameter sufficient statistic. The default is
memory(10m), where m stands for megabyte, or 1,048,576 bytes. The following are also available:
b stands for byte; k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte,
which is equal to 1,024 megabytes. The minimum setting allowed is 1m and the maximum is 512m
or 0.5g, but do not attempt to use more memory than is available on your computer. Also see
Remarks in [R] exlogistic for details on enumerating the conditional distribution.

nolog prevents the display of the enumeration log. By default, the enumeration log is displayed
showing the progress of enumerating the distribution of the observed successes conditioned on the
independent variables shifted by the values specified in at() (or by their medians). See Methods
and formulas in [R] exlogistic for details of the computations.

Syntax for estat se
estat se

[
, coef

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat se
coef requests that the estimated coefficients and their asymptotic standard errors be reported. The

default is to report the odds ratios and their asymptotic standard errors.

Remarks
Predictions must be done using the estimation sample. This is because the prediction is really an

estimated constant coefficient (the intercept) after shifting the independent variables and conditioned
variables by the values specified in at() or by their medians. The justification for this approach can
be seen by rewriting the model as

log
(

πi
1− πi

)
= (α+ x0β) + (xi − x0)β
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where x0 are the specified values for the indepvars (Mehta and Patel 1995). Because the estimation
of the constant term is required, this technique is not appropriate for stratified models that used the
group() option.

Example 1

To demonstrate, we return to the example 2 in [R] exlogistic using data from a prospective study
of perinatal infection and HIV-1. Here there was an investigation into whether the blood serum levels
of CD4 and CD8 measured in infants at 6 months of age might predict their development of HIV
infection. The blood serum levels are coded as ordinal values 0, 1, and 2. These data are used by
Mehta and Patel (1995) as an exposition of exact logistic.

. use http://www.stata-press.com/data/r12/hiv_n
(prospective study of perinatal infection of HIV-1; binomial form)

. gen byte cd4_0 = (cd4==0)

. gen byte cd4_1 = (cd4==1)

. gen byte cd8_0 = (cd8==0)

. gen byte cd8_1 = (cd8==1)

. exlogistic hiv cd4_0 cd4_1 cd8_0 cd8_1, terms(cd4=cd4_0 cd4_1,
> cd8=cd8_0 cd8_1) binomial(n) test(probability) saving(dist, replace)

(output omitted )
. estat predict

Enumerating sample-space combinations:
observation 1: enumerations = 3
observation 2: enumerations = 12
observation 3: enumerations = 5
observation 4: enumerations = 5
observation 5: enumerations = 5
observation 6: enumerations = 35
observation 7: enumerations = 15
observation 8: enumerations = 15
observation 9: enumerations = 9
observation 10: enumerations = 9
observation 11: enumerations = 5
observation 12: enumerations = 18
note: CMLE estimate for _cons is -inf; computing MUE

Predicted value at cd4_0 = 0, cd4_1 = 0, cd8_0 = 0, cd8_1 = 1

hiv Predicted Std. Err. [95% Conf. Interval]

Probability 0.0390* N/A 0.0000 0.1962

(*) identifies median unbiased estimates (MUE); because an MUE
is computed, there is no SE estimate

Because we did not specify values by using the at() option, the median values of the indepvars
are used for the prediction. By default, medians are used instead of means because we want to use
values that are observed in the dataset. If the means of the binary variables cd4 0–cd8 1 were
used, we would have created floating point variables in (0, 1) that not only do not properly represent
the indicator variables but also would be a source of computational inefficiency in generating the
conditional distribution. Because the MUE is computed for the predicted value, there is no standard-error
estimate.

From the example discussions in [R] exlogistic, the infants at highest risk are those with a CD4
level of 0 and a CD8 level of 2. Below we use the at() option to make a prediction at these blood
serum levels.
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. estat predict, at(cd4_0=1 cd4_1=0 cd8_0=0 cd8_1=0) nolog
note: CMLE estimate for _cons is +inf; computing MUE

Predicted value at cd4_0 = 1, cd4_1 = 0, cd8_0 = 0, cd8_1 = 0

hiv Predicted Std. Err. [95% Conf. Interval]

Probability 0.9063* N/A 0.4637 1.0000

(*) identifies median unbiased estimates (MUE); because an MUE
is computed, there is no SE estimate

Saved results
estat predict saves the following in r():

Scalars
r(imue) 1 if r(pred) is an MUE and 0 if a CMLE
r(pred) estimated probability or the linear effect
r(se) asymptotic standard error of r(pred)

Macros
r(estimate) prediction type: pr or xb
r(level) confidence level

Matrices
r(ci) confidence interval
r(x) indepvars and condvars() values

Methods and formulas
All postestimation commands listed above are implemented as ado-files using Mata.

Reference
Mehta, C. R., and N. R. Patel. 1995. Exact logistic regression: Theory and examples. Statistics in Medicine 14:

2143–2160.

Also see
[R] exlogistic — Exact logistic regression

[U] 20 Estimation and postestimation commands



Title

expoisson — Exact Poisson regression

Syntax
expoisson depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

condvars(varlist) condition on variables in varlist
group(varname) groups/strata are stratified by unique values of varname
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1

Options

memory(#
[
b | k | m | g

]
) set limit on memory usage; default is memory(25m)

saving(filename) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
test(testopt) report significance of observed sufficient statistic, conditional scores test,

or conditional probabilities test
mue(varlist) compute the median unbiased estimates for varlist
midp use the mid-p-value rule
nolog do not display the enumeration log

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Exact statistics > Exact Poisson regression

Description
expoisson fits an exact Poisson regression model of depvar on indepvars. Exact Poisson regression

is an alternative to standard maximum-likelihood–based Poisson regression (see [R] poisson) that
offers more accurate inference in small samples because it does not depend on asymptotic results.
For stratified data, expoisson is an alternative to fixed-effects Poisson regression (see xtpoisson,
fe in [XT] xtpoisson); like fixed-effects Poisson regression, exact Poisson regression conditions on
the number of events in each stratum.

Exact Poisson regression is computationally intensive, so if you have regressors whose parameter
estimates are not of interest (that is, nuisance parameters), you should specify those variables in the
condvars() option instead of in indepvars.
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Options� � �
Model �

condvars(varlist) specifies variables whose parameter estimates are not of interest to you. You
can save substantial computer time and memory by moving such variables from indepvars to
condvars(). Understand that you will get the same results for x1 and x3 whether you type

. expoisson y x1 x2 x3 x4

or
. expoisson y x1 x3, condvars(x2 x4)

group(varname) specifies the variable defining the strata, if any. A constant term is assumed for
each stratum identified in varname, and the sufficient statistics for indepvars are conditioned on
the observed number of successes within each group (as well as other variables in the model).
The group variable must be integer valued.

exposure(varnamee), offset(varnameo); see [R] estimation options.� � �
Options �

memory(#
[
b | k | m | g

]
) sets a limit on the amount of memory expoisson can use when computing

the conditional distribution of the parameter sufficient statistics. The default is memory(25m),
where m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for
byte; k stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is
equal to 1,024 megabytes. The minimum setting allowed is 1m and the maximum is 2048m or
2g, but do not attempt to use more memory than is available on your computer. Also see the first
technical note under example 3 on counting the conditional distribution.

saving(filename
[
, replace

]
) saves the joint conditional distribution for each independent variable

specified in indepvars. There is one file for each variable, and it is named using the prefix filename
with the variable name appended. For example, saving(mydata) with an independent variable
named X would generate a data file named mydata X.dta. Use replace to replace an existing
file. Each file contains the conditional distribution for one of the independent variables specified in
indepvars conditioned on all other indepvars and those variables specified in condvars(). There
are two variables in each data file: the feasible sufficient statistics for the variable’s parameter and
their associated weights. The weights variable is named w .� � �

Reporting �
level(#); see [R] estimation options. The level(#) option will not work on replay because

confidence intervals are based on estimator-specific enumerations. To change the confidence level,
you must refit the model.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, exp(β) rather than β.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

test(sufficient | score | probability) reports the significance level of the observed suffi-
cient statistic, the conditional scores test, or the conditional probabilities test. The default is
test(sufficient). All the statistics are computed at estimation time, and each statistic may be
displayed postestimation; see [R] expoisson postestimation.

mue(varlist) specifies that median unbiased estimates (MUEs) be reported for the variables in varlist.
By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those
parameters for which the CMLEs are infinite. Specify mue( all) if you want MUEs for all the
indepvars.
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midp instructs expoisson to use the mid-p-value rule when computing the MUEs, significance levels,
and confidence intervals. This adjustment is for the discreteness of the distribution by halving
the value of the discrete probability of the observed statistic before adding it to the p-value. The
mid-p-value rule cannot be MUEs whose corresponding parameter CMLE is infinite.

nolog prevents the display of the enumeration log. By default, the enumeration log is displayed,
showing the progress of computing the conditional distribution of the sufficient statistics.

Remarks
Exact Poisson regression estimates the model parameters by using the conditional distributions

of the parameters’ sufficient statistics, and the resulting parameter estimates are known as CMLEs.
Exact Poisson regression is a small-sample alternative to the maximum-likelihood ML Poisson model.
See [R] poisson and [XT] xtpoisson to obtain maximum likelihood estimates (MLEs) for the Poisson
model and the fixed-effects Poisson model.

Let Yi denote a Poisson random variable where we observe the outcome Yi = yi, i = 1, . . . , n.
Associated with each independent observation is a 1 × p vector of covariates, xi. We will denote
µi = E [Yi | xi] and use the log linear model to model the relationship between Yi and xi,

log (µi) = θ + xiβ

where the constant term, θ, and the p × 1 vector of regression parameters, β, are unknown. The
probability of observing Yi = yi, i = 1, . . . , n, is

Pr(Y = y) =
n∏
i=1

µyii e
−µi

yi!

where Y = (Y1, . . . , Yn) and y = (y1, . . . , yn). The MLEs for θ and β maximize the log of this
function.

The sufficient statistics for θ and βj , j = 1, . . . , p, are M =
∑n
i=1 Yi and Tj =

∑n
i=1 Yixij ,

respectively, and we observe M = m and Tj = tj . expoisson tallies the conditional distribution
for each Tj , given the other sufficient statistics Tl = tl, l 6= j and M = m. Denote one of these
values to be t(k)

j , k = 1, . . . , N , with weight wk that accounts for all the generated Y vectors that

give rise to t(k)
j . The conditional probability of observing Tj = tj has the form

Pr(Tj = tj | Tl = tl, l 6= j,M = m) =
w etjβj∑
k wke

t
(k)
j
βj

(1)

where the sum is over the subset of T vectors such that (T (k)
1 = t1, . . . , T

(k)
j = t

(k)
j , . . . , T

(k)
p = tp)

and w is the weight associated with the observed t. The CMLE for βj maximizes the log of this
function.

Specifying nuisance variables in condvars() prevents expoisson from estimating their associated
regression coefficients. These variables are still conditional variables when tallying the conditional
distribution for the variables in indepvars.

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may
not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional
distribution of the sufficient statistics outlined above.
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For small datasets, the dependent variable can be completely determined by the data. Here the MLEs
and the CMLEs are unbounded. When this occurs, expoisson will compute the MUE, the regression
estimate that places the observed sufficient statistic at the median of the conditional distribution.

See [R] exlogistic for a more thorough discussion of exact estimation and related statistics.

Example 1

Armitage, Berry, and Matthews (2002, 499–501) fit a log-linear model to data containing the
number of cerebrovascular accidents experienced by 41 men during a fixed period, each of whom
had recovered from a previous cerebrovascular accident and was hypertensive. Sixteen men received
treatment, and in the original data, there are three age groups (40–49, 50–59, ≥60), but we pool the
first two age groups to simplify the example. Armitage, Berry, and Matthews point out that this was
not a controlled trial, but the data are useful to inquire whether there is evidence of fewer accidents
for the treatment group and if age may be an important factor. The dependent variable count contains
the number of accidents, variable treat is an indicator for the treatment group (1 = treatment, 0 =
control), and variable age is an indicator for the age group (0 = 40−59; 1 = ≥60).

First, we load the data, list it, and tabulate the cerebrovascular accident counts by treatment and
age group.

. use http://www.stata-press.com/data/r12/cerebacc
(cerebrovascular accidents in hypotensive-treated and control groups)

. list

treat count age

1. control 0 40/59
2. control 0 >=60
3. control 1 40/59
4. control 1 >=60
5. control 2 40/59

6. control 2 >=60
7. control 3 40/59

(output omitted )
35. treatment 0 40/59

36. treatment 0 40/59
37. treatment 0 40/59
38. treatment 0 40/59
39. treatment 1 40/59
40. treatment 1 40/59

41. treatment 1 40/59

. tabulate treat age [fw=count]

hypotensive
drug age group

treatment 40/59 >=60 Total

control 15 10 25
treatment 4 0 4

Total 19 10 29

Next we estimate the CMLE with expoisson and, for comparison, the MLE with poisson.
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. expoisson count treat age

Estimating: treat
Enumerating sample-space combinations:
observation 1: enumerations = 11
observation 2: enumerations = 11
observation 3: enumerations = 11

(output omitted )
observation 39: enumerations = 410
observation 40: enumerations = 410
observation 41: enumerations = 30

Estimating: age
Enumerating sample-space combinations:
observation 1: enumerations = 5
observation 2: enumerations = 15
observation 3: enumerations = 15

(output omitted )
observation 39: enumerations = 455
observation 40: enumerations = 455
observation 41: enumerations = 30

Exact Poisson regression
Number of obs = 41

count Coef. Suff. 2*Pr(Suff.) [95% Conf. Interval]

treat -1.594306 4 0.0026 -3.005089 -.4701708
age -.5112067 10 0.2794 -1.416179 .3429232

. poisson count treat age, nolog

Poisson regression Number of obs = 41
LR chi2(2) = 10.64
Prob > chi2 = 0.0049

Log likelihood = -38.97981 Pseudo R2 = 0.1201

count Coef. Std. Err. z P>|z| [95% Conf. Interval]

treat -1.594306 .5573614 -2.86 0.004 -2.686714 -.5018975
age -.5112067 .4043525 -1.26 0.206 -1.303723 .2813096

_cons .233344 .2556594 0.91 0.361 -.2677391 .7344271

expoisson generates an enumeration log for each independent variable in indepvars. The con-
ditional distribution of the parameter sufficient statistic is tallied for each independent variable. The
conditional distribution for treat, for example, has 30 records containing the weights, wk, and
feasible sufficient statistics, t(k)

treat. In essence, the set of points (wk, t
(k)
treat), k = 1, . . . , 30, tallied by

expoisson now become the data to estimate the regression coefficient for treat, using (1) as the
likelihood. Remember that one of the 30 (wk, t

(k)
treat) must contain the observed sufficient statistic,

ttreat =
∑41
i=1 treati × counti = 4, and its relative position in the sorted set of points (sorted by

t
(k)
treat) is how the sufficient-statistic significance is computed. This algorithm is repeated for the age

variable.

The regression coefficients for treat and age are numerically identical for both Poisson models.
Both models indicate that the treatment is significant at reducing the rate of cerebrovascular accidents,
≈ e−1.59 ≈ 0.204, or a reduction of about 80%. There is no significant age effect.

The p-value for the treatment regression-coefficient sufficient statistic indicates that the treatment
effect is a bit more significant than for the corresponding asymptotic Z statistic from poisson.
However, the exact confidence intervals are wider than their asymptotic counterparts.
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Example 2

Agresti (2002) used the data from Laird and Olivier (1981) to demonstrate the Poisson model
for modeling rates. The data consist of patient survival after heart valve replacement operations. The
sample consists of 109 patients that are classified by type of heart valve (aortic, mitral) and by age
(<55, ≥55). Follow-up observations cover lengths from 3 to 97 months, and the time at risk, or
exposure, is stored in the variable TAR. The response is whether the subject died. First, we take a
look at the data and then estimate the incidence rates (IRs) with expoisson and poisson.

. use http://www.stata-press.com/data/r12/heartvalve
(heart valve replacement data)

. list

age valve deaths TAR

1. < 55 aortic 4 1259
2. < 55 mitral 1 2082
3. >= 55 aortic 7 1417
4. >= 55 mitral 9 1647

The age variable is coded 0 for age <55 and 1 for age ≥55, and the valve variable is coded 0 for
the aortic valve and 1 for the mitral valve. The total number of deaths, M = 21, is small enough that
enumerating the conditional distributions for age and valve type is feasible and asymptotic inferences
associated with standard ML Poisson regression may be questionable.

. expoisson deaths age valve, exposure(TAR) irr

Estimating: age
Enumerating sample-space combinations:
observation 1: enumerations = 11
observation 2: enumerations = 11
observation 3: enumerations = 132
observation 4: enumerations = 22

Estimating: valve
Enumerating sample-space combinations:
observation 1: enumerations = 17
observation 2: enumerations = 17
observation 3: enumerations = 102
observation 4: enumerations = 22

Exact Poisson regression
Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% Conf. Interval]

age 3.390401 16 0.0194 1.182297 11.86935
valve .7190197 10 0.5889 .2729881 1.870068

ln(TAR) 1 (exposure)
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. poisson deaths age valve, exposure(TAR) irr nolog

Poisson regression Number of obs = 4
LR chi2(2) = 7.62
Prob > chi2 = 0.0222

Log likelihood = -8.1747285 Pseudo R2 = 0.3178

deaths IRR Std. Err. z P>|z| [95% Conf. Interval]

age 3.390401 1.741967 2.38 0.017 1.238537 9.280965
valve .7190197 .3150492 -0.75 0.452 .3046311 1.6971
_cons .0018142 .0009191 -12.46 0.000 .0006722 .0048968

ln(TAR) 1 (exposure)

The CMLE and the MLE are numerically identical. The death rate for the older age group is about
3.4 times higher than the younger age group, and this difference is significant at the 5% level. This
means that for every death in the younger group each month, we would expect about three deaths
in the older group. The IR estimate for valve type is approximately 0.72, but it is not significantly
different from one. The exact Poisson confidence intervals are a bit wider than the asymptotic CIs.

You can use ir (see [ST] epitab) to estimate IRs and exact CIs for one covariate, and we compare
these CIs with those from expoisson, where we estimate the incidence rate by using age only.

. ir deaths age TAR

age of patient
Exposed Unexposed Total

number of deaths 16 5 21
time at risk 3064 3341 6405

Incidence rate .0052219 .0014966 .0032787

Point estimate [95% Conf. Interval]

Inc. rate diff. .0037254 .00085 .0066007
Inc. rate ratio 3.489295 1.221441 12.17875 (exact)
Attr. frac. ex. .7134092 .1812948 .9178898 (exact)
Attr. frac. pop .5435498

(midp) Pr(k>=16) = 0.0049 (exact)
(midp) 2*Pr(k>=16) = 0.0099 (exact)

. expoisson deaths age, exposure(TAR) irr midp nolog

Exact Poisson regression
Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% Conf. Interval]

age 3.489295 16 0.0099 1.324926 10.64922
ln(TAR) 1 (exposure)

mid-p-value computed for the probabilities and CIs

Both ir and expoisson give identical IRs and p-values. Both report the two-sided exact significance
by using the mid-p-value rule that accounts for the discreteness in the distribution by subtracting p1/2 =
Pr(T = t)/2 from pl = Pr(T ≤ t) and pg = Pr(T ≥ t), computing 2×min(pl−p1/2, pg−p1/2).
By default, expoisson will not use the mid-p-value rule (when you exclude the midp option), and
here the two-sided exact significance would be 2×min(pl, pg) = 0.0158. The confidence intervals
differ because expoisson uses the mid-p-value rule when computing the confidence intervals, yet
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ir does not. You can verify this by executing expoisson without the midp option for this example;
you will get the same CIs as ir.

You can replay expoisson to view the conditional scores test or the conditional probabilities test
by using the test() option.

. expoisson, test(score) irr

Exact Poisson regression
Number of obs = 4

deaths IRR Score Pr>=Score [95% Conf. Interval]

age 3.489295 6.76528 0.0113 1.324926 10.64922
ln(TAR) 1 (exposure)

mid-p-value computed for the probabilities and CIs

All the statistics for expoisson are defined in Methods and formulas of [R] exlogistic. Apart
from enumerating the conditional distributions for the logistic and Poisson sufficient statistics, com-
putationally, the primary difference between exlogistic and expoisson is the weighting values in
the likelihood for the parameter sufficient statistics.

Example 3

In this example, we fabricate data that will demonstrate the difference between the CMLE and
the MUE when the CMLE is not infinite. A difference in these estimates will be more pronounced
when the probability of the coefficient sufficient statistic is skewed when plotted as a function of the
regression coefficient.

. clear

. input y x

y x
1. 0 2
2. 1 1
3. 1 0
4. 0 0
5. 0 .5
6. 1 .5
7. 2 .01
8. 3 .001
9. 4 .0001

10. end

. expoisson y x, test(score)
Enumerating sample-space combinations:
observation 1: enumerations = 13
observation 2: enumerations = 91
observation 3: enumerations = 169
observation 4: enumerations = 169
observation 5: enumerations = 313
observation 6: enumerations = 313
observation 7: enumerations = 1469
observation 8: enumerations = 5525
observation 9: enumerations = 5479

Exact Poisson regression
Number of obs = 9

y Coef. Score Pr>=Score [95% Conf. Interval]

x -1.534468 2.955316 0.0810 -3.761718 .0485548
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. expoisson y x, test(score) mue(x) nolog

Exact Poisson regression
Number of obs = 9

y Coef. Score Pr>=Score [95% Conf. Interval]

x -1.309268* 2.955316 0.0810 -3.761718 .0485548

(*) median unbiased estimates (MUE)

We observe (xi, yi), i = 1, . . . , 9. If we condition on m =
∑9
i=1 yi = 12, the conditional

distribution of Tx =
∑
i Yixi has a size of 5,479 elements. For each entry in this enumeration,

a realization of Yi = y
(k)
i , k = 1, . . . , 5,479, is generated such that

∑
i y

(k)
i = 12. One of these

realizations produces the observed tx =
∑
i yixi ≈1.5234.

Below is a graphical display comparing the CMLE with the MUE. We plot Pr(Tx = tx |M = 12, βx)
versus βx, −6 ≤ βx ≤ 1, in the upper panel and the cumulative probabilities, Pr(Tx ≤ tx | M =
12, βx) and Pr(Tx ≥ tx | M = 12, βx), in the lower panel.
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The location of the CMLE, indicated by the dashed line, is at the mode of the probability profile, and
the MUE, indicated by the dotted line, is to the right of the mode. If we solve for the β(u)

x and β(l)
x

such that Pr(Tx ≤ tx | M = 12, β(u)
x ) = 1/2 and Pr(Tx ≥ tx | M = 12, β(l)

x ) = 1/2, the MUE is
(β(u)
x + β

(l)
x )/2. As you can see in the lower panel, the MUE cuts through the intersection of these

cumulative probability profiles.
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Technical note
The memory(#) option limits the amount of memory that expoisson will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data
maximum memory setting (see set max memory in [D] memory), and it is possible for expoisson
to exceed the memory limit specified in set max memory without terminating. By default, a log
is provided that displays the number of enumerations (the size of the conditional distribution)
after processing each observation. Typically, you will see the number of enumerations increase,
and then at some point they will decrease as the multivariate shift algorithm (Hirji, Mehta, and
Patel 1987) determines that some of the enumerations cannot achieve the observed sufficient statistics
of the conditioning variables. When the algorithm is complete, however, it is necessary to store the
conditional distribution of the parameter sufficient statistics as a dataset. It is possible, therefore, to
get a memory error when the algorithm has completed if there is not enough memory to store the
conditional distribution.

Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, expoisson
will make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is
used. Be careful if you use recast to promote a single-precision variable to double precision (see
[D] recast). You might try listing the data in full precision (maybe %20.15g; see [D] format) to make
sure that this is really what you want. See [D] data types for information on precision of numeric
storage types.

Saved results
expoisson saves the following in e():
Scalars

e(N) number of observations
e(k groups) number of groups
e(relative weight) relative weight for the observed e(sufficient) and e(condvars)
e(sum y) sum of depvar
e(k indvars) number of independent variables
e(k condvars) number of conditioning variables
e(midp) mid-p-value rule indicator
e(eps) relative difference tolerance

Macros
e(cmd) expoisson
e(cmdline) command as typed
e(title) title in estimation output
e(depvar) name of dependent variable
e(indvars) independent variables
e(condvars) conditional variables
e(groupvar) group variable
e(exposure) exposure variable
e(offset) linear offset variable
e(level) confidence level
e(wtype) weight type
e(wexp) weight expression
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
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Matrices
e(b) coefficient vector
e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE
e(se) e(b) standard errors (CMLEs only)
e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group
e(N g) number of observations in each group
e(sufficient) sufficient statistics for e(b)
e(p sufficient) p-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars
e(p scoretest) p-values for e(scoretest)
e(probtest) conditional probability tests for indepvars
e(p probtest) p-value for e(probtest)

Functions
e(sample) marks estimation sample

Methods and formulas
expoisson is implemented as an ado-file.

Let {Y1, Y2, . . . , Yn} be a set of n independent Poisson random variables. For each i = 1, . . . , n,
we observe Yi = yi ≥ 0, and associated with each observation is the covariate row vector of length
p, xi = (xi1, . . . , xip). Denote β = (β1, . . . , βp)T to be the column vector of regression parameters
and θ to be the constant. The sufficient statistic for βj is Tj =

∑n
i=1 Yixij , j = 1, . . . , p, and for θ is

M =
∑n
i=1 Yi. We observe Tj = tj , tj =

∑n
i=1 yixij , and M = m, m =

∑n
i=1 yi. Let κi be the

exposure for the ith observation. Then the probability of observing (Y1 = y1, Y2 = y2, . . . , Yn = yn)
is

Pr(Y1 = y1, . . . , Yn = yn | β,X,κ) =
exp(mθ + tβ)

exp{
∑n
i=1 κi exp(θ + xiβ)}

n∏
i=1

κyii
yi!

where t = (t1, . . . , tp), X = (xT1 , . . . ,x
T
n )T , and κ = (κ1, . . . , κn)T .

The joint distribution of the sufficient statistics (T,M) is obtained by summing over all possible
sequences Y1 ≥ 0, . . . , Yn ≥ 0 such that T = t and M = m. This probability function is

Pr(T1 = t1, . . . , Tp = tp,M = m | β,X,κ) =
exp(mθ + tβ)

exp {
∑n
i=1 κi exp(θ + xiβ)}

(∑
u

n∏
i=1

κuii
ui!

)

where the sum
∑

u is over all nonnegative vectors u of length n such that
∑n
i=1 ui = m and∑n

i=1 uixi = t.

Conditional distribution

Without loss of generality, we will restrict our discussion to the conditional distribution of the
sufficient statistic for β1, T1. If we condition on observing M = m and T2 = t2, . . . , Tp = tp, the
probability function of (T1 | β1, T2 = t2, . . . , Tp = tp,M = m) is

Pr(T1 = t1 | β1, T2 = t2, . . . , Tp = tp,M = m) =

(∑
u

∏n
i=1

κ
ui
i

ui!

)
et1β1∑

v

(∏n
i=1

κ
vi
i

vi!

)
eβ1

∑
i
vixi1

(2)
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where the sum
∑

u is over all nonnegative vectors u of length n such that
∑n
i=1 ui = m and∑n

i=1 uixi = t, and the sum
∑

v is over all nonnegative vectors v of length n such that
∑n
i=1 vi = m,∑n

i=1 vixi2 = t2, . . . ,
∑n
i=1 vixip = tp. The CMLE for β1 is the value that maximizes the log of

(1). This optimization task is carried out by ml (see [R] ml), using the conditional distribution of
(T1 | T2 = t2, . . . , Tp = tp,M = m) as a dataset. This dataset consists of the feasible values and
weights for T1,{(

s1,

n∏
i=1

κvii
vi!

)
:
n∑
i=1

vi = m,

n∑
i=1

vixi1 = s1,

n∑
i=1

vixi2 = t2, . . . ,

n∑
i=1

vixip = tp

}

Computing the CMLE, MUE, confidence intervals, conditional hypothesis tests, and sufficient statistic
p-values is discussed in Methods and formulas of [R] exlogistic. The only difference between the
two techniques is the use of the weights; that is, the weights for exact logistic are the combinatorial
coefficients, c(t,m), in (1) of Methods and formulas in [R] exlogistic. expoisson and exlogistic
use the same ml likelihood evaluator to compute the CMLEs as well as the same ado-programs and
Mata functions to compute the MUEs and estimate statistics.
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Also see
[R] expoisson postestimation — Postestimation tools for expoisson

[R] poisson — Poisson regression

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands



Title

expoisson postestimation — Postestimation tools for expoisson

Description
The following postestimation command is of special interest after expoisson:

Command Description

estat se report coefficients or IRRs and their asymptotic standard errors

For information about this command, see below.

The following standard postestimation command is also available:

Command Description

estat summarize estimation sample summary

See [R] estat for details.

Special-interest postestimation command

estat se reports regression coefficients or incidence-rate asymptotic standard errors. The estimates
are stored in the matrix r(estimates).

Syntax for estat se

estat se
[
, irr

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat se
irr requests that the incidence-rate ratios and their asymptotic standard errors be reported. The default

is to report the coefficients and their asymptotic standard errors.

541
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Remarks

Example 1

To demonstrate estat se after expoisson, we use the British physicians smoking data.

. use http://www.stata-press.com/data/r12/smokes
(cigarette smoking and lung cancer among British physicians (45-49 years))

. expoisson cases smokes, exposure(peryrs) irr nolog

Exact Poisson regression
Number of obs = 7

cases IRR Suff. 2*Pr(Suff.) [95% Conf. Interval]

smokes 1.077718 797.4 0.0000 1.04552 1.111866
ln(peryrs) 1 (exposure)

. estat se, irr

cases IRR Std. Err.

smokes 1.077718 .0168547

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] expoisson — Exact Poisson regression

[U] 20 Estimation and postestimation commands



Title

fracpoly — Fractional polynomial regression

Syntax

Fractional polynomial regression

fracpoly
[
, fracpoly options

]
: regression cmd

[
yvar1

[
yvar2

] ]
xvar1

[
#
[

#. . .
] ] [

xvar2

[
#
[

#. . .
] ] ] [

. . .
] [

xvarlist
] [

if
] [

in
] [

weight
]

[
, regression cmd options

]
Display table showing the best fractional polynomial model for each degree

fracpoly, compare

Create variables containing fractional polynomial powers

fracgen varname #
[

# . . .
] [

if
] [

in
] [

, fracgen options
]

fracpoly options Description

Model

degree(#) degree of fractional polynomial to fit; default is degree(2)

Model 2

noscaling suppress scaling of first independent variable
noconstant suppress constant term
powers(numlist) list of fractional polynomial powers from which models are chosen
center(cent list) specification of centering for the independent variables
all include out-of-sample observations in generated variables

Reporting

log display iteration log
compare compare models by degree
display options control column formats and line width

regression cmd options Description

Model 2

regression cmd options options appropriate to the regression command in use

All weight types supported by regression cmd are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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where

cent list is a comma-separated list with elements varlist:{mean | # | no}, except that the first
element may optionally be of the form {mean | # | no} to specify the default for all variables.

regression cmd may be clogit, glm, intreg, logistic, logit, mlogit, nbreg, ologit,
oprobit, poisson, probit, qreg, regress, rreg, stcox, stcrreg, streg, or xtgee.

fracgen options Description

Main

center(no | mean | #) center varname as specified; default is center(no)

noscaling suppress scaling of varname
restrict(

[
varname

] [
if
]
) compute centering and scaling using specified subsample

replace replace variables if they exist

Menu
fracpoly

Statistics > Linear models and related > Fractional polynomials > Fractional polynomial regression

fracgen

Statistics > Linear models and related > Fractional polynomials > Create fractional polynomial powers

Description
fracpoly fits fractional polynomials (FPs) in xvar1 as part of the specified regression model.

After execution, fracpoly leaves variables in the dataset named Ixvar 1, Ixvar 2, . . . , where
xvar represents the first four letters of the name of xvar1. The new variables contain the best-fitting
FP powers of xvar1.

Covariates other than xvar1, which are optional, are specified in xvar2, . . . , and xvarlist. They
may be modeled linearly and with specified FP transformations. Fractional polynomial powers are
specified by typing numbers after the variable’s name. A variable name typed without numbers is
entered linearly.

fracgen creates new variables named varname 1, varname 2, . . . , containing FP powers of
varname by using the powers (# [#. . . ]) specified.

See [R] fracpoly postestimation for information on fracplot and fracpred.

See [R] mfp for multivariable FP model fitting.

Options for fracpoly

� � �
Model �

degree(#) determines the degree of FP to be fit. The default is degree(2), that is, a model with
two power terms.

� � �
Model 2 �

noscaling suppresses scaling of xvar1 and its powers.
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noconstant suppresses the regression constant if this is permitted by regression cmd.

powers(numlist) is the set of FP powers from which models are to be chosen. The default is
powers(-2,-1,-.5,0,.5,1,2,3) (0 means log).

center(cent list) defines the centering for the covariates xvar1, xvar2, . . . , xvarlist. The default
is center(mean). A typical item in cent list is varlist:{mean | # | no}. Items are separated by
commas. The first item is special because varlist: is optional, and if omitted, the default is (re)set
to the specified value (mean or # or no). For example, center(no, age:mean) sets the default
to no and sets the centering for age to mean.

regression cmd options are options appropriate to the regression command in use. For example, for
stcox, regression cmd options may include efron or some alternate method for handling tied
failures.

all includes out-of-sample observations when generating the best-fitting FP powers of xvar1, xvar2,
etc. By default, the generated FP variables contain missing values outside the estimation sample.

� � �
Reporting �

log displays deviances and (for regress) residual standard deviations for each FP model fit.

compare reports a closed-test comparison between FP models.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Options for fracgen

� � �
Main �

center(no | mean | #) specifies whether varname is to be centered; the default is center(no).

noscaling suppresses scaling of varname.

restrict(
[

varname
] [

if
]
) specifies that centering and scaling be computed using the subsample

identified by varname and if.

The subsample is defined by the observations for which varname 6= 0 that also meet the if
conditions. Typically, varname = 1 defines the subsample and varname = 0 indicates observations
not belonging to the subsample. For observations whose subsample status is uncertain, varname
should be set to a missing value; such observations are dropped from the subsample.

By default, fracgen computes the centering and scaling by using the sample of observations
identified in the

[
if
] [

in
]

options. The restrict() option identifies a subset of this sample.

replace specifies that any existing variables named varname 1, varname 2, . . . may be replaced.

Remarks
Remarks are presented under the following headings:

Introduction
fracpoly
Centering
Output with the compare option
fracgen
Models with several continuous covariates
Examples
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Introduction

Regression models based on FP functions of a continuous covariate are described by Royston and
Altman (1994b). Detailed examples using an earlier and rather more complex version of this set of
commands are presented by Royston and Altman (1994a).

FPs increase the flexibility afforded by the family of conventional polynomial models. Although
polynomials are popular in data analysis, linear and quadratic functions are severely limited in their
range of curve shapes, whereas cubic and higher-order curves often produce undesirable artifacts,
such as edge effects and waves.

A polynomial of degree m may be written as

β0 + β1x+ β2x
2 + · · ·+ βmx

m

whereas FP of degree m has m integer and/or fractional powers p1 < · · · < pm,

β0 + β1x
(p1) + β2x

(p2) + · · ·+ βmx
(pm)

where for a power, p,

x(p) =
{
xp if p 6= 0
log x if p = 0

x must be positive. An FP of first degree (m = 1) involves one power or log transformation of x.

This family of FP functions may be extended in a mathematically natural way to include repeated
powers. An FP of degree m with exactly m repeated powers of p is defined as

β0 + β1x
(p) + β2x

(p) log x+ · · ·+ βmx
(p)(log x)m−1

For example, an FP of second degree (m = 2) with repeated powers of 0.5 is

β0 + β1x
0.5 + β2x

0.5 log x

A general FP may include some unique and some repeated powers. For example, one with powers
(−1, 1, 3, 3) is

β0 + β1x
−1 + β2x+ β3x

3 + β4x
3 log x

The permitted powers are restricted to the set {−2,−1,−0.5, 0, 0.5, 1, 2, 3} because our experience
using FPs in data analysis indicates that including extra powers in the set is not often worthwhile.

Now we consider using FPs in regression modeling. If the values of the powers p1, . . . , pm
were known, the FP would resemble a conventional multiple linear regression model with coefficients
β0, β1, . . . , βm. However, the powers are not (usually) known and must be estimated, together with the
coefficients, from the data. Estimation involves a systematic search for the best power or combination
of powers from the permitted set. For each possible combination, a linear regression model as just
described is fit, and the corresponding deviance (defined as minus twice the log likelihood) is noted.
The model with the lowest deviance is deemed to have the best fit, and the corresponding powers and
regression coefficients constitute the final FP model. In practice, m = 2 is often sufficient (Royston
and Sauerbrei 2008, 76).
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fracpoly

fracpoly finds and reports a multiple regression model comprising the best-fitting powers of
xvar1 together with other covariates specified by xvar2, . . . , xvarlist. The model that is fit depends
on the type of regression cmd used.

The regression output for the best-fitting model may be reproduced by typing regression cmd
without variables or options. predict, test, etc., may be used after fracpoly; the results will
depend on regression cmd.

The standard errors of the fitted values (as estimated after use of fracpoly by using predict
or fracpred with the stdp option) are somewhat too low because no allowance has been made for
the estimation of the powers.

If xvar1 has any negative or zero values, fracpoly subtracts the minimum of xvar from xvar
and then adds the rounding (or counting) interval. The interval is defined as the smallest positive
difference between the ordered values of xvar. After this change of origin, the minimum value of
xvar1 is positive, so FPs (which require xvar1 > 0) can be used. Unless the noscaling option is
used, fracpoly scales the resulting variable by a power of 10 calculated from the data. The scaling
is designed to improve numerical stability when fitting FP models.

After execution, fracpoly leaves in the dataset variables named Ixvar 1, Ixvar 2, . . . , which
are the best-fitting FP powers of xvar1 (calculated, if necessary, after a change in origin and scale as
just described, and if centering is specified, with a constant added to or subtracted from the values
after FP transformation). Other variables, whose names follow the same convention, are left in the
dataset if xvar2 has been specified.

Centering

As discussed by Garrett (1995, 1998), covariate centering is a sensible, indeed often essential, step
when reporting and interpreting the results of multiple regression models. For this and other reasons,
centering has been introduced as the default option in fracpoly. As written, the familiar straight-line
regression function E[y|x] = β0 + β1x is “centered” to 0 in that β0 = E[y|0]. This is fine if x = 0
is a sensible base point. However, the sample values of x may not even encompass 0 (this is usually
the case when FP models are contemplated). Then β0 is a meaningless intercept, and the standard
error of its estimate β̂0 will be large. For FP model E[y|x] = β0 + β1x

(p), the point x(p) = 0 may
even correspond to x =∞ (consider p < 0). The scheme adopted by fracpoly is to center on the
mean of x. For example, for the FP E[y|x] = β0 + β1x

p + β1x
q , fracpoly actually fits the model

E[y|x] = β0 + β1 (xp − xp) + β2 (xq − xq)

where x is the sample mean of the x values and E[y|x] = β0, giving β0 a respectable interpretation
as the predicted value of y at the mean of x. This approach has the advantage that plots of the fitted
values and 95% confidence intervals for E[y|x] as a function of x, even within a multiple regression
model, are always sensible (provided that the other predictors are suitably centered—otherwise, the
confidence limits can be alarmingly wide).

Sometimes centering on the mean is not appropriate, an example being a binary covariate where
often you will want to center on the lower value, usually 0 (that is, not center). You should then use
the center() option to override the default. An example is center(x1:mean,x2-x5:no,x6:1).
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Output with the compare option

If the compare option is used, fracpoly displays a table showing the best FP model for each
degree k < m (including the model without x and the model linear in x). Deviance differences
between each FP model and the degree m model are also reported along with the corresponding
p-values (Royston and Altman 1994b; Royston and Sauerbrei 2008).

The compare option implements a closed-test approach to selecting an FP model. It has the
advantage of preserving the type I error probability at a nominal value. For example, suppose a
nominal 5% significance level was chosen, and the test of FP2 versus the null model (that is, omitting
x) was not significant. No further tests among FP models would then be done, and x would be
considered nonsignificant, regardless of the results of any further model comparisons.

fracgen

The basic syntax of fracgen is

fracgen varname #
[

# . . .
]

Each power (represented by # in the syntax diagram) should be separated by a space. fracgen creates
new variables called varname 1, varname 2, etc. Each variable is labeled according to its power,
preliminary linear transformation, and centering, if applied.

Positive or negative powers of varname are defined in the usual way. A power of zero is interpreted
as log.

Models with several continuous covariates
fracpoly estimates powers for FP models in just one continuous covariate (xvar1), though other

covariates of any kind (xvar2, . . . , xvarlist) may be included as linear or predefined FP terms. An
algorithm was suggested by Royston and Altman (1994b) for the joint estimation of FP models in
several continuous covariates. It was later refined by Sauerbrei and Royston (1999) and is implemented
in the Stata command mfp. See [R] mfp as well as Royston and Ambler (1998) and Royston and
Sauerbrei (2008).

Examples

Example 1

Consider the serum immunoglobulin G (IgG) dataset from Isaacs et al. (1983), which consists of
298 independent observations in young children. The dependent variable sqrtigg is the square root
of the IgG concentration, and the independent variable age is the age of each child. (Preliminary
Box–Cox analysis shows that a square root transformation removes the skewness in IgG.) The aim is
to find a model that accurately predicts the mean of sqrtigg given age. We use fracpoly to find
the best FP model of degree 2 (the default option) and graph the resulting fit and 95% confidence
interval:
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. use http://www.stata-press.com/data/r12/igg
(Immunoglobulin in children)

. fracpoly: regress sqrtigg age

........
-> gen double Iage__1 = age^-2-.1299486216 if e(sample)
-> gen double Iage__2 = age^2-7.695349038 if e(sample)

Source SS df MS Number of obs = 298
F( 2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

Iage__1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
Iage__2 .0148405 .0027767 5.34 0.000 .0093757 .0203052

_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

Deviance: 319.45. Best powers of age among 44 models fit: -2 2.

. fracplot age, msize(small)
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The new variables created by fracpoly contain the best-fitting FP powers of age, as centered
by fracpoly. For example, Iage 1 is centered by subtracting the mean of age raised to the
power −2. In general, the variables created by fracpoly are centered and possibly scaled, which
is reflected in the estimated regression coefficients and intercept. Centering does have its advantages
(see the Centering section earlier in this entry); however, sometimes you may want estimation for
uncentered variables. To obtain regression results for uncentered and unscaled FP variables, specify
options center(no) and noscaling to fracpoly. For a more detailed discussion, see Royston and
Sauerbrei (2008, sec. 4.11).

The fitted curve has an asymmetric S shape. This model has powers (−2, 2) and deviance 319.45.
As many as 44 models have been quietly fit in the search for the best powers. Now let’s look at
models of degree ≤ 4:
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. fracpoly, degree(4) compare: regress sqrtigg age

...............................................................................
> .............................................................................
> ........
-> gen double Iage__1 = ln(age)-1.020308063 if e(sample)
-> gen double Iage__2 = age^3-21.34727694 if e(sample)
-> gen double Iage__3 = age^3*ln(age)-21.78079878 if e(sample)
-> gen double Iage__4 = age^3*ln(age)^2-22.22312461 if e(sample)

Source SS df MS Number of obs = 298
F( 4, 293) = 32.63

Model 22.5754541 4 5.64386353 Prob > F = 0.0000
Residual 50.6768927 293 .172958678 R-squared = 0.3082

Adj R-squared = 0.2987
Total 73.2523469 297 .246640898 Root MSE = .41588

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

Iage__1 .8761824 .1898721 4.61 0.000 .5024962 1.249869
Iage__2 -.1922029 .0684934 -2.81 0.005 -.3270044 -.0574015
Iage__3 .2043794 .074947 2.73 0.007 .0568767 .3518821
Iage__4 -.0560067 .0212969 -2.63 0.009 -.097921 -.0140924

_cons 2.238735 .0482705 46.38 0.000 2.143734 2.333736

Deviance: 317.74. Best powers of age among 494 models fit: 0 3 3 3.

Fractional polynomial model comparisons:

age df Deviance Res. SD Dev. dif. P (*) Powers

Not in model 0 427.539 .49663 109.795 0.000
Linear 1 337.561 .42776 19.818 0.006 1
m = 1 2 327.436 .420554 9.692 0.140 0
m = 2 4 319.448 .415658 1.705 0.794 -2 2
m = 3 6 319.275 .416243 1.532 0.473 -2 1 1
m = 4 8 317.744 .415883 0 3 3 3

(*) P-value from deviance difference comparing reported model with m = 4 model

It appears that the degree 4 FP model is not significantly different from the other FP models (at the
5% level).

Let’s compare the curve shape from the m = 2 model with that from a conventional quartic
polynomial, whose fit turns out to be significantly better than a cubic (not shown). We use the ability
of fracpoly both to generate the required powers of age, namely, (1, 2, 3, 4) for the quartic and
(−2, 2) for the second-degree FP, and to fit the model. We fit both models and graph the resulting
curves:
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. fracpoly: regress sqrtigg age 1 2 3 4
-> gen double Iage__1 = age-2.774049213 if e(sample)
-> gen double Iage__2 = age^2-7.695349038 if e(sample)
-> gen double Iage__3 = age^3-21.34727694 if e(sample)
-> gen double Iage__4 = age^4-59.21839681 if e(sample)

Source SS df MS Number of obs = 298
F( 4, 293) = 32.65

Model 22.5835458 4 5.64588646 Prob > F = 0.0000
Residual 50.668801 293 .172931061 R-squared = 0.3083

Adj R-squared = 0.2989
Total 73.2523469 297 .246640898 Root MSE = .41585

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

Iage__1 2.047831 .4595962 4.46 0.000 1.143302 2.952359
Iage__2 -1.058902 .2822803 -3.75 0.000 -1.614456 -.5033479
Iage__3 .2284917 .0667591 3.42 0.001 .0971037 .3598798
Iage__4 -.0168534 .0053321 -3.16 0.002 -.0273475 -.0063594

_cons 2.240012 .0480157 46.65 0.000 2.145512 2.334511

Deviance: 317.70.

. predict fit1
(option xb assumed; fitted values)

. fracpoly: regress sqrtigg age -2 2
-> gen double Iage__1 = age^-2-.1299486216 if e(sample)
-> gen double Iage__2 = age^2-7.695349038 if e(sample)

Source SS df MS Number of obs = 298
F( 2, 295) = 64.49

Model 22.2846976 2 11.1423488 Prob > F = 0.0000
Residual 50.9676492 295 .172771692 R-squared = 0.3042

Adj R-squared = 0.2995
Total 73.2523469 297 .246640898 Root MSE = .41566

sqrtigg Coef. Std. Err. t P>|t| [95% Conf. Interval]

Iage__1 -.1562156 .027416 -5.70 0.000 -.2101713 -.10226
Iage__2 .0148405 .0027767 5.34 0.000 .0093757 .0203052

_cons 2.283145 .0305739 74.68 0.000 2.222974 2.343315

Deviance: 319.45.

. predict fit2
(option xb assumed; fitted values)
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. scatter sqrtigg fit1 fit2 age, c(. l l) m(o i i) msize(small)
> clpattern(. -_.) ytitle("Square root of IgG") xtitle("Age, years")
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The quartic curve has an unsatisfactory wavy appearance that is implausible for the known behavior of
IgG, the serum level of which increases throughout early life. The FP curve increases monotonically
and is therefore biologically the more plausible curve. The two models have approximately the same
deviance.

Example 2

Data from Smith et al. (1992) contain times to complete healing of leg ulcers in a randomized
controlled clinical trial of two treatments in 192 elderly patients. Several covariates were available,
of which an important one is mthson, the number of months since the recorded onset of the ulcer.
Because the response variable is time to an event of interest and some (in fact, about one-half) of
the times are censored, using Cox regression to analyze the data is appropriate. We consider FPs in
mthson, adjusting for four other covariates: age; ulcarea, the area of tissue initially affected by
the ulcer; deepppg, a binary variable indicating the presence or absence of deep vein involvement;
and treat, a binary variable indicating treatment type. We fit FPs of degree 1 and 2:

. use http://www.stata-press.com/data/r12/legulcer, clear
(Leg ulcer clinical trial)

. stset ttevent, fail(cens)
(output omitted )
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. fracpoly, compare: stcox mthson age ulcarea deepppg treat, nohr
-> gen double Iage__1 = age-73.453125 if e(sample)
-> gen double Iulca__1 = ulcarea-1326.203125 if e(sample)
-> gen double Itrea__1 = treat-1 if e(sample)
........
-> gen double Imths__1 = X^.5-.4930242557 if e(sample)
-> gen double Imths__2 = X^.5*ln(X)+.6973304564 if e(sample)

(where: X = (mthson+1)/100)

failure _d: censored
analysis time _t: ttevent

Iteration 0: log likelihood = -422.65089
Iteration 1: log likelihood = -390.49313
Iteration 2: log likelihood = -383.44258
Iteration 3: log likelihood = -374.28707
Iteration 4: log likelihood = -369.31417
Iteration 5: log likelihood = -368.38104
Iteration 6: log likelihood = -368.35448
Iteration 7: log likelihood = -368.35446
Refining estimates:
Iteration 0: log likelihood = -368.35446

Cox regression -- Breslow method for ties

No. of subjects = 192 Number of obs = 192
No. of failures = 92
Time at risk = 13825

LR chi2(6) = 108.59
Log likelihood = -368.35446 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

Imths__1 -2.81425 .6996385 -4.02 0.000 -4.185516 -1.442984
Imths__2 1.541451 .4703143 3.28 0.001 .6196521 2.46325
Iage__1 -.0261111 .0087983 -2.97 0.003 -.0433556 -.0088667

Iulca__1 -.0017491 .000359 -4.87 0.000 -.0024527 -.0010455
deepppg -.5850499 .2163173 -2.70 0.007 -1.009024 -.1610758

Itrea__1 -.1624663 .2171048 -0.75 0.454 -.5879838 .2630513

Deviance: 736.71. Best powers of mthson among 44 models fit: .5 .5.

Fractional polynomial model comparisons:

mthson df Deviance Dev. dif. P (*) Powers

Not in model 0 754.345 17.636 0.001
Linear 1 751.680 14.971 0.002 1
m = 1 2 738.969 2.260 0.323 -.5
m = 2 4 736.709 .5 .5

(*) P-value from deviance difference comparing reported model with m = 2 model

The best-fit FP of degree 2 has powers (0.5, 0.5) and deviance 736.71. However, this model does not
fit significantly better than the FP of degree 1 (at the 5% level), which has power −0.5 and deviance
738.97. We prefer the model with m = 1, for which the partial linear predictor is shown on the next
page.
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. quietly fracpoly, degree(1): stcox mthson age ulcarea deepppg treat, nohr

. fracplot, ytitle(Partial linear predictor) m(i) ciopts(bcolor(white))
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adjusted for covariates

The hazard for healing is much higher for patients whose ulcer is of recent onset than for those who
have had an ulcer for many months.

fracpoly has automatically centered the predictors on their mean values, but because in Cox
regression there is no constant term, we cannot see the effects of centering in the table of regression
estimates. The effects would be present if we were to graph the baseline hazard or survival function
because these functions are defined with all predictors set equal to 0.

A more appropriate analysis of this dataset, if one wished to model all the predictors, possibly
with FP functions, would be to use mfp; see [R] mfp.
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Saved results
In addition to what regression cmd saves, fracpoly saves the following in e():
Scalars

e(fp N) number of nonmissing observations
e(fp dev) deviance for FP model of degree m
e(fp df) FP model degrees of freedom
e(fp d0) deviance for model without xvar1
e(fp s0) residual SD for model without xvar1
e(fp dlin) deviance for model linear in xvar1
e(fp slin) residual SD for model linear in xvar1
e(fp d1), e(fp d2), . . . deviances for FP models of degree 1,2,...,m

e(fp s1), e(fp s2), . . . residual SDs for FP models of degree 1,2,...,m

Macros
e(fp cmd) fracpoly
e(cmdline) command as typed
e(fp depv) yvar1 (yvar2
e(fp rhs) xvar1
e(fp base) variables in xvar2, . . . , xvarlist after centering and FP transformation
e(fp xp) Ixvar 1, Ixvar 2, etc.
e(fp fvl) variables in model finally estimated
e(fp wgt) weight type or ""
e(fp wexp) weight expression if ‘e(fp wgt)’ != ""
e(fp pwrs) powers for FP model of degree m
e(fp x1), e(fp x2), . . . xvar1 and variables in model
e(fp k1), e(fp k2), . . . powers for FP models of degree 1,2,...,m

Residual SDs are stored only when regression cmd is regress.

Methods and formulas
fracpoly and fracgen are implemented as ado-files.

The general definition of an FP, accommodating possible repeated powers, may be written for
functions H1(x), . . . ,Hm(x) as

β0 +
m∑
j=1

βjHj(x)

where H1(x) = x(p1) and for j = 2, . . . ,m,

Hj(x) =
{
x(pj) if pj 6= pj−1

Hj−1(x) log x if pj = pj−1

For example, an FP of degree 3 with powers (1, 3, 3) has H1(x) = x, H2(x) = x3, and H3(x) =
x3 log x and equals β0 + β1x+ β2x

3 + β3x
3 log x.

An FP model of degree m is taken to have 2m+ 1 degrees of freedom (df ): one for β0 and one
for each βj and its associated power. Because the powers in an FP are chosen from a finite set rather
than from the entire real line, the df defined in this way are approximate.

The deviance D of a model is defined as −2 times its maximized log likelihood. For normal-errors
models, we use the formula

D = n

(
1− l + log

2πRSS

n

)
where n is the sample size, l is the mean of the lognormalized weights (l = 0 if the weights are all
equal), and RSS is the residual sum of squares as fit by regress.
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The compare option causes fracpoly to report a table comparing FP models of degree k < m to
the degree m FP model. Suppose that we are comparing FP regression models with degrees k and m.
The p-values reported by compare are calculated differently for normal and nonnormal regressions.
Let Dk and Dm be the deviances of the models with degrees k and m, respectively. For normal-errors
models such as regress, a variance ratio F is calculated as

F =
n2

n1

{
exp

(
Dk −Dm

n

)
− 1
}

where n1 is the numerator df (here, 2m − 2k) and n2 is the denominator df (equal to rdf − 2m,
where rdf is the residual df for the regression model involving only the covariates in xvar2, if any,
but not x). The p-value is obtained by referring F to an F distribution on (n1, n2) df.

For nonnormal models (clogit, glm, logistic, . . . stcox, or streg; not regress), the p-value
is obtained by referring Dk−Dm to a χ2 distribution on 2m− 2k df. These p-values for comparing
models are approximate and are typically somewhat conservative (Royston and Altman 1994b).

The component-plus-residual values graphed by fracplot are calculated as follows: let the
data consist of triplets (yi, xi, zi), i = 1, . . . , n, where zi is the vector of covariates for the
ith observation, after applying possible FP transformation and centering as described earlier. Let
η̂i = β̂0 + {H(xi)−H(x0)}′ β̂+ z

′
iγ̂ be the linear predictor from the FP model, as given by the

fracpred command, or equivalently, by the predict command with the xb option, after the use
of fracpoly. Here H(xi) = {H1(xi), . . . ,Hm(xi)}′ is the vector of FP functions described above,
H(x0) = {H1(x0), . . . ,Hm(x0)}′ is the vector of centering to x0 (x0 is often chosen to be the
mean of the xi), β̂ is the estimated parameter vector, and γ̂ is the estimated parameter vector for
the covariates. The values η̂∗i = β̂0 + {H(xi)−H(x0)}′ β̂ represent the behavior of the FP model
for x at fixed values z = 0 of the (centered) covariates. The ith component-plus-residual is defined
as η̂∗i + di, where di is the deviance residual for the ith observation. For normal-errors models,
di =

√
wi(yi − η̂i), where wi is the case weight (or 1, if weight is not specified). For logistic,

Cox, and generalized linear regression models, see [R] logistic, [R] probit, [ST] stcox, and [R] glm,
respectively, for the formula for di. The formula for poisson models is the same as that for glm with
family(poisson). For stcox, di is the partial martingale residual (see [ST] stcox postestimation).
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fracpoly postestimation — Postestimation tools for fracpoly

Description
The following postestimation commands are of special interest after fracpoly:

Command Description

fracplot plot data and fit from most recently fit fractional polynomial model
fracpred create variable containing prediction, deviance residuals, or SEs of fitted values

For information about these commands, see below.

The following standard postestimation commands are also available if available after regression cmd:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation commands

fracplot plots the data and fit, with 95% confidence limits, from the most recently fit fractional
polynomial (FP) model. The data and fit are plotted against varname, which may be xvar1 or another
of the covariates (xvar2, . . . , or a variable from xvarlist). If varname is not specified, xvar1 is
assumed.

fracpred creates newvar containing the fitted index or deviance residuals for the whole model,
or the fitted index or its standard error for varname, which may be xvar1 or another covariate.

558



fracpoly postestimation — Postestimation tools for fracpoly 559

Syntax for predict
The behavior of predict following fracpoly is determined by regression cmd. See the corre-

sponding regression cmd postestimation entry for available predict options.

Also see information on fracpred below.

Syntax for fracplot and fracpred

Plot data and fit from most recently fit fractional polynomial model

fracplot
[

varname
] [

if
] [

in
] [

, fracplot options
]

Create variable containing the prediction, deviance residuals, or SEs of fitted values

fracpred newvar
[
, fracpred options

]
fracplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Fitted line

lineopts(cline options) affect rendition of the fitted line

CI plot

ciopts(area options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fracpred options Description

for(varname) compute prediction for varname
dresid compute deviance residuals
stdp compute standard errors of the fitted values varname

fracplot is not allowed after fracpoly or mfp with clogit, mlogit, or stcrreg. fracpred,
dresid is not allowed after fracpoly or mfp with clogit, mlogit, or stcrreg.
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Menu
fracplot

Statistics > Linear models and related > Fractional polynomials > Fractional polynomial regression plot

fracpred

Statistics > Linear models and related > Fractional polynomials > Fractional polynomial prediction

Options for fracplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Fitted line �

lineopts(cline options) affect the rendition of the fitted line; see [G-3] cline options.

� � �
CI plot �

ciopts(area options) affect the rendition of the confidence bands; see [G-3] area options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Options for fracpred
for(varname) specifies (partial) prediction for variable varname. The fitted values are adjusted to

the value specified by the center() option in fracpoly.

dresid specifies that deviance residuals be calculated.

stdp specifies calculation of the standard errors of the fitted values varname, adjusted for all the
other predictors at the values specified by center().

Remarks
fracplot actually produces a component-plus-residual plot. For normal-error models with constant

weights and one covariate, this amounts to a plot of the observations with the fitted line inscribed.
For other normal-error models, weighted residuals are calculated and added to the fitted values.

For models with additional covariates, the line is the partial linear predictor for the variable in
question (xvar1 or a covariate) and includes the intercept β0.
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For generalized linear and Cox models, the fitted values are plotted on the scale of the “index” (linear
predictor). Deviance residuals are added to the (partial) linear predictor to give component-plus-residual
values. These values are plotted as small circles.

See [R] fracpoly for examples using fracplot.

Methods and formulas
All postestimation commands listed above and fracplot and fracpred are implemented as

ado-files.

See Methods and formulas in [R] fracpoly for notation.

The component-plus-residual values graphed by fracplot are calculated as follows: Let the data
consist of triplets (yi, xi, zi), i = 1, . . . , n, where zi is the vector of covariates for the ith observation,
after applying possible fractional polynomial transformation and adjustment as described earlier. Let
η̂i = β̂0 + {H(xi)−H(x0)}′ β̂+ z

′
iγ̂ be the linear predictor from the FP model, as given by

the fracpred command or, equivalently, by the predict command with the xb option, following
fracpoly. Here H(xi) = {H1(xi), . . . ,Hm(xi)}′ is the vector of FP functions described above,
H(x0) = {H1(x0), . . . ,Hm(x0)}′ is the vector of adjustments to x0 (often, x0 is chosen to be the
mean of the xi), β̂ is the estimated parameter vector, and γ̂ is the estimated parameter vector for
the covariates. The values η̂∗i = β̂0 + {H(xi)−H(x0)}′ β̂ represent the behavior of the FP model
for x at fixed values z = 0 of the (adjusted) covariates. The ith component-plus-residual is defined
as η̂∗i + di, where di is the deviance residual for the ith observation. For normal-errors models,
di =

√
wi(yi − η̂i), where wi is the case weight (or 1, if weight is not specified). For logistic, Cox,

and generalized linear regression models, see [R] logistic, [R] probit, [ST] stcox, and [R] glm for the
formula for di. The formula for poisson models is the same as that for glm with family(poisson).
For stcox, di is the partial martingale residual (see [ST] stcox postestimation).

fracplot plots the values of di and the curve represented by η̂∗i against xi. The confidence
interval for η̂∗i is obtained from the variance–covariance matrix of the entire model and takes into
account the uncertainty in estimating β0, β, and γ (but not in estimating the FP powers for x).

fracpred with the for(varname) option calculates the predicted index at xi = x0 and zi = 0;
that is, η̂i = β̂0+{H(xi)−H(x0)}′ β̂. The standard error is calculated from the variance–covariance
matrix of (β̂0, β̂), again ignoring estimation of the powers.

Acknowledgment
fracplot and fracpred were written by Patrick Royston of the MRC Clinical Trials Unit, London.

Also see
[R] fracpoly — Fractional polynomial regression

[U] 20 Estimation and postestimation commands
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frontier — Stochastic frontier models

Syntax

frontier depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
distribution(hnormal) half-normal distribution for the inefficiency term
distribution(exponential) exponential distribution for the inefficiency term
distribution(tnormal) truncated-normal distribution for the inefficiency term
ufrom(matrix) specify untransformed log likelihood; only with d(tnormal)

cm(varlist
[
, noconstant

]
) fit conditional mean model; only with d(tnormal); use

noconstant to suppress constant term

Model 2

constraints(constraints) apply specified linear constraints
collinear keep collinear variables
uhet(varlist

[
, noconstant

]
) explanatory variables for technical inefficiency variance

function; use noconstant to suppress constant term
vhet(varlist

[
, noconstant

]
) explanatory variables for idiosyncratic error variance

function; use noconstant to suppress constant term
cost fit cost frontier model; default is production frontier model

SE

vce(vcetype) vcetype may be oim, opg, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

562
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Menu
Statistics > Linear models and related > Frontier models

Description

frontier fits stochastic production or cost frontier models; the default is a production frontier
model. It provides estimators for the parameters of a linear model with a disturbance that is assumed
to be a mixture of two components, which have a strictly nonnegative and symmetric distribution,
respectively. frontier can fit models in which the nonnegative distribution component (a measurement
of inefficiency) is assumed to be from a half-normal, exponential, or truncated-normal distribution.
See Kumbhakar and Lovell (2000) for a detailed introduction to frontier analysis.

Options

� � �
Model �

noconstant; see [R] estimation options.

distribution(distname) specifies the distribution for the inefficiency term as half-normal (hnormal),
exponential, or truncated-normal (tnormal). The default is hnormal.

ufrom(matrix) specifies a 1 ×K matrix of untransformed starting values when the distribution is
truncated-normal (tnormal). frontier can estimate the parameters of the model by maximizing
either the log likelihood or a transformed log likelihood (see Methods and formulas). frontier
automatically transforms the starting values before passing them on to the transformed log likelihood.
The matrix must have the same number of columns as there are parameters to estimate.

cm(varlist
[
, noconstant

]
) may be used only with distribution(tnormal). Here frontier

will fit a conditional mean model in which the mean of the truncated-normal distribution is modeled
as a linear function of the set of covariates specified in varlist. Specifying noconstant suppresses
the constant in the mean function.

� � �
Model 2 �

constraints(constraints), collinear; see [R] estimation options.

By default, when fitting the truncated-normal model or the conditional mean model, frontier
maximizes a transformed log likelihood. When constraints are applied, frontier will maximize
the untransformed log likelihood with constraints defined in the untransformed metric.

uhet(varlist
[
, noconstant

]
) specifies that the technical inefficiency component is heteroskedastic,

with the variance function depending on a linear combination of varlistu. Specifying noconstant
suppresses the constant term from the variance function. This option may not be specified with
distribution(tnormal).

vhet(varlist
[
, noconstant

]
) specifies that the idiosyncratic error component is heteroskedastic,

with the variance function depending on a linear combination of varlistv . Specifying noconstant
suppresses the constant term from the variance function. This option may not be specified with
distribution(tnormal).

cost specifies that frontier fit a cost frontier model.
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� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with frontier but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and

Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular
subfield in econometrics. Kumbhakar and Lovell (2000) provide a good introduction.

frontier fits three stochastic frontier models with distinct parameterizations of the inefficiency
term and can fit stochastic production or cost frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production
function f(zi, β). In a world without error or inefficiency, the ith firm would produce

qi = f(zi, β)

Stochastic frontier analysis assumes that each firm potentially produces less than it might due to
a degree of inefficiency. Specifically,

qi = f(zi, β)ξi

where ξi is the level of efficiency for firm i; ξi must be in the interval (0, 1 ]. If ξi = 1, the firm
is achieving the optimal output with the technology embodied in the production function f(zi, β).
When ξi < 1, the firm is not making the most of the inputs zi given the technology embodied in the
production function f(zi, β). Because the output is assumed to be strictly positive (that is, qi > 0),
the degree of technical efficiency is assumed to be strictly positive (that is, ξi > 0).

Output is also assumed to be subject to random shocks, implying that

qi = f(zi, β)ξiexp(vi)
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Taking the natural log of both sides yields

ln(qi) = ln
{
f(zi, β)

}
+ ln(ξi) + vi

Assuming that there are k inputs and that the production function is linear in logs, defining
ui = − ln(ξi) yields

ln(qi) = β0 +
k∑
j=1

βj ln(zji) + vi − ui (1)

Because ui is subtracted from ln(qi), restricting ui ≥ 0 implies that 0 < ξi ≤ 1, as specified above.

Kumbhakar and Lovell (2000) provide a detailed version of the above derivation, and they show
that performing an analogous derivation in the dual cost function problem allows us to specify the
problem as

ln(ci) = β0 + βq ln(qi) +
k∑
j=1

βj ln(pji) + vi + ui (2)

where qi is output, zji are input quantities, ci is cost, and the pji are input prices.

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the
specification.

Technical note
The model that frontier actually fits is of the form

yi = β0 +
k∑
j=1

βjxji + vi − sui

where

s =
{

1, for production functions
−1, for cost functions

so, in the context of the discussion above, yi = ln(qi), and xji = ln(zji) for a production function;
and for a cost function, yi = ln(ci), and the xji are the ln(pji) and ln(qi). You must take the
natural logarithm of the data before fitting a stochastic frontier production or cost model. frontier
performs no transformations on the data.

Different specifications of the ui and the vi terms give rise to distinct models. frontier provides
estimators for the parameters of three basic models in which the idiosyncratic component, vi, is
assumed to be independently N(0, σv) distributed over the observations. The basic models differ in
their specification of the inefficiency term, ui, as follows:

exponential: the ui are independently exponentially distributed with variance σ2
u

hnormal: the ui are independently half-normally N+(0, σ2
u) distributed

tnormal: the ui are independently N+(µ, σ2
u) distributed with truncation point at 0

For half-normal or exponential distributions, frontier can fit models with heteroskedastic error
components, conditional on a set of covariates. For a truncated-normal distribution, frontier can
also fit a conditional mean model in which the mean is modeled as a linear function of a set of
covariates.
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Example 1

For our first example, we demonstrate the half-normal and exponential models by reproducing a
study found in Greene (2003, 505), which uses data originally published in Zellner and Revankar (1969).
In this study of the transportation-equipment manufacturing industry, observations on value added,
capital, and labor are used to estimate a Cobb–Douglas production function. The variable lnv is the
log-transformed value added, lnk is the log-transformed capital, and lnl is the log-transformed labor.
OLS estimates are compared with those from stochastic frontier models using both the half-normal
and exponential distribution for the inefficiency term.

. use http://www.stata-press.com/data/r12/greene9

. regress lnv lnk lnl

Source SS df MS Number of obs = 25
F( 2, 22) = 397.54

Model 44.1727741 2 22.086387 Prob > F = 0.0000
Residual 1.22225984 22 .055557265 R-squared = 0.9731

Adj R-squared = 0.9706
Total 45.3950339 24 1.89145975 Root MSE = .23571

lnv Coef. Std. Err. t P>|t| [95% Conf. Interval]

lnk .2454281 .1068574 2.30 0.032 .0238193 .4670368
lnl .805183 .1263336 6.37 0.000 .5431831 1.067183

_cons 1.844416 .2335928 7.90 0.000 1.359974 2.328858

. frontier lnv lnk lnl

Iteration 0: log likelihood = 2.3357572
Iteration 1: log likelihood = 2.4673009
Iteration 2: log likelihood = 2.4695125
Iteration 3: log likelihood = 2.4695222
Iteration 4: log likelihood = 2.4695222

Stoc. frontier normal/half-normal model Number of obs = 25
Wald chi2(2) = 743.71

Log likelihood = 2.4695222 Prob > chi2 = 0.0000

lnv Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnk .2585478 .098764 2.62 0.009 .0649738 .4521218
lnl .7802451 .1199399 6.51 0.000 .5451672 1.015323

_cons 2.081135 .281641 7.39 0.000 1.529128 2.633141

/lnsig2v -3.48401 .6195353 -5.62 0.000 -4.698277 -2.269743
/lnsig2u -3.014599 1.11694 -2.70 0.007 -5.203761 -.8254368

sigma_v .1751688 .0542616 .0954514 .3214633
sigma_u .2215073 .1237052 .074134 .6618486
sigma2 .0797496 .0426989 -.0039388 .163438
lambda 1.264536 .1678684 .9355204 1.593552

Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.43 Prob>=chibar2 = 0.256

. predict double u_h, u
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. frontier lnv lnk lnl, distribution(exponential)

Iteration 0: log likelihood = 2.7270659
Iteration 1: log likelihood = 2.8551532
Iteration 2: log likelihood = 2.8604815
Iteration 3: log likelihood = 2.8604897
Iteration 4: log likelihood = 2.8604897

Stoc. frontier normal/exponential model Number of obs = 25
Wald chi2(2) = 845.68

Log likelihood = 2.8604897 Prob > chi2 = 0.0000

lnv Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnk .2624859 .0919988 2.85 0.004 .0821717 .4428002
lnl .7703795 .1109569 6.94 0.000 .5529079 .9878511

_cons 2.069242 .2356159 8.78 0.000 1.607444 2.531041

/lnsig2v -3.527598 .4486176 -7.86 0.000 -4.406873 -2.648324
/lnsig2u -4.002457 .9274575 -4.32 0.000 -5.820241 -2.184674

sigma_v .1713925 .0384448 .1104231 .2660258
sigma_u .1351691 .0626818 .0544692 .3354317
sigma2 .0476461 .0157921 .016694 .0785981
lambda .7886525 .087684 .616795 .9605101

Likelihood-ratio test of sigma_u=0: chibar2(01) = 1.21 Prob>=chibar2 = 0.135

. predict double u_e, u

. list state u_h u_e

state u_h u_e

1. Alabama .2011338 .14592865
2. California .14480966 .0972165
3. Connecticut .1903485 .13478797
4. Florida .51753139 .5903303
5. Georgia .10397912 .07140994

6. Illinois .12126696 .0830415
7. Indiana .21128212 .15450664
8. Iowa .24933153 .20073081
9. Kansas .10099517 .06857629

10. Kentucky .05626919 .04152443

11. Louisiana .20332731 .15066405
12. Maine .22263164 .17245793
13. Maryland .13534062 .09245501
14. Massachusetts .15636999 .10932923
15. Michigan .15809566 .10756915

16. Missouri .10288047 .0704146
17. NewJersey .09584337 .06587986
18. NewYork .27787793 .22249416
19. Ohio .22914231 .16981857
20. Pennsylvania .1500667 .10302905

21. Texas .20297875 .14552218
22. Virginia .14000132 .09676078
23. Washington .11047581 .07533251
24. WestVirginia .15561392 .11236153
25. Wisconsin .14067066 .0970861
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The parameter estimates and the estimates of the inefficiency terms closely match those published in
Greene (2003, 505), but the standard errors of the parameter estimates are estimated differently (see
the technical note below).

The output from frontier includes estimates of the standard deviations of the two error components,
σv and σu, which are labeled sigma v and sigma u, respectively. In the log likelihood, they are
parameterized as lnσ2

v and lnσ2
u, and these estimates are labeled /lnsig2v and /lnsig2u in the

output. frontier also reports two other useful parameterizations. The estimate of the total error
variance, σ2

S = σ2
v + σ2

u, is labeled sigma2, and the estimate of the ratio of the standard deviation
of the inefficiency component to the standard deviation of the idiosyncratic component, λ = σu/σv ,
is labeled lambda.

At the bottom of the output, frontier reports the results of a test that there is no technical
inefficiency component in the model. This is a test of the null hypothesis H0 : σ2

u = 0 against
the alternative hypotheses H1 : σ2

u > 0. If the null hypothesis is true, the stochastic frontier model
reduces to an OLS model with normal errors. However, because the test lies on the boundary of the
parameter space of σ2

u, the standard likelihood-ratio test is not valid, and a one-sided generalized
likelihood-ratio test must be constructed; see Gutierrez, Carter, and Drukker (2001). For this example,
the output shows LR = 0.43 with a p-value of 0.256 for the half-normal model and LR = 1.21 with
a p-value of 0.135 for the exponential model. There are several possible reasons for the failure to
reject the null hypothesis, but the fact that the test is based on an asymptotic distribution and the
sample size was 25 is certainly a leading candidate among those possibilities.

Technical note
frontier maximizes the log-likelihood function of a stochastic frontier model by using the

Newton–Raphson method, and the estimated variance–covariance matrix is calculated as the inverse
of the negative Hessian (matrix of second partial derivatives); see [R] ml. When comparing the results
with those published using other software, be aware of the difference in the optimization methods,
which may result in different, yet asymptotically equivalent, variance estimates.

Example 2

Often the error terms may not have constant variance. frontier allows you to model heteroskedas-
ticity in either error term as a linear function of a set of covariates. The variance of either the technical
inefficiency or the idiosyncratic component may be modeled as

σ2
i = exp(wiδ)

The default constant included in wi may be suppressed by appending a noconstant option to the
list of covariates. Also, you can simultaneously specify covariates for both σui and σvi .

In the example below, we use a sample of 756 observations of fictional firms producing a
manufactured good by using capital and labor. The firms are hypothesized to use a constant returns-
to-scale technology, but the sizes of the firms differ. Believing that this size variation will introduce
heteroskedasticity into the idiosyncratic error term, we estimate the parameters of a Cobb–Douglas
production function. To do this, we use a conditional heteroskedastic half-normal model, with the
size of the firm as an explanatory variable in the variance function for the idiosyncratic error. We
also perform a test of the hypothesis that the firms use a constant returns-to-scale technology.
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. use http://www.stata-press.com/data/r12/frontier1, clear

. frontier lnoutput lnlabor lncapital, vhet(size)

Iteration 0: log likelihood = -1508.3692
Iteration 1: log likelihood = -1501.583
Iteration 2: log likelihood = -1500.3942
Iteration 3: log likelihood = -1500.3794
Iteration 4: log likelihood = -1500.3794

Stoc. frontier normal/half-normal model Number of obs = 756
Wald chi2(2) = 9.68

Log likelihood = -1500.3794 Prob > chi2 = 0.0079

lnoutput Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnoutput
lnlabor .7090933 .2349374 3.02 0.003 .2486244 1.169562

lncapital .3931345 .5422173 0.73 0.468 -.6695919 1.455861
_cons 1.252199 3.14656 0.40 0.691 -4.914946 7.419344

lnsig2v
size -.0016951 .0004748 -3.57 0.000 -.0026256 -.0007645

_cons 3.156091 .9265826 3.41 0.001 1.340023 4.97216

lnsig2u
_cons 1.947487 .1017653 19.14 0.000 1.748031 2.146943

sigma_u 2.647838 .134729 2.396514 2.925518

. test _b[lnlabor] + _b[lncapital] = 1

( 1) [lnoutput]lnlabor + [lnoutput]lncapital = 1

chi2( 1) = 0.03
Prob > chi2 = 0.8622

The output above indicates that the variance of the idiosyncratic error term is a function of firm size.
Also, we failed to reject the hypothesis that the firms use a constant returns-to-scale technology.

Technical note
In small samples, the conditional heteroskedastic estimators will lack precision for the variance

parameters and may fail to converge altogether.

Example 3

Let’s turn our attention to the truncated-normal model. Once again, we will use fictional data. For
this example, we have 1,231 observations on the quantity of output, the total cost of production for
each firm, the prices that each firm paid for labor and capital services, and a categorical variable
measuring the quality of each firm’s management. After taking the natural logarithm of the costs
(lncost), prices (lnp k and lnp l), and output (lnout), we fit a stochastic cost frontier model
and specify the distribution for the inefficiency term to be truncated normal.



570 frontier — Stochastic frontier models

. use http://www.stata-press.com/data/r12/frontier2

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cost

Iteration 0: log likelihood = -2386.9523
Iteration 1: log likelihood = -2386.5146
Iteration 2: log likelihood = -2386.2704
Iteration 3: log likelihood = -2386.2504
Iteration 4: log likelihood = -2386.2493
Iteration 5: log likelihood = -2386.2493

Stoc. frontier normal/truncated-normal model Number of obs = 1231
Wald chi2(3) = 8.82

Log likelihood = -2386.2493 Prob > chi2 = 0.0318

lncost Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnp_k .3410717 .2363861 1.44 0.149 -.1222366 .80438
lnp_l .6608628 .4951499 1.33 0.182 -.3096131 1.631339
lnout .7528653 .3468968 2.17 0.030 .0729601 1.432771
_cons 2.602609 1.083004 2.40 0.016 .4799595 4.725259

/mu 1.095705 .881517 1.24 0.214 -.632037 2.823446
/lnsigma2 1.5534 .1873464 8.29 0.000 1.186208 1.920592

/ilgtgamma 1.257862 .2589522 4.86 0.000 .7503255 1.765399

sigma2 4.727518 .8856833 3.274641 6.825001
gamma .7786579 .0446303 .6792496 .8538846

sigma_u2 3.681119 .7503408 2.210478 5.15176
sigma_v2 1.046399 .2660035 .5250413 1.567756

H0: No inefficiency component: z = 5.595 Prob>=z = 0.000

In addition to the coefficients, the output reports estimates for several parameters. sigma v2 is the
estimate of σ2

v . sigma u2 is the estimate of σ2
u. gamma is the estimate of γ = σ2

u/σ
2
S . sigma2 is the

estimate of σ2
S = σ2

v + σ2
u. Because γ must be between 0 and 1, the optimization is parameterized

in terms of the inverse logit of γ, and this estimate is reported as ilgtgamma. Because σ2
S must

be positive, the optimization is parameterized in terms of ln(σ2
S), whose estimate is reported as

lnsigma2. Finally, mu is the estimate of µ, the mean of the truncated-normal distribution.

In the output above, the generalized log-likelihood test for the presence of the inefficiency term
has been replaced with a test based on the third moment of the OLS residuals. When µ = 0 and
σu = 0, the truncated-normal model reduces to a linear regression model with normally distributed
errors. However, the distribution of the test statistic under the null hypothesis is not well established,
because it becomes impossible to evaluate the log likelihood as σu approaches zero, prohibiting the
use of the likelihood-ratio test.

However, Coelli (1995) noted that the presence of an inefficiency term would negatively skew the
residuals from an OLS regression. By identifying negative skewness in the residuals with the presence
of an inefficiency term, Coelli derived a one-sided test for the presence of the inefficiency term. The
results of this test are given at the bottom of the output. For this example, the null hypothesis of no
inefficiency component is rejected.

In the example below, we fit a truncated model and detect a statistically significant inefficiency
term in the model. We might question whether the inefficiency term is identically distributed over
all firms or whether there might be heterogeneity across firms. frontier provides an extension
to the truncated normal model by allowing the mean of the inefficiency term to be modeled as a
linear function of a set of covariates. In our dataset, we have a categorical variable that measures the
quality of a firm’s management. We refit the model, including the cm() option, specifying a set of
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binary indicator variables representing the different categories of the quality-measurement variable as
covariates.

. frontier lncost lnp_k lnp_l lnout, distribution(tnormal) cm(i.quality) cost

Iteration 0: log likelihood = -2386.9523
Iteration 1: log likelihood = -2384.936
Iteration 2: log likelihood = -2382.3942
Iteration 3: log likelihood = -2382.324
Iteration 4: log likelihood = -2382.3233
Iteration 5: log likelihood = -2382.3233

Stoc. frontier normal/truncated-normal model Number of obs = 1231
Wald chi2(3) = 9.31

Log likelihood = -2382.3233 Prob > chi2 = 0.0254

lncost Coef. Std. Err. z P>|z| [95% Conf. Interval]

lncost
lnp_k .3611204 .2359749 1.53 0.126 -.1013819 .8236227
lnp_l .680446 .4934935 1.38 0.168 -.2867835 1.647675
lnout .7605533 .3466102 2.19 0.028 .0812098 1.439897
_cons 2.550769 1.078911 2.36 0.018 .4361417 4.665396

mu
quality

2 .5056067 .3382907 1.49 0.135 -.1574309 1.168644
3 .783223 .376807 2.08 0.038 .0446947 1.521751
4 .5577511 .3355061 1.66 0.096 -.0998288 1.215331
5 .6792882 .3428073 1.98 0.048 .0073981 1.351178

_cons .6014025 .990167 0.61 0.544 -1.339289 2.542094

/lnsigma2 1.541784 .1790926 8.61 0.000 1.190769 1.892799
/ilgtgamma 1.242302 .2588968 4.80 0.000 .734874 1.749731

sigma2 4.67292 .8368852 3.289611 6.637923
gamma .7759645 .0450075 .6758739 .8519189

sigma_u2 3.62602 .7139576 2.226689 5.025351
sigma_v2 1.0469 .2583469 .5405491 1.553251

The conditional mean model was developed in the context of panel-data estimators, and we can
apply frontier’s conditional mean model to panel data.
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Saved results
frontier saves the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(chi2) χ2

e(ll) log likelihood
e(ll c) log likelihood for H0: σu=0

e(z) test for negative skewness of OLS residuals
e(sigma u) standard deviation of technical inefficiency
e(sigma v) standard deviation of vi
e(p) significance
e(chi2 c) LR test statistic
e(p z) p-value for z
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) frontier
e(cmdline) command as typed
e(depvar) name of dependent variable
e(function) production or cost
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model χ2 test
e(dist) distribution assumption for ui
e(het) heteroskedastic components
e(u hetvar) varlist in uhet()
e(v hetvar) varlist in vhet()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
frontier is implemented as an ado-file.

Consider an equation of the form

yi = xiβ+ vi − sui

where yi is the dependent variable, xi is a 1× k vector of observations on the independent variables
included as indent covariates, β is a k × 1 vector of coefficients, and

s =
{

1, for production functions
−1, for cost functions

The log-likelihood functions are as follows.

Normal/half-normal model:

lnL =
N∑
i=1

{
1
2

ln
(

2
π

)
− lnσS + lnΦ

(
−sεiλ
σS

)
− ε2i

2σ2
S

}
Normal/exponential model:

lnL =
N∑
i=1

− lnσu +
σ2
v

2σ2
u

+ lnΦ

−sεi − σ2
v

σu

σv

+
sεi
σu


Normal/truncated-normal model:

lnL =
N∑
i=1

{
−1

2
ln (2π)− lnσS − lnΦ

(
µ

σS
√
γ

)

+ lnΦ

[
(1− γ)µ− sγεi
{σ2

Sγ (1− γ)}1/2

]
− 1

2

(
εi + sµ

σS

)2
}
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where σS = (σ2
u + σ2

v)1/2, λ = σu/σv , γ = σ2
u/σ

2
S , εi = yi − xiβ, and Φ() is the cumulative

distribution function of the standard normal distribution.

To obtain estimation for ui, you can use either the mean or the mode of the conditional distribution
f(u|ε).

E (ui | εi) = µ∗i + σ∗

{
φ(−µ∗i/σ∗)
Φ(µ∗i/σ∗)

}
M (ui | εi) =

{
µ∗i, if µ∗i ≥ 0
0, otherwise

Then the technical efficiency (s = 1) or cost efficiency (s = −1) will be estimated by

Ei = E {exp(−sui) | εi}

=
{

1− Φ (sσ∗ − µ∗i/σ∗)
1− Φ (−µ∗i/σ∗)

}
exp
(
−sµ∗i +

1
2
σ2
∗

)
where µ∗i and σ∗ are defined for the normal/half-normal model as

µ∗i = −sεiσ2
u/σ

2
S

σ∗ = σuσv/σS

for the normal/exponential model as

µ∗i = −sεi − σ2
v/σu

σ∗ = σv

and for the normal/truncated-normal model as

µ∗i =
−sεiσ2

u + µσ2
v

σ2
S

σ∗ = σuσv/σS

In the half-normal and exponential models, when heteroskedasticity is assumed, the standard
deviations, σu or σv , will be replaced in the above equations by

σ2
i = exp(wiδ)

where w is the vector of explanatory variables in the variance function.

In the conditional mean model, the mean parameter of the truncated normal distribution, µ, is
modeled as a linear combination of the set of covariates, w.

µ = wiδ
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Therefore, the log-likelihood function can be rewritten as

lnL =
N∑
i=1

[
−1

2
ln (2π)− lnσS − lnΦ

(
wiδ√
σ2
Sγ

)

+ lnΦ

{
(1− γ) wiδ− sγεi√

σ2
Sγ (1− γ)

}
− 1

2

(
εi + swiδ

σS

)2
]

The z test reported in the output of the truncated-normal model is a third-moment test developed by
Coelli (1995) as an extension of a test previously developed by Pagan and Hall (1983). Coelli shows
that under the null of normally distributed errors, the statistic

z =
m3(

6m3
2

N

)1/2

has a standard normal distribution, where m3 is the third moment from the OLS regression. Because
the residuals are either negatively skewed (production function) or positively skewed (cost function),
a one-sided p-value is used.
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Title

frontier postestimation — Postestimation tools for frontier

Description
The following postestimation commands are available after frontier:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

predict
[

type
] {

stub* | newvarxb newvarv newvaru
} [

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the prediction
u estimates of minus the natural log of the technical efficiency via E (ui | εi)
m estimates of minus the natural log of the technical efficiency via M (ui | εi)
te estimates of the technical efficiency via E {exp(−sui) | εi}

s =
{

1, for production functions
−1, for cost functions

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via E (ui | εi).

m produces estimates of minus the natural log of the technical efficiency via M (ui | εi).

te produces estimates of the technical efficiency via E {exp(−sui) | εi}.
scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xiβ).

The second new variable will contain ∂lnL/∂(lnsig2v).

The third new variable will contain ∂lnL/∂(lnsig2u).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] frontier — Stochastic frontier models

[U] 20 Estimation and postestimation commands
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fvrevar — Factor-variables operator programming command

Syntax
fvrevar

[
varlist

] [
if
] [

in
] [

, substitute tsonly list stub(stub)
]

You must tsset your data before using fvrevar if varlist contains time-series operators; see [TS] tsset.

Description
fvrevar creates an equivalent, temporary variable list for a varlist that might contain factor

variables, interactions, or time-series–operated variables so that the resulting variable list can be used
by commands that do not otherwise support factor variables or time-series–operated variables. The
resulting list also could be used in a program to speed execution at the cost of using more memory.

Options
substitute specifies that equivalent, temporary variables be substituted for any factor variables,

interactions, or time-series–operated variables in varlist. substitute is the default action taken
by fvrevar; you do not need to specify the option.

tsonly specifies that equivalent, temporary variables be substituted for only the time-series–operated
variables in varlist.

list specifies that all factor-variable operators and time-series operators be removed from varlist
and the resulting list of base variables be returned in r(varlist). No new variables are created
with this option.

stub(stub) specifies that fvrevar generate named variables instead of temporary variables. The
new variables will be named stub#.

Remarks
fvrevar might create no new variables, one new variable, or many new variables, depending on

the number of factor variables, interactions, and time-series operators appearing in varlist. Any new
variables created are temporary. The new, equivalent varlist is returned in r(varlist). The new
varlist corresponds one to one with the original varlist.

Example 1

Typing
. use http://www.stata-press.com/data/r12/auto

. fvrevar i.rep78 mpg turn

creates five temporary variables corresponding to the levels of rep78. No new variables are created
for variables mpg and turn because they do not contain factor-variable or time-series operators.

The resulting variable list is
. display "‘r(varlist)’"

000000 000001 000002 000003 000004 mpg turn
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(Your temporary variable names may be different, but that is of no consequence.)

Temporary variables automatically vanish when the program concludes.

Example 2

Suppose we want to create temporary variables for specific levels of a factor variable. To do this,
we can use the parenthesis notation of factor-variable syntax.

. fvrevar i(2,3)bn.rep78 mpg

creates two temporary variables corresponding to levels 2 and 3 of rep78. Notice that we specified
that neither level 2 nor 3 be set as the base level by using the bn notation. If we did not specify bn,
level 2 would have been treated as the base level.

The resulting variable list is

. display "‘r(varlist)’"
00000E 00000F mpg

We can see the results by listing the new variables alongside the original value of rep78.

. list rep78 ‘r(varlist)’ in 1/5

rep78 __00000E __00000F mpg

1. 3 1 0 22
2. 3 1 0 17
3. . . . 22
4. 3 1 0 20
5. 4 0 1 15

If we had needed only the base-variable names, we could have specified

. fvrevar i(2,3)bn.rep78 mpg, list

. display "‘r(varlist)’"
mpg rep78

The order of the list will probably differ from that of the original list; base variables are listed only
once.

Example 3

Now let’s assume we have a varlist containing both an interaction and time-series–operated variables.
If we want to create temporary variables for the entire equivalent varlist, we can specify fvrevar
with no options.

. generate t = _n

. tsset t

. fvrevar c.turn#i(2,3).rep78 L.mpg

The resulting variable list is

. display "‘r(varlist)’"
00000I 00000K 00000M
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If we want to create temporary variables only for the time-series–operated variables, we can specify
the tsonly option.

. fvrevar c.turn#i(2,3).rep78 L.mpg, tsonly

The resulting variable list is

. display "‘r(varlist)’"
2b.rep78#c.turn 3.rep78#c.turn 00000M

Notice that fvrevar returned the expanded factor-variable list with the tsonly option.

Technical note
fvrevar, substitute avoids creating duplicate variables. Consider

. fvrevar i.rep78 turn mpg i.rep78

i.rep78 appears twice in the varlist. fvrevar will create only one set of new variables for the
five levels of rep78 and will use these new variables once in the resulting r(varlist). Moreover,
fvrevar will do this even across multiple calls:

. fvrevar i.rep78 turn mpg

. fvrevar i.rep78

i.rep78 appears in two separate calls. At the first call, fvrevar creates five temporary variables
corresponding to the five levels of rep78. At the second call, fvrevar remembers what it has done
and uses the same temporary variables for i.rep78.

Saved results
fvrevar saves the following in r():

Macros
r(varlist) the modified variable list or list of base-variable names

Also see
[P] syntax — Parse Stata syntax

[TS] tsrevar — Time-series operator programming command

[P] unab — Unabbreviate variable list

[U] 11 Language syntax
[U] 11.4.4 Time-series varlists
[U] 18 Programming Stata



Title

fvset — Declare factor-variable settings

Syntax
Declare base settings

fvset base base spec varlist

Declare design settings

fvset design design spec varlist

Clear the current settings

fvset clear varlist

Report the current settings

fvset report
[

varlist
] [

, base(base spec) design(design spec)
]

base spec Description

default default base
first lowest level value; the default
last highest level value
frequent most frequent level value
none no base
# nonnegative integer value

design spec Description

default default base
asbalanced accumulate using 1/k, k = number of levels
asobserved accumulate using observed relative frequencies; the default

Description

fvset declares factor-variable settings. Factor-variable settings identify the base level and how to
accumulate statistics over levels.

fvset base specifies the base level for each variable in varlist. The default for factor variables
without a declared base level is first.

fvset design specifies how to accumulate over the levels of a factor variable. The margins
command is the only command aware of this setting; see [R] margins. By default, margins assumes
that factor variables are asobserved, meaning that they are accumulated by weighting by the number
of observations or the sum of the weights if weights have been specified.
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fvset clear removes factor-variable settings for each variable in varlist. fvset clear all
removes all factor-variable settings from all variables.

fvset report reports the current factor-variable settings for each variable in varlist. fvset
without arguments is a synonym for fvset report.

Options
base(base spec) restricts fvset report to report only the factor-variable settings for variables with

the specified base spec.

design(design spec) restricts fvset report to report only the factor-variable settings for variables
with the specified design spec.

Remarks

Example 1

Using our auto dataset, we include factor variable i.rep78 in a regression:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg i.rep78, baselevels

Source SS df MS Number of obs = 69
F( 4, 64) = 4.91

Model 549.415777 4 137.353944 Prob > F = 0.0016
Residual 1790.78712 64 27.9810488 R-squared = 0.2348

Adj R-squared = 0.1869
Total 2340.2029 68 34.4147485 Root MSE = 5.2897

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

rep78
1 0 (base)
2 -1.875 4.181884 -0.45 0.655 -10.22927 6.479274
3 -1.566667 3.863059 -0.41 0.686 -9.284014 6.150681
4 .6666667 3.942718 0.17 0.866 -7.209818 8.543152
5 6.363636 4.066234 1.56 0.123 -1.759599 14.48687

_cons 21 3.740391 5.61 0.000 13.52771 28.47229

We specified the baselevels option so that the base level would be included in the output. By
default, the first level is the base level. We can change the base level to 2:
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. fvset base 2 rep78

. regress mpg i.rep78, baselevels

Source SS df MS Number of obs = 69
F( 4, 64) = 4.91

Model 549.415777 4 137.353944 Prob > F = 0.0016
Residual 1790.78712 64 27.9810488 R-squared = 0.2348

Adj R-squared = 0.1869
Total 2340.2029 68 34.4147485 Root MSE = 5.2897

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

rep78
1 1.875 4.181884 0.45 0.655 -6.479274 10.22927
2 0 (base)
3 .3083333 2.104836 0.15 0.884 -3.896559 4.513226
4 2.541667 2.247695 1.13 0.262 -1.948621 7.031954
5 8.238636 2.457918 3.35 0.001 3.32838 13.14889

_cons 19.125 1.870195 10.23 0.000 15.38886 22.86114

Let’s set rep78 to have no base level and fit a cell-means regression:

. fvset base none rep78

. regress mpg i.rep78, noconstant

Source SS df MS Number of obs = 69
F( 5, 64) = 227.47

Model 31824.2129 5 6364.84258 Prob > F = 0.0000
Residual 1790.78712 64 27.9810488 R-squared = 0.9467

Adj R-squared = 0.9426
Total 33615 69 487.173913 Root MSE = 5.2897

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

rep78
1 21 3.740391 5.61 0.000 13.52771 28.47229
2 19.125 1.870195 10.23 0.000 15.38886 22.86114
3 19.43333 .9657648 20.12 0.000 17.504 21.36267
4 21.66667 1.246797 17.38 0.000 19.1759 24.15743
5 27.36364 1.594908 17.16 0.000 24.17744 30.54983

Example 2

By default, margins accumulates a margin by using the observed relative frequencies of the factor
levels.
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. regress mpg i.foreign

Source SS df MS Number of obs = 74
F( 1, 72) = 13.18

Model 378.153515 1 378.153515 Prob > F = 0.0005
Residual 2065.30594 72 28.6848048 R-squared = 0.1548

Adj R-squared = 0.1430
Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225
_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins

Predictive margins Number of obs = 74
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 21.2973 .6226014 34.21 0.000 20.07702 22.51757

Let’s set foreign to always accumulate using equal relative frequencies:

. fvset design asbalanced foreign

. regress mpg i.foreign

Source SS df MS Number of obs = 74
F( 1, 72) = 13.18

Model 378.153515 1 378.153515 Prob > F = 0.0005
Residual 2065.30594 72 28.6848048 R-squared = 0.1548

Adj R-squared = 0.1430
Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225
_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins

Adjusted predictions Number of obs = 74
Model VCE : OLS

Expression : Linear prediction, predict()
at : foreign (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 22.29983 .6810811 32.74 0.000 20.96493 23.63472

Suppose that we issued the fvset design command earlier in our session and that we cannot
remember which variables we set as asbalanced. We can retrieve this information by using the
fvset report command:
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. fvset report, design(asbalanced)

Variable Base Design

foreign asbalanced

Technical note
margins is aware of a factor variable’s design setting only through the estimation results it is

working with. The design setting is stored by the estimation command; thus changing the design
setting between the estimation command and margins will have no effect. For example, the output
from the following two calls to margins yields the same results:

. fvset clear foreign

. regress mpg i.foreign

Source SS df MS Number of obs = 74
F( 1, 72) = 13.18

Model 378.153515 1 378.153515 Prob > F = 0.0005
Residual 2065.30594 72 28.6848048 R-squared = 0.1548

Adj R-squared = 0.1430
Total 2443.45946 73 33.4720474 Root MSE = 5.3558

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.foreign 4.945804 1.362162 3.63 0.001 2.230384 7.661225
_cons 19.82692 .7427186 26.70 0.000 18.34634 21.30751

. margins

Predictive margins Number of obs = 74
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 21.2973 .6226014 34.21 0.000 20.07702 22.51757

. fvset design asbalanced foreign

. margins

Predictive margins Number of obs = 74
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 21.2973 .6226014 34.21 0.000 20.07702 22.51757
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Saved results
fvset saves the following in r():

Macros
r(varlist) varlist
r(baselist) base setting for each variable in varlist
r(designlist) design setting for each variable in varlist

Methods and formulas
fvset is implemented as an ado-file.



Title

gllamm — Generalized linear and latent mixed models

Description
GLLAMM stands for generalized linear latent and mixed models, and gllamm is a Stata command

for fitting such models written by Sophia Rabe-Hesketh (University of California–Berkeley) as part
of joint work with Anders Skrondal (Norwegian Institute of Public Health) and Andrew Pickles
(University of Manchester).

Remarks
Generalized linear latent and mixed models are a class of multilevel latent variable models, where

a latent variable is a factor or a random effect (intercept or coefficient), or a disturbance (residual).
The gllamm command for fitting such models is not an official command of Stata; it has been
independently developed by highly regarded authors and is itself highly regarded. You can learn more
about gllamm by visiting http://www.gllamm.org.

gllamm is available from the Statistical Software Components (SSC) archive. To install, type

. ssc describe gllamm

. ssc install gllamm

If you later wish to uninstall gllamm, type ado uninstall gllamm.

References
Miranda, A., and S. Rabe-Hesketh. 2006. Maximum likelihood estimation of endogenous switching and sample

selection models for binary, ordinal, and count variables. Stata Journal 6: 285–308.

Rabe-Hesketh, S., and B. S. Everitt. 2007. A Handbook of Statistical Analyses Using Stata. 4th ed. Boca Raton, FL:
Chapman & Hall/CRC.

Rabe-Hesketh, S., A. Pickles, and C. Taylor. 2000. sg129: Generalized linear latent and mixed models. Stata Technical
Bulletin 53: 47–57. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 293–307. College Station, TX: Stata
Press.

Rabe-Hesketh, S., and A. Skrondal. 2008. Multilevel and Longitudinal Modeling Using Stata. 2nd ed. College Station,
TX: Stata Press.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2002. Reliable estimation of generalized linear mixed models using
adaptive quadrature. Stata Journal 2: 1–21.

. 2003. Maximum likelihood estimation of generalized linear models with covariate measurement error. Stata
Journal 3: 386–411.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel, Longitudinal, and
Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Zheng, X., and S. Rabe-Hesketh. 2007. Estimating parameters of dichotomous and ordinal item response models with
gllamm. Stata Journal 7: 313–333.

The references above are restricted to works by the primary authors of gllamm. There are many other
books and articles that use or discuss gllamm; see http://www.gllamm.org/pub.html for a list.
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Also see
[XT] xtmelogit — Multilevel mixed-effects logistic regression

[XT] xtmepoisson — Multilevel mixed-effects Poisson regression

[XT] xtmixed — Multilevel mixed-effects linear regression



Title

glm — Generalized linear models

Syntax
glm depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

family(familyname) distribution of depvar; default is family(gaussian)

link(linkname) link function; default is canonical link for family() specified

Model 2

noconstant suppress constant term
exposure(varname) include ln(varname) in model with coefficient constrained to 1
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables
mu(varname) use varname as the initial estimate for the mean of depvar
init(varname) synonym for mu(varname)

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, eim, opg,
bootstrap, jackknife, hac kernel, jackknife1, or unbiased

vfactor(#) multiply variance matrix by scalar #
disp(#) quasilikelihood multiplier
scale(x2 | dev | #) set the scale parameter

Reporting

level(#) set confidence level; default is level(95)

eform report exponentiated coefficients
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

ml use maximum likelihood optimization; the default
irls use iterated, reweighted least-squares optimization of the deviance
maximize options control the maximization process; seldom used
fisher(#) use the Fisher scoring Hessian or expected information matrix (EIM)
search search for good starting values

noheader suppress header table from above coefficient table
notable suppress coefficient table
nodisplay suppress the output; iteration log is still displayed
coeflegend display legend instead of statistics

589



590 glm — Generalized linear models

familyname Description

gaussian Gaussian (normal)
igaussian inverse Gaussian
binomial

[
varnameN | #N

]
Bernoulli/binomial

poisson Poisson
nbinomial

[
#k | ml

]
negative binomial

gamma gamma

linkname Description

identity identity
log log
logit logit
probit probit
cloglog cloglog
power # power
opower # odds power
nbinomial negative binomial
loglog log-log
logc log-complement

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap), vce(jackknife), and vce(jackknife1) are not allowed with the mi estimate prefix; see

[MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), vfactor(), disp(), scale(), irls, fisher(), noheader, notable, nodisplay, and weights

are not allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nodisplay, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Generalized linear models > Generalized linear models (GLM)

Description
glm fits generalized linear models. It can fit models by using either IRLS (maximum quasilikelihood)

or Newton–Raphson (maximum likelihood) optimization, which is the default.

See [ I ] estimation commands for a complete list of Stata’s estimation commands, several of which
fit models that can also be fit using glm.
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Options

� � �
Model �

family( familyname) specifies the distribution of depvar; family(gaussian) is the default.

link(linkname) specifies the link function; the default is the canonical link for the family()
specified (except for family(nbinomial)).

� � �
Model 2 �

noconstant, exposure(varname), offset(varname), constraints(constraints), collinear;
see [R] estimation options. constraints(constraints) and collinear are not allowed with
irls.

mu(varname) specifies varname as the initial estimate for the mean of depvar. This option can be
useful with models that experience convergence difficulties, such as family(binomial) models
with power or odds-power links. init(varname) is a synonym.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

In addition to the standard vcetypes, glm allows the following alternatives:

vce(eim) specifies that the EIM estimate of variance be used.

vce(jackknife1) specifies that the one-step jackknife estimate of variance be used.

vce(hac kernel
[
#
]
) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC)

variance estimate be used. HAC refers to the general form for combining weighted matrices
to form the variance estimate. There are three kernels built into glm. kernel is a user-written
program or one of

nwest | gallant | anderson
# specifies the number of lags. If # is not specified, N − 2 is assumed. If you wish to
specify vce(hac . . . ), you must tsset your data before calling glm.

vce(unbiased) specifies that the unbiased sandwich estimate of variance be used.

vfactor(#) specifies a scalar by which to multiply the resulting variance matrix. This option allows
you to match output with other packages, which may apply degrees of freedom or other small-sample
corrections to estimates of variance.

disp(#) multiplies the variance of depvar by # and divides the deviance by #. The resulting
distributions are members of the quasilikelihood family.

scale(x2 | dev | #) overrides the default scale parameter. This option is allowed only with Hessian
(information matrix) variance estimates.

By default, scale(1) is assumed for the discrete distributions (binomial, Poisson, and negative
binomial), and scale(x2) is assumed for the continuous distributions (Gaussian, gamma, and
inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson chi-squared (or generalized chi-
squared) statistic divided by the residual degrees of freedom, which is recommended by McCullagh
and Nelder (1989) as a good general choice for continuous distributions.
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scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and overdispersed
or underdispersed discrete distributions.

scale(#) sets the scale parameter to #. For example, using scale(1) in family(gamma)
models results in exponential-errors regression. Additional use of link(log) rather than the
default link(power -1) for family(gamma) essentially reproduces Stata’s streg, dist(exp)
nohr command (see [ST] streg) if all the observations are uncensored.

� � �
Reporting �

level(#); see [R] estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals. For family(binomial) link(logit) (that is, logistic regression), exponentiation
results in odds ratios; for family(poisson) link(log) (that is, Poisson regression), exponentiated
coefficients are rate ratios.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

ml requests that optimization be carried out using Stata’s ml commands and is the default.

irls requests iterated, reweighted least-squares (IRLS) optimization of the deviance instead of Newton–
Raphson optimization of the log likelihood. If the irls option is not specified, the optimization
is carried out using Stata’s ml commands, in which case all options of ml maximize are also
available.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

fisher(#) specifies the number of Newton–Raphson steps that should use the Fisher scoring Hessian
or EIM before switching to the observed information matrix (OIM). This option is useful only for
Newton–Raphson optimization (and not when using irls).

search specifies that the command search for good starting values. This option is useful only for
Newton–Raphson optimization (and not when using irls).

The following options are available with glm but are not shown in the dialog box:

noheader suppresses the header information from the output. The coefficient table is still displayed.

notable suppresses the table of coefficients from the output. The header information is still displayed.

nodisplay suppresses the output. The iteration log is still displayed.

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

General use
Variance estimators
User-defined functions

General use

glm fits generalized linear models of y with covariates x:

g
{
E(y)

}
= xβ, y ∼ F

g( ) is called the link function, and F is the distributional family. Substituting various definitions
for g( ) and F results in a surprising array of models. For instance, if y is distributed as Gaussian
(normal) and g( ) is the identity function, we have

E(y) = xβ, y ∼ Normal

or linear regression. If g( ) is the logit function and y is distributed as Bernoulli, we have

logit
{
E(y)

}
= xβ, y ∼ Bernoulli

or logistic regression. If g( ) is the natural log function and y is distributed as Poisson, we have

ln
{
E(y)

}
= xβ, y ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

Although glm can be used to perform linear regression (and, in fact, does so by default), this
regression should be viewed as an instructional feature; regress produces such estimates more
quickly, and many postestimation commands are available to explore the adequacy of the fit; see
[R] regress and [R] regress postestimation.

In any case, you specify the link function by using the link() option and specify the distributional
family by using family(). The available link functions are

Link function glm option

identity link(identity)

log link(log)

logit link(logit)

probit link(probit)

complementary log-log link(cloglog)

odds power link(opower #)

power link(power #)

negative binomial link(nbinomial)

log-log link(loglog)

log-complement link(logc)

Define µ = E(y) and η = g(µ), meaning that g(·) maps E(y) to η = xβ+ offset.
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Link functions are defined as follows:

identity is defined as η = g(µ) = µ.

log is defined as η = ln(µ).

logit is defined as η = ln
{
µ/(1− µ)

}
, the natural log of the odds.

probit is defined as η = Φ−1(µ), where Φ−1( ) is the inverse Gaussian cumulative.

cloglog is defined as η = ln
{
− ln(1− µ)

}
.

opower is defined as η =
[{
µ/(1 − µ)

}n − 1
]
/n, the power of the odds. The function is

generalized so that link(opower 0) is equivalent to link(logit), the natural log of the odds.

power is defined as η = µn. Specifying link(power 1) is equivalent to specifying
link(identity). The power function is generalized so that µ0 ≡ ln(µ). Thus link(power
0) is equivalent to link(log). Negative powers are, of course, allowed.

nbinomial is defined as η = ln
{
µ/(µ+ k)

}
, where k = 1 if family(nbinomial) is specified,

k = #k if family(nbinomial #k) is specified, and k is estimated via maximum likelihood if
family(nbinomial ml) is specified.

loglog is defined as η = −ln{−ln(µ)}.
logc is defined as η = ln(1− µ).

The available distributional families are

Family glm option

Gaussian (normal) family(gaussian)

inverse Gaussian family(igaussian)

Bernoulli/binomial family(binomial)

Poisson family(poisson)

negative binomial family(nbinomial)

gamma family(gamma)

family(normal) is a synonym for family(gaussian).

The binomial distribution can be specified as 1) family(binomial), 2) family(binomial #N),
or 3) family(binomial varnameN). In case 2, #N is the value of the binomial denominator N , the
number of trials. Specifying family(binomial 1) is the same as specifying family(binomial).
In case 3, varnameN is the variable containing the binomial denominator, allowing the number of
trials to vary across observations.

The negative binomial distribution can be specified as 1) family(nbinomial), 2) fam-
ily(nbinomial #k), or 3) family(nbinomial ml). Omitting #k is equivalent to specifying
family(nbinomial 1). In case 3, the value of #k is estimated via maximum likelihood. The value
#k enters the variance and deviance functions. Typical values range between 0.01 and 2; see the
technical note below.

You do not have to specify both family() and link(); the default link() is the canonical link
for the specified family() (except for nbinomial):
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Family Default link

family(gaussian) link(identity)

family(igaussian) link(power -2)

family(binomial) link(logit)

family(poisson) link(log)

family(nbinomial) link(log)

family(gamma) link(power -1)

If you specify both family() and link(), not all combinations make sense. You may choose from
the following combinations:

identity log logit probit cloglog power opower nbinomial loglog logc

Gaussian x x x
inverse Gaussian x x x
binomial x x x x x x x x x
Poisson x x x
negative binomial x x x x
gamma x x x

Technical note

Some family() and link() combinations result in models already fit by Stata. These are

family() link() Options Equivalent Stata command

gaussian identity nothing | irls | irls vce(oim) regress

gaussian identity t(var) vce(hac nwest #) newey, t(var) lag(#) (see note 1)
vfactor(#v)

binomial cloglog nothing | irls vce(oim) cloglog (see note 2)

binomial probit nothing | irls vce(oim) probit (see note 2)

binomial logit nothing | irls | irls vce(oim) logit or logistic (see note 3)

poisson log nothing | irls | irls vce(oim) poisson (see note 3)

nbinomial log nothing | irls vce(oim) nbreg (see note 4)
gamma log scale(1) streg, dist(exp) nohr (see note 5)

Notes:

1. The variance factor #v should be set to n/(n − k), where n is the number of observations and
k the number of regressors. If the number of regressors is not specified, the estimated standard
errors will, as a result, differ by this factor.

2. Because the link is not the canonical link for the binomial family, you must specify the vce(oim)
option if using irls to get equivalent standard errors. If irls is used without vce(oim),
the regression coefficients will be the same but the standard errors will be only asymptotically
equivalent. If no options are specified (nothing), glm will optimize using Newton–Raphson, making
it equivalent to the other Stata command.

See [R] cloglog and [R] probit for more details about these commands.

3. Because the canonical link is being used, the standard errors will be equivalent whether the EIM
or the OIM estimator of variance is used.
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4. Family negative binomial, log-link models—also known as negative binomial regression
models—are used for data with an overdispersed Poisson distribution. Although glm can be
used to fit such models, using Stata’s maximum likelihood nbreg command is probably better. In
the GLM approach, you specify family(nbinomial #k) and then search for a #k that results in
the deviance-based dispersion being 1. You can also specify family(nbinomial ml) to estimate
#k via maximum likelihood, which will report the same value returned from nbreg. However,
nbreg also reports a confidence interval for it; see [R] nbreg and Rogers (1993). Of course, glm
allows links other than log, and for those links, including the canonical nbinomial link, you will
need to use glm.

5. glm can be used to estimate parameters from exponential regressions, but this method requires
specifying scale(1). However, censoring is not available. Censored exponential regression may
be modeled using glm with family(poisson). The log of the original response is entered into
a Poisson model as an offset, whereas the new response is the censor variable. The result of such
modeling is identical to the log relative hazard parameterization of streg, dist(exp) nohr. See
[ST] streg for details about the streg command.

In general, where there is overlap between a capability of glm and that of some other Stata
command, we recommend using the other Stata command. Our recommendation is not because of
some inferiority of the GLM approach. Rather, those other commands, by being specialized, provide
options and ancillary commands that are missing in the broader glm framework. Nevertheless, glm
does produce the same answers where it should.

Special note. When equivalence is expected, for some datasets, you may still see very slight differences
in the results, most often only in the later digits of the standard errors. When you compare glm
output to an equivalent Stata command, these tiny discrepancies arise for many reasons:

a. glm uses a general methodology for starting values, whereas the equivalent Stata command may
be more specialized in its treatment of starting values.

b. When using a canonical link, glm, irls should be equivalent to the maximum likelihood method
of the equivalent Stata command, yet the convergence criterion is different (one is for deviance,
the other for log likelihood). These discrepancies are easily resolved by adjusting one convergence
criterion to correspond to the other.

c. When both glm and the equivalent Stata command use Newton–Raphson, small differences may
still occur if the Stata command has a different default convergence criterion from that of glm.
Adjusting the convergence criterion will resolve the difference. See [R] ml and [R] maximize for
more details.

Example 1

In example 1 of [R] logistic, we fit a model based on data from a study of risk factors associated
with low birthweight (Hosmer and Lemeshow 2000, 25). We can replicate the estimation by using
glm:
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. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. glm low age lwt i.race smoke ptl ht ui, family(binomial) link(logit)

Iteration 0: log likelihood = -101.0213
Iteration 1: log likelihood = -100.72519
Iteration 2: log likelihood = -100.724
Iteration 3: log likelihood = -100.724

Generalized linear models No. of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0271003 .0364504 -0.74 0.457 -.0985418 .0443412
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
2 1.262647 .5264101 2.40 0.016 .2309024 2.294392
3 .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

glm, by default, presents coefficient estimates, whereas logistic presents the exponentiated
coefficients—the odds ratios. glm’s eform option reports exponentiated coefficients, and glm, like
Stata’s other estimation commands, replays results.
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. glm, eform

Generalized linear models No. of obs = 189
Optimization : ML Residual df = 180

Scale parameter = 1
Deviance = 201.4479911 (1/df) Deviance = 1.119156
Pearson = 182.0233425 (1/df) Pearson = 1.011241

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 1.1611
Log likelihood = -100.7239956 BIC = -742.0665

OIM
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
2 3.534767 1.860737 2.40 0.016 1.259736 9.918406
3 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

These results are the same as those reported in example 1 of [R] logistic.

Included in the output header are values for the Akaike (1973) information criterion (AIC) and the
Bayesian information criterion (BIC) (Raftery 1995). Both are measures of model fit adjusted for the
number of parameters that can be compared across models. In both cases, a smaller value generally
indicates a better model fit. AIC is based on the log likelihood and thus is available only when
Newton–Raphson optimization is used. BIC is based on the deviance and thus is always available.

Technical note
The values for AIC and BIC reported in the output after glm are different from those reported by

estat ic:
. estat ic

Model Obs ll(null) ll(model) df AIC BIC

. 189 . -100.724 9 219.448 248.6237

Note: N=Obs used in calculating BIC; see [R] BIC note

There are various definitions of these information criteria (IC) in the literature; glm and estat ic
use different definitions. glm bases its computation of the BIC on deviance, whereas estat ic uses
the likelihood. Both glm and estat ic use the likelihood to compute the AIC; however, the AIC from
estat ic is equal to N , the number of observations, times the AIC from glm. Refer to Methods
and formulas in this entry and [R] estat for the references and formulas used by glm and estat,
respectively, to compute AIC and BIC. Inferences based on comparison of IC values reported by glm
for different GLM models will be equivalent to those based on comparison of IC values reported by
estat ic after glm.
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Example 2

We use data from an early insecticide experiment, given in Pregibon (1980). The variables are
ldose, the log dose of insecticide; n, the number of flour beetles subjected to each dose; and r, the
number killed.

. use http://www.stata-press.com/data/r12/ldose

. list, sep(4)

ldose n r

1. 1.6907 59 6
2. 1.7242 60 13
3. 1.7552 62 18
4. 1.7842 56 28

5. 1.8113 63 52
6. 1.8369 59 53
7. 1.861 62 61
8. 1.8839 60 60

The aim of the analysis is to estimate a dose–response relationship between p, the proportion
killed, and X , the log dose.

As a first attempt, we will formulate the model as a linear logistic regression of p on ldose; that
is, we will take the logit of p and represent the dose–response curve as a straight line in X:

ln
{
p/(1− p)

}
= β0 + β1X

Because the data are grouped, we cannot use Stata’s logistic command to fit the model. Stata does,
however, already have a command for performing logistic regression on data organized in this way,
so we could type

. blogit r n ldose
(output omitted )

Instead, we will fit the model by using glm:

. glm r ldose, family(binomial n) link(logit)

Iteration 0: log likelihood = -18.824848
Iteration 1: log likelihood = -18.715271
Iteration 2: log likelihood = -18.715123
Iteration 3: log likelihood = -18.715123

Generalized linear models No. of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 11.23220702 (1/df) Deviance = 1.872035
Pearson = 10.0267936 (1/df) Pearson = 1.671132
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Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/(n-u)) [Logit]

AIC = 5.178781
Log likelihood = -18.71512262 BIC = -1.244442

OIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldose 34.27034 2.912141 11.77 0.000 28.56265 39.97803
_cons -60.71747 5.180713 -11.72 0.000 -70.87149 -50.56346

The only difference between blogit and glm here is how they obtain the answer. blogit expands
the data to contain 481 observations (the sum of n) so that it can run Stata’s standard, individual-level
logistic command. glm, on the other hand, uses the information on the binomial denominator directly.
We specified family(binomial n), meaning that variable n contains the denominator. Parameter
estimates and standard errors from the two approaches do not differ.

An alternative model, which gives asymmetric sigmoid curves for p, involves the complementary
log-log, or cloglog, function:

ln
{
− ln(1− p)

}
= β0 + β1X

We fit this model by using glm:

. glm r ldose, family(binomial n) link(cloglog)

Iteration 0: log likelihood = -14.883594
Iteration 1: log likelihood = -14.822264
Iteration 2: log likelihood = -14.822228
Iteration 3: log likelihood = -14.822228

Generalized linear models No. of obs = 8
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 3.446418004 (1/df) Deviance = .574403
Pearson = 3.294675153 (1/df) Pearson = .5491125

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log-log]

AIC = 4.205557
Log likelihood = -14.82222811 BIC = -9.030231

OIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557
_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

The complementary log-log model is preferred; the deviance for the logistic model, 11.23, is much
higher than the deviance for the cloglog model, 3.45. This change also is evident by comparing log
likelihoods, or equivalently, AIC values.

This example also shows the advantage of the glm command—we can vary assumptions easily.
Note the minor difference in what we typed to obtain the logistic and cloglog models:

. glm r ldose, family(binomial n) link(logit)

. glm r ldose, family(binomial n) link(cloglog)
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If we were performing this work for ourselves, we would have typed the commands in a more
abbreviated form:

. glm r ldose, f(b n) l(l)

. glm r ldose, f(b n) l(cl)

Technical note
Factor variables may be used with glm. Say that, in the example above, we had ldose, the log dose

of insecticide; n, the number of flour beetles subjected to each dose; and r, the number killed—all
as before—except that now we have results for three different kinds of beetles. Our hypothetical data
include beetle, which contains the values 1, 2, and 3.

. use http://www.stata-press.com/data/r12/beetle

. list, sep(0)

beetle ldose n r

1. 1 1.6907 59 6
2. 1 1.7242 60 13
3. 1 1.7552 62 18
4. 1 1.7842 56 28
5. 1 1.8113 63 52

(output omitted )
23. 3 1.861 64 23
24. 3 1.8839 58 22

Let’s assume that, at first, we wish merely to add a shift factor for the type of beetle. We could type

. glm r i.beetle ldose, f(bin n) l(cloglog)

Iteration 0: log likelihood = -79.012269
Iteration 1: log likelihood = -76.94951
Iteration 2: log likelihood = -76.945645
Iteration 3: log likelihood = -76.945645

Generalized linear models No. of obs = 24
Optimization : ML Residual df = 20

Scale parameter = 1
Deviance = 73.76505595 (1/df) Deviance = 3.688253
Pearson = 71.8901173 (1/df) Pearson = 3.594506

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log-log]

AIC = 6.74547
Log likelihood = -76.94564525 BIC = 10.20398

OIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.0910396 .1076132 -0.85 0.398 -.3019576 .1198783
3 -1.836058 .1307125 -14.05 0.000 -2.09225 -1.579867

ldose 19.41558 .9954265 19.50 0.000 17.46458 21.36658
_cons -34.84602 1.79333 -19.43 0.000 -38.36089 -31.33116
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We find strong evidence that the insecticide works differently on the third kind of beetle. We now
check whether the curve is merely shifted or also differently sloped:

. glm r beetle##c.ldose, f(bin n) l(cloglog)

Iteration 0: log likelihood = -67.270188
Iteration 1: log likelihood = -65.149316
Iteration 2: log likelihood = -65.147978
Iteration 3: log likelihood = -65.147978

Generalized linear models No. of obs = 24
Optimization : ML Residual df = 18

Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422567 (1/df) Pearson = 2.738013

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log-log]

AIC = 5.928998
Log likelihood = -65.14797776 BIC = -7.035248

OIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
3 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
2 .3838708 2.478477 0.15 0.877 -4.473855 5.241596
3 -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

We find that the (complementary log-log) dose–response curve for the third kind of beetle has roughly
half the slope of that for the first kind.

See [U] 25 Working with categorical data and factor variables; what is said there concerning
linear regression is applicable to any GLM model.
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Variance estimators
glm offers many variance options and gives different types of standard errors when used in various

combinations. We highlight some of them here, but for a full explanation, see Hardin and Hilbe (2007).

Example 3

Continuing with our flour beetle data, we rerun the most recently displayed model, this time
requesting estimation via IRLS.

. use http://www.stata-press.com/data/r12/beetle

. glm r beetle##c.ldose, f(bin n) l(cloglog) ltol(1e-15) irls

Iteration 1: deviance = 54.41414
Iteration 2: deviance = 50.19424
Iteration 3: deviance = 50.16973

(output omitted )
Iteration 17: deviance = 50.16972

Generalized linear models No. of obs = 24
Optimization : MQL Fisher scoring Residual df = 18

(IRLS EIM) Scale parameter = 1
Deviance = 50.16972096 (1/df) Deviance = 2.787207
Pearson = 49.28422567 (1/df) Pearson = 2.738013

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(-ln(1-u/n)) [Complementary log-log]

BIC = -7.035248

EIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 4.586649 -0.17 0.862 -9.788997 8.190337
3 17.78741 4.624834 3.85 0.000 8.7229 26.85192

ldose 22.04118 1.799356 12.25 0.000 18.5145 25.56785

beetle#c.ldose
2 .3838708 2.544068 0.15 0.880 -4.602411 5.370152
3 -10.726 2.548176 -4.21 0.000 -15.72033 -5.731665

_cons -39.57232 3.240274 -12.21 0.000 -45.92314 -33.2215

Note our use of the ltol() option, which, although unrelated to our discussion on variance estimation,
was used so that the regression coefficients would match those of the previous Newton–Raphson (NR)
fit.

Because IRLS uses the EIM for optimization, the variance estimate is also based on EIM. If we want
optimization via IRLS but the variance estimate based on OIM, we specify glm, irls vce(oim):
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. glm r beetle##c.ldose, f(b n) l(cl) ltol(1e-15) irls vce(oim) noheader nolog

OIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 4.470882 -0.18 0.858 -9.562098 7.963438
3 17.78741 4.586429 3.88 0.000 8.798172 26.77664

ldose 22.04118 1.793089 12.29 0.000 18.52679 25.55557

beetle#c.ldose
2 .3838708 2.478477 0.15 0.877 -4.473855 5.241596
3 -10.726 2.526412 -4.25 0.000 -15.67768 -5.774321

_cons -39.57232 3.229047 -12.26 0.000 -45.90114 -33.24351

This approach is identical to NR except for the convergence path. Because the cloglog link is not
the canonical link for the binomial family, EIM and OIM produce different results. Both estimators,
however, are asymptotically equivalent.

Going back to NR, we can also specify vce(robust) to get the Huber/White/sandwich estimator
of variance:

. glm r beetle##c.ldose, f(b n) l(cl) vce(robust) noheader nolog

Robust
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 5.733049 -0.14 0.889 -12.0359 10.43724
3 17.78741 5.158477 3.45 0.001 7.676977 27.89784

ldose 22.04118 .8998551 24.49 0.000 20.27749 23.80486

beetle#c.ldose
2 .3838708 3.174427 0.12 0.904 -5.837892 6.605633
3 -10.726 2.800606 -3.83 0.000 -16.21508 -5.236912

_cons -39.57232 1.621306 -24.41 0.000 -42.75003 -36.39462

The sandwich estimator gets its name from the form of the calculation—it is the multiplication
of three matrices, with the outer two matrices (the “bread”) set to the OIM variance matrix. When
irls is used along with vce(robust), the EIM variance matrix is instead used as the bread. Using
a result from McCullagh and Nelder (1989), Newson (1999) points out that the EIM and OIM variance
matrices are equivalent under the canonical link. Thus if irls is specified with the canonical link,
the resulting variance is labeled “Robust”. When the noncanonical link for the family is used, which
is the case in the example below, the EIM and OIM variance matrices differ, so the resulting variance
is labeled “Semirobust”.
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. glm r beetle##c.ldose, f(b n) l(cl) irls ltol(1e-15) vce(robust) noheader
> nolog

Semirobust
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 6.288963 -0.13 0.899 -13.12547 11.52681
3 17.78741 5.255307 3.38 0.001 7.487194 28.08762

ldose 22.04118 .9061566 24.32 0.000 20.26514 23.81721

beetle#c.ldose
2 .3838708 3.489723 0.11 0.912 -6.455861 7.223603
3 -10.726 2.855897 -3.76 0.000 -16.32345 -5.128542

_cons -39.57232 1.632544 -24.24 0.000 -42.77205 -36.3726

The outer product of the gradient (OPG) estimate of variance is one that avoids the calculation of
second derivatives. It is equivalent to the “middle” part of the sandwich estimate of variance and can
be specified by using glm, vce(opg), regardless of whether NR or IRLS optimization is used.

. glm r beetle##c.ldose, f(b n) l(cl) vce(opg) noheader nolog

OPG
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

beetle
2 -.79933 6.664045 -0.12 0.905 -13.86062 12.26196
3 17.78741 6.838505 2.60 0.009 4.384183 31.19063

ldose 22.04118 3.572983 6.17 0.000 15.03826 29.0441

beetle#c.ldose
2 .3838708 3.700192 0.10 0.917 -6.868372 7.636114
3 -10.726 3.796448 -2.83 0.005 -18.1669 -3.285097

_cons -39.57232 6.433101 -6.15 0.000 -52.18097 -26.96368

The OPG estimate of variance is a component of the BHHH (Berndt et al. 1974) optimization
technique. This method of optimization is also available with glm with the technique() option;
however, the technique() option is not allowed with the irls option.

Example 4

The Newey–West (1987) estimator of variance is a sandwich estimator with the “middle” of
the sandwich modified to take into account possible autocorrelation between the observations. These
estimators are a generalization of those given by the Stata command newey for linear regression. See
[TS] newey for more details.

For example, consider the dataset given in [TS] newey, which has time-series measurements on
usr and idle. We want to perform a linear regression with Newey–West standard errors.
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. use http://www.stata-press.com/data/r12/idle2

. list usr idle time

usr idle time

1. 0 100 1
2. 0 100 2
3. 0 97 3
4. 1 98 4
5. 2 94 5

(output omitted )
29. 1 98 29
30. 1 98 30

Examining Methods and formulas of [TS] newey, we see that the variance estimate is multiplied
by a correction factor of n/(n− k), where k is the number of regressors. glm, vce(hac . . . ) does
not make this correction, so to get the same standard errors, we must use the vfactor() option
within glm to make the correction manually.

. display 30/28
1.0714286

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. glm usr idle, vce(hac nwest 3) vfactor(1.0714286)

Iteration 0: log likelihood = -71.743396

Generalized linear models No. of obs = 30
Optimization : ML Residual df = 28

Scale parameter = 7.493297
Deviance = 209.8123165 (1/df) Deviance = 7.493297
Pearson = 209.8123165 (1/df) Pearson = 7.493297

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

HAC kernel (lags): Newey-West (3)
AIC = 4.916226

Log likelihood = -71.74339627 BIC = 114.5788

HAC
usr Coef. Std. Err. z P>|z| [95% Conf. Interval]

idle -.2281501 .0690928 -3.30 0.001 -.3635694 -.0927307
_cons 23.13483 6.327033 3.66 0.000 10.73407 35.53558

The glm command above reproduces the results given in [TS] newey. We may now generalize this
output to models other than simple linear regression and to different kernel weights.
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. glm usr idle, fam(gamma) link(log) vce(hac gallant 3)

Iteration 0: log likelihood = -61.76593
Iteration 1: log likelihood = -60.963233
Iteration 2: log likelihood = -60.95097
Iteration 3: log likelihood = -60.950965

Generalized linear models No. of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

HAC kernel (lags): Gallant (3)
AIC = 4.196731

Log likelihood = -60.95096484 BIC = -85.32502

HAC
usr Coef. Std. Err. z P>|z| [95% Conf. Interval]

idle -.0796609 .0184647 -4.31 0.000 -.115851 -.0434708
_cons 7.771011 1.510198 5.15 0.000 4.811078 10.73094

glm also offers variance estimators based on the bootstrap (resampling your data with replacement)
and the jackknife (refitting the model with each observation left out in succession). Also included is
the one-step jackknife estimate, which, instead of performing full reestimation when each observation
is omitted, calculates a one-step NR estimate, with the full data regression coefficients as starting
values.

. set seed 1

. glm usr idle, fam(gamma) link(log) vce(bootstrap, reps(100) nodots)

Generalized linear models No. of obs = 30
Optimization : ML Residual df = 28

Scale parameter = .431296
Deviance = 9.908506707 (1/df) Deviance = .3538752
Pearson = 12.07628677 (1/df) Pearson = .431296

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 4.196731
Log likelihood = -60.95096484 BIC = -85.32502

Observed Bootstrap Normal-based
usr Coef. Std. Err. z P>|z| [95% Conf. Interval]

idle -.0796609 .0216591 -3.68 0.000 -.1221119 -.0372099
_cons 7.771011 1.80278 4.31 0.000 4.237627 11.3044

See Hardin and Hilbe (2007) for a full discussion of the variance options that go with glm and,
in particular, of how the different variance estimators are modified when vce(cluster clustvar) is
specified. Finally, not all variance options are supported with all types of weights. See help glm for
a current table of the variance options that are supported with the different weights.
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User-defined functions
glm may be called with a user-written link function, variance (family) function, Newey–West

kernel-weight function, or any combination of the three.

Syntax of link functions
program progname

version 12
args todo eta mu return
if ‘todo’ == -1 {

/* Set global macros for output */
global SGLM_lt "title for link function"
global SGLM_lf "subtitle showing link definition"
exit

}
if ‘todo’ == 0 {

/* set η=g(µ) */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set µ=g−1(η) */
/* Intermediate calculations go here */
generate double ‘mu’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = ∂µ/∂η */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = ∂2µ/∂η2 */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error "Unknown call to glm link function"
exit 198

end
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Syntax of variance functions

program progname
version 12
args todo eta mu return
if ‘todo’ == -1 {

/* Set global macros for output */
/* Also check that depvar is in proper range */
/* Note: For this call, eta contains indicator for whether each obs. is in est. sample */
global SGLM_vt "title for variance function"
global SGLM_vf "subtitle showing function definition"
global SGLM_mu "program to call to enforce boundary conditions on µ"
exit

}
if ‘todo’ == 0 {

/* set η to initial value. */
/* Intermediate calculations go here */
generate double ‘eta’ = . . .
exit

}
if ‘todo’ == 1 {

/* set return = V (µ) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 2 {

/* set return = ∂V (µ)/∂µ */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 3 {

/* set return = squared deviance (per observation) */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 4 {

/* set return = Anscombe residual */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 5 {

/* set return = log likelihood */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
if ‘todo’ == 6 {

/* set return = adjustment for deviance residuals */
/* Intermediate calculations go here */
generate double ‘return’ = . . .
exit

}
display as error "Unknown call to glm variance function"
exit 198

end



610 glm — Generalized linear models

Syntax of Newey–West kernel-weight functions
program progname, rclass

version 12
args G j
/* G is the maximum lag */
/* j is the current lag */
/* Intermediate calculations go here */
return scalar wt = computed weight
return local setype "Newey-West"
return local sewtype "name of kernel"

end

Global macros available for user-written programs

Global macro Description

SGLM V program name of variance (family) evaluator
SGLM L program name of link evaluator
SGLM y dependent variable name
SGLM m binomial denominator
SGLM a negative binomial k
SGLM p power if power() or opower() is used, or

an argument from a user-specified link function
SGLM s1 indicator; set to one if scale is equal to one
SGLM ph value of scale parameter

Example 5

Suppose that we wish to perform Poisson regression with a log-link function. Although this
regression is already possible with standard glm, we will write our own version for illustrative
purposes.

Because we want a log link, η = g(µ) = ln(µ), and for a Poisson family the variance function
is V (µ) = µ.

The Poisson density is given by

f(yi) =
e− exp(µi)eµiyi

yi!

resulting in a log likelihood of

L =
n∑
i=1

{−eµi + µiyi − ln(yi!)}

The squared deviance of the ith observation for the Poisson family is given by

d2
i =

{
2µ̂i if yi = 0

2
{
yiln(yi/µ̂i)− (yi − µ̂i)

}
otherwise
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We now have enough information to write our own Poisson-log glm module. We create the file
mylog.ado, which contains

program mylog
version 12
args todo eta mu return
if ‘todo’ == -1 {

global SGLM_lt "My Log" // Titles for output
global SGLM_lf "ln(u)"
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’) // η = ln(µ)

exit
}
if ‘todo’ == 1 {

gen double ‘mu’ = exp(‘eta’) // µ = exp(η)

exit
}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’ // ∂µ/∂η = exp(η) = µ

exit
}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’ // ∂2µ/∂η2 = exp(η) = µ

exit
}
di as error "Unknown call to glm link function"
exit 198

end

and we create the file mypois.ado, which contains

program mypois
version 12
args todo eta mu return
if ‘todo’ == -1 {

local y "$SGLM y"
local touse "‘eta’" // ‘eta’ marks estimation sample here
capture assert ‘y’>=0 if ‘touse’ // check range of y
if _rc {

di as error ‘"dependent variable ‘y’ has negative values"’
exit 499

}
global SGLM vt "My Poisson" // Titles for output
global SGLM vf "u"
global SGLM mu "glim_mu 0 ." // see note 1
exit

}
if ‘todo’ == 0 { // Initialization of η; see note 2

gen double ‘eta’ = ln(‘mu’)
exit

}
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if ‘todo’ == 1 {
gen double ‘return’ = ‘mu’ // V (µ) = µ

exit
}
if ‘todo’ == 2 { // ∂ V (µ)/∂µ

gen byte ‘return’ = 1
exit

}
if ‘todo’ == 3 { // squared deviance, defined above

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = cond(‘y’==0, 2*‘mu’, /*

*/ 2*(‘y’*ln(‘y’/‘mu’)-(‘y’-‘mu’)))
exit

}
if ‘todo’ == 4 { // Anscombe residual; see note 3

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = 1.5*(‘y’^(2/3)-‘mu’^(2/3)) / ‘mu’^(1/6)
exit

}
if ‘todo’ == 5 { // log likelihood; see note 4

local y "$SGLM y"
if "‘y’" == "" {

local y "‘e(depvar)’"
}
gen double ‘return’ = -‘mu’+‘y’*ln(‘mu’)-lngamma(‘y’+1)
exit

}
if ‘todo’ == 6 { // adjustment to residual; see note 5

gen double ‘return’ = 1/(6*sqrt(‘mu’))
exit

}
di as error "Unknown call to glm variance function"
error 198

end

Notes:

1. glim mu is a Stata program that will, at each iteration, bring µ̂ back into its plausible range,
should it stray out of it. Here glim mu is called with the arguments zero and missing, meaning
that zero is the lower bound of µ̂ and there exists no upper bound—such is the case for Poisson
models.

2. Here the initial value of η is easy because we intend to fit this model with our user-defined
log link. In general, however, the initialization may need to vary according to the link to obtain
convergence. If so, the global macro SGLM L is used to determine which link is being utilized.

3. The Anscombe formula is given here because we know it. If we were not interested in Anscombe
residuals, we could merely set ‘return’ to missing. Also, the local macro y is set either to
SGLM y if it is in current estimation or to e(depvar) if this function is being accessed by predict.

4. If we were not interested in ML estimation, we could omit this code entirely and just leave an
exit statement in its place. Similarly, if we were not interested in deviance or IRLS optimization,
we could set ‘return’ in the deviance portion of the code (‘todo’==3) to missing.
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5. This code defines the term to be added to the predicted residuals if the adjusted option is
specified. Again, if we were not interested, we could set ‘return’ to missing.

We can now test our Poisson-log module by running it on the airline data presented in [R] poisson.

. use http://www.stata-press.com/data/r12/airline

. list airline injuries n XYZowned

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

. gen lnN=ln(n)

. glm injuries XYZowned lnN, fam(mypois) link(mylog) scale(1)

Iteration 0: log likelihood = -22.557572
Iteration 1: log likelihood = -22.332861
Iteration 2: log likelihood = -22.332276
Iteration 3: log likelihood = -22.332276

Generalized linear models No. of obs = 9
Optimization : ML Residual df = 6

Scale parameter = 1
Deviance = 12.70432823 (1/df) Deviance = 2.117388
Pearson = 12.7695081 (1/df) Pearson = 2.128251

Variance function: V(u) = u [My Poisson]
Link function : g(u) = ln(u) [My Log]

AIC = 5.629395
Log likelihood = -22.33227605 BIC = -.4790192

OIM
injuries Coef. Std. Err. z P>|z| [95% Conf. Interval]

XYZowned .6840668 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154286

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

(Standard errors scaled using dispersion equal to square root of 1.)

These are precisely the results given in [R] poisson and are those that would have been given had
we run glm, family(poisson) link(log). The only minor adjustment we needed to make was
to specify the scale(1) option. If scale() is left unspecified, glm assumes scale(1) for discrete
distributions and scale(x2) for continuous ones. By default, glm assumes that any user-defined
family is continuous because it has no way of checking. Thus we needed to specify scale(1) because
our model is discrete.

Because we were careful in defining the squared deviance, we could have fit this model with IRLS.
Because log is the canonical link for the Poisson family, we would not only get the same regression
coefficients but also the same standard errors.
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Example 6

Suppose now that we wish to use our log link (mylog.ado) with glm’s binomial family. This task
requires some modification because our current function is not equipped to deal with the binomial
denominator, which we are allowed to specify. This denominator is accessible to our link function
through the global macro SGLM m. We now make the modifications and store them in mylog2.ado.

program mylog2 // <-- changed
version 12
args todo eta mu return

if ‘todo’ == -1 {
global SGLM_lt "My Log, Version 2" // <-- changed
if "$SGLM m" == "1" { // <-- changed

global SGLM lf "ln(u)" // <-- changed
} // <-- changed
else global SGLM lf "ln(u/$SGLM m)" // <-- changed
exit

}
if ‘todo’ == 0 {

gen double ‘eta’ = ln(‘mu’/$SGLM m) // <-- changed
exit

}
if ‘todo’ == 1 {

gen double ‘mu’ = $SGLM m*exp(‘eta’) // <-- changed
exit

}
if ‘todo’ == 2 {

gen double ‘return’ = ‘mu’
exit

}
if ‘todo’ == 3 {

gen double ‘return’ = ‘mu’
exit

}
di as error "Unknown call to glm link function"
exit 198

end

We can now run our new log link with glm’s binomial family. Using the flour beetle data from
earlier, we have
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. use http://www.stata-press.com/data/r12/beetle, clear

. glm r ldose, fam(bin n) link(mylog2) irls

Iteration 1: deviance = 2212.108
Iteration 2: deviance = 452.9352
Iteration 3: deviance = 429.95
Iteration 4: deviance = 429.2745
Iteration 5: deviance = 429.2192
Iteration 6: deviance = 429.2082
Iteration 7: deviance = 429.2061
Iteration 8: deviance = 429.2057
Iteration 9: deviance = 429.2056
Iteration 10: deviance = 429.2056
Iteration 11: deviance = 429.2056
Iteration 12: deviance = 429.2056

Generalized linear models No. of obs = 24
Optimization : MQL Fisher scoring Residual df = 22

(IRLS EIM) Scale parameter = 1
Deviance = 429.205599 (1/df) Deviance = 19.50935
Pearson = 413.088142 (1/df) Pearson = 18.77673

Variance function: V(u) = u*(1-u/n) [Binomial]
Link function : g(u) = ln(u/n) [My Log, Version 2]

BIC = 359.2884

EIM
r Coef. Std. Err. z P>|z| [95% Conf. Interval]

ldose 8.478908 .4702808 18.03 0.000 7.557175 9.400642
_cons -16.11006 .8723167 -18.47 0.000 -17.81977 -14.40035

For a more detailed discussion on user-defined functions, and for an example of a user-defined
Newey–West kernel weight, see Hardin and Hilbe (2007).

� �
John Ashworth Nelder (1924–2010) was born in Somerset, England. He studied mathematics
and statistics at Cambridge and worked as a statistician at the National Vegetable Research
Station and then Rothamsted Experimental Station. In retirement, he was actively affiliated with
Imperial College London. Nelder was especially well known for his contributions to the theory
of linear models and to statistical computing. He was the principal architect of generalized and
hierarchical generalized linear models and of the programs GenStat and GLIM.

Robert William Maclagan Wedderburn (1947–1975) was born in Edinburgh and studied mathe-
matics and statistics at Cambridge. At Rothamsted Experimental Station, he developed the theory
of generalized linear models with Nelder and originated the concept of quasilikelihood. He died
of anaphylactic shock from an insect bite on a canal holiday.� �
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Saved results
glm, ml saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) scale parameter
e(aic) model AIC
e(bic) model BIC
e(ll) log likelihood, if NR
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by power(), opower()
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) glm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald; type of model χ2 test
e(cons) set if noconstant specified
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) ml or irls
e(opt1) optimization title, line 1
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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glm, irls saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq model) number of equations in overall model test
e(df m) model degrees of freedom
e(df) residual degrees of freedom
e(phi) scale parameter
e(disp) dispersion parameter
e(bic) model BIC
e(N clust) number of clusters
e(deviance) deviance
e(deviance s) scaled deviance
e(deviance p) Pearson deviance
e(deviance ps) scaled Pearson deviance
e(dispers) dispersion
e(dispers s) scaled dispersion
e(dispers p) Pearson dispersion
e(dispers ps) scaled Pearson dispersion
e(nbml) 1 if negative binomial parameter estimated via ML, 0 otherwise
e(vf) factor set by vfactor(), 1 if not set
e(power) power set by power(), opower()
e(rank) rank of e(V)
e(rc) return code

Macros
e(cmd) glm
e(cmdline) command as typed
e(depvar) name of dependent variable
e(varfunc) program to calculate variance function
e(varfunct) variance title
e(varfuncf) variance function
e(link) program to calculate link function
e(linkt) link title
e(linkf) link function
e(m) number of binomial trials
e(wtype) weight type
e(wexp) weight expression
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(cons) set if noconstant specified
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) ml or irls
e(opt1) optimization title, line 1
e(opt2) optimization title, line 2
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
glm is implemented as an ado-file.

The canonical reference on GLM is McCullagh and Nelder (1989). The term “generalized linear
model” is from Nelder and Wedderburn (1972). Many people use the acronym GLIM for GLM models
because of the classic GLM software tool GLIM, by Baker and Nelder (1985). See Dobson and
Barnett (2008) for a concise introduction and overview. See Rabe-Hesketh and Everitt (2007) for
more examples of GLM using Stata. Hoffmann (2004) focuses on applying generalized linear models,
using real-world datasets, along with interpreting computer output, which for the most part is obtained
using Stata.

This discussion highlights the details of parameter estimation and predicted statistics. For a more
detailed treatment, and for information on variance estimation, see Hardin and Hilbe (2007). glm
supports estimation with survey data. For details on VCEs with survey data, see [SVY] variance
estimation.

glm obtains results by IRLS, as described in McCullagh and Nelder (1989), or by maximum
likelihood using Newton–Raphson. The implementation here, however, allows user-specified weights,
which we denote as vj for the jth observation. Let M be the number of “observations” ignoring
weights. Define

wj =


1 if no weights are specified
vj if fweights or iweights are specified
Mvj/(

∑
k vk) if aweights or pweights are specified

The number of observations is then N =
∑
j wj if fweights are specified and N = M otherwise.

Each IRLS step is performed by regress using wj as the weights.

Let d2
j denote the squared deviance residual for the jth observation:

For the Gaussian family, d2
j = (yj − µ̂j)2.

For the Bernoulli family (binomial with denominator 1),

d2
j =

{
−2ln(1− µ̂j) if yj = 0
−2ln(µ̂j) otherwise

For the binomial family with denominator mj ,

d2
j =


2yj ln(yj/µ̂j) + 2(mj − yj)ln

{
(mj − yj)/(mj − µ̂j)

}
if 0 < yj < mj

2mj ln
{
mj/(mj − µ̂j)

}
if yj = 0

2yj ln(yj/µ̂j) if yj = mj

For the Poisson family,

d2
j =

{
2µ̂j if yj = 0

2
{
yj ln(yj/µ̂j)− (yj − µ̂j)

}
otherwise

For the gamma family, d2
j = −2

{
ln(yj/µ̂j)− (yj − µ̂j)/µ̂j

}
.

For the inverse Gaussian, d2
j = (yj − µ̂j)2/(µ̂2

jyj).
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For the negative binomial,

d2
j =

{
2ln(1 + kµ̂j)/k if yj = 0

2yj ln(yj/µ̂j)− 2{(1 + kyj)/k}ln{(1 + kyj)/(1 + kµ̂j)} otherwise

Let φ = 1 if the scale parameter is set to one; otherwise, define φ = φ̂0(n− k)/n, where φ̂0 is the
estimated scale parameter and k is the number of covariates in the model (including intercept).

Let lnLj denote the log likelihood for the jth observation:

For the Gaussian family,

lnLj = −1
2

[{
(yj − µ̂j)2

φ

}
+ ln(2πφ)

]

For the binomial family with denominator mj (Bernoulli if all mj = 1),

lnLj = φ×


ln{Γ(mj + 1)} − ln{Γ(yj + 1)}+ ln{Γ(mj − yj + 1)} if 0 < yj < mj

+(mj − yj) ln(1− µ̂j/mj) + yj ln(µ̂j/mj)
mj ln(1− µ̂j/mj) if yj = 0

mj ln(µ̂j/mj) if yj = mj

For the Poisson family,

lnLj = φ [yj ln(µ̂j)− µ̂j − ln{Γ(yj + 1)}]

For the gamma family, lnLj = −yj/µ̂j + ln(1/µ̂j).

For the inverse Gaussian,

lnLj = −1
2

{
(yj − µ̂j)2

yj µ̂2
j

+ 3 ln(yj) + ln(2π)

}

For the negative binomial (let m = 1/k),

lnLj =φ [ ln{Γ(m+ yj)} − ln{Γ(yj + 1)} − ln{Γ(m)}
−m ln(1 + µ̂j/m) + yj ln{µ̂j/(µ̂j +m)}]

The overall deviance reported by glm is D2 =
∑
j wjd

2
j . The dispersion of the deviance is D2

divided by the residual degrees of freedom.

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are given by

AIC =
−2 lnL+ 2k

N

BIC = D2 − (N − k) ln(N)

where lnL =
∑
j wj lnLj is the overall log likelihood.
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The Pearson deviance reported by glm is
∑
j wjr

2
j . The corresponding Pearson dispersion is the

Pearson deviance divided by the residual degrees of freedom. glm also calculates the scaled versions
of all these quantities by dividing by the estimated scale parameter.
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glm postestimation — Postestimation tools for glm

Description
The following postestimation commands are available after glm:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic options
]

statistic Description

Main

mu expected value of y; the default
xb linear prediction η = xβ̂
eta synonym of xb
stdp standard error of the linear prediction
anscombe Anscombe (1953) residuals
cooksd Cook’s distance
deviance deviance residuals
hat diagonals of the “hat” matrix
likelihood a weighted average of standardized deviance and standardized Pearson residuals
pearson Pearson residuals
response differences between the observed and fitted outcomes
score first derivative of the log likelihood with respect to xjβ
working working residuals

options Description

Options

nooffset modify calculations to ignore offset variable
adjusted adjust deviance residual to speed up convergence
standardized multiply residual by the factor (1− h)−1/2

studentized multiply residual by one over the square root of the estimated scale parameter
modified modify denominator of residual to be a reasonable estimate of the variance of

depvar

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

mu, xb, stdp, and score are the only statistics allowed with svy estimation results.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

mu, the default, specifies that predict calculate the expected value of y, equal to g−1(xβ̂) [ng−1(xβ̂)
for the binomial family].

xb calculates the linear prediction η = xβ̂.

eta is a synonym for xb.

stdp calculates the standard error of the linear prediction.

anscombe calculates the Anscombe (1953) residuals to produce residuals that closely follow a normal
distribution.
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cooksd calculates Cook’s distance, which measures the aggregate change in the estimated coefficients
when each observation is left out of the estimation.

deviance calculates the deviance residuals. Deviance residuals are recommended by McCullagh and
Nelder (1989) and by others as having the best properties for examining the goodness of fit of a
GLM. They are approximately normally distributed if the model is correct. They may be plotted
against the fitted values or against a covariate to inspect the model’s fit. Also see the pearson
option below.

hat calculates the diagonals of the “hat” matrix as an analog to simple linear regression.

likelihood calculates a weighted average of standardized deviance and standardized Pearson residuals.

pearson calculates the Pearson residuals. Pearson residuals often have markedly skewed distributions
for nonnormal family distributions. Also see the deviance option above.

response calculates the differences between the observed and fitted outcomes.

score calculates the equation-level score, ∂lnL/∂(xjβ).

working calculates the working residuals, which are response residuals weighted according to the
derivative of the link function.

� � �
Options �

nooffset is relevant only if you specified offset(varname) for glm. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

adjusted adjusts the deviance residual to speed up the convergence to the limiting normal distribution.
The adjustment deals with adding to the deviance residual a higher-order term that depends on the
variance function family. This option is allowed only when deviance is specified.

standardized requests that the residual be multiplied by the factor (1 − h)−1/2, where h is the
diagonal of the hat matrix. This operation is done to account for the correlation between depvar
and its predicted value.

studentized requests that the residual be multiplied by one over the square root of the estimated
scale parameter.

modified requests that the denominator of the residual be modified to be a reasonable estimate
of the variance of depvar. The base residual is multiplied by the factor (k/w)−1/2, where k is
either one or the user-specified dispersion parameter and w is the specified weight (or one if left
unspecified).

Remarks
Remarks are presented under the following headings:

Predictions
Other postestimation commands

Predictions

Example 1

After glm estimation, predict may be used to obtain various predictions based on the model.
In example 2 of [R] glm, we mentioned that the complementary log-log link seemed to fit the data
better than the logit link. Now we go back and obtain the fitted values and deviance residuals:
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. use http://www.stata-press.com/data/r12/ldose

. glm r ldose, f(binomial n) l(logit)
(output omitted )

. predict mu_logit
(option mu assumed; predicted mean r)

. predict dr_logit, deviance

. quietly glm r ldose, f(binomial n) l(cloglog)

. predict mu_cl
(option mu assumed; predicted mean r)

. predict dr_cl, d

. format mu_logit dr_logit mu_cl dr_cl %9.5f

. list r mu_logit dr_logit mu_cl dr_cl, sep(4)

r mu_logit dr_logit mu_cl dr_cl

1. 6 3.45746 1.28368 5.58945 0.18057
2. 13 9.84167 1.05969 11.28067 0.55773
3. 18 22.45139 -1.19611 20.95422 -0.80330
4. 28 33.89761 -1.59412 30.36942 -0.63439

5. 52 50.09584 0.60614 47.77644 1.28883
6. 53 53.29092 -0.12716 54.14273 -0.52366
7. 61 59.22216 1.25107 61.11331 -0.11878
8. 60 58.74297 1.59398 59.94723 0.32495

In six of the eight cases, |dr logit| > |dr cl|. The above represents only one of the many available
options for predict. See Hardin and Hilbe (2007) for a more in-depth examination.

Other postestimation commands

Technical note
After glm estimation, you may perform any of the postestimation commands that you would

perform after any other kind of estimation in Stata; see [U] 20 Estimation and postestimation
commands. Below we test the joint significance of all the interaction terms.

. use http://www.stata-press.com/data/r12/beetle, clear

. glm r beetle##c.ldose, f(bin n) l(cloglog)
(output omitted )

. testparm i.beetle beetle#c.ldose

( 1) [r]2.beetle = 0
( 2) [r]3.beetle = 0
( 3) [r]2.beetle#c.ldose = 0
( 4) [r]3.beetle#c.ldose = 0

chi2( 4) = 249.69
Prob > chi2 = 0.0000

If you wanted to print the variance–covariance matrix of the estimators, you would type estat
vce.

If you use the linktest postestimation command, you must also specify the family() and
link() options; see [R] linktest.
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

We follow the terminology used in Methods and formulas of [R] glm.

The deviance residual calculated by predict following glm is dj = sign(yj − µ̂j)
√
d2
j .

The Pearson residual calculated by predict following glm is

rj =
yj − µ̂j√
V (µ̂j)

where V (µ̂j) is the family-specific variance function.

V (µ̂j) =



µ̂j(1− µ̂j/mj) if binomial or Bernoulli (mj = 1)
µ̂2
j if gamma

1 if Gaussian
µ̂3
j if inverse Gaussian
µ̂j + kµ̂2

j if negative binomial
µ̂j if Poisson

The response residuals are given by rRi = yi − µi. The working residuals are

rWi = (yi − µ̂i)
(
∂η

∂µ

)
i

and the score residuals are

rSi =
yi − µ̂i
V (µ̂i)

(
∂η

∂µ

)−1

i

Define Ŵ = V (µ̂) and X to be the covariate matrix. hi, then, is the ith diagonal of the hat matrix
given by

Ĥ = Ŵ 1/2X(XT ŴX)−1XT Ŵ 1/2

As a result, the likelihood residuals are given by

rLi = sign(yi − µ̂i)
{
hi(r

′

i)
2 + (1− hi)(d

′

i)
2
}1/2

where r
′

i and d
′

i are the standardized Pearson and standardized deviance residuals, respectively. By
standardized, we mean that the residual is divided by {1− hi}1/2.

Cook’s distance is an overall measure of the change in the regression coefficients caused by
omitting the ith observation from the analysis. Computationally, Cook’s distance is obtained as

Ci =
(r′i)

2hi
k(1− hi)

where k is the number of regressors, including the constant.
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Anscombe residuals are given by

rAi =
A(yi)−A(µ̂i)

A′(µ̂i){V (µ̂i)}1/2

where

A(·) =
∫

dµ

V 1/3(µ)

Deviance residuals may be adjusted (predict, adjusted) to make the following correction:

dai = di +
1
6
ρ3(θ)

where ρ3(θ) is a family-specific correction. See Hardin and Hilbe (2007) for the exact forms of ρ3(θ)
for each family.
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Also see
[R] glm — Generalized linear models

[R] regress postestimation — Postestimation tools for regress

[U] 20 Estimation and postestimation commands

http://www.stata-press.com/books/glmext.html
http://www.stata.com/bookstore/glm.html
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glogit — Logit and probit regression for grouped data

Syntax

Logistic regression for grouped data

blogit pos var pop var
[

indepvars
] [

if
] [

in
] [

, blogit options
]

Probit regression for grouped data

bprobit pos var pop var
[

indepvars
] [

if
] [

in
] [

, bprobit options
]

Weighted least-squares logistic regression for grouped data

glogit pos var pop var
[

indepvars
] [

if
] [

in
] [

, glogit options
]

Weighted least-squares probit regression for grouped data

gprobit pos var pop var
[

indepvars
] [

if
] [

in
] [

, gprobit options
]

blogit options Description

Model

noconstant suppress constant term
asis retain perfect predictor variables
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

nocoef do not display coefficient table; seldom used
coeflegend display legend instead of statistics

629
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bprobit options Description

Model

noconstant suppress constant term
asis retain perfect predictor variables
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

nocoef do not display coefficient table; seldom used
coeflegend display legend instead of statistics

glogit options Description

SE

vce(vcetype) vcetype may be ols, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

gprobit options Description

SE

vce(vcetype) vcetype may be ols, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics
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indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

nocoef and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
blogit

Statistics > Binary outcomes > Grouped data > Logit regression for grouped data

bprobit

Statistics > Binary outcomes > Grouped data > Probit regression for grouped data

glogit

Statistics > Binary outcomes > Grouped data > Weighted least-squares logit regression

gprobit

Statistics > Binary outcomes > Grouped data > Weighted least-squares probit regression

Description

blogit and bprobit produce maximum-likelihood logit and probit estimates on grouped
(“blocked”) data; glogit and gprobit produce weighted least-squares estimates. In the syntax
diagrams above, pos var and pop var refer to variables containing the total number of positive
responses and the total population.

See [R] logistic for a list of related estimation commands.

Options for blogit and bprobit

� � �
Model �

noconstant; see [R] estimation options.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.



632 glogit — Logit and probit regression for grouped data

or (blogit only) reports the estimated coefficients transformed to odds ratios, that is, eb rather than b.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or when replaying
previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following options are available with blogit and bprobit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program
writers but is useless interactively.

coeflegend; see [R] estimation options.

Options for glogit and gprobit

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

� � �
Reporting �

level(#); see [R] estimation options.

or (glogit only) reports the estimated coefficients transformed to odds ratios, that is, eb rather than b.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. or may be specified at estimation or when replaying
previously estimated results.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with glogit and gprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Maximum likelihood estimates
Weighted least-squares estimates
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Maximum likelihood estimates

blogit produces the same results as logit and logistic, and bprobit produces the same
results as probit, but the “blocked” commands accept data in a slightly different “shape”. Consider
the following two datasets:

. use http://www.stata-press.com/data/r12/xmpl1

. list, sepby(agecat)

agecat exposed died pop

1. 0 0 0 115
2. 0 0 1 5
3. 0 1 0 98
4. 0 1 1 8

5. 1 0 0 69
6. 1 0 1 16
7. 1 1 0 76
8. 1 1 1 22

. use http://www.stata-press.com/data/r12/xmpl2

. list

agecat exposed deaths pop

1. 0 0 5 120
2. 0 1 8 106
3. 1 0 16 85
4. 1 1 22 98

These two datasets contain the same information; observations 1 and 2 of xmpl1 correspond to
observation 1 of xmpl2, observations 3 and 4 of xmpl1 correspond to observation 2 of xmpl2, and
so on.

The first observation of xmpl1 says that for agecat==0 and exposed==0, 115 subjects did not
die (died==0). The second observation says that for the same agecat and exposed groups, five
subjects did die (died==1). In xmpl2, the first observation says that there were five deaths of a
population of 120 in agecat==0 and exposed==0. These are two different ways of saying the same
thing. Both datasets are transcriptions from the following table, reprinted in Rothman, Greenland,
and Lash (2008, 260), for age-specific deaths from all causes for tolbutamide and placebo treatment
groups (University Group Diabetes Program 1970):

Age through 54 Age 55 and above
Tolbutamide Placebo Tolbutamide Placebo

Dead 8 5 22 16
Surviving 98 115 76 79

The data in xmpl1 are said to be “fully relational”, which is computer jargon meaning that each
observation corresponds to one cell of the table. Stata typically prefers data in this format. The second
form of storing these data in xmpl2 is said to be “folded”, which is computer jargon for something
less than fully relational.

blogit and bprobit deal with “folded” data and produce the same results that logit and probit
would have if the data had been stored in the “fully relational” representation.
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Example 1

For the tolbutamide data, the fully relational representation is preferred. We could then use
logistic, logit, and any of the epidemiological table commands; see [R] logistic, [R] logit, and
[ST] epitab. Nevertheless, there are occasions when the folded representation seems more natural.
With blogit and bprobit, we avoid the tedium of having to unfold the data:

. use http://www.stata-press.com/data/r12/xmpl2

. blogit deaths pop agecat exposed, or

Logistic regression for grouped data Number of obs = 409
LR chi2(2) = 22.47
Prob > chi2 = 0.0000

Log likelihood = -142.6212 Pseudo R2 = 0.0730

_outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

agecat 4.216299 1.431519 4.24 0.000 2.167361 8.202223
exposed 1.404674 .4374454 1.09 0.275 .7629451 2.586175

_cons .0513818 .0170762 -8.93 0.000 .0267868 .0985593

If we had not specified the or option, results would have been presented as coefficients instead of as
odds ratios. The estimated odds ratio of death for tolbutamide exposure is 1.40, although the 95%
confidence interval includes 1. (By comparison, these data, in fully relational form and analyzed using
the cs command [see [ST] epitab], produce a Mantel–Haenszel weighted odds ratio of 1.40 with a
95% confidence interval of 0.76 to 2.59.)

We can see the underlying coefficients by replaying the estimation results and not specifying the
or option:

. blogit

Logistic regression for grouped data Number of obs = 409
LR chi2(2) = 22.47
Prob > chi2 = 0.0000

Log likelihood = -142.6212 Pseudo R2 = 0.0730

_outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

agecat 1.438958 .3395203 4.24 0.000 .7735101 2.104405
exposed .3398053 .3114213 1.09 0.275 -.2705692 .9501798

_cons -2.968471 .33234 -8.93 0.000 -3.619846 -2.317097
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Example 2

bprobit works like blogit, substituting the probit for the logit-likelihood function.

. bprobit deaths pop agecat exposed

Probit regression for grouped data Number of obs = 409
LR chi2(2) = 22.58
Prob > chi2 = 0.0000

Log likelihood = -142.56478 Pseudo R2 = 0.0734

_outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

agecat .7542049 .1709692 4.41 0.000 .4191114 1.089298
exposed .1906236 .1666059 1.14 0.253 -.1359179 .5171651

_cons -1.673973 .1619594 -10.34 0.000 -1.991408 -1.356539

Weighted least-squares estimates

Example 3

We have state data for the United States on the number of marriages (marriage), the total
population aged 18 years or more (pop18p), and the median age (medage). The dataset excludes
Nevada, so it has 49 observations. We now wish to estimate a logit equation for the marriage rate.
We will include age squared by specifying the term c.medage#c.medage:

. use http://www.stata-press.com/data/r12/census7
(1980 Census data by state)

. glogit marriage pop18p medage c.medage#c.medage

Weighted LS logistic regression for grouped data

Source SS df MS Number of obs = 49
F( 2, 46) = 12.89

Model .71598314 2 .35799157 Prob > F = 0.0000
Residual 1.27772858 46 .027776708 R-squared = 0.3591

Adj R-squared = 0.3313
Total 1.99371172 48 .041535661 Root MSE = .16666

Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -.6459349 .2828381 -2.28 0.027 -1.215258 -.0766114

c.medage#
c.medage .0095414 .0046608 2.05 0.046 .0001598 .0189231

_cons 6.503833 4.288977 1.52 0.136 -2.129431 15.1371
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Example 4

We could just as easily have fit a grouped-probit model by typing gprobit rather than glogit:

. gprobit marriage pop18p medage c.medage#c.medage

Weighted LS probit regression for grouped data

Source SS df MS Number of obs = 49
F( 2, 46) = 12.94

Model .108222962 2 .054111481 Prob > F = 0.0000
Residual .192322476 46 .004180923 R-squared = 0.3601

Adj R-squared = 0.3323
Total .300545438 48 .006261363 Root MSE = .06466

Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -.2755007 .1121042 -2.46 0.018 -.5011548 -.0498466

c.medage#
c.medage .0041082 .0018422 2.23 0.031 .0004001 .0078163

_cons 2.357708 1.704446 1.38 0.173 -1.073164 5.788579

Saved results
blogit and bprobit save the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) blogit or bprobit
e(cmdline) command as typed
e(depvar) variable containing number of positive responses and variable containing population size
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(mns) vector of means of the independent variables
e(rules) information about perfect predictors
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

glogit and gprobit save the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(F) F statistic
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) glogit or gprobit
e(cmdline) command as typed
e(depvar) variable containing number of positive responses and variable containing population size
e(model) ols
e(title) title in estimation output
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
blogit, bprobit, glogit, and gprobit are implemented as ado-files.

Methods and formulas are presented under the following headings:
Maximum likelihood estimates
Weighted least-squares estimates

Maximum likelihood estimates
The results reported by blogit and bprobit are obtained by maximizing a weighted logit- or

probit-likelihood function. Let F ( ) denote the normal- or logistic-likelihood function. The likelihood
of observing each observation in the data is then

F (βx)s
{

1− F (βx)
}t−s

where s is the number of successes and t is the population. The term above is counted as contributing
s + (t − s) = t degrees of freedom. All of this follows directly from the definitions of logit and
probit.

blogit and bprobit support the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

Weighted least-squares estimates

The logit function is defined as the log of the odds ratio. If there is one explanatory variable, the
model can be written as

log
(

pj
1− pj

)
= β0 + β1xj + εj (1)

where pj represents successes divided by population for the jth observation. (If there is more than
one explanatory variable, we simply interpret β1 as a row vector and xj as a column vector.) The
large-sample expectation of εj is zero, and its variance is

σ2
j =

1
njpj(1− pj)

where nj represents the population for observation j. We can thus apply weighted least squares to
the observations, with weights proportional to njpj(1− pj).

As in any feasible generalized least-squares problem, estimation proceeds in two steps. First, we
fit (1) by OLS and compute the predicted probabilities as

p̂j =
exp(β̂0 + β̂1xj)

1 + exp(β̂0 + β̂1xj)

In the second step, we fit (1) by using analytic weights equal to nj p̂j(1− p̂j).
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For gprobit, write Φ(·) for the cumulative normal distribution, and define zj implicitly by
Φ(zj) = pj , where pj is the fraction of successes for observation j. The probit model for one
explanatory variable can be written as

Φ−1(pj) = β0 + β1xj + εj

(If there is more than one explanatory variable, we simply interpret β1 as a row vector and xj as a
column vector.)

The expectation of εj is zero, and its variance is given by

σ2
j =

pj(1− pj)
njφ2

{
Φ−1(pj)

}
where φ(·) represents the normal density (Amemiya 1981, 1498). We can thus apply weighted least
squares to the observations with weights proportional to 1/σ2

j . As for grouped logit, we use a two-step
estimator to obtain the weighted least-squares estimates.
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[R] glogit postestimation — Postestimation tools for glogit, gprobit, blogit, and bprobit

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] probit — Probit regression

[R] scobit — Skewed logistic regression
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Title

glogit postestimation — Postestimation tools for glogit, gprobit, blogit, and bprobit

Description
The following postestimation commands are available after glogit, gprobit, blogit, and bpro-

bit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗lrtest likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗ estat ic and lrtest are not appropriate after glogit and gprobit.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

n predicted count; the default
pr probability of a positive outcome
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the expected count, that is, the estimated probability times pop var, which
is the total population.

pr calculates the predicted probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] glogit — Logit and probit regression for grouped data

[U] 20 Estimation and postestimation commands



Title

gmm — Generalized method of moments estimation

Syntax

Interactive version

gmm (
[
eqname1:

]
<mexp1>) (

[
eqname2:

]
<mexp2>). . .

[
if
] [

in
] [

weight
] [

, options
]

Moment-evaluator program version

gmm moment prog
[

if
] [

in
] [

weight
]
,
{
equations(namelist) | nequations(#)

}
{
parameters(namelist) | nparameters(#)

} [
options

] [
program options

]
where

mexpj is the substitutable expression for the jth moment equation and

moment prog is a moment-evaluator program.

options Description

Model

derivative(<dexpmn>) specify derivative of mexpm with respect to parameter n; can be
specified more than once (interactive version only)

∗twostep use two-step GMM estimator; the default
∗onestep use one-step GMM estimator
∗igmm use iterative GMM estimator

Instruments

instruments(
[
<eqlist>:

]
varlist

[
, noconstant

]
)

specify instruments; can be specified more than once

xtinstruments(
[
<eqlist>:

]
varlist, lags(#1/#2))

specify panel-style instruments; can be specified more than once

Weight matrix

wmatrix(wmtype
[
, independent

]
)

specify weight matrix; wmtype may be robust, cluster clustvar,
hac kernel

[
lags

]
, or unadjusted

center center moments in weight-matrix computation
winitial(iwtype

[
, independent

]
)

specify initial weight matrix; iwtype may be identity,
unadjusted, xt xtspec, or the name of a Stata matrix
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Options

variables(varlist) specify variables in model
nocommonesample do not restrict estimation sample to be the same for all equations

SE/Robust

vce(vcetype
[
, independent

]
)

vcetype may be robust, cluster clustvar, bootstrap,
jackknife, hac kernel lags, or unadjusted

Reporting

level(#) set confidence level; default is level(95)

title(string) display string as title above the table of parameter estimates
title2(string) display string as subtitle
display options control column formats and line width

Optimization

from(initial values) specify initial values for parameters
‡igmmiterate(#) specify maximum number of iterations for iterated GMM estimator
‡igmmeps(#) specify # for iterated GMM parameter convergence criterion;

default is igmmeps(1e-6)
‡igmmweps(#) specify # for iterated GMM weight-matrix convergence criterion;

default is igmmweps(1e-6)

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

∗ You can specify at most one of these options.
‡ These options may be specified only when igmm is specified.

program options Description

Model

evaluator options additional options to be passed to the moment-evaluator program
hasderivatives moment-evaluator program can calculate derivatives
∗equations(namelist) specify moment-equation names
∗nequations(#) specify number of moment equations
‡parameters(namelist) specify parameter names
‡nparameters(#) specify number of parameters

∗ You must specify equations(namelist) or nequations(#); you may specify both.
‡ You must specify parameters(namelist) or nparameters(#); you may specify both.

bootstrap, by, jackknife, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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<mexpj> and <dexpmn> are extensions of valid Stata expressions that also contain parameters
to be estimated. The parameters are enclosed in curly braces and must otherwise satisfy the naming
requirements for variables; {beta} is an example of a parameter. Also allowed is a notation of the
form {<eqname>:varlist} for linear combinations of multiple covariates and their parameters. For
example, {xb: mpg price turn} defines a linear combination of the variables mpg, price, and
turn. See Substitutable expressions under Remarks below.

Menu
Statistics > Endogenous covariates > Generalized method of moments estimation

Description
gmm performs generalized method of moments (GMM) estimation. With the interactive version of

the command, you enter the moment equations directly into the dialog box or on the command line
using substitutable expressions. The moment-evaluator program version gives you greater flexibility
in exchange for increased complexity; with this version, you write a program in an ado-file that
calculates the moments based on a vector of parameters passed to it.

gmm can fit both single- and multiple-equation models, and it allows moment conditions of the
form E{ziui(β)} = 0, where zi is a vector of instruments and ui(β) is often an additive regression
error term, as well as more general moment conditions of the form E{hi(zi;β)} = 0. gmm works
with cross-sectional, time-series, and longitudinal (panel) data.

Options

� � �
Model �

derivative(
[

eqname | #
]
/name = <dexpmn>) specifies the derivative of moment equation eqname

or # with respect to parameter name. If eqname or # is not specified, gmm assumes that the derivative
applies to the first moment equation.

For a moment equation of the form E{zmiumi(β)} = 0, derivative(m/βj = <dexpmn>) is
to contain a substitutable expression for ∂umi/∂βj .

For a moment equation of the form E{hmi(zi;β)} = 0, derivative(m/βj = <dexpmn>) is
to contain a substitutable expression for ∂hmi/∂βj .

<dexpmn> uses the same substitutable expression syntax as is used to specify moment equations.
If you declare a linear combination in a moment equation, you provide the derivative for the linear
combination; gmm then applies the chain rule for you. See Specifying derivatives under Remarks
below for examples.

If you do not specify the derivative() option, gmm calculates derivatives numerically. You must
either specify no derivatives or specify all the derivatives that are not identically zero; you cannot
specify some analytic derivatives and have gmm compute the rest numerically.

twostep, onestep, and igmm specify which estimator is to be used. You can specify at most one
of these options. twostep is the default.

twostep requests the two-step GMM estimator. gmm obtains parameter estimates based on the initial
weight matrix, computes a new weight matrix based on those estimates, and then reestimates the
parameters based on that weight matrix.
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onestep requests the one-step GMM estimator. The parameters are estimated based on an initial
weight matrix, and no updating of the weight matrix is performed except when calculating the
appropriate variance–covariance (VCE) matrix.

igmm requests the iterative GMM estimator. gmm obtains parameter estimates based on the initial
weight matrix, computes a new weight matrix based on those estimates, reestimates the parameters
based on that weight matrix, computes a new weight matrix, and so on, to convergence. Convergence
is declared when the relative change in the parameter vector is less than igmmeps(), the relative
change in the weight matrix is less than igmmweps(), or igmmiterate() iterations have been
completed. Hall (2005, sec. 2.4 and 3.6) mentions that there may be gains to finite-sample efficiency
from using the iterative estimator.

� � �
Instruments �

instruments(
[
<eqlist>:

]
varlist

[
, noconstant

]
) specifies a list of instrumental variables to be

used. If you specify a single moment equation, then you do not need to specify the equations to
which the instruments apply; you can omit the eqlist and simply specify instruments(varlist).
By default, a constant term is included in varlist; to omit the constant term, use the noconstant
suboption: instruments(varlist, noconstant).

If you specify a model with multiple moment conditions of the form

E

 z1iu1i(β)
· · ·

zqiuqi(β)

 = 0

then you can specify the equations to indicate the moment equations for which the list of variables
is to be used as instruments if you do not want that list applied to all the moment equations. For
example, you might type

gmm (main:<mexp1>) (<mexp2>) (<mexp3>), instruments(z1 z2) ///
instruments(2: z3) instruments(main 3: z4)

Variables z1 and z2 will be used as instruments for all three equations, z3 will be used as an
instrument for the second equation, and z4 will be used as an instrument for the first and third
equations. Notice that we chose to supply a name for the first moment equation but not the second
two.

xtinstruments(
[
<eqlist>:

]
varlist, lags(#1/#2)) is for use with panel-data models in which the

set of available instruments depends on the time period. As with instruments(), you can prefix
the list of variables with equation names or numbers to target instruments to specific equations.
Unlike with instruments(), a constant term is not included in varlist. You must xtset your
data before using this option; see [XT] xtset.

If you specify

gmm . . ., xtinstruments(x, lags(1/.)) . . .

then for panel i and period t, gmm uses as instruments xi,t−1, xi,t−2, . . . , xi1. More generally,
specifying xtinstruments(x, lags(#1, #2)) uses as instruments xi,t−#1 , . . . , xi,t−#2 ; setting
#2 = . requests all available lags. #1 and #2 must be zero or positive integers.

gmm automatically excludes observations for which no valid instruments are available. It does,
however, include observations for which only a subset of the lags is available. For example, if you
request that lags one through three be used, then gmm will include the observations for the second
and third time periods even though fewer than three lags are available as instruments.
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� � �
Weight matrix �

wmatrix(wmtype
[
, independent

]
) specifies the type of weight matrix to be used in conjunction

with the two-step and iterated GMM estimators.

Specifying wmatrix(robust) requests a weight matrix that is appropriate when the errors are
independent but not necessarily identically distributed. wmatrix(robust) is the default.

Specifying wmatrix(cluster clustvar) requests a weight matrix that accounts for arbitrary
correlation among observations within clusters identified by clustvar.

Specifying wmatrix(hac kernel #) requests a heteroskedasticity- and autocorrelation-consistent
(HAC) weight matrix using the specified kernel (see below) with # lags. The bandwidth of a kernel
is equal to the number of lags plus one.

Specifying wmatrix(hac kernel opt) requests an HAC weight matrix using the specified kernel,
and the lag order is selected using Newey and West’s (1994) optimal lag-selection algorithm.

Specifying wmatrix(hac kernel) requests an HAC weight matrix using the specified kernel and
N − 2 lags, where N is the sample size.

There are three kernels available for HAC weight matrices, and you may request each one by using
the name used by statisticians or the name perhaps more familiar to economists:

bartlett or nwest requests the Bartlett (Newey–West) kernel;

parzen or gallant requests the Parzen (Gallant) kernel; and

quadraticspectral or andrews requests the quadratic spectral (Andrews) kernel.

Specifying wmatrix(unadjusted) requests a weight matrix that is suitable when the errors are
homoskedastic. In some applications, the GMM estimator so constructed is known as the (nonlinear)
two-stage least-squares (2SLS) estimator.

Including the independent suboption creates a weight matrix that assumes moment equations are
independent. This suboption is often used to replicate other models that can be motivated outside
the GMM framework, such as the estimation of a system of equations by system-wide 2SLS. This
suboption has no effect if only one moment equation is specified.

wmatrix() has no effect if onestep is also specified.

center requests that the sample moments be centered (demeaned) when computing GMM weight
matrices. By default, centering is not done.

winitial(wmtype
[
, independent

]
) specifies the weight matrix to use to obtain the first-step

parameter estimates.

Specifying winitial(unadjusted) requests a weighting matrix that assumes the moment equa-
tions are independent and identically distributed. This matrix is of the form (Z′Z)−1, where Z
represents all the instruments specified in the instruments() option. To avoid a singular weight
matrix, you should specify at least q − 1 moment equations of the form E{zhiuhi(β)} = 0,
where q is the number of moment equations, or you should specify the independent suboption.

Including the independent suboption creates a weight matrix that assumes moment equations are
independent. Elements of the weight matrix corresponding to covariances between two moment
equations are set equal to zero. This suboption has no effect if only one moment equation is
specified.

winitial(unadjusted) is the default.

winitial(xt xtspec) is for use with dynamic panel-data models in which one of the moment
equations is specified in first-differences form. xtspec is a string consisting of the letters “L” and
“D”, the length of which is equal to the number of moment equations in the model. You specify
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“L” for a moment equation if that moment equation is written in levels, and you specify “D” for a
moment equation if it is written in first-differences; xtspec is not case sensitive. When you specify
this option, you can specify at most one moment equation in levels and one moment equation in
first-differences. See the examples listed in Dynamic panel-data models under Remarks below.

winitial(identity) requests that the identity matrix be used.

winitial(matname) requests that Stata matrix matname be used. You cannot specify the inde-
pendent suboption if you specify winitial(matname).

� � �
Options �

variables(varlist) specifies the variables in the model. gmm ignores observations for which any of
these variables has a missing value. If you do not specify variables(), then gmm assumes all the
observations are valid and issues an error message with return code 480 if any moment equations
evaluate to missing for any observations at the initial value of the parameter vector.

nocommonesample requests that gmm not restrict the estimation sample to be the same for all
equations. By default, gmm will restrict the estimation sample to observations that are available
for all equations in the model, mirroring the behavior of other multiple-equation estimators such
as nlsur, sureg, or reg3. For certain models, however, different equations can have different
numbers of observations. For these models, you should specify nocommonesample. See Dynamic
panel-data models below for one application of this option. You cannot specify weights if you
specify nocommonesample.

� � �
SE/Robust �

vce(vcetype
[
, independent

]
) specifies the type of standard error reported, which includes types

that are robust to some kinds of misspecification, that allow for intragroup correlation, and that
use bootstrap or jackknife methods; see [R] vce option.

vce(unadjusted) specifies that an unadjusted (nonrobust) VCE matrix be used; this, along with
the twostep option, results in the “optimal two-step GMM” estimates often discussed in textbooks.

The default vcetype is based on the wmtype specified in the wmatrix() option. If wmatrix()
is specified but vce() is not, then vcetype is set equal to wmtype. To override this behavior and
obtain an unadjusted (nonrobust) VCE matrix, specify vce(unadjusted).

Specifying vce(bootstrap) or vce(jackknife) results in standard errors based on the bootstrap
or jackknife, respectively. See [R] vce option, [R] bootstrap, and [R] jackknife for more information
on these VCEs.

The syntax for vcetypes other than bootstrap and jackknife are identical to those for wmatrix().

� � �
Reporting �

level(#); see [R] estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter
estimates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in
title() and the table of parameter estimates. If title2() is specified but title() is not,
title2() has the same effect as title().

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.
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� � �
Optimization �

from(initial values) specifies the initial values to begin the estimation. You can specify a 1 × k
matrix, where k is the number of parameters in the model, or you can specify a parameter name,
its initial value, another parameter name, its initial value, and so on. For example, to initialize
alpha to 1.23 and delta to 4.57, you would type

gmm ..., from(alpha 1.23 delta 4.57) ...

Initial values declared using this option override any that are declared within substitutable expres-
sions. If you specify a parameter that does not appear in your model, gmm exits with error code
480. If you specify a matrix, the values must be in the same order in which the parameters are
declared in your model. gmm ignores the row and column names of the matrix.

igmmiterate(#), igmmeps(#), and igmmweps(#) control the iterative process for the iterative
GMM estimator. These options can be specified only if you also specify igmm.

igmmiterate(#) specifies the maximum number of iterations to perform with the iterative GMM
estimator. The default is the number set using set maxiter (set [R] maximize), which is
16,000 by default.

igmmeps(#) specifies the convergence criterion used for successive parameter estimates when the
iterative GMM estimator is used. The default is igmmeps(1e-6). Convergence is declared when
the relative difference between successive parameter estimates is less than igmmeps() and the
relative difference between successive estimates of the weight matrix is less than igmmweps().

igmmweps(#) specifies the convergence criterion used for successive estimates of the weight matrix
when the iterative GMM estimator is used. The default is igmmweps(1e-6). Convergence is
declared when the relative difference between successive parameter estimates is less than
igmmeps() and the relative difference between successive estimates of the weight matrix is
less than igmmweps().

optimization options: technique(), conv maxiter(), conv ptol(), conv vtol(),
conv nrtol(), tracelevel(). technique() specifies the optimization technique to use; gn
(the default), nr, dfp, and bfgs are allowed. conv maxiter() specifies the maximum number
of iterations; conv ptol(), conv vtol(), and conv nrtol() specify the convergence criteria
for the parameters, gradient, and scaled Hessian, respectively. tracelevel() allows you to obtain
additional details during the iterative process. See [M-5] optimize( ).

The following options pertain only to the moment-evaluator program version of gmm.

� � �
Model �

evaluator options refer to any options allowed by your moment prog.

hasderivatives indicates that you have written your moment-evaluator program to compute deriva-
tives. If you do not specify this option, derivatives are computed numerically. If your moment-
evaluator program does compute derivatives but you wish to use numerical derivatives instead
(perhaps during debugging), do not specify this option.

equations(namelist) specifies the names of the moment equations in the model. If you specify both
equations() and nequations(), the number of names in the former must match the number
specified in the latter.

nequations(#) specifies the number of moment equations in the model. If you do not specify
names with the equations() option, gmm numbers the moment equations 1, 2, 3, . . . . If you
specify both equations() and nequations(), the number of names in the former must match
the number specified in the latter.
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parameters(namelist) specifies the names of the parameters in the model. The names of the
parameters must adhere to the naming conventions of Stata’s variables;
see [U] 11.3 Naming conventions. If you specify both parameters() and nparameters(), the
number of names in the former must match the number specified in the latter.

nparameters(#) specifies the number of parameters in the model. If you do not specify names with
the parameters() option, gmm names them b1, b2, . . . , b#. If you specify both parameters()
and nparameters(), the number of names in the former must match the number specified in the
latter.

The following option is available with gmm but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Substitutable expressions
The weight matrix and two-step estimation
Obtaining standard errors
Exponential (Poisson) regression models
Specifying derivatives
Exponential regression models with panel data
Rational-expectations models
System estimators
Dynamic panel-data models
Details of moment-evaluator programs

Introduction
The generalized method of moments (GMM) estimator is a workhorse of modern econometrics and

is discussed in all the leading textbooks, including Cameron and Trivedi (2005, 2010), Davidson and
MacKinnon (1993, 2004), Greene (2012, 468–506), Ruud (2000), Hayashi (2000), Wooldridge (2010),
Hamilton (1994), and Baum (2006). An excellent treatise on GMM with a focus on time-series
applications is Hall (2005). The collection of papers by Mátyás (1999) provides both theoretical and
applied aspects of GMM. Here we give a brief introduction to the methodology and emphasize how
the various options of gmm are used.

The starting point for the generalized method of moments (GMM) estimator is the analogy principle,
which says we can estimate a parameter by replacing a population moment condition with its sample
analogue. For example, the mean of an independent and identically distributed (i.i.d.) population is
defined as the value µ such that the first (central) population moment is zero; that is, µ solves
E(y− µ) = 0 where y is a random draw from the population. The analogy principle tells us that to
obtain an estimate, µ̂, of µ, we replace the population-expectations operator with its sample analogue
(Manski 1988; Wooldridge 2010):

E(y − µ) = 0 −→ 1
N

N∑
i=1

(yi − µ̂) = 0 −→ µ̂ =
1
N

N∑
i=1

yi

where N denotes sample size and yi represents the ith observation of y in our dataset. The estimator
µ̂ is known as the method of moments (MM) estimator, because we started with a population moment
condition and then applied the analogy principle to obtain an estimator that depends on the observed
data.
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Ordinary least-squares (OLS) regression can also be viewed as an MM estimator. In the model

y = x′β + u

we assume that u has mean zero conditional on x: E(u|x) = 0. This conditional expectation implies
the unconditional expectation E(xu) = 0 because, using the law of iterated expectations,

E(xu) = Ex {E(xu|x)} = Ex {xE(u|x)} = 0

(Using the law of iterated expectations to derive unconditional expectations based on conditional
expectations, perhaps motivated by subject theory, is extremely common in GMM estimation.) Con-
tinuing,

E(xu) = E {x(y − x′β)} = 0

Applying the analogy principle,

E {x(y − x′β)} −→ 1
N

N∑
i=1

xi(yi − x′iβ) = 0

so that

β̂ =
(∑

i
xix′i

)−1∑
i
xiyi

which is just the more familiar formula β̂ = (X′X)−1 X′y written using summation notation.

In both the previous examples, the number of parameters we were estimating equaled the number
of moment conditions. In the first example, we estimated one parameter, µ, and had one moment
condition E(y − µ) = 0. In the second example, the parameter vector β had k elements, as did
the vector of regressors x, yielding k moment conditions. Ignoring peculiar cases, a model of m
equations in m unknowns has a unique solution, and because the moment equations in these examples
were linear, we were able to solve for the parameters analytically. Had the moment conditions been
nonlinear, we would have had to use numerical techniques to solve for the parameters, but that is not
a significant limitation with modern computers.

What if we have more moment conditions than parameters? Say we have l moment conditions
and k parameters. A model of l > k equations in k unknowns does not have a unique solution.
Any size-k subset of the moment conditions would yield a consistent parameter estimate, though the
parameter estimate so obtained would in general be different based on which k moment conditions
we used.

For concreteness, let’s return to our regression model,

y = x′β + u

but we no longer wish to assume that E(xu) = 0; we suspect that the error term u affects one
or more elements of x. As a result, we can no longer use the OLS estimator. Suppose we have a
vector z with the properties that E(zu) = 0, that the rank of E(z′z) equals l, and that the rank
of E(z′x) = k. The first assumption simply states that z is not correlated with the error term. The
second assumption rules out perfect collinearity among the elements of z. The third assumption,
known as the rank condition in econometrics, ensures that z is sufficiently correlated with x and
that the estimator is feasible. If some elements of x are not correlated with u, then they should also
appear in z.

If l < k, then the rank of E(z′x) < k, violating the rank condition.
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If l = k, then we can use the simpler MM estimator we already discussed; we would obtain what
is sometimes called the simple instrumental-variables estimator β̂ = (

∑
i zix

′
i)
−1∑

i ziyi. The rank
condition ensures that

∑
i zix

′
i is invertible, at least in the population.

If l > k, the GMM estimator chooses the value, β̂, that minimizes a quadratic function of the
moment conditions. We could define

β̂ ≡ arg minβ

{
1
N

∑
i
ziui(β)

}′{ 1
N

∑
i
ziui(β)

}
(1)

where for our linear regression example ui(β) = yi−x′iβ. This estimator tries to make the moment
conditions as close to zero as possible. This simple estimator, however, applies equal weight to each
of the moment conditions; and as we shall see later, we can obtain more efficient estimators by
choosing to weight some moment conditions more highly than others.

Consider the quadratic function

Q(β) =
{

1
N

∑
i
ziui(β)

}′
W
{

1
N

∑
i
ziui(β)

}
where W is a symmetric positive-definite matrix known as a weight matrix. Then we define the GMM
estimator as

β̂ ≡ arg minβ Q(β) (2)

Continuing with our regression model example, if we choose

W =
(

1
N

∑
i
ziz′i

)−1

(3)

then we obtain

β̂ =

{(
1
N

∑
i
xiz′i

)(
1
N

∑
i
ziz′i

)−1( 1
N

∑
i
zix′i

)}−1

×

(
1
N

∑
i
xiz′i

)(
1
N

∑
i
ziz′i

)−1( 1
N

∑
i
ziyi

)
which is the well-known two-stage least-squares (2SLS) estimator. Our choice of weight matrix here
was based on the assumption that u was homoskedastic. A feature of GMM estimation is that by
selecting different weight matrices, we can obtain estimators that can tolerate heteroskedasticity,
clustering, autocorrelation, and other features of u. See [R] ivregress for more information about the
2SLS and linear GMM estimators.

Returning to the case where the model is “just identified”, meaning that l = k, if we apply the
GMM estimator, we will obtain the same estimate, β̂, regardless of our choice of W. Because l = k,
if a unique solution exists, it will set all the sample moment conditions to zero jointly, so W has no
impact on the value of β that minimizes the objective function.

We will highlight other features of the GMM estimator and the gmm command as we proceed
through examples. First, though, we discuss how to specify moment equations by using substitutable
expressions.
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Substitutable expressions

To use the interactive version of gmm, you define the moment equations by using substitutable
expressions. In most applications, your moment conditions are of the form E {ziui(β)}, where ui(β)
is a residual term that depends on the parameter vector β as well as variables in your dataset, though
we suppress expressing the variables for notational simplicity; we refer to ui(β) as the moment
equation to differentiate it from the moment conditions E{z′iui(β)} = 0.

Substitutable expressions in gmm work much like those used in nl and nlsur, though with one
important difference. For the latter two commands, you type the name of the dependent variable,
an equal sign, and then the regression function. For example, in nl, if you want to fit the function
y = f(x;β) + u, you would type

nl (y = <expression for f(x; β)>), ...

On the other hand, gmm requires you to write a substitutable expression for u; in this example,
u = y − f(x;β), so you would type

gmm (y - <expression for f(x; β)>), ...

The advantage of writing the substitutable expression directly in terms of u is that you are not
restricted to fitting models with additive error terms as you are with nl and nlsur.

You specify substitutable expressions just like any other mathematical expression involving scalars
and variables, such as those you would use with Stata’s generate command, except that the
parameters to be estimated are bound in braces. See [U] 13.2 Operators and [U] 13.3 Functions
for more information on expressions. Parameter names must follow the same conventions as variable
names. See [U] 11.3 Naming conventions.

For example, say that the tth observation on a sample moment is

ut = 1− β
{

(1 + rt+1)(ct+1/ct)−γ
}

where t denotes time period, β and γ are the parameters to be estimated, and r and c are variables
in your dataset. Then you would type

gmm (1 - {beta}*((1 + F.r)*(F.c/c)^(-1*{gamma}))), ...

Because β and γ are parameters, we enclose them in braces. Also notice our use of the forward
operator to refer to the values of r and c one period ahead; time-series operators are allowed
in substitutable expressions as long as you have previously tsset (see [TS] tsset) your data. See
[U] 13.9 Time-series operators for more information on time-series operators.

To specify initial values for some parameters, you can include an equal sign and the initial value
after a parameter:

gmm (1 - {beta}*((1 + F.r)*(F.c/c)^(-1*{gamma=1}))), ...

would initialize γ to be one. If you do not specify an initial value for a parameter, it is initialized to
zero.

Frequently, even nonlinear functions contain linear combinations of variables. As an example,
suppose you have this moment equation:

u = {y − exp(β1x1 + β2x2 + β3x3)} /exp(β1x1 + β2x2 + β3x3)

Instead of typing

gmm ((y - exp({beta1}*x1 + {beta2}*x2 + {beta3}*x3)) / ///
exp({beta1}*x1 + {beta2}*x2 + {beta3}*x3)) ...
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you can type

gmm ((y - exp({xb:x1 x2 x3})) / exp({xb:})) .....

The notation {xb:x1 x2 x3} tells gmm that you want a linear combination of the variables x1, x2,
and x3. We named this linear combination xb, so gmm will name the three parameters corresponding
to the three variables xb x1, xb x2, and xb x3. You can name the linear combination anything
you wish (subject to Stata’s naming conventions for variable names); gmm then names the parameter
corresponding to variable x lc x, where lc is the name of your linear combination. You cannot use
the same name for both an individual parameter and a linear combination. You can, however, refer to
one parameter in a linear combination after it has been declared as you would any other parameter
by using the notation {lc x}. Linear combinations do not include a constant term.

Once we have declared the variables in the linear combination xb, we can subsequently refer
to the linear combination in our substitutable expression by using the notation xb:. The colon is
not optional; it tells gmm that you are referring to a previously declared linear combination, not an
individual parameter. This shorthand notation is also handy when specifying derivatives, as we will
show later.

In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value inside
the braces: {b0=1}, {param=3.571}, etc.

3. Linear combinations of variables can be included using the notation {eqname:varlist}: {xb:
mpg price weight}, {score: w x z}, etc. Parameters of linear combinations are initialized
to zero.

If you specify initial values by using the from() option, they override whatever initial values
are given within the substitutable expression. Substitutable expressions are so named because, once
values are assigned to the parameters, the resulting expressions can be handled by generate and
replace.

Example 1: OLS regression

In Introduction, we stated that OLS is an MM estimator. Say that we want to fit the model

mpg = β0 + β1weight + β2length + u

where u is an i.i.d. error term. We type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. gmm (mpg - {b1}*weight - {b2}*length - {b0}), instruments(weight length)

Step 1
Iteration 0: GMM criterion Q(b) = 475.4138
Iteration 1: GMM criterion Q(b) = 2.696e-20
Iteration 2: GMM criterion Q(b) = 3.329e-27

Step 2
Iteration 0: GMM criterion Q(b) = 5.109e-28
Iteration 1: GMM criterion Q(b) = 7.237e-32
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GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 74
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 -.0038515 .0019472 -1.98 0.048 -.0076678 -.0000351
/b2 -.0795935 .0677528 -1.17 0.240 -.2123866 .0531996
/b0 47.88487 7.50599 6.38 0.000 33.1734 62.59634

Instruments for equation 1: weight length _cons

Recall that the moment condition for OLS regression is E(xu) = 0, where x, the list of instruments, is
the same as the list of regressors in the model. In our command, we defined the residual term, u, inside
parentheses by using a substitutable expression; because linear combinations declared in substitutable
expressions do not include a constant term, we included our own (b0). Inside the instruments()
option, we listed our instruments; by default, gmm includes a constant term among the instrument list.

Because the number of moments equals the number of parameters we are estimating, the model
is said to be “just identified” or “exactly identified.” Therefore, the choice of weight matrix has no
impact on the solution to (2), and the criterion function Q(β) achieves its minimum value at zero.

The OLS estimator is a one-step GMM estimator, but we did not bother to specify the onestep
option because the model is just identified. Doing a second step of GMM estimation affects neither
the point estimates nor the standard errors, so to keep the syntax as simple as possible, we did not
include the onestep option. The first step of estimation resulted in Q(β) = 0 as expected, and the
second step of estimation did not change the minimized value of Q(β). (3× 10−27 and 7× 10−32

are both zero for all practical purposes.)

When you do not specify either the wmatrix() or the vce() option, gmm reports heteroskedasticity-
robust standard errors. The parameter estimates reported here match those that we would obtain from
the command

. regress mpg weight length, vce(robust)

The standard errors reported by that regress command would be larger than those reported by gmm by
a factor of sqrt(74/71) because regress makes a small-sample adjustment to the estimated variance
matrix while gmm does not. Likewise, had we specified the vce(unadjusted) option with our gmm
command, then our standard errors would differ by a factor of sqrt(74/71) from those reported by
regress without the vce(robust) option.

Using the notation for linear combinations of parameters, we could have typed

. gmm (mpg - {xb: weight length} - {b0}), instruments(weight length)

and obtained identical results. Instead of having parameters b1 and b2, with this syntax we would
have parameters xb weight and xb length.

Example 2: Instrumental-variables regression

In Introduction, we mentioned that 2SLS can be viewed as a GMM estimator. In example 1 of
[R] ivregress, we fit by 2SLS a model of rental rates (rent) as a function of the value of owner-occupied
housing (hsngval) and the percentage of the population living in urban areas (pcturban):
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rent = β0 + β1hsngval + β2pcturban + u

by 2SLS. We argued that random shocks that affect rental rates likely also affect housing values, so
we treated hsngval as an endogenous variable. As additional instruments, we used family income,
faminc, and three regional dummies (reg2–reg4).

To replicate the results of ivregress 2sls by using gmm, we type

. use http://www.stata-press.com/data/r12/hsng2
(1980 Census housing data)

. gmm (rent - {xb:hsngval pcturban} - {b0}),
> instruments(pcturban faminc reg2-reg4) vce(unadjusted) onestep

Step 1
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583

GMM estimation

Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/xb_hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
/xb_pcturban .081516 .2987652 0.27 0.785 -.5040531 .667085

/b0 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons

We specified vce(unadjusted) so that we would obtain an unadjusted VCE matrix and our
standard errors would match those reported in [R] ivregress.

Pay attention to how we specified the instruments() option. In Introduction, we mentioned
that the moment conditions for the 2SLS estimator are E(zu) = 0, and we mentioned that if some
elements of x (the regressors) are not endogenous, then they should also appear in z. In this model,
we assume the regressor pcturban is exogenous, so we included it in the list of instrumental
variables. Commands like ivregress, ivprobit, and ivtobit accept standard varlists, so they can
deduce the exogenous regressors in the model. Because gmm accepts arbitrary functions in the form
of substitutable expressions, it has no way of discerning the exogenous variables of the model on its
own.

Also notice that we specified the onestep option. The 2SLS estimator is a one-step GMM estimator
that is based on a weight matrix that assumes the error terms are i.i.d. Unlike the previous example,
here we had more instruments than parameters, so the minimized value of Q(β) is nonzero. We
discuss the weight matrix and its relationship to two-step estimation next.

The weight matrix and two-step estimation

Recall our definition of the GMM estimator given in (2). The estimator, β̂, depends on the choice
of the weight matrix, W. Under relatively mild assumptions, our estimator, β̂, is consistent regardless
of the choice of W, so how are we to decide what W to use? The most common solution is to use
the two-step estimator, which we now describe.
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A key result in Hansen’s (1982) seminal paper is that if we denote by S the covariance matrix of
the moment conditions, then the optimal (in a way we make precise later) GMM estimator is the one
that uses a weight matrix equal to the inverse of the moment covariance matrix. That is, if we let
S = Cov(zu), then we want to use W = S−1. But how do we obtain S in the first place?

If we assume that the errors are i.i.d., then

Cov(zu) = E(u2zz′) = σ2E(zz′)

where σ2 is the variance of u. Because σ2 is a positive scalar, we can ignore it when solving (2).
Thus we compute

Ŵ1 =
(

1
N

∑
i
ziz′i

)−1

(4)

which does not depend on any unknown model parameters. (Notice that Ŵ1 is the same weight
matrix used in 2SLS.) Given Ŵ1, we can solve (2) to obtain an initial estimate, say, β̂1.

Our estimate, β̂1, is consistent, so by Slutsky’s theorem, the sample residuals û computed at
this value of β will also be consistent. Using virtually the same arguments used to justify the
Huber/Eicker/White heteroskedasticity-robust VCE, if we assume that the residuals are independent
though not identically distributed, we can estimate S as

Ŝ =
1
N

∑
i

û2
i ziz

′
i

Then, in the second step, we re-solve (2), using Ŵ2 = Ŝ−1, yielding the two-step GMM estimate
β̂2. If the residuals exhibit clustering, you can specify wmatrix(cluster varname) so that gmm
computes a weight matrix that does not assume the ui’s are independent within clusters identified by
varname. You can specify wmatrix(hac . . .) to obtain weight matrices that are suitable for when
the ui’s exhibit autocorrelation as well as heteroskedasticity.

We could take the point estimates from the second round of estimation and use them to compute
yet another weight matrix, Ŵ3, say, re-solve (2) yet again, and so on, stopping when the parameters
or weight matrix do not change much from one iteration to the next. This procedure is known as
the iterative GMM estimator and is obtained with the igmm option. Asymptotically, the two-step and
iterative GMM estimators have the same distribution. However, Hall (2005, 90) suggests that the
iterative estimator may have better finite-sample properties.

Instead of computing Ŵ1 as in (4), we could simply choose Ŵ1 = I, the identity matrix.
The initial estimate, β̂1, would still be consistent. You can request this behavior by specifying the
winitial(identity) option. However, if you specify all your moment equations of the form
E(zu) = 0, we recommend using the default winitial(unadjusted) instead; the rescaling of
the moment conditions implied by using a homoskedastic initial weight matrix makes the numerical
routines used to solve (2) more stable.

If you fit a model with more than one of the moment equations of the form E {h(z;β)} = 0, then
you must use winitial(identity) or winitial(unadjusted, independent). With moment
equations of that form, you do not specify a list of instruments, and gmm cannot evaluate (4)—the
matrix expression in parentheses would necessarily be singular, so it cannot be inverted.
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Example 3: Two-step linear GMM estimator

From the previous discussion and the comments in Introduction, we see that the linear 2SLS
estimator is a one-step GMM estimator where we use the weight matrix defined in (4) that assumes
the errors are i.i.d. If we use the 2SLS estimate of β to obtain the sample residuals, compute a new
weight matrix based on those residuals, and then do a second step of GMM estimation, we obtain the
linear two-step GMM estimator as implemented by ivregress gmm.

In example 3 of [R] ivregress, we fit the model of rental rates as discussed in example 2 above.
We now allow the residuals to be heteroskedastic, though we will maintain our assumption that they
are independent. We type

. gmm (rent - {xb:hsngval pcturban} - {b0}), inst(pcturban faminc reg2-reg4)

Step 1
Iteration 0: GMM criterion Q(b) = 56115.03
Iteration 1: GMM criterion Q(b) = 110.91583
Iteration 2: GMM criterion Q(b) = 110.91583

Step 2
Iteration 0: GMM criterion Q(b) = .2406087
Iteration 1: GMM criterion Q(b) = .13672801
Iteration 2: GMM criterion Q(b) = .13672801

GMM estimation

Number of parameters = 3
Number of moments = 6
Initial weight matrix: Unadjusted Number of obs = 50
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/xb_hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
/xb_pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

/b0 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Instruments for equation 1: pcturban faminc reg2 reg3 reg4 _cons

By default, gmm computes a heteroskedasticity-robust weight matrix before the second step of
estimation, though we could have specified wmatrix(robust) if we wanted to be explicit. Because
we did not specify the vce() option, gmm used a heteroskedasticity-robust one. Our results match
those in example 3 of [R] ivregress. Moreover, the only difference between this example and the
previous example of 2SLS is that here we did not use the onestep option.

Obtaining standard errors

This section is a bit more theoretical and can be skipped on first reading. However, the information
is sufficiently important that you should return to this section at some point.

So far in our discussion, we have focused on point estimation without much mention of how we
obtain the standard errors of the estimates. We also mentioned that if we choose W to be the inverse
of the covariance matrix of the moment conditions, then we obtain the “optimal” GMM estimator. We
elaborate those points now.

Using mostly standard statistical arguments, we can show that for the GMM estimator defined in
(2), the variance of β̂ is given by
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Var(β̂) =
1
N

{
G(β̂)′WG(β̂)

}−1

G(β̂)′WSWG(β̂)
{

G(β̂)′WG(β̂)
}−1

(5)

where

G(β̂) =
1
N

∑
i
zi
∂ui
∂β

∣∣∣∣
β=β̂

or G(β̂) =
1
N

∑
i

∂hi
∂β

∣∣∣∣
β=β̂

as the case may be and S = E(zuu′z′).

Assuming the vce(unadjusted) option is not specified, gmm reports standard errors based on the
robust variance matrix defined in (5). For the two-step estimator, W is the weight matrix requested
using the wmatrix() option, and it is calculated based on the residuals obtained after the first
estimation step. The second-step point estimates and residuals are obtained, and S is calculated based
on the specification of the vce() option. For the iterated estimator, W is calculated based on the
second-to-last round of estimation, while S is based on the residuals obtained after the last round of
estimation. Computation of the covariance matrix for the one-step estimator is, perhaps surprisingly,
more involved; we discuss the covariance matrix with the one-step estimator in the technical note at
the end of this section.

If we choose the weight matrix to be the inverse of the covariance matrix of the moment conditions
so that W = S−1, then (5) simplifies substantially:

Var(β̂) =
1
N

{
G(β̂)′WG(β̂)

}−1

(6)

The GMM estimator constructed using this choice of weight matrix along with the covariance matrix
in (6) is known as the “optimal” GMM estimator. One can show that if in fact W = S−1, then the
variance in (6) is smaller than the variance in (5) of any other GMM estimator based on the same
moment conditions but with a different choice of weight matrix. Thus the optimal GMM estimator
is also known as the efficient GMM estimator, because it has the smallest variance of any estimator
based on the given moment conditions.

To obtain standard errors from gmm based on the optimal GMM estimator, you specify the
vce(unadjusted) option. We call that VCE unadjusted because we do not recompute the residuals
after estimation to obtain the matrix S required in (5) or allow for the fact that those residuals may
not be i.i.d. Some statistical packages by default report standard errors based on (6) and offer standard
errors based on (5) only as an option or not at all. While the optimal GMM estimator is theoretically
appealing, Cameron and Trivedi (2005, 177) suggest that in finite samples it need not perform better
than the GMM estimator that uses (5) to obtain standard errors.

Technical note
Computing the covariance matrix of the parameters after using the one-step estimator is actually a

bit more complex than after using the two-step or iterative estimators. We can illustrate most of the
intricacies by using linear regression with moment conditions of the form E{x(y − x′β)} = 0.

If you specify winitial(unadjusted) and vce(unadjusted), then the initial weight matrix
will be computed as

Ŵ1 =

(
1
N

∑
i

xix′i

)−1

(7)

Moreover, for linear regression, we can show that

G(β̂) =
1
N

∑
i

xix′i
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so that (6) becomes

Var(β̂) =
1
N


(

1
N

∑
i

xix′i

)(
1
N

∑
i

xix′i

)−1(
1
N

∑
i

xix′i

)
−1

=

(∑
i

xix′i

)−1

= (X′X)−1 (8)

However, we know that the nonrobust covariance matrix for the OLS estimator is actually σ̂2(X′X)−1.
What is missing from (8) is the scalar σ̂2, the estimated variance of the residuals. When you use the
one-step estimator and specify winitial(unadjusted), the weight matrix (7) does not include the
σ̂2 term because gmm does not have a consistent estimate of β from which it can then estimate σ2.
The point estimates are still correct, because multiplying the weight matrix by a scalar factor does
not affect the solution to the minimization problem.

To circumvent this issue, if you specify winitial(unadjusted) and vce(unadjusted), gmm
uses the estimated β̂ (which is consistent) to obtain a new unadjusted weight matrix that does include
the term σ̂2 so that evaluating (6) will yield correct standard errors.

If you use the two-step or iterated GMM estimators, this extra effort is not needed to obtain standard
errors because the first-step (and subsequent steps’) estimate of β is consistent and can be used to
estimate σ2 or some other weight matrix based on the wmatrix() option. Straightforward algebra
shows that this extra effort is also not needed if you request any type of adjusted (robust) covariance
matrix with the one-step estimator.

A similar issue arises when you specify winitial(identity) and vce(unadjusted) with the
one-step estimator. Again the solution is to compute an unadjusted weight matrix after obtaining β̂
so that (6) provides the correct standard errors.

We have illustrated the problem and solution using a single-equation linear model. However, the
problem arises whenever you use the one-step estimator with an unadjusted VCE, regardless of the
number of equations; and gmm handles all the details automatically. Computation of Hansen’s J
statistic presents an identical issue, and gmm takes care of that as well.

If you supply your own initial weight matrix by using winitial(matname), then the standard
errors (as well as the J statistic reported by estat overid) are based on that weight matrix. You
should verify that the weight matrix you provide will yield appropriate statistics.

Exponential (Poisson) regression models

Exponential regression models are frequently encountered in applied work. For example, they can
be used as alternatives to linear regression models on log-transformed dependent variables, obviating
the need for post-hoc transformations to obtain predicted values in the original metric of the dependent
variable. When the dependent variable represents a discrete count variable, they are also known as
Poisson regression models; see Cameron and Trivedi (1998).

For now, we consider models of the form

y = exp(x′β) + u (9)
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where u is a zero-mean additive error term so that E(y) = exp(x′β). Because the error term is
additive, if x represents strictly exogenous regressors, then we have the population moment condition

E[x{y − exp(x′β)}] = 0 (10)

Moreover, because the number of parameters in the model is equal to the number of instruments,
there is no point to using the two-step GMM estimator.

Example 4: Exponential regression

Cameron and Trivedi (2010, 323) fit a model of the number of doctor visits based on whether the
patient has private insurance, whether the patient has a chronic disease, gender, and income. Here
we fit that model by using gmm. To allow for potential excess dispersion, we will obtain a robust VCE
matrix, which is the default for gmm anyway. We type

. use http://www.stata-press.com/data/r12/docvisits

. gmm (docvis - exp({xb:private chronic female income}+{b0})),
> instruments(private chronic female income) onestep

Step 1
Iteration 0: GMM criterion Q(b) = 16.853973
Iteration 1: GMM criterion Q(b) = 2.2706472
Iteration 2: GMM criterion Q(b) = .19088097
Iteration 3: GMM criterion Q(b) = .00041101
Iteration 4: GMM criterion Q(b) = 3.939e-09
Iteration 5: GMM criterion Q(b) = 6.572e-19

GMM estimation

Number of parameters = 5
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 4412

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/xb_private .7986654 .1089891 7.33 0.000 .5850507 1.01228
/xb_chronic 1.091865 .0559888 19.50 0.000 .9821291 1.201601
/xb_female .4925481 .0585298 8.42 0.000 .3778317 .6072644
/xb_income .003557 .0010824 3.29 0.001 .0014356 .0056784

/b0 -.2297263 .1108607 -2.07 0.038 -.4470093 -.0124434

Instruments for equation 1: private chronic female income _cons

Our point estimates agree with those reported by Cameron and Trivedi to at least six significant digits;
the small discrepancies are attributable to different optimization techniques and convergence criteria
being used by gmm and poisson. The standard errors differ by a factor of sqrt(4412/4411) because
gmm uses N in the denominator of the formula for the robust covariance matrix, while the robust
covariance matrix estimator used by poisson uses N − 1.

Technical note
That the GMM and maximum likelihood estimators of the exponential regression model coincide is

not a general property of these two classes of estimators. The maximum likelihood estimator solves
the score equations

1
N

N∑
i=1

∂ ln `i
∂β

= 0
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where li is the likelihood for the ith observation. These score equations can be viewed as the sample
analogues of the population moment conditions

E

{
∂ ln `i
∂β

}
= 0

establishing that maximum likelihood estimators represent a subset of the class of GMM estimators.

For the Poisson model,
ln `i = −exp(x′iβ) + yix′iβ − ln yi!

so the score equations are

1
N

N∑
i=1

xi {yi − exp(x′iβ)} = 0

which are just the sample moment conditions implied by (10) that we used in the previous example.
That is why our results using gmm match Cameron and Trivedi’s results using poisson.

On the other hand, an intuitive set of moment conditions to consider for GMM estimation of a
probit model is

E[x{y − Φ(x′β)}] = 0

where Φ() is the standard normal cumulative distribution function. Differentiating the likelihood
function for the maximum likelihood probit estimator, we can show that the corresponding score
equations are

1
N

N∑
i=1

[
xi

{
yi
φ(x′iβ)
Φ(x′iβ)

− (1− yi)
φ(x′iβ)

1− Φ(x′iβ)

}]
= 0

where φ() is the standard normal density function. These two moment conditions are not equivalent,
so the maximum likelihood and GMM probit estimators are distinct.

Example 5: Comparison of GMM and maximum likelihood

Using the automobile dataset, here we fit a probit model of foreign on gear ratio, length,
and headroom using first the score equations and then the intuitive set of GMM equations. We type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. global xb "{b1}*gear_ratio + {b2}*length + {b3}*headroom + {b0}"

. global phi "normalden($xb)"

. global Phi "normal($xb)"

. gmm (foreign*$phi/$Phi - (1-foreign)*$phi/(1-$Phi)),
> instruments(gear_ratio length headroom) onestep

(output omitted )
. estimates store ml

. gmm (foreign - $Phi), instruments(gear_ratio length headroom) onestep
(output omitted )

. estimates store gmm
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. estimates table ml gmm, b se

Variable ml gmm

b1
_cons 2.9586277 2.8489213

.64042341 .63570246

b2
_cons -.02148933 -.02056033

.01382043 .01396954

b3
_cons .01136927 .02240761

.27278528 .2849891

b0
_cons -6.0222289 -5.8595615

3.5594588 3.5188028

legend: b/se

The coefficients on gear ratio and length are close for the two estimators. The GMM estimate of
the coefficient on headroom is twice that of the maximum likelihood estimate, though the relatively
large standard errors imply that this difference is not significant. You can verify that the coefficients
in the column marked “ml” match those you would obtain using probit. We have not discussed the
differences among standard errors based on the various GMM and maximum-likelihood covariance
matrix estimators to avoid tedious algebra, though you can verify that the robust covariance matrix
after one-step GMM estimation differs by only a finite-sample adjustment factor of (N/N − 1) from
the robust covariance matrix reported by probit. Both the maximum likelihood and GMM probit
estimators require the normality assumption, and the maximum likelihood estimator is efficient if that
normality assumption is correct; therefore, in this particular example, there is no reason to prefer the
GMM estimator.

We can modify (10) easily to allow for endogenous regressors. Suppose that xj is endogenous in
the sense that E(u|xj) 6= 0. Then (10) is no longer a valid moment condition. However, suppose we
have some variables other than x such that E(u|z) = 0. We can instead use the moment conditions

E(zu) = E[z{y − exp(x′β)}] = 0 (11)

As usual, if some elements of x are exogenous, then they should appear in z as well.

Example 6: Exponential regression with endogenous regressors

Returning to the model discussed in example 4, here we treat income as endogenous; unobservable
factors that determine a person’s income may also affect the number of times a person visits a doctor.
We use a person’s age and race as instruments. These are valid instruments if we believe that age
and race influence a person’s income but do not have a direct impact on the number of doctor visits.
(Whether this belief is justified is another matter; we test that belief in [R] gmm postestimation.)
Because we have more instruments (seven) than parameters (five), we have an overidentified model.
Therefore, the choice of weight matrix does matter. We will utilize the default two-step GMM estimator.
In the first step, we will use a weight matrix that assumes the errors are i.i.d. In the second step, we
will use a weight matrix that assumes heteroskedasticity. When you specify twostep, these are the
defaults for the first- and second-step weight matrices, so we do not have to use the winitial() or
wmatrix() options. We will again obtain a robust VCE, which is also the default. We type
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. use http://www.stata-press.com/data/r12/docvisits

. gmm (docvis - exp({xb:private chronic female income}+{b0})),
> instruments(private chronic female age black hispanic)

Step 1
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82276104
Iteration 2: GMM criterion Q(b) = .21832032
Iteration 3: GMM criterion Q(b) = .12685935
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365

Step 2
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911

GMM estimation

Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4412
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/xb_private .535335 .1599039 3.35 0.001 .2219291 .8487409
/xb_chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
/xb_female .6636579 .0959884 6.91 0.000 .4755241 .8517918
/xb_income .0142855 .0027162 5.26 0.000 .0089618 .0196092

/b0 -.5983477 .138433 -4.32 0.000 -.8696713 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

Once we control for the endogeneity of income, we find that its coefficient has quadrupled in size.
Additionally, access to private insurance has less of an impact on the number of doctor visits and
gender has more of an impact.

Technical note
Although perhaps at first tempting, unlike the Poisson model, you cannot simply replace x in

the moment conditions for the probit (or logit) model with a vector of instruments, z, if you have
endogenous regressors. See Wilde (2008).

Mullahy (1997) considers a slightly more complicated version of the exponential regression model
that incorporates nonadditive unobserved heterogeneity. His model can be written as

yi = exp(x′iβ)ηi + εi

where ηi > 0 is an unobserved heterogeneity term that may be correlated with xi. One result from
his paper is that instead of using the additive moment condition (10), we can use the multiplicative
moment condition

E

{
z
y − exp(x′β)

exp(x′β)

}
= E[z{yexp(−x′β)− 1}] = 0 (12)
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Windmeijer and Santos Silva (1997) discuss the use of additive versus multiplicative moment conditions
with endogenous regressors and note that a set of instruments that satisfies the additive moment
conditions will not also satisfy the multiplicative moment conditions. They remark that which to
use is an empirical issue that can at least partially be settled by using the test of overidentifying
restrictions that is implemented by estat overid after gmm to ascertain whether the instruments for
a given model are valid. See [R] gmm postestimation for information on the test of overidentifying
restrictions.

Specifying derivatives

By default, gmm calculates derivatives numerically, and the method used produces accurate results
for the vast majority of applications. However, if you refit the same model repeatedly or else have
the derivatives available, then gmm will run more quickly if you supply it with analytic derivatives.

When you use the interactive version of gmm, you specify derivatives using substitutable expressions
in much the same way you specify the moment equations. There are three rules you must follow:

1. As with the substitutable expressions that define residual equations, you bind parameters of
the model in braces: {b0}, {param}, etc.

2. You must specify a derivative for each parameter that appears in each moment equation. If
a parameter does not appear in a moment equation, then you do not specify a derivative for
that parameter in that moment equation.

3. If you declare a linear combination in an equation, then you specify a derivative with respect
to that linear combination. gmm applies the chain rule to obtain the derivatives with respect
to the individual parameters encompassed by that linear combination.

We illustrate with several examples.

Example 7: Derivatives for a single-equation model

Consider a simple exponential regression model with one exogenous regressor and a constant term.
We have

u = y − exp(β0 + β1x)

Now
∂u

∂β0
= −exp(β0 + β1x) and

∂u

∂β1
= −xexp(β0 + β1x)

In Stata, we type

. gmm (docvis - exp({b0} + {b1}*income)), instruments(income)
> deriv(/b0 = -1*exp({b0} + {b1}*income))
> deriv(/b1 = -1*income*exp({b0}+{b1}*income)) onestep

Step 1
Iteration 0: GMM criterion Q(b) = 9.1548611
Iteration 1: GMM criterion Q(b) = 3.5146131
Iteration 2: GMM criterion Q(b) = .01344695
Iteration 3: GMM criterion Q(b) = 3.690e-06
Iteration 4: GMM criterion Q(b) = 4.606e-13
Iteration 5: GMM criterion Q(b) = 1.502e-26
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GMM estimation

Number of parameters = 2
Number of moments = 2
Initial weight matrix: Unadjusted Number of obs = 4412

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 1.204888 .0462355 26.06 0.000 1.114268 1.295507
/b1 .0046702 .0009715 4.81 0.000 .0027662 .0065743

Instruments for equation 1: income _cons

Notice how we specified the derivative() option for each parameter. We simply specified a slash,
the name of the parameter, an equal sign, then a substitutable expression that represents the derivative.
Because our model has only one residual equation, we do not need to specify equation numbers in
the derivative() options.

When you specify a linear combination of variables, your derivative should be with respect to the
entire linear combination. For example, say we have the residual equation

u = y − exp(x′β + β0)

for which we would type
. gmm (y - exp({xb: x1 x2 x3} + {b0}) ...

Then in addition to the derivative ∂u/∂β0, we are to compute and specify

∂u

∂(x′β)
= −exp(x′β + β0)

Using the chain rule, ∂u/∂βj = ∂u/∂(x′β) × ∂(x′β)/∂βj = −xjexp(x′β + β0). Stata does this
last calculation automatically. It knows the variables in the linear combination, so all it needs is the
derivative of the residual function with respect to the linear combination. This allows you to change
the variables in your linear combination without having to change the derivatives.

Example 8: Derivatives with a linear combination

We refit the model described in the example illustrating exponential regression with endogenous
regressors, now providing analytic derivatives. We type

. gmm (docvis - exp({xb:private chronic female income}+{b0})),
> instruments(private chronic female age black hispanic)
> derivative(/xb = -1*exp({xb:} + {b0}))
> derivative(/b0 = -1*exp({xb:} + {b0}))

Step 1
Iteration 0: GMM criterion Q(b) = 16.910173
Iteration 1: GMM criterion Q(b) = .82270871
Iteration 2: GMM criterion Q(b) = .21831995
Iteration 3: GMM criterion Q(b) = .12685934
Iteration 4: GMM criterion Q(b) = .12672369
Iteration 5: GMM criterion Q(b) = .12672365

Step 2
Iteration 0: GMM criterion Q(b) = .00234641
Iteration 1: GMM criterion Q(b) = .00215957
Iteration 2: GMM criterion Q(b) = .00215911
Iteration 3: GMM criterion Q(b) = .00215911
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GMM estimation

Number of parameters = 5
Number of moments = 7
Initial weight matrix: Unadjusted Number of obs = 4412
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/xb_private .535335 .159904 3.35 0.001 .221929 .848741
/xb_chronic 1.090126 .0617659 17.65 0.000 .9690668 1.211185
/xb_female .6636579 .0959885 6.91 0.000 .475524 .8517918
/xb_income .0142855 .0027162 5.26 0.000 .0089618 .0196092

/b0 -.5983477 .138433 -4.32 0.000 -.8696714 -.327024

Instruments for equation 1: private chronic female age black hispanic _cons

In the first derivative() option, we specified the name of the linear combination, xb, instead of
an individual parameter’s name. We already declared the variables of our linear combination in the
substitutable expression for the residual equation, so in our substitutable expressions for the derivatives,
we can use the shorthand notation {xb:} to refer to it.

Our point estimates are identical to those we obtained earlier. The standard errors and confidence
intervals differ by only trivial amounts.

Exponential regression models with panel data

In addition to supporting cross-sectional and time-series data, gmm also works with panel-data
models. Here we illustrate gmm’s panel-data capabilities by expanding our discussion of exponential
regression models to allow for panel data. This also provides us the opportunity to demonstrate
the moment-evaluator program version of gmm. Our discussion is based on Blundell, Griffith, and
Windmeijer (2002). Also see Wooldridge (1999) for further discussion of nonlinear panel-data models.

First, we expand (9) for panel data. With individual heterogeneity term ηi, we have

E(yit|xit, ηi) = exp(x′itβ + ηi) = µitνi

where µit = exp(x′itβ) and νi = exp(ηi). Note that there is no constant term in this model because
its effect cannot be disentangled from νi. With an additive idiosyncratic error term, we have the
regression model

yit = µitνi + εit

We do not impose the assumption E(xitηi) = 0, so ηi can be considered a fixed effect in the sense
that it may be correlated with the regressors.

As discussed by Blundell, Griffith, and Windmeijer (2002), if xit is strictly exogenous, meaning
E(xitεis) = 0 for all t and s, then we can estimate the parameters of the model by using the sample
moment conditions ∑

i

∑
t

xit

(
yit − µit

yi
µi

)
= 0 (13)

where yi and µi are the means of yit and µit for panel i, respectively. Because µi depends on
the parameters of the model, it must be recomputed each time gmm needs to evaluate the residual
equation. Therefore, we cannot use the substitutable expression version of gmm. Instead, we must use
the moment-evaluator program version.
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The moment-evaluator program version of gmm functions much like the function-evaluator program
versions of nl and nlsur. The program you write is passed one or more variables to be filled in with
the residuals evaluated at the parameter values specified in an option passed to your program. For the
fixed-effects Poisson model with strictly exogenous regressors, our first crack at a function-evaluator
program is

program gmm_poi

version 12
syntax varlist if, at(name)

quietly {
tempvar mu mubar ybar
gen double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///

+ x3*‘at’[1,3]) ‘if’
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)
replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

}

end

You can save your program in an ado-file named name.ado, where name is the name you use for
your program; here we would save the program in the ado-file gmm poi.ado. Alternatively, if you
are working from within a do-file, you can simply define the program before calling gmm. The syntax
statement declares that we are expecting to receive a varlist, containing the names of variables whose
values we are to replace with the values of the residual equations, and an if expression that will
mark the estimation sample; because our model has one residual equation, varlist will consist of one
variable. at() is a required option to our program, and it will contain the name of a matrix containing
the parameter values at which we are to evaluate the residual equation. All moment-evaluator programs
must accept the varlist, if condition, and at() option.

The first part of our program computes µit. In the model we will fit shortly, we have three
regressors, named x1, x2, and x3. The ‘at’ vector will have three elements, one for each of those
variables. Notice that we included ‘if’ at the end of each statement that affects variables to restrict
the computations to the relevant estimation sample. The two egen statements compute µi and yi;
in the example dataset we will use shortly, the panel variable is named id, and for simplicity we
hardcoded that variable into our program as well. Finally, we compute the residual equation, which
is the portion of (13) bound in parentheses.

Example 9: Panel poisson with strictly exogenous regressors

To fit our model, we type

. use http://www.stata-press.com/data/r12/poisson1

. gmm gmm_poi, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

Step 1
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27
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GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. Err. adjusted for 45 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

All three of our regressors are strictly exogenous, so they can serve as their own regressors.
There is no constant term in the model (it would be unidentified), so we exclude a constant term
from our list of instruments. We have one residual equation as indicated by nequations(1), and
we have three parameters, named b1, b2, and b3. The order in which you declare parameters in
the parameters() option determines the order in which they appear in the ‘at’ vector in the
moment-evaluator program. We specified vce(cluster id) to obtain standard errors that allow for
correlation among observations within each panel.

Technical note
The program we just wrote is sufficient to fit the model to the poisson1 dataset, but if we want

to fit that model to other datasets, we would need to change the variable names and perhaps account
for having a different number of parameters as well. With a bit more programming, advanced users
can write a more general program to work with arbitrary datasets. Any options not understood by
gmm are passed along to the moment-evaluator program, and we can take advantage of that feature
to pass the name of the dependent variable, list of regressors, and panel identifier variable. A better
version of gmm poi would be

program gmm_poi2

version 12
syntax varlist if, at(name) myrhs(varlist) ///

mylhs(varlist) myidvar(varlist)

quietly {
tempvar mu mubar ybar
gen double ‘mu’ = 0 ‘if’
local j = 1
foreach var of varlist ‘myrhs’ {

replace ‘mu’ = ‘mu’ + ‘var’*‘at’[1,‘j’] ‘if’
local j = ‘j’ + 1

}
replace ‘mu’ = exp(‘mu’)
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(‘myidvar’)
egen double ‘ybar’ = mean(‘mylhs’) ‘if’, by(‘myidvar’)
replace ‘varlist’ = ‘mylhs’ - ‘mu’*‘ybar’/‘mubar’ ‘if’

}

end
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Our program now accepts three more options. Our call to gmm is

. gmm gmm_poi2, mylhs(y) myrhs(x1 x2 x3) myidvar(id) nequations(1)
> parameters(b1 b2 b3) instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

With mylhs(), myrhs(), and myidvar(), we are now able to fit our model to any panel dataset we
wish without having to modify the gmm poi2 program. In the section Details of moment-evaluator
programs below, we show how to incorporate weights and derivatives in moment-evaluator programs.

When past values of the idiosyncratic error term affect the value of a regressor, we say that regressor
is predetermined. When one or more regressors are predetermined, sample moment condition (10) is
no longer valid. However, Chamberlain (1992) shows that a simple alternative is to consider moment
conditions of the form ∑

i

T∑
t=2

xi,t−1

(
yi,t−1 − µi,t−1

yit
µit

)
= 0 (14)

Also see Wooldridge (1997) and Windmeijer (2000) for other moment conditions that can be used
with predetermined regressors.

Example 10: Panel Poisson with predetermined regressors

Here we refit the previous model, treating all the regressors as predetermined and using the moment
conditions in (14). Our moment-evaluator program is

program gmm_poipre

version 12
syntax varlist if, at(name) myrhs(varlist) mylhs(varlist)

quietly {
tempvar mu mubar ybar
gen double ‘mu’ = 0 ‘if’
local j = 1
foreach var of varlist ‘myrhs’ {

replace ‘mu’ = ‘mu’ + ‘var’*‘at’[1,‘j’] ‘if’
local j = ‘j’ + 1

}
replace ‘mu’ = exp(‘mu’)
replace ‘varlist’ = L.‘mylhs’ - L.‘mu’*‘mylhs’/‘mu’ ‘if’

}
end

As before, the first part of our program computes µit; the only difference is in how we compute the
residual equation. We used lag-operator notation so that Stata properly handles gaps in our dataset.
Equation (14) shows that we are to use the first lags of the regressors as instruments, so we type
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. gmm gmm_poipre, mylhs(y) myrhs(x1 x2 x3) nequations(1) parameters(b1 b2 b3)
> instruments(L.(x1 x2 x3), noconstant) vce(cluster id) onestep
(obs = 364)

Step 1
Iteration 0: GMM criterion Q(b) = 52.997808
Iteration 1: GMM criterion Q(b) = 2.1678071
Iteration 2: GMM criterion Q(b) = .08716503
Iteration 3: GMM criterion Q(b) = .00007136
Iteration 4: GMM criterion Q(b) = 4.699e-11
Iteration 5: GMM criterion Q(b) = 1.932e-23

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 364

(Std. Err. adjusted for 45 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 2.035125 .2662377 7.64 0.000 1.513308 2.556941
/b2 -2.929362 .2290397 -12.79 0.000 -3.378272 -2.480453
/b3 1.235219 .1673295 7.38 0.000 .9072596 1.563179

Instruments for equation 1: L.x1 L.x2 L.x3

Here, like earlier with strictly exogenous regressors, the number of instruments equals the number of
parameters, so there is no gain to using the two-step or iterated estimators. However, if you do have
more instruments than parameters, you will most likely want to use one of those other estimators
instead.

In the previous example, we used xi,t−1 as instruments. A more efficient GMM estimator would
also use xi,t−2,xi,t−3, . . . ,xi,1 as instruments in period t as well. gmm’s xtinstruments() option
allows you to specify instrument lists that grow as t increases. Later we discuss the xtinstruments()
option in detail in the context of linear dynamic panel-data models.

When a regressor is contemporaneously correlated with the idiosyncratic error term, we say that
regressor is endogenous. Windmeijer (2000) shows that here we can use the moment condition

∑
i

T∑
t=3

xi,t−2

(
yit
µit
− yi,t−1

µi,t−1

)
Here we use the second lag of the endogenous regressor as an instrument. If a variable is strictly
exogenous, it can of course serve as its own instrument.

Example 11: Panel Poisson with endogenous regressors

Here we refit the model, treating x3 as endogenous and x1 and x2 as strictly exogenous. Our
moment-evaluator program is



gmm — Generalized method of moments estimation 671

program gmm_poiend

version 12
syntax varlist if, at(name) myrhs(varlist) mylhs(varlist)

quietly {

tempvar mu mubar ybar
gen double ‘mu’ = 0 ‘if’
local j = 1
foreach var of varlist ‘myrhs’ {

replace ‘mu’ = ‘mu’ + ‘var’*‘at’[1,‘j’] ‘if’
local j = ‘j’ + 1

}
replace ‘mu’ = exp(‘mu’)
replace ‘varlist’ = ‘mylhs’/‘mu’ - L.‘mylhs’/L.‘mu’ ‘if’

}
end

Now we call gmm using x1, x2, and L2.x3 as instruments:
. use http://www.stata-press.com/data/r12/poisson2

. gmm gmm_poiend, mylhs(y) myrhs(x1 x2 x3) nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 L2.x3, noconstant) vce(cluster id) onestep

Step 1
Iteration 0: GMM criterion Q(b) = 47.376537
Iteration 1: GMM criterion Q(b) = .08115406
Iteration 2: GMM criterion Q(b) = .03477036
Iteration 3: GMM criterion Q(b) = .00041056
Iteration 4: GMM criterion Q(b) = 1.189e-07
Iteration 5: GMM criterion Q(b) = 1.298e-14
Iteration 6: GMM criterion Q(b) = 1.574e-28

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 3766

(Std. Err. adjusted for 500 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 1.844082 .1515252 12.17 0.000 1.547098 2.141066
/b2 -2.904011 .108117 -26.86 0.000 -3.115916 -2.692105
/b3 3.277512 2.459066 1.33 0.183 -1.542169 8.097193

Instruments for equation 1: x1 x2 L2.x3

As with the predetermined case previously, instead of using just xi,t−2 as an instrument, we could
use all further lags of xit as instruments as well.

Rational-expectations models

Macroeconomic models typically assume that agents’ expectations about the future are formed
rationally. By rational expectations, we mean that agents use all information available when forming
their forecasts, so the forecast error is uncorrelated with the information available when the forecast was
made. Say that at time t, people make a forecast, ŷt+1, of variable y in the next period. If Ωt denotes
all available information at time t, then rational expectations implies that E {(ŷt+1 − yt+1)|Ωt} = 0.
If Ωt denotes observable variables such as interest rates or prices, then this conditional expectation
can serve as the basis of a moment condition for GMM estimation.
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Example 12: Fitting a Euler equation

In a well-known article, Hansen and Singleton (1982) consider a model of portfolio decision
making and discuss parameter estimation using GMM. We will consider a simple example with one
asset in which the agent can invest. A consumer wants to maximize the present value of his lifetime
utility derived from consuming the good. On the one hand, the consumer is impatient, so he would
rather consume today than wait until tomorrow. On the other hand, if he consumes less today, he can
invest more of his money, earning more interest that he can then use to consume more of the good
tomorrow. Thus there is a tradeoff between having his cake today or sacrificing a bit today to have
more cake tomorrow.

If we assume a specific form for the agent’s utility function, known as the constant relative-risk
aversion utility function, we can show that the Euler equation is

E
[
zt
{

1− β(1 + rt+1)(ct+1/ct)−γ
}]

= 0

where β and γ are the parameters to estimate, rt is the return to the financial asset, and ct is
consumption in period t. β measures the agent’s discount factor. If β is near one, the agent is patient
and is more willing to forgo consumption this period. If β is close to zero, the agent is less patient
and prefers to consume more now. The parameter γ characterizes the agent’s utility function. If γ
equals one, the utility function is linear. As γ tends toward zero, the utility function tends toward
u = log(c).

We have data on 3-month Treasury bills (rt) and consumption expenditures (ct). As instruments,
we will use lagged rates of return and past growth rates of consumption. We will use the two-step
estimator and a weight matrix that allows for heteroskedasticity and autocorrelation up to four lags
with the Bartlett kernel. In Stata, we type

. use http://www.stata-press.com/data/r12/cr

. generate cgrowth = c / L.c
(1 missing value generated)

. gmm (1 - {b=1}*(1+F.r)*(F.c/c)^(-1*{gamma=1})), inst(L.r L2.r cgrowth L.cgrowth)
> wmat(hac nw 4) twostep
warning: 1 missing value returned for equation 1 at initial values

Step 1
Iteration 0: GMM criterion Q(b) = .00226482
Iteration 1: GMM criterion Q(b) = .00054369
Iteration 2: GMM criterion Q(b) = .00053904
Iteration 3: GMM criterion Q(b) = .00053904

Step 2
Iteration 0: GMM criterion Q(b) = .0600729
Iteration 1: GMM criterion Q(b) = .0596369
Iteration 2: GMM criterion Q(b) = .0596369

GMM estimation

Number of parameters = 2
Number of moments = 5
Initial weight matrix: Unadjusted Number of obs = 239
GMM weight matrix: HAC Bartlett 4

HAC
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b .9204617 .0134646 68.36 0.000 .8940716 .9468518
/gamma -4.222361 1.473895 -2.86 0.004 -7.111143 -1.333579

HAC standard errors based on Bartlett kernel with 4 lags
Instruments for equation 1: L.r L2.r cgrowth L.cgrowth _cons
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The warning message at the top of the output appears because the forward operator in our substitutable
expression says that residuals can be computed only for 239 observations; our dataset contains 240
observations. Our estimate of β is near one, in line with expectations and published results.

System estimators

In many economic models, two or more variables are determined jointly through a system of
simultaneous equations. Indeed, some of the earliest work in econometrics, including that of the
Cowles Commission, was centered around estimation of the parameters of simultaneous equations.
The 2SLS and IV estimators we have already discussed are used in some circumstances to estimate
such parameters. Here we focus on the joint estimation of all the parameters of systems of equations,
and we begin with the well-known three-stage least-squares (3SLS) estimator.

Recall that the 2SLS estimator is based on the moment conditions E(zu) = 0. The 2SLS estimator
can be used to estimate the parameters of one equation of a system of structural equations. Moreover,
with the 2SLS estimator, we do not even need to specify the structural relationship among all the
endogenous variables; we need to specify only the equation on which interest focuses and simply
assume reduced-form relationships among the endogenous regressors of the equation of interest and
the exogenous variables of the model. If we are willing to specify the complete system of structural
equations, then assuming our model is correctly specified, by estimating all the equations jointly, we
can obtain estimates that are more efficient than equation-by-equation 2SLS.

In [R] reg3, we fit a simple two-equation macroeconomic model:

consump = β0 + β1wagepriv + β2wagegovt + ε1 (15)
wagepriv = β3 + β4consump + β5govt + β6capital1 + ε2 (16)

where consump represents aggregate consumption; wagepriv and wagegovt are total wages paid
by the private and government sectors, respectively; govt is government spending; and capital1 is
the previous period’s capital stock. We are not willing to assume that ε1 and ε2 are independent, so
we must treat both consump and wagepriv as endogenous. Suppose that a random shock makes ε2
positive. Then by (16), wagepriv will be higher than it otherwise would. Moreover, ε1 will either
be higher or lower, depending on the correlation between it and ε2. The shock to ε2 has made both
wagepriv and ε1 move, implying that in (15) wagepriv is an endogenous regressor. A similar
argument shows that consump is an endogenous regressor in the second equation. In our model,
wagegovt, govt, and capital1 are all exogenous variables.

Let z1 and z2 denote the instruments for the first and second equations, respectively; we will
discuss what comprises them shortly. We have two sets of moment conditions:

E

{
z1(consump− β0 − β1wagepriv− β2wagegovt)

z2(wagepriv− β3 − β4consump− β5govt− β6capital1)

}
= 0 (17)

One of the defining characteristics of 3SLS is that the errors are homoskedastic conditional on the
instrumental variables. Using this assumption, we have

E

[{
z1ε1
z2ε2

}
{ z′1ε1 z′2ε2 }

]
=
{
σ11E(z1z′1) σ12E(z1z′2)
σ21E(z2z′1) σ22E(z2z′2)

}
(18)

where σij = cov(εi, εj). Let Σ denote the 2× 2 matrix with typical element σij .
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The second defining characteristic of the 3SLS estimator is that it uses all the exogenous variables
as instruments for all equations; here z1 = z2 = (wagegovt, govt, capital1, 1), where the 1
indicates a constant term. From our discussion on the weight matrix and two-step estimation, we
want to use the sample analogue of the matrix inverse of the right-hand side of (18) as our weight
matrix.

To implement the 3SLS estimator, we apparently need to know Σ or at least have a consistent
estimator of it. The solution is to fit (15) and (16) by 2SLS, use the sample residuals ε̂1 and ε̂2 to
estimate Σ, then estimate the parameters of (17) via GMM by using the weight matrix just discussed.

Example 13: 3SLS estimation

3SLS is easier to do using gmm than it sounds. The 3SLS estimator is a two-step GMM estimator. In
the first step, we do the equivalent of 2SLS on each equation, and then we compute a weight matrix
based on (18). Finally, we perform a second step of GMM with this weight matrix.

In Stata, we type

. use http://www.stata-press.com/data/r12/klein, clear

. gmm (eq1:consump - {b0} - {xb: wagepriv wagegovt})
> (eq2:wagepriv - {c0} - {xc: consump govt capital1}),
> instruments(eq1 eq2: wagegovt govt capital1) winitial(unadjusted, independent)
> wmatrix(unadjusted) twostep

Step 1
Iteration 0: GMM criterion Q(b) = 4195.4487
Iteration 1: GMM criterion Q(b) = .22175631
Iteration 2: GMM criterion Q(b) = .22175631

Step 2
Iteration 0: GMM criterion Q(b) = .09716589
Iteration 1: GMM criterion Q(b) = .07028208
Iteration 2: GMM criterion Q(b) = .07028208

GMM estimation

Number of parameters = 7
Number of moments = 8
Initial weight matrix: Unadjusted Number of obs = 22
GMM weight matrix: Unadjusted

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b0 19.3559 3.583772 5.40 0.000 12.33184 26.37996
/xb_wagepriv .8012754 .1279329 6.26 0.000 .5505314 1.052019
/xb_wagegovt 1.029531 .3048424 3.38 0.001 .432051 1.627011

/c0 14.63026 10.26693 1.42 0.154 -5.492552 34.75306
/xc_consump .4026076 .2567312 1.57 0.117 -.1005764 .9057916

/xc_govt 1.177792 .5421253 2.17 0.030 .1152461 2.240338
/xc_capital1 -.0281145 .0572111 -0.49 0.623 -.1402462 .0840173

Instruments for equation 1: wagegovt govt capital1 _cons
Instruments for equation 2: wagegovt govt capital1 _cons

The independent suboption of the winitial() option tells gmm to assume that the residuals
are independent across equations; this suboption sets σ21 = σ12 = 0 in (18). Assuming both
homoskedasticity and cross-equation independence is equivalent to fitting the two equations of our
model independently by 2SLS. The wmatrix() option controls how the weight matrix is computed
based on the first-step parameter estimates before the second step of estimation; here we request a
weight matrix that assumes conditional homoskedasticity but that does not impose the cross-equation
independence like the initial weight matrix we used. In this example, we also illustrated how to
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name equations and how equation names can be used in the instruments() option. Our results are
identical to those in [R] reg3.

We could have specified our instruments with the syntax

instruments(wagegovt govt capital1)

because gmm uses the variables listed in the instruments() option for all equations unless you use
the equations() suboption to restrict those variables to certain equations. However, we wanted to
emphasize that the same instruments are being used for both equations; in a moment, we will discuss
an estimator that does not use the same instruments in all equations.

In the previous example, if we omit the twostep option, the resulting coefficients will be
equivalent to equation-by-equation 2SLS, which Wooldridge (2010, 216) calls the “system 2SLS
estimator”. Eliminating the twostep option makes the wmatrix() option irrelevant, so that option
can be eliminated as well.

So far, we have developed the traditional 3SLS estimator. Wooldridge (2010, chap. 8) discusses the
“GMM 3SLS” estimator that extends the traditional 3SLS estimator by allowing for heteroskedasticity
and different instruments for different equations.

Generalizing (18) to an arbitrary number of equations, we have

E (Z′εε′Z) = E (Z′ΣZ) (19)

where

Z =


z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zm


and Σ is now m×m. Equation (19) is the multivariate analogue of a homoskedasticity assumption;
for each equation, the error variance is constant for all observations, as is the covariance between
any two equations’ errors.

We can relax this homoskedasticity assumption by considering different weight matrices. For
example, if we continue to assume that observations are independent but not necessarily identically
distributed, then by specifying wmatrix(robust), we would obtain a weight matrix that allows for
heteroskedasticity:

Ŵ =
1
N

∑
i

Z′iε̂iε̂
′
iZi

This is the weight matrix in Wooldridge’s (2010, 218) Procedure 8.1, “GMM with Optimal Weighting
Matrix”. By default, gmm would report standard errors based on his covariance matrix (8.27); specifying
vce(unadjusted) would provide the optimal GMM standard errors. If you have multiple observations
for each individual or firm in your dataset, you could specify wmatrix(cluster id), where id
identifies individuals or firms. This would allow arbitrary within-individual correlation, though it does
not account for an individual-specific fixed or random effect. In both cases, we would continue to
use winitial(unadjusted, independent) so that the first-step estimates are the system 2SLS
estimates.

Wooldridge (2010, sec. 9.6) discusses instances where it is necessary to use different instruments
in different equations. The GMM 3SLS estimator with different instruments in different equations but
with conditional homoskedasticity is what Hayashi (2000, 275) calls the “full-information instrumental
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variables efficient” (FIVE) estimator. Implementing the FIVE estimator is easy with gmm. For example,
say we have a two-equation system, where kids, age, income, and education are all valid
instruments for the first equation; but education is not a valid instrument for the second equation.
Then our syntax would take the form

gmm (<mexp 1>) (<mexp 2>), instruments(1:kids age income education)
instruments(2:kids age income)

The following syntax is equivalent:

gmm (<mexp 1>) (<mexp 2>), instruments(kids age income)
instruments(1:education)

Because we did not specify a list of equations in the second example’s first instruments() option,
those variables are used as instruments in both equations. You can use whichever syntax you prefer.
The first requires a bit more typing but is arguably more transparent.

If all the regressors in the model are exogenous, then the traditional 3SLS estimator is the seemingly
unrelated regression (SUR) estimator. Here you would specify all the regressors as instruments.

Dynamic panel-data models

Commands in Stata that work with panel data expect the data to be in the “long” format, meaning
that each row of the dataset consists of one subobservation that is a member of a logical observation
(represented by the panel identifier variable). See [D] reshape for a discussion of the long versus
“wide” data forms. gmm is no exception in this respect when used with panel data. From a theoretical
perspective, however, it is sometimes easier to view GMM estimators for panel data as system estimators
in which we have N observations on a system of T equations, where N and T are the number of
observations and panels, respectively, rather than a single-equation estimator with NT observations.
Usually, each of the T equations will in fact be the same, though we will want to specify different
instruments for each of these equations.

In a dynamic panel-data model, lagged values of the dependent variable are included as regressors.
Here we consider a simple model with one lag of the dependent variable y as a regressor and a vector
of strictly exogenous regressors, xit:

yit = ρyi,t−1 + x′itβ + ui + εit (20)

ui can be either a fixed- or a random-effect term, in the sense that we do not require xit to be
independent of it. Even with the assumption that εit is i.i.d., the presence of both yi,t−1 and ui in
(20) renders both the standard fixed- and random-effects estimators to be inconsistent because of the
well-known Nickell (1981) bias. OLS regression of yit on yi,t−1 and xit also produces inconsistent
estimates, because yi,t−1 will be correlated with the error term.

Technical note
Stata has the xtabond, xtdpd, and xtdpdsys commands (see [XT] xtabond, [XT] xtdpd, and

[XT] xtdpdsys) to fit equations like (20), and for everyday use those commands are preferred because
they offer features such as Windmeijer (2005) bias-corrected standard errors to account for the bias
of traditional two-step GMM standard errors seen in dynamic panel-data models and, being linear
estimators, only require you to specify variable names instead of complete equations. However, using
gmm has several pedagogical advantages, including the ability to tie those model-specific commands
into a more general framework, a clear illustration of how certain types of instrument matrices for
panel-data models are formed, and demonstrations of several advanced features of gmm.
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First-differencing (20) removes the panel-specific ui term:

yit − yi,t−1 = ρ(yi,t−1 − yi,t−2) + (xit − xi,t−1)′β + (εit − εi,t−1) (21)

However, now (yi,t−1− yi,t−2) is correlated with (εit− εi,t−1). Thus we need an instrument that is
correlated with the former but not the latter. The lagged variables in (21) mean that equation is not
estimable for t < 3, so consider when t = 3. We have

yi3 − yi2 = ρ(yi2 − yi1) + (xi3 − xi2)′β + (εi3 − εi2) (22)

In the Arellano–Bond (1991) estimator, lagged levels of the dependent variable are used as instruments.
With our assumption that the εit are i.i.d., (20) intimates that yi1 can serve as an instrumental variable
when we fit (22).

Next consider (21) when t = 4. We have

yi4 − yi3 = ρ(yi3 − yi2) + (xi4 − xi3)′β + (εi4 − εi3)

Now (20) shows that both yi1 and yi2 are uncorrelated with the error term (εi4 − εi3), so we have
two instruments available. For t = 5, you can show that yi1, yi2, and yi3 can serve as instruments.
As may now be apparent, one of the key features of these dynamic panel-data models is that the
available instruments depend on the time period, t, as was the case for some of the panel Poisson
models we considered earlier. Because the xit are strictly exogenous by assumption, they can serve
as their own instruments.

The initial weight matrix that is appropriate for the GMM dynamic panel-data estimator is slightly
more involved than the unadjusted matrix we have used in most of our previous examples that assumes
the errors are i.i.d. First, rewrite (21) for panel i as

yi − yLi = ρ (yLi − yLLi ) + (Xi −XL
i )β + (εi − εLi )

where yi = (yi3, . . . , yiT ) and yLi = (yi2, . . . , yi,T−1), yLLi = (yi1, . . . , yi,T−2), and Xi, XL
i , εi,

and εLi are defined analogously. Let Z denote the full matrix of instruments for panel i, including the
variables specified in both the instruments() and xtinstruments() options; the exact structure
is detailed in Methods and formulas.

By assumption, εit is i.i.d., so the first-difference (εit − εi,t−1) is necessarily autocorrelated
with correlation −0.5. Therefore, we should not use a weight matrix that assumes the errors are
independent. For dynamic panel-data models, we can show that the appropriate initial weight matrix
is

Ŵ =
(

1
N

∑
i
Z′iHDZi

)−1

where

HD =


1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1


We can obtain this initial weight matrix by specifying winitial(xt D). The letter D indicates that
the equation we are estimating is specified in first-differences.
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Example 14: Arellano–Bond estimator

Say we want to fit the model

nit = ρ ni,t−1 + β1wit + β2wi,t−1 + β3kit + β4ki,t−1 + ui + εit (23)

where we assume that wit and kit are strictly exogenous. First-differencing, our residual equation is

ε∗it = (εit − εi,t−1) =nit − ni,t−1 − ρ (ni,t−1 − ni,t−2)− β1(wit − wi,t−1)
− β2(wi,t−1 − wi,t−2)− β3(kit − ki,t−1)− β4(ki,t−1 − ki,t−2) (24)

In Stata, we type

. use http://www.stata-press.com/data/r12/abdata

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}), xtinstruments(n, lags(2/.))
> instruments(D.w LD.w D.k LD.k, noconstant) deriv(/rho = -1*LD.n)
> deriv(/xb = -1) winitial(xt D) onestep

Step 1
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103

GMM estimation

Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/rho .8041712 .1199819 6.70 0.000 .5690111 1.039331
/xb_D_w -.5600476 .1619472 -3.46 0.001 -.8774583 -.242637

/xb_LD_w .3946699 .1092229 3.61 0.000 .1805969 .6087429
/xb_D_k .3520286 .0536546 6.56 0.000 .2468676 .4571897

/xb_LD_k -.2160435 .0679689 -3.18 0.001 -.3492601 -.0828269

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k

Because w and k are strictly exogenous, we specified the variants of them that appear in (24) in the
instruments() option; because there is no constant term in the model, we specified noconstant
to omit the constant from the instrument list.

We specified xtinstruments(n, lags(2/.)) to tell gmm what instruments to use for the lagged
dependent variable included as a regressor in (23). Based on our previous discussion, lags two and
higher of nit can serve as instruments. The lags(2/.) suboption tells gmm that the first available
instrument for nit is the lag-two value ni,t−2. The “.” tells gmm to use all further lags of nit as
instruments as well. The instrument matrices in dynamic panel-data models can become large if the
dataset has many time periods per panel. In those cases, you could specify, for example, lags(2/4)
to use just lags two through four instead of using all available lags.

Our results are identical to those we would obtain using xtabond with the syntax

xtabond n L(0/1).w L(0/1).k, lags(1) noconstant vce(robust)

Had we left off the vce(robust) option in our call to xtabond, we would have had to specify
vce(unadjusted) in our call to gmm to obtain the same standard errors.
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Technical note
gmm automatically excludes observations for which there are no valid observations for the panel-

style instruments. However, it keeps in the estimation sample those observations for which fewer than
the maximum number of instruments you requested are available. For example, if you specify the
lags(2/4) suboption, you have requested three instruments, but gmm will keep observations even if
only one or two instruments are available.

Example 15: Two-step Arellano–Bond estimator

Here we refit the model in the previous example, using the two-step GMM estimator.

. gmm (D.n - {rho}*LD.n - {xb:D.w LD.w D.k LD.k}),
> xtinstruments(n, lags(2/.)) instruments(D.w LD.w D.k LD.k, noconstant)
> deriv(/rho = -1*LD.n) deriv(/xb = -1) winitial(xt D) wmatrix(robust)
> vce(unadjusted)

Step 1
Iteration 0: GMM criterion Q(b) = .0011455
Iteration 1: GMM criterion Q(b) = .00009103
Iteration 2: GMM criterion Q(b) = .00009103

Step 2
Iteration 0: GMM criterion Q(b) = .44107941
Iteration 1: GMM criterion Q(b) = .4236729
Iteration 2: GMM criterion Q(b) = .4236729

GMM estimation

Number of parameters = 5
Number of moments = 32
Initial weight matrix: XT D Number of obs = 751
GMM weight matrix: Robust

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/rho .8044783 .0534763 15.04 0.000 .6996667 .90929
/xb_D_w -.5154978 .0335506 -15.36 0.000 -.5812557 -.4497399

/xb_LD_w .4059309 .0637294 6.37 0.000 .2810235 .5308384
/xb_D_k .3556204 .0390892 9.10 0.000 .2790071 .4322337

/xb_LD_k -.2204521 .046439 -4.75 0.000 -.3114709 -.1294332

Instruments for equation 1:
XT-style: L(2/.).n
Standard: D.w LD.w D.k LD.k

Our results match those you would obtain with the command

xtabond n L(0/1).(w k), lags(1) noconstant twostep

Technical note
Had we specified vce(robust) in our call to gmm, we would have obtained the traditional

sandwich-based robust covariance matrix, but our standard errors would not match those we would
obtain by specifying vce(robust) with the xtabond command. The xtabond, xtdpd, and xtdpdsys
commands implement a bias-corrected robust VCE for the two-step GMM dynamic panel-data estimator.
Traditional VCEs computed after the two-step dynamic panel-data estimator have been shown to exhibit
often-severe bias; see Windmeijer (2005).
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Neither of the two dynamic panel-data examples we have fit so far include a constant term. When a
constant term is included, the dynamic panel-data estimator is in fact a two-equation system estimator.
For notational simplicity, consider a simple model containing just a constant term and one lag of the
dependent variable:

yit = α+ ρyi,t−1 + ui + εit

First-differencing to remove the ui term, we have

yit − yi,t−1 = ρ(yi,t−1 − yi,t−2) + (εit − εi,t−1) (25)

This has also eliminated the constant term. If we assume E(ui) = 0, which is reasonable if a constant
term is included in the model, then we can recover α by including the moment condition

yit = α+ ρyi,t−1 + ε′it (26)

where ε′it = ui + εit. The parameter ρ continues to be identified by (25), so the only instrument we
use with (26) is a constant term. As before, the error term (εi,t− εi,t−1) is necessarily autocorrelated
with correlation coefficient −0.5, though the error term ε′it is white noise. Therefore, our initial weight
matrix should be

Ŵ =
(

1
N

∑
i
Z′iHZi

)−1

where

H =
[

HD 0
0 I

]
and I is a conformable identity matrix.

One complication arises concerning the relevant estimation sample. Looking at (25), we apparently
lose the first two observations from each panel because of the presence of yi,t−2, but in (26) we need
only to sacrifice one observation, for yi,t−1. For most multiple-equation models, we need to use the
same estimation sample for all equations. However, in dynamic panel-data models, we can use more
observations to fit the equation in level form [(26) here] than the equation in first-differences [equation
(25)]. To request this behavior, we specify the nocommonesample option to gmm. That option tells
gmm to use as many observations as possible for each equation, ignoring the loss of observations due
to lagging or differencing.

Example 16: Arellano–Bond estimator with constant term

Here we fit the model
nit = α+ ρ ni,t−1 + ui + εit

Without specifying derivatives, our command would be

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant) onestep
> winitial(xt DL) vce(unadj) nocommonesample

We would specify winitial(xt DL) to obtain the required initial weight matrix. The notation DL
indicates that our first moment equation is in first-differences and the second moment equation is
in levels (not first-differenced). We exclude a constant in the instrument list for the first equation,
because first-differencing removed the constant term. Because we do not specify the instruments()
option for the second moment equation, a constant is used by default.
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This example also provides us the opportunity to illustrate how to specify derivatives for multiple-
equation GMM models. Within the derivative() option, instead of specifying just the parameter
name, now you must specify the equation name or number, a slash, and the parameter name to which
the derivative applies. In Stata, we type

. gmm (D.n - {rho}*LD.n) (n - {alpha} - {rho}*L.n),
> xtinstruments(1: n, lags(2/.)) instruments(1:, noconstant)
> derivative(1/rho = -1*LD.n) derivative(2/alpha = -1)
> derivative(2/rho = -1*L.n) winitial(xt DL) vce(unadj) nocommonesample onestep

Step 1
Iteration 0: GMM criterion Q(b) = .09894466
Iteration 1: GMM criterion Q(b) = .00023508
Iteration 2: GMM criterion Q(b) = .00023508

GMM estimation

Number of parameters = 2
Number of moments = 29
Initial weight matrix: XT DL Number of obs = *

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/rho 1.023349 .0608293 16.82 0.000 .9041259 1.142572
/alpha -.0690864 .0660343 -1.05 0.295 -.1985112 .0603384

* Number of observations for equation 1: 751
Number of observations for equation 2: 891

Instruments for equation 1:
XT-style: L(2/.).n

Instruments for equation 2:
Standard: _cons

These results are identical to those we would obtain by typing

xtabond n, lags(1)

Because we specified nocommonesample, gmm did not report the number of observations used in
the header of the output. In this dataset, there are in fact 1,031 observations on 140 panels. In the
second equation, the presence of the lagged value of n reduces the sample size for that equation to
1031− 140 = 891. In the first equation, we lose the first two observations per panel due to lagging
and differencing, leading to 751 usable observations. These tallies are listed after the coefficient table
in the output.

Technical note
Specifying

xtinstruments(x1 x2 x3, lags(1/3))

differs from

instruments(L(1/3).(x1 x2 x3))

in how observations are excluded from the estimation sample. When you use the latter syntax, gmm
must exclude the first three observations from each panel when computing the moment equation: you
requested three lags of each regressor be used as instruments, so the first residual that could be interacted
with those instruments is the one for t = 4. On the other hand, when you use xtinstruments(), you
are telling gmm that you would like to use up to the first three lags of x1, x2, and x3 as instruments
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but that using just one lag is acceptable. Because most panel datasets have a relatively modest number
of observations per panel, dynamic instrument lists are typically used so that the number of usable
observations is maximized. Dynamic instrument lists also accommodate the fact that there are more
valid instruments for later time periods than earlier time periods.

Specifying panel-style instruments using the xtinstruments() option also affects how the standard
instruments specified in the instruments() option are treated. To illustrate, suppose we have a
balanced panel dataset with T = 5 observations per panel and we specify

. gmm . . ., xtinstruments(w, lags(1/2)) instruments(x)

We will lose the first observation because we need at least one lag of w to serve as an instrument.
Our instrument matrix for panel i will therefore be

Zi =



wi1 0 0 0
0 wi1 0 0
0 wi2 0 0
0 0 wi2 0
0 0 wi3 0
0 0 0 wi3
0 0 0 wi4
xi2 xi3 xi4 xi5
1 1 1 1


(27)

The vector of ones in the final row represents the constant term implied by the instruments()
option. Because we lost the first observation, the residual vector ui will be 4× 1. Thus our moment
conditions for the ith panel can be written in matrix notation as

E{Ziui(β)} = E

Zi


ui2(β)
ui3(β)
ui4(β)
ui5(β)


 = 0

The moment conditions corresponding to the final two rows of (27) say that

E

{
T=4∑
t=2

xituit(β)

}
= 0 and E

{
T=4∑
t=2

uit(β)

}
= 0

Because we specified panel-style instruments with the xtinstruments() option, gmm no longer
uses moment conditions for strictly exogenous variables of the form E{xituit(β)} = 0 for each t.
Instead, the moment conditions now stipulate that the average (over t) of xituit(β) has expectation
zero. This corresponds to the approach proposed by Arellano and Bond (1991, 280) and others.

When you request panel-style instruments with the xtinstruments() option, the number of
instruments in the Zi matrix increases quadratically in the number of periods. The dynamic panel-
data estimators we have discussed in this section are designed for datasets that contain a large number
of panels and a modest number of time periods. When the number of time periods is large, estimators
that use standard (non–panel-style) instruments are more appropriate.



gmm — Generalized method of moments estimation 683

We have focused on the Arellano–Bond dynamic panel-data estimator because of its relative
simplicity. gmm can additionally fit any models that can be formulated using the xtdpd and xtdpdsys
commands; see [XT] xtdpd and [XT] xtdpdsys. The key is to determine the appropriate instruments
to use for the level and difference equations. You may find it useful to fit a version of your model
with those commands to determine what instruments and XT-style instruments to use. We conclude
this section with an example using the Arellano–Bover/Blundell–Bond estimator.

Example 17: Arellano–Bover/Blundell–Bond estimator

We fit a small model that includes one lag of the dependent variable n as a regressor as well as
the contemporaneous and first lag of w, which we assume are strictly exogenous. We could fit our
model using xtdpdsys using the syntax

xtdpdsys n L(0/1).w, lags(1) twostep

Applying virtually all the syntax issues we have discussed so far, the equivalent gmm command is
. gmm (n - {rho}*L.n - {w}*w - {lagw}*L.w - {c})
> (D.n - {rho}*LD.n - {w}*D.w - {lagw}*LD.w),
> xtinst(1: D.n, lags(1/1)) xtinst(2: n, lags(2/.))
> inst(2: D.w LD.w, noconstant)
> deriv(1/rho = -1*L.n)
> deriv(1/w = -1*w)
> deriv(1/lagw = -1*L.w)
> deriv(1/c = -1)
> deriv(2/rho = -1*LD.n)
> deriv(2/w = -1*D.w)
> deriv(2/lagw = -1*LD.w)
> winit(xt LD) wmatrix(robust) vce(unadjusted) nocommonesample

Step 1
Iteration 0: GMM criterion Q(b) = .10170339
Iteration 1: GMM criterion Q(b) = .00022772
Iteration 2: GMM criterion Q(b) = .00022772

Step 2
Iteration 0: GMM criterion Q(b) = .59965014
Iteration 1: GMM criterion Q(b) = .56578186
Iteration 2: GMM criterion Q(b) = .56578186

GMM estimation

Number of parameters = 4
Number of moments = 39
Initial weight matrix: XT LD Number of obs = *
GMM weight matrix: Robust

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/rho 1.122738 .0206512 54.37 0.000 1.082263 1.163214
/w -.6719909 .0246148 -27.30 0.000 -.7202351 -.6237468

/lagw .571274 .0403243 14.17 0.000 .4922398 .6503083
/c .154309 .17241 0.90 0.371 -.1836084 .4922263

* Number of observations for equation 1: 891
Number of observations for equation 2: 751

Instruments for equation 1:
XT-style: LD.n
Standard: _cons

Instruments for equation 2:
XT-style: L(2/.).n
Standard: D.w LD.w
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Details of moment-evaluator programs

In examples 9, 10, and 11, we used moment-evaluator programs to evaluate moment conditions
that could not be specified using the interactive version of gmm. In the technical note after example 9,
we showed how to make our program accept optional arguments so that we could pass the name of
our dependent and independent variables and panel identifier variable. Here we discuss how to make
moment-evaluator programs accept weights and provide derivatives.

The complete specification for a moment-evaluator program’s syntax statement is

syntax varlist if [weight], at(name) options [derivatives(varlist)]

The macro ‘varlist’ contains the list of variables that we are to fill in with the values of our
residual equations. The macro ‘if’ represents an if condition that restricts the estimation sample.
The macro ‘at’ represents a vector containing the parameter values at which we are to evaluate
our residual equations. options represent other options that you specify in your call to gmm and
want to have passed to your moment-evaluator programs. In our previous examples, we included the
mylhs(), myrhs(), and myidvar() options.

Two new elements of the syntax statement allow for weights and derivatives. weight specifies
the types of weights your program allows. The interactive version of gmm allows for fweights,
aweights, and pweights. However, unless you explicitly allow your moment evaluator program to
accept weights, you cannot specify weights in your call to gmm with the moment-evaluator program
version.

The derivatives() option is used to pass to your program a set of variables that you are to fill
in with the derivatives of your residual equations with respect to the parameters. Say you specify k
parameters in the nparameters() or parameters() option and q equations in the nequations()
or equations() option. Then ‘derivatives’ will contain k × q variables. The first k variables
are for the derivatives of the first residual equation with respect to the k parameters, the second k
variables are for the derivatives of the second residual equation, and so on.

Example 18: Panel Poisson with strictly exogenous regressors and derivatives

To focus on how to specify derivatives, we return to the simple moment-evaluator program we
used in example 9, in which we had three regressors, and extend it to supply derivatives. The error
equation corresponding to moment condition (13) is

uit(β) = yit − µit
yi
µi

where µit, µi, and yi were defined previously. Now

∂

∂βj
uit(β) = −µit

yi
µ2
i

(
x

(j)
it µi −

1
T

l=T∑
l=1

x
(j)
il µil

)
(28)

where x(j)
it represents the jth element of xit.



gmm — Generalized method of moments estimation 685

Our moment-evaluator program is

program gmm_poideriv

version 12
syntax varlist if, at(name) [derivatives(varlist)]

quietly {

// Calculate residuals as before
tempvar mu mubar ybar

gen double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///
+ x3*‘at’[1,3]) ‘if’

egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)
egen double ‘ybar’ = mean(y) ‘if’, by(id)

replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

// Did -gmm- request derivatives?
if "‘derivatives’" == "" {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
egen double ‘x1mubar’ = mean(‘work’) ‘if’, by(id)

replace ‘work’ = x2*‘mu’ ‘if’
egen double ‘x2mubar’ = mean(‘work’) ‘if’, by(id)

replace ‘work’ = x3*‘mu’ ‘if’
egen double ‘x3mubar’ = mean(‘work’) ‘if’, by(id)

local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}

end

The derivatives() option is made optional in the syntax statement by placing it in square brackets.
If gmm needs to evaluate your moment equations but does not need derivatives at that time, then the
derivatives() option will be empty. In our program, we check to see if that is the case, and, if
so, exit without calculating derivatives. As is often the case with [R] ml as well, the portion of our
program devoted to derivatives is longer than the code to compute the objective function.

The first part of our derivative code computes the term

1
T

l=T∑
l=1

x
(j)
il µil (29)

for x(j)
it = x1, x2, and, x3. The ‘derivatives’ macro contains three variable names, corresponding

to the three parameters of the ‘at’ matrix. We extract those names into local macros ‘d1’, ‘d2’,
and ‘d3’, and then fill in the variables those macros represent with the derivatives shown in (28).
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With our program written, we fit our model by typing

. use http://www.stata-press.com/data/r12/poisson1

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives

Step 1
Iteration 0: GMM criterion Q(b) = 51.99142
Iteration 1: GMM criterion Q(b) = .04345191
Iteration 2: GMM criterion Q(b) = 8.720e-06
Iteration 3: GMM criterion Q(b) = 7.115e-13
Iteration 4: GMM criterion Q(b) = 5.130e-27

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 409

(Std. Err. adjusted for 45 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 1.94866 .1000265 19.48 0.000 1.752612 2.144709
/b2 -2.966119 .0923592 -32.12 0.000 -3.14714 -2.785099
/b3 1.008634 .1156561 8.72 0.000 .781952 1.235315

Instruments for equation 1: x1 x2 x3

Our results are identical to those in example 9. Another way to verify that our program calculates
derivatives correctly would be to type

. gmm gmm_poideriv, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

Without the hasderivatives option, gmm will not request derivatives from your program, even if it
contains code to compute them. If you have trouble obtaining convergence with the hasderivatives
option but do not have trouble without that option, then you need to recheck your derivatives.

In the technical note after example 9, we modified the gmm poi program so that we could specify
the name of our dependent variable and a list of regressors. Here is the analogous version that
computes analytic derivatives:
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program gmm_poideriv2

version 12
syntax varlist if, at(name) myrhs(varlist) ///

mylhs(varlist) myidvar(varlist) ///
[ derivatives(varlist) ]

quietly {

tempvar mu mubar ybar

gen double ‘mu’ = 0 ‘if’
local j = 1
foreach var of varlist ‘myrhs’ {

replace ‘mu’ = ‘mu’ + ‘var’*‘at’[1,‘j’] ‘if’
local j = ‘j’ + 1

}
replace ‘mu’ = exp(‘mu’)
egen double ‘mubar’ = mean(‘mu’) ‘if’, by(‘myidvar’)
egen double ‘ybar’ = mean(‘mylhs’) ‘if’, by(‘myidvar’)
replace ‘varlist’ = ‘mylhs’ - ‘mu’*‘ybar’/‘mubar’ ‘if’

if "‘derivatives’" == "" {
exit

}

tempvar work xmubar
local j = 1
foreach var of varlist ‘myrhs’ {

generate double ‘work’ = ‘var’*‘mu’ ‘if’
egen double ‘xmubar’ = mean(‘work’) ‘if’ ‘wt’‘exp’, ///

by(‘myidvar’)
local deriv : word ‘j’ of ‘derivatives’
replace ‘deriv’ = -1*‘mu’*‘ybar’/‘mubar’^2* ///

(‘var’*‘mubar’ - ‘xmubar’)
local ‘++j’
drop ‘work’ ‘xmubar’

}
}

end

To use this program, we type

gmm gmm_poideriv2, mylhs(y) myrhs(x1 x2 x3)
nequations(1) parameters(b1 b2 b3)
instruments(x1 x2 x3, noconstant)
vce(cluster id) myidvar(id) onestep
hasderivatives

We obtain results identical to those shown in example 18.

Depending on your model, allowing your moment-evaluator program to accept weights may be as
easy as modifying the syntax command to allow them, or it may require significantly more work.
If your program uses only commands like generate and replace, then just modifying the syntax
command is all you need to do; gmm takes care of applying the weights to the observation-level residuals
when computing the sample moments, derivatives, and weight matrices. On the other hand, if your
moment-evaluator program computes residuals using statistics that depend on multiple observations,
then you must apply the weights passed to your program when computing those statistics.

In our examples of panel Poisson with strictly exogenous regressors, we used the statistics µi and
yi when computing the residuals. If we are to allow weights with our moment-evaluator program, then
we must incorporate those weights when computing µi and yi. Moreover, looking at the derivative
in (28), the term highlighted in (29) is in fact a sample mean, so we must incorporate weights when
computing it.
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Example 19: Panel Poisson with derivatives and weights

Here we modify the program in example 18. to accept frequency weights. One complication
immediately arises: we had been using egen to compute µi and yi. egen does not accept weights, so
we must compute µi and yi ourselves, incorporating any weights the user may specify. Our program
is

program gmm_poiderivfw

version 12
syntax varlist if [fweight/], at(name) [derivatives(varlist)]

quietly {
if "‘exp’" == "" { // no weights

local exp 1 // weight each observation equally
}

// Calculate residuals as before
tempvar mu mubar ybar sumwt

gen double ‘mu’ = exp(x1*‘at’[1,1] + x2*‘at’[1,2] ///
+ x3*‘at’[1,3]) ‘if’

bysort id: gen double ‘sumwt’ = sum(‘exp’)
by id: gen double ‘mubar’ = sum(‘mu’*‘exp’)
by id: gen double ‘ybar’ = sum(y*‘exp’)
by id: replace ‘mubar’ = ‘mubar’[_N] / ‘sumwt’[_N]
by id: replace ‘ybar’ = ‘ybar’[_N] / ‘sumwt’[_N]

replace ‘varlist’ = y - ‘mu’*‘ybar’/‘mubar’ ‘if’

// Did -gmm- request derivatives?
if "‘derivatives’" == "" {

exit // no, so we are done
}
// Calculate derivatives
// We need the panel means of x1*mu, x2*mu, and x3*mu
tempvar work x1mubar x2mubar x3mubar
generate double ‘work’ = x1*‘mu’ ‘if’
by id: generate double ‘x1mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x1mubar’ = ‘x1mubar’[_N] / ‘sumwt’[_N]

replace ‘work’ = x2*‘mu’ ‘if’
by id: generate double ‘x2mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x2mubar’ = ‘x2mubar’[_N] / ‘sumwt’[_N]

replace ‘work’ = x3*‘mu’ ‘if’
by id: generate double ‘x3mubar’ = sum(‘work’*‘exp’)
by id: replace ‘x3mubar’ = ‘x3mubar’[_N] / ‘sumwt’[_N]

local d1: word 1 of ‘derivatives’
local d2: word 2 of ‘derivatives’
local d3: word 3 of ‘derivatives’
replace ‘d1’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x1*‘mubar’ - ‘x1mubar’)
replace ‘d2’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x2*‘mubar’ - ‘x2mubar’)
replace ‘d3’ = -1*‘mu’*‘ybar’/‘mubar’^2*(x3*‘mubar’ - ‘x3mubar’)

}

end

Our syntax command now indicates that fweights are allowed. The first part of our code looks
at the macro ‘exp’. If it is empty, then the user did not specify weights in their call to gmm; and
we set the macro equal to 1, so that we weight each observation equally. After we compute µit, we
calculate µi and yi, taking into account weights. To compute frequency-weighted means for each
panel, we just multiply each observation by its respective weight, sum over all observations in the
panel, then divide by the sum of the weights for the panel. (See [U] 20.22 Weighted estimation for
information on how to handle aweights and pweights.) We use the same procedure to compute the
frequency-weighted variant of expression (29) in the derivative calculations.
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To use our program, we type

. use http://www.stata-press.com/data/r12/poissonwts

. gmm gmm_poiderivfw [fw=fwt], nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep hasderivatives
(sum of wgt is 819)

Step 1
Iteration 0: GMM criterion Q(b) = 49.8292
Iteration 1: GMM criterion Q(b) = .11136736
Iteration 2: GMM criterion Q(b) = .00008519
Iteration 3: GMM criterion Q(b) = 7.110e-11
Iteration 4: GMM criterion Q(b) = 5.596e-23

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 819

(Std. Err. adjusted for 45 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 1.967766 .111795 17.60 0.000 1.748652 2.186881
/b2 -3.060838 .0935561 -32.72 0.000 -3.244205 -2.877472
/b3 1.037594 .1184227 8.76 0.000 .80549 1.269698

Instruments for equation 1: x1 x2 x3

Testing whether our program works correctly with frequency weights is easy. A frequency-weighted
dataset is just a compact form of a larger dataset in which identical observations are omitted and a
frequency-weight variable is included to tell us how many times each observation in the smaller dataset
appears in the larger dataset. Therefore, we can expand our smaller dataset by the frequency-weight
variable and then refit our model without specifying frequency weights. If we obtain the same results,
our program works correctly. When we type

. expand fw
(410 observations created)

. gmm gmm_poiderivfw, nequations(1) parameters(b1 b2 b3)
> instruments(x1 x2 x3, noconstant) vce(cluster id) onestep

we obtain the same results as before.
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Saved results
gmm saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(n moments) number of moments
e(n eq) number of equations in moment-evaluator program
e(Q) criterion function
e(J) Hansen J χ2 statistic
e(J df) J statistic degrees of freedom
e(k i) number of parameters in equation i

e(has xtinst) 1 if panel-style instruments specified, 0 otherwise
e(N clust) number of clusters
e(type) 1 if interactive version, 2 if moment-evaluator program version
e(rank) rank of e(V)
e(ic) number of iterations used by iterative GMM estimator
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) gmm
e(cmdline) command as typed
e(title) title specified in title()
e(title 2) title specified in title2()
e(clustvar) name of cluster variable
e(inst i) equation i instruments
e(eqnames) equation names
e(winit) initial weight matrix used
e(winitname) name of user-supplied initial weight matrix
e(estimator) onestep, twostep, or igmm
e(rhs) variables specified in variables()
e(params i) equation i parameters
e(wmatrix) wmtype specified in wmatrix()
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(params) parameter names
e(sexp i) substitutable expression for equation i

e(evalprog) moment-evaluator program
e(evalopts) options passed to moment-evaluator program
e(nocommonesample) nocommonesample, if specified
e(technique) optimization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(init) initial values of the estimators
e(Wuser) user-supplied initial weight matrix
e(W) weight matrix used for final round of estimation
e(S) moment covariance matrix used in robust VCE computations
e(N byequation) number of observations per equation, if nocommonesample specified
e(V) variance–covariance matrix
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
gmm is implemented as an ado-file.

Let q denote the number of moment equations. For observation i, i = 1, . . . , N , write the jth
moment equation as zijuij(βj) for j = 1, . . . , q. zij is a 1×mj vector, where mj is the number
of instruments specified for equation j. Let m = m1 + · · ·+mq .

Our notation can incorporate moment conditions of the form hij(wij ;βj) with instruments wij

by defining zij = 1 and uij(βj) = hij(wij ;βj), so except when necessary we do not distinguish
between the two types of moment conditions. We could instead use notation so that all our moment
conditions are of the form hij(wij ;βj), or we could adopt notation that explicitly combines both
forms of moment equations. However, because moment conditions of the form z′ijuij(βj) are arguably
more common, we use that notation.

Let β denote a k× 1 vector of parameters, consisting of all the unique parameters of β1, . . . , βq .
Then we can stack the moment conditions and write them more compactly as Z′iui(β), where

Zi =


zi1 0 · · · 0
0 zi2 · · · 0
...

...
. . .

...
0 0 · · · ziq

 and ui(β) =


ui1(β1)
ui2(β2)

...
uiq(βj)


The GMM estimator β̂ is the value of β that minimizes

Q(β) =

{
N−1

N∑
i=1

Z′iui(β)

}′
W

{
N−1

N∑
i=1

Z′iui(β)

}
(A1)

for q × q weight matrix W.

By default, gmm minimizes (A1) using the Gauss–Newton method. See Hayashi (2000, 498) for
a derivation. This technique is typically faster than quasi-Newton methods and does not require
second-order derivatives.

Methods and formulas are presented under the following headings:

Initial weight matrix
Weight matrix
Variance–covariance matrix
Hansen’s J statistic
Panel-style instruments

Initial weight matrix

If you specify winitial(identity), then we set W = Iq .

If you specify winitial(unadjusted), then we create matrix Λ with typical submatrix

Λrs = N−1
N∑
i=1

z′irzis

for r = 1, . . . , q and s = 1, . . . , q. If you include the independent suboption, then we set Λrs = 0
for r 6= s. The weight matrix W equals Λ−1.
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If you specify winitial(matname), then we set W equal to Stata matrix matname.

If you specify winitial(xt xtspec), then you must specify one or two items in xtspec, one
for each equation. gmm allows you to specify at most two moment equations when you specify
winitial(xt xtspec), one in first-differences and one in levels. We create the block-diagonal matrix
H with typical block Hj . If the jth element of xtspec is “L”, then Hj is the identity matrix of
suitable dimension. If the jth element of xtspec is “D”, then

Hj =


1 −0.5 0 . . . 0 0
−0.5 1 −0.5 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1 −0.5
0 0 0 . . . −0.5 1


Then

ΛH = N−1
g

g=NG∑
g=1

Z′gHZg

where g indexes panels in the dataset, NG is the number of panels, Zg is the full instrument matrix
for panel g, and W = Λ−1

H . See Panel-style instruments below for a discussion of how Zg is formed.

Weight matrix

Specification of the weight matrix applies only to the two-step and iterative estimators. When you
use the onestep option, the wmatrix() option is ignored.

We first evaluate (A1) using the initial weight matrix described above and then compute ui(β̂).
In all cases, W = Λ−1. If you specify wmatrix(unadjusted), then we create Λ to have typical
submatrix

Λrs = σrsN
−1

N∑
i=1

z′irzis

where

σrs = N−1
N∑
i=1

uir(β̂)uis(β̂)

and r and s index moment equations. For all types of weight matrices, if the independent suboption
is specified, then Λrs = 0 for r 6= s, where Λrs measures the covariance between moment conditions
for equations r and s.

If you specify wmatrix(robust), then

Λ = N−1
N∑
i=1

Ziui(β̂)u′i(β̂)Z′i

If you specify wmatrix(cluster clustvar), then

Λ = N−1
c=NC∑
c=1

qcq′c
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where c indexes clusters, NC is the number of clusters, and

qc =
∑
i∈cj

Ziui(β̂)

If you specify wmatrix(hac kernel
[

#
]
), then

Λ =N−1
N∑
i=1

Ziui(β̂)ui(β̂)′Z′i +

N−1
l=n−1∑
l=1

N∑
i=l+1

K(l,m)
{

Ziui(β̂)u′i−l(β̂)Z′i−l + Zi−lui−l(β̂)u′i(β̂)Z′i
}

where m = # if # is specified and m = N − 2 otherwise. Define z = l/(m + 1). If kernel is
bartlett or nwest, then

K(l,m) =
{ 1− z 0 ≤ z ≤ 1

0 otherwise
If kernel is parzen or gallant, then

K(l,m) =

{
1− 6z2 + 6z3 0 ≤ z ≤ 0.5
2(1− z)3 0.5 < z ≤ 1
0 otherwise

If kernel is quadraticspectral or andrews, then

K(l,m) =
{

1 z = 0
3{sin(θ)/θ − cos(θ)}/θ2 otherwise

where θ = 6πz/5.

If wmatrix(hac kernel opt) is specified, then gmm uses Newey and West’s (1994) automatic
lag-selection algorithm, which proceeds as follows. Define h to be an m × 1 vector of ones. Note
that this definition of h is slightly different than the one used by ivregress. There, the element of
h corresponding to the constant term equals zero, effectively ignoring the effect of the constant in
determining the optimal lag length. Here we include the effect of the constant term. Now define

fi = {Z′iui(β)}′ h

σ̂j = N−1
N∑

i=j+1

fifi−j j = 0, . . . ,m∗

ŝ(q) = 2
j=m∗∑
j=1

σ̂jj
q

ŝ(0) = σ̂0 + 2
j=m∗∑
j=1

σ̂j

γ̂ = cγ

{(
ŝ(q)

ŝ(0)

)2
}1/(2q+1)

m = γ̂N1/(2q+1)
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where q, m∗, and cγ depend on the kernel specified:

Kernel q m∗ cγ

Bartlett/Newey–West 1 int
{

20(T/100)2/9
}

1.1447
Parzen/Gallant 2 int

{
20(T/100)4/25

}
2.6614

Quadratic spectral/Andres 2 int
{

20(T/100)2/25
}

1.3221

where int(x) denotes the integer obtained by truncating x toward zero. For the Bartlett and Parzen
kernels, the optimal lag is min{int(m),m∗}. For the quadratic spectral kernel, the optimal lag is
min{m,m∗}.

Variance–covariance matrix
If you specify vce(unadjusted), then the VCE matrix is computed as

Var(β̂) = N−1
{

G(β̂)′WG(β̂)
}−1

(A2)

where

G(β̂) = N−1
N∑
i=1

Z′i
∂ui(β)
∂β′

∣∣∣∣
β=β̂

For the two-step and iterated estimators, we use the weight matrix W that was used to compute the
final-round estimate β̂.

For the one-step estimator, how the unadjusted VCE is computed depends on the type of initial weight
matrix requested and the form of the moment equations. If you specify two or more moment equations
of the form hij(wij ;βj), then gmm issues a warning message and computes a heteroskedasticity-
robust VCE because here the matrix Z′Z is necessarily singular; moreover, here you must use the
identity matrix as the initial weight matrix. Otherwise, if you specify winitial(identity) or
winitial(unadjusted), then gmm first computes an unadjusted weight matrix based on β̂ before
evaluating (A2). If you specify winitial(matname), then (A2) is evaluated based on matname; the
user is responsible for verifying that the VCE and other statistics so produced are appropriate.

All types of robust VCEs computed by gmm take the form

Var(β̂) = N−1
{

G(β̂)′WG(β̂)
}−1

G(β̂)′WSWG(β̂)
{

G(β̂)′WG(β̂)
}−1

For the one-step estimator, W represents the initial weight matrix requested using the winitial()
option, and S is computed based on the specification of the vce() option. The formulas for the S
matrix are identical to the ones that define the Λ matrix in Weight matrix above, except that S is
computed after the moment equations are reevaluated using the final estimate of β̂. For the two-step
and iterated GMM estimators, computation of W is controlled by the wmatrix() option based on
the penultimate estimate of β̂.

For details on computation of the VCE matrix with dynamic panel-data models, see Panel-style
instruments below.
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Hansen’s J statistic

Hansen’s (1982) J test of overidentifying restrictions is J = N × Q(β̂). J ∼ χ2(m − k). If
m < k, gmm issues an error message without estimating the parameters. If m = k, the model is
just-identified and J is saved as missing (“.”). For the two-step and iterated GMM estimators, the
J statistic is based on the last-computed weight matrix as determined by the wmatrix() option.
For the one-step estimator, gmm recomputes a weight matrix as described in the second paragraph
of Variance–covariance matrix above. To obtain Hansen’s J statistic, you use estat overid; see
[R] gmm postestimation.

Panel-style instruments

Here we discuss several issues that arise only when you specify panel-style instruments by using
the xtinstruments() option. When you specify the xtinstruments() option, we can no longer
consider the instruments for one observation in isolation; instead, we must consider the instrument
matrix for an entire panel at once. In the following discussion, we let T denote the number of
time periods in a panel. To accommodate unbalanced datasets, conceptually we simply use zeros as
instruments and residuals for time periods that are missing in a panel.

We consider the case where you specify both an equation in levels and an equation in differences,
yielding two residual equations. Let uLpt(β) denote the residual for the level equation for panel p in
period t, and let uDpt(β) denote the residual for the corresponding difference equation. Now define
the 2T × 1 vector up(β) as

up(β) = [uLp1(β), uLp2(β), . . . , uLpT (β), uDp2(β), uDp3(β), . . . , uDpT (β)]

The T + 1 element of up is uDp2(β) since we lose the first observation of the difference equation
because of differencing.

We write the moment conditions for the pth panel as Zpup(β). To see how Zp is defined, let
wL
pt and wD

pt denote the vectors of panel-style instruments for the level and difference equations,
respectively, and let time be denoted by t; we discuss their dimensions momentarily. Also let xLpt
and xDpt denote the vectors of instruments specified in instruments() for the level and difference
equations at time t. Without loss of generality, for our discussion we assume that you specify the
level equation first. Then Zp has the form

Zp =



wL
1 0 · · · 0 0 0 · · · 0

0 wL
2 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · wL
T 0 0 · · · 0

xL1 xL2 · · · xLT 0 0 · · · 0
0 0 · · · 0 wD

1 0 · · · 0
0 0 · · · 0 0 wD

2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · wD

T

0 0 · · · 0 xD1 xD2 · · · xDT


(A3)

To see how the w vectors are formed, suppose you specify

xtinstruments(eq(1): d, lags( a/ b))
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Then wL
t will be a (b− a+ 1)× 1 vector consisting of dt−a, . . . , dt−b. If (t− a) ≤ 0, then instead

we set wL
t = 0. If (t− a) > 0 but (t− b) ≤ 0, then we create wL

t to consist of dt−a, . . . , d1. With
this definition, (b − a + 1) defines the maximum number of lags of d used, but gmm will proceed
with fewer lags if all (b− a+ 1) lags are not available. If you specify two panel-style instruments,
d and e, say, then wL

t will consist of dt−a, . . . , dt−b, et−a, . . . , et−b. wD
t is handled analogously.

The xLt vectors are simply j × 1 vectors, where j is the number of regular instruments specified
with the instruments() option; these vectors include a “1” unless you specify the noconstant
suboption.

Looking carefully at (A3), you will notice that for dynamic panel-data models, moment conditions
corresponding to the instruments xLpt take the form

E

[
t=T∑
t=1

xLptu
L
pt(β)

]
= 0

and likewise for xDpt. Instead of having separate moment conditions for each time period, there is one
moment condition equal to the average of individual periods’ moments. See Arellano and Bond (1991,
280). To include separate moment conditions for each time period, instead of specifying, say,

instruments(1: x)

you could instead first generate a variable called one equal to unity for all observations and specify

xtinstruments(1: x one)

(Creating the variable one is necessary because a constant is not automatically included in variable
lists specified in xtinstruments().)

Unbalanced panels are essentially handled by including zeros rows and columns of Zp and up(β)
corresponding to missing time periods. However, the numbers of instruments and moment conditions
reported by gmm do not reflect this trickery and instead reflect the numbers of instruments and moment
conditions that are not manipulated in this way. Moreover, gmm includes code to work through these
situations efficiently without actually having to fill in zeros.

When you specify winitial(xt . . .), the one-step unadjusted VCE is computed as

Var(β̂) = σ̂2
1ΛH

where ΛH was defined previously,

σ̂2
1 = (N − k)−1

p=P∑
p=1

uDp (β̂)

and uDp (β̂) = [uDp2(β̂), . . . , uDpT (β̂)]. Here we use (N − k)−1 instead of N−1 to match xtdpd.
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Also see
[R] gmm postestimation — Postestimation tools for gmm

[R] ivregress — Single-equation instrumental-variables regression

[R] ivprobit — Probit model with continuous endogenous regressors

[R] ivtobit — Tobit model with continuous endogenous regressors

[R] nl — Nonlinear least-squares estimation

[R] nlsur — Estimation of nonlinear systems of equations

[R] regress — Linear regression

[XT] xtdpd — Linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands



Title

gmm postestimation — Postestimation tools for gmm

Description
The following postestimation command is of special interest after gmm:

Command Description

estat overid perform test of overidentifying restrictions

For information about this command, see below.

The following standard postestimation commands are also available:

Command Description

estat VCE
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict residuals
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation command

estat overid reports Hansen’s J statistic, which is used to determine the validity of the
overidentifying restrictions in a GMM model. If the model is correctly specified in the sense that
E{ziui(β)} = 0, then the sample analog to that condition should hold at the estimated value of β.
Hansen’s J statistic is valid only if the weight matrix is optimal, meaning that it equals the inverse of
the covariance matrix of the moment conditions. Therefore, estat overid only reports Hansen’s J
statistic after two-step or iterated estimation, or if you specified winitial(matname) when calling
gmm. In the latter case, it is your responsibility to determine the validity of the J statistic.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(#eqno | eqname)
]

predict
[

type
]
{ stub* | newvar1 . . . newvarq }

[
if
] [

in
]

Residuals are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the
estimation sample.

You specify one new variable and (optionally) equation(), or you specify stub* or q new variables, where q is the
number of moment equations.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Option for predict

� � �
Main �

equation(#eqno | eqname) specifies the equation for which residuals are desired. Specifying equa-
tion(#1) indicates that the calculation is to be made for the first moment equation. Specifying
equation(demand) would indicate that the calculation is to be made for the moment equation
named demand, assuming there is an equation named demand in the model.

If you specify one new variable name and omit equation(), results are the same as if you had
specified equation(#1).

For more information on using predict after multiple-equation estimation commands, see [R] pre-
dict.

Syntax for estat overid

estat overid

Menu
Statistics > Postestimation > Reports and statistics

Remarks
As we noted in Introduction of [R] gmm, underlying generalized method of moments (GMM)

estimators is a set of l moment conditions, E{ziui(β)} = 0. When l is greater than the number
of parameters, k, any size-k subset of the moment conditions would yield a consistent parameter
estimate. We remarked that the parameter estimates we would obtain would in general depend on
which k moment conditions we used. However, if all our moment conditions are indeed valid, then
the parameter estimates should not differ too much regardless of which k moment conditions we
used to estimate the parameters. The test of overidentifying restrictions is a model specification test
based on this observation. The test of overidentifying restrictions requires that the number of moment
conditions be greater than the number of parameters in the model.

Recall that the GMM criterion function is

Q =

{
1
N

∑
i

ziui(β)

}′
W

{
1
N

∑
i

ziui(β)

}
The test of overidentifying restrictions is remarkably simple. If W is an optimal weight matrix, under
the null hypothesis H0 : E{ziui(β)} = 0, the test statistic J = N ×Q ∼ χ2(l − k). A large test
statistic casts doubt on the null hypothesis.

For the test to be valid, W must be optimal, meaning that W must be the inverse of the covariance
matrix of the moment conditions:

W−1 = E{ziui(β)u′i(β)z′i}
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Therefore, estat overid works only after the two-step and iterated estimators, or if you supplied
your own initial weight matrix by using the winitial(matname) option to gmm and used the one-step
estimator.

Often the overidentifying restrictions test is interpreted as a test of the validity of the instruments
z. However, other forms of model misspecification can sometimes lead to a significant test statistic.
See Hall (2005, sec. 5.1) for a discussion of the overidentifying restrictions test and its behavior in
correctly and misspecified models.

Example 1

In example 6 of [R] gmm, we fit an exponential regression model of the number of doctor visits
based on the person’s gender, income, possession of private health insurance, and presence of a
chronic disease. We argued that the variable income may be endogenous; we used the person’s age
and race as additional instrumental variables. Here we refit the model and test the specification of
the model. We type

. use http://www.stata-press.com/data/r12/docvisits

. gmm (docvis - exp({xb:private chronic female income} + {b0})),
> instruments(private chronic female age black hispanic)

(output omitted )
. estat overid

Test of overidentifying restriction:

Hansen’s J chi2(2) = 9.52598 (p = 0.0085)

The J statistic is significant even at the 1% significance level, so we conclude that our model is
misspecified. One possibility is that age and race directly affect the number of doctor visits, so we
are not justified in excluding them from the model.

A simple technique to explore whether any of the instruments is invalid is to examine the statistics

rj = W1/2
jj

{
1
N

N∑
i=1

zijui(β̂)

}

for j = 1, . . . , k, where Wjj denotes the jth diagonal element of W, ui(β̂) denotes the sample
residuals, and k is the number of instruments. If all the instruments are valid, then the scaled sample
moments should at least be on the same order of magnitude. If one (or more) instrument’s rj is large
in absolute value relative to the others, then that could be an indication that instrument is not valid.

In Stata, we type

. predict double r if e(sample) // obtain residual from the model

. matrix W = e(W) // retrieve weight matrix

. local i 1

. // loop over each instrument and compute r_j

. foreach var of varlist private chronic female age black hispanic {
2. generate double r‘var’ = r*‘var’*sqrt(W[‘i’, ‘i’])
3. local ‘++i’
4. }
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. summarize r*

Variable Obs Mean Std. Dev. Min Max

r 4412 .0344373 8.26176 -151.1847 113.059
rprivate 4412 .007988 3.824118 -72.66254 54.33852
rchronic 4412 .0026947 2.0707 -43.7311 32.703
rfemale 4412 .0028168 1.566397 -12.7388 24.43621

rage 4412 .0360978 4.752986 -89.74112 55.58143

rblack 4412 -.0379317 1.062027 -24.39747 27.34512
rhispanic 4412 -.017435 1.08567 -5.509386 31.53512

We notice that the rj statistics for age, black, and hispanic are larger than those for the other
instruments in our model, supporting our suspicion that age and race may have a direct impact on
the number of doctor visits.

Saved results
estat overid saves the following in r():

Scalars
r(J) Hansen’s J statistic
r(J df) J statistic degrees of freedom
r(J p) J statistic p-value

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Reference
Hall, A. R. 2005. Generalized Method of Moments. Oxford: Oxford University Press.

Also see
[R] gmm — Generalized method of moments estimation

[U] 20 Estimation and postestimation commands



Title

grmeanby — Graph means and medians by categorical variables

Syntax
grmeanby varlist

[
if
] [

in
] [

weight
]
, summarize(varname)

[
options

]
options Description

Main
∗summarize(varname) graph mean (or median) of varname
median graph medians; default is to graph means

Plot

cline options change the look of the lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

∗summarize(varname) is required.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Graph means/medians by groups

Description
grmeanby graphs the (optionally weighted) means or medians of varname according to the values

of the variables in varlist. The variables in varlist may be string or numeric and, if numeric, may be
labeled.

Options

� � �
Main �

summarize(varname) is required; it specifies the name of the variable whose mean or median is to
be graphed.

median specifies that the graph is to be of medians, not means.

� � �
Plot �

cline options affect the rendition of the lines through the markers, including their color, pattern, and
width; see [G-3] cline options.
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marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
The idea of graphing means of categorical variables was shown in Chambers and Hastie (1992,

3). Because this was shown in the context of an S function for making such graphs, it doubtless has
roots going back further than that. grmeanby is, in any case, another implementation of what we
will assume is their idea.

Example 1

Using a variation of our auto dataset, we graph the mean of mpg by foreign, rep77, rep78, and
make:

. use http://www.stata-press.com/data/r12/auto1
(Automobile Models)

. grmeanby foreign rep77 rep78 make, sum(mpg)

BMW

Volvo

VW

Fiat
AMCDodge
Olds

Toyota

Ford

Cad.

Renault

Pont.

Plym.

Buick

Chev.

Audi

Merc.

Subaru

Honda

Peugeot

Linc.

Datsun

Mazda

Exc

Average
Fair

Poor
Good

Average

Exc

Fair

Poor

Good

Domestic

Foreign

1
0

1
5

2
0

2
5

3
0

3
5

foreign rep77 rep78 make

Means of mpg, Mileage (mpg)

If we had wanted a graph of medians rather than means, we could have typed

. grmeanby foreign rep77 rep78 make, sum(mpg) median
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Methods and formulas
grmeanby is implemented as an ado-file.

References
Chambers, J. M., and T. J. Hastie, ed. 1992. Statistical Models in S. Pacific Grove, CA: Wadsworth and Brooks/Cole.

Gould, W. W. 1993. gr12: Graphs of means and medians by categorical variables. Stata Technical Bulletin 12: 13.
Reprinted in Stata Technical Bulletin Reprints, vol. 2, pp. 44–45. College Station, TX: Stata Press.

http://www.stata.com/products/stb/journals/stb12.pdf


Title

hausman — Hausman specification test

Syntax
hausman name-consistent

[
name-efficient

] [
, options

]
options Description

Main

constant include estimated intercepts in comparison; default is to exclude
alleqs use all equations to perform test; default is first equation only
skipeqs(eqlist) skip specified equations when performing test
equations(matchlist) associate/compare the specified (by number) pairs of equations
force force performance of test, even though assumptions are not met
df(#) use # degrees of freedom
sigmamore base both (co)variance matrices on disturbance variance

estimate from efficient estimator
sigmaless base both (co)variance matrices on disturbance variance

estimate from consistent estimator

Advanced

tconsistent(string) consistent estimator column header
tefficient(string) efficient estimator column header

where name-consistent and name-efficient are names under which estimation results were saved via
estimates store; see [R] estimates store.

A period (.) may be used to refer to the last estimation results, even if these were not already stored.

Not specifying name-efficient is equivalent to specifying the last estimation results as “.”.

Menu
Statistics > Postestimation > Tests > Hausman specification test

Description
hausman performs Hausman’s (1978) specification test.

Options

� � �
Main �

constant specifies that the estimated intercept(s) be included in the model comparison; by default,
they are excluded. The default behavior is appropriate for models in which the constant does not
have a common interpretation across the two models.

706
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alleqs specifies that all the equations in the models be used to perform the Hausman test; by default,
only the first equation is used.

skipeqs(eqlist) specifies in eqlist the names of equations to be excluded from the test. Equation
numbers are not allowed in this context, because the equation names, along with the variable
names, are used to identify common coefficients.

equations(matchlist) specifies, by number, the pairs of equations that are to be compared.

The matchlist in equations() should follow the syntax
#c:#e

[
,#c:#e

[
,. . .

]]
where #c (#e) is an equation number of the always-consistent (efficient under H0) estimator. For
instance, equations(1:1), equations(1:1, 2:2), or equations(1:2).

If equations() is not specified, then equations are matched on equation names.

equations() handles the situation in which one estimator uses equation names and the other
does not. For instance, equations(1:2) means that equation 1 of the always-consistent estimator
is to be tested against equation 2 of the efficient estimator. equations(1:1, 2:2) means that
equation 1 is to be tested against equation 1 and that equation 2 is to be tested against equation 2.
If equations() is specified, the alleqs and skipeqs options are ignored.

force specifies that the Hausman test be performed, even though the assumptions of the Hausman
test seem not to be met, for example, because the estimators were pweighted or the data were
clustered.

df(#) specifies the degrees of freedom for the Hausman test. The default is the matrix rank of the
variance of the difference between the coefficients of the two estimators.

sigmamore and sigmaless specify that the two covariance matrices used in the test be based on a
common estimate of disturbance variance (σ2).

sigmamore specifies that the covariance matrices be based on the estimated disturbance variance
from the efficient estimator. This option provides a proper estimate of the contrast variance for
so-called tests of exogeneity and overidentification in instrumental-variables regression.

sigmaless specifies that the covariance matrices be based on the estimated disturbance variance
from the consistent estimator.

These options can be specified only when both estimators save e(sigma) or e(rmse), or with
the xtreg command. e(sigma e) is saved after the xtreg command with the option fe or mle
option. e(rmse) is saved after the xtreg command with the re option.

sigmamore or sigmaless are recommended when comparing fixed-effects and random-effects
linear regression because they are much less likely to produce a non–positive-definite-differenced
covariance matrix (although the tests are asymptotically equivalent whether or not one of the
options is specified).

� � �
Advanced �

tconsistent(string) and tefficient(string) are formatting options. They allow you to specify
the headers of the columns of coefficients that default to the names of the models. These options
will be of interest primarily to programmers.
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Remarks
hausman is a general implementation of Hausman’s (1978) specification test, which compares an

estimator θ̂1 that is known to be consistent with an estimator θ̂2 that is efficient under the assumption
being tested. The null hypothesis is that the estimator θ̂2 is indeed an efficient (and consistent)
estimator of the true parameters. If this is the case, there should be no systematic difference between
the two estimators. If there exists a systematic difference in the estimates, you have reason to doubt
the assumptions on which the efficient estimator is based.

The assumption of efficiency is violated if the estimator is pweighted or the data are clustered,
so hausman cannot be used. The test can be forced by specifying the force option with hausman.
For an alternative to using hausman in these cases, see [R] suest.

To use hausman, you

. (compute the always-consistent estimator)

. estimates store name-consistent

. (compute the estimator that is efficient under H 0)

. hausman name-consistent .

Alternatively, you can turn this around:

. (compute the estimator that is efficient under H 0)

. estimates store name-efficient

. (fit the less-efficient model)

. (compute the always-consistent estimator)

. hausman . name-efficient

You can, of course, also compute and store both the always-consistent and efficient-under-H0

estimators and perform the Hausman test with

. hausman name-consistent name-efficient

Example 1

We are studying the factors that affect the wages of young women in the United States between
1970 and 1988, and we have a panel-data sample of individual women over that time span.

. use http://www.stata-press.com/data/r12/nlswork4
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. describe

Contains data from http://www.stata-press.com/data/r12/nlswork4.dta
obs: 28,534 National Longitudinal Survey.

Young Women 14-26 years of age
in 1968

vars: 6 29 Jan 2011 16:35
size: 370,942

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
age byte %8.0g age in current year
msp byte %8.0g 1 if married, spouse present
ttl_exp float %9.0g total work experience
ln_wage float %9.0g ln(wage/GNP deflator)

Sorted by: idcode year
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We believe that a random-effects specification is appropriate for individual-level effects in our model.
We fit a fixed-effects model that will capture all temporally constant individual-level effects.

. xtreg ln_wage age msp ttl_exp, fe

Fixed-effects (within) regression Number of obs = 28494
Group variable: idcode Number of groups = 4710

R-sq: within = 0.1373 Obs per group: min = 1
between = 0.2571 avg = 6.0
overall = 0.1800 max = 15

F(3,23781) = 1262.01
corr(u_i, Xb) = 0.1476 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.005485 .000837 -6.55 0.000 -.0071256 -.0038443
msp .0033427 .0054868 0.61 0.542 -.0074118 .0140971

ttl_exp .0383604 .0012416 30.90 0.000 .0359268 .0407941
_cons 1.593953 .0177538 89.78 0.000 1.559154 1.628752

sigma_u .37674223
sigma_e .29751014

rho .61591044 (fraction of variance due to u_i)

F test that all u_i=0: F(4709, 23781) = 7.76 Prob > F = 0.0000

We assume that this model is consistent for the true parameters and save the results by using
estimates store under a name, fixed:

. estimates store fixed

Now we fit a random-effects model as a fully efficient specification of the individual effects
under the assumption that they are random and follow a normal distribution. We then compare these
estimates with the previously saved results by using the hausman command.

. xtreg ln_wage age msp ttl_exp, re

Random-effects GLS regression Number of obs = 28494
Group variable: idcode Number of groups = 4710

R-sq: within = 0.1373 Obs per group: min = 1
between = 0.2552 avg = 6.0
overall = 0.1797 max = 15

Random effects u_i ~ Gaussian Wald chi2(3) = 5100.33
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0069749 .0006882 -10.13 0.000 -.0083238 -.0056259
msp .0046594 .0051012 0.91 0.361 -.0053387 .0146575

ttl_exp .0429635 .0010169 42.25 0.000 .0409704 .0449567
_cons 1.609916 .0159176 101.14 0.000 1.578718 1.641114

sigma_u .32648519
sigma_e .29751014

rho .54633481 (fraction of variance due to u_i)
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. hausman fixed ., sigmamore

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))

fixed . Difference S.E.

age -.005485 -.0069749 .0014899 .0004803
msp .0033427 .0046594 -.0013167 .0020596

ttl_exp .0383604 .0429635 -.0046031 .0007181

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 260.40

Prob>chi2 = 0.0000

Under the current specification, our initial hypothesis that the individual-level effects are adequately
modeled by a random-effects model is resoundingly rejected. This result is based on the rest of our
model specification, and random effects might be appropriate for some alternate model of wages.

� �
Jerry Allen Hausman was born in West Virginia in 1946. He studied economics at Brown and
Oxford, has been at MIT since 1972, and has made many outstanding contributions to econometrics
and applied microeconomics.� �

Example 2

A stringent assumption of multinomial and conditional logit models is that outcome categories
for the model have the property of independence of irrelevant alternatives (IIA). Stated simply, this
assumption requires that the inclusion or exclusion of categories does not affect the relative risks
associated with the regressors in the remaining categories.

One classic example of a situation in which this assumption would be violated involves the choice
of transportation mode; see McFadden (1974). For simplicity, postulate a transportation model with
the four possible outcomes: rides a train to work, takes a bus to work, drives the Ford to work, and
drives the Chevrolet to work. Clearly, “drives the Ford” is a closer substitute to “drives the Chevrolet”
than it is to “rides a train” (at least for most people). This means that excluding “drives the Ford”
from the model could be expected to affect the relative risks of the remaining options and that the
model would not obey the IIA assumption.

Using the data presented in [R] mlogit, we will use a simplified model to test for IIA. The choice
of insurance type among indemnity, prepaid, and uninsured is modeled as a function of age and
gender. The indemnity category is allowed to be the base category, and the model including all three
outcomes is fit. The results are then stored under the name allcats.
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. use http://www.stata-press.com/data/r12/sysdsn3
(Health insurance data)

. mlogit insure age male

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -551.32973
Iteration 2: log likelihood = -551.32802
Iteration 3: log likelihood = -551.32802

Multinomial logistic regression Number of obs = 615
LR chi2(4) = 9.05
Prob > chi2 = 0.0598

Log likelihood = -551.32802 Pseudo R2 = 0.0081

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0100251 .0060181 -1.67 0.096 -.0218204 .0017702

male .5095747 .1977893 2.58 0.010 .1219147 .8972346
_cons .2633838 .2787575 0.94 0.345 -.2829708 .8097383

Uninsure
age -.0051925 .0113821 -0.46 0.648 -.0275011 .0171161

male .4748547 .3618462 1.31 0.189 -.2343508 1.18406
_cons -1.756843 .5309602 -3.31 0.001 -2.797506 -.7161803

. estimates store allcats

Under the IIA assumption, we would expect no systematic change in the coefficients if we excluded
one of the outcomes from the model. (For an extensive discussion, see Hausman and McFadden
[1984].) We reestimate the parameters, excluding the uninsured outcome, and perform a Hausman
test against the fully efficient full model.

. mlogit insure age male if insure != "Uninsure":insure

Iteration 0: log likelihood = -394.8693
Iteration 1: log likelihood = -390.4871
Iteration 2: log likelihood = -390.48643
Iteration 3: log likelihood = -390.48643

Multinomial logistic regression Number of obs = 570
LR chi2(2) = 8.77
Prob > chi2 = 0.0125

Log likelihood = -390.48643 Pseudo R2 = 0.0111

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0101521 .0060049 -1.69 0.091 -.0219214 .0016173

male .5144003 .1981735 2.60 0.009 .1259874 .9028133
_cons .2678043 .2775563 0.96 0.335 -.276196 .8118046
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. hausman . allcats, alleqs constant

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. allcats Difference S.E.

age -.0101521 -.0100251 -.0001269 .
male .5144003 .5095747 .0048256 .0123338

_cons .2678043 .2633838 .0044205 .

b = consistent under Ho and Ha; obtained from mlogit
B = inconsistent under Ha, efficient under Ho; obtained from mlogit

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 0.08

Prob>chi2 = 0.9944
(V_b-V_B is not positive definite)

The syntax of the if condition on the mlogit command simply identified the "Uninsured"
category with the insure value label; see [U] 12.6.3 Value labels. On examining the output from
hausman, we see that there is no evidence that the IIA assumption has been violated.

Because the Hausman test is a standardized comparison of model coefficients, using it with
mlogit requires that the base outcome be the same in both competing models. In particular, if the
most-frequent category (the default base outcome) is being removed to test for IIA, you must use the
baseoutcome() option in mlogit to manually set the base outcome to something else. Or you can
use the equation() option of the hausman command to align the equations of the two models.

Having the missing values for the square root of the diagonal of the covariance matrix of the
differences is not comforting, but it is also not surprising. This covariance matrix is guaranteed to be
positive definite only asymptotically (it is a consequence of the assumption that one of the estimators
is efficient), and assurances are not made about the diagonal elements. Negative values along the
diagonal are possible, and the fourth column of the table is provided mainly for descriptive use.

We can also perform the Hausman IIA test against the remaining alternative in the model:

. mlogit insure age male if insure != "Prepaid":insure

Iteration 0: log likelihood = -132.59913
Iteration 1: log likelihood = -131.78009
Iteration 2: log likelihood = -131.76808
Iteration 3: log likelihood = -131.76807

Multinomial logistic regression Number of obs = 338
LR chi2(2) = 1.66
Prob > chi2 = 0.4356

Log likelihood = -131.76807 Pseudo R2 = 0.0063

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Uninsure
age -.0041055 .0115807 -0.35 0.723 -.0268033 .0185923

male .4591074 .3595663 1.28 0.202 -.2456296 1.163844
_cons -1.801774 .5474476 -3.29 0.001 -2.874752 -.7287968
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. hausman . allcats, alleqs constant

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. allcats Difference S.E.

age -.0041055 -.0051925 .001087 .0021355
male .4591074 .4748547 -.0157473 .

_cons -1.801774 -1.756843 -.0449311 .1333421

b = consistent under Ho and Ha; obtained from mlogit
B = inconsistent under Ha, efficient under Ho; obtained from mlogit

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= -0.18 chi2<0 ==> model fitted on these

data fails to meet the asymptotic
assumptions of the Hausman test;
see suest for a generalized test

Here the χ2 statistic is actually negative. We might interpret this result as strong evidence that
we cannot reject the null hypothesis. Such a result is not an unusual outcome for the Hausman test,
particularly when the sample is relatively small—there are only 45 uninsured individuals in this
dataset.

Are we surprised by the results of the Hausman test in this example? Not really. Judging from
the z statistics on the original multinomial logit model, we were struggling to identify any structure
in the data with the current specification. Even when we were willing to assume IIA and computed
the efficient estimator under this assumption, few of the effects could be identified as statistically
different from those on the base category. Trying to base a Hausman test on a contrast (difference)
between two poor estimates is just asking too much of the existing data.

In example 2, we encountered a case in which the Hausman was not well defined. Unfortunately,
in our experience this happens fairly often. Stata provides an alternative to the Hausman test that
overcomes this problem through an alternative estimator of the variance of the difference between
the two estimators. This other estimator is guaranteed to be positive semidefinite. This alternative
estimator also allows a widening of the scope of problems to which Hausman-type tests can be applied
by relaxing the assumption that one of the estimators is efficient. For instance, you can perform
Hausman-type tests to clustered observations and survey estimators. See [R] suest for details.

Saved results
hausman saves the following in r():

Scalars
r(chi2) χ2

r(df) degrees of freedom for the statistic
r(p) p-value for the χ2

r(rank) rank of (V b-V B)^(-1)

Methods and formulas
hausman is implemented as an ado-file.
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The Hausman statistic is distributed as χ2 and is computed as

H = (βc − βe)′(Vc − Ve)−1(βc − βe)

where
βc is the coefficient vector from the consistent estimator
βe is the coefficient vector from the efficient estimator
Vc is the covariance matrix of the consistent estimator
Ve is the covariance matrix of the efficient estimator

When the difference in the variance matrices is not positive definite, a Moore–Penrose generalized
inverse is used. As noted in Gourieroux and Monfort (1995, 125–128), the choice of generalized
inverse is not important asymptotically.

The number of degrees of freedom for the statistic is the rank of the difference in the variance
matrices. When the difference is positive definite, this is the number of common coefficients in the
models being compared.

Acknowledgment
Portions of hausman are based on an early implementation by Jeroen Weesie, Utrecht University,

The Netherlands.
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Also see
[R] lrtest — Likelihood-ratio test after estimation

[R] suest — Seemingly unrelated estimation

[R] test — Test linear hypotheses after estimation

[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models



Title

heckman — Heckman selection model

Syntax

Basic syntax

heckman depvar
[

indepvars
]
, select(varlists)

[
twostep

]
or

heckman depvar
[

indepvars
]
, select(depvars = varlists)

[
twostep

]
Full syntax for maximum likelihood estimates only

heckman depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

select(
[

depvars =
]

varlists
[
, offset(varname) noconstant

]
)[

heckman ml options
]

Full syntax for Heckman’s two-step consistent estimates only

heckman depvar
[

indepvars
] [

if
] [

in
]
, twostep

select(
[

depvars =
]

varlists
[
, noconstant

]
)
[

heckman ts options
]

heckman ml options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
noskip perform likelihood-ratio test
nshazard(newvar) generate nonselection hazard variable
mills(newvar) synonym for nshazard()
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

715
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Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗select( ) is required.
The full specification is select(

[
depvars =

]
varlists

[
, offset(varname) noconstant

]
) .

heckman ts options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term
∗twostep produce two-step consistent estimate
noconstant suppress constant term
rhosigma truncate ρ to [−1, 1 ] with consistent σ
rhotrunc truncate ρ to [−1, 1 ]
rholimited truncate ρ in limited cases
rhoforce do not truncate ρ

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
nshazard(newvar) generate nonselection hazard variable
mills(newvar) synonym for nshazard()
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

∗select( ) and twostep are required.
The full specification is select(

[
depvars =

]
varlists

[
, noconstant

]
)

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varlists, and depvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
twostep, vce(), first, noskip, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, aweights, fweights, and iweights are allowed with maximum likelihood estimation;

see [U] 11.1.6 weight. No weights are allowed if twostep is specified.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
heckman for maximum likelihood estimates

Statistics > Sample-selection models > Heckman selection model (ML)

heckman for two-step consistent estimates

Statistics > Sample-selection models > Heckman selection model (two-step)

Description
heckman fits regression models with selection by using either Heckman’s two-step consistent

estimator or full maximum likelihood.

Options for Heckman selection model (ML)

� � �
Model �

select(. . .) specifies the variables and options for the selection equation. It is an integral part of
specifying a Heckman model and is required. The selection equation should contain at least one
variable that is not in the outcome equation.

If depvars is specified, it should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation. If depvars is not specified, observations for which depvar
is not missing are assumed selected, and those for which depvar is missing are assumed not
selected.

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before
estimation.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test that all the parameters in the regression equation
are zero (except the constant). For many models, this option can substantially increase estimation
time.

nshazard(newvar) and mills(newvar) are synonyms; either will create a new variable containing
the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills’ ratio—from
the selection equation. The nonselection hazard is computed from the estimated parameters of the
selection equation.

nocnsreport; see [R] estimation options.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with heckman but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for Heckman selection model (two-step)

� � �
Model �

select(. . .) specifies the variables and options for the selection equation. It is an integral part of
specifying a Heckman model and is required. The selection equation should contain at least one
variable that is not in the outcome equation.

If depvars is specified, it should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation. If depvars is not specified, observations for which depvar
is not missing are assumed selected, and those for which depvar is missing are assumed not
selected.

twostep specifies that Heckman’s (1979) two-step efficient estimates of the parameters, standard
errors, and covariance matrix be produced.

noconstant; see [R] estimation options.

rhosigma, rhotrunc, rholimited, and rhoforce are rarely used options to specify how the
two-step estimator (option twostep) handles unusual cases in which the two-step estimate of ρ is
outside the admissible range for a correlation, [−1, 1 ]. When abs(ρ) > 1, the two-step estimate of
the coefficient variance–covariance matrix may not be positive definite and thus may be unusable
for testing. The default is rhosigma.

rhosigma specifies that ρ be truncated, as with the rhotrunc option, and that the estimate of σ be
made consistent with ρ̂, the truncated estimate of ρ. So, σ̂ = βmρ̂; see Methods and formulas for
the definition of βm. Both the truncated ρ and the new estimate of σ̂ are used in all computations
to estimate the two-step covariance matrix.

rhotrunc specifies that ρ be truncated to lie in the range [−1, 1 ]. If the two-step estimate is less
than −1, ρ is set to −1; if the two-step estimate is greater than 1, ρ is set to 1. This truncated
value of ρ is used in all computations to estimate the two-step covariance matrix.

rholimited specifies that ρ be truncated only in computing the diagonal matrix D as it enters
Vtwostep and Q; see Methods and formulas. In all other computations, the untruncated estimate
of ρ is used.

rhoforce specifies that the two-step estimate of ρ be retained, even if it is outside the admissible
range for a correlation. This option may, in rare cases, lead to a non–positive-definite covariance
matrix.
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These options have no effect when estimation is by maximum likelihood, the default. They also
have no effect when the two-step estimate of ρ is in the range [−1, 1 ].

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.

vce(conventional), the default, uses the two-step variance estimator derived by Heckman.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before
estimation.

nshazard(newvar) and mills(newvar) are synonyms; either will create a new variable containing
the nonselection hazard—what Heckman (1979) referred to as the inverse of the Mills’ ratio—from
the selection equation. The nonselection hazard is computed from the estimated parameters of the
selection equation.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with heckman but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The Heckman selection model (Gronau 1974; Lewis 1974; Heckman 1976) assumes that there

exists an underlying regression relationship,

yj = xjβ+ u1j regression equation

The dependent variable, however, is not always observed. Rather, the dependent variable for
observation j is observed if

zjγ+ u2j > 0 selection equation

where
u1 ∼ N(0, σ)

u2 ∼ N(0, 1)

corr(u1, u2) = ρ

When ρ 6= 0, standard regression techniques applied to the first equation yield biased results. heckman
provides consistent, asymptotically efficient estimates for all the parameters in such models.

In one classic example, the first equation describes the wages of women. Women choose whether
to work, and thus, from our point of view as researchers, whether we observe their wages in our
data. If women made this decision randomly, we could ignore that not all wages are observed and
use ordinary regression to fit a wage model. Such an assumption of random participation, however,
is unlikely to be true; women who would have low wages may be unlikely to choose to work, and
thus the sample of observed wages is biased upward. In the jargon of economics, women choose not
to work when their personal reservation wage is greater than the wage offered by employers. Thus
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women who choose not to work might have even higher offer wages than those who do work—they
may have high offer wages, but they have even higher reservation wages. We could tell a story that
competency is related to wages, but competency is rewarded more at home than in the labor force.

In any case, in this problem—which is the paradigm for most such problems—a solution can
be found if there are some variables that strongly affect the chances for observation (the reservation
wage) but not the outcome under study (the offer wage). Such a variable might be the number of
children in the home. (Theoretically, we do not need such identifying variables, but without them,
we depend on functional form to identify the model. It would be difficult for anyone to take such
results seriously because the functional-form assumptions have no firm basis in theory.)

Example 1

In the syntax for heckman, depvar and indepvars are the dependent variable and regressors for the
underlying regression model to be fit (y = Xβ), and varlists are the variables (Z) thought to determine
whether depvar is observed or unobserved (selected or not selected). In our female wage example,
the number of children at home would be included in the second list. By default, heckman assumes
that missing values (see [U] 12.2.1 Missing values) of depvar imply that the dependent variable is
unobserved (not selected). With some datasets, it is more convenient to specify a binary variable
(depvars) that identifies the observations for which the dependent is observed/selected (depvars 6= 0)
or not observed (depvars= 0); heckman will accommodate either type of data.

We have a (fictional) dataset on 2,000 women, 1,343 of whom work:

. use http://www.stata-press.com/data/r12/womenwk

. summarize age educ married children wage

Variable Obs Mean Std. Dev. Min Max

age 2000 36.208 8.28656 20 59
education 2000 13.084 3.045912 10 20

married 2000 .6705 .4701492 0 1
children 2000 1.6445 1.398963 0 5

wage 1343 23.69217 6.305374 5.88497 45.80979

We will assume that the hourly wage is a function of education and age, whereas the likelihood
of working (the likelihood of the wage being observed) is a function of marital status, the number of
children at home, and (implicitly) the wage (via the inclusion of age and education, which we think
determine the wage):
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. heckman wage educ age, select(married children educ age)

Iteration 0: log likelihood = -5178.7009
Iteration 1: log likelihood = -5178.3049
Iteration 2: log likelihood = -5178.3045

Heckman selection model Number of obs = 2000
(regression model with sample selection) Censored obs = 657

Uncensored obs = 1343

Wald chi2(2) = 508.44
Log likelihood = -5178.304 Prob > chi2 = 0.0000

wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
education .9899537 .0532565 18.59 0.000 .8855729 1.094334

age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752 1.077037 0.45 0.652 -1.625179 2.59673

select
married .4451721 .0673954 6.61 0.000 .3130794 .5772647

children .4387068 .0277828 15.79 0.000 .3842534 .4931601
education .0557318 .0107349 5.19 0.000 .0346917 .0767718

age .0365098 .0041533 8.79 0.000 .0283694 .0446502
_cons -2.491015 .1893402 -13.16 0.000 -2.862115 -2.119915

/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/lnsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665

rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548

lambda 4.224412 .3992265 3.441942 5.006881

LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

heckman assumes that wage is the dependent variable and that the first variable list (educ and age)
are the determinants of wage. The variables specified in the select() option (married, children,
educ, and age) are assumed to determine whether the dependent variable is observed (the selection
equation). Thus we fit the model

wage = β0 + β1educ + β2age + u1

and we assumed that wage is observed if

γ0 + γ1married + γ2children + γ3educ + γ4age + u2 > 0

where u1 and u2 have correlation ρ.

The reported results for the wage equation are interpreted exactly as though we observed wage
data for all women in the sample; the coefficients on age and education level represent the estimated
marginal effects of the regressors in the underlying regression equation. The results for the two
ancillary parameters require some explanation. heckman does not directly estimate ρ; to constrain
ρ within its valid limits, and for numerical stability during optimization, it estimates the inverse
hyperbolic tangent of ρ:

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
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This estimate is reported as /athrho. In the bottom panel of the output, heckman undoes this
transformation for you: the estimated value of ρ is 0.7035061. The standard error for ρ is computed
using the delta method, and its confidence intervals are the transformed intervals of /athrho.

Similarly, σ, the standard error of the residual in the wage equation, is not directly estimated; for
numerical stability, heckman instead estimates lnσ. The untransformed sigma is reported at the end
of the output: 6.004797.

Finally, some researchers—especially economists—are used to the selectivity effect summarized
not by ρ but by λ = ρσ. heckman reports this, too, along with an estimate of the standard error and
confidence interval.

Technical note
If each of the equations in the model had contained many regressors, the heckman command could

have become long. An alternate way of specifying our wage model would be to use Stata’s global
macros. The following lines are an equivalent way of specifying our model:

. global wageeq "wage educ age"

. global seleq "married children educ age"

. heckman $wageeq, select($seleq)
(output omitted )

Technical note

The reported model χ2 test is a Wald test that all coefficients in the regression model (except
the constant) are 0. heckman is an estimation command, so you can use test, testnl, or lrtest
to perform tests against whatever nested alternate model you choose; see [R] test, [R] testnl, and
[R] lrtest.

The estimation of ρ and σ in the forms atanh ρ and lnσ extends the range of these parameters to
infinity in both directions, thus avoiding boundary problems during the maximization. Tests of ρ must
be made in the transformed units. However, because atanh(0) = 0, the reported test for atanh ρ = 0
is equivalent to the test for ρ = 0.

The likelihood-ratio test reported at the bottom of the output is an equivalent test for ρ = 0 and is
computationally the comparison of the joint likelihood of an independent probit model for the selection
equation and a regression model on the observed wage data against the Heckman model likelihood.
Because χ2 = 61.20, this clearly justifies the Heckman selection equation with these data.

Example 2

heckman supports the Huber/White/sandwich estimator of variance under the vce(robust) and
vce(cluster clustvar) options or when pweights are used for population-weighted data; see
[U] 20.20 Obtaining robust variance estimates. We can obtain robust standard errors for our wage
model by specifying clustering on county of residence (the county variable).
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. heckman wage educ age, select(married children educ age) vce(cluster county)

Iteration 0: log pseudolikelihood = -5178.7009
Iteration 1: log pseudolikelihood = -5178.3049
Iteration 2: log pseudolikelihood = -5178.3045

Heckman selection model Number of obs = 2000
(regression model with sample selection) Censored obs = 657

Uncensored obs = 1343

Wald chi2(1) = .
Log pseudolikelihood = -5178.304 Prob > chi2 = .

(Std. Err. adjusted for 10 clusters in county)

Robust
wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
education .9899537 .0600061 16.50 0.000 .8723438 1.107564

age .2131294 .020995 10.15 0.000 .17198 .2542789
_cons .4857752 1.302103 0.37 0.709 -2.066299 3.03785

select
married .4451721 .0731472 6.09 0.000 .3018062 .5885379

children .4387068 .0312386 14.04 0.000 .3774802 .4999333
education .0557318 .0110039 5.06 0.000 .0341645 .0772991

age .0365098 .004038 9.04 0.000 .0285954 .0444242
_cons -2.491015 .1153305 -21.60 0.000 -2.717059 -2.264972

/athrho .8742086 .1403337 6.23 0.000 .5991596 1.149258
/lnsigma 1.792559 .0258458 69.36 0.000 1.741902 1.843216

rho .7035061 .0708796 .5364513 .817508
sigma 6.004797 .155199 5.708189 6.316818

lambda 4.224412 .5186709 3.207835 5.240988

Wald test of indep. eqns. (rho = 0): chi2(1) = 38.81 Prob > chi2 = 0.0000

The robust standard errors tend to be a bit larger, but we notice no systematic differences. This finding
is not surprising because the data were not constructed to have any county-specific correlations or
any other characteristics that would deviate from the assumptions of the Heckman model.

Example 3

Stata also produces Heckman’s (1979) two-step efficient estimator of the model with the twostep
option. Maximum likelihood estimation of the parameters can be time consuming with large datasets,
and the two-step estimates may provide a good alternative in such cases. Continuing with the women’s
wage model, we can obtain the two-step estimates with Heckman’s consistent covariance estimates
by typing
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. heckman wage educ age, select(married children educ age) twostep

Heckman selection model -- two-step estimates Number of obs = 2000
(regression model with sample selection) Censored obs = 657

Uncensored obs = 1343

Wald chi2(2) = 442.54
Prob > chi2 = 0.0000

wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage
education .9825259 .0538821 18.23 0.000 .8769189 1.088133

age .2118695 .0220511 9.61 0.000 .1686502 .2550888
_cons .7340391 1.248331 0.59 0.557 -1.712645 3.180723

select
married .4308575 .074208 5.81 0.000 .2854125 .5763025

children .4473249 .0287417 15.56 0.000 .3909922 .5036576
education .0583645 .0109742 5.32 0.000 .0368555 .0798735

age .0347211 .0042293 8.21 0.000 .0264318 .0430105
_cons -2.467365 .1925635 -12.81 0.000 -2.844782 -2.089948

mills
lambda 4.001615 .6065388 6.60 0.000 2.812821 5.19041

rho 0.67284
sigma 5.9473529

Technical note
The Heckman selection model depends strongly on the model being correct, much more so than

ordinary regression. Running a separate probit or logit for sample inclusion followed by a regression,
referred to in the literature as the two-part model (Manning, Duan, and Rogers 1987)—not to be
confused with Heckman’s two-step procedure—is an especially attractive alternative if the regression
part of the model arose because of taking a logarithm of zero values. When the goal is to analyze an
underlying regression model or to predict the value of the dependent variable that would be observed
in the absence of selection, however, the Heckman model is more appropriate. When the goal is to
predict an actual response, the two-part model is usually the better choice.

The Heckman selection model can be unstable when the model is not properly specified or if a
specific dataset simply does not support the model’s assumptions. For example, let’s examine the
solution to another simulated problem.
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. use http://www.stata-press.com/data/r12/twopart

. heckman yt x1 x2 x3, select(z1 z2) nonrtol

Iteration 0: log likelihood = -111.94996
Iteration 1: log likelihood = -110.82258
Iteration 2: log likelihood = -110.17707
Iteration 3: log likelihood = -107.70663 (not concave)
Iteration 4: log likelihood = -107.07729 (not concave)

(output omitted )
Iteration 33: log likelihood = -104.0825 (not concave)
Iteration 34: log likelihood = -104.0825

Heckman selection model Number of obs = 150
(regression model with sample selection) Censored obs = 87

Uncensored obs = 63

Wald chi2(3) = 8.64e+08
Log likelihood = -104.0825 Prob > chi2 = 0.0000

yt Coef. Std. Err. z P>|z| [95% Conf. Interval]

yt
x1 .8974192 .0002247 3994.69 0.000 .8969789 .8978595
x2 -2.525303 .0001472 -1.7e+04 0.000 -2.525591 -2.525014
x3 2.855786 .0004181 6829.86 0.000 2.854966 2.856605

_cons .6975442 .0920515 7.58 0.000 .5171265 .8779619

select
z1 -.6825988 .0900159 -7.58 0.000 -.8590267 -.5061709
z2 1.003605 .132347 7.58 0.000 .7442097 1.263

_cons -.3604652 .1232778 -2.92 0.003 -.6020852 -.1188452

/athrho 16.19193 280.9822 0.06 0.954 -534.523 566.9069
/lnsigma -.5396153 .1318714 -4.09 0.000 -.7980786 -.2811521

rho 1 9.73e-12 -1 1
sigma .5829725 .0768774 .4501931 .7549135

lambda .5829725 .0768774 .4322955 .7336494

LR test of indep. eqns. (rho = 0): chi2(1) = 25.67 Prob > chi2 = 0.0000

The model has converged to a value of ρ that is 1.0—within machine-rounding tolerances. Given
the form of the likelihood for the Heckman selection model, this implies a division by zero, and it
is surprising that the model solution turns out as well as it does. Reparameterizing ρ has allowed
the estimation to converge, but we clearly have problems with the estimates. Moreover, if this had
occurred in a large dataset, waiting for convergence might take considerable time.

This dataset was not intentionally developed to cause problems. It is actually generated by a
“Heckman process” and when generated starting from different random values can be easily estimated.
The luck of the draw here merely led to data that, despite the source, did not support the assumptions
of the Heckman model.

The two-step model is generally more stable when the data are problematic. It even tolerates
estimates of ρ less than −1 and greater than 1. For these reasons, the two-step model may be
preferred when exploring a large dataset. Still, if the maximum likelihood estimates cannot converge,
or converge to a value of ρ that is at the boundary of acceptable values, there is scant support for
fitting a Heckman selection model on the data. Heckman (1979) discusses the implications of ρ being
exactly 1 or 0, together with the implications of other possible covariance relationships among the
model’s determinants.
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James Joseph Heckman was born in Chicago in 1944 and studied mathematics at Colorado
College and economics at Princeton. He has taught economics at Columbia and (since 1973) at
the University of Chicago. He has worked on developing a scientific basis for economic policy
evaluation, with emphasis on models of individuals or disaggregated groups and the problems and
possibilities created by heterogeneity, diversity, and unobserved counterfactual states. In 2000,
he shared the Nobel Prize in Economics with Daniel L. McFadden.� �

Saved results
heckman (maximum likelihood) saves the following in e():

Scalars
e(N) number of observations
e(N cens) number of censored observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(lambda) λ

e(selambda) standard error of λ
e(sigma) sigma
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p c) p-value for comparison test
e(p) significance of comparison test
e(rho) ρ

e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) heckman
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for regression equation
e(offset2) offset for selection equation
e(mills) variable containing nonselection hazard (inverse of Mills’)
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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heckman (two-step) saves the following in e():

Scalars
e(N) number of observations
e(N cens) number of censored observations
e(df m) model degrees of freedom
e(lambda) λ

e(selambda) standard error of λ
e(sigma) sigma
e(chi2) χ2

e(p) significance of comparison test
e(rho) ρ

e(rank) rank of e(V)

Macros
e(cmd) heckman
e(cmdline) command as typed
e(depvar) names of dependent variables
e(title) title in estimation output
e(title2) secondary title in estimation output
e(mills) variable containing nonselection hazard (inverse of Mills’)
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(rhometh) rhosigma, rhotrunc, rholimited, or rhoforce
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
heckman is implemented as an ado-file. Cameron and Trivedi (2010, 556–562) and Greene (2012,

873–880) provide good introductions to the Heckman selection model. Adkins and Hill (2008, 395–
400) describe the two-step estimator with an application using Stata. Jones (2007, 35–40) illustrates
Heckman estimation with an application to health economics.

Regression estimates using the nonselection hazard (Heckman 1979) provide starting values for
maximum likelihood estimation.

The regression equation is
yj = xjβ+ u1j

The selection equation is
zjγ+ u2j > 0
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where
u1 ∼ N(0, σ)

u2 ∼ N(0, 1)

corr(u1, u2) = ρ

The log likelihood for observation j, lnLj = lj , is

lj =


wj lnΦ

{
zjγ+ (yj − xjβ)ρ/σ√

1− ρ2

}
− wj

2

(
yj − xjβ

σ

)2

− wj ln(
√

2πσ) yj observed

wj ln Φ(−zjγ) yj not observed

where Φ(·) is the standard cumulative normal and wj is an optional weight for observation j.

In the maximum likelihood estimation, σ and ρ are not directly estimated. Directly estimated are
lnσ and atanh ρ:

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
The standard error of λ = ρσ is approximated through the propagation of error (delta) method; that
is,

Var(λ) ≈ D Var
{

(atanh ρ lnσ)
}

D′

where D is the Jacobian of λ with respect to atanh ρ and lnσ.

With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator
of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of heckman also supports estimation with survey data. For details
on VCEs with survey data, see [SVY] variance estimation.

The two-step estimates are computed using Heckman’s (1979) procedure.

Probit estimates of the selection equation

Pr(yj observed | zj) = Φ(zjγ)

are obtained. From these estimates, the nonselection hazard—what Heckman (1979) referred to as
the inverse of the Mills’ ratio, mj—for each observation j is computed as

mj =
φ(zj γ̂)
Φ(zj γ̂)

where φ is the normal density. We also define

δj = mj(mj + γ̂ zj)

Following Heckman, the two-step parameter estimates of β are obtained by augmenting the
regression equation with the nonselection hazard m. Thus the regressors become [ X m ], and we
obtain the additional parameter estimate βm on the variable containing the nonselection hazard.
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A consistent estimate of the regression disturbance variance is obtained using the residuals from
the augmented regression and the parameter estimate on the nonselection hazard,

σ̂2 =
e′e + β2

m

∑N
j=1 δj

N

The two-step estimate of ρ is then

ρ̂ =
βm
σ̂

Heckman derived consistent estimates of the coefficient covariance matrix on the basis of the
augmented regression.

Let W = [ X m ] and R be a square, diagonal matrix of dimension N , with (1− ρ̂ 2δj) as the
diagonal elements. The conventional VCE is

Vtwostep = σ̂2(W′W)−1(W′RW + Q)(W′W)−1

where
Q = ρ̂ 2(W′DZ)Vp(Z′DW)

where D is the square, diagonal matrix of dimension N with δj as the diagonal elements; Z is the
data matrix of selection equation covariates; and Vp is the variance–covariance estimate from the
probit estimation of the selection equation.
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Also see
[R] heckman postestimation — Postestimation tools for heckman

[R] heckprob — Probit model with sample selection

[R] regress — Linear regression

[R] tobit — Tobit regression

[R] treatreg — Treatment-effects model

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

heckman postestimation — Postestimation tools for heckman

Description
The following postestimation commands are available after heckman:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest2 likelihood-ratio test; not available with two-step estimator
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest1 seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 estat ic and suest are not appropriate after heckman, twostep.
2 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

732



heckman postestimation — Postestimation tools for heckman 733

Syntax for predict
After ML or twostep

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

After ML

predict
[

type
] {

stub* | newvarreg newvarsel newvarathrho newvarlnsigma

}
[

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the prediction
stdf standard error of the forecast
xbsel linear prediction for selection equation
stdpsel standard error of the linear prediction for selection equation
pr(a,b) Pr(yj | a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}
ycond E(yj |yj observed)
yexpected E(y∗j ), yj taken to be 0 where unobserved
nshazard or mills nonselection hazard (also called the inverse of Mills’ ratio)
psel Pr(yj observed)

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction xjb.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.
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xbsel calculates the linear prediction for the selection equation.

stdpsel calculates the standard error of the linear prediction for the selection equation.

pr(a,b) calculates Pr(a < xjb + u1 < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb+u1 < 30); pr(lb,ub) calculates Pr(lb < xjb+u1 < ub);
and pr(20,ub) calculates Pr(20 < xjb + u1 < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + u1 | a < xjb + u1 < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

ycond calculates the expected value of the dependent variable conditional on the dependent variable
being observed, that is, selected; E(yj | yj observed).

yexpected calculates the expected value of the dependent variable (y∗j ), where that value is taken
to be 0 when it is expected to be unobserved; y∗j = Pr(yj observed)E(yj | yj observed).

The assumption of 0 is valid for many cases where nonselection implies nonparticipation (for
example, unobserved wage levels, insurance claims from those who are uninsured) but may be
inappropriate for some problems (for example, unobserved disease incidence).

nshazard and mills are synonyms; both calculate the nonselection hazard—what Heckman (1979)
referred to as the inverse of the Mills’ ratio—from the selection equation.

psel calculates the probability of selection (or being observed):
Pr(yj observed) = Pr(zjγ+ u2j > 0).

nooffset is relevant when you specify offset(varname) for heckman. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

The third new variable will contain ∂lnL/∂(atanh ρ).

The fourth new variable will contain ∂lnL/∂(lnσ).
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Remarks

Example 1

The default statistic produced by predict after heckman is the expected value of the dependent
variable from the underlying distribution of the regression model. In the wage model of [R] heckman,
this is the expected wage rate among all women, regardless of whether they were observed to
participate in the labor force:

. use http://www.stata-press.com/data/r12/womenwk

. heckman wage educ age, select(married children educ age) vce(cluster county)
(output omitted )

. predict heckwage
(option xb assumed; fitted values)

It is instructive to compare these predicted wage values from the Heckman model with an ordinary
regression model—a model without the selection adjustment:

. regress wage educ age

Source SS df MS Number of obs = 1343
F( 2, 1340) = 227.49

Model 13524.0337 2 6762.01687 Prob > F = 0.0000
Residual 39830.8609 1340 29.7245231 R-squared = 0.2535

Adj R-squared = 0.2524
Total 53354.8946 1342 39.7577456 Root MSE = 5.452

wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

education .8965829 .0498061 18.00 0.000 .7988765 .9942893
age .1465739 .0187135 7.83 0.000 .109863 .1832848

_cons 6.084875 .8896182 6.84 0.000 4.339679 7.830071

. predict regwage
(option xb assumed; fitted values)

. summarize heckwage regwage

Variable Obs Mean Std. Dev. Min Max

heckwage 2000 21.15532 3.83965 14.6479 32.85949
regwage 2000 23.12291 3.241911 17.98218 32.66439

Since this dataset was concocted, we know the true coefficients of the wage regression equation to
be 1, 0.2, and 1, respectively. We can compute the true mean wage for our sample.

. generate truewage = 1 + .2*age + 1*educ

. summarize truewage

Variable Obs Mean Std. Dev. Min Max

truewage 2000 21.3256 3.797904 15 32.8

Whereas the mean of the predictions from heckman is within 18 cents of the true mean wage,
ordinary regression yields predictions that are on average about $1.80 per hour too high because of
the selection effect. The regression predictions also show somewhat less variation than the true wages.

The coefficients from heckman are so close to the true values that they are not worth testing.
Conversely, the regression equation is significantly off but seems to give the right sense. Would we
be led far astray if we relied on the OLS coefficients? The effect of age is off by more than 5 cents
per year of age, and the coefficient on education level is off by about 10%. We can test the OLS
coefficient on education level against the true value by using test.
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. test educ = 1

( 1) education = 1

F( 1, 1340) = 4.31
Prob > F = 0.0380

Not only is the OLS coefficient on education substantially lower than the true parameter, but the
difference from the true parameter is also statistically significant beyond the 5% level. We can perform
a similar test for the OLS age coefficient:

. test age = .2

( 1) age = .2

F( 1, 1340) = 8.15
Prob > F = 0.0044

We find even stronger evidence that the OLS regression results are biased away from the true
parameters.

Example 2

Several other interesting aspects of the Heckman model can be explored with predict. Continuing
with our wage model, we can obtain the expected wages for women conditional on participating in
the labor force with the ycond option. Let’s get these predictions and compare them with actual
wages for women participating in the labor force.

. use http://www.stata-press.com/data/r12/womenwk, clear

. heckman wage educ age, select(married children educ age)
(output omitted )

. predict hcndwage, ycond

. summarize wage hcndwage if wage != .

Variable Obs Mean Std. Dev. Min Max

wage 1343 23.69217 6.305374 5.88497 45.80979
hcndwage 1343 23.68239 3.335087 16.18337 33.7567

We see that the average predictions from heckman are close to the observed levels but do not have
the same mean. These conditional wage predictions are available for all observations in the dataset
but can be directly compared only with observed wages, where individuals are participating in the
labor force.

What if we were interested in making predictions about mean wages for all women? Here the
expected wage is 0 for those who are not expected to participate in the labor force, with expected
participation determined by the selection equation. These values can be obtained with the yexpected
option of predict. For comparison, a variable can be generated where the wage is set to 0 for
nonparticipants.

. predict hexpwage, yexpected

. generate wage0 = wage
(657 missing values generated)

. replace wage0 = 0 if wage == .
(657 real changes made)
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. summarize hexpwage wage0

Variable Obs Mean Std. Dev. Min Max

hexpwage 2000 15.92511 5.979336 2.492469 32.45858
wage0 2000 15.90929 12.27081 0 45.80979

Again we note that the predictions from heckman are close to the observed mean hourly wage
rate for all women. Why aren’t the predictions using ycond and yexpected equal to their observed
sample equivalents? For the Heckman model, unlike linear regression, the sample moments implied
by the optimal solution to the model likelihood do not require that these predictions match observed
data. Properly accounting for the additional variation from the selection equation requires that the
model use more information than just the sample moments of the observed wages.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Reference
Heckman, J. 1979. Sample selection bias as a specification error. Econometrica 47: 153–161.

Also see
[R] heckman — Heckman selection model

[U] 20 Estimation and postestimation commands



Title

heckprob — Probit model with sample selection

Syntax
heckprob depvar indepvars

[
if
] [

in
] [

weight
]
,

select(
[

depvars =
]

varlists
[
, offset(varname) noconstant

]
)
[

options
]

options Description

Model
∗select() specify selection equation: dependent and independent

variables; whether to have constant term and offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
noskip perform likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗select( ) is required.
The full specification is select(

[
depvars =

]
varlists

[
, offset(varname) noconstant

]
).

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvars, and varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, noskip, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Sample-selection models > Probit model with selection

Description
heckprob fits maximum-likelihood probit models with sample selection.

Options

� � �
Model �

select(. . .) specifies the variables and options for the selection equation. It is an integral part of
specifying a selection model and is required. The selection equation should contain at least one
variable that is not in the outcome equation.

If depvars is specified, it should be coded as 0 or 1, 0 indicating an observation not selected and 1
indicating a selected observation. If depvars is not specified, observations for which depvar is not
missing are assumed selected, and those for which depvar is missing are assumed not selected.

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the selection equation be displayed before
estimation.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test that all the parameters in the regression equation
are zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).



740 heckprob — Probit model with sample selection

The following option is available with heckprob but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The probit model with sample selection (Van de Ven and Van Pragg 1981) assumes that there

exists an underlying relationship

y∗j = xjβ+ u1j latent equation

such that we observe only the binary outcome

yprobit
j = (y∗j > 0) probit equation

The dependent variable, however, is not always observed. Rather, the dependent variable for observation
j is observed if

yselect
j = (zjγ+ u2j > 0) selection equation

where
u1 ∼ N(0, 1)

u2 ∼ N(0, 1)

corr(u1, u2) = ρ

When ρ 6= 0, standard probit techniques applied to the first equation yield biased results. heckprob
provides consistent, asymptotically efficient estimates for all the parameters in such models.

For the model to be well identified, the selection equation should have at least one variable that
is not in the probit equation. Otherwise, the model is identified only by functional form, and the
coefficients have no structural interpretation.

Example 1

We use the data from Pindyck and Rubinfeld (1998). In this dataset, the variables are whether
children attend private school (private), number of years the family has been at the present residence
(years), log of property tax (logptax), log of income (loginc), and whether one voted for an
increase in property taxes (vote).

In this example, we alter the meaning of the data. Here we assume that we observe whether children
attend private school only if the family votes for increasing the property taxes. This assumption is
not true in the dataset, and we make it only to illustrate the use of this command.

We observe whether children attend private school only if the head of household voted for an
increase in property taxes. We assume that the vote is affected by the number of years in residence,
the current property taxes paid, and the household income. We wish to model whether children are
sent to private school on the basis of the number of years spent in the current residence and the
current property taxes paid.
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. use http://www.stata-press.com/data/r12/school

. heckprob private years logptax, select(vote=years loginc logptax)

Fitting probit model:

Iteration 0: log likelihood = -17.122381
Iteration 1: log likelihood = -16.243974

(output omitted )
Iteration 5: log likelihood = -15.883655

Fitting selection model:

Iteration 0: log likelihood = -63.036914
Iteration 1: log likelihood = -58.534843
Iteration 2: log likelihood = -58.497292
Iteration 3: log likelihood = -58.497288

Comparison: log likelihood = -74.380943

Fitting starting values:

Iteration 0: log likelihood = -40.895684
Iteration 1: log likelihood = -16.654497

(output omitted )
Iteration 6: log likelihood = -15.753765

Fitting full model:

Iteration 0: log likelihood = -75.010619 (not concave)
Iteration 1: log likelihood = -74.287786
Iteration 2: log likelihood = -74.250137
Iteration 3: log likelihood = -74.245088
Iteration 4: log likelihood = -74.244973
Iteration 5: log likelihood = -74.244973

Probit model with sample selection Number of obs = 95
Censored obs = 36
Uncensored obs = 59

Wald chi2(2) = 1.04
Log likelihood = -74.24497 Prob > chi2 = 0.5935

Coef. Std. Err. z P>|z| [95% Conf. Interval]

private
years -.1142597 .1461717 -0.78 0.434 -.400751 .1722317

logptax .3516098 1.016485 0.35 0.729 -1.640665 2.343884
_cons -2.780665 6.905838 -0.40 0.687 -16.31586 10.75453

vote
years -.0167511 .0147735 -1.13 0.257 -.0457067 .0122045

loginc .9923024 .4430009 2.24 0.025 .1240366 1.860568
logptax -1.278783 .5717545 -2.24 0.025 -2.399401 -.1581647

_cons -.545821 4.070418 -0.13 0.893 -8.523694 7.432052

/athrho -.8663156 1.450028 -0.60 0.550 -3.708318 1.975687

rho -.6994973 .7405343 -.9987984 .962269

LR test of indep. eqns. (rho = 0): chi2(1) = 0.27 Prob > chi2 = 0.6020

The output shows several iteration logs. The first iteration log corresponds to running the probit model
for those observations in the sample where we have observed the outcome. The second iteration log
corresponds to running the selection probit model, which models whether we observe our outcome of
interest. If ρ = 0, the sum of the log likelihoods from these two models will equal the log likelihood
of the probit model with sample selection; this sum is printed in the iteration log as the comparison
log likelihood. The third iteration log shows starting values for the iterations.
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The final iteration log is for fitting the full probit model with sample selection. A likelihood-ratio
test of the log likelihood for this model and the comparison log likelihood is presented at the end of
the output. If we had specified the vce(robust) option, this test would be presented as a Wald test
instead of as a likelihood-ratio test.

Example 2

In example 1, we could have obtained robust standard errors by specifying the vce(robust)
option. We do this here and also eliminate the iteration logs by using the nolog option:

. heckprob private years logptax, sel(vote=years loginc logptax) vce(robust) nolog

Probit model with sample selection Number of obs = 95
Censored obs = 36
Uncensored obs = 59

Wald chi2(2) = 2.55
Log pseudolikelihood = -74.24497 Prob > chi2 = 0.2798

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

private
years -.1142597 .1113977 -1.03 0.305 -.3325951 .1040758

logptax .3516098 .7358265 0.48 0.633 -1.090584 1.793803
_cons -2.780665 4.786678 -0.58 0.561 -12.16238 6.601051

vote
years -.0167511 .0173344 -0.97 0.334 -.0507259 .0172237

loginc .9923024 .4228044 2.35 0.019 .1636209 1.820984
logptax -1.278783 .5095156 -2.51 0.012 -2.277415 -.2801508

_cons -.545821 4.543892 -0.12 0.904 -9.451686 8.360044

/athrho -.8663156 1.630643 -0.53 0.595 -4.062318 2.329687

rho -.6994973 .8327753 -.9994079 .981233

Wald test of indep. eqns. (rho = 0): chi2(1) = 0.28 Prob > chi2 = 0.5952

Regardless of whether we specify the vce(robust) option, the outcome is not significantly different
from the outcome obtained by fitting the probit and selection models separately. This result is not
surprising because the selection mechanism estimated was invented for the example rather than borne
from any economic theory.
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Saved results
heckprob saves the following in e():

Scalars
e(N) number of observations
e(N cens) number of censored observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p c) p-value for comparison test
e(p) significance of comparison test
e(rho) ρ

e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) heckprob
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for regression equation
e(offset2) offset for selection equation
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) type of comparison χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
heckprob is implemented as an ado-file. Van de Ven and Van Pragg (1981) provide an introduction

and an explanation of this model.

The probit equation is
yj = (xjβ+ u1j > 0)

The selection equation is
zjγ+ u2j > 0

where
u1 ∼ N(0, 1)

u2 ∼ N(0, 1)

corr(u1, u2) = ρ

The log likelihood is

lnL =
∑
j∈S
yj 6=0

wj ln
{

Φ2

(
xjβ + offsetβj , zjγ + offsetγj , ρ

)}
+
∑
j∈S
yj=0

wj ln
{

Φ2

(
−xjβ + offsetβj , zjγ + offsetγj ,−ρ

)}
+
∑
j 6∈S

wj ln
{

1− Φ
(
zjγ + offsetγj

)}
where S is the set of observations for which yj is observed, Φ2(·) is the cumulative bivariate normal
distribution function (with mean [ 0 0 ]′), Φ(·) is the standard cumulative normal, and wj is an
optional weight for observation j.

In the maximum likelihood estimation, ρ is not directly estimated. Directly estimated is atanh ρ:

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)

From the form of the likelihood, it is clear that if ρ = 0, the log likelihood for the probit model
with sample selection is equal to the sum of the probit model for the outcome y and the selection
model. We can perform a likelihood-ratio test by comparing the likelihood of the full model with the
sum of the log likelihoods for the probit and selection models.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

heckprob also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] heckprob postestimation — Postestimation tools for heckprob

[R] heckman — Heckman selection model
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[R] treatreg — Treatment-effects model

[SVY] svy estimation — Estimation commands for survey data
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Title

heckprob postestimation — Postestimation tools for heckprob

Description
The following postestimation commands are available after heckprob:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarsel newvarathrho

} [
if
] [

in
]
, scores

statistic Description

Main

pmargin Φ(xjb), success probability; the default
p11 Φ2(xjb, zjg, ρ), predicted probability Pr(yprobit

j = 1, yselect
j = 1)

p10 Φ2(xjb,−zjg,−ρ), predicted probability Pr(yprobit
j = 1, yselect

j = 0)
p01 Φ2(−xjb, zjg,−ρ), predicted probability Pr(yprobit

j = 0, yselect
j = 1)

p00 Φ2(−xjb,−zjg, ρ), predicted probability Pr(yprobit
j = 0, yselect

j = 0)
psel Φ(zjg), selection probability
pcond Φ2(xjb, zjg, ρ)/Φ(zjg), probability of success conditional on selection
xb linear prediction
stdp standard error of the linear prediction
xbsel linear prediction for selection equation
stdpsel standard error of the linear prediction for selection equation

where Φ(·) is the standard normal distribution function and Φ2(·) is the bivariate normal distribution
function.

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pmargin, the default, calculates the univariate (marginal) predicted probability of success
Pr(yprobit

j = 1).

p11 calculates the bivariate predicted probability Pr(yprobit
j = 1, yselect

j = 1).

p10 calculates the bivariate predicted probability Pr(yprobit
j = 1, yselect

j = 0).

p01 calculates the bivariate predicted probability Pr(yprobit
j = 0, yselect

j = 1).

p00 calculates the bivariate predicted probability Pr(yprobit
j = 0, yselect

j = 0).

psel calculates the univariate (marginal) predicted probability of selection Pr(yselect
j = 1).

pcond calculates the conditional (on selection) predicted probability of success
Pr(yprobit

j = 1, yselect
j = 1)/Pr(yselect

j = 1).

xb calculates the probit linear prediction xjb.
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stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

xbsel calculates the linear prediction for the selection equation.

stdpsel calculates the standard error of the linear prediction for the selection equation.

nooffset is relevant only if you specified offset(varname) for heckprob. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
xjb rather than as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

The third new variable will contain ∂lnL/∂(atanh ρ).

Remarks

Example 1

It is instructive to compare the marginal predicted probabilities with the predicted probabilities
that we would obtain by ignoring the selection mechanism. To compare the two approaches, we will
synthesize data so that we know the “true” predicted probabilities.

First, we need to generate correlated error terms, which we can do using a standard Cholesky
decomposition approach. For our example, we will clear any data from memory and then generate
errors that have a correlation of 0.5 by using the following commands. We set the seed so that
interested readers can type in these same commands and obtain the same results.

. set seed 12309

. set obs 5000
obs was 0, now 5000

. gen c1 = rnormal()

. gen c2 = rnormal()

. matrix P = (1,.5\.5,1)

. matrix A = cholesky(P)

. local fac1 = A[2,1]

. local fac2 = A[2,2]

. gen u1 = c1

. gen u2 = ‘fac1’*c1 + ‘fac2’*c2

We can check that the errors have the correct correlation by using the correlate command. We
will also normalize the errors so that they have a standard deviation of one, so we can generate a
bivariate probit model with known coefficients. We do that with the following commands:
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. correlate u1 u2
(obs=5000)

u1 u2

u1 1.0000
u2 0.5020 1.0000

. summarize u1
(output omitted )

. replace u1 = u1/r(sd)
(5000 real changes made)

. summarize u2
(output omitted )

. replace u2 = u2/r(sd)
(5000 real changes made)

. drop c1 c2

. gen x1 = runiform()-.5

. gen x2 = runiform()+1/3

. gen y1s = 0.5 + 4*x1 + u1

. gen y2s = 3 - 3*x2 + .5*x1 + u2

. gen y1 = (y1s>0)

. gen y2 = (y2s>0)

We have now created two dependent variables, y1 and y2, which are defined by our specified
coefficients. We also included error terms for each equation, and the error terms are correlated. We
run heckprob to verify that the data have been correctly generated according to the model

y1 = .5 + 4x1 + u1

y2 = 3 + .5x1 − 3x2 + u2

where we assume that y1 is observed only if y2 = 1.

. heckprob y1 x1, sel(y2 = x1 x2) nolog

Probit model with sample selection Number of obs = 5000
Censored obs = 1762
Uncensored obs = 3238

Wald chi2(1) = 953.71
Log likelihood = -3679.5 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y1
x1 3.784705 .1225532 30.88 0.000 3.544505 4.024905

_cons .4630922 .0453952 10.20 0.000 .3741192 .5520653

y2
x1 .3693052 .0721694 5.12 0.000 .2278558 .5107547
x2 -3.05069 .0832424 -36.65 0.000 -3.213842 -2.887538

_cons 3.037696 .0777733 39.06 0.000 2.885263 3.190128

/athrho .5186232 .083546 6.21 0.000 .354876 .6823705

rho .4766367 .0645658 .3406927 .5930583

LR test of indep. eqns. (rho = 0): chi2(1) = 40.43 Prob > chi2 = 0.0000
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Now that we have verified that we have generated data according to a known model, we can obtain
and then compare predicted probabilities from the probit model with sample selection and a (usual)
probit model.

. predict pmarg
(option pmargin assumed; Pr(y1=1))

. probit y1 x1 if y2==1

(output omitted )
. predict phat
(option pr assumed; Pr(y1))

Using the (marginal) predicted probabilities from the probit model with sample selection (pmarg)
and the predicted probabilities from the (usual) probit model (phat), we can also generate the “true”
predicted probabilities from the synthesized y1s variable and then compare the predicted probabilities:

. gen ptrue = normal(y1s)

. summarize pmarg ptrue phat

Variable Obs Mean Std. Dev. Min Max

pmarg 5000 .6071226 .3147861 .0766334 .9907113
ptrue 5000 .5974195 .348396 5.53e-06 .9999999
phat 5000 .6568175 .3025085 .1059824 .9954919

Here we see that ignoring the selection mechanism (comparing the phat variable with the true
ptrue variable) results in predicted probabilities that are much higher than the true values. Looking
at the marginal predicted probabilities from the model with sample selection, however, results in more
accurate predictions.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] heckprob — Probit model with sample selection

[U] 20 Estimation and postestimation commands



Title

help — Display online help

Syntax

Display help information in Viewer

help
[

command or topic name
] [

, nonew name(viewername) marker(markername)
]

Display help information in Results window

chelp
[

command or topic name
]

Menu
Help > Stata Command...

Description

The help command displays help information about the specified command or topic.

Stata for Mac, Stata for Unix(GUI), and Stata for Windows:
help launches a new Viewer to display help for the specified command or topic. If help is not
followed by a command or a topic name, Stata launches the Viewer and displays help contents,
the table of contents for the online help.

Help may be accessed either by selecting Help > Stata Command... and filling in the desired
command name or by typing help followed by a command or topic name.

chelp will display help in the Results window.

Stata for Unix(console):
Typing help followed by a command name or a topic name will display help on the console.

If help is not followed by a command or a topic name, a description of how to use the help
system is displayed.

Stata for Unix(both GUI and console):
man is a synonym for chelp.

Options
nonew specifies that a new Viewer window not be opened for the help topic if a Viewer window is

already open. The default is for a new Viewer window to be opened each time help is typed so
that multiple help files may be viewed at once. nonew causes the help file to be displayed in the
topmost open Viewer.

name(viewername) specifies that help be displayed in a Viewer window named viewername. If the
named window already exists, its contents will be replaced. If the named window does not exist,
it will be created.
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marker(markername) specifies that the help file be opened to the position of markername within
the help file.

Remarks
To obtain help for any Stata command, type help command or select Help > Stata Command...

and fill in command.

help is best explained by examples.

To obtain help for . . . type
regress help regress

postestimation tools for regress help regress postestimation or
help regress post

graph option xlabel() help graph xlabel()

Stata function strpos() help strpos()

Mata function optimize() help mata optimize()

Tips:

• help displays a subject table of contents for the online help.

• help guide displays a table of contents for basic Stata concepts.

• help estimation commands displays an alphabetical listing of all Stata estimation com-
mands.

• help functions displays help on Stata functions by category.

• help mata functions displays a subject table of contents for Mata’s functions.

• help ts glossary displays the glossary for the time-series manual, and similarly for the
other Stata specialty manuals.

See [U] 4 Stata’s help and search facilities for a complete description of how to use help.

Technical note
When you type help topic, Stata first looks along the adopath for topic.sthlp; see [U] 17.5 Where

does Stata look for ado-files?.

Also see
[R] hsearch — Search help files

[R] search — Search Stata documentation

[R] net search — Search the Internet for installable packages

[GSM] 4 Getting help
[GSW] 4 Getting help
[GSU] 4 Getting help
[U] 4 Stata’s help and search facilities



Title

hetprob — Heteroskedastic probit model

Syntax
hetprob depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

het(varlist
[
, offset(varname)

]
)
[

options
]

options Description

Model
∗het(varlist

[
. . .
]
) independent variables to model the variance and possible

offset variable
noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform likelihood-ratio test
nolrtest perform Wald test on variance
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗het() is required. The full specification is het(varlist
[
, offset(varname)

]
).

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), noskip, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Binary outcomes > Heteroskedastic probit regression

Description
hetprob fits a maximum-likelihood heteroskedastic probit model.

See [R] logistic for a list of related estimation commands.

Options

� � �
Model �

het(varlist
[
, offset(varname)

]
) specifies the independent variables and the offset variable, if

there is one, in the variance function. het() is required.

noconstant, offset(varname); see [R] estimation options.

asis forces the retention of perfect predictor variables and their associated perfectly predicted
observations and may produce instabilities in maximization; see [R] probit.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

noskip requests fitting of the constant-only model and calculation of the corresponding likelihood-ratio
χ2 statistic for testing significance of the full model. By default, a Wald χ2 statistic is computed
for testing the significance of the full model.

nolrtest specifies that a Wald test of whether lnsigma2 = 0 be performed instead of the LR test.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with hetprob but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

Introduction
Robust standard errors

Introduction

hetprob fits a maximum-likelihood heteroskedastic probit model, which is a generalization of the
probit model. Let yj , j = 1, . . . , N , be a binary outcome variable taking on the value 0 (failure) or 1
(success). In the probit model, the probability that yj takes on the value 1 is modeled as a nonlinear
function of a linear combination of the k independent variables xj = (x1j , x2j , . . . , xkj),

Pr(yj = 1) = Φ(xjb)

in which Φ() is the cumulative distribution function (CDF) of a standard normal random variable,
that is, a normally distributed (Gaussian) random variable with mean 0 and variance 1. The linear
combination of the independent variables, xjb, is commonly called the index function , or index .
Heteroskedastic probit generalizes the probit model by generalizing Φ() to a normal CDF with a
variance that is no longer fixed at 1 but can vary as a function of the independent variables. hetprob
models the variance as a multiplicative function of these m variables zj = (z1j , z2j , . . . , zmj),
following Harvey (1976):

σ2
j = {exp(zjγ)}2

Thus the probability of success as a function of all the independent variables is

Pr(yj = 1) = Φ
{

xjb/ exp(zjγ)
}

From this expression, it is clear that, unlike the index xjb, no constant term can be present in zjγ
if the model is to be identifiable.

Suppose that the binary outcomes yj are generated by thresholding an unobserved random variable,
w, which is normally distributed with mean xjb and variance 1 such that

yj =
{

1 if wj > 0
0 if wj ≤ 0

This process gives the probit model:

Pr(yj = 1) = Pr(wj > 0) = Φ(xjb)

Now suppose that the unobserved wj are heteroskedastic with variance

σ2
j = {exp(zjγ)}2

Relaxing the homoskedastic assumption of the probit model in this manner yields our multiplicative
heteroskedastic probit model:

Pr(yj = 1) = Φ
{

xjb/ exp(zjγ)
}
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Example 1

For this example, we generate simulated data for a simple heteroskedastic probit model and then
estimate the coefficients with hetprob:

. set obs 1000
obs was 0, now 1000

. set seed 1234567

. gen x = 1-2*runiform()

. gen xhet = runiform()

. gen sigma = exp(1.5*xhet)

. gen p = normal((0.3+2*x)/sigma)

. gen y = cond(runiform()<=p,1,0)

. hetprob y x, het(xhet)

Fitting probit model:

Iteration 0: log likelihood = -688.53208
Iteration 1: log likelihood = -591.59895
Iteration 2: log likelihood = -591.50674
Iteration 3: log likelihood = -591.50674

Fitting full model:

Iteration 0: log likelihood = -591.50674
Iteration 1: log likelihood = -572.12219
Iteration 2: log likelihood = -570.7742
Iteration 3: log likelihood = -569.48921
Iteration 4: log likelihood = -569.47828
Iteration 5: log likelihood = -569.47827

Heteroskedastic probit model Number of obs = 1000
Zero outcomes = 452
Nonzero outcomes = 548

Wald chi2(1) = 78.66
Log likelihood = -569.4783 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
x 2.228031 .2512073 8.87 0.000 1.735673 2.720388

_cons .2493822 .0862833 2.89 0.004 .08027 .4184943

lnsigma2
xhet 1.602537 .2640131 6.07 0.000 1.085081 2.119993

Likelihood-ratio test of lnsigma2=0: chi2(1) = 44.06 Prob > chi2 = 0.0000

Above we created two variables, x and xhet, and then simulated the model

Pr(y = 1) = F
{

(β0 + β1x)/ exp(γ1xhet)
}

for β0 = 0.3, β1 = 2, and γ1 = 1.5. According to hetprob’s output, all coefficients are significant,
and, as we would expect, the Wald test of the full model versus the constant-only model—for example,
the index consisting of β0 +β1x versus that of just β0—is significant with χ2(1) = 79. Likewise, the
likelihood-ratio test of heteroskedasticity, which tests the full model with heteroskedasticity against
the full model without, is significant with χ2(1) = 44. See [R] maximize for more explanation of
the output. For this simple model, hetprob took five iterations to converge. As stated elsewhere
(Greene 2012, 714), this is a difficult model to fit, and it is not uncommon for it to require many
iterations or for the optimizer to print out warnings and informative messages during the optimization.
Slow convergence is especially common for models in which one or more of the independent variables
appear in both the index and variance functions.
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Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except

missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and
1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0,
1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

Robust standard errors
If you specify the vce(robust) option, hetprob reports robust standard errors as described

in [U] 20.20 Obtaining robust variance estimates. To illustrate the effect of this option, we will
reestimate our coefficients by using the same model and data in our example, this time adding
vce(robust) to our hetprob command.

Example 2

. hetprob y x, het(xhet) vce(robust) nolog

Heteroskedastic probit model Number of obs = 1000
Zero outcomes = 452
Nonzero outcomes = 548

Wald chi2(1) = 65.23
Log pseudolikelihood = -569.4783 Prob > chi2 = 0.0000

Robust
y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
x 2.22803 .2758597 8.08 0.000 1.687355 2.768705

_cons .2493821 .0843367 2.96 0.003 .0840853 .4146789

lnsigma2
xhet 1.602537 .2671326 6.00 0.000 1.078967 2.126107

Wald test of lnsigma2=0: chi2(1) = 35.99 Prob > chi2 = 0.0000

The vce(robust) standard errors for two of the three parameters are larger than the previously
reported conventional standard errors. This is to be expected, even though (by construction) we
have perfect model specification because this option trades off efficient estimation of the coefficient
variance–covariance matrix for robustness against misspecification.

Specifying the vce(cluster clustvar) option relaxes the usual assumption of independence
between observations to the weaker assumption of independence just between clusters; that is,
hetprob, vce(cluster clustvar) is robust with respect to within-cluster correlation. This option is
less efficient than the xtgee population-averaged models because hetprob inefficiently sums within
cluster for the standard-error calculation rather than attempting to exploit what might be assumed
about the within-cluster correlation.
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Saved results
hetprob saves the following in e():

Scalars
e(N) number of observations
e(N f) number of zero outcomes
e(N s) number of nonzero outcomes
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for heteroskedasticity LR test
e(p c) p-value for heteroskedasticity LR test
e(df m c) degrees of freedom for heteroskedasticity LR test
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) hetprob
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for probit equation
e(offset2) offset for variance equation
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(method) requested estimation method
e(ml method) type of ml method
e(user) name of likelihood-evaluator
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
hetprob is implemented as an ado-file.

The heteroskedastic probit model is a generalization of the probit model because it allows the scale
of the inverse link function to vary from observation to observation as a function of the independent
variables.

The log-likelihood function for the heteroskedastic probit model is

lnL =
∑
j∈S

wj lnΦ{xjβ/ exp(zγ)}+
∑
j 6∈S

wj ln
[
1− Φ{xjβ/ exp(zγ)}

]
where S is the set of all observations j such that yj 6= 0 and wj denotes the optional weights. lnL
is maximized as described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

hetprob also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

References
Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Harvey, A. C. 1976. Estimating regression models with multiplicative heteroscedasticity. Econometrica 44: 461–465.

Also see
[R] hetprob postestimation — Postestimation tools for hetprob

[R] logistic — Logistic regression, reporting odds ratios

[R] probit — Probit regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/ea.html


Title

hetprob postestimation — Postestimation tools for hetprob

Description
The following postestimation commands are available after hetprob:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarlnsigma2

} [
if
] [

in
]
, scores

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
sigma standard deviation of the error term

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for the
estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

sigma calculates the standard deviation of the error term.

nooffset is relevant only if you specified offset(varname) for hetprob. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

Remarks
Once you have fit a model, you can use the predict command to obtain the predicted probabilities

for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. predict without arguments calculates the predicted probability of a
positive outcome. With the xb option, predict calculates the index function combination, xjb,
where xj are the independent variables in the jth observation and b is the estimated parameter vector.
With the sigma option, predict calculates the predicted standard deviation, σj = exp(zjγ).

Example 1

We use predict to compute the predicted probabilities and standard deviations based on the
model in example 2 in [R] hetprob to compare these with the actual values:

. predict phat
(option pr assumed; Pr(y))

. gen diff_p = phat - p

. summarize diff_p

Variable Obs Mean Std. Dev. Min Max

diff_p 1000 -.0107081 .0131869 -.0466331 .010482

. predict sigmahat, sigma

. gen diff_s = sigmahat - sigma

. summarize diff_s

Variable Obs Mean Std. Dev. Min Max

diff_s 1000 .1558881 .1363698 .0000417 .4819107



762 hetprob postestimation — Postestimation tools for hetprob

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] hetprob — Heteroskedastic probit model

[U] 20 Estimation and postestimation commands



Title

histogram — Histograms for continuous and categorical variables

Syntax
histogram varname

[
if
] [

in
] [

weight
] [

,
[

continuous opts | discrete opts
]

options
]

continuous opts Description

Main

bin(#) set number of bins to #
width(#) set width of bins to #
start(#) set lower limit of first bin to #

discrete opts Description

Main

discrete specify that data are discrete
width(#) set width of bins to #
start(#) set theoretical minimum value to #

options Description

Main

density draw as density; the default
fraction draw as fractions
frequency draw as frequencies
percent draw as percentages
bar options rendition of bars
addlabels add height labels to bars
addlabopts(marker label options) affect rendition of labels

Density plots

normal add a normal density to the graph
normopts(line options) affect rendition of normal density
kdensity add a kernel density estimate to the graph
kdenopts(kdensity options) affect rendition of kernel density

Add plots

addplot(plot) add other plots to the histogram

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.
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Menu
Graphics > Histogram

Description
histogram draws histograms of varname, which is assumed to be the name of a continuous

variable unless the discrete option is specified.

Options for use in the continuous case

� � �
Main �

bin(#) and width(#) are alternatives. They specify how the data are to be aggregated into bins:
bin() by specifying the number of bins (from which the width can be derived) and width() by
specifying the bin width (from which the number of bins can be derived).

If neither option is specified, results are the same as if bin(k) had been specified, where

k = min
{

sqrt(N), 10 ln(N)/ln(10)
}

and where N is the (weighted) number of observations.

start(#) specifies the theoretical minimum of varname. The default is start(m), where m is the
observed minimum value of varname.

Specify start() when you are concerned about sparse data, for instance, if you know that varname
can have a value of 0, but you are concerned that 0 may not be observed.

start(#), if specified, must be less than or equal to m, or else an error will be issued.

Options for use in the discrete case

� � �
Main �

discrete specifies that varname is discrete and that you want each unique value of varname to have
its own bin (bar of histogram).

width(#) is rarely specified in the discrete case; it specifies the width of the bins. The default is
width(d), where d is the observed minimum difference between the unique values of varname.

Specify width() if you are concerned that your data are sparse. For example, in theory varname
could take on the values, say, 1, 2, 3, . . . , 9, but because of the sparseness, perhaps only the
values 2, 4, 7, and 8 are observed. Here the default width calculation would produce width(2),
and you would want to specify width(1).

start(#) is also rarely specified in the discrete case; it specifies the theoretical minimum value of
varname. The default is start(m), where m is the observed minimum value.

As with width(), specify start(#) if you are concerned that your data are sparse. In the previous
example, you might also want to specify start(1). start() does nothing more than add white
space to the left side of the graph.

The value of # in start() must be less than or equal to m, or an error will be issued.
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Options for use in both the continuous and discrete cases

� � �
Main �

density, fraction, frequency, and percent specify whether you want the histogram scaled to
density units, fractional units, frequencies, or percentages. density is the default.

density scales the height of the bars so that the sum of their areas equals 1.

fraction scales the height of the bars so that the sum of their heights equals 1.

frequency scales the height of the bars so that each bar’s height is equal to the number
of observations in the category. Thus the sum of the heights is equal to the total number of
observations.

percent scales the height of the bars so that the sum of their heights equals 100.

bar options are any of the options allowed by graph twoway bar; see [G-2] graph twoway bar.

One of the most useful bar options is barwidth(#), which specifies the width of the bars in
varname units. By default, histogram draws the bars so that adjacent bars just touch. If you want
gaps between the bars, do not specify histogram’s width() option—which would change how
the histogram is calculated—but specify the bar option barwidth() or the histogram option
gap, both of which affect only how the bar is rendered.

The bar option horizontal cannot be used with the addlabels option.

addlabels specifies that the top of each bar be labeled with the density, fraction, or frequency, as
determined by the density, fraction, and frequency options.

addlabopts(marker label options) specifies how to render the labels atop the bars. See
[G-3] marker label options. Do not specify the marker label option mlabel(varname), which
specifies the variable to be used; this is specified for you by histogram.

addlabopts() will accept more options than those documented in [G-3] marker label options.
All options allowed by twoway scatter are also allowed by addlabopts(); see [G-2] graph
twoway scatter. One particularly useful option is yvarformat(); see [G-3] advanced options.

� � �
Density plots �

normal specifies that the histogram be overlaid with an appropriately scaled normal density. The
normal will have the same mean and standard deviation as the data.

normopts(line options) specifies details about the rendition of the normal curve, such as the color
and style of line used. See [G-2] graph twoway line.

kdensity specifies that the histogram be overlaid with an appropriately scaled kernel density estimate
of the density. By default, the estimate will be produced using the Epanechnikov kernel with an
“optimal” half-width. This default corresponds to the default of kdensity; see [R] kdensity. How
the estimate is produced can be controlled using the kdenopts() option described below.

kdenopts(kdensity options) specifies details about how the kernel density estimate is to be produced
along with details about the rendition of the resulting curve, such as the color and style of line
used. The kernel density estimate is described in [G-2] graph twoway kdensity. As an example,
if you wanted to produce kernel density estimates by using the Gaussian kernel with optimal
half-width, you would specify kdenopts(gauss) and if you also wanted a half-width of 5, you
would specify kdenopts(gauss width(5)).
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� � �
Add plots �

addplot(plot) allows adding more graph twoway plots to the graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. This includes, most
importantly, options for titling the graph (see [G-3] title options), options for saving the graph to
disk (see [G-3] saving option), and the by() option, which will allow you to simultaneously graph
histograms for different subsets of the data (see [G-3] by option).

Remarks
Remarks are presented under the following headings:

Histograms of continuous variables
Overlaying normal and kernel density estimates
Histograms of discrete variables
Use with by()

For an example of editing a histogram with the Graph Editor, see Pollock (2011, 29–31).

Histograms of continuous variables

histogram assumes that the variable is continuous, so you need type only histogram followed
by the variable name:

. use http://www.stata-press.com/data/r12/sp500
(S&P 500)

. histogram volume
(bin=15, start=4103, width=1280.3533)
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The small values reported for density on the y axis are correct; if you added up the area of the bars,
you would get 1. Nevertheless, many people are used to seeing histograms scaled so that the bar
heights sum to 1,
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. histogram volume, fraction
(bin=15, start=4103, width=1280.3533)
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and others are used to seeing histograms so that the bar height reflects the number of observations,

. histogram volume, frequency
(bin=15, start=4103, width=1280.3533)
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Regardless of the scale you prefer, you can specify other options to make the graph look more
impressive:
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. summarize volume

Variable Obs Mean Std. Dev. Min Max

volume 248 12320.68 2585.929 4103 23308.3

. histogram volume, freq
> xaxis(1 2)
> ylabel(0(10)60, grid)
> xlabel(12321 "mean"
> 9735 "-1 s.d."
> 14907 "+1 s.d."
> 7149 "-2 s.d."
> 17493 "+2 s.d."
> 20078 "+3 s.d."
> 22664 "+4 s.d."
> , axis(2) grid gmax)
> xtitle("", axis(2))
> subtitle("S&P 500, January 2001 - December 2001")
> note("Source: Yahoo! Finance and Commodity Systems, Inc.")
(bin=15, start=4103, width=1280.3533)
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Source:  Yahoo! Finance and Commodity Systems, Inc.
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For an explanation of the xaxis() option—it created the upper and lower x axis—
see [G-3] axis choice options. For an explanation of the ylabel() and xlabel() options,
see [G-3] axis label options. For an explanation of the subtitle() and note() options, see
[G-3] title options.

Overlaying normal and kernel density estimates

Specifying normal will overlay a normal density over the histogram. It would be enough to type

. histogram volume, normal

but we will add the option to our more impressive rendition:

. summarize volume

Variable Obs Mean Std. Dev. Min Max

volume 248 12320.68 2585.929 4103 23308.3
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. histogram volume, freq normal
> xaxis(1 2)
> ylabel(0(10)60, grid)
> xlabel(12321 "mean"
> 9735 "-1 s.d."
> 14907 "+1 s.d."
> 7149 "-2 s.d."
> 17493 "+2 s.d."
> 20078 "+3 s.d."
> 22664 "+4 s.d."
> , axis(2) grid gmax)
> xtitle("", axis(2))
> subtitle("S&P 500, January 2001 - December 2001")
> note("Source: Yahoo! Finance and Commodity Systems, Inc.")
(bin=15, start=4103, width=1280.3533)
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If we instead wanted to overlay a kernel density estimate, we could specify kdensity in place of
normal.

Histograms of discrete variables

Specify histogram’s discrete option when you wish to treat the data as discrete—when you wish
each unique value of the variable to be assigned its own bin. For instance, in the automobile data,
mpg is a continuous variable, but the mileage ratings have been measured to integer precision. If we
were to type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. histogram mpg
(bin=8, start=12, width=3.625)

mpg would be treated as continuous and categorized into eight bins by the default number-of-bins
calculation, which is based on the number of observations, 74.
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Adding the discrete option makes a histogram with a bin for each of the 21 unique values.

. histogram mpg, discrete
(start=12, width=1)
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Just as in the continuous case, the y axis was reported in density, and we could specify the fraction
or frequency options if we wanted it to be reported differently. Below we specify frequency, we
specify addlabels to add a report of frequencies printed above the bars, we specify ylabel(,grid)
to add horizontal grid lines, and we specify xlabel(12(2)42) to label the values 12, 14, . . . , 42
on the x axis:

. histogram mpg, discrete freq addlabels ylabel(,grid) xlabel(12(2)42)
(start=12, width=1)
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Use with by()

histogram may be used with graph twoway’s by(); for example,

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. histogram mpg, discrete by(foreign)
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Here results would be easier to compare if the graphs were presented in one column:

. histogram mpg, discrete by(foreign, col(1))
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col(1) is a by() suboption—see [G-3] by option—and there are other useful suboptions, such
as total, which will add an overall total histogram. total is a suboption of by(), not an option
of histogram, so you would type

. histogram mpg, discrete by(foreign, total)

and not histogram mpg, discrete by(foreign) total.
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As another example, Lipset (1993) reprinted data from the New York Times (November 5, 1992)
collected by the Voter Research and Surveys based on questionnaires completed by 15,490 U.S.
presidential voters from 300 polling places on election day in 1992.

. use http://www.stata-press.com/data/r12/voter

. histogram candi [freq=pop], discrete fraction by(inc, total)
> gap(40) xlabel(2 3 4, valuelabel)
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We specified gap(40) to reduce the width of the bars by 40%. We also used xlabel()’s
valuelabel suboption, which caused our bars to be labeled “Clinton”, “Bush”, and “Perot”, rather
than 2, 3, and 4; see [G-3] axis label options.

Methods and formulas
histogram is implemented as an ado-file.

References
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. 2005. Speaking Stata: Density probability plots. Stata Journal 5: 259–273.
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Also see
[R] kdensity — Univariate kernel density estimation

[R] spikeplot — Spike plots and rootograms

[G-2] graph twoway histogram — Histogram plots

http://www.stata-journal.com/sjpdf.html?articlenum=gr0003
http://www.stata-journal.com/sjpdf.html?articlenum=gr0012
http://www.stata-journal.com/sjpdf.html?articlenum=gr0014
http://www.stata.com/bookstore/scpa.html


Title

hsearch — Search help files

Syntax
hsearch word(s)

hsearch word(s), build

hsearch, build

Description
hsearch word(s) searches the help files for word(s) and presents a clickable list in the Viewer.

hsearch word(s), build does the same thing but builds a new index first.

hsearch, build rebuilds the index but performs no search.

Option
build forces the index that hsearch uses to be built or rebuilt.

The index is automatically built the first time you use hsearch, and it is automatically rebuilt if
you have recently installed an ado-file update by using update; see [R] update. Thus the build
option is rarely specified.

You should specify build if you have recently installed user-written ado-files by using net
install (see [R] net) or ssc (see [R] ssc), or if you have recently updated any of your own help
files.

Remarks
Remarks are presented under the following headings:

Using hsearch
Alternatives to hsearch
Recommendations
How hsearch works

Using hsearch

You use hsearch to find help for commands and features installed on your computer. If you
wanted to find commands related to Mills’ ratio, you would type
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. hsearch Mills’ ratio
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You could just as well type

. hsearch Mill’s ratio

or type any of

. hsearch Mills ratio

. hsearch mills ratio

or even

. hsearch ratio mills

because word order, capitalization, and punctuation do not matter.
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Alternatives to hsearch
Alternatives to hsearch are search and findit:

. search mills ratio

. findit mills ratio

search, like hsearch, searches commands already installed on your computer. search searches
the keywords; hsearch searches the help files themselves. Hence, hsearch usually finds everything
that search finds and more. The fewer things that search finds should be more relevant.

findit searches keywords just as search does, but findit searches the web as well as your
computer and so may find commands that you might wish to install.

Recommendations
• In general, hsearch is better than search. hsearch finds more and better organizes the

list of what it finds.

• When you know that Stata can do what you are looking for but you cannot remember the
command name or when you know that you installed a relevant user-written package, use
hsearch.

• When you are unsure whether Stata can do a certain task, use hsearch first and then use
findit.

How hsearch works

hsearch searches the .sthlp files.

Finding all those files and then looking through them would take a long time if hsearch did that
every time you used it. Instead, hsearch builds an index of the .sthlp files and then searches that.

That file is called sthlpindex.idx and is stored in your PERSONAL directory.

Every so often, hsearch automatically rebuilds the index so that it accurately reflects what is
installed on your computer. You can force hsearch to rebuild the index at any time by typing

. hsearch, build

Methods and formulas
hsearch is implemented as an ado-file.

Also see
[R] net search — Search the Internet for installable packages

[R] search — Search Stata documentation



Title

inequality — Inequality measures

Remarks
Stata does not have commands for inequality measures, except roctab has an option to report

Gini and Pietra indices; see [R] roctab. Stata users, however, have developed an excellent suite of
commands, many of which have been published in the Stata Journal (SJ) and in the Stata Technical
Bulletin (STB).

Issue Insert Author(s) Command Description

STB-48 gr35 N. J. Cox psm, qsm, Diagnostic plots for assessing Singh–Maddala
pdagum, and Dagum distributions fit by MLE
qdagum

STB-23 sg31 R. Goldstein rspread Measures of diversity: Absolute and relative

STB-48 sg104 S. P. Jenkins sumdist, Analysis of income distributions
xfrac,
ineqdeco,
geivars,
ineqfac,
povdeco

STB-48 sg106 S. P. Jenkins smfit, Fitting Singh–Maddala and Dagum
dagumfit distributions by maximum likelihood

STB-48 sg107 S. P. Jenkins, glcurve Generalized Lorenz curves and related graphs
P. Van Kerm

STB-49 sg107.1 S. P. Jenkins, glcurve update of sg107
P. Van Kerm

SJ-1-1 gr0001 S. P. Jenkins, glcurve7 update for Stata 7 of sg107.1
P. Van Kerm

SJ-7-2 gr0001 3 S. P. Van Kerm, glcurve update for Stata 8 of gr0001; install this version
P. Jenkins

STB-48 sg108 P. Van Kerm poverty Computing poverty indices

STB-51 sg115 D. Jolliffe, ineqerr Bootstrap standard errors for indices of
B. Krushelnytskyy inequality

STB-51 sg117 D. Jolliffe, sepov Robust standard errors for the Foster–Greer–
A. Semykina Thorbecke class of poverty indices

SJ-8-4 st0100 1 A. López-Feldman descogini Decomposing inequality and obtaining
marginal effects

SJ-6-4 snp15 7 R. Newson somersd Gini coefficient is a special case of Somers’ D

STB-23 sg30 E. Whitehouse lorenz, Measures of inequality in Stata
inequal,
atkinson,
relsgini

More commands may be available; enter Stata and type search inequality measure, all.
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Max Otto Lorenz (1876–1959) was born in Iowa and studied at the Universities of Iowa and
Wisconsin. He proposed what is now known as the Lorenz curve in 1905. Lorenz worked for
the Interstate Commerce Commission between 1911 and 1944, mainly with transportation data.
His hobbies included calendar reform and Interlingua, a proposed international language.� �
To download and install the Jenkins and Van Kerm glcurve command from the Internet, for

instance, you could

1. Select Help > SJ and User-written Programs.

2. Click on Stata Journal.

3. Click on sj4-4.

4. Click on gr0001 1.

5. Click on click here to install.

or you could instead do the following:

1. Navigate to the appropriate SJ issue:
a. Type net from http://www.stata-journal.com/software

Type net cd sj4-4
or

b. Type net from http://www.stata-journal.com/software/sj4-4

2. Type net describe gr0001 1

3. Type net install gr0001 1

To download and install the Jenkins sumdist command from the Internet, for instance, you could

1. Select Help > SJ and User-written Programs.

2. Click on STB.

3. Click on stb48.

4. Click on sg104.

5. Click on click here to install.

or you could instead do the following:

1. Navigate to the appropriate STB issue:
a. Type net from http://www.stata.com

Type net cd stb
Type net cd stb48

or
b. Type net from http://www.stata.com/stb/stb48

2. Type net describe sg104

3. Type net install sg104
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Title

intreg — Interval regression

Syntax
intreg depvar1 depvar2

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
het(varlist

[
, noconstant

]
) independent variables to model the variance; use noconstant

to suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar1, depvar2, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, nestreg, rolling, statsby, stepwise, and svy are allowed;

see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Censored regression > Interval regression
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Description
intreg fits a model of y = [ depvar1, depvar2 ] on indepvars, where y for each observation is

point data, interval data, left-censored data, or right-censored data.

depvar1 and depvar2 should have the following form:

Type of data depvar1 depvar2

point data a = [ a, a ] a a

interval data [ a, b ] a b

left-censored data (−∞, b ] . b

right-censored data [ a,+∞ ) a .

Options

� � �
Model �

noconstant; see [R] estimation options.

het(varlist
[
, noconstant

]
) specifies that varlist be included in the specification of the conditional

variance. This varlist enters the variance specification collectively as multiplicative heteroskedas-
ticity.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with intreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
intreg is a generalization of the models fit by tobit. Cameron and Trivedi (2010, 548–550)

discuss the differences among censored, truncated, and interval data. If you know that the value for
the jth individual is somewhere in the interval [ y1j , y2j ], then the likelihood contribution from this
individual is simply Pr(y1j ≤ Yj ≤ y2j). For censored data, their likelihoods contain terms of the
form Pr(Yj ≤ yj) for left-censored data and Pr(Yj ≥ yj) for right-censored data, where yj is the
observed censoring value and Yj denotes the random variable representing the dependent variable in
the model.

Hence, intreg can fit models for data where each observation represents interval data, left-censored
data, right-censored data, or point data. Regardless of the type of observation, the data should be
stored in the dataset as interval data; that is, two dependent variables, depvar1 and depvar2, are used
to hold the endpoints of the interval. If the data are left-censored, the lower endpoint is −∞ and is
represented by a missing value, ‘.’, or an extended missing value, ‘.a, .b, . . . , .z’, in depvar1. If
the data are right-censored, the upper endpoint is +∞ and is represented by a missing value, ‘.’ (or
an extended missing value), in depvar2. Point data are represented by the two endpoints being equal.

Type of data depvar1 depvar2

point data a = [ a, a ] a a

interval data [ a, b ] a b

left-censored data (−∞, b ] . b

right-censored data [ a,+∞ ) a .

Truly missing values of the dependent variable must be represented by missing values in both depvar1

and depvar2.

Interval data arise naturally in many contexts, such as wage data. Often you know only that, for
example, a person’s salary is between $30,000 and $40,000. Below we give an example for wage
data and show how to set up depvar1 and depvar2.

Example 1

We have a dataset that contains the yearly wages of working women. Women were asked via a
questionnaire to indicate a category for their yearly income from employment. The categories were
less than 5,000, 5,001–10,000, . . . , 25,001–30,000, 30,001–40,000, 40,001–50,000, and more than
50,000. The wage categories are stored in the wagecat variable.
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. use http://www.stata-press.com/data/r12/womenwage
(Wages of women)

. tab wagecat

Wage
category
($1000s) Freq. Percent Cum.

5 14 2.87 2.87
10 83 17.01 19.88
15 158 32.38 52.25
20 107 21.93 74.18
25 57 11.68 85.86
30 30 6.15 92.01
40 19 3.89 95.90
50 14 2.87 98.77
51 6 1.23 100.00

Total 488 100.00

A value of 5 for wagecat represents the category less than 5,000, a value of 10 represents 5,001–10,000,
. . . , and a value of 51 represents greater than 50,000.

To use intreg, we must create two variables, wage1 and wage2, containing the lower and upper
endpoints of the wage categories. Here is one way to do it. We first create a dataset containing the
nine wage categories, lag the wage categories into wage1, and match-merge this dataset with nine
observations back into the main one.

. by wagecat: keep if _n==1
(479 observations deleted)

. generate wage1 = wagecat[_n-1]
(1 missing value generated)

. keep wagecat wage1

. save lagwage
file lagwage.dta saved

. use http://www.stata-press.com/data/r12/womenwage
(Wages of women)

. merge m:1 wagecat using lagwage

Result # of obs.

not matched 0
matched 488 (_merge==3)

Now we create the upper endpoint and list the new variables:

. generate wage2 = wagecat

. replace wage2 = . if wagecat == 51
(6 real changes made, 6 to missing)

. sort age, stable
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. list wage1 wage2 in 1/10

wage1 wage2

1. . 5
2. 5 10
3. 5 10
4. 10 15
5. . 5

6. . 5
7. . 5
8. 5 10
9. 5 10

10. 5 10

We can now run intreg:

. intreg wage1 wage2 age c.age#c.age nev_mar rural school tenure

Fitting constant-only model:

Iteration 0: log likelihood = -967.24956
Iteration 1: log likelihood = -967.1368
Iteration 2: log likelihood = -967.1368

Fitting full model:

Iteration 0: log likelihood = -856.65324
Iteration 1: log likelihood = -856.33294
Iteration 2: log likelihood = -856.33293

Interval regression Number of obs = 488
LR chi2(6) = 221.61

Log likelihood = -856.33293 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .7914438 .4433604 1.79 0.074 -.0775265 1.660414

c.age#c.age -.0132624 .0073028 -1.82 0.069 -.0275757 .0010509

nev_mar -.2075022 .8119581 -0.26 0.798 -1.798911 1.383906
rural -3.043044 .7757324 -3.92 0.000 -4.563452 -1.522637

school 1.334721 .1357873 9.83 0.000 1.068583 1.600859
tenure .8000664 .1045077 7.66 0.000 .5952351 1.004898
_cons -12.70238 6.367117 -1.99 0.046 -25.1817 -.2230583

/lnsigma 1.987823 .0346543 57.36 0.000 1.919902 2.055744

sigma 7.299626 .2529634 6.82029 7.81265

Observation summary: 14 left-censored observations
0 uncensored observations
6 right-censored observations

468 interval observations
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We could also model these data by using an ordered probit model with oprobit (see [R] oprobit):

. oprobit wagecat age c.age#c.age nev_mar rural school tenure

Iteration 0: log likelihood = -881.1491
Iteration 1: log likelihood = -764.31729
Iteration 2: log likelihood = -763.31191
Iteration 3: log likelihood = -763.31049
Iteration 4: log likelihood = -763.31049

Ordered probit regression Number of obs = 488
LR chi2(6) = 235.68
Prob > chi2 = 0.0000

Log likelihood = -763.31049 Pseudo R2 = 0.1337

wagecat Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1674519 .0620333 2.70 0.007 .0458689 .289035

c.age#c.age -.0027983 .0010214 -2.74 0.006 -.0048001 -.0007964

nev_mar -.0046417 .1126737 -0.04 0.967 -.225478 .2161946
rural -.5270036 .1100449 -4.79 0.000 -.7426875 -.3113196

school .2010587 .0201189 9.99 0.000 .1616263 .2404911
tenure .0989916 .0147887 6.69 0.000 .0700063 .127977

/cut1 2.650637 .8957245 .8950495 4.406225
/cut2 3.941018 .8979167 2.181134 5.700903
/cut3 5.085205 .9056582 3.310148 6.860263
/cut4 5.875534 .9120933 4.087864 7.663204
/cut5 6.468723 .918117 4.669247 8.268199
/cut6 6.922726 .9215455 5.11653 8.728922
/cut7 7.34471 .9237628 5.534168 9.155252
/cut8 7.963441 .9338881 6.133054 9.793828

We can directly compare the log likelihoods for the intreg and oprobit models because both
likelihoods are discrete. If we had point data in our intreg estimation, the likelihood would be a
mixture of discrete and continuous terms, and we could not compare it directly with the oprobit
likelihood.

Here the oprobit log likelihood is significantly larger (that is, less negative), so it fits better than
the intreg model. The intreg model assumes normality, but the distribution of wages is skewed
and definitely nonnormal. Normality is more closely approximated if we model the log of wages.
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. generate logwage1 = log(wage1)
(14 missing values generated)

. generate logwage2 = log(wage2)
(6 missing values generated)

. intreg logwage1 logwage2 age c.age#c.age nev_mar rural school tenure

Fitting constant-only model:

Iteration 0: log likelihood = -889.23647
Iteration 1: log likelihood = -889.06346
Iteration 2: log likelihood = -889.06346

Fitting full model:

Iteration 0: log likelihood = -773.81968
Iteration 1: log likelihood = -773.36566
Iteration 2: log likelihood = -773.36563

Interval regression Number of obs = 488
LR chi2(6) = 231.40

Log likelihood = -773.36563 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0645589 .0249954 2.58 0.010 .0155689 .1135489

c.age#c.age -.0010812 .0004115 -2.63 0.009 -.0018878 -.0002746

nev_mar -.0058151 .0454867 -0.13 0.898 -.0949674 .0833371
rural -.2098361 .0439454 -4.77 0.000 -.2959675 -.1237047

school .0804832 .0076783 10.48 0.000 .0654341 .0955323
tenure .0397144 .0058001 6.85 0.000 .0283464 .0510825
_cons .7084023 .3593193 1.97 0.049 .0041495 1.412655

/lnsigma -.906989 .0356265 -25.46 0.000 -.9768157 -.8371623

sigma .4037381 .0143838 .3765081 .4329373

Observation summary: 14 left-censored observations
0 uncensored observations
6 right-censored observations

468 interval observations

The log likelihood of this intreg model is close to the oprobit log likelihood, and the z statistics
for both models are similar.

Technical note
intreg has two parameterizations for the log-likelihood function: the transformed parameterization

(β/σ, 1/σ) and the untransformed parameterization (β, ln(σ)). By default, the log likelihood for
intreg is parameterized in the transformed parameter space. This parameterization tends to be more
convergent, but it requires that any starting values and constraints have the same parameterization, and
it prevents the estimation with multiplicative heteroskedasticity. Therefore, when the het() option is
specified, intreg switches to the untransformed log likelihood for the fit of the conditional-variance
model. Similarly, specifying from() or constraints() causes the optimization in the untransformed
parameter space to allow constraints on (and starting values for) the coefficients on the covariates
without reference to σ.

The estimation results are all saved in the (β, ln(σ)) metric.
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Saved results
intreg saves the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(N int) number of interval observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(N clust) number of clusters
e(chi2) χ2

e(p) p-value for model χ2 test
e(sigma) sigma
e(se sigma) standard error of sigma
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) intreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(het) heteroskedasticity, if het() specified
e(ml score) program used to implement scores
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(footnote) program and arguments to display footnote
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
intreg is implemented as an ado-file.

See Wooldridge (2009, sec. 17.4) or Davidson and MacKinnon (2004, sec. 11.6) for an introduction
to censored and truncated regression models.

The likelihood for intreg subsumes that of the tobit models.

Let y = Xβ+ε be the model. y represents continuous outcomes—either observed or not observed.
Our model assumes ε ∼ N(0, σ2I).

For observations j ∈ C, we observe yj , that is, point data. Observations j ∈ L are left-censored;
we know only that the unobserved yj is less than or equal to yLj , a censoring value that we do know.
Similarly, observations j ∈ R are right-censored; we know only that the unobserved yj is greater
than or equal to yRj . Observations j ∈ I are intervals; we know only that the unobserved yj is in
the interval [ y1j , y2j ].

The log likelihood is

lnL =− 1
2

∑
j∈C

wj

{(
yj − xβ

σ

)2

+ log 2πσ2

}

+
∑
j∈L

wj log Φ
(
yLj − xβ

σ

)

+
∑
j∈R

wj log
{

1− Φ
(
yRj − xβ

σ

)}

+
∑
j∈I

wj log
{

Φ
(
y2j − xβ

σ

)
− Φ

(
y1j − xβ

σ

)}

where Φ() is the standard cumulative normal and wj is the weight for the jth observation. If no
weights are specified, wj = 1. If aweights are specified, wj = 1, and σ is replaced by σ/√aj in
the above, where aj are the aweights normalized to sum to N .

Maximization is as described in [R] maximize; the estimate reported as sigma is σ̂.

See Amemiya (1973) for a generalization of the tobit model to variable, but known, cutoffs.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

intreg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] intreg postestimation — Postestimation tools for intreg

[R] tobit — Tobit regression

[R] regress — Linear regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression models

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands
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Title

intreg postestimation — Postestimation tools for intreg

Description
The following postestimation commands are available after intreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarlnsigma

} [
if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy postestimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by
predict so that they ignore the offset variable; the linear prediction is treated as xjb rather than
as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂ lnσ.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] intreg — Interval regression

[U] 20 Estimation and postestimation commands



Title

ivprobit — Probit model with continuous endogenous regressors

Syntax
Maximum likelihood estimator

ivprobit depvar
[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

weight
] [

, mle options
]

Two-step estimator

ivprobit depvar
[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

weight
]
, twostep[

tse options
]

mle options Description

Model

mle use conditional maximum-likelihood estimator; the default
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

793
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tse options Description

Model
∗twostep use Newey’s two-step estimator; the default is mle

asis retain perfect predictor variables

SE

vce(vcetype) vcetype may be twostep, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

∗twostep is required.

varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with the maximum likelihood estimator. fweights are

allowed with Newey’s two-step estimator. See [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Endogenous covariates > Probit model with endogenous covariates

Description
ivprobit fits probit models where one or more of the regressors are endogenously determined.

By default, ivprobit uses maximum likelihood estimation. Alternatively, Newey’s (1987) minimum
chi-squared estimator can be invoked with the twostep option. Both estimators assume that the
endogenous regressors are continuous and are not appropriate for use with discrete endogenous
regressors. See [R] ivtobit for tobit estimation with endogenous regressors and [R] probit for probit
estimation when the model contains no endogenous regressors.

Options for ML estimator

� � �
Model �

mle requests that the conditional maximum-likelihood estimator be used. This is the default.

asis requests that all specified variables and observations be retained in the maximization process.
This option is typically not used and may introduce numerical instability. Normally, ivprobit
drops any endogenous or exogenous variables that perfectly predict success or failure in the
dependent variable. The associated observations are also dropped. For more information, see
Model identification in [R] probit.
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constraints(constraints); see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between
the endogenous variables and instruments be displayed. For the two-step estimator, first shows
the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated
jointly with the parameters of the probit equation. The default is not to show these parameter
estimates.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. This model’s
likelihood function can be difficult to maximize, especially with multiple endogenous variables.
The difficult and technique(bfgs) options may be helpful in achieving convergence.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with ivprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for two-step estimator

� � �
Model �

twostep is required and requests that Newey’s (1987) efficient two-step estimator be used to obtain
the coefficient estimates.

asis requests that all specified variables and observations be retained in the maximization process.
This option is typically not used and may introduce numerical instability. Normally, ivprobit
drops any endogenous or exogenous variables that perfectly predict success or failure in the
dependent variable. The associated observations are also dropped. For more information, see
Model identification in [R] probit.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.
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� � �
Reporting �

level(#); see [R] estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between
the endogenous variables and instruments be displayed. For the two-step estimator, first shows
the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated
jointly with the parameters of the probit equation. The default is not to show these parameter
estimates.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with ivprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Model setup
Model identification

Model setup

ivprobit fits models with dichotomous dependent variables and endogenous regressors. You can
use it to fit a probit model when you suspect that one or more of the regressors are correlated with
the error term. ivprobit is to probit modeling what ivregress is to linear regression analysis; see
[R] ivregress for more information.

Formally, the model is
y∗1i =y2iβ+ x1iγ+ ui

y2i =x1iΠ1 + x2iΠ2 + vi

where i = 1, . . . , N , y2i is a 1 × p vector of endogenous variables, x1i is a 1 × k1 vector of
exogenous variables, x2i is a 1 × k2 vector of additional instruments, and the equation for y2i is
written in reduced form. By assumption, (ui, vi) ∼ N(0,Σ), where σ11 is normalized to one to
identify the model. β and γ are vectors of structural parameters, and Π1 and Π2 are matrices of
reduced-form parameters. This is a recursive model: y2i appears in the equation for y∗1i, but y∗1i does
not appear in the equation for y2i. We do not observe y∗1i; instead, we observe

y1i =
{

0 y∗1i < 0
1 y∗1i ≥ 0

The order condition for identification of the structural parameters requires that k2 ≥ p. Presumably,
Σ is not block diagonal between ui and vi; otherwise, y2i would not be endogenous.

Technical note
This model is derived under the assumption that (ui, vi) is independent and identically distributed

multivariate normal for all i. The vce(cluster clustvar) option can be used to control for a lack of
independence. As with most probit models, if ui is heteroskedastic, point estimates will be inconsistent.
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Example 1

We have hypothetical data on 500 two-parent households, and we wish to model whether the
woman is employed. We have a variable, fem work, that is equal to one if she has a job and zero
otherwise. Her decision to work is a function of the number of children at home (kids), number of
years of schooling completed (fem educ), and other household income measured in thousands of
dollars (other inc). We suspect that unobservable shocks affecting the woman’s decision to hold a
job also affect the household’s other income. Therefore, we treat other inc as endogenous. As an
instrument, we use the number of years of schooling completed by the man (male educ).

The syntax for specifying the exogenous, endogenous, and instrumental variables is identical to
that used in ivregress; see [R] ivregress for details.

. use http://www.stata-press.com/data/r12/laborsup

. ivprobit fem_work fem_educ kids (other_inc = male_educ)

Fitting exogenous probit model

Iteration 0: log likelihood = -344.63508
Iteration 1: log likelihood = -255.36855
Iteration 2: log likelihood = -255.31444
Iteration 3: log likelihood = -255.31444

Fitting full model

Iteration 0: log likelihood = -2371.4753
Iteration 1: log likelihood = -2369.3178
Iteration 2: log likelihood = -2368.2198
Iteration 3: log likelihood = -2368.2062
Iteration 4: log likelihood = -2368.2062

Probit model with endogenous regressors Number of obs = 500
Wald chi2(3) = 163.88

Log likelihood = -2368.2062 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.0542756 .0060854 -8.92 0.000 -.0662027 -.0423485
fem_educ .211111 .0268648 7.86 0.000 .1584569 .2637651

kids -.1820929 .0478267 -3.81 0.000 -.2758316 -.0883543
_cons .3672083 .4480724 0.82 0.412 -.5109975 1.245414

/athrho .3907858 .1509443 2.59 0.010 .0949403 .6866313
/lnsigma 2.813383 .0316228 88.97 0.000 2.751404 2.875363

rho .3720374 .1300519 .0946561 .5958135
sigma 16.66621 .5270318 15.66461 17.73186

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity (/athrho = 0): chi2(1) = 6.70 Prob > chi2 = 0.0096

Because we did not specify mle or twostep, ivprobit used the maximum likelihood estimator
by default. At the top of the output, we see the iteration log. ivprobit fits a probit model ignoring
endogeneity to obtain starting values for the endogenous model. The header of the output contains
the sample size as well as a Wald statistic and p-value for the test of the hypothesis that all the slope
coefficients are jointly zero. Below the table of coefficients, Stata reminds us that the endogenous
variable is other inc and that fem educ, kids, and male educ were used as instruments.

At the bottom of the output is a Wald test of the exogeneity of the instrumented variables. If the
test statistic is not significant, there is not sufficient information in the sample to reject the null that
there is no endogeneity. Then a regular probit regression may be appropriate; the point estimates
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from ivprobit are consistent, though those from probit (see [R] probit) are likely to have smaller
standard errors.

Various two-step estimators have also been proposed for the endogenous probit model, and Newey’s
(1987) minimum chi-squared estimator is available with the twostep option.

Example 2

Refitting our labor-supply model with the two-step estimator yields

. ivprobit fem_work fem_educ kids (other_inc = male_educ), twostep
Checking reduced-form model...

Two-step probit with endogenous regressors Number of obs = 500
Wald chi2(3) = 93.97
Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.058473 .0093364 -6.26 0.000 -.0767719 -.040174
fem_educ .227437 .0281628 8.08 0.000 .1722389 .282635

kids -.1961748 .0496323 -3.95 0.000 -.2934522 -.0988973
_cons .3956061 .4982649 0.79 0.427 -.5809752 1.372187

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity: chi2(1) = 6.50 Prob > chi2 = 0.0108

All the coefficients have the same signs as their counterparts in the maximum likelihood model. The
Wald test at the bottom of the output confirms our earlier finding of endogeneity.

Technical note
In a standard probit model, the error term is assumed to have a variance of one. In the probit

model with endogenous regressors, we assume that (ui, vi) is multivariate normal with covariance
matrix

Var(ui, vi) = Σ =
[

1 Σ′21

Σ21 Σ22

]
With the properties of the multivariate normal distribution, Var(ui|vi) = 1 − Σ′21Σ

−1
22 Σ21. As a

result, Newey’s estimator and other two-step probit estimators do not yield estimates of β and γ but
rather β/σ and γ/σ, where σ is the square root of Var(ui|vi). Hence, we cannot directly compare
the estimates obtained from Newey’s estimator with those obtained via maximum likelihood or with
those obtained from probit. See Wooldridge (2010, 585–594) for a discussion of Rivers and Vuong’s
(1988) two-step estimator. The issues raised pertaining to the interpretation of the coefficients of that
estimator are identical to those that arise with Newey’s estimator. Wooldridge also discusses ways to
obtain marginal effects from two-step estimators.

Despite the coefficients not being directly comparable to their maximum likelihood counterparts,
the two-step estimator is nevertheless useful. The maximum likelihood estimator may have difficulty
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converging, especially with multiple endogenous variables. The two-step estimator, consisting of
nothing more complicated than a probit regression, will almost certainly converge. Moreover, although
the coefficients from the two models are not directly comparable, the two-step estimates can still be
used to test for statistically significant relationships.

Model identification
As in the linear simultaneous-equation model, the order condition for identification requires that

the number of excluded exogenous variables (that is, the additional instruments) be at least as great
as the number of included endogenous variables. ivprobit checks this for you and issues an error
message if the order condition is not met.

Like probit, logit, and logistic, ivprobit checks the exogenous and endogenous variables
to see if any of them predict the outcome variable perfectly. It will then drop offending variables
and observations and fit the model on the remaining data. Instruments that are perfect predictors
do not affect estimation, so they are not checked. See Model identification in [R] probit for more
information.

ivprobit will also occasionally display messages such as

Note: 4 failures and 0 successes completely determined.

For an explanation of this message, see [R] logit.

Saved results
ivprobit, mle saves the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(endog ct) number of endogenous regressors
e(p) model Wald p-value
e(p exog) exogeneity test Wald p-value
e(chi2) model Wald χ2

e(chi2 exog) Wald χ2 test of exogeneity
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) ivprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(instd) instrumented variables
e(insts) instruments
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(asis) asis, if specified
e(method) ml
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(rules) information about perfect predictors
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector

e(Sigma) Σ̂
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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ivprobit, twostep saves the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(df m) model degrees of freedom
e(df exog) degrees of freedom for χ2 test of exogeneity
e(p) model Wald p-value
e(p exog) exogeneity test Wald p-value
e(chi2) model Wald χ2

e(chi2 exog) Wald χ2 test of exogeneity
e(rank) rank of e(V)

Macros
e(cmd) ivprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(instd) instrumented variables
e(insts) instruments
e(wtype) weight type
e(wexp) weight expression
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(asis) asis, if specified
e(method) twostep
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(rules) information about perfect predictors
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
ivprobit is implemented as an ado-file.

Fitting limited-dependent variable models with endogenous regressors has received considerable
attention in the econometrics literature. Building on the results of Amemiya (1978, 1979), Newey (1987)
developed an efficient method of estimation that encompasses both Rivers and Vuong’s (1988)
simultaneous-equations probit model and Smith and Blundell’s (1986) simultaneous-equations tobit
model. With modern computers, maximum likelihood estimation is feasible as well. For compactness,
we write the model as

y∗1i = ziδ+ ui (1a)
y2i = xiΠ+ vi (1b)

where zi = (y2i,x1i), xi = (x1i,x2i), δ = (β′,γ′)′, and Π = (Π′1,Π
′
2)′.



802 ivprobit — Probit model with continuous endogenous regressors

Deriving the likelihood function is straightforward because we can write the joint density
f (y1i,y2i|xi) as f (y1i|y2i,xi) f (y2i|xi). When there is an endogenous regressor, the log likelihood
for observation i is

lnLi = wi

[
y1i lnΦ (mi) + (1− y1i) ln {1− Φ (mi)}+ lnφ

(
y2i − xiΠ

σ

)
− lnσ

]
where

mi =
ziδ+ ρ (y2i − xiΠ) /σ

(1− ρ2)
1
2

Φ(·) and φ(·) are the standard normal distribution and density functions, respectively; σ is the standard
deviation of vi; ρ is the correlation coefficient between ui and vi; and wi is the weight for observation
i or one if no weights were specified. Instead of estimating σ and ρ, we estimate lnσ and atanh ρ,
where

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
For multiple endogenous regressors, let

Var(ui, vi) = Σ =
[

1 Σ′21

Σ21 Σ22

]
As in any probit model, we have imposed the normalization Var(ui) = 1 to identify the model. The
log likelihood for observation i is

lnLi = wi

[
y1i lnΦ (mi) + (1− y1i) ln {1− Φ (mi)}+ lnf(y2i|xi)

]
where

lnf(y2i|xi) = −p
2

ln2π − 1
2

ln |Σ22| −
1
2

(y2i − xiΠ) Σ−1
22 (y2i − xiΠ)′

and
mi =

(
1−Σ′21Σ

−1
22 Σ21

)− 1
2
{
ziδ+ (y2i − xiΠ) Σ−1

22 Σ21

}
Instead of maximizing the log-likelihood function with respect to Σ, we maximize with respect

to the Cholesky decomposition S of Σ; that is, there exists a lower triangular matrix, S, such that
SS′ = Σ. This maximization ensures that Σ is positive definite, as a covariance matrix must be. Let

S =


1 0 0 . . . 0
s21 s22 0 . . . 0
s31 s32 s33 . . . 0

...
...

...
. . .

...
sp+1,1 sp+1,2 sp+1,3 . . . sp+1,p+1


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With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator
of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of heckman also supports estimation with survey data. For details
on VCEs with survey data, see [SVY] variance estimation.

The two-step estimates are obtained using Newey’s (1987) minimum chi-squared estimator. The
reduced-form equation for y∗1i is

y∗1i = (xiΠ+ vi)β+ x1iγ+ ui

= xiα+ viβ+ ui

= xiα+ νi

where νi = viβ+ ui. Because ui and vi are jointly normal, νi is also normal. Note that

α =
[
Π1

Π2

]
β+

[
I
0

]
γ = D(Π)δ

where D(Π) = (Π, I1) and I1 is defined such that xiI1 = x1i. Letting ẑi = (xiΠ̂,x1i),
ẑiδ = xiD(Π̂)δ, where D(Π̂) = (Π̂, I1). Thus one estimator of α is D(Π̂)δ; denote this
estimator by D̂δ.

α could also be estimated directly as the solution to

max
α,λ

N∑
i=1

l(y1i,xiα+ v̂iλ) (2)

where l(·) is the log likelihood for probit. Denote this estimator by α̃. The inclusion of the v̂iλ term
follows because the multivariate normality of (ui, vi) implies that, conditional on y2i, the expected
value of ui is nonzero. Because vi is unobservable, the least-squares residuals from fitting (1b) are
used.

Amemiya (1978) shows that the estimator of δ defined by

max
δ

(α̃− D̂δ)′Ω̂
−1

(α̃− D̂δ)

where Ω̂ is a consistent estimator of the covariance of
√
N(α̃ − D̂δ), is asymptotically efficient

relative to all other estimators that minimize the distance between α̃ and D(Π̂)δ. Thus an efficient
estimator of δ is

δ̂ = (D̂
′
Ω̂
−1
D̂)−1D̂

′
Ω̂
−1
α̃ (3)

and
Var(δ̂) = (D̂

′
Ω̂
−1
D̂)−1 (4)

To implement this estimator, we need Ω̂
−1

.

Consider the two-step maximum likelihood estimator that results from first fitting (1b) by OLS and
computing the residuals v̂i = y2i − xiΠ̂. The estimator is then obtained by solving

max
δ,λ

N∑
i=1

l(y1i, ziδ+ v̂iλ)
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This is the two-step instrumental variables (2SIV) estimator proposed by Rivers and Vuong (1988),
and its role will become apparent shortly.

From Proposition 5 of Newey (1987),
√
N(α̃− D̂δ) d−→N(0,Ω), where

Ω = J−1
αα + (λ− β)′Σ22(λ− β)Q−1

and Σ22 = E{v′ivi}. J−1
αα is simply the covariance matrix of α̃, ignoring that Π̂ is an estimated

parameter matrix. Moreover, Newey shows that the covariance matrix from an OLS regression of
y2i(λ̂− β̂) on xi is a consistent estimator of the second term. λ̂ can be obtained from solving (2),
and the 2SIV estimator yields a consistent estimate, β̂.

Mechanically, estimation proceeds in several steps.

1. Each of the endogenous right-hand-side variables is regressed on all the exogenous variables,
and the fitted values and residuals are calculated. The matrix D̂ = D(Π̂) is assembled from the
estimated coefficients.

2. probit is used to solve (2) and obtain α̃ and λ̂. The portion of the covariance matrix corresponding
to α, J−1

αα, is also saved.

3. The 2SIV estimator is evaluated, and the parameters β̂ corresponding to y2i are collected.

4. y2i(λ̂ − β̂) is regressed on xi. The covariance matrix of the parameters from this regression is
added to J−1

αα, yielding Ω̂.

5. Evaluating (3) and (4) yields the estimates δ̂ and Var(δ̂).

6. A Wald test of the null hypothesis H0 : λ = 0, using the 2SIV estimates, serves as our test of
exogeneity.

The two-step estimates are not directly comparable to those obtained from the maximum likelihood
estimator or from probit. The argument is the same for Newey’s efficient estimator as for Rivers
and Vuong’s (1988) 2SIV estimator, so we consider the simpler 2SIV estimator. From the properties
of the normal distribution,

E(ui|vi) = viΣ−1
22 Σ21 and Var(ui|vi) = 1−Σ′21Σ

−1
22 Σ21

We write ui as ui = viΣ−1
22 Σ21 + ei = viλ + ei, where ei ∼ N(0, 1 − ρ2), ρ2 = Σ′21Σ

−1
22 Σ21,

and ei is independent of vi. In the second stage of 2SIV, we use a probit regression to estimate the
parameters of

y1i = ziδ+ viλ+ ei

Because vi is unobservable, we use the sample residuals from the first-stage regressions.

Pr(y1i = 1|zi, vi) = Pr(ziδ+ viλ+ ei > 0|zi, vi) = Φ
{

(1− ρ2)−
1
2 (ziδ+ viλ)

}
Hence, as mentioned previously, 2SIV and Newey’s estimator do not estimate δ and λ but rather

δρ =
1

(1− ρ2)
1
2
δ and λρ =

1
(1− ρ2)

1
2
λ
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Title

ivprobit postestimation — Postestimation tools for ivprobit

Description
The following postestimation commands are of special interest after ivprobit:

Command Description

estat classification report various summary statistics, including the classification table
lroc compute area under ROC curve and graph the curve
lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate after the two-step estimator or the svy prefix.

For information about these commands, see [R] logistic postestimation.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest2 likelihood-ratio test; not available with two-step estimator
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest1 seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 estat ic and suest are not appropriate after ivprobit, twostep.
2 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
After ML or twostep

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic rules asif
]

After ML

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
pr probability of a positive outcome; not available with two-step estimator

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

pr calculates the probability of a positive outcome. pr is not available with the two-step estimator.

rules requests that Stata use any rules that were used to identify the model when making the
prediction. By default, Stata calculates missing for excluded observations. rules is not available
with the two-step estimator.

asif requests that Stata ignore the rules and the exclusion criteria and calculate predictions for all
observations possible using the estimated parameters from the model. asif is not available with
the two-step estimator.

scores, not available with twostep, calculates equation-level score variables.

For models with one endogenous regressor, four new variables are created.

The first new variable will contain ∂ lnL/∂(ziδ).

The second new variable will contain ∂ lnL/∂(xiΠ).

The third new variable will contain ∂ lnL/∂ atanh ρ.

The fourth new variable will contain ∂ lnL/∂ lnσ.

For models with p endogenous regressors, p+ {(p+ 1)(p+ 2)}/2 new variables are created.

The first new variable will contain ∂ lnL/∂(ziδ).
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The second through (p + 1)th new variables will contain ∂ lnL/∂(xiΠk), k = 1, . . . , p,
where Πk is the kth column of Π.

The remaining score variables will contain the partial derivatives of lnL with respect to s21,
s31, . . . , sp+1,1, s22, . . . , sp+1,2, . . . , sp+1,p+1, where sm,n denotes the (m,n) element
of the Cholesky decomposition of the error covariance matrix.

Remarks
Remarks are presented under the following headings:

Marginal effects
Obtaining predicted values

Marginal effects

Example 1

We can obtain marginal effects by using the margins command after ivprobit. We will calculate
average marginal effects by using the labor-supply model of example 1 in [R] ivprobit.

. use http://www.stata-press.com/data/r12/laborsup

. ivprobit fem_work fem_educ kids (other_inc = male_educ)
(output omitted )

. margins, dydx(*) predict(pr)

Average marginal effects Number of obs = 500
Model VCE : OIM

Expression : Probability of positive outcome, predict(pr)
dy/dx w.r.t. : other_inc fem_educ kids male_educ

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.014015 .0009836 -14.25 0.000 -.0159428 -.0120872
fem_educ .0545129 .0066007 8.26 0.000 .0415758 .06745

kids -.0470199 .0123397 -3.81 0.000 -.0712052 -.0228346
male_educ 0 (omitted)

Here we see that a $1,000 increase in other inc leads to an average decrease of 0.014 in the
probability that the woman has a job. male edu has no effect because it appears only as an instrument.

Obtaining predicted values

After fitting your model with ivprobit, you can obtain the linear prediction and its standard
error for both the estimation sample and other samples by using the predict command; see
[U] 20 Estimation and postestimation commands and [R] predict. If you had used the maximum
likelihood estimator, you could also obtain the probability of a positive outcome.
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predict’s pr option calculates the probability of a positive outcome, remembering any rules used
to identify the model, and calculates missing for excluded observations. predict’s rules option
uses the rules in predicting probabilities, whereas predict’s asif option ignores both the rules and
the exclusion criteria and calculates probabilities for all possible observations by using the estimated
parameters from the model. See Obtaining predicted values in [R] probit postestimation for an
example.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The linear prediction is calculated as ziδ̂, where δ̂ is the estimated value of δ, and zi and δ are
defined in (1a) of [R] ivprobit. The probability of a positive outcome is Φ(ziδ̂), where Φ(·) is the
standard normal distribution function.

Also see
[R] ivprobit — Probit model with continuous endogenous regressors

[U] 20 Estimation and postestimation commands
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ivregress — Single-equation instrumental-variables regression

Syntax
ivregress estimator depvar

[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

weight
][

, options
]

estimator Description

2sls two-stage least squares (2SLS)
liml limited-information maximum likelihood (LIML)
gmm generalized method of moments (GMM)

options Description

Model

noconstant suppress constant term
hascons has user-supplied constant

GMM1

wmatrix(wmtype) wmtype may be robust, cluster clustvar, hac kernel, or
unadjusted

center center moments in weight matrix computation
igmm use iterative instead of two-step GMM estimator
eps(#)2 specify # for parameter convergence criterion; default is eps(1e-6)

weps(#)2 specify # for weight matrix convergence criterion; default is
weps(1e-6)

optimization options2 control the optimization process; seldom used

SE/Robust

vce(vcetype) vcetype may be unadjusted, robust, cluster clustvar, bootstrap,
jackknife, or hac kernel

Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
small make degrees-of-freedom adjustments and report small-sample

statistics
noheader display only the coefficient table
depname(depname) substitute dependent variable name
eform(string) report exponentiated coefficients and use string to label them
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

perfect do not check for collinearity between endogenous regressors and
excluded instruments

coeflegend display legend instead of statistics
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1These options may be specified only when gmm is specified.
2These options may be specified only when igmm is specified.
varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
hascons, vce(), noheader, depname(), and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
perfect and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Endogenous covariates > Single-equation instrumental-variables regression

Description
ivregress fits a linear regression of depvar on varlist1 and varlist2, using varlistiv (along with

varlist1) as instruments for varlist2. ivregress supports estimation via two-stage least squares (2SLS),
limited-information maximum likelihood (LIML), and generalized method of moments (GMM).

In the language of instrumental variables, varlist1 and varlistiv are the exogenous variables, and
varlist2 are the endogenous variables.

Options

� � �
Model �

noconstant; see [R] estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent
variables.

� � �
GMM �

wmatrix(wmtype) specifies the type of weighting matrix to be used in conjunction with the GMM
estimator.

Specifying wmatrix(robust) requests a weighting matrix that is optimal when the error term is
heteroskedastic. wmatrix(robust) is the default.

Specifying wmatrix(cluster clustvar) requests a weighting matrix that accounts for arbitrary
correlation among observations within clusters identified by clustvar.

Specifying wmatrix(hac kernel #) requests a heteroskedasticity- and autocorrelation-consistent
(HAC) weighting matrix using the specified kernel (see below) with # lags. The bandwidth of a
kernel is equal to # + 1.

Specifying wmatrix(hac kernel opt) requests an HAC weighting matrix using the specified kernel,
and the lag order is selected using Newey and West’s (1994) optimal lag-selection algorithm.

Specifying wmatrix(hac kernel) requests an HAC weighting matrix using the specified kernel and
N − 2 lags, where N is the sample size.
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There are three kernels available for HAC weighting matrices, and you may request each one by
using the name used by statisticians or the name perhaps more familiar to economists:

bartlett or nwest requests the Bartlett (Newey–West) kernel;

parzen or gallant requests the Parzen (Gallant 1987) kernel; and

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

Specifying wmatrix(unadjusted) requests a weighting matrix that is suitable when the errors are
homoskedastic. The GMM estimator with this weighting matrix is equivalent to the 2SLS estimator.

center requests that the sample moments be centered (demeaned) when computing GMM weight
matrices. By default, centering is not done.

igmm requests that the iterative GMM estimator be used instead of the default two-step GMM estimator.
Convergence is declared when the relative change in the parameter vector from one iteration to
the next is less than eps() or the relative change in the weight matrix is less than weps().

eps(#) specifies the convergence criterion for successive parameter estimates when the iterative GMM
estimator is used. The default is eps(1e-6). Convergence is declared when the relative difference
between successive parameter estimates is less than eps() and the relative difference between
successive estimates of the weighting matrix is less than weps().

weps(#) specifies the convergence criterion for successive estimates of the weighting matrix when
the iterative GMM estimator is used. The default is weps(1e-6). Convergence is declared when
the relative difference between successive parameter estimates is less than eps() and the relative
difference between successive estimates of the weighting matrix is less than weps().

optimization options: iterate(#),
[
no
]
log. iterate() specifies the maximum number of iterations

to perform in conjunction with the iterative GMM estimator. The default is 16,000 or the number
set using set maxiter (see [R] maximize). log/nolog specifies whether to show the iteration
log. These options are seldom used.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification, that allow for intragroup correlation, and that use bootstrap or
jackknife methods; see [R] vce option.

vce(unadjusted), the default for 2sls and liml, specifies that an unadjusted (nonrobust) VCE
matrix be used. The default for gmm is based on the wmtype specified in the wmatrix() option;
see wmatrix(wmtype) above. If wmatrix() is specified with gmm but vce() is not, then vcetype
is set equal to wmtype. To override this behavior and obtain an unadjusted (nonrobust) VCE matrix,
specify vce(unadjusted).

ivregress also allows the following:

vce(hac kernel
[

# | opt
]
) specifies that an HAC covariance matrix be used. The syntax used

with vce(hac kernel . . .) is identical to that used with wmatrix(hac kernel . . .); see
wmatrix(wmtype) above.

� � �
Reporting �

level(#); see [R] estimation options.

first requests that the first-stage regression results be displayed.



ivregress — Single-equation instrumental-variables regression 813

small requests that the degrees-of-freedom adjustmentN/(N−k) be made to the variance–covariance
matrix of parameters and that small-sample F and t statistics be reported, where N is the sample
size and k is the number of parameters estimated. By default, no degrees-of-freedom adjustment
is made, and Wald and z statistics are reported. Even with this option, no degrees-of-freedom
adjustment is made to the weighting matrix when the GMM estimator is used.

noheader suppresses the display of the summary statistics at the top of the output, displaying only
the coefficient table.

depname(depname) is used only in programs and ado-files that use ivregress to fit models other than
instrumental-variables regression. depname() may be specified only at estimation time. depname
is recorded as the identity of the dependent variable, even though the estimates are calculated using
depvar. This method affects the labeling of the output—not the results calculated—but could
affect later calculations made by predict, where the residual would be calculated as deviations
from depname rather than depvar. depname() is most typically used when depvar is a temporary
variable (see [P] macro) used as a proxy for depname.

eform(string) is used only in programs and ado-files that use ivregress to fit models other
than instrumental-variables regression. eform() specifies that the coefficient table be displayed in
“exponentiated form”, as defined in [R] maximize, and that string be used to label the exponentiated
coefficients in the table.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following options are available with ivregress but are not shown in the dialog box:

perfect requests that ivregress not check for collinearity between the endogenous regressors and
excluded instruments, allowing one to specify “perfect” instruments. This option cannot be used
with the LIML estimator. This option may be required when using ivregress to implement other
estimators.

coeflegend; see [R] estimation options.

Remarks
ivregress performs instrumental-variables regression and weighted instrumental-variables regres-

sion. For a general discussion of instrumental variables, see Baum (2006), Cameron and Trivedi (2005;
2010, chap. 6) Davidson and MacKinnon (1993, 2004), Greene (2012, chap. 8), and Wooldridge
(2009, 2010). See Hall (2005) for a lucid presentation of GMM estimation. Angrist and Pischke (2009,
chap. 4) offer a casual yet thorough introduction to instrumental-variables estimators, including their
use in estimating treatment effects. Some of the earliest work on simultaneous systems can be
found in Cowles Commission monographs—Koopmans and Marschak (1950) and Koopmans and
Hood (1953)—with the first developments of 2SLS appearing in Theil (1953) and Basmann (1957).
However, Stock and Watson (2011, 422–424) present an example of the method of instrumental
variables that was first published in 1928 by Philip Wright.

The syntax for ivregress assumes that you want to fit one equation from a system of equations
or an equation for which you do not want to specify the functional form for the remaining equations
of the system. To fit a full system of equations, using either 2SLS equation-by-equation or three-stage
least squares, see [R] reg3. An advantage of ivregress is that you can fit one equation of a
multiple-equation system without specifying the functional form of the remaining equations.

Formally, the model fit by ivregress is

yi = yiβ1 + x1iβ2 + ui (1)
yi = x1iΠ1 + x2iΠ2 + vi (2)
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Here yi is the dependent variable for the ith observation, yi represents the endogenous regressors
(varlist2 in the syntax diagram), x1i represents the included exogenous regressors (varlist1 in the syntax
diagram), and x2i represents the excluded exogenous regressors (varlistiv in the syntax diagram).
x1i and x2i are collectively called the instruments. ui and vi are zero-mean error terms, and the
correlations between ui and the elements of vi are presumably nonzero.

The rest of the discussion is presented under the following headings:

2SLS and LIML estimators
GMM estimator

2SLS and LIML estimators

The most common instrumental-variables estimator is 2SLS.

Example 1: 2SLS estimator

We have state data from the 1980 census on the median dollar value of owner-occupied housing
(hsngval) and the median monthly gross rent (rent). We want to model rent as a function of
hsngval and the percentage of the population living in urban areas (pcturban):

renti = β0 + β1hsngvali + β2pcturbani + ui

where i indexes states and ui is an error term.

Because random shocks that affect rental rates in a state probably also affect housing values, we
treat hsngval as endogenous. We believe that the correlation between hsngval and u is not equal
to zero. On the other hand, we have no reason to believe that the correlation between pcturban and
u is nonzero, so we assume that pcturban is exogenous.

Because we are treating hsngval as an endogenous regressor, we must have one or more additional
variables available that are correlated with hsngval but uncorrelated with u. Moreover, these excluded
exogenous variables must not affect rent directly, because if they do then they should be included
in the regression equation we specified above. In our dataset, we have a variable for family income
(faminc) and for region of the country (region) that we believe are correlated with hsngval but
not the error term. Together, pcturban, faminc, and factor variables 2.region, 3.region, and
4.region constitute our set of instruments.

To fit the equation in Stata, we specify the dependent variable and the list of included exogenous
variables. In parentheses, we specify the endogenous regressors, an equal sign, and the excluded
exogenous variables. Only the additional exogenous variables must be specified to the right of the
equal sign; the exogenous variables that appear in the regression equation are automatically included
as instruments.
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Here we fit our model with the 2SLS estimator:

. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)

Instrumental variables (2SLS) regression Number of obs = 50
Wald chi2(2) = 90.76
Prob > chi2 = 0.0000
R-squared = 0.5989
Root MSE = 22.166

rent Coef. Std. Err. z P>|z| [95% Conf. Interval]

hsngval .0022398 .0003284 6.82 0.000 .0015961 .0028836
pcturban .081516 .2987652 0.27 0.785 -.504053 .667085

_cons 120.7065 15.22839 7.93 0.000 90.85942 150.5536

Instrumented: hsngval
Instruments: pcturban faminc 2.region 3.region 4.region

As we would expect, states with higher housing values have higher rental rates. The proportion
of a state’s population that is urban does not have a significant effect on rents.

Technical note
In a simultaneous-equations framework, we could write the model we just fit as

hsngvali = π0 + π1faminci + π22.regioni + π33.regioni + π44.regioni + vi

renti = β0 + β1hsngvali + β2pcturbani + ui

which here happens to be recursive (triangular), because hsngval appears in the equation for rent
but rent does not appear in the equation for hsngval. In general, however, systems of simultaneous
equations are not recursive. Because this system is recursive, we could fit the two equations individually
via OLS if we were willing to assume that u and v were independent. For a more detailed discussion
of triangular systems, see Kmenta (1997, 719–720).

Historically, instrumental-variables estimation and systems of simultaneous equations were taught
concurrently, and older textbooks describe instrumental-variables estimation solely in the context of
simultaneous equations. However, in recent decades, the treatment of endogeneity and instrumental-
variables estimation has taken on a much broader scope, while interest in the specification of
complete systems of simultaneous equations has waned. Most recent textbooks, such as Cameron
and Trivedi (2005), Davidson and MacKinnon (1993, 2004), and Wooldridge (2009, 2010), treat
instrumental-variables estimation as an integral part of the modern economists’ toolkit and introduce
it long before shorter discussions on simultaneous equations.

In addition to the 2SLS member of the κ-class estimators, ivregress implements the LIML
estimator. Both theoretical and Monte Carlo exercises indicate that the LIML estimator may yield less
bias and confidence intervals with better coverage rates than the 2SLS estimator. See Poi (2006) and
Stock, Wright, and Yogo (2002) (and the papers cited therein) for Monte Carlo evidence.
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Example 2: LIML estimator

Here we refit our model with the LIML estimator:
. ivregress liml rent pcturban (hsngval = faminc i.region)

Instrumental variables (LIML) regression Number of obs = 50
Wald chi2(2) = 75.71
Prob > chi2 = 0.0000
R-squared = 0.4901
Root MSE = 24.992

rent Coef. Std. Err. z P>|z| [95% Conf. Interval]

hsngval .0026686 .0004173 6.39 0.000 .0018507 .0034865
pcturban -.1827391 .3571132 -0.51 0.609 -.8826681 .5171899

_cons 117.6087 17.22625 6.83 0.000 83.84587 151.3715

Instrumented: hsngval
Instruments: pcturban faminc 2.region 3.region 4.region

These results are qualitatively similar to the 2SLS results, although the coefficient on hsngval is
about 19% higher.

GMM estimator
Since the celebrated paper of Hansen (1982), the GMM has been a popular method of estimation

in economics and finance, and it lends itself well to instrumental-variables estimation. The basic
principle is that we have some moment or orthogonality conditions of the form

E(ziui) = 0 (3)

From (1), we have ui = yi − yiβ1 − x1iβ2. What are the elements of the instrument vector zi? By
assumption, x1i is uncorrelated with ui, as are the excluded exogenous variables x2i, and so we use
zi = [x1i x2i]. The moment conditions are simply the mathematical representation of the assumption
that the instruments are exogenous—that is, the instruments are orthogonal to (uncorrelated with) ui.

If the number of elements in zi is just equal to the number of unknown parameters, then we can
apply the analogy principle to (3) and solve

1
N

∑
i

ziui =
1
N

∑
i

zi (yi − yiβ1 − x1iβ2) = 0 (4)

This equation is known as the method of moments estimator. Here where the number of instruments
equals the number of parameters, the method of moments estimator coincides with the 2SLS estimator,
which also coincides with what has historically been called the indirect least-squares estimator (Judge
et al. 1985, 595).

The “generalized” in GMM addresses the case in which the number of instruments (columns of zi)
exceeds the number of parameters to be estimated. Here there is no unique solution to the population
moment conditions defined in (3), so we cannot use (4). Instead, we define the objective function

Q(β1,β2) =

(
1
N

∑
i

ziui

)′
W

(
1
N

∑
i

ziui

)
(5)
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where W is a positive-definite matrix with the same number of rows and columns as the number of
columns of zi. W is known as the weighting matrix, and we specify its structure with the wmatrix()
option. The GMM estimator of (β1,β2) minimizes Q(β1,β2); that is, the GMM estimator chooses
β1 and β2 to make the moment conditions as close to zero as possible for a given W. For a more
general GMM estimator, see [R] gmm. gmm does not restrict you to fitting a single linear equation,
though the syntax is more complex.

A well-known result is that if we define the matrix S0 to be the covariance of ziui and set
W = S−1

0 , then we obtain the optimal two-step GMM estimator, where by optimal estimator we mean
the one that results in the smallest variance given the moment conditions defined in (3).

Suppose that the errors ui are heteroskedastic but independent among observations. Then

S0 = E(ziuiuiz′i) = E(u2
i ziz

′
i)

and the sample analogue is

Ŝ =
1
N

∑
i

û2
i ziz

′
i (6)

To implement this estimator, we need estimates of the sample residuals ûi. ivregress gmm obtains
the residuals by estimating β1 and β2 by 2SLS and then evaluates (6) and sets W = Ŝ−1. Equation (6)
is the same as the center term of the “sandwich” robust covariance matrix available from most Stata
estimation commands through the vce(robust) option.

Example 3: GMM estimator

Here we refit our model of rents by using the GMM estimator, allowing for heteroskedasticity in
ui:

. ivregress gmm rent pcturban (hsngval = faminc i.region), wmatrix(robust)

Instrumental variables (GMM) regression Number of obs = 50
Wald chi2(2) = 112.09
Prob > chi2 = 0.0000
R-squared = 0.6616

GMM weight matrix: Robust Root MSE = 20.358

Robust
rent Coef. Std. Err. z P>|z| [95% Conf. Interval]

hsngval .0014643 .0004473 3.27 0.001 .0005877 .002341
pcturban .7615482 .2895105 2.63 0.009 .1941181 1.328978

_cons 112.1227 10.80234 10.38 0.000 90.95052 133.2949

Instrumented: hsngval
Instruments: pcturban faminc 2.region 3.region 4.region

Because we requested that a heteroskedasticity-consistent weighting matrix be used during estimation
but did not specify the vce() option, ivregress reported standard errors that are robust to
heteroskedasticity. Had we specified vce(unadjusted), we would have obtained standard errors that
would be correct only if the weighting matrix W does in fact converge to S−1

0 .
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Technical note
Many software packages that implement GMM estimation use the same heteroskedasticity-consistent

weighting matrix we used in the previous example to obtain the optimal two-step estimates but do not use
a heteroskedasticity-consistent VCE, even though they may label the standard errors as being “robust”.
To replicate results obtained from other packages, you may have to use the vce(unadjusted) option.
See Methods and formulas below for a discussion of robust covariance matrix estimation in the GMM
framework.

By changing our definition of S0, we can obtain GMM estimators suitable for use with other types
of data that violate the assumption that the errors are independent and identically distributed. For
example, you may have a dataset that consists of multiple observations for each person in a sample.
The observations that correspond to the same person are likely to be correlated, and the estimation
technique should account for that lack of independence. Say that in your dataset, people are identified
by the variable personid and you type

. ivregress gmm ..., wmatrix(cluster personid)

Here ivregress estimates S0 as

Ŝ =
1
N

∑
c∈C

qcq′c

where C denotes the set of clusters and

qc =
∑
i∈cj

ûizi

where cj denotes the jth cluster. This weighting matrix accounts for the within-person correlation
among observations, so the GMM estimator that uses this version of S0 will be more efficient than
the estimator that ignores this correlation.

Example 4: GMM estimator with clustering

We have data from the National Longitudinal Survey on young women’s wages as reported in a
series of interviews from 1968 through 1988, and we want to fit a model of wages as a function of
each woman’s age and age squared, job tenure, birth year, and level of education. We believe that
random shocks that affect a woman’s wage also affect her job tenure, so we treat tenure as endogenous.
As additional instruments, we use her union status, number of weeks worked in the past year, and a
dummy indicating whether she lives in a metropolitan area. Because we have several observations for
each woman (corresponding to interviews done over several years), we want to control for clustering
on each person.
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. use http://www.stata-press.com/data/r12/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. ivregress gmm ln_wage age c.age#c.age birth_yr grade
> (tenure = union wks_work msp), wmatrix(cluster idcode)

Instrumental variables (GMM) regression Number of obs = 18625
Wald chi2(5) = 1807.17
Prob > chi2 = 0.0000
R-squared = .

GMM weight matrix: Cluster (idcode) Root MSE = .46951

(Std. Err. adjusted for 4110 clusters in idcode)

Robust
ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure .099221 .0037764 26.27 0.000 .0918194 .1066227
age .0171146 .0066895 2.56 0.011 .0040034 .0302259

c.age#c.age -.0005191 .000111 -4.68 0.000 -.0007366 -.0003016

birth_yr -.0085994 .0021932 -3.92 0.000 -.012898 -.0043008
grade .071574 .0029938 23.91 0.000 .0657062 .0774417
_cons .8575071 .1616274 5.31 0.000 .5407231 1.174291

Instrumented: tenure
Instruments: age c.age#c.age birth_yr grade union wks_work msp

Both job tenure and years of schooling have significant positive effects on wages.

Time-series data are often plagued by serial correlation. In these cases, we can construct a weighting
matrix to account for the fact that the error in period t is probably correlated with the errors in periods
t − 1, t − 2, etc. An HAC weighting matrix can be used to account for both serial correlation and
potential heteroskedasticity.

To request an HAC weighting matrix, you specify the wmatrix(hac kernel
[

# | opt
]
) option.

kernel specifies which of three kernels to use: bartlett, parzen, or quadraticspectral. kernel
determines the amount of weight given to lagged values when computing the HAC matrix, and #
denotes the maximum number of lags to use. Many texts refer to the bandwidth of the kernel instead
of the number of lags; the bandwidth is equal to the number of lags plus one. If neither opt nor #
is specified, then N − 2 lags are used, where N is the sample size.

If you specify wmatrix(hac kernel opt), then ivregress uses Newey and West’s (1994)
algorithm for automatically selecting the number of lags to use. Although the authors’ Monte Carlo
simulations do show that the procedure may result in size distortions of hypothesis tests, the procedure
is still useful when little other information is available to help choose the number of lags.

For more on GMM estimation, see Baum (2006); Baum, Schaffer, and Stillman (2003, 2007);
Cameron and Trivedi (2005); Davidson and MacKinnon (1993, 2004); Hayashi (2000); or
Wooldridge (2010). See Newey and West (1987) for an introduction to HAC covariance matrix
estimation.
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Saved results
ivregress saves the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R2

e(r2 a) adjusted R2

e(F) F statistic
e(rmse) root mean squared error
e(N clust) number of clusters
e(chi2) χ2

e(kappa) κ used in LIML estimator
e(J) value of GMM objective function
e(wlagopt) lags used in HAC weight matrix (if Newey–West algorithm used)
e(vcelagopt) lags used in HAC VCE matrix (if Newey–West algorithm used)
e(rank) rank of e(V)
e(iterations) number of GMM iterations (0 if not applicable)

Macros
e(cmd) ivregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(instd) instrumented variable
e(insts) instruments
e(constant) noconstant or hasconstant if specified
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(estimator) 2sls, liml, or gmm
e(exogr) exogenous regressors
e(wmatrix) wmtype specified in wmatrix()
e(moments) centered if center specified
e(small) small if small-sample statistics
e(depname) depname if depname(depname) specified; otherwise same as e(depvar)
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(footnote) program used to implement footnote display
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(W) weight matrix used to compute GMM estimates
e(S) moment covariance matrix used to compute GMM variance–covariance matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
ivregress is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Notation
2SLS and LIML estimators
GMM estimator

Notation

Items printed in lowercase and italicized (for example, x) are scalars. Items printed in lowercase
and boldfaced (for example, x) are vectors. Items printed in uppercase and boldfaced (for example,
X) are matrices.

The model is
y = Yβ1 + X1β2 + u = Xβ+ u

Y = X1Π1 + X2Π2 + v = ZΠ+ V

where y is an N × 1 vector of the left-hand-side variable; N is the sample size; Y is an N × p
matrix of p endogenous regressors; X1 is an N × k1 matrix of k1 included exogenous regressors;
X2 is an N × k2 matrix of k2 excluded exogenous variables, X = [Y X1], Z = [X1 X2]; u is an
N × 1 vector of errors; V is an N × p matrix of errors; β = [β1 β2] is a k = (p+ k1)× 1 vector
of parameters; and Π is a (k1 + k2)× p vector of parameters. If a constant term is included in the
model, then one column of X1 contains all ones.

Let v be a column vector of weights specified by the user. If no weights are specified, v = 1.
Let w be a column vector of normalized weights. If no weights are specified or if the user specified
fweights or iweights, w = v; otherwise, w =

{
v/(1′v)

}
(1′1). Let D denote the N ×N matrix

with w on the main diagonal and zeros elsewhere. If no weights are specified, D is the identity
matrix.

The weighted number of observations n is defined as 1′w. For iweights, this is truncated to an
integer. The sum of the weights is 1′v. Define c = 1 if there is a constant in the regression and zero
otherwise.

The order condition for identification requires that k2 ≥ p: the number of excluded exogenous
variables must be at least as great as the number of endogenous regressors.

In the following formulas, if weights are specified, X′1X1, X′X, X′y, y′y, Z′Z, Z′X, and Z′y
are replaced with X′1DX1, X′DX, X′Dy, y′Dy, Z′DZ, Z′DX, and Z′Dy, respectively. We
suppress the D below to simplify the notation.



822 ivregress — Single-equation instrumental-variables regression

2SLS and LIML estimators

Define the κ-class estimator of β as

b =
{
X′(I− κMZ)−1X

}−1
X′(I− κMZ)−1y

where MZ = I−Z(Z′Z)−1Z′. The 2SLS estimator results from setting κ = 1. The LIML estimator
results from selecting κ to be the minimum eigenvalue of (Y′MZY)−1/2Y′MX1Y(Y′MZY)−1/2,
where MX1 = I−X1(X′1X1)−1X′1.

The total sum of squares (TSS) equals y′y if there is no intercept and y′y−
{

(1′y)2/n
}

otherwise.
The degrees of freedom are n−c. The error sum of squares (ESS) is defined as y′y−2bX′y+b′X′Xb.
The model sum of squares (MSS) equals TSS− ESS. The degrees of freedom are k − c.

The mean squared error, s2, is defined as ESS/(n− k) if small is specified and ESS/n otherwise.
The root mean squared error is s, its square root.

If c = 1 and small is not specified, a Wald statistic, W , of the joint significance of the k − 1
parameters of β except the constant term is calculated; W ∼ χ2(k − 1). If c = 1 and small is
specified, then an F statistic is calculated as F = W/(k − 1); F ∼ F (k − 1, n− k).

The R-squared is defined as R2 = 1− ESS/TSS.

The adjusted R-squared is R2
a = 1− (1−R2)(n− c)/(n− k).

If robust is not specified, then Var(b) = s2
{
X′(I−κMZ)−1X

}−1
. For a discussion of robust

variance estimates in regression and regression with instrumental variables, see Methods and formulas
in [R] regress. If small is not specified, then k = 0 in the formulas given there.

This command also supports estimation with survey data. For details on VCEs with survey data,
see [SVY] variance estimation.

GMM estimator

We obtain an initial consistent estimate of β by using the 2SLS estimator; see above. Using this
estimate of β, we compute the weighting matrix W and calculate the GMM estimator

bGMM =
{
X′ZWZ′X

}−1
X′ZWZ′y

The variance of bGMM is

Var(bGMM) = n
{
X′ZWZ′X

}−1
X′ZWŜWZ′X

{
X′ZWZ′X

}−1

Var(bGMM) is of the sandwich form DMD; see [P] robust. If the user specifies the small option,
ivregress implements a small-sample adjustment by multiplying the VCE by N/(N − k).

If vce(unadjusted) is specified, then we set Ŝ = W−1 and the VCE reduces to the “optimal”
GMM variance estimator

Var(βGMM) = n
{
X′ZWZ′X

}−1

However, if W−1 is not a good estimator of E(ziuiuiz′i), then the optimal GMM estimator is
inefficient, and inference based on the optimal variance estimator could be misleading.
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W is calculated using the residuals from the initial 2SLS estimates, whereas S is estimated using
the residuals based on bGMM. The wmatrix() option affects the form of W, whereas the vce()
option affects the form of S. Except for different residuals being used, the formulas for W−1 and
S are identical, so we focus on estimating W−1.

If wmatrix(unadjusted) is specified, then

W−1 =
s2

n

∑
i

ziz′i

where s2 =
∑
i u

2
i /n. This weight matrix is appropriate if the errors are homoskedastic.

If wmatrix(robust) is specified, then

W−1 =
1
n

∑
i

u2
i ziz

′
i

which is appropriate if the errors are heteroskedastic.

If wmatrix(cluster clustvar) is specified, then

W−1 =
1
n

∑
c

qcq′c

where c indexes clusters,
qc =

∑
i∈cj

uizi

and cj denotes the jth cluster.

If wmatrix(hac kernel
[

#
]
) is specified, then

W−1 =
1
n

∑
i

u2
i ziz

′
i +

1
n

l=n−1∑
l=1

i=n∑
i=l+1

K(l,m)uiui−l
(
ziz′i−l + zi−lz′i

)
where m = # if # is specified and m = n− 2 otherwise. Define z = l/(m+ 1). If kernel is nwest,
then

K(l,m) =
{ 1− z 0 ≤ z ≤ 1

0 otherwise
If kernel is gallant, then

K(l,m) =

{
1− 6z2 + 6z3 0 ≤ z ≤ 0.5
2(1− z)3 0.5 < z ≤ 1
0 otherwise

If kernel is quadraticspectral, then

K(l,m) =
{

1 z = 0
3 {sin(θ)/θ − cos(θ)} /θ2 otherwise

where θ = 6πz/5.

If wmatrix(hac kernel opt) is specified, then ivregress uses Newey and West’s (1994) automatic
lag-selection algorithm, which proceeds as follows. Define h to be a (k1 + k2)× 1 vector containing
ones in all rows except for the row corresponding to the constant term (if present); that row contains
a zero. Define
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fi = (uizi)h

σ̂j =
1
n

n∑
i=j+1

fifi−j j = 0, . . . ,m∗

ŝ (q) = 2
m∗∑
j=1

σ̂jj
q

ŝ (0) = σ̂0 + 2
m∗∑
j=1

σ̂j

γ̂ = cγ

{(
ŝ (q)

ŝ (0)

)2
}1/2q+1

m = γ̂n1/(2q+1)

where q, m∗, and cγ depend on the kernel specified:

Kernel q m∗ cγ

Bartlett 1 int
{

20(T/100)2/9
}

1.1447

Parzen 2 int
{

20(T/100)4/25
}

2.6614

Quadratic spectral 2 int
{

20(T/100)2/25
}

1.3221

where int(x) denotes the integer obtained by truncating x toward zero. For the Bartlett and Parzen
kernels, the optimal lag is min{int(m),m∗}. For the quadratic spectral, the optimal lag is min{m,m∗}.

If center is specified, when computing weighting matrices ivregress replaces the term uizi in
the formulas above with uizi − uz, where uz =

∑
i uizi/N .
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ivregress postestimation — Postestimation tools for ivregress

Description
The following postestimation commands are of special interest after ivregress:

Command Description

estat endogenous perform tests of endogeneity
estat firststage report “first-stage” regression statistics
estat overid perform tests of overidentifying restrictions

These commands are not appropriate after the svy prefix.

For information about these commands, see below.

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Special-interest postestimation commands
estat endogenous performs tests to determine whether endogenous regressors in the model are

in fact exogenous. After GMM estimation, the C (difference-in-Sargan) statistic is reported. After 2SLS
estimation with an unadjusted VCE, the Durbin (1954) and Wu–Hausman (Wu 1974; Hausman 1978)
statistics are reported. After 2SLS estimation with a robust VCE, Wooldridge’s (1995) robust score test
and a robust regression-based test are reported. In all cases, if the test statistic is significant, then the
variables being tested must be treated as endogenous. estat endogenous is not available after LIML
estimation.
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estat firststage reports various statistics that measure the relevance of the excluded exogenous
variables. By default, whether the equation has one or more than one endogenous regressor determines
what statistics are reported.

estat overid performs tests of overidentifying restrictions. If the 2SLS estimator was used,
Sargan’s (1958) and Basmann’s (1960) χ2 tests are reported, as is Wooldridge’s (1995) robust score
test; if the LIML estimator was used, Anderson and Rubin’s (1950) χ2 test and Basmann’s F test
are reported; and if the GMM estimator was used, Hansen’s (1982) J statistic χ2 test is reported. A
statistically significant test statistic always indicates that the instruments may not be valid.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
residuals residuals
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals, that is, yj−xjb. These are based on the estimated equation when
the observed values of the endogenous variables are used—not the projections of the instruments
onto the endogenous variables.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. This is also referred
to as the standard error of the fitted value.
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stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

scores calculates the scores for the model. A new score variable is created for each endogenous
regressor, as well as an equation-level score that applies to all exogenous variables and constant
term (if present).

Syntax for estat endogenous

estat endogenous
[

varlist
] [

, lags(#) forceweights forcenonrobust
]

Menu
Statistics > Postestimation > Reports and statistics

Options for estat endogenous

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of endogeneity. Specifying lags(0)
requests no prewhitening. This option is valid only when the model was fit via 2SLS and an HAC
covariance matrix was requested when the model was fit. The default is lags(1).

forceweights requests that the tests of endogeneity be computed even though aweights, pweights,
or iweights were used in the previous estimation. By default, these tests are conducted only after
unweighted or frequency-weighted estimation. The reported critical values may be inappropriate
for weighted data, so the user must determine whether the critical values are appropriate for a
given application.
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forcenonrobust requests that the Durbin and Wu–Hausman tests be performed after 2SLS estimation
even though a robust VCE was used at estimation time. This option is available only if the model
was fit by 2SLS.

Syntax for estat firststage
estat firststage

[
, all forcenonrobust

]

Menu
Statistics > Postestimation > Reports and statistics

Options for estat firststage

all requests that all first-stage goodness-of-fit statistics be reported regardless of whether the model
contains one or more endogenous regressors. By default, if the model contains one endogenous
regressor, then the first-stage R2, adjusted R2, partial R2, and F statistics are reported, whereas
if the model contains multiple endogenous regressors, then Shea’s partial R2 and adjusted partial
R2 are reported instead.

forcenonrobust requests that the minimum eigenvalue statistic and its critical values be reported
even though a robust VCE was used at estimation time. The reported critical values assume that
the errors are independent and identically distributed (i.i.d.) normal, so the user must determine
whether the critical values are appropriate for a given application.

Syntax for estat overid
estat overid

[
, lags(#) forceweights forcenonrobust

]

Menu
Statistics > Postestimation > Reports and statistics

Options for estat overid

lags(#) specifies the number of lags to use for prewhitening when computing the heteroskedasticity-
and autocorrelation-consistent (HAC) version of the score test of overidentifying restrictions.
Specifying lags(0) requests no prewhitening. This option is valid only when the model was fit
via 2SLS and an HAC covariance matrix was requested when the model was fit. The default is
lags(1).

forceweights requests that the tests of overidentifying restrictions be computed even though
aweights, pweights, or iweights were used in the previous estimation. By default, these tests
are conducted only after unweighted or frequency-weighted estimation. The reported critical values
may be inappropriate for weighted data, so the user must determine whether the critical values are
appropriate for a given application.
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forcenonrobust requests that the Sargan and Basmann tests of overidentifying restrictions be
performed after 2SLS or LIML estimation even though a robust VCE was used at estimation time.
These tests assume that the errors are i.i.d. normal, so the user must determine whether the critical
values are appropriate for a given application.

Remarks
Remarks are presented under the following headings:

estat endogenous
estat firststage
estat overid

estat endogenous

A natural question to ask is whether a variable presumed to be endogenous in the previously fit
model could instead be treated as exogenous. If the endogenous regressors are in fact exogenous,
then the OLS estimator is more efficient; and depending on the strength of the instruments and other
factors, the sacrifice in efficiency by using an instrumental-variables estimator can be significant.
Thus, unless an instrumental-variables estimator is really needed, OLS should be used instead. estat
endogenous provides several tests of endogeneity after 2SLS and GMM estimation.

Example 1

In example 1 of [R] ivregress, we fit a model of the average rental rate for housing in a state as
a function of the percentage of the population living in urban areas and the average value of houses.
We treated hsngval as endogenous because unanticipated shocks that affect rental rates probably
affect house prices as well. We used family income and region dummies as additional instruments
for hsngval. Here we test whether we could treat hsngval as exogenous.

. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat endogenous

Tests of endogeneity
Ho: variables are exogenous

Durbin (score) chi2(1) = 12.8473 (p = 0.0003)
Wu-Hausman F(1,46) = 15.9067 (p = 0.0002)

Because we did not specify any variable names after the estat endogenous command, Stata by
default tested all the endogenous regressors (namely, hsngval) in our model. The null hypothesis
of the Durbin and Wu–Hausman tests is that the variable under consideration can be treated as
exogenous. Here both test statistics are highly significant, so we reject the null of exogeneity; we
must continue to treat hsngval as endogenous.

The difference between the Durbin and Wu–Hausman tests of endogeneity is that the former uses
an estimate of the error term’s variance based on the model assuming the variables being tested
are exogenous, while the latter uses an estimate of the error variance based on the model assuming
the variables being tested are endogenous. Under the null hypothesis that the variables being tested
are exogenous, both estimates of the error variance are consistent. What we label the Wu–Hausman
statistic is Wu’s (1974) “T2” statistic, which Hausman (1978) showed can be calculated very easily
via linear regression. Baum, Schaffer, and Stillman (2003, 2007) provide a lucid discussion of these
tests.
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When you fit a model with multiple endogenous regressors, you can test the exogeneity of a subset
of the regressors while continuing to treat the others as endogenous. For example, say you have three
endogenous regressors, y1, y2, and y3, and you fit your model by typing

. ivregress depvar . . . (y1 y2 y3 = . . .)

Suppose you are confident that y1 must be treated as endogenous, but you are undecided about y2
and y3. To test whether y2 and y3 can be treated as exogenous, you would type

. estat endogenous y2 y3

The Durbin and Wu–Hausman tests assume that the error term is i.i.d. Therefore, if you requested
a robust VCE at estimation time, estat endogenous will instead report Wooldridge’s (1995) score
test and a regression-based test of exogeneity. Both these tests can tolerate heteroskedastic and
autocorrelated errors, while only the regression-based test is amenable to clustering.

Example 2

We refit our housing model, requesting robust standard errors, and then test the exogeneity of
hsngval:

. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat endogenous

Tests of endogeneity
Ho: variables are exogenous

Robust score chi2(1) = 2.10428 (p = 0.1469)
Robust regression F(1,46) = 4.31101 (p = 0.0435)

Wooldridge’s score test does not reject the null hypothesis that hsngval is exogenous at conventional
significance levels (p = 0.1469). However, the regression-based test does reject the null hypothesis at
the 5% significance level (p = 0.0435). Typically, these two tests yield the same conclusion; the fact
that our dataset has only 50 observations could be contributing to the discrepancy. Here we would
be inclined to continue to treat hsngval as endogenous. Even if hsngval is exogenous, the 2SLS
estimates are still consistent. On the other hand, if hsngval is in fact endogenous, the OLS estimates
would not be consistent. Moreover, as we will see in our discussion of the estat overid command,
our additional instruments may be invalid. To test whether an endogenous variable can be treated as
exogenous, we must have a valid set of instruments to use to fit the model in the first place!

Unlike the Durbin and Wu–Hausman tests, Wooldridge’s score and the regression-based tests do
not allow you to test a subset of the endogenous regressors in the model; you can test only whether
all the endogenous regressors are in fact exogenous.

After GMM estimation, estat endogenous calculates what Hayashi (2000, 220) calls the C
statistic, also known as the difference-in-Sargan statistic. The C statistic can be made robust to
heteroskedasticity, autocorrelation, and clustering; and the version reported by estat endogenous
is determined by the weight matrix requested via the wmatrix() option used when fitting the model
with ivregress. Additionally, the test can be used to determine the exogeneity of a subset of the
endogenous regressors, regardless of the type of weight matrix used.

If you fit your model using the LIML estimator, you can use the hausman command to carry out
a traditional Hausman (1978) test between the OLS and LIML estimates.
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estat firststage

For an excluded exogenous variable to be a valid instrument, it must be sufficiently correlated with
the included endogenous regressors but uncorrelated with the error term. In recent decades, researchers
have paid considerable attention to the issue of instruments that are only weakly correlated with the
endogenous regressors. In such cases, the usual 2SLS, GMM, and LIML estimators are biased toward the
OLS estimator, and inference based on the standard errors reported by, for example, ivregress can be
severely misleading. For more information on the theory behind instrumental-variables estimation with
weak instruments, see Nelson and Startz (1990); Staiger and Stock (1997); Hahn and Hausman (2003);
the survey article by Stock, Wright, and Yogo (2002); and Angrist and Pischke (2009, chap. 4).

When the instruments are only weakly correlated with the endogenous regressors, some Monte
Carlo evidence suggests that the LIML estimator performs better than the 2SLS and GMM estimators;
see, for example, Poi (2006) and Stock, Wright, and Yogo (2002) (and the papers cited therein). On
the other hand, the LIML estimator often results in confidence intervals that are somewhat larger than
those from the 2SLS estimator.

Moreover, using more instruments is not a solution, because the biases of instrumental-variables
estimators increase with the number of instruments. See Hahn and Hausman (2003).

estat firststage produces several statistics for judging the explanatory power of the instruments
and is most easily explained with examples.

Example 3

Again building on the model fit in example 1 of [R] ivregress, we now explore the degree of
correlation between the additional instruments faminc, 2.region, 3.region, and 4.region and
the endogenous regressor hsngval:

. use http://www.stata-press.com/data/r12/hsng
(1980 Census housing data)

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat firststage

First-stage regression summary statistics

Adjusted Partial
Variable R-sq. R-sq. R-sq. F(4,44) Prob > F

hsngval 0.6908 0.6557 0.5473 13.2978 0.0000

Minimum eigenvalue statistic = 13.2978

Critical Values # of endogenous regressors: 1
Ho: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 16.85 10.27 6.71 5.34

10% 15% 20% 25%
2SLS Size of nominal 5% Wald test 24.58 13.96 10.26 8.31
LIML Size of nominal 5% Wald test 5.44 3.87 3.30 2.98

To understand these results, recall that the first-stage regression is

hsngvali = π0 + π1pcturbani + π2faminc + π32.region + π43.region + π54.region + vi
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where vi is an error term. The column marked “R-sq.” is the simple R2 from fitting the first-stage
regression by OLS, and the column marked “Adjusted R-sq.” is the adjusted R2 from that regression.
Higher values purportedly indicate stronger instruments, and instrumental-variables estimators exhibit
less bias when the instruments are strongly correlated with the endogenous variable.

Looking at just the R2 and adjusted R2 can be misleading, however. If hsngval were strongly
correlated with the included exogenous variable pcturban but only weakly correlated with the
additional instruments, then these statistics could be large even though a weak-instrument problem is
present.

The partial R2 statistic measures the correlation between hsngval and the additional instruments
after partialling out the effect of pcturban. Unlike the R2 and adjusted R2 statistics, the partial R2

statistic will not be inflated because of strong correlation between hsngval and pcturban. Bound,
Jaeger, and Baker (1995) and others have promoted using this statistic.

The column marked “F(4, 44)” is an F statistic for the joint significance of π2, π3, π4, and π5,
the coefficients on the additional instruments. Its p-value is listed in the column marked “Prob > F”.
If the F statistic is not significant, then the additional instruments have no significant explanatory
power for hsngval after controlling for the effect of pcturban. However, Hall, Rudebusch, and
Wilcox (1996) used Monte Carlo simulation to show that simply having an F statistic that is significant
at the typical 5% or 10% level is not sufficient. Stock, Wright, and Yogo (2002) suggest that the F
statistic should exceed 10 for inference based on the 2SLS estimator to be reliable when there is one
endogenous regressor.

estat firststage also presents the Cragg and Donald (1993) minimum eigenvalue statistic as
a further test of weak instruments. Stock and Yogo (2005) discuss two characterizations of weak
instruments: first, weak instruments cause instrumental-variables estimators to be biased; second,
hypothesis tests of parameters estimated by instrumental-variables estimators may suffer from severe
size distortions. The test statistic in our example is 13.30, which is identical to the F statistic just
discussed because our model contains one endogenous regressor.

The null hypothesis of each of Stock and Yogo’s tests is that the set of instruments is weak. To
perform these tests, we must first choose either the largest relative bias of the 2SLS estimator we are
willing to tolerate or the largest rejection rate of a nominal 5% Wald test we are willing to tolerate.
If the test statistic exceeds the critical value, we can conclude that our instruments are not weak.

The row marked “2SLS relative bias” contains critical values for the test that the instruments are
weak based on the bias of the 2SLS estimator relative to the bias of the OLS estimator. For example,
from past experience we might know that the OLS estimate of a parameter β may be 50% too high.
Saying that we are willing to tolerate a 10% relative bias means that we are willing to tolerate a
bias of the 2SLS estimator no greater than 5% (that is, 10% of 50%). In our rental rate model, if we
are willing to tolerate a 10% relative bias, then we can conclude that our instruments are not weak
because the test statistic of 13.30 exceeds the critical value of 10.22. However, if we were willing
to tolerate only a relative bias of 5%, we would conclude that our instruments are weak because
13.30 < 16.85.

The rows marked “2SLS Size of nominal 5% Wald test” and “LIML Size of nominal 5% Wald
test” contain critical values pertaining to Stock and Yogo’s (2005) second characterization of weak
instruments. This characterization defines a set of instruments to be weak if a Wald test at the 5% level
can have an actual rejection rate of no more than 10%, 15%, 20%, or 25%. Using the current example,
suppose that we are willing to accept a rejection rate of at most 10%. Because 13.30 < 24.58, we
cannot reject the null hypothesis of weak instruments. On the other hand, if we use the LIML estimator
instead, then we can reject the null hypothesis because 13.30 > 5.44.



834 ivregress postestimation — Postestimation tools for ivregress

Technical note

Stock and Yogo (2005) tabulated critical values for 2SLS relative biases of 5%, 10%, 20%, and
30% for models with 1, 2, or 3 endogenous regressors and between 3 and 30 excluded exogenous
variables (instruments). They also provide critical values for worst-case rejection rates of 5%, 10%,
20%, and 25% for nominal 5% Wald tests of the endogenous regressors with 1 or 2 endogenous
regressors and between 1 and 30 instruments. If the model previously fit by ivregress has more
instruments or endogenous regressors than these limits, the critical values are not shown. Stock and
Yogo did not consider GMM estimators.

When the model being fit contains more than one endogenous regressor, the R2 and F statistics
described above can overstate the relevance of the excluded instruments. Suppose that there are two
endogenous regressors, Y1 and Y2, and that there are two additional instruments, z1 and z2. Say that
z1 is highly correlated with both Y1 and Y2 but z2 is not correlated with either Y1 or Y2. Then the
first-stage regression of Y1 on z1 and z2 (along with the included exogenous variables) will produce
large R2 and F statistics, as will the regression of Y2 on z1, z2, and the included exogenous variables.
Nevertheless, the lack of correlation between z2 and Y1 and Y2 is problematic. Here, although the
order condition indicates that the model is just identified (the number of excluded instruments equals
the number of endogenous regressors), the irrelevance of z2 implies that the model is in fact not
identified. Even if the model is overidentified, including irrelevant instruments can adversely affect
the properties of instrumental-variables estimators, because their biases increase as the number of
instruments increases.

Example 4

estat firststage presents different statistics when the model contains multiple endogenous
regressors. For illustration, we refit our model of rental rates, assuming that both hsngval and faminc
are endogenously determined. We use i.region along with popden, a measure of population density,
as additional instruments.

. ivregress 2sls rent pcturban (hsngval faminc = i.region popden)
(output omitted )

. estat firststage

Shea’s partial R-squared

Shea’s Shea’s
Variable Partial R-sq. Adj. Partial R-sq.

hsngval 0.3477 0.2735
faminc 0.1893 0.0972

Minimum eigenvalue statistic = 2.51666

Critical Values # of endogenous regressors: 2
Ho: Instruments are weak # of excluded instruments: 4

5% 10% 20% 30%
2SLS relative bias 11.04 7.56 5.57 4.73

10% 15% 20% 25%
2SLS Size of nominal 5% Wald test 16.87 9.93 7.54 6.28
LIML Size of nominal 5% Wald test 4.72 3.39 2.99 2.79
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Consider the endogenous regressor hsngval. Part of its variation is attributable to its correlation
with the other regressors pcturban and faminc. The other component of hsngval’s variation is
peculiar to it and orthogonal to the variation in the other regressors. Similarly, we can think of the
instruments as predicting the variation in hsngval in two ways, one stemming from the fact that
the predicted values of hsngval are correlated with the predicted values of the other regressors and
one from the variation in the predicted values of hsngval that is orthogonal to the variation in the
predicted values of the other regressors.

What really matters for instrumental-variables estimation is whether the component of hsngval
that is orthogonal to the other regressors can be explained by the component of the predicted value of
hsngval that is orthogonal to the predicted values of the other regressors in the model. Shea’s (1997)
partial R2 statistic measures this correlation. Because the bias of instrumental-variables estimators
increases as more instruments are used, Shea’s adjusted partial R2 statistic is often used instead, as
it makes a degrees-of-freedom adjustment for the number of instruments, analogous to the adjusted
R2 measure used in OLS regression. Although what constitutes a “low” value for Shea’s partial R2

depends on the specifics of the model being fit and the data used, these results, taken in isolation, do
not strike us as being a particular cause for concern.

However, with this specification the minimum eigenvalue statistic is low. We cannot reject the null
hypothesis of weak instruments for either of the characterizations we have discussed.

By default, estat firststage determines which statistics to present based on the number of
endogenous regressors in the model previously fit. However, you can specify the all option to obtain
all the statistics.

Technical note

If the previous estimation was conducted using aweights, pweights, or iweights, then the
first-stage regression summary statistics are computed using those weights. However, in these cases
the minimum eigenvalue statistic and its critical values are not available.

If the previous estimation included a robust VCE, then the first-stage F statistic is based on a
robust VCE as well; for example, if you fit your model with an HAC VCE using the Bartlett kernel
and four lags, then the F statistic reported is based on regression results using an HAC VCE using the
Bartlett kernel and four lags. By default, the minimum eigenvalue statistic and its critical values are
not displayed. You can use the forcenonrobust option to obtain them in these cases; the minimum
eigenvalue statistic is computed using the weights, though the critical values reported may not be
appropriate.

estat overid
In addition to the requirement that instrumental variables be correlated with the endogenous

regressors, the instruments must also be uncorrelated with the structural error term. If the model is
overidentified, meaning that the number of additional instruments exceeds the number of endogenous
regressors, then we can test whether the instruments are uncorrelated with the error term. If the model
is just identified, then we cannot perform a test of overidentifying restrictions.

The estimator you used to fit the model determines which tests of overidentifying restrictions
estat overid reports. If you used the 2SLS estimator without a robust VCE, estat overid reports
Sargan’s (1958) and Basmann’s (1960) χ2 tests. If you used the 2SLS estimator and requested a robust
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VCE, Wooldridge’s robust score test of overidentifying restrictions is performed instead; without a
robust VCE, Wooldridge’s test statistic is identical to Sargan’s test statistic. If you used the LIML
estimator, estat overid reports the Anderson–Rubin (1950) likelihood-ratio test and Basmann’s
(1960) F test. estat overid reports Hansen’s (1982) J statistic if you used the GMM estimator.
Davidson and MacKinnon (1993, 235–236) give a particularly clear explanation of the intuition behind
tests of overidentifying restrictions. Also see Judge et al. (1985, 614–616) for a summary of tests of
overidentifying restrictions for the 2SLS and LIML estimators.

Tests of overidentifying restrictions actually test two different things simultaneously. One, as we
have discussed, is whether the instruments are uncorrelated with the error term. The other is that the
equation is misspecified and that one or more of the excluded exogenous variables should in fact be
included in the structural equation. Thus a significant test statistic could represent either an invalid
instrument or an incorrectly specified structural equation.

Example 5

Here we refit the model that treated just hsngval as endogenous using 2SLS, and then we perform
tests of overidentifying restrictions:

. ivregress 2sls rent pcturban (hsngval = faminc i.region)
(output omitted )

. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(3) = 11.2877 (p = 0.0103)
Basmann chi2(3) = 12.8294 (p = 0.0050)

Both test statistics are significant at the 5% test level, which means that either one or more of our
instruments are invalid or that our structural model is specified incorrectly.

One possibility is that the error term in our structural model is heteroskedastic. Both Sargan’s and
Basmann’s tests assume that the errors are i.i.d.; if the errors are not i.i.d., then these tests are not
valid. Here we refit the model by requesting heteroskedasticity-robust standard errors, and then we
use estat overid to obtain Wooldridge’s score test of overidentifying restrictions, which is robust
to heteroskedasticity.

. ivregress 2sls rent pcturban (hsngval = faminc i.region), vce(robust)
(output omitted )

. estat overid

Test of overidentifying restrictions:

Score chi2(3) = 6.8364 (p = 0.0773)

Here we no longer reject the null hypothesis that our instruments are valid at the 5% significance
level, though we do reject the null at the 10% level. You can verify that the robust standard error
on the coefficient for hsngval is more than twice as large as its nonrobust counterpart and that the
robust standard error for pcturban is nearly 50% larger.

Technical note
The test statistic for the test of overidentifying restrictions performed after GMM estimation is simply

the sample size times the value of the objective function Q(β1, β2) defined in (5) of [R] ivregress,
evaluated at the GMM parameter estimates. If the weighting matrix W is optimal, meaning that

W = Var (ziui), then Q(β1, β2) A∼χ2(q), where q is the number of overidentifying restrictions.
However, if the estimated W is not optimal, then the test statistic will not have an asymptotic χ2

distribution.
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Like the Sargan and Basmann tests of overidentifying restrictions for the 2SLS estimator, the
Anderson–Rubin and Basmann tests after LIML estimation are predicated on the errors’ being i.i.d. If
the previous LIML results were reported with robust standard errors, then estat overid by default
issues an error message and refuses to report the Anderson–Rubin and Basmann test statistics. You
can use the forcenonrobust option to override this behavior. You can also use forcenonrobust
to obtain the Sargan and Basmann test statistics after 2SLS estimation with robust standard errors.

By default, estat overid issues an error message if the previous estimation was conducted using
aweights, pweights, or iweights. You can use the forceweights option to override this behavior,
though the test statistics may no longer have the expected χ2 distributions.

Saved results
After 2SLS estimation, estat endogenous saves the following in r():

Scalars
r(durbin) Durbin χ2 statistic
r(p durbin) p-value for Durbin χ2 statistic
r(wu) Wu–Hausman F statistic
r(p wu) p-value for Wu–Hausman F statistic
r(df) degrees of freedom
r(wudf r) denominator degrees of freedom for Wu–Hausman F

r(r score) robust score statistic
r(p r score) p-value for robust score statistic
r(hac score) HAC score statistic
r(p hac score) p-value for HAC score statistic
r(lags) lags used in prewhitening
r(regF) regression-based F statistic
r(p regF) p-value for regression-based F statistic
r(regFdf n) regression-based F numerator degrees of freedom
r(regFdf r) regression-based F denominator degrees of freedom

After GMM estimation, estat endogenous saves the following in r():

Scalars
r(C) C χ2 statistic
r(p C) p-value for C χ2 statistic
r(df) degrees of freedom

estat firststage saves the following in r():

Scalars
r(mineig) minimum eigenvalue statistic

Matrices
r(mineigcv) critical values for minimum eigenvalue statistic
r(multiresults) Shea’s partial R2 statistics
r(singleresults) first-stage R2 and F statistics
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After 2SLS estimation, estat overid saves the following in r():

Scalars
r(lags) lags used in prewhitening
r(df) χ2 degrees of freedom
r(score) score χ2 statistic
r(p score) p-value for score χ2 statistic
r(basmann) Basmann χ2 statistic
r(p basmann) p-value for Basmann χ2 statistic
r(sargan) Sargan χ2 statistic
r(p sargan) p-value for Sargan χ2 statistic

After LIML estimation, estat overid saves the following in r():

Scalars
r(ar) Anderson–Rubin χ2 statistic
r(p ar) p-value for Anderson–Rubin χ2 statistic
r(ar df) χ2 degrees of freedom
r(basmann) Basmann F statistic
r(p basmann) p-value for Basmann F statistic
r(basmann df n) F numerator degrees of freedom
r(basmann df d) F denominator degrees of freedom

After GMM estimation, estat overid saves the following in r():

Scalars
r(HansenJ) Hansen’s J χ2 statistic
r(p HansenJ) p-value for Hansen’s J χ2 statistic
r(J df) χ2 degrees of freedom

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Methods and formulas are presented under the following headings:

Notation
estat endogenous
estat firststage
estat overid

Notation

Recall from [R] ivregress that the model is

y = Yβ1 + X1β2 + u = Xβ+ u

Y = X1Π1 + X2Π2 + V = ZΠ+ V

where y is an N × 1 vector of the left-hand-side variable, N is the sample size, Y is an N × p
matrix of p endogenous regressors, X1 is an N × k1 matrix of k1 included exogenous regressors,
X2 is an N × k2 matrix of k2 excluded exogenous variables, X = [Y X1], Z = [X1 X2], u is an
N × 1 vector of errors, V is an N × p matrix of errors, β = [β1 β2] is a k = (p+ k1)× 1 vector
of parameters, and Π is a (k1 + k2)× p vector of parameters. If a constant term is included in the
model, then one column of X1 contains all ones.
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estat endogenous

Partition Y as Y = [Y1 Y2], where Y1 represents the p1 endogenous regressors whose endogeneity
is being tested and Y2 represents the p2 endogenous regressors whose endogeneity is not being tested.
If the endogeneity of all endogenous regressors is being tested, Y = Y1 and p2 = 0. After GMM
estimation, estat endogenous refits the model treating Y1 as exogenous using the same type of
weight matrix as requested at estimation time with the wmatrix() option; denote the Sargan statistic
from this model by Je and the estimated weight matrix by We. Let Se = W−1

e . estat endogenous
removes from Se the rows and columns corresponding to the variables represented by Y1; denote
the inverse of the resulting matrix by W′

e. Next estat endogenous fits the model treating both Y1

and Y2 as endogenous, using the weight matrix W′
e; denote the Sargan statistic from this model by

Jc. Then C = (Je− Jc) ∼ χ2(p1). If one simply used the J statistic from the original model fit by
ivregress in place of Jc, then in finite samples Je − J might be negative. The procedure used by
estat endogenous is guaranteed to yield C ≥ 0; see Hayashi (2000, 220).

Let ûc denote the residuals from the model treating both Y1 and Y2 as endogenous, and let ûe
denote the residuals from the model treating only Y2 as endogenous. Then Durbin’s (1954) statistic
is

D =
û′ePZY1 ûe − û′cPZ ûc

û′eûe/N

where PZ = Z(Z′Z)−1Z′ and PZY1 = [Z Y1]([Z Y1]′[Z Y1])−1[Z Y1]′ D ∼ χ2(p1). The
Wu–Hausman (Wu 1974; Hausman 1978) statistic is

WH =
(û′ePZY1 ûe − û′cPZ ûc)/p1

{û′eûe − (û′ePZY1 ûe − û′cPZ ûc)} /(N − k1 − p− p1)

WH ∼ F (p1, N − k1 − p− p1). Baum, Schaffer, and Stillman (2003, 2007) discuss these tests in
more detail.

Next we describe Wooldridge’s (1995) score test. The nonrobust version of Wooldridge’s test is
identical to Durbin’s test. Suppose a robust covariance matrix was used at estimation time. Let ê
denote the sample residuals obtained by fitting the model via OLS, treating Y as exogenous. We then
regress each variable represented in Y on Z; call the residuals for the jth regression r̂j , j = 1, . . . , p.
Define k̂ij = êir̂ij , i = 1, . . . , N . We then run the regression

1 = θ1k̂1 + · · ·+ θpk̂p + ε

where 1 is an N × 1 vector of ones and ε is a regression error term. N − RSS ∼ χ2(p), where RSS
is the residual sum of squares from the regression just described. If instead an HAC VCE was used
at estimation time, then before running the final regression we prewhiten the k̂j series by using a
VAR(q) model, where q is the number of lags specified with the lags() option.

The regression-based test proceeds as follows. Following Hausman (1978, 1259), we regress Y
on Z and obtain the residuals V̂. Next we fit the augmented regression

y = Yβ1 + X1β2 + V̂γ+ ε

by OLS regression, where ε is a regression error term. A test of the exogeneity of Y is equivalent
to a test of γ = 0. As Cameron and Trivedi (2005, 276) suggest, this test can be made robust to
heteroskedasticity, autocorrelation, or clustering by using the appropriate robust VCE when testing
γ = 0. When a nonrobust VCE is used, this test is equivalent to the Wu–Hausman test described
earlier. One cannot simply fit this augmented regression via 2SLS to test the endogeneity of a subset
of the endogenous regressors; Davidson and MacKinnon (1993, 229–231) discuss a test of γ = 0 for
the homoskedastic version of the augmented regression fit by 2SLS, but an appropriate robust test is
not apparent.
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estat firststage

When the structural equation includes one endogenous regressor, estat firststage fits the
regression

Y = X1π1 + X2π2 + v

via OLS. The R2 and adjusted R2 from that regression are reported in the output, as well as the F
statistic from the Wald test of H0: π2 = 0. To obtain the partial R2 statistic, estat firststage
fits the regression

MX1y = MX1X2ξ+ ε

by OLS, where ε is a regression error term, ξ is a k2 × 1 parameter vector, and MX1 = I −
X1(X′1X1)−1X′1; that is, the partial R2 is the R2 between y and X2 after eliminating the effects
of X1. If the model contains multiple endogenous regressors and the all option is specified, these
statistics are calculated for each endogenous regressor in turn.

To calculate Shea’s partial R2, let y1 denote the endogenous regressor whose statistic is being
calculated and Y0 denote the other endogenous regressors. Define ỹ1 as the residuals obtained from
regressing y1 on Y0 and X1. Let ŷ1 denote the fitted values obtained from regressing y1 on X1

and X2; that is, ŷ1 are the fitted values from the first-stage regression for y1, and define the
columns of Ŷ0 analogously. Finally, let ˜̂y1 denote the residuals from regressing ŷ1 on Ŷ0 and X1.
Shea’s partial R2 is the simple R2 from the regression of ỹ1 on ˜̂y1; denote this as R2

S . Shea’s
adjusted partial R2 is equal to 1− (1−R2

S)(N − 1)/(N − kZ + 1) if a constant term is included
and 1 − (1 − R2

S)(N − 1)/(N − kZ) if there is no constant term included in the model, where
kZ = k1 +k2. For one endogenous regressor, one instrument, no exogenous regressors, and a constant
term, R2

S equals the adjusted R2
S .

The Stock and Yogo minimum eigenvalue statistic, first proposed by Cragg and Donald (1993) as
a test for underidentification, is the minimum eigenvalue of the matrix

G =
1
kZ

Σ̂
−1/2

VV Y′M′
X1

X2(X′2MX1X2)−1X′2MX1YΣ̂
−1/2

VV

where
Σ̂VV =

1
N − kZ

Y′MZY

MZ = I − Z(Z′Z)−1Z′, and Z = [X1 X2]. Critical values are obtained from the tables in Stock
and Yogo (2005).

estat overid
The Sargan (1958) and Basmann (1960) χ2 statistics are calculated by running the auxiliary

regression
û = Zδ+ e

where û are the sample residuals from the model and e is an error term. Then Sargan’s statistic is

S = N

(
1− ê′ê

û′û

)
where ê are the residuals from that auxiliary regression. Basmann’s statistic is calculated as

B = S
N − kZ
N − S
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Both S and B are distributed χ2(m), where m, the number of overidentifying restrictions, is equal
to kZ − k, where k is the number of endogenous regressors.

Wooldridge’s (1995) score test of overidentifying restrictions is identical to Sargan’s (1958) statistic
under the assumption of i.i.d. and therefore is not recomputed unless a robust VCE was used at estimation
time. If a heteroskedasticity-robust VCE was used, Wooldridge’s test proceeds as follows. Let Ŷ denote
the N × k matrix of fitted values obtained by regressing the endogenous regressors on X1 and X2.
Let Q denote an N ×m matrix of excluded exogenous variables; the test statistic to be calculated is
invariant to whichever m of the k2 excluded exogenous variables is chosen. Define the ith element
of k̂j , i = 1, . . . , N , j = 1, . . . ,m, as

kij = q̂ijui

where q̂ij is the ith element of q̂j , the fitted values from regressing the jth column of Q on Ŷ and
X1. Finally, fit the regression

1 = θ1k̂1 + · · ·+ θmk̂m + ε

where 1 is an N × 1 vector of ones and ε is a regression error term, and calculate the residual sum
of squares, RSS. Then the test statistic is W = N − RSS. W ∼ χ2(m). If an HAC VCE was used at
estimation, then the k̂j are prewhitened using a VAR(p) model, where p is specified using the lags()
option.

The Anderson–Rubin (1950), AR, test of overidentifying restrictions for use after the LIML estimator
is calculated as AR = N(κ − 1), where κ is the minimal eigenvalue of a certain matrix defined in
Methods and formulas of [R] ivregress. AR ∼ χ2(m). (Some texts define this statistic as N ln(κ)
because ln(x) ≈ (x− 1) for x near one.) Basmann’s F statistic for use after the LIML estimator is
calculated as BF = (κ− 1)(N − kZ)/m. BF ∼ F (m,N − kZ).

Hansen’s J statistic is simply the sample size times the value of the GMM objective function
defined in (5) of [R] ivregress, evaluated at the estimated parameter values. Under the null hypothesis
that the overidentifying restrictions are valid, J ∼ χ2(m).
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[U] 20 Estimation and postestimation commands
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Title

ivtobit — Tobit model with continuous endogenous regressors

Syntax
Maximum likelihood estimator

ivtobit depvar
[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

weight
]
,

ll
[
(#)
]
ul
[
(#)
] [

mle options
]

Two-step estimator

ivtobit depvar
[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

weight
]
, twostep

ll
[
(#)
]
ul
[
(#)
] [

tse options
]

mle options Description

Model
∗ll
[
(#)
]

lower limit for left censoring
∗ul
[
(#)
]

upper limit for right censoring
mle use conditional maximum-likelihood estimator; the default
constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

∗You must specify at least one of ll
[
(#)
]

and ul
[
(#)
]

.
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tse options Description

Model
∗twostep use Newey’s two-step estimator; the default is mle
∗ll
[
(#)
]

lower limit for left censoring
∗ul
[
(#)
]

upper limit for right censoring

SE

vce(vcetype) vcetype may be twostep, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

∗twostep is required. You must specify at least one of ll
[
(#)
]

and ul
[
(#)
]

.

varlist1 and varlistiv may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, varlist1, varlist2, and varlistiv may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), first, twostep, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed with the maximum likelihood estimator. fweights are

allowed with Newey’s two-step estimator. See [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Endogenous covariates > Tobit model with endogenous covariates

Description
ivtobit fits tobit models where one or more of the regressors is endogenously determined.

By default, ivtobit uses maximum likelihood estimation. Alternatively, Newey’s (1987) minimum
chi-squared estimator can be invoked with the twostep option. Both estimators assume that the
endogenous regressors are continuous and so are not appropriate for use with discrete endogenous
regressors. See [R] ivprobit for probit estimation with endogenous regressors and [R] tobit for tobit
estimation when the model contains no endogenous regressors.

Options for ML estimator

� � �
Model �

ll(#) and ul(#) indicate the lower and upper limits for censoring, respectively. You may specify
one or both. Observations with depvar ≤ ll() are left-censored; observations with depvar ≥
ul() are right-censored; and remaining observations are not censored. You do not have to specify
the censoring values at all. It is enough to type ll, ul, or both. When you do not specify a
censoring value, ivtobit assumes that the lower limit is the minimum observed in the data (if
ll is specified) and that the upper limit is the maximum (if ul is specified).
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mle requests that the conditional maximum-likelihood estimator be used. This is the default.

constraints(constraints); see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between
the endogenous variables and instruments be displayed. For the two-step estimator, first shows
the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated
jointly with the parameters of the tobit equation. The default is not to show these parameter
estimates.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. This model’s
likelihood function can be difficult to maximize, especially with multiple endogenous variables.
The difficult and technique(bfgs) options may be helpful in achieving convergence.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with ivtobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for two-step estimator

� � �
Model �

twostep is required and requests that Newey’s (1987) efficient two-step estimator be used to obtain
the coefficient estimates.

ll(#) and ul(#) indicate the lower and upper limits for censoring, respectively. You may specify
one or both. Observations with depvar ≤ ll() are left-censored; observations with depvar ≥
ul() are right-censored; and remaining observations are not censored. You do not have to specify
the censoring values at all. It is enough to type ll, ul, or both. When you do not specify a
censoring value, ivtobit assumes that the lower limit is the minimum observed in the data (if
ll is specified) and that the upper limit is the maximum (if ul is specified).

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.
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� � �
Reporting �

level(#); see [R] estimation options.

first requests that the parameters for the reduced-form equations showing the relationships between
the endogenous variables and instruments be displayed. For the two-step estimator, first shows
the first-stage regressions. For the maximum likelihood estimator, these parameters are estimated
jointly with the parameters of the tobit equation. The default is not to show these parameter
estimates.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with ivtobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
ivtobit fits models with censored dependent variables and endogenous regressors. You can use

it to fit a tobit model when you suspect that one or more of the regressors is correlated with the
error term. ivtobit is to tobit what ivregress is to linear regression analysis; see [R] ivregress
for more information.

Formally, the model is
y∗1i =y2iβ+ x1iγ+ ui

y2i =x1iΠ1 + x2iΠ2 + vi

where i = 1, . . . , N ; y2i is a 1×p vector of endogenous variables; x1i is a 1×k1 vector of exogenous
variables; x2i is a 1 × k2 vector of additional instruments; and the equation for y2i is written in
reduced form. By assumption (ui, vi) ∼ N(0). β and γ are vectors of structural parameters, and Π1

and Π2 are matrices of reduced-form parameters. We do not observe y∗1i; instead, we observe

y1i =


a y∗1i < a
y∗1i a ≤ y∗1i ≤ b
b y∗1i > b

The order condition for identification of the structural parameters is that k2 ≥ p. Presumably, Σ is
not block diagonal between ui and vi; otherwise, y2i would not be endogenous.

Technical note
This model is derived under the assumption that (ui, vi) is independent and identically distributed

multivariate normal for all i. The vce(cluster clustvar) option can be used to control for a lack of
independence. As with the standard tobit model without endogeneity, if ui is heteroskedastic, point
estimates will be inconsistent.
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Example 1

Using the same dataset as in [R] ivprobit, we now want to estimate women’s incomes. In our
hypothetical world, all women who choose not to work receive $10,000 in welfare and child-support
payments. Therefore, we never observe incomes under $10,000: a woman offered a job with an
annual wage less than that would not accept and instead would collect the welfare payment. We
model income as a function of the number of years of schooling completed, the number of children
at home, and other household income. We again believe that other inc is endogenous, so we use
male educ as an instrument.

. use http://www.stata-press.com/data/r12/laborsup

. ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll

Fitting exogenous tobit model

Fitting full model

Iteration 0: log likelihood = -3228.4224
Iteration 1: log likelihood = -3226.2882
Iteration 2: log likelihood = -3226.085
Iteration 3: log likelihood = -3226.0845
Iteration 4: log likelihood = -3226.0845

Tobit model with endogenous regressors Number of obs = 500
Wald chi2(3) = 117.42

Log likelihood = -3226.0845 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.9045399 .1329762 -6.80 0.000 -1.165168 -.6439114
fem_educ 3.272391 .3968708 8.25 0.000 2.494538 4.050243

kids -3.312357 .7218628 -4.59 0.000 -4.727182 -1.897532
_cons 19.24735 7.372391 2.61 0.009 4.797725 33.69697

/alpha .2907654 .1379965 2.11 0.035 .0202972 .5612336
/lns 2.874031 .0506672 56.72 0.000 2.774725 2.973337
/lnv 2.813383 .0316228 88.97 0.000 2.751404 2.875363

s 17.70826 .897228 16.03422 19.55707
v 16.66621 .5270318 15.66461 17.73186

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity (/alpha = 0): chi2(1) = 4.44 Prob > chi2 = 0.0351

Obs. summary: 272 left-censored observations at fem_inc<=10
228 uncensored observations

0 right-censored observations

Because we did not specify mle or twostep, ivtobit used the maximum likelihood estimator by
default. ivtobit fits a tobit model, ignoring endogeneity, to get starting values for the full model.
The header of the output contains the maximized log likelihood, the number of observations, and a
Wald statistic and p-value for the test of the hypothesis that all the slope coefficients are jointly zero.
At the end of the output, we see a count of the censored and uncensored observations.

Near the bottom of the output is a Wald test of the exogeneity of the instrumented variables. If
the test statistic is not significant, there is not sufficient information in the sample to reject the null
hypothesis of no endogeneity. Then the point estimates from ivtobit are consistent, although those
from tobit are likely to have smaller standard errors.
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Various two-step estimators have also been proposed for the endogenous tobit model, and Newey’s
(1987) minimum chi-squared estimator is available with the twostep option.

Example 2

Refitting our labor-supply model with the two-step estimator yields

. ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll twostep

Two-step tobit with endogenous regressors Number of obs = 500
Wald chi2(3) = 117.38
Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.9045397 .1330015 -6.80 0.000 -1.165218 -.6438616
fem_educ 3.27239 .3969399 8.24 0.000 2.494402 4.050378

kids -3.312356 .7220066 -4.59 0.000 -4.727463 -1.897249
_cons 19.24735 7.37392 2.61 0.009 4.794728 33.69997

Instrumented: other_inc
Instruments: fem_educ kids male_educ

Wald test of exogeneity: chi2(1) = 4.64 Prob > chi2 = 0.0312

Obs. summary: 272 left-censored observations at fem_inc<=10
228 uncensored observations

0 right-censored observations

All the coefficients have the same signs as their counterparts in the maximum likelihood model. The
Wald test at the bottom of the output confirms our earlier finding of endogeneity.

Technical note
In the tobit model with endogenous regressors, we assume that (ui, vi) is multivariate normal with

covariance matrix

Var(ui, vi) = Σ =
[
σ2
u Σ′21

Σ21 Σ22

]
Using the properties of the multivariate normal distribution, Var(ui|vi) ≡ σ2

u|v = σ2
u−Σ′21Σ

−1
22 Σ21.

Calculating the marginal effects on the conditional expected values of the observed and latent dependent
variables and on the probability of censoring requires an estimate of σ2

u. The two-step estimator
identifies only σ2

u|v , not σ2
u, so only the linear prediction and its standard error are available after

you have used the twostep option. However, unlike the two-step probit estimator described in
[R] ivprobit, the two-step tobit estimator does identify β and γ. See Wooldridge (2010, 683–684)
for more information.
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Saved results
ivtobit, mle saves the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(llopt) contents of ll()
e(ulopt) contents of ul()
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(endog ct) number of endogenous regressors
e(p) model Wald p-value
e(p exog) exogeneity test Wald p-value
e(chi2) model Wald χ2

e(chi2 exog) Wald χ2 test of exogeneity
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) ivtobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(instd) instrumented variables
e(insts) instruments
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) ml
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector

e(Sigma) Σ̂
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

ivtobit, twostep saves the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(llopt) contents of ll()
e(ulopt) contents of ul()
e(df m) model degrees of freedom
e(df exog) degrees of freedom for χ2 test of exogeneity
e(p) model Wald p-value
e(p exog) exogeneity test Wald p-value
e(chi2) model Wald χ2

e(chi2 exog) Wald χ2 test of exogeneity
e(rank) rank of e(V)

Macros
e(cmd) ivtobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(instd) instrumented variables
e(insts) instruments
e(wtype) weight type
e(wexp) weight expression
e(chi2type) Wald; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
ivtobit is implemented as an ado-file.

The estimation procedure used by ivtobit is similar to that used by ivprobit. For compactness,
we write the model as
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y∗1i = ziδ+ ui (1a)
y2i = xiΠ+ vi (1b)

where zi = (y2i,x1i), xi = (x1i,x2i), δ = (β′,γ′)′, and Π = (Π′1,Π
′
2)′. We do not observe y∗1i;

instead, we observe

y1i =


a y∗1i < a
y∗1i a ≤ y∗1i ≤ b
b y∗1i > b

(ui, vi) is distributed multivariate normal with mean zero and covariance matrix

Σ =
[
σ2
u Σ′21

Σ21 Σ22

]
Using the properties of the multivariate normal distribution, we can write ui = v′iα + εi, where
α = Σ−1

22 Σ21; εi ∼ N(0;σ2
u|v), where σ2

u|v = σ2
u −Σ′21Σ

−1
22 Σ21; and εi is independent of vi, zi,

and xi.

The likelihood function is straightforward to derive because we can write the joint density
f (y1i,y2i|xi) as f (y1i|y2i,xi) f (y2i|xi). With one endogenous regressor,

lnf(y2i|xi) = −1
2

{
ln2π + lnσ2

v +
(y2i − xiΠ)2

σ2
v

}
and

lnf(y1i|y2i,xi) =


ln
{

1− Φ
(
mi−a
σu|v

)}
y1i = a

− 1
2

{
ln2π + lnσ2

u|v + (y1i−mi)2
σ2
u|v

}
a < y1i < b

lnΦ
(
mi−b
σu|v

)
y1i = b

where
mi = ziδ+ α (y2i − xiΠ)

and Φ(·) is the normal distribution function so that the log likelihood for observation i is

lnLi = wi { lnf(y1i|y2i,xi) + lnf(y2i|xi)}

where wi is the weight for observation i or one if no weights were specified. Instead of estimating
σu|v and σv directly, we estimate lnσu|v and lnσv .

For multiple endogenous regressors, we have

lnf(y2i|xi) = −1
2
(

ln2π + ln |Σ22|+ v′iΣ
−1
22 vi

)
and lnf(y1i|y2i,xi) is the same as before, except that now

mi = ziδ+ (y2i − xiΠ)Σ−1
22 Σ21

Instead of maximizing the log-likelihood function with respect to Σ, we maximize with respect
to the Cholesky decomposition S of Σ; that is, there exists a lower triangular matrix S such that
SS′ = Σ. This maximization ensures that Σ is positive definite, as a covariance matrix must be. Let
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S =


s11 0 0 . . . 0
s21 s22 0 . . . 0
s31 s32 s33 . . . 0

...
...

...
. . .

...
sp+1,1 sp+1,2 sp+1,3 . . . sp+1,p+1


With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator

of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of ivtobit also supports estimation with survey data. For details
on VCEs with survey data, see [SVY] variance estimation.

The two-step estimates are obtained using Newey’s (1987) minimum chi-squared estimator. The
procedure is identical to the one described in [R] ivprobit, except that tobit is used instead of
probit.
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The two-step estimator is based on the tobitiv command written by Jonah Gelbach, Department

of Economics, Yale University, and the ivtobit command written by Joe Harkness, Institute of
Policy Studies, Johns Hopkins University.

References
Finlay, K., and L. M. Magnusson. 2009. Implementing weak-instrument robust tests for a general class of instrumental-

variables models. Stata Journal 9: 398–421.

Miranda, A., and S. Rabe-Hesketh. 2006. Maximum likelihood estimation of endogenous switching and sample
selection models for binary, ordinal, and count variables. Stata Journal 6: 285–308.

Newey, W. K. 1987. Efficient estimation of limited dependent variable models with endogenous explanatory variables.
Journal of Econometrics 36: 231–250.

Wooldridge, J. M. 2010. Econometric Analysis of Cross Section and Panel Data. 2nd ed. Cambridge, MA: MIT Press.

Also see
[R] ivtobit postestimation — Postestimation tools for ivtobit

[R] gmm — Generalized method of moments estimation

[R] ivprobit — Probit model with continuous endogenous regressors

[R] ivregress — Single-equation instrumental-variables regression

[R] regress — Linear regression

[R] tobit — Tobit regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression models

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands

http://www.stata-journal.com/article.html?article=st0171
http://www.stata-journal.com/article.html?article=st0171
http://www.stata-journal.com/sjpdf.html?articlenum=st0107
http://www.stata-journal.com/sjpdf.html?articlenum=st0107
http://www.stata.com/bookstore/cspd.html


Title

ivtobit postestimation — Postestimation tools for ivtobit

Description
The following postestimation commands are available after ivtobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest2 likelihood-ratio test; not available with two-step estimator
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest1 seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 estat ic and suest are not appropriate after ivtobit, twostep.
2 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

853
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Syntax for predict
After ML or twostep

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

After ML

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
stdf standard error of the forecast; not available with two-step estimator
pr(a,b) Pr(a < yj < b); not available with two-step estimator
e(a,b) E(yj |a < yj < b); not available with two-step estimator
ystar(a,b) E(y∗j ), yj = max{a,min(yj , b)}; not available with two-step estimator

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction. It can be thought of as the standard error
of the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation. stdf is not available with the
two-step estimator.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).
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a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

pr(a,b) is not available with the two-step estimator.

e(a,b) calculates E(xjb + uj
∣∣ a < xjb + uj < b), the expected value of yj |xj conditional on

yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr(). e(a,b) is not available with the two-step estimator.

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().
ystar(a,b) is not available with the two-step estimator.

scores, not available with twostep, calculates equation-level score variables.

For models with one endogenous regressor, five new variables are created.

The first new variable will contain ∂ lnL/∂(ziδ).

The second new variable will contain ∂ lnL/∂(xiΠ).

The third new variable will contain ∂ lnL/∂α.

The fourth new variable will contain ∂ lnL/∂ lnσu|v .

The fifth new variable will contain ∂ lnL/∂ lnσv .

For models with p endogenous regressors, p+ {(p+ 1)(p+ 2)}/2 + 1 new variables are created.

The first new variable will contain ∂ lnL/∂(ziδ).

The second through (p+1)th new score variables will contain ∂ lnL/∂(xiΠk), k = 1, . . . , p,
where Πk is the kth column of Π.

The remaining score variables will contain the partial derivatives of lnL with respect to s11,
s21, . . . , sp+1,1, s22, . . . , sp+1,2, . . . , sp+1,p+1, where sm,n denotes the (m,n) element
of the Cholesky decomposition of the error covariance matrix.

Remarks
Remarks are presented under the following headings:

Marginal effects
Obtaining predicted values

Marginal effects

Example 1

We can obtain average marginal effects by using the margins command after ivtobit. For the
labor-supply model of example 1 in [R] ivtobit, suppose that we wanted to know the average marginal
effects on the woman’s expected income, conditional on her income being greater than $10,000.
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. use http://www.stata-press.com/data/r12/laborsup

. ivtobit fem_inc fem_educ kids (other_inc = male_educ), ll
(output omitted )

. margins, dydx(*) predict(e(10, .))

Average marginal effects Number of obs = 500
Model VCE : OIM

Expression : E(fem_inc|fem_inc>10), predict(e(10, .))
dy/dx w.r.t. : other_inc fem_educ kids male_educ

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

other_inc -.3420189 .0553591 -6.18 0.000 -.4505208 -.233517
fem_educ 1.237336 .1534025 8.07 0.000 .9366723 1.537999

kids -1.252447 .2725166 -4.60 0.000 -1.78657 -.7183246
male_educ 0 (omitted)

In our sample, increasing the number of children in the family by one decreases the expected wage
by $1,252 on average (wages in our dataset are measured in thousands of dollars). male edu has no
effect because it appears only as an instrument.

Obtaining predicted values

After fitting your model using ivtobit, you can obtain the linear prediction and its standard
error for both the estimation sample and other samples using the predict command. If you used
the maximum likelihood estimator, you can also obtain conditional expected values of the observed
and latent dependent variables, the standard error of the forecast, and the probability of observing
the dependent variable in a specified interval. See [U] 20 Estimation and postestimation commands
and [R] predict.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The linear prediction is calculated as ziδ̂, where δ̂ is the estimated value of δ, and zi and δ
are defined in (1a) of [R] ivtobit. Expected values and probabilities are calculated using the same
formulas as those used by the standard exogenous tobit model.

Also see
[R] ivtobit — Tobit model with continuous endogenous regressors

[U] 20 Estimation and postestimation commands



Title

jackknife — Jackknife estimation

Syntax
jackknife exp list

[
, options eform option

]
: command

options Description

Main

eclass number of observations used is stored in e(N)

rclass number of observations used is stored in r(N)

n(exp) specify exp that evaluates to the number of observations used

Options

cluster(varlist) variables identifying sample clusters
idcluster(newvar) create new cluster ID variable
saving( filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications
keep keep pseudovalues
mse use MSE formula for variance estimation

Reporting

level(#) set confidence level; default is level(95)

notable suppress table of results
noheader suppress table header
nolegend suppress table legend
verbose display the full table legend
nodots suppress replication dots
noisily display any output from command
trace trace command
title(text) use text as title for jackknife results
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Advanced

nodrop do not drop observations
reject(exp) identify invalid results

eform option display coefficient table in exponentiated form
coeflegend display legend instead of statistics

svy is allowed; see [SVY] svy jackknife.
All weight types supported by command are allowed except aweights; see [U] 11.1.6 weight.
eform option and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Menu
Statistics > Resampling > Jackknife estimation

Description
jackknife performs jackknife estimation. Typing

. jackknife exp list: command

executes command once for each observation in the dataset, leaving the associated observation out of
the calculations that make up exp list.

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with jackknife, as long as they follow standard Stata syntax and allow the
if qualifier; see [U] 11 Language syntax. The by prefix may not be part of command.

exp list specifies the statistics to be collected from the execution of command. If command changes
the contents in e(b), exp list is optional and defaults to b.

Many estimation commands allow the vce(jackknife) option. For those commands, we rec-
ommend using vce(jackknife) over jackknife because the estimation command already handles
clustering and other model-specific details for you. The jackknife prefix command is intended
for use with nonestimation commands, such as summarize, user-written commands, or functions of
coefficients.

jknife is a synonym for jackknife.

Options

� � �
Main �

eclass, rclass, and n(exp) specify where command saves the number of observations on which
it based the calculated results. We strongly advise you to specify one of these options.
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eclass specifies that command save the number of observations in e(N).

rclass specifies that command save the number of observations in r(N).

n(exp) specifies an expression that evaluates to the number of observations used. Specifying
n(r(N)) is equivalent to specifying the rclass option. Specifying n(e(N)) is equivalent to
specifying the eclass option. If command saves the number of observations in r(N1), specify
n(r(N1)).

If you specify no options, jackknife will assume eclass or rclass, depending on which of
e(N) and r(N) is not missing (in that order). If both e(N) and r(N) are missing, jackknife
assumes that all observations in the dataset contribute to the calculated result. If that assumption
is incorrect, the reported standard errors will be incorrect. For instance, say that you specify

. jackknife coef=_b[x2]: myreg y x1 x2 x3

where myreg uses e(n) instead of e(N) to identify the number of observations used in calculations.
Further assume that observation 42 in the dataset has x3 equal to missing. The 42nd observation
plays no role in obtaining the estimates, but jackknife has no way of knowing that and will use
the wrong N . If, on the other hand, you specify

. jackknife coef=_b[x2], n(e(n)): myreg y x1 x2 x3

jackknife will notice that observation 42 plays no role. The n(e(n)) option is specified because
myreg is an estimation command but it saves the number of observations used in e(n) (instead
of the standard e(N)). When jackknife runs the regression omitting the 42nd observation,
jackknife will observe that e(n) has the same value as when jackknife previously ran the
regression using all the observations. Thus jackknife will know that myreg did not use the
observation.

� � �
Options �

cluster(varlist) specifies the variables identifying sample clusters. If cluster() is specified, one
cluster is left out of each call to command, instead of 1 observation.

idcluster(newvar) creates a new variable containing a unique integer identifier for each resampled
cluster, starting at 1 and leading up to the number of clusters. This option may be specified only
when the cluster() option is specified. idcluster() helps identify the cluster to which a
pseudovalue belongs.

saving( filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals. This option may be used without
the saving() option to compute the variance estimates by using double precision.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunction with saving() when command takes a long time for each replication. This
option will allow recovery of partial results should some other software crash your computer.
See [P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the
dialog box.

keep specifies that new variables be added to the dataset containing the pseudovalues of the requested
statistics. For instance, if you typed

. jackknife coef=_b[x2], eclass keep: regress y x1 x2 x3
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new variable coef would be added to the dataset containing the pseudovalues for b[x2]. Let b
be the value of b[x2] when all observations are used to fit the model, and let b(j) be the value
when the jth observation is omitted. The pseudovalues are defined as

pseudovaluej = N {b− b(j)}+ b(j)

where N is the number of observations used to produce b.

When the cluster() option is specified, each cluster is given at most one nonmissing pseudovalue.
The keep option implies the nodrop option.

mse specifies that jackknife compute the variance by using deviations of the replicates from the
observed value of the statistics based on the entire dataset. By default, jackknife computes the
variance by using deviations of the pseudovalues from their mean.

� � �
Reporting �

level(#); see [R] estimation options.

notable suppresses the display of the table of results.

noheader suppresses the display of the table header. This option implies nolegend.

nolegend suppresses the display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

verbose specifies that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

nodots suppresses display of the replication dots. By default, one dot character is displayed for each
successful replication. A red ‘x’ is displayed if command returns an error or if one of the values
in exp list is missing.

noisily specifies that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(text) specifies a title to be displayed above the table of jackknife results; the default title is
Jackknife results or what is produced in e(title) by an estimation command.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Advanced �

nodrop prevents observations outside e(sample) and the if and in qualifiers from being dropped
before the data are resampled.

reject(exp) identifies an expression that indicates when results should be rejected. When exp is
true, the resulting values are reset to missing values.

The following options are available with jackknife but are not shown in the dialog box:

eform option causes the coefficient table to be displayed in exponentiated form; see [R] eform option.
command determines which eform option is allowed (eform(string) and eform are always
allowed).
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command determines which of the following are allowed (eform(string) and eform are always
allowed):

eform option Description

eform(string) use string for the column title
eform exponentiated coefficient, string is exp(b)

hr hazard ratio, string is Haz. Ratio

shr subhazard ratio, string is SHR

irr incidence-rate ratio, string is IRR

or odds ratio, string is Odds Ratio

rrr relative-risk ratio, string is RRR

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Jackknifed standard deviation
Collecting multiple statistics
Collecting coefficients

Introduction
Although the jackknife—developed in the late 1940s and early 1950s—is of largely historical

interest today, it is still useful in searching for overly influential observations. This feature is often
forgotten. In any case, the jackknife is

• an alternative, first-order unbiased estimator for a statistic;

• a data-dependent way to calculate the standard error of the statistic and to obtain significance
levels and confidence intervals; and

• a way of producing measures called pseudovalues for each observation, reflecting the observation’s
influence on the overall statistic.

The idea behind the simplest form of the jackknife—the one implemented here—is to repeatedly
calculate the statistic in question, each time omitting just one of the dataset’s observations. Assume
that our statistic of interest is the sample mean. Let yj be the jth observation of our data on some
measurement y, where j = 1, . . . , N and N is the sample size. If y is the sample mean of y using
the entire dataset and y(j) is the mean when the jth observation is omitted, then

y =
(N − 1) y(j) + yj

N

Solving for yj , we obtain
yj = N y − (N − 1) y(j)

These are the pseudovalues that jackknife calculates. To move this discussion beyond the sample
mean, let θ̂ be the value of our statistic (not necessarily the sample mean) using the entire dataset,
and let θ̂(j) be the computed value of our statistic with the jth observation omitted. The pseudovalue
for the jth observation is

θ̂∗j = N θ̂ − (N − 1) θ̂(j)
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The mean of the pseudovalues is the alternative, first-order unbiased estimator mentioned above,
and the standard error of the mean of the pseudovalues is an estimator for the standard error of θ̂
(Tukey 1958).

When the cluster() option is given, clusters are omitted instead of observations, and N is the
number of clusters instead of the sample size.

The jackknife estimate of variance has been largely replaced by the bootstrap estimate (see
[R] bootstrap), which is widely viewed as more efficient and robust. The use of jackknife pseudovalues
to detect outliers is too often forgotten and is something the bootstrap does not provide. See Mosteller
and Tukey (1977, 133–163) and Mooney and Duval (1993, 22–27) for more information.

Example 1

As our first example, we will show that the jackknife standard error of the sample mean is
equivalent to the standard error of the sample mean computed using the classical formula in the ci
command. We use the double option to compute the standard errors with the same precision as the
ci command.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. jackknife r(mean), double: summarize mpg

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Jackknife results Number of obs = 74
Replications = 74

command: summarize mpg, mean
_jk_1: r(mean)

n(): r(N)

Jackknife
Coef. Std. Err. t P>|t| [95% Conf. Interval]

_jk_1 21.2973 .6725511 31.67 0.000 19.9569 22.63769

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

Jackknifed standard deviation

Example 2

Mosteller and Tukey (1977, 139–140) request a 95% confidence interval for the standard deviation
of the 11 values:

0.1, 0.1, 0.1, 0.4, 0.5, 1.0, 1.1, 1.3, 1.9, 1.9, 4.7

Stata’s summarize command calculates the mean and standard deviation and saves them as r(mean)
and r(sd). To obtain the jackknifed standard deviation of the 11 values and save the pseudovalues
as a new variable, sd, we would type
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. clear

. input x
x

1. 0.1
2. 0.1
3. 0.1
4. 0.4
5. 0.5
6. 1.0
7. 1.1
8. 1.3
9. 1.9

10. 1.9
11. 4.7
12. end

. jackknife sd=r(sd), rclass keep: summarize x
(running summarize on estimation sample)

Jackknife replications (11)
1 2 3 4 5

...........

Jackknife results Number of obs = 11
Replications = 11

command: summarize x
sd: r(sd)

n(): r(N)

Jackknife
Coef. Std. Err. t P>|t| [95% Conf. Interval]

sd 1.343469 .624405 2.15 0.057 -.047792 2.73473

Interpreting the output, the standard deviation reported by summarize mpg is 1.34. The jackknife
standard error is 0.62. The 95% confidence interval for the standard deviation is −0.048 to 2.73.

By specifying keep, jackknife creates in our dataset a new variable, sd, for the pseudovalues.

. list, sep(4)

x sd

1. .1 1.139977
2. .1 1.139977
3. .1 1.139977
4. .4 .8893147

5. .5 .824267
6. 1 .632489
7. 1.1 .6203189
8. 1.3 .6218889

9. 1.9 .835419
10. 1.9 .835419
11. 4.7 7.703949

The jackknife estimate is the average of the sd variable, so sd contains the individual values of our
statistic. We can see that the last observation is substantially larger than the others. The last observation
is certainly an outlier, but whether that reflects the considerable information it contains or indicates
that it should be excluded from analysis depends on the context of the problem. Here Mosteller
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and Tukey created the dataset by sampling from an exponential distribution, so the observation is
informative.

Example 3

Let’s repeat the example above using the automobile dataset, obtaining the standard error of the
standard deviation of mpg.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. jackknife sd=r(sd), rclass keep: summarize mpg
(running summarize on estimation sample)

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Jackknife results Number of obs = 74
Replications = 74

command: summarize mpg
sd: r(sd)

n(): r(N)

Jackknife
Coef. Std. Err. t P>|t| [95% Conf. Interval]

sd 5.785503 .6072509 9.53 0.000 4.575254 6.995753

Let’s look at sd more carefully:

. summarize sd, detail

pseudovalues: r(sd)

Percentiles Smallest
1% 2.870471 2.870471
5% 2.870471 2.870471

10% 2.906255 2.870471 Obs 74
25% 3.328489 2.870471 Sum of Wgt. 74

50% 3.948335 Mean 5.817374
Largest Std. Dev. 5.22377

75% 6.844418 17.34316
90% 9.597018 19.7617 Variance 27.28777
95% 17.34316 19.7617 Skewness 4.07202
99% 38.60905 38.60905 Kurtosis 23.37823

. list make mpg sd if sd > 30

make mpg sd

71. VW Diesel 41 38.60905

Here the VW Diesel is the only diesel car in our dataset.
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Collecting multiple statistics

Example 4

jackknife is not limited to collecting just one statistic. For instance, we can use summarize,
detail and then obtain the jackknife estimate of the standard deviation and skewness. summarize,
detail saves the standard deviation in r(sd) and the skewness in r(skewness), so we might type

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. jackknife sd=r(sd) skew=r(skewness), rclass: summarize mpg, detail
(running summarize on estimation sample)

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Jackknife results Number of obs = 74
Replications = 74

command: summarize mpg, detail
sd: r(sd)

skew: r(skewness)
n(): r(N)

Jackknife
Coef. Std. Err. t P>|t| [95% Conf. Interval]

sd 5.785503 .6072509 9.53 0.000 4.575254 6.995753
skew .9487176 .3367242 2.82 0.006 .2776272 1.619808

Collecting coefficients

Example 5

jackknife can also collect coefficients from estimation commands. For instance, using auto.dta,
we might wish to obtain the jackknife standard errors of the coefficients from a regression in which
we model the mileage of a car by its weight and trunk space. To do this, we could refer to the
coefficients as b[weight], b[trunk], se[weight], and se[trunk] in the exp list, or we
could simply use the extended expressions b. In fact, jackknife assumes b by default when used
with estimation commands.
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. jackknife: regress mpg weight trunk
(running regress on estimation sample)

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Linear regression Number of obs = 74
Replications = 74
F( 2, 73) = 78.10
Prob > F = 0.0000
R-squared = 0.6543
Adj R-squared = 0.6446
Root MSE = 3.4492

Jackknife
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0056527 .0010216 -5.53 0.000 -.0076887 -.0036167
trunk -.096229 .1486236 -0.65 0.519 -.3924354 .1999773
_cons 39.68913 1.873324 21.19 0.000 35.9556 43.42266

If you are going to use jackknife to estimate standard errors of model coefficients, we recommend
using the vce(jackknife) option when it is allowed with the estimation command; see [R] vce option.

. regress mpg weight trunk, vce(jackknife, nodots)

Linear regression Number of obs = 74
Replications = 74
F( 2, 73) = 78.10
Prob > F = 0.0000
R-squared = 0.6543
Adj R-squared = 0.6446
Root MSE = 3.4492

Jackknife
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0056527 .0010216 -5.53 0.000 -.0076887 -.0036167
trunk -.096229 .1486236 -0.65 0.519 -.3924354 .1999773
_cons 39.68913 1.873324 21.19 0.000 35.9556 43.42266

� �
John Wilder Tukey (1915–2000) was born in Massachusetts. He studied chemistry at Brown
and mathematics at Princeton and afterward worked at both Princeton and Bell Labs, as well as
being involved in a great many government projects, consultancies, and committees. He made
outstanding contributions to several areas of statistics, including time series, multiple comparisons,
robust statistics, and exploratory data analysis. Tukey was extraordinarily energetic and inventive,
not least in his use of terminology: he is credited with inventing the terms bit and software, in
addition to ANOVA, boxplot, data analysis, hat matrix, jackknife, stem-and-leaf plot, trimming,
and winsorizing, among many others. Tukey’s direct and indirect impacts mark him as one of
the greatest statisticians of all time.� �
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Saved results
jknife saves the following in e():
Scalars

e(N) sample size
e(N reps) number of complete replications
e(N misreps) number of incomplete replications
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(k extra) number of extra equations
e(k exp) number of expressions
e(k eexp) number of extended expressions ( b or se)
e(df r) degrees of freedom

Macros
e(cmdname) command name from command
e(cmd) same as e(cmdname) or jackknife
e(command) command
e(cmdline) command as typed
e(prefix) jackknife
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(cluster) cluster variables
e(pseudo) new variables containing pseudovalues
e(nfunction) e(N), r(N), n() option, or empty
e(exp#) expression for the #th statistic
e(mse) from mse option
e(vce) jackknife
e(vcetype) title used to label Std. Err.
e(properties) b V

Matrices
e(b) observed statistics
e(b jk) jackknife estimates
e(V) jackknife variance–covariance matrix
e(V modelbased) model-based variance

When exp list is b, jackknife will also carry forward most of the results already in e() from
command.

Methods and formulas
jackknife is implemented as an ado-file.

Let θ̂ be the observed value of the statistic, that is, the value of the statistic calculated using the
original dataset. Let θ̂(j) be the value of the statistic computed by leaving out the jth observation
(or cluster); thus j = 1, 2, . . . , N identifies an individual observation (or cluster), and N is the total
number of observations (or clusters). The jth pseudovalue is given by

θ̂∗j = θ̂(j) +N{θ̂ − θ̂(j)}

When the mse option is specified, the standard error is estimated as

ŝe =
{
N − 1
N

N∑
j=1

(θ̂(j) − θ̂)2

}1/2
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and the jackknife estimate is

θ̄(.) =
1
N

N∑
j=1

θ̂(j)

Otherwise, the standard error is estimated as

ŝe =
{

1
N(N − 1)

N∑
j=1

(θ̂∗j − θ̄∗)2

}1/2

θ̄∗ =
1
N

N∑
j=1

θ̂∗j

where θ̄∗ is the jackknife estimate. The variance–covariance matrix is similarly computed.
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Title

jackknife postestimation — Postestimation tools for jackknife

Description
The following postestimation commands are available after jackknife:

Command Description

∗contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗margins marginal means, predictive margins, marginal effects, and average marginal effects
∗marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
∗predict predictions, residuals, influence statistics, and other diagnostic measures
∗predictnl point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
∗pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗This postestimation command is allowed only if it may be used after command.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
The syntax of predict (and whether predict is even allowed) following jackknife depends

on the command used with jackknife.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] jackknife — Jackknife estimation

[U] 20 Estimation and postestimation commands
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Title

kappa — Interrater agreement

Syntax

Interrater agreement, two unique raters

kap varname1 varname2

[
if
] [

in
] [

weight
] [

, options
]

Weights for weighting disagreements

kapwgt wgtid
[
1 \ # 1

[
\ # # 1 . . .

] ]
Interrater agreement, nonunique raters, variables record ratings for each rater

kap varname1 varname2 varname3

[
. . .
] [

if
] [

in
] [

weight
]

Interrater agreement, nonunique raters, variables record frequency of ratings

kappa varlist
[

if
] [

in
]

options Description

Main

tab display table of assessments
wgt(wgtid) specify how to weight disagreements; see Options for alternatives
absolute treat rating categories as absolute

fweights are allowed; see [U] 11.1.6 weight.

Menu
kap: two unique raters

Statistics > Epidemiology and related > Other > Interrater agreement, two unique raters

kapwgt

Statistics > Epidemiology and related > Other > Define weights for the above (kap)

kap: nonunique raters

Statistics > Epidemiology and related > Other > Interrater agreement, nonunique raters

kappa

Statistics > Epidemiology and related > Other > Interrater agreement, nonunique raters with frequencies

870
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Description
kap (first syntax) calculates the kappa-statistic measure of interrater agreement when there are two

unique raters and two or more ratings.

kapwgt defines weights for use by kap in measuring the importance of disagreements.

kap (second syntax) and kappa calculate the kappa-statistic measure when there are two or more
(nonunique) raters and two outcomes, more than two outcomes when the number of raters is fixed,
and more than two outcomes when the number of raters varies. kap (second syntax) and kappa
produce the same results; they merely differ in how they expect the data to be organized.

kap assumes that each observation is a subject. varname1 contains the ratings by the first rater,
varname2 by the second rater, and so on.

kappa also assumes that each observation is a subject. The variables, however, record the frequencies
with which ratings were assigned. The first variable records the number of times the first rating was
assigned, the second variable records the number of times the second rating was assigned, and so on.

Options

� � �
Main �

tab displays a tabulation of the assessments by the two raters.

wgt(wgtid) specifies that wgtid be used to weight disagreements. You can define your own weights
by using kapwgt; wgt() then specifies the name of the user-defined matrix. For instance, you
might define

. kapwgt mine 1 \ .8 1 \ 0 .8 1 \ 0 0 .8 1

and then

. kap rata ratb, wgt(mine)

Also, two prerecorded weights are available.

wgt(w) specifies weights 1− |i− j|/(k − 1), where i and j index the rows and columns of the
ratings by the two raters and k is the maximum number of possible ratings.

wgt(w2) specifies weights 1− {(i− j)/(k − 1)}2.

absolute is relevant only if wgt() is also specified. The absolute option modifies how i, j, and
k are defined and how corresponding entries are found in a user-defined weighting matrix. When
absolute is not specified, i and j refer to the row and column index, not to the ratings themselves.
Say that the ratings are recorded as {0, 1, 1.5, 2}. There are four ratings; k = 4, and i and j are
still 1, 2, 3, and 4 in the formulas above. Index 3, for instance, corresponds to rating = 1.5. This
system is convenient but can, with some data, lead to difficulties.

When absolute is specified, all ratings must be integers, and they must be coded from the set
{1, 2, 3, . . .}. Not all values need be used; integer values that do not occur are simply assumed to
be unobserved.
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Remarks
Remarks are presented under the following headings:

Two raters
More than two raters

The kappa-statistic measure of agreement is scaled to be 0 when the amount of agreement is what
would be expected to be observed by chance and 1 when there is perfect agreement. For intermediate
values, Landis and Koch (1977a, 165) suggest the following interpretations:

below 0.0 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

Two raters

Example 1

Consider the classification by two radiologists of 85 xeromammograms as normal, benign disease,
suspicion of cancer, or cancer (a subset of the data from Boyd et al. [1982] and discussed in the
context of kappa in Altman [1991, 403–405]).

. use http://www.stata-press.com/data/r12/rate2
(Altman p. 403)
. tabulate rada radb

Radiologist
A’s Radiologist B’s assessment

assessment normal benign suspect cancer Total

normal 21 12 0 0 33
benign 4 17 1 0 22

suspect 3 9 15 2 29
cancer 0 0 0 1 1

Total 28 38 16 3 85

Our dataset contains two variables: rada, radiologist A’s assessment, and radb, radiologist B’s
assessment. Each observation is a patient.

We can obtain the kappa measure of interrater agreement by typing

. kap rada radb

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000

If each radiologist had made his determination randomly (but with probabilities equal to the overall
proportions), we would expect the two radiologists to agree on 30.8% of the patients. In fact, they
agreed on 63.5% of the patients, or 47.3% of the way between random agreement and perfect
agreement. The amount of agreement indicates that we can reject the hypothesis that they are making
their determinations randomly.
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Example 2: Weighted kappa, prerecorded weight w

There is a difference between two radiologists disagreeing about whether a xeromammogram
indicates cancer or the suspicion of cancer and disagreeing about whether it indicates cancer or is
normal. The weighted kappa attempts to deal with this. kap provides two “prerecorded” weights, w
and w2:

. kap rada radb, wgt(w)

Ratings weighted by:
1.0000 0.6667 0.3333 0.0000
0.6667 1.0000 0.6667 0.3333
0.3333 0.6667 1.0000 0.6667
0.0000 0.3333 0.6667 1.0000

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

86.67% 69.11% 0.5684 0.0788 7.22 0.0000

The w weights are given by 1− |i− j|/(k − 1), where i and j index the rows of columns of the
ratings by the two raters and k is the maximum number of possible ratings. The weighting matrix
is printed above the table. Here the rows and columns of the 4× 4 matrix correspond to the ratings
normal, benign, suspicious, and cancerous.

A weight of 1 indicates that an observation should count as perfect agreement. The matrix has
1s down the diagonals—when both radiologists make the same assessment, they are in agreement.
A weight of, say, 0.6667 means that they are in two-thirds agreement. In our matrix, they get that
score if they are “one apart”—one radiologist assesses cancer and the other is merely suspicious, or
one is suspicious and the other says benign, and so on. An entry of 0.3333 means that they are in
one-third agreement, or, if you prefer, two-thirds disagreement. That is the score attached when they
are “two apart”. Finally, they are in complete disagreement when the weight is zero, which happens
only when they are three apart—one says cancer and the other says normal.

Example 3: Weighted kappa, prerecorded weight w2

The other prerecorded weight is w2, where the weights are given by 1− {(i− j)/(k − 1)}2:

. kap rada radb, wgt(w2)

Ratings weighted by:
1.0000 0.8889 0.5556 0.0000
0.8889 1.0000 0.8889 0.5556
0.5556 0.8889 1.0000 0.8889
0.0000 0.5556 0.8889 1.0000

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

94.77% 84.09% 0.6714 0.1079 6.22 0.0000

The w2 weight makes the categories even more alike and is probably inappropriate here.
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Example 4: Weighted kappa, user-defined weights

In addition to using prerecorded weights, we can define our own weights with the kapwgt
command. For instance, we might feel that suspicious and cancerous are reasonably similar, that
benign and normal are reasonably similar, but that the suspicious/cancerous group is nothing like the
benign/normal group:

. kapwgt xm 1 \ .8 1 \ 0 0 1 \ 0 0 .8 1

. kapwgt xm

1.0000
0.8000 1.0000
0.0000 0.0000 1.0000
0.0000 0.0000 0.8000 1.0000

We name the weights xm, and after the weight name, we enter the lower triangle of the weighting
matrix, using \ to separate rows. We have four outcomes, so we continued entering numbers until
we had defined the fourth row of the weighting matrix. If we type kapwgt followed by a name and
nothing else, it shows us the weights recorded under that name. Satisfied that we have entered them
correctly, we now use the weights to recalculate kappa:

. kap rada radb, wgt(xm)

Ratings weighted by:
1.0000 0.8000 0.0000 0.0000
0.8000 1.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.8000
0.0000 0.0000 0.8000 1.0000

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

80.47% 52.67% 0.5874 0.0865 6.79 0.0000

Technical note
In addition to using weights for weighting the differences in categories, you can specify Stata’s

traditional weights for weighting the data. In the examples above, we have 85 observations in our
dataset—one for each patient. If we only knew the table of outcomes—that there were 21 patients
rated normal by both radiologists, etc.—it would be easier to enter the table into Stata and work
from it. The easiest way to enter the data is with tabi; see [R] tabulate twoway.

. tabi 21 12 0 0 \ 4 17 1 0 \ 3 9 15 2 \ 0 0 0 1, replace

col
row 1 2 3 4 Total

1 21 12 0 0 33
2 4 17 1 0 22
3 3 9 15 2 29
4 0 0 0 1 1

Total 28 38 16 3 85

Pearson chi2(9) = 77.8111 Pr = 0.000

tabi reported the Pearson χ2 for this table, but we do not care about it. The important thing is that,
with the replace option, tabi left the table in memory:
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. list in 1/5

row col pop

1. 1 1 21
2. 1 2 12
3. 1 3 0
4. 1 4 0
5. 2 1 4

The variable row is radiologist A’s assessment, col is radiologist B’s assessment, and pop is the
number so assessed by both. Thus

. kap row col [freq=pop]

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000

If we are going to keep these data, the names row and col are not indicative of what the data reflect.
We could type (see [U] 12.6 Dataset, variable, and value labels)

. rename row rada

. rename col radb

. label var rada "Radiologist A’s assessment"

. label var radb "Radiologist B’s assessment"

. label define assess 1 normal 2 benign 3 suspect 4 cancer

. label values rada assess

. label values radb assess

. label data "Altman p. 403"

kap’s tab option, which can be used with or without weighted data, shows the table of assessments:

. kap rada radb [freq=pop], tab

Radiologist
A’s Radiologist B’s assessment

assessment normal benign suspect cancer Total

normal 21 12 0 0 33
benign 4 17 1 0 22

suspect 3 9 15 2 29
cancer 0 0 0 1 1

Total 28 38 16 3 85

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

63.53% 30.82% 0.4728 0.0694 6.81 0.0000
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Technical note
You have data on individual patients. There are two raters, and the possible ratings are 1, 2, 3,

and 4, but neither rater ever used rating 3:

. use http://www.stata-press.com/data/r12/rate2no3, clear

. tabulate ratera raterb

raterb
ratera 1 2 4 Total

1 6 4 3 13
2 5 3 3 11
4 1 1 26 28

Total 12 8 32 52

Here kap would determine that the ratings are from the set {1, 2, 4} because those were the only
values observed. kap would expect a user-defined weighting matrix to be 3× 3, and if it were not,
kap would issue an error message. In the formula-based weights, the calculation would be based on
i, j = 1, 2, 3 corresponding to the three observed ratings {1, 2, 4}.

Specifying the absolute option would clarify that the ratings are 1, 2, 3, and 4; it just so happens
that rating 3 was never assigned. If a user-defined weighting matrix were also specified, kap would
expect it to be 4× 4 or larger (larger because we can think of the ratings being 1, 2, 3, 4, 5, . . . and
it just so happens that ratings 5, 6, . . .were never observed, just as rating 3 was not observed). In
the formula-based weights, the calculation would be based on i, j = 1, 2, 4.

. kap ratera raterb, wgt(w)

Ratings weighted by:
1.0000 0.5000 0.0000
0.5000 1.0000 0.5000
0.0000 0.5000 1.0000

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

79.81% 57.17% 0.5285 0.1169 4.52 0.0000

. kap ratera raterb, wgt(w) absolute

Ratings weighted by:
1.0000 0.6667 0.0000
0.6667 1.0000 0.3333
0.0000 0.3333 1.0000

Expected
Agreement Agreement Kappa Std. Err. Z Prob>Z

81.41% 55.08% 0.5862 0.1209 4.85 0.0000

If all conceivable ratings are observed in the data, specifying absolute makes no difference.
For instance, if rater A assigns ratings {1, 2, 4} and rater B assigns {1, 2, 3, 4}, the complete set of
assigned ratings is {1, 2, 3, 4}, the same that absolute would specify. Without absolute, it makes
no difference whether the ratings are coded {1, 2, 3, 4}, {0, 1, 2, 3}, {1, 7, 9, 100}, {0, 1, 1.5, 2.0}, or
otherwise.
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More than two raters
For more than two raters, the mathematics are such that the two raters are not considered unique.

For instance, if there are three raters, there is no assumption that the three raters who rate the first
subject are the same as the three raters who rate the second. Although we call this the “more than
two raters” case, it can be used with two raters when the raters’ identities vary.

The nonunique rater case can be usefully broken down into three subcases: 1) there are two possible
ratings, which we will call positive and negative; 2) there are more than two possible ratings, but the
number of raters per subject is the same for all subjects; and 3) there are more than two possible
ratings, and the number of raters per subject varies. kappa handles all these cases. To emphasize that
there is no assumption of constant identity of raters across subjects, the variables specified contain
counts of the number of raters rating the subject into a particular category.

� �
Jacob Cohen (1923–1998) was born in New York City. After studying psychology at City College
of New York and New York University, he worked as a medical psychologist until 1959 when he
became a full professor in the Department of Psychology at New York University. He made many
contributions to research methods, including the kappa measure. He persistently emphasized the
value of multiple regression and the importance of power and of measuring effects rather than
testing significance.� �

Example 5: Two ratings

Fleiss, Levin, and Paik (2003, 612) offers the following hypothetical ratings by different sets of
raters on 25 subjects:

No. of No. of No. of No. of
Subject raters pos. ratings Subject raters pos. ratings

1 2 2 14 4 3
2 2 0 15 2 0
3 3 2 16 2 2
4 4 3 17 3 1
5 3 3 18 2 1
6 4 1 19 4 1
7 3 0 20 5 4
8 5 0 21 3 2
9 2 0 22 4 0

10 4 4 23 3 0
11 5 5 24 3 3
12 3 3 25 2 2
13 4 4

We have entered these data into Stata, and the variables are called subject, raters, and pos.
kappa, however, requires that we specify variables containing the number of positive ratings and
negative ratings, that is, pos and raters-pos:

. use http://www.stata-press.com/data/r12/p612

. gen neg = raters-pos

. kappa pos neg

Two-outcomes, multiple raters:

Kappa Z Prob>Z

0.5415 5.28 0.0000
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We would have obtained the same results if we had typed kappa neg pos.

Example 6: More than two ratings, constant number of raters, kappa

Each of 10 subjects is rated into one of three categories by five raters (Fleiss, Levin, and Paik 2003,
615):

. use http://www.stata-press.com/data/r12/p615, clear

. list

subject cat1 cat2 cat3

1. 1 1 4 0
2. 2 2 0 3
3. 3 0 0 5
4. 4 4 0 1
5. 5 3 0 2

6. 6 1 4 0
7. 7 5 0 0
8. 8 0 4 1
9. 9 1 0 4

10. 10 3 0 2

We obtain the kappa statistic:

. kappa cat1-cat3

Outcome Kappa Z Prob>Z

cat1 0.2917 2.92 0.0018
cat2 0.6711 6.71 0.0000
cat3 0.3490 3.49 0.0002

combined 0.4179 5.83 0.0000

The first part of the output shows the results of calculating kappa for each of the categories separately
against an amalgam of the remaining categories. For instance, the cat1 line is the two-rating kappa,
where positive is cat1 and negative is cat2 or cat3. The test statistic, however, is calculated
differently (see Methods and formulas). The combined kappa is the appropriately weighted average
of the individual kappas. There is considerably less agreement about the rating of subjects into the
first category than there is for the second.

Example 7: More than two ratings, constant number of raters, kap

Now suppose that we have the same data as in the previous example but that the data are organized
differently:



kappa — Interrater agreement 879

. use http://www.stata-press.com/data/r12/p615b

. list

subject rater1 rater2 rater3 rater4 rater5

1. 1 1 2 2 2 2
2. 2 1 1 3 3 3
3. 3 3 3 3 3 3
4. 4 1 1 1 1 3
5. 5 1 1 1 3 3

6. 6 1 2 2 2 2
7. 7 1 1 1 1 1
8. 8 2 2 2 2 3
9. 9 1 3 3 3 3

10. 10 1 1 1 3 3

Here we would use kap rather than kappa because the variables record ratings for each rater.

. kap rater1 rater2 rater3 rater4 rater5

There are 5 raters per subject:

Outcome Kappa Z Prob>Z

1 0.2917 2.92 0.0018
2 0.6711 6.71 0.0000
3 0.3490 3.49 0.0002

combined 0.4179 5.83 0.0000

It does not matter which rater is which when there are more than two raters.

Example 8: More than two ratings, varying number of raters, kappa

In this unfortunate case, kappa can be calculated, but there is no test statistic for testing against
κ > 0. We do nothing differently—kappa calculates the total number of raters for each subject, and,
if it is not a constant, kappa suppresses the calculation of test statistics.

. use http://www.stata-press.com/data/r12/rvary

. list

subject cat1 cat2 cat3

1. 1 1 3 0
2. 2 2 0 3
3. 3 0 0 5
4. 4 4 0 1
5. 5 3 0 2

6. 6 1 4 0
7. 7 5 0 0
8. 8 0 4 1
9. 9 1 0 2

10. 10 3 0 2
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. kappa cat1-cat3

Outcome Kappa Z Prob>Z

cat1 0.2685 . .
cat2 0.6457 . .
cat3 0.2938 . .

combined 0.3816 . .

Note: number of ratings per subject vary; cannot calculate test
statistics.

Example 9: More than two ratings, varying number of raters, kap

This case is similar to the previous example, but the data are organized differently:

. use http://www.stata-press.com/data/r12/rvary2

. list

subject rater1 rater2 rater3 rater4 rater5

1. 1 1 2 2 . 2
2. 2 1 1 3 3 3
3. 3 3 3 3 3 3
4. 4 1 1 1 1 3
5. 5 1 1 1 3 3

6. 6 1 2 2 2 2
7. 7 1 1 1 1 1
8. 8 2 2 2 2 3
9. 9 1 3 . . 3

10. 10 1 1 1 3 3

Here we specify kap instead of kappa because the variables record ratings for each rater.

. kap rater1-rater5

There are between 3 and 5 (median = 5.00) raters per subject:

Outcome Kappa Z Prob>Z

1 0.2685 . .
2 0.6457 . .
3 0.2938 . .

combined 0.3816 . .

Note: number of ratings per subject vary; cannot calculate test
statistics.
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Saved results
kap and kappa save the following in r():
Scalars

r(N) number of subjects (kap only) r(kappa) kappa
r(prop o) observed proportion of agreement (kap

only)
r(z) z statistic

r(prop e) expected proportion of agreement (kap
only)

r(se) standard error for kappa statistic

Methods and formulas
kap, kapwgt, and kappa are implemented as ado-files.

The kappa statistic was first proposed by Cohen (1960). The generalization for weights reflecting
the relative seriousness of each possible disagreement is due to Cohen (1968). The analysis-of-variance
approach for k = 2 and m ≥ 2 is due to Landis and Koch (1977b). See Altman (1991, 403–409)
or Dunn (2000, chap. 2) for an introductory treatment and Fleiss, Levin, and Paik (2003, chap. 18)
for a more detailed treatment. All formulas below are as presented in Fleiss, Levin, and Paik (2003).
Let m be the number of raters, and let k be the number of rating outcomes.

Methods and formulas are presented under the following headings:
kap: m = 2
kappa: m > 2, k = 2
kappa: m > 2, k > 2

kap: m = 2

Define wij (i = 1, . . . , k and j = 1, . . . , k) as the weights for agreement and disagreement
(wgt()), or, if the data are not weighted, define wii = 1 and wij = 0 for i 6= j. If wgt(w) is
specified, wij = 1− |i− j|/(k − 1). If wgt(w2) is specified, wij = 1−

{
(i− j)/(k − 1)

}2
.

The observed proportion of agreement is

po =
k∑
i=1

k∑
j=1

wijpij

where pij is the fraction of ratings i by the first rater and j by the second. The expected proportion
of agreement is

pe =
k∑
i=1

k∑
j=1

wijpi·p·j

where pi· =
∑
j pij and p·j =

∑
i pij .

Kappa is given by κ̂ = (po − pe)/(1− pe).

The standard error of κ̂ for testing against 0 is

ŝ0 =
1

(1− pe)
√
n

([∑
i

∑
j

pi·p·j{wij − (wi· + w·j)}2
]
− p2

e

)1/2

where n is the number of subjects being rated, wi· =
∑
j p·jwij , and w·j =

∑
i pi·wij . The test

statistic Z = κ̂/ŝ0 is assumed to be distributed N(0, 1).
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kappa: m > 2, k = 2

Each subject i, i = 1, . . . , n, is found by xi of mi raters to be positive (the choice as to what is
labeled positive is arbitrary).

The overall proportion of positive ratings is p =
∑
i xi/(nm), where m =

∑
imi/n. The

between-subjects mean square is (approximately)

B =
1
n

∑
i

(xi −mip)2

mi

and the within-subject mean square is

W =
1

n(m− 1)

∑
i

xi(mi − xi)
mi

Kappa is then defined as

κ̂ =
B −W

B + (m− 1)W

The standard error for testing against 0 (Fleiss and Cuzick 1979) is approximately equal to and is
calculated as

ŝ0 =
1

(m− 1)
√
nmH

{
2(mH − 1) +

(m−mH)(1− 4pq)
mpq

}1/2

where mH is the harmonic mean of mi and q = 1− p.

The test statistic Z = κ̂/ŝ0 is assumed to be distributed N(0, 1).

kappa: m > 2, k > 2

Let xij be the number of ratings on subject i, i = 1, . . . , n, into category j, j = 1, . . . , k. Define
pj as the overall proportion of ratings in category j, qj = 1− pj , and let κ̂j be the kappa statistic
given above for k = 2 when category j is compared with the amalgam of all other categories. Kappa
is

κ =

∑
j

pjqj κ̂j∑
j

pjqj

(Landis and Koch 1977b). In the case where the number of raters per subject,
∑
j xij , is a constant m

for all i, Fleiss, Nee, and Landis (1979) derived the following formulas for the approximate standard
errors. The standard error for testing κ̂j against 0 is

ŝj =
{

2
nm(m− 1)

}1/2
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and the standard error for testing κ is

s =
√

2∑
j

pjqj
√
nm(m− 1)

{(∑
j

pjqj

)2

−
∑
j

pjqj(qj − pj)
}1/2
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Title

kdensity — Univariate kernel density estimation

Syntax
kdensity varname

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)

bwidth(#) half-width of kernel
generate(newvarx newvard) store the estimation points in newvarx and the density

estimate in newvard
n(#) estimate density using # points; default is min(N , 50)
at(varx) estimate density using the values specified by varx
nograph suppress graph

Kernel plot

cline options affect rendition of the plotted kernel density estimate

Density plots

normal add normal density to the graph
normopts(cline options) affect rendition of normal density
student(#) add Student’s t density with # degrees of freedom to the graph
stopts(cline options) affect rendition of the Student’s t density

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.
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Menu
Statistics > Nonparametric analysis > Kernel density estimation

Description
kdensity produces kernel density estimates and graphs the result.

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimate. The
default kernel is the Epanechnikov kernel (epanechnikov).

bwidth(#) specifies the half-width of the kernel, the width of the density window around each point.
If bwidth() is not specified, the “optimal” width is calculated and used. The optimal width is
the width that would minimize the mean integrated squared error if the data were Gaussian and a
Gaussian kernel were used, so it is not optimal in any global sense. In fact, for multimodal and highly
skewed densities, this width is usually too wide and oversmooths the density (Silverman 1992).

generate(newvarx newvard) stores the results of the estimation. newvarx will contain the points
at which the density is estimated. newvard will contain the density estimate.

n(#) specifies the number of points at which the density estimate is to be evaluated. The default is
min(N, 50), where N is the number of observations in memory.

at(varx) specifies a variable that contains the values at which the density should be estimated.
This option allows you to more easily obtain density estimates for different variables or different
subsamples of a variable and then overlay the estimated densities for comparison.

nograph suppresses the graph. This option is often used with the generate() option.

� � �
Kernel plot �

cline options affect the rendition of the plotted kernel density estimate. See [G-3] cline options.

� � �
Density plots �

normal requests that a normal density be overlaid on the density estimate for comparison.

normopts(cline options) specifies details about the rendition of the normal curve, such as the color
and style of line used. See [G-3] cline options.

student(#) specifies that a Student’s t density with # degrees of freedom be overlaid on the density
estimate for comparison.

stopts(cline options) affects the rendition of the Student’s t density. See [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Kernel density estimators approximate the density f(x) from observations on x. Histograms do

this, too, and the histogram itself is a kind of kernel density estimate. The data are divided into
nonoverlapping intervals, and counts are made of the number of data points within each interval.
Histograms are bar graphs that depict these frequency counts—the bar is centered at the midpoint of
each interval—and its height reflects the average number of data points in the interval.

In more general kernel density estimates, the range is still divided into intervals, and estimates of
the density at the center of intervals are produced. One difference is that the intervals are allowed
to overlap. We can think of sliding the interval—called a window—along the range of the data
and collecting the center-point density estimates. The second difference is that, rather than merely
counting the number of observations in a window, a kernel density estimator assigns a weight between
0 and 1—based on the distance from the center of the window—and sums the weighted values. The
function that determines these weights is called the kernel.

Kernel density estimates have the advantages of being smooth and of being independent of the
choice of origin (corresponding to the location of the bins in a histogram).

See Salgado-Ugarte, Shimizu, and Taniuchi (1993) and Fox (1990) for discussions of kernel density
estimators that stress their use as exploratory data-analysis tools.

Cox (2007) gives a lucid introductory tutorial on kernel density estimation with several Stata
produced examples. He provides tips and tricks for working with skewed or bounded distributions
and applying the same techniques to estimate the intensity function of a point process.

Example 1: Histogram and kernel density estimate

Goeden (1978) reports data consisting of 316 length observations of coral trout. We wish to
investigate the underlying density of the lengths. To begin on familiar ground, we might draw a
histogram. In [R] histogram, we suggest setting the bins to min(

√
n, 10 · log10n), which for n = 316

is roughly 18:



kdensity — Univariate kernel density estimation 887

. use http://www.stata-press.com/data/r12/trocolen

. histogram length, bin(18)
(bin=18, start=226, width=19.777778)
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The kernel density estimate, on the other hand, is smooth.

. kdensity length
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kernel = epanechnikov, bandwidth = 20.15

Kernel density estimate

Kernel density estimators are, however, sensitive to an assumption, just as are histograms. In histograms,
we specify a number of bins. For kernel density estimators, we specify a width. In the graph above,
we used the default width. kdensity is smarter than twoway histogram in that its default width
is not a fixed constant. Even so, the default width is not necessarily best.

kdensity saves the width in the returned scalar bwidth, so typing display r(bwidth) reveals
it. Doing this, we discover that the width is approximately 20.

Widths are similar to the inverse of the number of bins in a histogram in that smaller widths
provide more detail. The units of the width are the units of x, the variable being analyzed. The width
is specified as a half-width, meaning that the kernel density estimator with half-width 20 corresponds
to sliding a window of size 40 across the data.
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We can specify half-widths for ourselves by using the bwidth() option. Smaller widths do not
smooth the density as much:

. kdensity length, bwidth(10)

0
.0

0
2

.0
0

4
.0

0
6

.0
0

8
D

e
n

s
it
y

200 300 400 500 600
length

kernel = epanechnikov, bandwidth = 10

Kernel density estimate

. kdensity length, bwidth(15)
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kernel = epanechnikov, bandwidth = 15

Kernel density estimate

Example 2: Different kernels can produce different results

When widths are held constant, different kernels can produce surprisingly different results. This
is really an attribute of the kernel and width combination; for a given width, some kernels are more
sensitive than others at identifying peaks in the density estimate.

We can see this when using a dataset with lots of peaks. In the automobile dataset, we characterize
the density of weight, the weight of the vehicles. Below we compare the Epanechnikov and Parzen
kernels.
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. kdensity weight, kernel(epanechnikov) nograph generate(x epan)

. kdensity weight, kernel(parzen) nograph generate(x2 parzen)

. label var epan "Epanechnikov density estimate"

. label var parzen "Parzen density estimate"

. line epan parzen x, sort ytitle(Density) legend(cols(1))
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Epanechnikov density estimate

Parzen density estimate

We did not specify a width, so we obtained the default width. That width is not a function of the
selected kernel, but of the data. See Methods and formulas for the calculation of the optimal width.

Example 3: Density with overlaid normal density

In examining the density estimates, we may wish to overlay a normal density or a Student’s t
density for comparison. Using automobile weights, we can get an idea of the distance from normality
by using the normal option.

. kdensity weight, kernel(epanechnikov) normal
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kernel = epanechnikov, bandwidth = 295.75

Kernel density estimate
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Example 4: Compare two densities

We also may want to compare two or more densities. In this example, we will compare the density
estimates of the weights for the foreign and domestic cars.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. kdensity weight, nograph generate(x fx)

. kdensity weight if foreign==0, nograph generate(fx0) at(x)

. kdensity weight if foreign==1, nograph generate(fx1) at(x)

. label var fx0 "Domestic cars"

. label var fx1 "Foreign cars"

. line fx0 fx1 x, sort ytitle(Density)
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Technical note
Although all the examples we included had densities of less than 1, the density may exceed 1.

The probability density f(x) of a continuous variable, x, has the units and dimensions of the
reciprocal of x. If x is measured in meters, f(x) has units 1/meter. Thus the density is not measured
on a probability scale, so it is possible for f(x) to exceed 1.

To see this, think of a uniform density on the interval 0 to 1. The area under the density curve is
1: this is the product of the density, which is constant at 1, and the range, which is 1. If the variable
is then transformed by doubling, the area under the curve remains 1 and is the product of the density,
constant at 0.5, and the range, which is 2. Conversely, if the variable is transformed by halving, the
area under the curve also remains at 1 and is the product of the density, constant at 2, and the range,
which is 0.5. (Strictly, the range is measured in certain units, and the density is measured in the
reciprocal of those units, so the units cancel on multiplication.)



kdensity — Univariate kernel density estimation 891

Saved results
kdensity saves the following in r():
Scalars

r(bwidth) kernel bandwidth
r(n) number of points at which the estimate was evaluated
r(scale) density bin width

Macros
r(kernel) name of kernel

Methods and formulas
kdensity is implemented as an ado-file.

A kernel density estimate is formed by summing the weighted values calculated with the kernel
function K, as in

f̂K =
1
qh

n∑
i=1

wiK

(
x−Xi

h

)
where q =

∑
i wi if weights are frequency weights (fweight) or analytic weights (aweight), and

q = 1 if weights are importance weights (iweights). Analytic weights are rescaled so that
∑
i wi = n

(see [U] 11 Language syntax). If weights are not used, then wi = 1, for i = 1, . . . , n. kdensity
includes seven different kernel functions. The Epanechnikov is the default function if no other kernel
is specified and is the most efficient in minimizing the mean integrated squared error.

Kernel Formula

Biweight K[z] =
{

15
16 (1− z2)2 if |z| < 1
0 otherwise

Cosine K[z] =
{

1 + cos(2πz) if |z| < 1/2
0 otherwise

Epanechnikov K[z] =
{

3
4 (1− 1

5z
2)/
√

5 if |z| <
√

5
0 otherwise

Epan2 K[z] =
{

3
4 (1− z2) if |z| < 1
0 otherwise

Gaussian K[z] = 1√
2π
e−z

2/2

Parzen K[z] =


4
3 − 8z2 + 8|z|3 if |z| ≤ 1/2

8(1− |z|)3
/3 if 1/2 < |z| ≤ 1

0 otherwise

Rectangular K[z] =
{

1/2 if |z| < 1
0 otherwise

Triangular K[z] =
{

1− |z| if |z| < 1
0 otherwise

From the definitions given in the table, we can see that the choice of h will drive how many
values are included in estimating the density at each point. This value is called the window width or
bandwidth. If the window width is not specified, it is determined as
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m = min
(√

variancex,
interquartile rangex

1.349

)
h =

0.9m
n1/5

where x is the variable for which we wish to estimate the kernel and n is the number of observations.

Most researchers agree that the choice of kernel is not as important as the choice of bandwidth.
There is a great deal of literature on choosing bandwidths under various conditions; see, for example,
Parzen (1962) or Tapia and Thompson (1978). Also see Newton (1988) for a comparison with sample
spectral density estimation in time-series applications.
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Title

ksmirnov — Kolmogorov–Smirnov equality-of-distributions test

Syntax

One-sample Kolmogorov–Smirnov test

ksmirnov varname = exp
[

if
] [

in
]

Two-sample Kolmogorov–Smirnov test

ksmirnov varname
[

if
] [

in
]
, by(groupvar)

[
exact

]
Menu

one-sample

Statistics > Nonparametric analysis > Tests of hypotheses > One-sample Kolmogorov-Smirnov test

two-sample

Statistics > Nonparametric analysis > Tests of hypotheses > Two-sample Kolmogorov-Smirnov test

Description
ksmirnov performs one- and two-sample Kolmogorov–Smirnov tests of the equality of distributions.

In the first syntax, varname is the variable whose distribution is being tested, and exp must evaluate to
the corresponding (theoretical) cumulative. In the second syntax, groupvar must take on two distinct
values. The distribution of varname for the first value of groupvar is compared with that of the second
value.

When testing for normality, please see [R] sktest and [R] swilk.

Options for two-sample test

� � �
Main �

by(groupvar) is required. It specifies a binary variable that identifies the two groups.

exact specifies that the exact p-value be computed. This may take a long time if n > 50.

Remarks

Example 1: Two-sample test

Say that we have data on x that resulted from two different experiments, labeled as group==1
and group==2. Our data contain

894
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. use http://www.stata-press.com/data/r12/ksxmpl

. list

group x

1. 2 2
2. 1 0
3. 2 3
4. 1 4
5. 1 5

6. 2 8
7. 2 10

We wish to use the two-sample Kolmogorov–Smirnov test to determine if there are any differences
in the distribution of x for these two groups:

. ksmirnov x, by(group)

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group D P-value Corrected

1: 0.5000 0.424
2: -0.1667 0.909
Combined K-S: 0.5000 0.785 0.735

The first line tests the hypothesis that x for group 1 contains smaller values than for group 2. The
largest difference between the distribution functions is 0.5. The approximate p-value for this is 0.424,
which is not significant.

The second line tests the hypothesis that x for group 1 contains larger values than for group 2.
The largest difference between the distribution functions in this direction is 0.1667. The approximate
p-value for this small difference is 0.909.

Finally, the approximate p-value for the combined test is 0.785, corrected to 0.735. The p-values
ksmirnov calculates are based on the asymptotic distributions derived by Smirnov (1933). These
approximations are not good for small samples (n < 50). They are too conservative—real p-values
tend to be substantially smaller. We have also included a less conservative approximation for the
nondirectional hypothesis based on an empirical continuity correction—the 0.735 reported in the third
column.

That number, too, is only an approximation. An exact value can be calculated using the exact
option:

. ksmirnov x, by(group) exact

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group D P-value Exact

1: 0.5000 0.424
2: -0.1667 0.909
Combined K-S: 0.5000 0.785 0.657

Example 2: One-sample test

Let’s now test whether x in the example above is distributed normally. Kolmogorov–Smirnov is
not a particularly powerful test in testing for normality, and we do not endorse such use of it; see
[R] sktest and [R] swilk for better tests.
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In any case, we will test against a normal distribution with the same mean and standard deviation:

. summarize x

Variable Obs Mean Std. Dev. Min Max

x 7 4.571429 3.457222 0 10

. ksmirnov x = normal((x-4.571429)/3.457222)

One-sample Kolmogorov-Smirnov test against theoretical distribution
normal((x-4.571429)/3.457222)

Smaller group D P-value Corrected

x: 0.1650 0.683
Cumulative: -0.1250 0.803
Combined K-S: 0.1650 0.991 0.978

Because Stata has no way of knowing that we based this calculation on the calculated mean and standard
deviation of x, the test statistics will be slightly conservative in addition to being approximations.
Nevertheless, they clearly indicate that the data cannot be distinguished from normally distributed
data.

Saved results
ksmirnov saves the following in r():

Scalars
r(D 1) D from line 1 r(D) combined D

r(p 1) p-value from line 1 r(p) combined p-value
r(D 2) D from line 2 r(p cor) corrected combined p-value
r(p 2) p-value from line 2 r(p exact) exact combined p-value

Macros
r(group1) name of group from line 1 r(group2) name of group from line 2

Methods and formulas
ksmirnov is implemented as an ado-file.

In general, the Kolmogorov–Smirnov test (Kolmogorov 1933; Smirnov 1933; also see Conover
[1999], 428–465) is not very powerful against differences in the tails of distributions. In return for
this, it is fairly powerful for alternative hypotheses that involve lumpiness or clustering in the data.

The directional hypotheses are evaluated with the statistics

D+ = max
x

{
F (x)−G(x)

}
D− = min

x

{
F (x)−G(x)

}
where F (x) and G(x) are the empirical distribution functions for the sample being compared. The
combined statistic is

D = max
(
|D+| , |D−|

)
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The p-value for this statistic may be obtained by evaluating the asymptotic limiting distribution. Let
m be the sample size for the first sample, and let n be the sample size for the second sample.
Smirnov (1933) shows that

lim
m,n→∞

Pr
{√

mn/(m+ n)Dm,n ≤ z
}

= 1− 2
∞∑
i=1

(
− 1
)i−1 exp

(
− 2i2z2

)
The first five terms form the approximation Pa used by Stata. The exact p-value is calculated by a
counting algorithm; see Gibbons and Chakraborti (2011, 236–238). A corrected p-value was obtained
by modifying the asymptotic p-value by using a numerical approximation technique:

Z = Φ−1(Pa) + 1.04/min(m,n) + 2.09/max(m,n)− 1.35/
√
mn/(m+ n)

p-value = Φ(Z)

where Φ(·) is the cumulative normal distribution.� �
Andrei Nikolayevich Kolmogorov (1903–1987), of Russia, was one of the great mathematicians
of the twentieth century, making outstanding contributions in many different branches, including
set theory, measure theory, probability and statistics, approximation theory, functional analysis,
classical dynamics, and theory of turbulence. He was a faculty member at Moscow State University
for more than 60 years.

Nikolai Vasilyevich Smirnov (1900–1966) was a Russian statistician whose work included
contributions in nonparametric statistics, order statistics, and goodness of fit. After army service
and the study of philosophy and philology, he turned to mathematics and eventually rose to be
head of mathematical statistics at the Steklov Mathematical Institute in Moscow.� �
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Also see
[R] runtest — Test for random order

[R] sktest — Skewness and kurtosis test for normality

[R] swilk — Shapiro–Wilk and Shapiro–Francia tests for normality



Title

kwallis — Kruskal–Wallis equality-of-populations rank test

Syntax
kwallis varname

[
if
] [

in
]
, by(groupvar)

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Kruskal-Wallis rank test

Description
kwallis tests the hypothesis that several samples are from the same population. In the syntax

diagram above, varname refers to the variable recording the outcome, and groupvar refers to the
variable denoting the population. by() is required.

Option
by(groupvar) is required. It specifies a variable that identifies the groups.

Remarks

Example 1

We have data on the 50 states. The data contain the median age of the population, medage, and
the region of the country, region, for each state. We wish to test for the equality of the median age
distribution across all four regions simultaneously:

. use http://www.stata-press.com/data/r12/census
(1980 Census data by state)

. kwallis medage, by(region)

Kruskal-Wallis equality-of-populations rank test

region Obs Rank Sum

NE 9 376.50
N Cntrl 12 294.00
South 16 398.00
West 13 206.50

chi-squared = 17.041 with 3 d.f.
probability = 0.0007

chi-squared with ties = 17.062 with 3 d.f.
probability = 0.0007

From the output, we see that we can reject the hypothesis that the populations are the same at any
level below 0.07%.
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Saved results
kwallis saves the following in r():

Scalars
r(df) degrees of freedom
r(chi2) χ2

r(chi2 adj) χ2 adjusted for ties

Methods and formulas
kwallis is implemented as an ado-file.

The Kruskal–Wallis test (Kruskal and Wallis 1952, 1953; also see Altman [1991, 213–215];
Conover [1999, 288–297]; and Riffenburgh [2005, 287–291]) is a multiple-sample generalization of
the two-sample Wilcoxon (also called Mann–Whitney) rank sum test (Wilcoxon 1945; Mann and
Whitney 1947). Samples of sizes nj , j = 1, . . . ,m, are combined and ranked in ascending order of
magnitude. Tied values are assigned the average ranks. Let n denote the overall sample size, and let
Rj =

∑nj
i=1R(Xji) denote the sum of the ranks for the jth sample. The Kruskal–Wallis one-way

analysis-of-variance test, H , is defined as

H =
1
S2


m∑
j=1

R2
j

nj
− n(n+ 1)2

4


where

S2 =
1

n− 1

 ∑
all ranks

R(Xji)2 − n(n+ 1)2

4


If there are no ties, this equation simplifies to

H =
12

n(n+ 1)

m∑
j=1

R2
j

nj
− 3(n+ 1)

The sampling distribution of H is approximately χ2 with m− 1 degrees of freedom.

� �
William Henry Kruskal (1919–2005) was born in New York City. He studied mathematics and
statistics at Antioch College, Harvard, and Columbia, and joined the University of Chicago
in 1951. He made many outstanding contributions to linear models, nonparametric statistics,
government statistics, and the history and methodology of statistics.

Wilson Allen Wallis (1912–1998) was born in Philadelphia. He studied psychology and economics
at the Universities of Minnesota and Chicago and at Columbia. He taught at Yale, Stanford, and
Chicago, before moving as president (later chancellor) to the University of Rochester in 1962. He
also served in several Republican administrations. Wallis served as editor of the Journal of the
American Statistical Association, coauthored a popular introduction to statistics, and contributed
to nonparametric statistics.� �
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Also see
[R] nptrend — Test for trend across ordered groups

[R] oneway — One-way analysis of variance

[R] sdtest — Variance-comparison tests

[R] signrank — Equality tests on matched data
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Title

ladder — Ladder of powers

Syntax

Ladder of powers

ladder varname
[

if
] [

in
] [

, generate(newvar) noadjust
]

Ladder-of-powers histograms

gladder varname
[

if
] [

in
] [

, histogram options combine options
]

Ladder-of-powers quantile–normal plots

qladder varname
[

if
] [

in
] [

, qnorm options combine options
]

by is allowed with ladder; see [D] by.

Menu
ladder

Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder of powers

gladder

Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers histograms

qladder

Statistics > Summaries, tables, and tests > Distributional plots and tests > Ladder-of-powers quantile-normal plots

Description
ladder searches a subset of the ladder of powers (Tukey 1977) for a transform that converts

varname into a normally distributed variable. sktest tests for normality; see [R] sktest. Also see
[R] boxcox.

gladder displays nine histograms of transforms of varname according to the ladder of powers.
gladder is useful pedagogically, but we do not advise looking at histograms for research work;
ladder or qnorm (see [R] diagnostic plots) is preferred.

qladder displays the quantiles of transforms of varname according to the ladder of powers against
the quantiles of a normal distribution.

902



ladder — Ladder of powers 903

Options for ladder

� � �
Main �

generate(newvar) saves the transformed values corresponding to the minimum chi-squared value
from the table. We do not recommend using generate() because it is literal in interpreting the
minimum, thus ignoring nearly equal but perhaps more interpretable transforms.

noadjust is the noadjust option to sktest; see [R] sktest.

Options for gladder
histogram options affect the rendition of the histograms across all relevant transformations; see

[R] histogram. Here the normal option is assumed, so you must supply the nonormal option
to suppress the overlaid normal density. Also, gladder does not allow the width(#) option of
histogram.

combine options are any of the options documented in [G-2] graph combine. These include options for
titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

Options for qladder
qnorm options affect the rendition of the quantile–normal plots across all relevant transformations.

See [R] diagnostic plots.

combine options are any of the options documented in [G-2] graph combine. These include options for
titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

Remarks

Example 1: ladder

We have data on the mileage rating of 74 automobiles and wish to find a transform that makes
the variable normally distributed:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ladder mpg

Transformation formula chi2(2) P(chi2)

cubic mpg^3 43.59 0.000
square mpg^2 27.03 0.000
identity mpg 10.95 0.004
square root sqrt(mpg) 4.94 0.084
log log(mpg) 0.87 0.647
1/(square root) 1/sqrt(mpg) 0.20 0.905
inverse 1/mpg 2.36 0.307
1/square 1/(mpg^2) 11.99 0.002
1/cubic 1/(mpg^3) 24.30 0.000

If we had typed ladder mpg, gen(mpgx), the variable mpgx containing 1/
√
mpg would have been

automatically generated for us. This is the perfect example of why you should not, in general, specify
the generate() option. We also cannot reject the hypothesis that the inverse of mpg is normally
distributed and that 1/mpg—gallons per mile—has a better interpretation. It is a measure of energy
consumption.
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Example 2: gladder

gladder explores the same transforms as ladder but presents results graphically:
. gladder mpg, fraction
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Technical note
gladder is useful pedagogically, but be careful when using it for research work, especially with

many observations. For instance, consider the following data on the average July temperature in
degrees Fahrenheit for 954 U.S. cities:

. use http://www.stata-press.com/data/r12/citytemp
(City Temperature Data)

. ladder tempjuly

Transformation formula chi2(2) P(chi2)

cubic tempjuly^3 47.49 0.000
square tempjuly^2 19.70 0.000
identity tempjuly 3.83 0.147
square root sqrt(tempjuly) 1.83 0.400
log log(tempjuly) 5.40 0.067
1/(square root) 1/sqrt(tempjuly) 13.72 0.001
inverse 1/tempjuly 26.36 0.000
1/square 1/(tempjuly^2) 64.43 0.000
1/cubic 1/(tempjuly^3) . 0.000

The period in the last line indicates that the χ2 is very large; see [R] sktest.
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From the table, we see that there is certainly a difference in normality between the square and
square-root transform. If, however, you can see the difference between the transforms in the diagram
below, you have better eyes than we do:

. gladder tempjuly, l1title("") ylabel(none) xlabel(none)

cubic square identity

sqrt log 1/sqrt

inverse 1/square 1/cubic

Average July temperature
Histograms by transformation

Example 3: qladder

A better graph for seeing normality is the quantile–normal graph, which can be produced by qladder.
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. qladder tempjuly, ylabel(none) xlabel(none)

cubic square identity

sqrt log 1/sqrt

inverse 1/square 1/cubic

Average July temperature
Quantile−Normal plots by transformation

This graph shows that for the square transform, the upper tail—and only the upper tail—diverges
from what would be expected. This divergence is detected by sktest (see [R] sktest) as a problem
with skewness, as we would learn from using sktest to examine tempjuly squared and square
rooted.
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Saved results
ladder saves the following in r():

Scalars
r(N) number of observations
r(invcube) χ2 for inverse-cubic transformation
r(P invcube) significance level for inverse-cubic transformation
r(invsq) χ2 for inverse-square transformation
r(P invsq) significance level for inverse-square transformation
r(inv) χ2 for inverse transformation
r(P inv) significance level for inverse transformation
r(invsqrt) χ2 for inverse-root transformation
r(P invsqrt) significance level for inverse-root transformation
r(log) χ2 for log transformation
r(P log) significance level for log transformation
r(sqrt) χ2 for square-root transformation
r(P sqrt) significance level for square-root transformation
r(ident) χ2 for untransformed data
r(P ident) significance level for untransformed data
r(square) χ2 for square transformation
r(P square) significance level for square transformation
r(cube) χ2 for cubic transformation
r(P cube) significance level for cubic transformation

Methods and formulas
ladder, gladder, and qladder are implemented as ado-files.

For ladder, results are as reported by sktest; see [R] sktest. If generate() is specified, the
transform with the minimum χ2 value is chosen.

gladder sets the number of bins to min(
√
n, 10 log10 n), rounded to the closest integer, where

n is the number of unique values of varname. See [R] histogram for a discussion of the optimal
number of bins.

Also see Findley (1990) for a ladder-of-powers variable transformation program that produces
one-way graphs with overlaid box plots, in addition to histograms with overlaid normals. Buchner and
Findley (1990) discuss ladder-of-powers transformations as one aspect of preliminary data analysis.
Also see Hamilton (1992, 18–23) and Hamilton (2009, 142–144).

Acknowledgment
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Also see
[R] diagnostic plots — Distributional diagnostic plots

[R] lnskew0 — Find zero-skewness log or Box–Cox transform

[R] lv — Letter-value displays

[R] sktest — Skewness and kurtosis test for normality



Title

level — Set default confidence level

Syntax
set level #

[
, permanently

]
Description

set level specifies the default confidence level for confidence intervals for all commands that
report confidence intervals. The initial value is 95, meaning 95% confidence intervals. # may be
between 10.00 and 99.99, and # can have at most two digits after the decimal point.

Option
permanently specifies that, in addition to making the change right now, the level setting be

remembered and become the default setting when you invoke Stata.

Remarks
To change the level of confidence intervals reported by a particular command, you need not reset

the default confidence level. All commands that report confidence intervals have a level(#) option.
When you do not specify the option, the confidence intervals are calculated for the default level set
by set level, or for 95% if you have not reset set level.

Example 1

We use the ci command to obtain the confidence interval for the mean of mpg:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769

To obtain 90% confidence intervals, we would type

. ci mpg, level(90)

Variable Obs Mean Std. Err. [90% Conf. Interval]

mpg 74 21.2973 .6725511 20.17683 22.41776

or

. set level 90

. ci mpg

Variable Obs Mean Std. Err. [90% Conf. Interval]

mpg 74 21.2973 .6725511 20.17683 22.41776

909
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If we opt for the second alternative, the next time that we fit a model (say, with regress), 90%
confidence intervals will be reported. If we wanted 95% confidence intervals, we could specify
level(95) on the estimation command, or we could reset the default by typing set level 95.

The current setting of level() is stored as the c-class value c(level); see [P] creturn.

Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[U] 20 Estimation and postestimation commands
[U] 20.7 Specifying the width of confidence intervals



Title

lincom — Linear combinations of estimators

Syntax
lincom exp

[
, options

]
options Description

eform generic label; exp(b)
or odds ratio
hr hazard ratio
shr subhazard ratio
irr incidence-rate ratio
rrr relative-risk ratio
level(#) set confidence level; default is level(95)

display options control column formats

where exp is any linear combination of coefficients that is a valid syntax for test; see [R] test. exp
must not contain an equal sign.

Menu
Statistics > Postestimation > Linear combinations of estimates

Description

lincom computes point estimates, standard errors, t or z statistics, p-values, and confidence
intervals for linear combinations of coefficients after any estimation command. Results can optionally
be displayed as odds ratios, hazard ratios, incidence-rate ratios, or relative-risk ratios.

lincom can be used with svy estimation results; see [SVY] svy postestimation.

Options

eform, or, hr, shr, irr, and rrr all report coefficient estimates as exp(β̂) rather than β̂. Standard
errors and confidence intervals are similarly transformed. or is the default after logistic. The
only difference in these options is how the output is labeled.

Option Label Explanation Example commands

eform exp(b) Generic label cloglog

or Odds Ratio Odds ratio logistic, logit
hr Haz. Ratio Hazard ratio stcox, streg
shr SHR Subhazard ratio stcrreg

irr IRR Incidence-rate ratio poisson

rrr RRR Relative-risk ratio mlogit

exp may not contain any additive constants when you use the eform, or, hr, irr, or rrr option.

911
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

display options: cformat(% fmt), pformat(% fmt), and sformat(% fmt); see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Using lincom
Odds ratios and incidence-rate ratios
Multiple-equation models

Using lincom

After fitting a model and obtaining estimates for coefficients β1, β2, . . . , βk, you may want to
view estimates for linear combinations of the βi, such as β1 − β2. lincom can display estimates for
any linear combination of the form c0 + c1β1 + c2β2 + · · ·+ ckβk.

lincom works after any estimation command for which test works. Any valid expression for
test syntax 1 (see [R] test) is a valid expression for lincom.

lincom is useful for viewing odds ratios, hazard ratios, etc., for one group (that is, one set of
covariates) relative to another group (that is, another set of covariates). See the examples below.

Example 1

We perform a linear regression:

. use http://www.stata-press.com/data/r12/regress

. regress y x1 x2 x3

Source SS df MS Number of obs = 148
F( 3, 144) = 96.12

Model 3259.3561 3 1086.45203 Prob > F = 0.0000
Residual 1627.56282 144 11.3025196 R-squared = 0.6670

Adj R-squared = 0.6600
Total 4886.91892 147 33.2443464 Root MSE = 3.3619

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161
x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583
x3 -.006139 .0005543 -11.08 0.000 -.0072345 -.0050435

_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

To see the difference of the coefficients of x2 and x1, we type

. lincom x2 - x1

( 1) - x1 + x2 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .7645682 .9950282 0.77 0.444 -1.20218 2.731316
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The expression can be any linear combination.
. lincom 3*x1 + 500*x3

( 1) 3*x1 + 500*x3 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) 1.301825 3.396624 0.38 0.702 -5.411858 8.015507

Nonlinear expressions are not allowed.
. lincom x2/x1
not possible with test
r(131);

For information about estimating nonlinear expressions, see [R] nlcom.

Technical note
lincom uses the same shorthands for coefficients as does test (see [R] test). When you type x1,

for instance, lincom knows that you mean the coefficient of x1. The formal syntax for referencing this
coefficient is actually b[x1], or alternatively, coef[x1]. So, more formally, in the last example
we could have typed

. lincom 3*_b[x1] + 500*_b[x3]
(output omitted )

Odds ratios and incidence-rate ratios
After logistic regression, the or option can be specified with lincom to display odds ratios for any

effect. Incidence-rate ratios after commands such as poisson can be similarly obtained by specifying
the irr option.

Example 2

Consider the low birthweight dataset from Hosmer and Lemeshow (2000, 25). We fit a logistic
regression model of low birthweight (variable low) on the following variables:

Variable Description Coding

age age in years
race race 1 if white, 2 if black, 3 if other
smoke smoking status 1 if smoker, 0 if nonsmoker
ht history of hypertension 1 if yes, 0 if no
ui uterine irritability 1 if yes, 0 if no
lwd maternal weight before pregnancy 1 if weight < 110 lb., 0 otherwise
ptd history of premature labor 1 if yes, 0 if no
c.age##lwd age main effects, lwd main effects,

and their interaction
smoke##lwd smoke main effects, lwd main effects,

and their interaction

We first fit a model without the interaction terms by using logit.
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. use http://www.stata-press.com/data/r12/lbw3
(Hosmer & Lemeshow data)

. logit low age lwd i.race smoke ptd ht ui

Iteration 0: log likelihood = -117.336
Iteration 1: log likelihood = -99.3982
Iteration 2: log likelihood = -98.780418
Iteration 3: log likelihood = -98.777998
Iteration 4: log likelihood = -98.777998

Logistic regression Number of obs = 189
LR chi2(8) = 37.12
Prob > chi2 = 0.0000

Log likelihood = -98.777998 Pseudo R2 = 0.1582

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0464796 .0373888 -1.24 0.214 -.1197603 .0268011
lwd .8420615 .4055338 2.08 0.038 .0472299 1.636893

race
2 1.073456 .5150753 2.08 0.037 .0639273 2.082985
3 .815367 .4452979 1.83 0.067 -.0574008 1.688135

smoke .8071996 .404446 2.00 0.046 .0145001 1.599899
ptd 1.281678 .4621157 2.77 0.006 .3759478 2.187408
ht 1.435227 .6482699 2.21 0.027 .1646414 2.705813
ui .6576256 .4666192 1.41 0.159 -.2569313 1.572182

_cons -1.216781 .9556797 -1.27 0.203 -3.089878 .656317

To get the odds ratio for black smokers relative to white nonsmokers (the reference group), we type

. lincom 2.race + smoke, or

( 1) [low]2.race + [low]smoke = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) 6.557805 4.744692 2.60 0.009 1.588176 27.07811

lincom computed exp(β2.race + βsmoke) = 6.56. To see the odds ratio for white smokers relative
to black nonsmokers, we type

. lincom smoke - 2.race, or

( 1) - [low]2.race + [low]smoke = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) .7662425 .4430176 -0.46 0.645 .2467334 2.379603

Now let’s add the interaction terms to the model (Hosmer and Lemeshow 1989, table 4.10). This
time, we will use logistic rather than logit. By default, logistic displays odds ratios.
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. logistic low i.race ht ui ptd c.age##lwd smoke##lwd

Logistic regression Number of obs = 189
LR chi2(10) = 42.66
Prob > chi2 = 0.0000

Log likelihood = -96.00616 Pseudo R2 = 0.1818

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 2.95383 1.532789 2.09 0.037 1.068277 8.167465
3 2.137589 .9919138 1.64 0.102 .8608708 5.307752

ht 3.893141 2.575201 2.05 0.040 1.064768 14.2346
ui 2.071284 .9931388 1.52 0.129 .8092926 5.301192

ptd 3.426633 1.615282 2.61 0.009 1.360252 8.632089
age .9194513 .041896 -1.84 0.065 .8408967 1.005344

1.lwd .1772934 .3312384 -0.93 0.354 .0045539 6.902367

lwd#c.age
1 1.15883 .09602 1.78 0.075 .9851215 1.36317

1.smoke 3.168096 1.452378 2.52 0.012 1.289956 7.78076

smoke#lwd
1 1 .2447849 .2003996 -1.72 0.086 .0491956 1.217988

_cons .599443 .6519163 -0.47 0.638 .0711271 5.051971

Hosmer and Lemeshow (1989, table 4.13) consider the effects of smoking (smoke = 1) and low
maternal weight before pregnancy (lwd = 1). The effect of smoking among non–low-weight mothers
(lwd = 0) is given by the odds ratio 3.17 for smoke in the logistic output. The effect of smoking
among low-weight mothers is given by

. lincom 1.smoke + 1.smoke#1.lwd

( 1) [low]1.smoke + [low]1.smoke#1.lwd = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) .7755022 .574951 -0.34 0.732 .1813465 3.316323

We did not have to specify the or option. After logistic, lincom assumes or by default.

The effect of low weight (lwd = 1) is more complicated because we fit an age × lwd interaction.
We must specify the age of mothers for the effect. The effect among 30-year-old nonsmokers is given
by

. lincom 1.lwd + 30*1.lwd#c.age

( 1) [low]1.lwd + 30*[low]1.lwd#c.age = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) 14.7669 13.5669 2.93 0.003 2.439264 89.39633

lincom computed exp(βlwd + 30βagelwd) = 14.8. It may seem odd that we entered it as 1.lwd
+ 30*1.lwd#c.age, but remember that these terms are just lincom’s (and test’s) shorthands for
b[1.lwd] and b[1.lwd#c.age]. We could have typed



916 lincom — Linear combinations of estimators

. lincom _b[1.lwd] + 30*_b[1.lwd#c.age]

( 1) [low]1.lwd + 30*[low]1.lwd#c.age = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

(1) 14.7669 13.5669 2.93 0.003 2.439264 89.39633

Multiple-equation models
lincom also works with multiple-equation models. The only difference is how you refer to the

coefficients. Recall that for multiple-equation models, coefficients are referenced using the syntax

[eqno]varname

where eqno is the equation number or equation name and varname is the corresponding variable name
for the coefficient; see [U] 13.5 Accessing coefficients and standard errors and [R] test for details.

Example 3

Let’s consider example 4 from [R] mlogit (Tarlov et al. 1989; Wells et al. 1989).

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mlogit insure age male nonwhite i.site, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

To see the estimate of the sum of the coefficient of male and the coefficient of nonwhite for the
Prepaid outcome, we type
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. lincom [Prepaid]male + [Prepaid]nonwhite

( 1) [Prepaid]male + [Prepaid]nonwhite = 0

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.53647 .3272489 4.70 0.000 .8950741 2.177866

To view the estimate as a ratio of relative risks (see [R] mlogit for the definition and interpretation),
we specify the rrr option.

. lincom [Prepaid]male + [Prepaid]nonwhite, rrr

( 1) [Prepaid]male + [Prepaid]nonwhite = 0

insure RRR Std. Err. z P>|z| [95% Conf. Interval]

(1) 4.648154 1.521103 4.70 0.000 2.447517 8.827451

Saved results
lincom saves the following in r():
Scalars

r(estimate) point estimate
r(se) estimate of standard error
r(df) degrees of freedom

Methods and formulas
lincom is implemented as an ado-file.
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Also see
[R] nlcom — Nonlinear combinations of estimators

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[U] 13.5 Accessing coefficients and standard errors
[U] 20 Estimation and postestimation commands
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Title

linktest — Specification link test for single-equation models

Syntax
linktest

[
if
] [

in
] [

, cmd options
]

When if and in are not specified, the link test is performed on the same sample as the previous estimation.

Menu
Statistics > Postestimation > Tests > Specification link test for single-equation models

Description
linktest performs a link test for model specification after any single-equation estimation command,

such as logistic, regress, stcox, etc.

Option

� � �
Main �

cmd options must be the same options specified with the underlying estimation command, except
the display options may differ.

Remarks
The form of the link test implemented here is based on an idea of Tukey (1949), which was further

described by Pregibon (1980), elaborating on work in his unpublished thesis (Pregibon 1979). See
Methods and formulas below for more details.

Example 1

We want to explain the mileage ratings of cars in our automobile dataset by using the weight,
engine displacement, and whether the car is manufactured outside the United States:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displ foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 45.88

Model 1619.71935 3 539.906448 Prob > F = 0.0000
Residual 823.740114 70 11.7677159 R-squared = 0.6629

Adj R-squared = 0.6484
Total 2443.45946 73 33.4720474 Root MSE = 3.4304
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mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0067745 .0011665 -5.81 0.000 -.0091011 -.0044479
displacement .0019286 .0100701 0.19 0.849 -.0181556 .0220129

foreign -1.600631 1.113648 -1.44 0.155 -3.821732 .6204699
_cons 41.84795 2.350704 17.80 0.000 37.15962 46.53628

On the basis of the R2, we are reasonably pleased with this model.

If our model really is specified correctly, then if we were to regress mpg on the prediction and the
prediction squared, the prediction squared would have no explanatory power. This is what linktest
does:

. linktest

Source SS df MS Number of obs = 74
F( 2, 71) = 76.75

Model 1670.71514 2 835.357572 Prob > F = 0.0000
Residual 772.744316 71 10.8837228 R-squared = 0.6837

Adj R-squared = 0.6748
Total 2443.45946 73 33.4720474 Root MSE = 3.299

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

_hat -.4127198 .6577736 -0.63 0.532 -1.724283 .8988434
_hatsq .0338198 .015624 2.16 0.034 .0026664 .0649732
_cons 14.00705 6.713276 2.09 0.041 .6211539 27.39294

We find that the prediction squared does have explanatory power, so our specification is not as
good as we thought.

Although linktest is formally a test of the specification of the dependent variable, it is often
interpreted as a test that, conditional on the specification, the independent variables are specified
incorrectly. We will follow that interpretation and now include weight squared in our model:

. regress mpg weight c.weight#c.weight displ foreign

Source SS df MS Number of obs = 74
F( 4, 69) = 39.37

Model 1699.02634 4 424.756584 Prob > F = 0.0000
Residual 744.433124 69 10.7888859 R-squared = 0.6953

Adj R-squared = 0.6777
Total 2443.45946 73 33.4720474 Root MSE = 3.2846

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0173257 .0040488 -4.28 0.000 -.0254028 -.0092486

c.weight#c.weight 1.87e-06 6.89e-07 2.71 0.008 4.93e-07 3.24e-06

displacement -.0101625 .0106236 -0.96 0.342 -.031356 .011031
foreign -2.560016 1.123506 -2.28 0.026 -4.801349 -.3186832

_cons 58.23575 6.449882 9.03 0.000 45.36859 71.10291

Now we perform the link test on our new model:
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. linktest

Source SS df MS Number of obs = 74
F( 2, 71) = 81.08

Model 1699.39489 2 849.697445 Prob > F = 0.0000
Residual 744.06457 71 10.4797827 R-squared = 0.6955

Adj R-squared = 0.6869
Total 2443.45946 73 33.4720474 Root MSE = 3.2372

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

_hat 1.141987 .7612218 1.50 0.138 -.3758456 2.659821
_hatsq -.0031916 .0170194 -0.19 0.852 -.0371272 .0307441
_cons -1.50305 8.196444 -0.18 0.855 -17.84629 14.84019

We now pass the link test.

Example 2

Above we followed a standard misinterpretation of the link test—when we discovered a problem,
we focused on the explanatory variables of our model. We might consider varying exactly what the
link test tests. The link test told us that our dependent variable was misspecified. For those with an
engineering background, mpg is indeed a strange measure. It would make more sense to model energy
consumption—gallons per mile—in terms of weight and displacement:

. gen gpm = 1/mpg

. regress gpm weight displ foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 76.33

Model .009157962 3 .003052654 Prob > F = 0.0000
Residual .002799666 70 .000039995 R-squared = 0.7659

Adj R-squared = 0.7558
Total .011957628 73 .000163803 Root MSE = .00632

gpm Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .0000144 2.15e-06 6.72 0.000 .0000102 .0000187
displacement .0000186 .0000186 1.00 0.319 -.0000184 .0000557

foreign .0066981 .0020531 3.26 0.002 .0026034 .0107928
_cons .0008917 .0043337 0.21 0.838 -.0077515 .009535

This model looks every bit as reasonable as our original model:

. linktest

Source SS df MS Number of obs = 74
F( 2, 71) = 117.06

Model .009175219 2 .004587609 Prob > F = 0.0000
Residual .002782409 71 .000039189 R-squared = 0.7673

Adj R-squared = 0.7608
Total .011957628 73 .000163803 Root MSE = .00626

gpm Coef. Std. Err. t P>|t| [95% Conf. Interval]

_hat .6608413 .515275 1.28 0.204 -.3665877 1.68827
_hatsq 3.275857 4.936655 0.66 0.509 -6.567553 13.11927
_cons .008365 .0130468 0.64 0.523 -.0176496 .0343795
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Specifying the model in terms of gallons per mile also solves the specification problem and results
in a more parsimonious specification.

Example 3

The link test can be used with any single-equation estimation procedure, not solely regression.
Let’s turn our problem around and attempt to explain whether a car is manufactured outside the
United States by its mileage rating and weight. To save paper, we will specify logit’s nolog option,
which suppresses the iteration log:

. logit foreign mpg weight, nolog

Logistic regression Number of obs = 74
LR chi2(2) = 35.72
Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568
weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924
_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

When we run linktest after logit, the result is another logit specification:

. linktest, nolog

Logistic regression Number of obs = 74
LR chi2(2) = 36.83
Prob > chi2 = 0.0000

Log likelihood = -26.615714 Pseudo R2 = 0.4090

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

_hat .8438531 .2738759 3.08 0.002 .3070661 1.38064
_hatsq -.1559115 .1568642 -0.99 0.320 -.4633596 .1515366
_cons .2630557 .4299598 0.61 0.541 -.57965 1.105761

The link test reveals no problems with our specification.

If there had been a problem, we would have been virtually forced to accept the misinterpretation
of the link test—we would have reconsidered our specification of the independent variables. When
using logit, we have no control over the specification of the dependent variable other than to change
likelihood functions.

We admit to having seen a dataset once for which the link test rejected the logit specification.
We did change the likelihood function, refitting the model using probit, and satisfied the link test.
Probit has thinner tails than logit. In general, however, you will not be so lucky.
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Technical note
You should specify the same options with linktest that you do with the estimation command,

although you do not have to follow this advice as literally as we did in the preceding example.
logit’s nolog option merely suppresses a part of the output, not what is estimated. We specified
nolog both times to save paper.

If you are testing a tobit model, you must specify the censoring points just as you do with the
tobit command.

If you are not sure which options are important, duplicate exactly what you specified on the
estimation command.

If you do not specify if exp or in range with linktest, Stata will by default perform the
link test on the same sample as the previous estimation. Suppose that you omitted some data when
performing your estimation, but want to calculate the link test on all the data, which you might do
if you believe the model is appropriate for all the data. You would type linktest if e(sample) <
. to do this.

Saved results
linktest saves the following in r():

Scalars
r(t) t statistic on hatsq
r(df) degrees of freedom

linktest is not an estimation command in the sense that it leaves previous estimation results
unchanged. For instance, after running a regression and performing the link test, typing regress
without arguments after the link test still replays the original regression.

For integrating an estimation command with linktest, linktest assumes that the name of the
estimation command is stored in e(cmd) and that the name of the dependent variable is stored in
e(depvar). After estimation, it assumes that the number of degrees of freedom for the t test is given
by e(df m) if the macro is defined.

If the estimation command reports z statistics instead of t statistics, linktest will also report
z statistics. The z statistic, however, is still returned in r(t), and r(df) is set to a missing value.

Methods and formulas
linktest is implemented as an ado-file.

The link test is based on the idea that if a regression or regression-like equation is properly
specified, you should be able to find no additional independent variables that are significant except
by chance. One kind of specification error is called a link error. In regression, this means that the
dependent variable needs a transformation or “link” function to properly relate to the independent
variables. The idea of a link test is to add an independent variable to the equation that is especially
likely to be significant if there is a link error.
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Let
y = f(Xβ)

be the model and β̂ be the parameter estimates. linktest calculates

hat = Xβ̂

and
hatsq = hat2

The model is then refit with these two variables, and the test is based on the significance of hatsq.
This is the form suggested by Pregibon (1979) based on an idea of Tukey (1949). Pregibon (1980)
suggests a slightly different method that has come to be known as “Pregibon’s goodness-of-link
test”. We prefer the older version because it is universally applicable, straightforward, and a good
second-order approximation. It can be applied to any single-equation estimation technique, whereas
Pregibon’s more recent tests are estimation-technique specific.

References
Pregibon, D. 1979. Data analytic methods for generalized linear models. PhD diss., University of Toronto.

. 1980. Goodness of link tests for generalized linear models. Applied Statistics 29: 15–24.

Tukey, J. W. 1949. One degree of freedom for non-additivity. Biometrics 5: 232–242.

Also see
[R] regress postestimation — Postestimation tools for regress



Title

lnskew0 — Find zero-skewness log or Box–Cox transform

Syntax

Zero-skewness log transform

lnskew0 newvar = exp
[

if
] [

in
] [

, options
]

Zero-skewness Box–Cox transform

bcskew0 newvar = exp
[

if
] [

in
] [

, options
]

options Description

Main

delta(#) increment for derivative of skewness function; default is
delta(0.02) for lnskew0 and delta(0.01) for bcskew0

zero(#) value for determining convergence; default is zero(0.001)

level(#) set confidence level; default is level(95)

Menu
lnskew0

Data > Create or change data > Other variable-creation commands > Zero-skewness log transform

bcskew0

Data > Create or change data > Other variable-creation commands > Box-Cox transform

Description
lnskew0 creates newvar = ln(±exp − k), choosing k and the sign of exp so that the skewness

of newvar is zero.

bcskew0 creates newvar = (expλ−1)/λ, the Box–Cox power transformation (Box and Cox 1964),
choosing λ so that the skewness of newvar is zero. exp must be strictly positive. Also see [R] boxcox
for maximum likelihood estimation of λ.

Options

� � �
Main �

delta(#) specifies the increment used for calculating the derivative of the skewness function with
respect to k (lnskew0) or λ (bcskew0). The default values are 0.02 for lnskew0 and 0.01 for
bcskew0.

924
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zero(#) specifies a value for skewness to determine convergence that is small enough to be considered
zero and is, by default, 0.001.

level(#) specifies the confidence level for the confidence interval for k (lnskew0) or λ (bcskew0).
The confidence interval is calculated only if level() is specified. # is specified as an integer; 95
means 95% confidence intervals. The level() option is honored only if the number of observations
exceeds 7.

Remarks

Example 1: lnskew0

Using our automobile dataset (see [U] 1.2.2 Example datasets), we want to generate a new variable
equal to ln(mpg− k) to be approximately normally distributed. mpg records the miles per gallon for
each of our cars. One feature of the normal distribution is that it has skewness 0.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. lnskew0 lnmpg = mpg

Transform k [95% Conf. Interval] Skewness

ln(mpg-k) 5.383659 (not calculated) -7.05e-06

This created the new variable lnmpg = ln(mpg− 5.384):

. describe lnmpg

storage display value
variable name type format label variable label

lnmpg float %9.0g ln(mpg-5.383659)

Because we did not specify the level() option, no confidence interval was calculated. At the outset,
we could have typed

. use http://www.stata-press.com/data/r12/auto, clear
(Automobile Data)

. lnskew0 lnmpg = mpg, level(95)

Transform k [95% Conf. Interval] Skewness

ln(mpg-k) 5.383659 -17.12339 9.892416 -7.05e-06

The confidence interval is calculated under the assumption that ln(mpg−k) really does have a normal
distribution. It would be perfectly reasonable to use lnskew0, even if we did not believe that the
transformed variable would have a normal distribution—if we literally wanted the zero-skewness
transform—although, then the confidence interval would be an approximation of unknown quality to
the true confidence interval. If we now wanted to test the believability of the confidence interval, we
could also test our new variable lnmpg by using swilk (see [R] swilk) with the lnnormal option.
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Technical note
lnskew0 and bcskew0 report the resulting skewness of the variable merely to reassure you of the

accuracy of its results. In our example above, lnskew0 found k such that the resulting skewness was
−7× 10−6, a number close enough to zero for all practical purposes. If we wanted to make it even
smaller, we could specify the zero() option. Typing lnskew0 new=mpg, zero(1e-8) changes the
estimated k to 5.383552 from 5.383659 and reduces the calculated skewness to −2× 10−11.

When you request a confidence interval, lnskew0 may report the lower confidence interval as ‘.’,
which should be taken as indicating the lower confidence limit kL = −∞. (This cannot happen with
bcskew0.)

As an example, consider a sample of size n on x and assume that the skewness of x is positive,
but not significantly so, at the desired significance level—say, 5%. Then no matter how large and
negative you make kL, there is no value extreme enough to make the skewness of ln(x− kL) equal
the corresponding percentile (97.5 for a 95% confidence interval) of the distribution of skewness in a
normal distribution of the same sample size. You cannot do this because the distribution of ln(x−kL)
tends to that of x—apart from location and scale shift—as x → ∞. This “problem” never applies
to the upper confidence limit, kU , because the skewness of ln(x − kU ) tends to −∞ as k tends
upward to the minimum value of x.

Example 2: bcskew0

In example 1, using lnskew0 with a variable such as mpg is probably undesirable. mpg has a
natural zero, and we are shifting that zero arbitrarily. On the other hand, use of lnskew0 with a
variable such as temperature measured in Fahrenheit or Celsius would be more appropriate, as the
zero is indeed arbitrary.

For a variable like mpg, it makes more sense to use the Box–Cox power transform (Box and
Cox 1964):

y(λ) =
yλ − 1
λ

λ is free to take on any value, but y(1) = y − 1, y(0) = ln(y), and y(−1) = 1− 1/y.

bcskew0 works like lnskew0:

. bcskew0 bcmpg = mpg, level(95)

Transform L [95% Conf. Interval] Skewness

(mpg^L-1)/L -.3673283 -1.212752 .4339645 .0001898

The 95% confidence interval includes λ = −1 (λ is labeled L in the output), which has a rather
more pleasing interpretation—gallons per mile—than (mpg−0.3673 − 1)/(−0.3673). The confidence
interval, however, is calculated assuming that the power transformed variable is normally distributed.
It makes perfect sense to use bcskew0, even when you do not believe that the transformed variable
will be normally distributed, but then the confidence interval is an approximation of unknown quality.
If you believe that the transformed data are normally distributed, you can alternatively use boxcox
to estimate λ; see [R] boxcox.
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Saved results
lnskew0 and bcskew0 save the following in r():

Scalars
r(gamma) k (lnskew0)
r(lambda) λ (bcskew0)
r(lb) lower bound of confidence interval
r(ub) upper bound of confidence interval
r(skewness) resulting skewness of transformed variable

Methods and formulas
lnskew0 and bcskew0 are implemented as ado-files.

Skewness is as calculated by summarize; see [R] summarize. Newton’s method with numeric,
uncentered derivatives is used to estimate k (lnskew0) and λ (bcskew0). For lnskew0, the initial
value is chosen so that the minimum of x − k is 1, and thus ln(x − k) is 0. bcskew0 starts with
λ = 1.

Acknowledgment

lnskew0 and bcskew0 were written by Patrick Royston of the MRC Clinical Trials Unit, London.

Reference
Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series

B 26: 211–252.

Also see
[R] ladder — Ladder of powers

[R] boxcox — Box–Cox regression models

[R] swilk — Shapiro–Wilk and Shapiro–Francia tests for normality



Title

log — Echo copy of session to file

Syntax

Report status of log file

log

log query
[

logname | all
]

Open log file

log using filename
[
, append replace

[
text | smcl

]
name(logname)

]
Close log

log close
[

logname | all
]

Temporarily suspend logging or resume logging

log
{
off | on

} [
logname

]
Report status of command log file

cmdlog

Open command log file

cmdlog using filename
[
, append replace

]
Close command log, temporarily suspend logging, or resume logging

cmdlog
{
close | on | off

}
Set default format for logs

set logtype
{
text | smcl

} [
, permanently

]
Specify screen width

set linesize #

In addition to using the log command, you may access the capabilities of log by selecting File > Log
from the menu and choosing one of the options in the list.
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Menu
File > Log

Description
log allows you to make a full record of your Stata session. A log is a file containing what you

type and Stata’s output. You may start multiple log files at the same time, and you may refer to them
with a logname. If you do not specify a logname, Stata will use the name <unnamed>.

cmdlog allows you to make a record of what you type during your Stata session. A command log
contains only what you type, so it is a subset of a full log.

You can make full logs, command logs, or both simultaneously. Neither is produced until you tell
Stata to start logging.

Command logs are always text files, making them easy to convert into do-files. (In this respect, it
would make more sense if the default extension of a command log file was .do because command
logs are do-files. The default is .txt, not .do, however, to keep you from accidentally overwriting
your important do-files.)

Full logs are recorded in one of two formats: Stata Markup and Control Language (SMCL) or plain
text. The default is SMCL, but you can use set logtype to change that, or you can specify an option
to state the format you wish. We recommend SMCL because it preserves fonts and colors. SMCL logs
can be converted to text or to other formats by using the translate command; see [R] translate.
You can also use translate to produce printable versions of SMCL logs. SMCL logs can be viewed
and printed from the Viewer, as can any text file; see [R] view.

When using multiple log files, you may have up to five SMCL logs and five text logs open at the
same time.

log or cmdlog, typed without arguments, reports the status of logging. log query, when passed
an optional logname, reports the status of that log.

log using and cmdlog using open a log file. log close and cmdlog close close the file.
Between times, log off and cmdlog off, and log on and cmdlog on, can temporarily suspend and
resume logging.

If filename is specified without an extension, one of the suffixes .smcl, .log, or .txt is added.
The extension .smcl or .log is added by log, depending on whether the file format is SMCL or
text. The extension .txt is added by cmdlog. If filename contains embedded spaces, remember to
enclose it in double quotes.

set logtype specifies the default format in which full logs are to be recorded. Initially, full logs
are recorded in SMCL format.

set linesize specifies the maximum width, in characters, of Stata output. Most commands in
Stata do not respect linesize, because it is not important for most commands. Most users never
need to set linesize, because it will automatically be reset if you resize your Results window.
This is also why there is no permanently option allowed with set linesize. set linesize is
for use with commands such as list and display and is typically used by programmers who wish
the output of those commands to be wider or narrower than the current width of the Results window.
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Options for use with both log and cmdlog
append specifies that results be appended to an existing file. If the file does not already exist, a new

file is created.

replace specifies that filename, if it already exists, be overwritten. When you do not specify either
replace or append, the file is assumed to be new. If the specified file already exists, an error
message is issued and logging is not started.

Options for use with log
text and smcl specify the format in which the log is to be recorded. The default is complicated to

describe but is what you would expect:

If you specify the file as filename.smcl, the default is to write the log in SMCL format (regardless
of the value of set logtype).

If you specify the file as filename.log, the default is to write the log in text format (regardless
of the value of set logtype).

If you type filename without an extension and specify neither the smcl option nor the text
option, the default is to write the file according to the value of set logtype. If you have not
set logtype, then that default is SMCL. Also, the filename you specified will be fixed to read
filename.smcl if a SMCL log is being created or filename.log if a text log is being created.

If you specify either the text or smcl option, then what you specify determines how the log is
written. If filename was specified without an extension, the appropriate extension is added for you.

If you open multiple log files, you may choose a different format for each file.

name(logname) specifies an optional name you may use to refer to the log while it is open. You
can start multiple log files, give each a different logname, and then close, temporarily suspend, or
resume them each individually.

Option for use with set logtype
permanently specifies that, in addition to making the change right now, the logtype setting be

remembered and become the default setting when you invoke Stata.

Remarks
For a detailed explanation of logs, see [U] 15 Saving and printing output—log files.

When you open a full log, the default is to show the name of the file and a time and date stamp:
. log using myfile

name: <unnamed>
log: C:\data\proj1\myfile.smcl

log type: smcl
opened on: 12 Jan 2011, 12:28:23

.

The above information will appear in the log. If you do not want this information to appear, precede
the command by quietly:

. quietly log using myfile
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quietly will not suppress any error messages or anything else you need to know.

Similarly, when you close a full log, the default is to show the full information,

. log close

name: <unnamed>
log: C:\data\proj1\myfile.smcl

log type: smcl
closed on: 12 Jan 2011, 12:32:41

and that information will also appear in the log. If you want to suppress that, type quietly log
close.

Saved results
log and cmdlog save the following in r():

Macros
r(name) logname
r(filename) name of file
r(status) on or off
r(type) smcl or text

log query all saves the following in r():

Scalars
r(numlogs) number of open log files

For each open log file, log query all also saves

r(name#) logname
r(filename#) name of file
r(status#) on or off
r(type#) smcl or text

where # varies between 1 and the value of r(numlogs). Be aware that # will not necessarily represent the order
in which the log files were first opened, nor will it necessarily remain constant for a given log file upon multiple
calls to log query.

Also see
[R] translate — Print and translate logs

[R] query — Display system parameters

[GSM] 16 Saving and printing results by using logs
[GSW] 16 Saving and printing results by using logs
[GSU] 16 Saving and printing results by using logs
[U] 15 Saving and printing output—log files



Title

logistic — Logistic regression, reporting odds ratios

Syntax
logistic depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

coef report estimated coefficients
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Binary outcomes > Logistic regression (reporting odds ratios)
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Description
logistic fits a logistic regression model of depvar on indepvars, where depvar is a 0/1 variable

(or, more precisely, a 0/non-0 variable). Without arguments, logistic redisplays the last logistic
estimates. logistic displays estimates as odds ratios; to view coefficients, type logit after running
logistic. To obtain odds ratios for any covariate pattern relative to another, see [R] lincom.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

coef causes logistic to report the estimated coefficients rather than the odds ratios (exponentiated
coefficients). coef may be specified when the model is fit or may be used later to redisplay results.
coef affects only how results are displayed and not how they are estimated.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with logistic but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

logistic and logit
Robust estimate of variance
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logistic and logit

logistic provides an alternative and preferred way to fit maximum-likelihood logit models, the
other choice being logit ([R] logit).

First, let’s dispose of some confusing terminology. We use the words logit and logistic to mean
the same thing: maximum likelihood estimation. To some, one or the other of these words connotes
transforming the dependent variable and using weighted least squares to fit the model, but that is not
how we use either word here. Thus the logit and logistic commands produce the same results.

The logistic command is generally preferred to the logit command because logistic
presents the estimates in terms of odds ratios rather than coefficients. To some people, this may seem
disadvantageous, but you can type logit without arguments after logistic to see the underlying
coefficients. You should be cautious when interpreting the odds ratio of the constant term. Usually,
this odds ratio represents the baseline odds of the model when all predictor variables are set to zero.
However, you must verify that a zero value for all predictor variables in the model actually makes
sense before continuing with this interpretation.

Nevertheless, [R] logit is still worth reading because logistic shares the same features as logit,
including omitting variables due to collinearity or one-way causation.

For an introduction to logistic regression, see Lemeshow and Hosmer (2005), Pagano and Gau-
vreau (2000, 470–487), or Pampel (2000); for a complete but nonmathematical treatment, see
Kleinbaum and Klein (2010); and for a thorough discussion, see Hosmer and Lemeshow (2000).
See Gould (2000) for a discussion of the interpretation of logistic regression. See Dupont (2009) or
Hilbe (2009) for a discussion of logistic regression with examples using Stata. For a discussion using
Stata with an emphasis on model specification, see Vittinghoff et al. (2005).

Stata has a variety of commands for performing estimation when the dependent variable is dichoto-
mous or polytomous. See Long and Freese (2006) for a book devoted to fitting these models with Stata.
Here is a list of some estimation commands that may be of interest. See [ I ] estimation commands
for a complete list of all of Stata’s estimation commands.
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asclogit [R] asclogit Alternative-specific conditional logit (McFadden’s choice) model

asmprobit [R] asmprobit Alternative-specific multinomial probit regression

asroprobit [R] asroprobit Alternative-specific rank-ordered probit regression

binreg [R] binreg Generalized linear models for the binomial family

biprobit [R] biprobit Bivariate probit regression

blogit [R] glogit Logit regression for grouped data

bprobit [R] glogit Probit regression for grouped data

clogit [R] clogit Conditional (fixed-effects) logistic regression

cloglog [R] cloglog Complementary log-log regression

exlogistic [R] exlogistic Exact logistic regression

glm [R] glm Generalized linear models

glogit [R] glogit Weighted least-squares logistic regression for grouped data

gprobit [R] glogit Weighted least-squares probit regression for grouped data

heckprob [R] heckprob Probit model with selection

hetprob [R] hetprob Heteroskedastic probit model

ivprobit [R] ivprobit Probit model with endogenous regressors

logit [R] logit Logistic regression, reporting coefficients

mlogit [R] mlogit Multinomial (polytomous) logistic regression

mprobit [R] mprobit Multinomial probit regression

nlogit [R] nlogit Nested logit regression (RUM-consistent and nonnormalized)

ologit [R] ologit Ordered logistic regression

oprobit [R] oprobit Ordered probit regression

probit [R] probit Probit regression

rologit [R] rologit Rank-ordered logistic regression

scobit [R] scobit Skewed logistic regression

slogit [R] slogit Stereotype logistic regression

svy: cmd [SVY] svy estimation Survey versions of many of these commands are available;
see [SVY] svy estimation

xtcloglog [XT] xtcloglog Random-effects and population-averaged cloglog models

xtgee [XT] xtgee GEE population-averaged generalized linear models

xtlogit [XT] xtlogit Fixed-effects, random-effects, and population-averaged logit models

xtprobit [XT] xtprobit Random-effects and population-averaged probit models
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Example 1

Consider the following dataset from a study of risk factors associated with low birthweight described
in Hosmer and Lemeshow (2000, 25).

. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. describe

Contains data from http://www.stata-press.com/data/r12/lbw.dta
obs: 189 Hosmer & Lemeshow data

vars: 11 15 Jan 2011 05:01
size: 2,646

storage display value
variable name type format label variable label

id int %8.0g identification code
low byte %8.0g birthweight<2500g
age byte %8.0g age of mother
lwt int %8.0g weight at last menstrual period
race byte %8.0g race race
smoke byte %8.0g smoked during pregnancy
ptl byte %8.0g premature labor history (count)
ht byte %8.0g has history of hypertension
ui byte %8.0g presence, uterine irritability
ftv byte %8.0g number of visits to physician

during 1st trimester
bwt int %8.0g birthweight (grams)

Sorted by:

We want to investigate the causes of low birthweight. Here race is a categorical variable indicating
whether a person is white (race = 1), black (race = 2), or some other race (race = 3). We want
indicator (dummy) variables for race included in the regression, so we will use factor variables.

. logistic low age lwt i.race smoke ptl ht ui

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
2 3.534767 1.860737 2.40 0.016 1.259736 9.918406
3 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

The odds ratios are for a one-unit change in the variable. If we wanted the odds ratio for age to be
in terms of 4-year intervals, we would type
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. gen age4 = age/4

. logistic low age4 lwt i.race smoke ptl ht ui
(output omitted )

After logistic, we can type logit to see the model in terms of coefficients and standard errors:

. logit

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

age4 -.1084012 .1458017 -0.74 0.457 -.3941673 .1773649
lwt -.0151508 .0069259 -2.19 0.029 -.0287253 -.0015763

race
2 1.262647 .5264101 2.40 0.016 .2309024 2.294392
3 .8620792 .4391532 1.96 0.050 .0013548 1.722804

smoke .9233448 .4008266 2.30 0.021 .137739 1.708951
ptl .5418366 .346249 1.56 0.118 -.136799 1.220472
ht 1.832518 .6916292 2.65 0.008 .4769494 3.188086
ui .7585135 .4593768 1.65 0.099 -.1418484 1.658875

_cons .4612239 1.20459 0.38 0.702 -1.899729 2.822176

If we wanted to see the logistic output again, we would type logistic without arguments.

Example 2

We can specify the confidence interval for the odds ratios with the level() option, and we can
do this either at estimation time or when replaying the model. For instance, to see our first model in
example 1 with narrower, 90% confidence intervals, we might type

. logistic, level(90)

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds Ratio Std. Err. z P>|z| [90% Conf. Interval]

age4 .8972675 .1308231 -0.74 0.457 .7059409 1.140448
lwt .9849634 .0068217 -2.19 0.029 .9738063 .9962483

race
2 3.534767 1.860737 2.40 0.016 1.487028 8.402379
3 2.368079 1.039949 1.96 0.050 1.149971 4.876471

smoke 2.517698 1.00916 2.30 0.021 1.302185 4.867819
ptl 1.719161 .5952579 1.56 0.118 .9726876 3.038505
ht 6.249602 4.322408 2.65 0.008 2.003487 19.49478
ui 2.1351 .9808153 1.65 0.099 1.00291 4.545424

_cons 1.586014 1.910496 0.38 0.702 .2186791 11.50288
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Robust estimate of variance
If you specify vce(robust), Stata reports the robust estimate of variance described in [U] 20.20 Ob-

taining robust variance estimates. Here is the model previously fit with the robust estimate of variance:

. logistic low age lwt i.race smoke ptl ht ui, vce(robust)

Logistic regression Number of obs = 189
Wald chi2(8) = 29.02
Prob > chi2 = 0.0003

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416

Robust
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0329376 -0.80 0.423 .9108015 1.040009
lwt .9849634 .0070209 -2.13 0.034 .9712984 .9988206

race
2 3.534767 1.793616 2.49 0.013 1.307504 9.556051
3 2.368079 1.026563 1.99 0.047 1.012512 5.538501

smoke 2.517698 .9736417 2.39 0.017 1.179852 5.372537
ptl 1.719161 .7072902 1.32 0.188 .7675715 3.850476
ht 6.249602 4.102026 2.79 0.005 1.726445 22.6231
ui 2.1351 1.042775 1.55 0.120 .8197749 5.560858

_cons 1.586014 1.939482 0.38 0.706 .144345 17.42658

Also you can specify vce(cluster clustvar) and then, within cluster, relax the assumption of
independence. To illustrate this, we have made some fictional additions to the low-birthweight data.

Say that these data are not a random sample of mothers but instead are a random sample of
mothers from a random sample of hospitals. In fact, that may be true—we do not know the history
of these data.

Hospitals specialize, and it would not be too incorrect to say that some hospitals specialize in
more difficult cases. We are going to show two extremes. In one, all hospitals are alike, but we are
going to estimate under the possibility that they might differ. In the other, hospitals are strikingly
different. In both cases, we assume that patients are drawn from 20 hospitals.

In both examples, we will fit the same model, and we will type the same command to fit it. Below
are the same data we have been using but with a new variable, hospid, that identifies from which
of the 20 hospitals each patient was drawn (and which we have made up):
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. use http://www.stata-press.com/data/r12/hospid1, clear

. logistic low age lwt i.race smoke ptl ht ui, vce(cluster hospid)

Logistic regression Number of obs = 189
Wald chi2(8) = 49.67
Prob > chi2 = 0.0000

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416

(Std. Err. adjusted for 20 clusters in hospid)

Robust
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0397476 -0.66 0.507 .898396 1.05437
lwt .9849634 .0057101 -2.61 0.009 .9738352 .9962187

race
2 3.534767 2.013285 2.22 0.027 1.157563 10.79386
3 2.368079 .8451325 2.42 0.016 1.176562 4.766257

smoke 2.517698 .8284259 2.81 0.005 1.321062 4.79826
ptl 1.719161 .6676221 1.40 0.163 .8030814 3.680219
ht 6.249602 4.066275 2.82 0.005 1.74591 22.37086
ui 2.1351 1.093144 1.48 0.138 .7827337 5.824014

_cons 1.586014 1.661913 0.44 0.660 .2034094 12.36639

The standard errors are similar to the standard errors we have previously obtained, whether we used
the robust or conventional estimators. In this example, we invented the hospital IDs randomly.

Here are the results of the estimation with the same data but with a different set of hospital IDs:

. use http://www.stata-press.com/data/r12/hospid2

. logistic low age lwt i.race smoke ptl ht ui, vce(cluster hospid)

Logistic regression Number of obs = 189
Wald chi2(8) = 7.19
Prob > chi2 = 0.5167

Log pseudolikelihood = -100.724 Pseudo R2 = 0.1416

(Std. Err. adjusted for 20 clusters in hospid)

Robust
low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0293064 -0.90 0.368 .9174862 1.032432
lwt .9849634 .0106123 -1.41 0.160 .9643817 1.005984

race
2 3.534767 3.120338 1.43 0.153 .6265521 19.9418
3 2.368079 1.297738 1.57 0.116 .8089594 6.932114

smoke 2.517698 1.570287 1.48 0.139 .7414969 8.548655
ptl 1.719161 .6799153 1.37 0.171 .7919045 3.732161
ht 6.249602 7.165454 1.60 0.110 .660558 59.12808
ui 2.1351 1.411977 1.15 0.251 .5841231 7.804266

_cons 1.586014 1.946253 0.38 0.707 .1431423 17.573

Note the strikingly larger standard errors. What happened? In these data, women most likely to have
low-birthweight babies are sent to certain hospitals, and the decision on likeliness is based not just
on age, smoking history, etc., but on other things that doctors can see but that are not recorded in
our data. Thus merely because a woman is at one of the centers identifies her to be more likely to
have a low-birthweight baby.



940 logistic — Logistic regression, reporting odds ratios

Saved results
logistic saves the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) logistic
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(mns) vector of means of the independent variables
e(rules) information about perfect predictors
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
logistic is implemented as an ado-file.

Define xj as the (row) vector of independent variables, augmented by 1, and b as the corresponding
estimated parameter (column) vector. The logistic regression model is fit by logit; see [R] logit for
details of estimation.

The odds ratio corresponding to the ith coefficient is ψi = exp(bi). The standard error of the odds
ratio is sψi = ψisi, where si is the standard error of bi estimated by logit.

Define Ij = xjb as the predicted index of the jth observation. The predicted probability of a
positive outcome is

pj =
exp(Ij)

1 + exp(Ij)

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

logistic also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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logistic postestimation — Postestimation tools for logistic

Description

The following postestimation commands are of special interest after logistic:

Command Description

estat classification report various summary statistics, including the classification table
estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test
lroc compute area under ROC curve and graph the curve
lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate after the svy prefix.

For information about these commands, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

943
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Special-interest postestimation commands

estat classification reports various summary statistics, including the classification table.

estat gof reports the Pearson goodness-of-fit test or the Hosmer–Lemeshow goodness-of-fit test.

lroc graphs the ROC curve and calculates the area under the curve.

lsens graphs sensitivity and specificity versus probability cutoff and optionally creates new
variables containing these data.

estat classification, estat gof, lroc, and lsens produce statistics and graphs either for
the estimation sample or for any set of observations. However, they always use the estimation sample
by default. When weights, if, or in is used with logistic, it is not necessary to repeat the qualifier
with these commands when you want statistics computed for the estimation sample. Specify if, in,
or the all option only when you want statistics computed for a set of observations other than the
estimation sample. Specify weights (only fweights are allowed with these commands) only when
you want to use a different set of weights.

By default, estat classification, estat gof, lroc, and lsens use the last model fit by
logistic. You may also directly specify the model to the lroc and lsens commands by inputting a
vector of coefficients with the beta() option and passing the name of the dependent variable depvar.

estat classification and estat gof require that the current estimation results be from
logistic, logit, or probit. lroc and lsens commands may also be used after logit or probit.
estat classification, lroc, and lsens may also be used after ivprobit.

Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset rules asif
]

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the prediction
∗dbeta Pregibon (1981) ∆β̂ influence statistic
∗deviance deviance residual
∗dx2 Hosmer and Lemeshow (2000) ∆χ2 influence statistic
∗ddeviance Hosmer and Lemeshow (2000) ∆D influence statistic
∗hat Pregibon (1981) leverage
∗number sequential number of the covariate pattern
∗residuals Pearson residuals; adjusted for number sharing covariate pattern
∗rstandard standardized Pearson residuals; adjusted for number sharing covariate pattern
score first derivative of the log likelihood with respect to xjβ

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

pr, xb, stdp, and score are the only options allowed with svy estimation results.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

dbeta calculates the Pregibon (1981) ∆β̂ influence statistic, a standardized measure of the difference
in the coefficient vector that is due to deletion of the observation along with all others that share
the same covariate pattern. In Hosmer and Lemeshow (2000, 144–145) jargon, this statistic is
M -asymptotic; that is, it is adjusted for the number of observations that share the same covariate
pattern.

deviance calculates the deviance residual.

dx2 calculates the Hosmer and Lemeshow (2000, 174) ∆χ2 influence statistic, reflecting the decrease
in the Pearson χ2 that is due to the deletion of the observation and all others that share the same
covariate pattern.

ddeviance calculates the Hosmer and Lemeshow (2000, 174) ∆D influence statistic, which is the
change in the deviance residual that is due to deletion of the observation and all others that share
the same covariate pattern.

hat calculates the Pregibon (1981) leverage or the diagonal elements of the hat matrix adjusted for
the number of observations that share the same covariate pattern.

number numbers the covariate patterns—observations with the same covariate pattern have the same
number. Observations not used in estimation have number set to missing. The first covariate
pattern is numbered 1, the second 2, and so on.

residuals calculates the Pearson residual as given by Hosmer and Lemeshow (2000, 145) and
adjusted for the number of observations that share the same covariate pattern.

rstandard calculates the standardized Pearson residual as given by Hosmer and Lemeshow (2000,
173) and adjusted for the number of observations that share the same covariate pattern.

score calculates the equation-level score, ∂lnL/∂(xjβ).

� � �
Options �

nooffset is relevant only if you specified offset(varname) for logistic. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
xjb rather than as xjb + offsetj .

rules requests that Stata use any rules that were used to identify the model when making the
prediction. By default, Stata calculates missing for excluded observations. See example 1 in
[R] logit postestimation.

asif requests that Stata ignore the rules and the exclusion criteria and calculate predictions for all
observations possible by using the estimated parameter from the model. See example 1 in [R] logit
postestimation.
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Syntax for estat classification

estat classification
[

if
] [

in
] [

weight
] [

, class options
]

class options Description

Main

all display summary statistics for all observations in the data
cutoff(#) positive outcome threshold; default is cutoff(0.5)

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat classification

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in
restrictions specified by logistic.

cutoff(#) specifies the value for determining whether an observation has a predicted positive
outcome. An observation is classified as positive if its predicted probability is ≥ #. The default
is 0.5.

Syntax for estat gof

estat gof
[

if
] [

in
] [

weight
] [

, gof options
]

gof options Description

Main

group(#) perform Hosmer–Lemeshow goodness-of-fit test using # quantiles
all execute test for all observations in the data
outsample adjust degrees of freedom for samples outside estimation sample
table display table of groups used for test

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Reports and statistics
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Options for estat gof

� � �
Main �

group(#) specifies the number of quantiles to be used to group the data for the Hosmer–Lemeshow
goodness-of-fit test. group(10) is typically specified. If this option is not given, the Pearson
goodness-of-fit test is computed using the covariate patterns in the data as groups.

all requests that the statistic be computed for all observations in the data, ignoring any if or in
restrictions specified with logistic.

outsample adjusts the degrees of freedom for the Pearson and Hosmer–Lemeshow goodness-of-fit
tests for samples outside the estimation sample. See Samples other than the estimation sample
later in this entry.

table displays a table of the groups used for the Hosmer–Lemeshow or Pearson goodness-of-fit test
with predicted probabilities, observed and expected counts for both outcomes, and totals for each
group.

Syntax for lroc

lroc
[

depvar
] [

if
] [

in
] [

weight
] [

, lroc options
]

lroc options Description

Main

all compute area under ROC curve and graph curve for all observations
nograph suppress graph

Advanced

beta(matname) row vector containing coefficients for a logistic model

Plot

cline options change the look of the line
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Binary outcomes > Postestimation > ROC curve after logistic/logit/probit/ivprobit
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Options for lroc

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in
restrictions specified by logistic.

nograph suppresses graphical output.

� � �
Advanced �

beta(matname) specifies a row vector containing coefficients for a logistic model. The columns of
the row vector must be labeled with the corresponding names of the independent variables in the
data. The dependent variable depvar must be specified immediately after the command name. See
Models other than the last fitted model later in this entry.

� � �
Plot �

cline options, marker options, and marker label options affect the rendition of the ROC curve—the
plotted points connected by lines. These options affect the size and color of markers, whether and
how the markers are labeled, and whether and how the points are connected; see [G-3] cline options,
[G-3] marker options, and [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for lsens

lsens
[

depvar
] [

if
] [

in
] [

weight
] [

, lsens options
]
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lsens options Description

Main

all graph all observations in the data
genprob(varname) create variable containing probability cutoffs
gensens(varname) create variable containing sensitivity
genspec(varname) create variable containing specificity
replace overwrite existing variables
nograph suppress the graph

Advanced

beta(matname) row vector containing coefficients for the model

Plot

connect options affect rendition of the plotted points connected by lines

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Binary outcomes > Postestimation > Sensitivity/specificity plot

Options for lsens

� � �
Main �

all requests that the statistic be computed for all observations in the data, ignoring any if or in
restrictions specified with logistic.

genprob(varname), gensens(varname), and genspec(varname) specify the names of new variables
created to contain, respectively, the probability cutoffs and the corresponding sensitivity and
specificity.

replace requests that existing variables specified for genprob(), gensens(), or genspec() be
overwritten.

nograph suppresses graphical output.
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� � �
Advanced �

beta(matname) specifies a row vector containing coefficients for a logistic model. The columns of
the row vector must be labeled with the corresponding names of the independent variables in the
data. The dependent variable depvar must be specified immediately after the command name. See
Models other than the last fitted model later in this entry.

� � �
Plot �

connect options affect the rendition of the plotted points connected by lines; see connect options in
[G-2] graph twoway scatter.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

predict after logistic
predict without options
predict with the xb and stdp options
predict with the residuals option
predict with the number option
predict with the deviance option
predict with the rstandard option
predict with the hat option
predict with the dx2 option
predict with the ddeviance option
predict with the dbeta option

estat classification
estat gof
lroc
lsens
Samples other than the estimation sample
Models other than the last fitted model

predict after logistic

predict is used after logistic to obtain predicted probabilities, residuals, and influence
statistics for the estimation sample. The suggested diagnostic graphs below are from Hosmer and
Lemeshow (2000), where they are more elaborately explained. Also see Collett (2003, 129–168) for
a thorough discussion of model checking.

predict without options

Typing predict newvar after estimation calculates the predicted probability of a positive outcome.

In example 1 of [R] logistic, we ran the model logistic low age lwt i.race smoke ptl ht
ui. We obtain the predicted probabilities of a positive outcome by typing
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. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. logistic low age lwt i.race smoke ptl ht ui
(output omitted )

. predict p
(option pr assumed; Pr(low))

. summarize p low

Variable Obs Mean Std. Dev. Min Max

p 189 .3121693 .1913915 .0272559 .8391283
low 189 .3121693 .4646093 0 1

predict with the xb and stdp options

predict with the xb option calculates the linear combination xjb, where xj are the independent
variables in the jth observation and b is the estimated parameter vector. This is sometimes known as
the index function because the cumulative distribution function indexed at this value is the probability
of a positive outcome.

With the stdp option, predict calculates the standard error of the prediction, which is not adjusted
for replicated covariate patterns in the data. The influence statistics described below are adjusted for
replicated covariate patterns in the data.

predict with the residuals option

predict can calculate more than predicted probabilities. The Pearson residual is defined as the
square root of the contribution of the covariate pattern to the Pearson χ2 goodness-of-fit statistic,
signed according to whether the observed number of positive responses within the covariate pattern
is less than or greater than expected. For instance,

. predict r, residuals

. summarize r, detail

Pearson residual

Percentiles Smallest
1% -1.750923 -2.283885
5% -1.129907 -1.750923

10% -.9581174 -1.636279 Obs 189
25% -.6545911 -1.636279 Sum of Wgt. 189

50% -.3806923 Mean -.0242299
Largest Std. Dev. .9970949

75% .8162894 2.23879
90% 1.510355 2.317558 Variance .9941981
95% 1.747948 3.002206 Skewness .8618271
99% 3.002206 3.126763 Kurtosis 3.038448
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We notice the prevalence of a few large positive residuals:

. sort r

. list id r low p age race in -5/l

id r low p age race

185. 33 2.224501 1 .1681123 19 white
186. 57 2.23879 1 .166329 15 white
187. 16 2.317558 1 .1569594 27 other
188. 77 3.002206 1 .0998678 26 white
189. 36 3.126763 1 .0927932 24 white

predict with the number option

Covariate patterns play an important role in logistic regression. Two observations are said to share
the same covariate pattern if the independent variables for the two observations are identical. Although
we might think of having individual observations, the statistical information in the sample can be
summarized by the covariate patterns, the number of observations with that covariate pattern, and the
number of positive outcomes within the pattern. Depending on the model, the number of covariate
patterns can approach or be equal to the number of observations, or it can be considerably less.

Stata calculates all the residual and diagnostic statistics in terms of covariate patterns, not ob-
servations. That is, all observations with the same covariate pattern are given the same residual
and diagnostic statistics. Hosmer and Lemeshow (2000, 145–145) argue that such “M -asymptotic”
statistics are more useful than “N -asymptotic” statistics.

To understand the difference, think of an observed positive outcome with predicted probability
of 0.8. Taking the observation in isolation, the residual must be positive—we expected 0.8 positive
responses and observed 1. This may indeed be the correct residual, but not necessarily. Under the
M -asymptotic definition, we ask how many successes we observed across all observations with this
covariate pattern. If that number were, say, six, and there were a total of 10 observations with this
covariate pattern, then the residual is negative for the covariate pattern—we expected eight positive
outcomes but observed six. predict makes this kind of calculation and then attaches the same
residual to all observations in the covariate pattern.

Occasionally, you might want to find all observations sharing a covariate pattern. number allows
you to do this:

. predict pattern, number

. summarize pattern

Variable Obs Mean Std. Dev. Min Max

pattern 189 89.2328 53.16573 1 182

We previously fit the model logistic low age lwt i.race smoke ptl ht ui over 189 observations.
There are 182 covariate patterns in our data.

predict with the deviance option

The deviance residual is defined as the square root of the contribution to the likelihood-ratio test
statistic of a saturated model versus the fitted model. It has slightly different properties from the
Pearson residual (see Hosmer and Lemeshow [2000, 145–147]):
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. predict d, deviance

. summarize d, detail

deviance residual

Percentiles Smallest
1% -1.843472 -1.911621
5% -1.33477 -1.843472

10% -1.148316 -1.843472 Obs 189
25% -.8445325 -1.674869 Sum of Wgt. 189

50% -.5202702 Mean -.1228811
Largest Std. Dev. 1.049237

75% .9129041 1.894089
90% 1.541558 1.924457 Variance 1.100898
95% 1.673338 2.146583 Skewness .6598857
99% 2.146583 2.180542 Kurtosis 2.036938

predict with the rstandard option

Pearson residuals do not have a standard deviation equal to 1. rstandard generates Pearson
residuals normalized to have an expected standard deviation equal to 1.

. predict rs, rstandard

. summarize r rs

Variable Obs Mean Std. Dev. Min Max

r 189 -.0242299 .9970949 -2.283885 3.126763
rs 189 -.0279135 1.026406 -2.4478 3.149081

. correlate r rs
(obs=189)

r rs

r 1.0000
rs 0.9998 1.0000

Remember that we previously created r containing the (unstandardized) Pearson residuals. In these
data, whether we use standardized or unstandardized residuals does not matter much.

predict with the hat option

hat calculates the leverage of a covariate pattern—a scaled measure of distance in terms of the
independent variables. Large values indicate covariate patterns far from the average covariate pattern
that can have a large effect on the fitted model even if the corresponding residual is small. Consider
the following graph:
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. predict h, hat

. scatter h r, xline(0)
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The points to the left of the vertical line are observed negative outcomes; here our data contain
almost as many covariate patterns as observations, so most covariate patterns are unique. In such
unique patterns, we observe either 0 or 1 success and expect p, thus forcing the sign of the residual.
If we had fewer covariate patterns—if we did not have continuous variables in our model—there
would be no such interpretation, and we would not have drawn the vertical line at 0.

Points on the left and right edges of the graph represent large residuals—covariate patterns that
are not fit well by our model. Points at the top of our graph represent high leverage patterns. When
analyzing the influence of observations on the model, we are most interested in patterns with high
leverage and small residuals—patterns that might otherwise escape our attention.

predict with the dx2 option

There are many ways to measure influence, and hat is one example. dx2 measures the decrease
in the Pearson χ2 goodness-of-fit statistic that would be caused by deleting an observation (and all
others sharing the covariate pattern):
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. predict dx2, dx2

. scatter dx2 p
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Paraphrasing Hosmer and Lemeshow (2000, 178–179), the points going from the top left to the
bottom right correspond to covariate patterns with the number of positive outcomes equal to the
number in the group; the points on the other curve correspond to 0 positive outcomes. In our data,
most of the covariate patterns are unique, so the points tend to lie along one or the other curves; the
points that are off the curves correspond to the few repeated covariate patterns in our data in which
all the outcomes are not the same.

We examine this graph for large values of dx2—there are two at the top left.

predict with the ddeviance option

Another measure of influence is the change in the deviance residuals due to deletion of a covariate
pattern:

. predict dd, ddeviance

As with dx2, we typically graph ddeviance against the probability of a positive outcome. We direct
you to Hosmer and Lemeshow (2000, 178) for an example and for the interpretation of this graph.

predict with the dbeta option

One of the more direct measures of influence of interest to model fitters is the Pregibon (1981)
dbeta measure, a measure of the change in the coefficient vector that would be caused by deleting
an observation (and all others sharing the covariate pattern):
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. predict db, dbeta

. scatter db p
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One observation has a large effect on the estimated coefficients. We can easily find this point:

. sort db

. list in l

189. id low age lwt race smoke ptl ht ui ftv bwt
188 0 25 95 white 1 3 0 1 0 3637

p r pattern d rs h
.8391283 -2.283885 117 -1.911621 -2.4478 .1294439

dx2 dd db
5.991726 4.197658 .8909163

Hosmer and Lemeshow (2000, 180) suggest a graph that combines two of the influence measures:
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. scatter dx2 p [w=db], title("Symbol size proportional to dBeta") mfcolor(none)
(analytic weights assumed)
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Symbol size proportional to dBeta

We can easily spot the most influential points by the dbeta and dx2 measures.

estat classification

Example 1

estat classification presents the classification statistics and classification table after logistic.

. use http://www.stata-press.com/data/r12/lbw, clear
(Hosmer & Lemeshow data)

. logistic low age lwt i.race smoke ptl ht ui
(output omitted )

. estat classification

Logistic model for low

True
Classified D ~D Total

+ 21 12 33
- 38 118 156

Total 59 130 189

Classified + if predicted Pr(D) >= .5
True D defined as low != 0

Sensitivity Pr( +| D) 35.59%
Specificity Pr( -|~D) 90.77%
Positive predictive value Pr( D| +) 63.64%
Negative predictive value Pr(~D| -) 75.64%

False + rate for true ~D Pr( +|~D) 9.23%
False - rate for true D Pr( -| D) 64.41%
False + rate for classified + Pr(~D| +) 36.36%
False - rate for classified - Pr( D| -) 24.36%

Correctly classified 73.54%
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By default, estat classification uses a cutoff of 0.5, although you can vary this with the
cutoff() option. You can use the lsens command to review the potential cutoffs; see lsens below.

estat gof

estat gof computes goodness-of-fit tests: either the Pearson χ2 test or the Hosmer–Lemeshow
test.

By default, estat classification, estat gof, lroc, and lsens compute statistics for the
estimation sample by using the last model fit by logistic. However, samples other than the estimation
sample can be specified; see Samples other than the estimation sample later in this entry.

Example 2

estat gof, typed without options, presents the Pearson χ2 goodness-of-fit test for the fitted model.
The Pearson χ2 goodness-of-fit test is a test of the observed against expected number of responses
using cells defined by the covariate patterns; see predict with the number option earlier in this entry
for the definition of covariate patterns.

. estat gof

Logistic model for low, goodness-of-fit test

number of observations = 189
number of covariate patterns = 182

Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567

Our model fits reasonably well. However, the number of covariate patterns is close to the number
of observations, making the applicability of the Pearson χ2 test questionable but not necessarily
inappropriate. Hosmer and Lemeshow (2000, 147–150) suggest regrouping the data by ordering on
the predicted probabilities and then forming, say, 10 nearly equal-sized groups. estat gof with the
group() option does this:

. estat gof, group(10)

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 189
number of groups = 10

Hosmer-Lemeshow chi2(8) = 9.65
Prob > chi2 = 0.2904

Again we cannot reject our model. If we specify the table option, estat gof displays the groups
along with the expected and observed number of positive responses (low-birthweight babies):
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. estat gof, group(10) table

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.0827 0 1.2 19 17.8 19
2 0.1276 2 2.0 17 17.0 19
3 0.2015 6 3.2 13 15.8 19
4 0.2432 1 4.3 18 14.7 19
5 0.2792 7 4.9 12 14.1 19

6 0.3138 7 5.6 12 13.4 19
7 0.3872 6 6.5 13 12.5 19
8 0.4828 7 8.2 12 10.8 19
9 0.5941 10 10.3 9 8.7 19

10 0.8391 13 12.8 5 5.2 18

number of observations = 189
number of groups = 10

Hosmer-Lemeshow chi2(8) = 9.65
Prob > chi2 = 0.2904

Technical note
estat gof with the group() option puts all observations with the same predicted probabilities

into the same group. If, as in the previous example, we request 10 groups, the groups that estat
gof makes are [ p0, p10], (p10, p20], (p20, p30], . . . , (p90, p100], where pk is the kth percentile of the
predicted probabilities, with p0 the minimum and p100 the maximum.

If there are many ties at the quantile boundaries, as will often happen if all independent variables
are categorical and there are only a few of them, the sizes of the groups will be uneven. If the totals
in some of the groups are small, the χ2 statistic for the Hosmer–Lemeshow test may be unreliable.
In this case, fewer groups should be specified, or the Pearson goodness-of-fit test may be a better
choice.

Example 3

The table option can be used without the group() option. We would not want to specify this
for our current model because there were 182 covariate patterns in the data, caused by including the
two continuous variables, age and lwt, in the model. As an aside, we fit a simpler model and specify
table with estat gof:
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. logistic low i.race smoke ui

Logistic regression Number of obs = 189
LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 3.052746 1.498087 2.27 0.023 1.166747 7.987382
3 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447

. estat gof, table

Logistic model for low, goodness-of-fit test

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.1230 3 4.9 37 35.1 40
2 0.2533 1 1.0 3 3.0 4
3 0.2907 16 13.7 31 33.3 47
4 0.2923 15 12.6 28 30.4 43
5 0.2997 3 3.9 10 9.1 13

6 0.4978 4 4.0 4 4.0 8
7 0.4998 4 4.5 5 4.5 9
8 0.5087 2 1.5 1 1.5 3
9 0.5469 2 4.4 6 3.6 8

10 0.5577 6 5.6 4 4.4 10

11 0.7449 3 3.0 1 1.0 4

Group Prob race smoke ui

1 0.1230 white 0 0
2 0.2533 white 0 1
3 0.2907 other 0 0
4 0.2923 white 1 0
5 0.2997 black 0 0

6 0.4978 other 0 1
7 0.4998 white 1 1
8 0.5087 black 0 1
9 0.5469 other 1 0

10 0.5577 black 1 0

11 0.7449 other 1 1

number of observations = 189
number of covariate patterns = 11

Pearson chi2(6) = 5.71
Prob > chi2 = 0.4569
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Technical note
logistic and estat gof keep track of the estimation sample. If you type logistic . . . if

x==1, then when you type estat gof, the statistics will be calculated on the x==1 subsample of the
data automatically.

You should specify if or in with estat gof only when you wish to calculate statistics for a set
of observations other than the estimation sample. See Samples other than the estimation sample later
in this entry.

If the logistic model was fit with fweights, estat gof properly accounts for the weights
in its calculations. (estat gof does not allow pweights.) You do not have to specify the weights
when you run estat gof. Weights should be specified with estat gof only when you wish to use
a different set of weights.

lroc
Stata also has a suite of commands for performing both parametric and nonparametric receiver

operating characteristic (ROC) analysis. See [R] roc for an overview of these commands.

lroc graphs the ROC curve—a graph of sensitivity versus one minus specificity as the cutoff c
is varied—and calculates the area under it. Sensitivity is the fraction of observed positive-outcome
cases that are correctly classified; specificity is the fraction of observed negative-outcome cases that
are correctly classified. When the purpose of the analysis is classification, you must choose a cutoff.

The curve starts at (0, 0), corresponding to c = 1, and continues to (1, 1), corresponding to c = 0.
A model with no predictive power would be a 45◦ line. The greater the predictive power, the more
bowed the curve, and hence the area beneath the curve is often used as a measure of the predictive
power. A model with no predictive power has area 0.5; a perfect model has area 1.

The ROC curve was first discussed in signal detection theory (Peterson, Birdsall, and Fox 1954)
and then was quickly introduced into psychology (Tanner and Swets 1954). It has since been applied
in other fields, particularly medicine (for instance, Metz [1978]). For a classic text on ROC techniques,
see Green and Swets (1966).

Example 4

ROC curves are typically used when the point of the analysis is classification—which it is not in
our low-birthweight model. Nevertheless, the ROC curve is
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. lroc

Logistic model for low

number of observations = 189
area under ROC curve = 0.6658
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Area under ROC curve = 0.6658

We see that the area under the curve is 0.6658.

lsens
lsens also plots sensitivity and specificity; it plots both sensitivity and specificity versus probability

cutoff c. The graph is equivalent to what you would get from estat classification if you varied
the cutoff probability from 0 to 1.
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lsens optionally creates new variables containing the probability cutoff, sensitivity, and specificity.
. lsens, genprob(p) gensens(sens) genspec(spec) nograph
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The variables created will have M + 2 distinct nonmissing values: one for each of the M covariate
patterns, one for c = 0, and another for c = 1. Values are recorded for p = 0, for each of the
observed predicted probabilities, and for p = 1. The total number of observations required to do this
can be fewer than N, the same as N, or N + 1, or N + 2. If more observations are added, they
are added at the end of the dataset and the values of the original variables are set to missing in the
added observations. How the values added align with existing observations is irrelevant.

Samples other than the estimation sample

estat gof, estat classification, lroc, and lsens can be used with samples other than
the estimation sample. By default, these commands remember the estimation sample used with the
last logistic command. To override this, simply use an if or in restriction to select another set
of observations, or specify the all option to force the command to use all the observations in the
dataset.

If you use estat gof with a sample that is completely different from the estimation sample (that
is, no overlap), you should also specify the outsample option so that the χ2 statistic properly adjusts
the degrees of freedom upward. For an overlapping sample, the conservative thing to do is to leave
the degrees of freedom the same as they are for the estimation sample.

Example 5

We want to develop a model for predicting low-birthweight babies. One approach would be to
divide our data into two groups, a developmental sample and a validation sample. See Lemeshow and
Gall (1994) and Tilford, Roberson, and Fiser (1995) for more information on developing prediction
models and severity-scoring systems.

We will do this with the low-birthweight data that we considered previously. First, we randomly
divide the data into two samples.

. use http://www.stata-press.com/data/r12/lbw, clear
(Hosmer & Lemeshow data)

. set seed 1

. gen r = runiform()

. sort r

. gen group = 1 if _n <= _N/2
(95 missing values generated)

. replace group = 2 if group >=.
(95 real changes made)

Then we fit a model using the first sample (group = 1), which is our developmental sample.
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. logistic low age lwt i.race smoke ptl ht ui if group==1

Logistic regression Number of obs = 94
LR chi2(8) = 29.14
Prob > chi2 = 0.0003

Log likelihood = -44.293342 Pseudo R2 = 0.2475

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .91542 .0553937 -1.46 0.144 .8130414 1.03069
lwt .9744276 .0112295 -2.25 0.025 .9526649 .9966874

race
2 5.063678 3.78442 2.17 0.030 1.170327 21.90913
3 2.606209 1.657608 1.51 0.132 .7492483 9.065522

smoke .909912 .5252898 -0.16 0.870 .2934966 2.820953
ptl 3.033543 1.507048 2.23 0.025 1.145718 8.03198
ht 21.07656 22.64788 2.84 0.005 2.565304 173.1652
ui .988479 .6699458 -0.02 0.986 .2618557 3.731409

_cons 30.73641 56.82168 1.85 0.064 .8204589 1151.462

To test calibration in the developmental sample, we calculate the Hosmer–Lemeshow goodness-of-fit
test by using estat gof.

. estat gof, group(10)

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 94
number of groups = 10

Hosmer-Lemeshow chi2(8) = 6.67
Prob > chi2 = 0.5721

We did not specify an if statement with estat gof because we wanted to use the estimation sample.
Because the test is not significant, we are satisfied with the fit of our model.

Running lroc gives a measure of the discrimination:

. lroc, nograph

Logistic model for low

number of observations = 94
area under ROC curve = 0.8156

Now we test the calibration of our model by performing a goodness-of-fit test on the validation
sample. We specify the outsample option so that the number of degrees of freedom is 10 rather
than 8.
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. estat gof if group==2, group(10) table outsample

Logistic model for low, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

Group Prob Obs_1 Exp_1 Obs_0 Exp_0 Total

1 0.0725 1 0.4 9 9.6 10
2 0.1202 4 0.8 5 8.2 9
3 0.1549 3 1.3 7 8.7 10
4 0.1888 1 1.5 8 7.5 9
5 0.2609 3 2.2 7 7.8 10

6 0.3258 4 2.7 5 6.3 9
7 0.4217 2 3.7 8 6.3 10
8 0.4915 3 4.1 6 4.9 9
9 0.6265 4 5.5 6 4.5 10

10 0.9737 4 7.1 5 1.9 9

number of observations = 95
number of groups = 10

Hosmer-Lemeshow chi2(10) = 28.03
Prob > chi2 = 0.0018

We must acknowledge that our model does not fit well on the validation sample. The model’s
discrimination in the validation sample is appreciably lower, as well.

. lroc if group==2, nograph

Logistic model for low

number of observations = 95
area under ROC curve = 0.5839

Models other than the last fitted model
By default, estat classification, estat gof, lroc, and lsens use the last model fit by

logistic. You may also directly specify the model to lroc and lsens by inputting a vector of
coefficients with the beta() option and passing the name of the dependent variable depvar to these
commands.

Example 6

Suppose that someone publishes the following logistic model of low birthweight:

Pr(low = 1) = F (−0.02 age−0.01 lwt+ 1.3 black+ 1.1 smoke+ 0.5 ptl+ 1.8 ht+ 0.8 ui+ 0.5)

where F is the cumulative logistic distribution. These coefficients are not odds ratios; they are the
equivalent of what logit produces.

We can see whether this model fits our data. First we enter the coefficients as a row vector and
label its columns with the names of the independent variables plus cons for the constant (see
[P] matrix define and [P] matrix rownames).

. use http://www.stata-press.com/data/r12/lbw3, clear
(Hosmer & Lemeshow data)

. matrix input b = (-.02, -.01, 1.3, 1.1, .5, 1.8, .8, .5)

. matrix colnames b = age lwt black smoke ptl ht ui _cons
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Here we use lroc to examine the predictive ability of the model:

. lroc low, beta(b) nograph

Logistic model for low

number of observations = 189
area under ROC curve = 0.7275

The area under the curve indicates that this model does have some predictive power. We could also
obtain a graph of sensitivity and specificity as a function of the cutoff probability by typing

. lsens low, beta(b)

Saved results
estat classification saves the following in r():

Scalars
r(P corr) percent correctly classified
r(P p1) sensitivity
r(P n0) specificity
r(P p0) false-positive rate given true negative
r(P n1) false-negative rate given true positive
r(P 1p) positive predictive value
r(P 0n) negative predictive value
r(P 0p) false-positive rate given classified positive
r(P 1n) false-negative rate given classified negative

estat gof saves the following in r():

Scalars
r(N) number of observations
r(m) number of covariate patterns or groups
r(df) degrees of freedom
r(chi2) χ2

lroc saves the following in r():

Scalars
r(N) number of observations
r(area) area under the ROC curve

lsens saves the following in r():

Scalars
r(N) number of observations

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Methods and formulas are presented under the following headings:

estat gof
predict after logistic
estat classification and lsens
lroc
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estat gof

Let M be the total number of covariate patterns among the N observations. View the data as
collapsed on covariate patterns j = 1, 2, . . . , M , and define mj as the total number of observations
having covariate pattern j and yj as the total number of positive responses among observations with
covariate pattern j. Define pj as the predicted probability of a positive outcome in covariate pattern
j.

The Pearson χ2 goodness-of-fit statistic is

χ2 =
M∑
j=1

(yj −mjpj)2

mjpj(1− pj)

This χ2 statistic has approximately M − k degrees of freedom for the estimation sample, where k
is the number of independent variables, including the constant. For a sample outside the estimation
sample, the statistic has M degrees of freedom.

The Hosmer–Lemeshow goodness-of-fit χ2 (Hosmer and Lemeshow 1980; Lemeshow and Hos-
mer 1982; Hosmer, Lemeshow, and Klar 1988) is calculated similarly, except that rather than using
the M covariate patterns as the group definition, the quantiles of the predicted probabilities are used
to form groups. Let G = # be the number of quantiles requested with group(#). The smallest index
1 ≤ q(i) ≤M , such that

Wq(i) =
q(i)∑
j=1

mj ≥
N

G

gives pq(i) as the upper boundary of the ith quantile for i = 1, 2, . . . , G. Let q(0) = 1 denote the
first index.

The groups are then

[ pq(0), pq(1)], ( pq(1), pq(2)], . . . , ( pq(G−1), pq(G)]

If the table option is given, the upper boundaries pq(1), . . . , pq(G) of the groups appear next to the
group number on the output.

The resulting χ2 statistic has approximately G− 2 degrees of freedom for the estimation sample.
For a sample outside the estimation sample, the statistic has G degrees of freedom.

predict after logistic

Index j will now be used to index observations, not covariate patterns. Define Mj for each
observation as the total number of observations sharing j’s covariate pattern. Define Yj as the total
number of positive responses among observations sharing j’s covariate pattern.

The Pearson residual for the jth observation is defined as

rj =
Yj −Mjpj√
Mjpj(1− pj)

For Mj > 1, the deviance residual dj is defined as

dj = ±

(
2

[
Yj ln

(
Yj

Mjpj

)
+ (Mj − Yj) ln

{
Mj − Yj
Mj(1− pj)

}])1/2

where the sign is the same as the sign of (Yj −Mjpj). In the limiting cases, the deviance residual
is given by
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dj =

{
−
√

2Mj | ln(1− pj)| if Yj = 0√
2Mj | lnpj | if Yj = Mj

The unadjusted diagonal elements of the hat matrix hUj are given by hUj = (XVX′)jj , where
V is the estimated covariance matrix of parameters. The adjusted diagonal elements hj created by
hat are then hj = Mjpj(1− pj)hUj .

The standardized Pearson residual rSj is rj/
√

1− hj .

The Pregibon (1981) ∆β̂j influence statistic is

∆β̂j =
r2
jhj

(1− hj)2

The corresponding change in the Pearson χ2 is r2
Sj . The corresponding change in the deviance residual

is ∆Dj = d2
j/(1− hj).

estat classification and lsens
Again let j index observations. Define c as the cutoff() specified by the user or, if not specified,

as 0.5. Let pj be the predicted probability of a positive outcome and yj be the actual outcome, which
we will treat as 0 or 1, although Stata treats it as 0 and non-0, excluding missing observations.

A prediction is classified as positive if pj ≥ c and otherwise is classified as negative. The
classification is correct if it is positive and yj = 1 or if it is negative and yj = 0.

Sensitivity is the fraction of yj = 1 observations that are correctly classified. Specificity is the
percentage of yj = 0 observations that are correctly classified.

lroc
The ROC curve is a graph of specificity against (1 − sensitivity). This is guaranteed to be a

monotone nondecreasing function because the number of correctly predicted successes increases and
the number of correctly predicted failures decreases as the classification cutoff c decreases.

The area under the ROC curve is the area on the bottom of this graph and is determined by
integrating the curve. The vertices of the curve are determined by sorting the data according to the
predicted index, and the integral is computed using the trapezoidal rule.
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logit — Logistic regression, reporting coefficients

Syntax
logit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

nocoef do not display coefficient table; seldom used
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocoef and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Binary outcomes > Logistic regression
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Description
logit fits a logit model for a binary response by maximum likelihood; it models the probability

of a positive outcome given a set of regressors. depvar equal to nonzero and nonmissing (typically
depvar equal to one) indicates a positive outcome, whereas depvar equal to zero indicates a negative
outcome.

Also see [R] logistic; logistic displays estimates as odds ratios. Many users prefer the logistic
command to logit. Results are the same regardless of which you use—both are the maximum-
likelihood estimator. Several auxiliary commands that can be run after logit, probit, or logistic
estimation are described in [R] logistic postestimation. A list of related estimation commands is given
in [R] logistic.

If estimating on grouped data, see [R] glogit.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following options are available with logit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by program
writers but is of no use interactively.

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

Basic usage
Model identification

Basic usage

logit fits maximum likelihood models with dichotomous dependent (left-hand-side) variables
coded as 0/1 (or, more precisely, coded as 0 and not-0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.
We wish to fit a logit model explaining whether a car is foreign on the basis of its weight and mileage.
Here is an overview of our data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign

. describe

Contains data from http://www.stata-press.com/data/r12/auto.dta
obs: 74 1978 Automobile Data

vars: 4 13 Apr 2011 17:45
size: 1,702 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car type

Sorted by: foreign
Note: dataset has changed since last saved

. inspect foreign

foreign: Car type Number of Observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car,
and 1 denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = F (β0 + β1weight + β2mpg)
where F (z) = ez/(1 + ez) is the cumulative logistic distribution.
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To fit this model, we type

. logit foreign weight mpg

Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -29.238536
Iteration 2: log likelihood = -27.244139
Iteration 3: log likelihood = -27.175277
Iteration 4: log likelihood = -27.175156
Iteration 5: log likelihood = -27.175156

Logistic regression Number of obs = 74
LR chi2(2) = 35.72
Prob > chi2 = 0.0000

Log likelihood = -27.175156 Pseudo R2 = 0.3966

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0039067 .0010116 -3.86 0.000 -.0058894 -.001924
mpg -.1685869 .0919175 -1.83 0.067 -.3487418 .011568

_cons 13.70837 4.518709 3.03 0.002 4.851859 22.56487

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are
also less likely to be foreign, at least holding the weight of the car constant.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except

missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and
1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0,
1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type logit y x, Stata fits the
model

Pr(yj 6= 0 | xj) =
exp(xjβ)

1 + exp(xjβ)

Model identification
The logit command has one more feature, and it is probably the most useful. logit automatically

checks the model for identification and, if it is underidentified, drops whatever variables and observations
are necessary for estimation to proceed. (logistic, probit, and ivprobit do this as well.)

Example 2

Have you ever fit a logit model where one or more of your independent variables perfectly predicted
one or the other outcome?
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For instance, consider the following data:

Outcome y Independent variable x

0 1
0 1
0 0
1 0

Say that we wish to predict the outcome on the basis of the independent variable. The outcome is
always zero whenever the independent variable is one. In our data, Pr(y = 0 | x = 1) = 1, which
means that the logit coefficient on x must be minus infinity with a corresponding infinite standard
error. At this point, you may suspect that we have a problem.

Unfortunately, not all such problems are so easily detected, especially if you have a lot of
independent variables in your model. If you have ever had such difficulties, you have experienced one
of the more unpleasant aspects of computer optimization. The computer has no idea that it is trying
to solve for an infinite coefficient as it begins its iterative process. All it knows is that at each step,
making the coefficient a little bigger, or a little smaller, works wonders. It continues on its merry
way until either 1) the whole thing comes crashing to the ground when a numerical overflow error
occurs or 2) it reaches some predetermined cutoff that stops the process. In the meantime, you have
been waiting. The estimates that you finally receive, if you receive any at all, may be nothing more
than numerical roundoff.

Stata watches for these sorts of problems, alerts us, fixes them, and properly fits the model.

Let’s return to our automobile data. Among the variables we have in the data is one called repair,
which takes on three values. A value of 1 indicates that the car has a poor repair record, 2 indicates
an average record, and 3 indicates a better-than-average record. Here is a tabulation of our data:

. use http://www.stata-press.com/data/r12/repair, clear
(1978 Automobile Data)

. tabulate foreign repair

repair
Car type 1 2 3 Total

Domestic 10 27 9 46
Foreign 0 3 9 12

Total 10 30 18 58

All the cars with poor repair records (repair = 1) are domestic. If we were to attempt to predict
foreign on the basis of the repair records, the predicted probability for the repair = 1 category
would have to be zero. This in turn means that the logit coefficient must be minus infinity, and that
would set most computer programs buzzing.
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Let’s try Stata on this problem.

. logit foreign b3.repair

note: 1.repair != 0 predicts failure perfectly
1.repair dropped and 10 obs not used

Iteration 0: log likelihood = -26.992087
Iteration 1: log likelihood = -22.483187
Iteration 2: log likelihood = -22.230498
Iteration 3: log likelihood = -22.229139
Iteration 4: log likelihood = -22.229138

Logistic regression Number of obs = 48
LR chi2(1) = 9.53
Prob > chi2 = 0.0020

Log likelihood = -22.229138 Pseudo R2 = 0.1765

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

repair
1 0 (empty)
2 -2.197225 .7698003 -2.85 0.004 -3.706005 -.6884436

_cons -1.98e-16 .4714045 -0.00 1.000 -.9239359 .9239359

Remember that all the cars with poor repair records (repair = 1) are domestic, so the model
cannot be fit, or at least it cannot be fit if we restrict ourselves to finite coefficients. Stata noted
that fact “note: 1.repair !=0 predicts failure perfectly”. This is Stata’s mathematically precise way of
saying what we said in English. When repair is 1, the car is domestic.

Stata then went on to say “1.repair dropped and 10 obs not used”. This is Stata eliminating
the problem. First 1.repair had to be removed from the model because it would have an infinite
coefficient. Then the 10 observations that led to the problem had to be eliminated, as well, so as
not to bias the remaining coefficients in the model. The 10 observations that are not used are the 10
domestic cars that have poor repair records.

Stata then fit what was left of the model, using the remaining observations. Because no observations
remained for cars with poor repair records, Stata reports “(empty)” in the row for repair = 1.

Technical note
Stata is pretty smart about catching problems like this. It will catch “one-way causation by a

dummy variable”, as we demonstrated above.

Stata also watches for “two-way causation”, that is, a variable that perfectly determines the
outcome, both successes and failures. Here Stata says, “so-and-so predicts outcome perfectly” and
stops. Statistics dictates that no model can be fit.

Stata also checks your data for collinear variables; it will say, “so-and-so omitted because of
collinearity”. No observations need to be eliminated in this case, and model fitting will proceed
without the offending variable.

It will also catch a subtle problem that can arise with continuous data. For instance, if we were
estimating the chances of surviving the first year after an operation, and if we included in our model
age, and if all the persons over 65 died within the year, Stata would say, “age> 65 predicts failure
perfectly”. It would then inform us about the fix-up it takes and fit what can be fit of our model.
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logit (and logistic, probit, and ivprobit) will also occasionally display messages such as

Note: 4 failures and 0 successes completely determined.

There are two causes for a message like this. The first—and most unlikely—case occurs when
a continuous variable (or a combination of a continuous variable with other continuous or dummy
variables) is simply a great predictor of the dependent variable. Consider Stata’s auto.dta dataset
with 6 observations removed.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. drop if foreign==0 & gear_ratio > 3.1
(6 observations deleted)

. logit foreign mpg weight gear_ratio, nolog

Logistic regression Number of obs = 68
LR chi2(3) = 72.64
Prob > chi2 = 0.0000

Log likelihood = -6.4874814 Pseudo R2 = 0.8484

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -.4944907 .2655508 -1.86 0.063 -1.014961 .0259792
weight -.0060919 .003101 -1.96 0.049 -.0121698 -.000014

gear_ratio 15.70509 8.166234 1.92 0.054 -.300436 31.71061
_cons -21.39527 25.41486 -0.84 0.400 -71.20747 28.41694

Note: 4 failures and 0 successes completely determined.

There are no missing standard errors in the output. If you receive the “completely determined” message
and have one or more missing standard errors in your output, see the second case discussed below.

Note gear ratio’s large coefficient. logit thought that the 4 observations with the smallest
predicted probabilities were essentially predicted perfectly.

. predict p
(option pr assumed; Pr(foreign))

. sort p

. list p in 1/4

p

1. 1.34e-10
2. 6.26e-09
3. 7.84e-09
4. 1.49e-08

If this happens to you, you do not have to do anything. Computationally, the model is sound. The
second case discussed below requires careful examination.

The second case occurs when the independent terms are all dummy variables or continuous ones
with repeated values (for example, age). Here one or more of the estimated coefficients will have
missing standard errors. For example, consider this dataset consisting of 5 observations.
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. use http://www.stata-press.com/data/r12/logitxmpl, clear

. list, separator(0)

y x1 x2

1. 0 0 0
2. 0 0 0
3. 0 1 0
4. 1 1 0
5. 0 0 1
6. 1 0 1

. logit y x1 x2

Iteration 0: log likelihood = -3.819085
Iteration 1: log likelihood = -2.9527336
Iteration 2: log likelihood = -2.8110282
Iteration 3: log likelihood = -2.7811973
Iteration 4: log likelihood = -2.7746107
Iteration 5: log likelihood = -2.7730128

(output omitted )
Iteration 15996: log likelihood = -2.7725887 (not concave)
Iteration 15997: log likelihood = -2.7725887 (not concave)
Iteration 15998: log likelihood = -2.7725887 (not concave)
Iteration 15999: log likelihood = -2.7725887 (not concave)
Iteration 16000: log likelihood = -2.7725887 (not concave)
convergence not achieved

Logistic regression Number of obs = 6
LR chi2(1) = 2.09
Prob > chi2 = 0.1480

Log likelihood = -2.7725887 Pseudo R2 = 0.2740

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 18.3704 2 9.19 0.000 14.45047 22.29033
x2 18.3704 . . . . .

_cons -18.3704 1.414214 -12.99 0.000 -21.14221 -15.5986

Note: 2 failures and 0 successes completely determined.
convergence not achieved
r(430);

Three things are happening here. First, logit iterates almost forever and then declares nonconver-
gence. Second, logit can fit the outcome (y = 0) for the covariate pattern x1 = 0 and x2 = 0 (that
is, the first two observations) perfectly. This observation is the “2 failures and 0 successes completely
determined”. Third, if this observation is dropped, then x1, x2, and the constant are collinear.

This is the cause of the nonconvergence, the message “completely determined”, and the missing
standard errors. It happens when you have a covariate pattern (or patterns) with only one outcome
and there is collinearity when the observations corresponding to this covariate pattern are dropped.

If this happens to you, confirm the causes. First, identify the covariate pattern with only one
outcome. (For your data, replace x1 and x2 with the independent variables of your model.)

. egen pattern = group(x1 x2)

. quietly logit y x1 x2, iterate(100)

. predict p
(option pr assumed; Pr(y))
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. summarize p

Variable Obs Mean Std. Dev. Min Max

p 6 .3333333 .2581989 1.05e-08 .5

If successes were completely determined, that means that there are predicted probabilities that are
almost 1. If failures were completely determined, that means that there are predicted probabilities
that are almost 0. The latter is the case here, so we locate the corresponding value of pattern:

. tabulate pattern if p < 1e-7

group(x1
x2) Freq. Percent Cum.

1 2 100.00 100.00

Total 2 100.00

Once we omit this covariate pattern from the estimation sample, logit can deal with the collinearity:

. logit y x1 x2 if pattern !=1, nolog
note: x2 omitted because of collinearity

Logistic regression Number of obs = 4
LR chi2(1) = 0.00
Prob > chi2 = 1.0000

Log likelihood = -2.7725887 Pseudo R2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 0 2 0.00 1.000 -3.919928 3.919928
x2 0 (omitted)

_cons 0 1.414214 0.00 1.000 -2.771808 2.771808

We omit the collinear variable. Then we must decide whether to include or omit the observations
with pattern = 1. We could include them,

. logit y x1, nolog

Logistic regression Number of obs = 6
LR chi2(1) = 0.37
Prob > chi2 = 0.5447

Log likelihood = -3.6356349 Pseudo R2 = 0.0480

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.098612 1.825742 0.60 0.547 -2.479776 4.677001
_cons -1.098612 1.154701 -0.95 0.341 -3.361784 1.164559
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or exclude them,

. logit y x1 if pattern != 1, nolog

Logistic regression Number of obs = 4
LR chi2(1) = 0.00
Prob > chi2 = 1.0000

Log likelihood = -2.7725887 Pseudo R2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 0 2 0.00 1.000 -3.919928 3.919928
_cons 0 1.414214 0.00 1.000 -2.771808 2.771808

If the covariate pattern that predicts outcome perfectly is meaningful, you may want to exclude these
observations from the model. Here you would report that covariate pattern such and such predicted
outcome perfectly and that the best model for the rest of the data is . . . . But, more likely, the perfect
prediction was simply the result of having too many predictors in the model. Then you would omit
the extraneous variables from further consideration and report the best model for all the data.

Saved results
logit saves the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) logit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(mns) vector of means of the independent variables
e(rules) information about perfect predictors
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
logit is implemented as an ado-file.

Cramer (2003, chap. 9) surveys the prehistory and history of the logit model. The word “logit”
was coined by Berkson (1944) and is analogous to the word “probit”. For an introduction to probit
and logit, see, for example, Aldrich and Nelson (1984), Cameron and Trivedi (2010), Greene (2012),
Jones (2007), Long (1997), Long and Freese (2006), Pampel (2000), or Powers and Xie (2008).

The likelihood function for logit is

lnL =
∑
j∈S

wj lnF (xjb) +
∑
j 6∈S

wj ln
{

1− F (xjb)
}
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where S is the set of all observations j, such that yj 6= 0, F (z) = ez/(1 + ez), and wj denotes the
optional weights. lnL is maximized as described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered version
using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. The scores are calculated as uj = {1−F (xjb)}xj
for the positive outcomes and −F (xjb)xj for the negative outcomes.

logit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

� �
Joseph Berkson (1899–1982) was born in New York City and studied at the College of the City
of New York, Columbia, and Johns Hopkins, earning both an MD and a doctorate in statistics.
He then worked at Johns Hopkins before moving to the Mayo Clinic in 1931 as a biostatistician.
Among many other contributions, his most influential one drew upon a long-sustained interest
in the logistic function, especially his 1944 paper on bioassay, in which he introduced the term
“logit”. Berkson was a frequent participant in controversy—sometimes humorous, sometimes
bitter—on subjects such as the evidence for links between smoking and various diseases and the
relative merits of probit and logit methods and of different calculation methods.� �
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logit postestimation — Postestimation tools for logit

Description

The following postestimation commands are of special interest after logit:

Command Description

estat classification report various summary statistics, including the classification table
estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test
lroc compute area under ROC curve and graph the curve
lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate after the svy prefix.

For information about these commands, see [R] logistic postestimation.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

983



984 logit postestimation — Postestimation tools for logit

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset rules asif
]

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the prediction
∗dbeta Pregibon (1981) ∆β̂ influence statistic
∗deviance deviance residual
∗dx2 Hosmer and Lemeshow (2000) ∆χ2 influence statistic
∗ddeviance Hosmer and Lemeshow (2000) ∆D influence statistic
∗hat Pregibon (1981) leverage
∗number sequential number of the covariate pattern
∗residuals Pearson residuals; adjusted for number sharing covariate pattern
∗rstandard standardized Pearson residuals; adjusted for number sharing covariate pattern
score first derivative of the log likelihood with respect to xjβ

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

pr, xb, stdp, and score are the only options allowed with svy estimation results.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

dbeta calculates the Pregibon (1981) ∆β̂ influence statistic, a standardized measure of the difference
in the coefficient vector that is due to deletion of the observation along with all others that share
the same covariate pattern. In Hosmer and Lemeshow (2000, 144–145) jargon, this statistic is
M -asymptotic; that is, it is adjusted for the number of observations that share the same covariate
pattern.

deviance calculates the deviance residual.

dx2 calculates the Hosmer and Lemeshow (2000, 174) ∆χ2 influence statistic, reflecting the decrease
in the Pearson χ2 that is due to deletion of the observation and all others that share the same
covariate pattern.

ddeviance calculates the Hosmer and Lemeshow (2000, 174) ∆D influence statistic, which is the
change in the deviance residual that is due to deletion of the observation and all others that share
the same covariate pattern.
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hat calculates the Pregibon (1981) leverage or the diagonal elements of the hat matrix adjusted for
the number of observations that share the same covariate pattern.

number numbers the covariate patterns—observations with the same covariate pattern have the same
number. Observations not used in estimation have number set to missing. The first covariate
pattern is numbered 1, the second 2, and so on.

residuals calculates the Pearson residual as given by Hosmer and Lemeshow (2000, 145) and
adjusted for the number of observations that share the same covariate pattern.

rstandard calculates the standardized Pearson residual as given by Hosmer and Lemeshow (2000,
173) and adjusted for the number of observations that share the same covariate pattern.

score calculates the equation-level score, ∂lnL/∂(xjβ).

� � �
Options �

nooffset is relevant only if you specified offset(varname) for logit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

rules requests that Stata use any rules that were used to identify the model when making the
prediction. By default, Stata calculates missing for excluded observations.

asif requests that Stata ignore the rules and exclusion criteria and calculate predictions for all
observations possible by using the estimated parameter from the model.

Remarks
Once you have fit a logit model, you can obtain the predicted probabilities by using the predict

command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. Here we will make only a few more comments.

predict without arguments calculates the predicted probability of a positive outcome, that is,
Pr(yj = 1) = F (xjb). With the xb option, predict calculates the linear combination xjb, where
xj are the independent variables in the jth observation and b is the estimated parameter vector. This
is sometimes known as the index function because the cumulative distribution function indexed at
this value is the probability of a positive outcome.

In both cases, Stata remembers any rules used to identify the model and calculates missing for
excluded observations, unless rules or asif is specified. For information about the other statistics
available after predict, see [R] logistic postestimation.

Example 1

In example 2 of [R] logit, we fit the logit model logit foreign b3.repair. To obtain predicted
probabilities, type

. use http://www.stata-press.com/data/r12/repair
(1978 Automobile Data)

. logit foreign b3.repair

note: 1.repair != 0 predicts failure perfectly
1.repair dropped and 10 obs not used

(output omitted )
. predict p
(option pr assumed; Pr(foreign))
(10 missing values generated)
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. summarize foreign p

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

Stata remembers any rules used to identify the model and sets predictions to missing for any excluded
observations. logit dropped the variable 1.repair from our model and excluded 10 observations.
Thus when we typed predict p, those same 10 observations were again excluded, and their predictions
were set to missing.

predict’s rules option uses the rules in the prediction. During estimation, we were told “1.repair
!= 0 predicts failure perfectly”, so the rule is that when 1.repair is not zero, we should predict 0
probability of success or a positive outcome:

. predict p2, rules
(option pr assumed; Pr(foreign))

. summarize foreign p p2

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5

predict’s asif option ignores the rules and exclusion criteria and calculates predictions for all
observations possible by using the estimated parameters from the model:

. predict p3, asif
(option pr assumed; Pr(foreign))

. summarize foreign p p2 p3

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5
p3 58 .2931035 .2016268 .1 .5

Which is right? What predict does by default is the most conservative approach. If many
observations had been excluded because of a simple rule, we could be reasonably certain that the
rules prediction is correct. The asif prediction is correct only if the exclusion is a fluke, and we
would be willing to exclude the variable from the analysis anyway. Then, however, we would refit
the model to include the excluded observations.

Example 2

We can use the command margins, contrast after logit to make comparisons on the probability
scale. Let’s fit a model predicting low birthweight from characteristics of the mother:

. use http://www.stata-press.com/data/r12/lbw, clear
(Hosmer & Lemeshow data)
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. logit low age i.race i.smoke ptl i.ht i.ui

Iteration 0: log likelihood = -117.336
Iteration 1: log likelihood = -103.81846
Iteration 2: log likelihood = -103.40486
Iteration 3: log likelihood = -103.40384
Iteration 4: log likelihood = -103.40384

Logistic regression Number of obs = 189
LR chi2(7) = 27.86
Prob > chi2 = 0.0002

Log likelihood = -103.40384 Pseudo R2 = 0.1187

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0403293 .0357127 -1.13 0.259 -.1103249 .0296663

race
2 1.009436 .5025122 2.01 0.045 .0245302 1.994342
3 1.001908 .4248342 2.36 0.018 .1692485 1.834568

1.smoke .9631876 .3904357 2.47 0.014 .1979477 1.728427
ptl .6288678 .3399067 1.85 0.064 -.0373371 1.295073

1.ht 1.358142 .6289555 2.16 0.031 .125412 2.590872
1.ui .8001832 .4572306 1.75 0.080 -.0959724 1.696339

_cons -1.184127 .9187461 -1.29 0.197 -2.984837 .6165818

The coefficients are log odds-ratios: conditional on the other predictors, smoking during pregnancy
is associated with an increase of 0.96 in the log odds-ratios of low birthweight. The model is linear
in the log odds-scale, so the estimate of 0.96 has the same interpretation, whatever the values of
the other predictors might be. We could convert 0.96 to an odds ratio by replaying the results with
logit, or.

But what if we want to talk about the probability of low birthweight, and not the odds? Then
we will need the command margins, contrast. We will use the r. contrast operator to compare
each level of smoke with a reference level. (smoke has only two levels, so there will be only one
comparison: a comparison of smokers with nonsmokers.)

. margins r.smoke, contrast

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(low), predict()

df chi2 P>chi2

smoke 1 6.32 0.0119

Delta-method
Contrast Std. Err. [95% Conf. Interval]

smoke
(1 vs 0) .1832779 .0728814 .0404329 .3261229

We see that maternal smoking is associated with an 18.3% increase in the probability of low
birthweight. (We received a contrast in the probability scale because predicted probabilities are the
default when margins is used after logit.)
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The contrast of 18.3% is a difference of margins that are computed by averaging over the predictions
for observations in the estimation sample. If the values of the other predictors were different, the
contrast for smoke would be different, too. Let’s estimate the contrast for 25-year-old mothers:

. margins r.smoke, contrast at(age=25)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(low), predict()
at : age = 25

df chi2 P>chi2

smoke 1 6.19 0.0129

Delta-method
Contrast Std. Err. [95% Conf. Interval]

smoke
(1 vs 0) .1808089 .0726777 .0383632 .3232547

Specifying a maternal age of 25 changed the contrast to 18.1%. Our contrast of probabilities
changed because the logit model is nonlinear in the probability scale. A contrast of log odds-ratios
would not have changed.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

See Methods and formulas of [R] logistic postestimation for details.
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Also see
[R] logit — Logistic regression, reporting coefficients

[R] logistic postestimation — Postestimation tools for logistic

[U] 20 Estimation and postestimation commands
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Title

loneway — Large one-way ANOVA, random effects, and reliability

Syntax

loneway response var group var
[

if
] [

in
] [

weight
] [

, options
]

options Description

Main

mean expected value of F distribution; default is 1
median median of F distribution; default is 1
exact exact confidence intervals (groups must be equal with no weights)
level(#) set confidence level; default is level(95)

by is allowed; see [D] by.
aweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Large one-way ANOVA

Description
loneway fits one-way analysis-of-variance (ANOVA) models on datasets with many levels of

group var and presents different ancillary statistics from oneway (see [R] oneway):

Feature oneway loneway

Fit one-way model x x
on fewer than 376 levels x x
on more than 376 levels x

Bartlett’s test for equal variance x
Multiple-comparison tests x
Intragroup correlation and SE x
Intragroup correlation confidence interval x
Est. reliability of group-averaged score x
Est. SD of group effect x
Est. SD within group x

Options

� � �
Main �

mean specifies that the expected value of the Fk−1,N−k distribution be used as the reference point
Fm in the estimation of ρ instead of the default value of 1.

median specifies that the median of the Fk−1,N−k distribution be used as the reference point Fm in
the estimation of ρ instead of the default value of 1.
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exact requests that exact confidence intervals be computed, as opposed to the default asymptotic
confidence intervals. This option is allowed only if the groups are equal in size and weights are
not used.

level(#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients.
The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence
intervals.

Remarks
Remarks are presented under the following headings:

The one-way ANOVA model
R-squared
The random-effects ANOVA model
Intraclass correlation
Estimated reliability of the group-averaged score

The one-way ANOVA model

Example 1

loneway’s output looks like that of oneway, except that loneway presents more information at the
end. Using our automobile dataset, we have created a (numeric) variable called manufacturer grp
identifying the manufacturer of each car, and within each manufacturer we have retained a maximum
of four models, selecting those with the lowest mpg. We can compute the intraclass correlation of
mpg for all manufacturers with at least four models as follows:

. use http://www.stata-press.com/data/r12/auto7
(1978 Automobile Data)
. loneway mpg manufacturer_grp if nummake == 4

One-way Analysis of Variance for mpg: Mileage (mpg)

Number of obs = 36
R-squared = 0.5228

Source SS df MS F Prob > F

Between manufactur~p 621.88889 8 77.736111 3.70 0.0049
Within manufactur~p 567.75 27 21.027778

Total 1189.6389 35 33.989683

Intraclass Asy.
correlation S.E. [95% Conf. Interval]

0.40270 0.18770 0.03481 0.77060

Estimated SD of manufactur~p effect 3.765247
Estimated SD within manufactur~p 4.585605
Est. reliability of a manufactur~p mean .72950

(evaluated at n=4.00)

In addition to the standard one-way ANOVA output, loneway produces the R-squared, the estimated
standard deviation of the group effect, the estimated standard deviation within group, the intragroup
correlation, the estimated reliability of the group-averaged mean, and, for unweighted data, the
asymptotic standard error and confidence interval for the intragroup correlation.
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R-squared

The R-squared is, of course, simply the underlying R2 for a regression of response var on the
levels of group var, or mpg on the various manufacturers here.

The random-effects ANOVA model
loneway assumes that we observe a variable, yij , measured for ni elements within k groups or

classes such that
yij = µ+ αi + εij , i = 1, 2, . . . , k, j = 1, 2, . . . , ni

and αi and εij are independent zero-mean random variables with variance σ2
α and σ2

ε , respectively.
This is the random-effects ANOVA model, also known as the components-of-variance model, in which
it is typically assumed that the yij are normally distributed.

The interpretation with respect to our example is that the observed value of our response variable,
mpg, is created in two steps. First, the ith manufacturer is chosen, and a value, αi, is determined—the
typical mpg for that manufacturer less the overall mpg µ. Then a deviation, εij , is chosen for the jth
model within this manufacturer. This is how much that particular automobile differs from the typical
mpg value for models from this manufacturer.

For our sample of 36 car models, the estimated standard deviations are σα = 3.8 and σε = 4.6.
Thus a little more than half of the variation in mpg between cars is attributable to the car model,
with the rest attributable to differences between manufacturers. These standard deviations differ from
those that would be produced by a (standard) fixed-effects regression in that the regression would
require the sum within each manufacturer of the εij , εi. for the ith manufacturer, to be zero, whereas
these estimates merely impose the constraint that the sum is expected to be zero.

Intraclass correlation
There are various estimators of the intraclass correlation, such as the pairwise estimator, which is

defined as the Pearson product-moment correlation computed over all possible pairs of observations
that can be constructed within groups. For a discussion of various estimators, see Donner (1986).
loneway computes what is termed the analysis of variance, or ANOVA, estimator. This intraclass
correlation is the theoretical upper bound on the variation in response var that is explainable by
group var, of which R-squared is an overestimate because of the serendipity of fitting. This correlation
is comparable to an R-squared—you do not have to square it.

In our example, the intra-manu correlation, the correlation of mpg within manufacturer, is 0.40.
Because aweights were not used and the default correlation was computed (that is, the mean and
median options were not specified), loneway also provided the asymptotic confidence interval and
standard error of the intraclass correlation estimate.

Estimated reliability of the group-averaged score

The estimated reliability of the group-averaged score or mean has an interpretation similar to that
of the intragroup correlation; it is a comparable number if we average response var by group var,
or mpg by manu in our example. It is the theoretical upper bound of a regression of manufacturer-
averaged mpg on characteristics of manufacturers. Why would we want to collapse our 36-observation
dataset into a 9-observation dataset of manufacturer averages? Because the 36 observations might be
a mirage. When General Motors builds cars, do they sometimes put a Pontiac label and sometimes
a Chevrolet label on them, so that it appears in our data as if we have two cars when we really have
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only one, replicated? If that were the case, and if it were the case for many other manufacturers,
then we would be forced to admit that we do not have data on 36 cars; we instead have data on nine
manufacturer-averaged characteristics.

Saved results
loneway saves the following in r():
Scalars

r(N) number of observations r(rho t) estimated reliability
r(rho) intraclass correlation r(se) asymp. SE of intraclass correlation
r(lb) lower bound of 95% CI for rho r(sd w) estimated SD within group
r(ub) upper bound of 95% CI for rho r(sd b) estimated SD of group effect

Methods and formulas
loneway is implemented as an ado-file.

The mean squares in the loneway’s ANOVA table are computed as

MSα =
∑
i

wi·(yi· − y··)2/(k − 1)

and
MSε =

∑
i

∑
j

wij(yij − yi·)2/(N − k)

in which

wi· =
∑
j

wij w·· =
∑
i

wi· yi· =
∑
j

wijyij/wi· and y.. =
∑
i

wi·yi·/w··

The corresponding expected values of these mean squares are

E(MSα) = σ2
ε + gσ2

α and E(MSε) = σ2
ε

in which

g =
w·· −

∑
i w

2
i·/w··

k − 1
In the unweighted case, we get

g =
N −

∑
i n

2
i /N

k − 1
As expected, g = m for the case of no weights and equal group sizes in the data, that is, ni = m for
all i. Replacing the expected values with the observed values and solving yields the ANOVA estimates
of σ2

α and σ2
ε . Substituting these into the definition of the intraclass correlation

ρ =
σ2
α

σ2
α + σ2

ε

yields the ANOVA estimator of the intraclass correlation:

ρA =
Fobs − 1

Fobs − 1 + g
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Fobs is the observed value of the F statistic from the ANOVA table. For no weights and equal ni, ρA
= roh, which is the intragroup correlation defined by Kish (1965). Two slightly different estimators
are available through the mean and median options (Gleason 1997). If either of these options is
specified, the estimate of ρ becomes

ρ =
Fobs − Fm

Fobs + (g − 1)Fm

For the mean option, Fm = E(Fk−1,N−K) = (N−k)/(N−k−2), that is, the expected value of the
ANOVA table’s F statistic. For the median option, Fm is simply the median of the F statistic. Setting
Fm to 1 gives ρA, so for large samples, these different point estimators are essentially the same.
Also, because the intraclass correlation of the random-effects model is by definition nonnegative, for
any of the three possible point estimators, ρ is truncated to zero if Fobs is less than Fm.

For no weighting, interval estimators for ρA are computed. If the groups are equal sized (all ni
equal) and the exact option is specified, the following exact (assuming that the yij are normally
distributed) 100(1− α)% confidence interval is computed:{

Fobs − FmFu
Fobs + (g − 1)FmFu

,
Fobs − FmFl

Fobs + (g − 1)FmFl

}
with Fm = 1, Fl = Fα/2,k−1,N−k, and Fu = F1−α/2,k−1,N−k, F·,k−1,N−k being the cumulative
distribution function for the F distribution with k − 1 and N − k degrees of freedom. If mean or
median is specified, Fm is defined as above. If the groups are equal sized and exact is not specified,
the following asymptotic 100(1− α)% confidence interval for ρA is computed,[

ρA − zα/2
√
V (ρA), ρA + zα/2

√
V (ρA)

]
where zα/2 is the 100(1− α/2) percentile of the standard normal distribution and

√
V (ρA) is the

asymptotic standard error of ρ defined below. This confidence interval is also available for unequal
groups. It is not applicable and, therefore, not computed for the estimates of ρ provided by the mean
and median options. Again, because the intraclass coefficient is nonnegative, if the lower bound is
negative for either confidence interval, it is truncated to zero. As might be expected, the coverage
probability of a truncated interval is higher than its nominal value.

The asymptotic standard error of ρA, assuming that the yij are normally distributed, is also
computed when appropriate, namely, for unweighted data and when ρA is computed (neither the mean
option nor the median option is specified):

V (ρA) =
2(1− ρ)2

g2
(A+B + C)

with

A =
{1 + ρ(g − 1)}2

N − k

B =
(1− ρ){1 + ρ(2g − 1)}

k − 1

C =
ρ2{
∑
n2
i − 2N−1

∑
n3
i +N−2(

∑
n2
i )

2}
(k − 1)2

and ρA is substituted for ρ (Donner 1986).
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The estimated reliability of the group-averaged score, known as the Spearman–Brown prediction
formula in the psychometric literature (Winer, Brown, and Michels 1991, 1014), is

ρt =
tρ

1 + (t− 1)ρ

for group size t. loneway computes ρt for t = g.

The estimated standard deviation of the group effect is σα =
√

(MSα − MSε)/g. This deviation
comes from the assumption that an observation is derived by adding a group effect to a within-group
effect.

The estimated standard deviation within group is the square root of the mean square due to error,
or
√

MSε.
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Also see
[R] anova — Analysis of variance and covariance

[R] oneway — One-way analysis of variance
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Title

lowess — Lowess smoothing

Syntax
lowess yvar xvar

[
if
] [

in
] [

, options
]

options Description

Main

mean running-mean smooth; default is running-line least squares
noweight suppress weighted regressions; default is tricube weighting function
bwidth(#) use # for the bandwidth; default is bwidth(0.8)

logit transform dependent variable to logits
adjust adjust smoothed mean to equal mean of dependent variable
nograph suppress graph
generate(newvar) create newvar containing smoothed values of yvar

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any of the options documented in [G-3] twoway options

yvar and xvar may contain time-series operators; see [U] 11.4.4 Time-series varlists.

Menu
Statistics > Nonparametric analysis > Lowess smoothing

Description
lowess carries out a locally weighted regression of yvar on xvar, displays the graph, and optionally

saves the smoothed variable.

Warning: lowess is computationally intensive and may therefore take a long time to run on a
slow computer. Lowess calculations on 1,000 observations, for instance, require performing 1,000
regressions.
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Options

� � �
Main �

mean specifies running-mean smoothing; the default is running-line least-squares smoothing.

noweight prevents the use of Cleveland’s (1979) tricube weighting function; the default is to use the
weighting function.

bwidth(#) specifies the bandwidth. Centered subsets of bwidth() ×N observations are used for
calculating smoothed values for each point in the data except for the end points, where smaller,
uncentered subsets are used. The greater the bwidth(), the greater the smoothing. The default is
0.8.

logit transforms the smoothed yvar into logits. Predicted values less than 0.0001 or greater than
0.9999 are set to 1/N and 1− 1/N , respectively, before taking logits.

adjust adjusts the mean of the smoothed yvar to equal the mean of yvar by multiplying by an
appropriate factor. This option is useful when smoothing binary (0/1) data.

nograph suppresses displaying the graph.

generate(newvar) creates newvar containing the smoothed values of yvar.

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the lowess-smoothed line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include op-
tions for titling the graph (see [G-3] title options), options for saving the graph to disk (see
[G-3] saving option), and the by() option (see [G-3] by option).

Remarks
By default, lowess provides locally weighted scatterplot smoothing. The basic idea is to create

a new variable (newvar) that, for each yvar yi, contains the corresponding smoothed value. The
smoothed values are obtained by running a regression of yvar on xvar by using only the data (xi, yi)
and a few of the data near this point. In lowess, the regression is weighted so that the central point
(xi, yi) gets the highest weight and points that are farther away (based on the distance |xj − xi|)
receive less weight. The estimated regression line is then used to predict the smoothed value ŷi for
yi only. The procedure is repeated to obtain the remaining smoothed values, which means that a
separate weighted regression is performed for every point in the data.

Lowess is a desirable smoother because of its locality—it tends to follow the data. Polynomial
smoothing methods, for instance, are global in that what happens on the extreme left of a scatterplot
can affect the fitted values on the extreme right.
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Example 1

The amount of smoothing is affected by bwidth(#). You are warned to experiment with different
values. For instance,

. use http://www.stata-press.com/data/r12/lowess1
(example data for lowess)

. lowess h1 depth
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Lowess smoother

Now compare that with

. lowess h1 depth, bwidth(.4)
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Lowess smoother

In the first case, the default bandwidth of 0.8 is used, meaning that 80% of the data are used
in smoothing each point. In the second case, we explicitly specified a bandwidth of 0.4. Smaller
bandwidths follow the original data more closely.
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Example 2

Two lowess options are especially useful with binary (0/1) data: adjust and logit. adjust
adjusts the resulting curve (by multiplication) so that the mean of the smoothed values is equal to
the mean of the unsmoothed values. logit specifies that the smoothed curve be in terms of the log
of the odds ratio:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. lowess foreign mpg, ylabel(0 "Domestic" 1 "Foreign") jitter(5) adjust
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Lowess smoother

. lowess foreign mpg, logit yline(0)
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Lowess smoother

With binary data, if you do not use the logit option, it is a good idea to specify graph’s
jitter() option; see [G-2] graph twoway scatter. Because the underlying data (whether the car
was manufactured outside the United States here) take on only two values, raw data points are more
likely to be on top of each other, thus making it impossible to tell how many points there are. graph’s
jitter() option adds some noise to the data to shift the points around. This noise affects only the
location of points on the graph, not the lowess curve.
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When you specify the logit option, the display of the raw data is suppressed.

Technical note
lowess can be used for more than just lowess smoothing. Lowess can be usefully thought of as

a combination of two smoothing concepts: the use of predicted values from regression (rather than
means) for imputing a smoothed value and the use of the tricube weighting function (rather than a
constant weighting function). lowess allows you to combine these concepts freely. You can use line
smoothing without weighting (specify noweight), mean smoothing with tricube weighting (specify
mean), or mean smoothing without weighting (specify mean and noweight).

Methods and formulas
lowess is implemented as an ado-file.

Let yi and xi be the two variables, and assume that the data are ordered so that xi ≤ xi+1 for
i = 1, . . . , N − 1. For each yi, a smoothed value ysi is calculated.

The subset used in calculating ysi is indices i− = max(1, i−k) through i+ = min(i+k,N), where
k = b(N × bwidth − 0.5)/2c. The weights for each of the observations between j = i−, . . . , i+
are either 1 (noweight) or the tricube (default),

wj =
{

1−
(
|xj − xi|

∆

)3}3

where ∆ = 1.0001 max(xi+ − xi, xi − xi−). The smoothed value ysi is then the (weighted) mean
or the (weighted) regression prediction at xi.� �

William Swain Cleveland (1943– ) studied mathematics and statistics at Princeton and Yale. He
worked for several years at Bell Labs in New Jersey and now teaches statistics and computer
science at Purdue. He has made key contributions in many areas of statistics, including graphics
and data visualization, time series, environmental applications, and analysis of Internet traffic
data.� �
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Also see
[D] ipolate — Linearly interpolate (extrapolate) values

[R] smooth — Robust nonlinear smoother

[R] lpoly — Kernel-weighted local polynomial smoothing
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lpoly — Kernel-weighted local polynomial smoothing

Syntax
lpoly yvar xvar

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

kernel(kernel) specify kernel function; default is kernel(epanechnikov)

bwidth(# | varname) specify kernel bandwidth
degree(#) specify degree of the polynomial smooth; default is degree(0)

generate(
[

newvarx
]

newvars) store smoothing grid in newvarx and smoothed points in
newvars

n(#) obtain the smooth at # points; default is min(N , 50)
at(varname) obtain the smooth at the values specified by varname
nograph suppress graph
noscatter suppress scatterplot only

SE/CI

ci plot confidence bands
level(#) set confidence level; default is level(95)

se(newvar) store standard errors in newvar
pwidth(#) specify pilot bandwidth for standard error calculation
var(# | varname) specify estimates of residual variance

Scatterplot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Smoothed line

lineopts(cline options) affect rendition of the smoothed line

CI plot

ciopts(cline options) affect rendition of the confidence bands

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function
cosine cosine trace kernel function
gaussian Gaussian kernel function
parzen Parzen kernel function
rectangle rectangle kernel function
triangle triangle kernel function

fweights and aweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Nonparametric analysis > Local polynomial smoothing

Description
lpoly performs a kernel-weighted local polynomial regression of yvar on xvar and displays a

graph of the smoothed values with (optional) confidence bands.

Options� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the weighted local polynomial
estimate. The default is kernel(epanechnikov).

bwidth(# | varname) specifies the half-width of the kernel—the width of the smoothing window
around each point. If bwidth() is not specified, a rule-of-thumb (ROT) bandwidth estimator is
calculated and used. A local variable bandwidth may be specified in varname, in conjunction with
an explicit smoothing grid using the at() option.

degree(#) specifies the degree of the polynomial to be used in the smoothing. The default is
degree(0), meaning local-mean smoothing.

generate( [ newvarx ] newvars) stores the smoothing grid in newvarx and the smoothed values in
newvars. If at() is not specified, then both newvarx and newvars must be specified. Otherwise,
only newvars is to be specified.

n(#) specifies the number of points at which the smooth is to be calculated. The default is min(N, 50),
where N is the number of observations.

at(varname) specifies a variable that contains the values at which the smooth should be calculated.
By default, the smoothing is done on an equally spaced grid, but you can use at() to instead
perform the smoothing at the observed x’s, for example. This option also allows you to more easily
obtain smooths for different variables or different subsamples of a variable and then overlay the
estimates for comparison.

nograph suppresses drawing the graph of the estimated smooth. This option is often used with the
generate() option.

noscatter suppresses superimposing a scatterplot of the observed data over the smooth. This option
is useful when the number of resulting points would be so large as to clutter the graph.
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� � �
SE/CI �

ci plots confidence bands, using the confidence level specified in level().

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

se(newvar) stores the estimates of the standard errors in newvar. This option requires specifying
generate() or at().

pwidth(#) specifies the pilot bandwidth to be used for standard-error computations. The default is
chosen to be 1.5 times the value of the ROT bandwidth selector. If you specify pwidth() without
specifying se() or ci, then the ci option is assumed.

var(# | varname) specifies an estimate of a constant residual variance or a variable containing estimates
of the residual variances at each grid point required for standard-error computation. By default,
the residual variance at each smoothing point is estimated by the normalized weighted residual
sum of squares obtained from locally fitting a polynomial of order p+ 2, where p is the degree
specified in degree(). var(varname) is allowed only if at() is specified. If you specify var()
without specifying se() or ci, then the ci option is assumed.

� � �
Scatterplot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Smoothed line �

lineopts(cline options) affects the rendition of the smoothed line; see [G-3] cline options.

� � �
CI plot �

ciopts(cline options) affects the rendition of the confidence bands; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

Introduction
Local polynomial smoothing
Choice of a bandwidth
Confidence bands
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Introduction

The last 25 years or so has seen a significant outgrowth in the literature on scatterplot smoothing,
otherwise known as univariate nonparametric regression. Of most appeal is the idea of making no
assumptions about the functional form for the expected value of a response given a regressor, but
instead allowing the data to “speak for themselves”. Various methods and estimators fall into the
category of nonparametric regression, including local mean smoothing as described independently
by Nadaraya (1964) and Watson (1964), the Gasser and Müller (1979) estimator, locally weighted
scatterplot smoothing (LOWESS) as described by Cleveland (1979), wavelets (for example, Donoho
[1995]), and splines (Eubank 1999), to name a few. Much of the vast literature focuses on automating
the amount of smoothing to be performed and dealing with the bias/variance tradeoff inherent to
this type of estimation. For example, for Nadaraya–Watson the amount of smoothing is controlled by
choosing a bandwidth.

Smoothing via local polynomials is by no means a new idea but instead one that has been rediscovered
in recent years in articles such as Fan (1992). A natural extension of the local mean smoothing of
Nadaraya–Watson, local polynomial regression involves fitting the response to a polynomial form of
the regressor via locally weighted least squares. Higher-order polynomials have better bias properties
than the zero-degree local polynomials of the Nadaraya–Watson estimator; in general, higher-order
polynomials do not require bias adjustment at the boundary of the regression space. For a definitive
reference on local polynomial smoothing, see Fan and Gijbels (1996).

Local polynomial smoothing

Consider a set of scatterplot data {(x1, y1), . . . , (xn, yn)} from the model

yi = m(xi) + σ(xi)εi (1)

for some unknown mean and variance functions m(·) and σ2(·), and symmetric errors εi with
E(εi) = 0 and Var(εi) = 1. The goal is to estimate m(x0) = E[Y |X = x0], making no assumption
about the functional form of m(·).

lpoly estimates m(x0) as the constant term (intercept) of a regression, weighted by the kernel
function specified in kernel(), of yvar on the polynomial terms (xvar−x0), (xvar−x0)2, . . . , (xvar−
x0)p for each smoothing point x0. The degree of the polynomial, p, is specified in degree(), the
amount of smoothing is controlled by the bandwidth specified in bwidth(), and the chosen kernel
function is specified in kernel().

Example 1

Consider the motorcycle data as examined (among other places) in Fan and Gijbels (1996). The
data consist of 133 observations and measure the acceleration (accel measured in grams [g]) of
a dummy’s head during impact over time (time measured in milliseconds). For these data, we use
lpoly to fit a local cubic polynomial with the default bandwidth (obtained using the ROT method)
and the default Epanechnikov kernel.
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. use http://www.stata-press.com/data/r12/motorcycle
(Motorcycle data from Fan & Gijbels (1996))

. lpoly accel time, degree(3)
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Local polynomial smooth

The default bandwidth and kernel settings do not provide a satisfactory fit in this example. To
improve the fit, we can either supply a different bandwidth by using the bwidth() option or specify
a different kernel by using the kernel() option. For example, using the alternative Epanechnikov
kernel, kernel(epan2), below provides a better fit for these data.

. lpoly accel time, degree(3) kernel(epan2)
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Local polynomial smooth

Technical note
lpoly allows specifying in degree() both odd and even orders of the polynomial to be used for

the smoothing. However, the odd-order, 2k+1, polynomial approximations are preferable. They have
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an extra parameter compared with the even-order, 2k, approximations, which leads to a significant
bias reduction and there is no increase of variability associated with adding this extra parameter.
Using an odd order when estimating the regression function is therefore usually sufficient. For a more
thorough discussion, see Fan and Gijbels (1996).

Choice of a bandwidth
The choice of a bandwidth is crucial for many smoothing techniques, including local polynomial

smoothing. In general, using a large bandwidth gives smooths with a large bias, whereas a small
bandwidth may result in highly variable smoothed values. Various techniques exist for optimal
bandwidth selection. By default, lpoly uses the ROT method to estimate the bandwidth used for the
smoothing; see Methods and formulas for details.

Example 2

Using the motorcycle data, we demonstrate how a local linear polynomial fit changes using
different bandwidths.

. lpoly accel time, degree(1) kernel(epan2) bwidth(1) generate(at smooth1)
> nograph

. lpoly accel time, degree(1) kernel(epan2) bwidth(7) at(at) generate(smooth2)
> nograph

. label variable smooth1 "smooth: width = 1"

. label variable smooth2 "smooth: width = 7"

. lpoly accel time, degree(1) kernel(epan2) at(at) addplot(line smooth* at)
> legend(label(2 "smooth: width = 3.42 (ROT)")) note("kernel = epan2, degree = 1")
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Local polynomial smooth

From this graph, we can see that the local linear polynomial fit with larger bandwidth (width =
7) corresponds to a smoother line but fails to fit the curvature of the scatterplot data. The smooth
obtained using the width equal to one seems to fit most data points, but the corresponding line has
several spikes indicating larger variability. The smooth obtained using the ROT bandwidth estimator
seems to have a good tradeoff between the fit and variability in this example.
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In the above, we also demonstrated how the generate() and addplot() options may be used to
produce overlaid plots obtained from lpoly with different options. The nograph option saves time
when you need to save only results with generate().

However, to avoid generating variables manually, one can use twoway lpoly instead; see [G-2] graph
twoway lpoly for more details.

. twoway scatter accel time ||
> lpoly accel time, degree(1) kernel(epan2) lpattern(solid) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(1) ||
> lpoly accel time, degree(1) kernel(epan2) bwidth(7) ||
> , legend(label(2 "smooth: width = 3.42 (ROT)") label(3 "smooth: width = 1")
> label(4 "smooth: width = 7"))
> title("Local polynomial smooth") note("kernel = epan2, degree = 1")
> xtitle("time (msec)") ytitle("acceleration (g)")
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Local polynomial smooth

The ROT estimate is commonly used as an initial guess for the amount of smoothing; this approach
may be sufficient when the choice of a bandwidth is less important. In other cases, you can pick
your own bandwidth.

When the shape of the regression function has a combination of peaked and flat regions, a variable
bandwidth may be preferable over the constant bandwidth to allow for different degrees of smoothness
in different regions. The bwidth() option allows you to specify the values of the local variable
bandwidths as those stored in a variable in your data.

Similar issues with bias and variability arise when choosing a pilot bandwidth (the pwidth()
option) used to compute standard errors of the local polynomial smoother. The default value is chosen
to be 1.5× ROT. For a review of methods for pilot bandwidth selection, see Fan and Gijbels (1996).

Confidence bands
The established asymptotic normality of the local polynomial estimators under certain conditions

allows the construction of approximate confidence bands. lpoly offers the ci option to plot these
bands.
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Example 3

Let us plot the confidence bands for the local polynomial fit from example 1.

. lpoly accel time, degree(3) kernel(epan2) ci
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Local polynomial smooth

You can obtain graphs with overlaid confidence bands by using twoway lpolyci; see [G-2] graph
twoway lpolyci for examples.

Constructing the confidence intervals involves computing standard errors obtained by taking a
square root of the estimate of the conditional variance of the local polynomial estimator at each
grid point x0. Estimating the conditional variance requires fitting a polynomial of a higher order
locally by using a different bandwidth, the pilot bandwidth. The value of the pilot bandwidth may
be supplied by using pwidth(). By default, the value of 1.5× ROT is used. Also, estimates of the
residual variance σ2(x0) at each grid point, x0, are required to obtain the estimates of the conditional
variances. These estimates may be supplied by using the var() option. By default, they are computed
using the normalized weighted residual sum of squares from a local polynomial fit of a higher order.
See Methods and formulas for details. The standard errors may be saved by using se().

Saved results
lpoly saves the following in r():

Scalars
r(degree) smoothing polynomial degree r(bwidth) bandwidth of the smooth
r(ngrid) number of successful regressions r(pwidth) pilot bandwidth
r(N) sample size

Macros
r(kernel) name of kernel
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Methods and formulas
lpoly is implemented as an ado-file.

Consider model (1), written in matrix notation,

y = m(x) + ε

where y and x are the n× 1 vectors of scatterplot values, ε is the n× 1 vector of errors with zero
mean and covariance matrix Σ = diag{σ(xi)}In, and m() and σ() are some unknown functions.
Define m(x0) = E[Y |X = x0] and σ2(x0) = Var[Y |X = x0] to be the conditional mean and
conditional variance of random variable Y (residual variance), respectively, for some realization x0

of random variable X .

The method of local polynomial smoothing is based on the approximation of m(x) locally by a
pth order polynomial in (x − x0) for some x in the neighborhood of x0. For the scatterplot data
{(x1, y1), . . . , (xn, yn)}, the pth-order local polynomial smooth m̂(x0) is equal to β̂0, an estimate
of the intercept of the weighted linear regression,

β̂ = (XTWX)−1XTWy (2)

where β̂ = (β̂0, β̂1, . . . , β̂p)T is the vector of estimated regression coefficients (with {β̂j =
(j!)−1m̂(j)(x)|x=x0 , j = 0, . . . , p} also representing estimated coefficients from a corresponding
Taylor expansion); X = {(xi − x0)j}n,pi,j=1,0 is a design matrix; and W = diag{Kh(xi − x0)}n×n
is a weighting matrix with weights Kh(·) defined as Kh(x) = h−1K(x/h), with K(·) being a
kernel function and h defining a bandwidth. The kernels are defined in Methods and formulas of
[R] kdensity.

The default bandwidth is obtained using the ROT method of bandwidth selection. The ROT bandwidth
is the plugin estimator of the asymptotically optimal constant bandwidth. This is the bandwidth that
minimizes the conditional weighted mean integrated squared error. The ROT plugin bandwidth selector
for the smoothing bandwidth h is defined as follows; assuming constant residual variance σ2(x0) = σ2

and odd degree p:

ĥ = C0,p(K)

[
σ̂2
∫
w0(x)dx

n
∫
{m̂(p+1)(x)}2w0(x)f(x)dx

]1/(2p+3)

(3)

where C0,p(K) is a constant, as defined in Fan and Gijbels (1996), that depends on the kernel function
K(·), and the degree of a polynomial p and w0 is chosen to be an indicator function on the interval
[minx + 0.05× rangex,maxx− 0.05× rangex] with minx, maxx, and rangex being, respectively, the
minimum, maximum, and the range of x. To obtain the estimates of a constant residual variance, σ̂2,
and (p+ 1)th order derivative of m(x), denoted as m̂(p+1)(x), a polynomial in x of order (p+ 3)
is fit globally to y. σ̂2 is estimated as a standardized residual sum of squares from this fit.

The expression for the asymptotically optimal constant bandwidth used in constructing the ROT
bandwidth estimator is derived for the odd-order polynomial approximations. For even-order polynomial
fits the expression would depend not only on m(p+1)(x) but also on m(p+2)(x) and the design density
and its derivative, f(x) and f ′(x). Therefore, the ROT bandwidth selector would require estimation
of these additional quantities. Instead, for an even-degree p of the local polynomial, lpoly uses the
value of the ROT estimator (3) computed using degree p+ 1. As such, for even degrees this is not a
plugin estimator of the asymptotically optimal constant bandwidth.
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The estimates of the conditional variance of local polynomial estimators are obtained using

V̂ar{m̂(x0)|X = x0} = σ̂2
m(x0) = (XTWX)−1(XTW2X)(XTWX)−1σ̂2(x0) (4)

where σ̂2(x0) is estimated by the normalized weighted residual sum of squares from the (p+ 2)th
order polynomial fit using pilot bandwidth h?.

When the bias is negligible the normal-approximation method yields a (1−α)×100% confidence
interval for m(x0), {

m̂(x0)− z(1−α/2)σ̂m(x0), m̂(x0) + z(1−α/2)σ̂m(x0)
}

where z(1−α/2) is the (1 − α/2)th quantile of the standard Gaussian distribution, and m̂(x0) and
σ̂m(x0) are as defined in (2) and (4), respectively.
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lrtest — Likelihood-ratio test after estimation

Syntax
lrtest modelspec1

[
modelspec2

] [
, options

]
where modelspec is

name | . | (namelist)

where name is the name under which estimation results were saved using estimates store (see
[R] estimates store), and “.” refers to the last estimation results, whether or not these were already
stored.

options Description

stats display statistical information about the two models
dir display descriptive information about the two models
df(#) override the automatic degrees-of-freedom calculation; seldom used
force force testing even when apparently invalid

Menu
Statistics > Postestimation > Tests > Likelihood-ratio test

Description

lrtest performs a likelihood-ratio test of the null hypothesis that the parameter vector of a
statistical model satisfies some smooth constraint. To conduct the test, both the unrestricted and the
restricted models must be fit using the maximum likelihood method (or some equivalent method),
and the results of at least one must be stored using estimates store; see [R] estimates store.

modelspec1 and modelspec2 specify the restricted and unrestricted model in any order. modelspec1

and modelspec2 cannot have names in common; for example, lrtest (A B C) (C D E) is not allowed
because both model specifications include C. If modelspec2 is not specified, the last estimation result
is used; this is equivalent to specifying modelspec2 as a period (.).

lrtest supports composite models specified by a parenthesized list of model names. In a composite
model, we assume that the log likelihood and dimension (number of free parameters) of the full model
are obtained as the sum of the log-likelihood values and dimensions of the constituting models.

lrtest provides an important alternative to test (see [R] test) for models fit via maximum
likelihood or equivalent methods.

Options
stats displays statistical information about the unrestricted and restricted models, including the

information indices of Akaike and Schwarz.

1011
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dir displays descriptive information about the unrestricted and restricted models; see estimates
dir in [R] estimates store.

df(#) is seldom specified; it overrides the automatic degrees-of-freedom calculation.

force forces the likelihood-ratio test calculations to take place in situations where lrtest would
normally refuse to do so and issue an error. Such situations arise when one or more assumptions
of the test are violated, for example, if the models were fit with vce(robust), vce(cluster
clustvar), or pweights; when the dependent variables in the two models differ; when the null log
likelihoods differ; when the samples differ; or when the estimation commands differ. If you use
the force option, there is no guarantee as to the validity or interpretability of the resulting test.

Remarks
The standard way to use lrtest is to do the following:

1. Fit either the restricted model or the unrestricted model by using one of Stata’s estimation commands
and then store the results using estimates store name.

2. Fit the alternative model (the unrestricted or restricted model) and then type ‘lrtest name .’.
lrtest determines for itself which of the two models is the restricted model by comparing the
degrees of freedom.

Often you may want to store the alternative model with estimates store name2, for instance,
if you plan additional tests against models yet to be fit. The likelihood-ratio test is then obtained as
lrtest name name2.

Remarks are presented under the following headings:

Nested models
Composite models

Nested models

lrtest may be used with any estimation command that reports a log likelihood, including
heckman, logit, poisson, stcox, and streg. You must check that one of the model specifications
implies a statistical model that is nested within the model implied by the other specification. Usually,
this means that both models are fit with the same estimation command (for example, both are fit
by logit, with the same dependent variables) and that the set of covariates of one model is a
subset of the covariates of the other model. Second, lrtest is valid only for models that are fit by
maximum likelihood or by some equivalent method, so it does not apply to models that were fit with
probability weights or clusters. Specifying the vce(robust) option similarly would indicate that you
are worried about the valid specification of the model, so you would not use lrtest. Third, lrtest
assumes that under the null hypothesis, the test statistic is (approximately) distributed as chi-squared.
This assumption is not true for likelihood-ratio tests of “boundary conditions”, such as tests for the
presence of overdispersion or random effects (Gutierrez, Carter, and Drukker 2001).

Example 1

We have data on infants born with low birthweights along with the characteristics of the mother
(Hosmer and Lemeshow 2000; see also [R] logistic). We fit the following model:
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. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. logistic low age lwt i.race smoke ptl ht ui

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249

race
2 3.534767 1.860737 2.40 0.016 1.259736 9.918406
3 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

We now wish to test the constraint that the coefficients on age, lwt, ptl, and ht are all zero or,
equivalently here, that the odds ratios are all 1. One solution is to type

. test age lwt ptl ht

( 1) [low]age = 0
( 2) [low]lwt = 0
( 3) [low]ptl = 0
( 4) [low]ht = 0

chi2( 4) = 12.38
Prob > chi2 = 0.0147

This test is based on the inverse of the information matrix and is therefore based on a quadratic
approximation to the likelihood function; see [R] test. A more precise test would be to refit the model,
applying the proposed constraints, and then calculate the likelihood-ratio test.

We first save the current model:

. estimates store full

We then fit the constrained model, which here is the model omitting age, lwt, ptl, and ht:

. logistic low i.race smoke ui

Logistic regression Number of obs = 189
LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 3.052746 1.498087 2.27 0.023 1.166747 7.987382
3 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447
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That done, lrtest compares this model with the model we previously saved:

. lrtest full .

Likelihood-ratio test LR chi2(4) = 14.42
(Assumption: . nested in full) Prob > chi2 = 0.0061

Let’s compare results. test reported that age, lwt, ptl, and ht were jointly significant at the 1.5%
level; lrtest reports that they are significant at the 0.6% level. Given the quadratic approximation
made by test, we could argue that lrtest’s results are more accurate.

lrtest explicates the assumption that, from a comparison of the degrees of freedom, it has assessed
that the last fit model (.) is nested within the model stored as full. In other words, full is the
unconstrained model and . is the constrained model.

The names in “(Assumption: . nested in full)” are actually links. Click on a name, and the
results for that model are replayed.

Aside: The nestreg command provides a simple syntax for performing likelihood-ratio tests for
nested model specifications; see [R] nestreg. In the previous example, we fit a full logistic model,
used estimates store to store the full model, fit a constrained logistic model, and used lrtest
to report a likelihood-ratio test between two models. To do this with one call to nestreg, use the
lrtable option.

Technical note

lrtest determines the degrees of freedom of a model as the rank of the (co)variance matrix
e(V). There are two issues here. First, the numerical determination of the rank of a matrix is a subtle
problem that can, for instance, be affected by the scaling of the variables in the model. The rank of a
matrix depends on the number of (independent) linear combinations of coefficients that sum exactly
to zero. In the world of numerical mathematics, it is hard to tell whether a very small number is
really nonzero or is a real zero that happens to be slightly off because of roundoff error from the
finite precision with which computers make floating-point calculations. Whether a small number is
being classified as one or the other, typically on the basis of a threshold, affects the determined
degrees of freedom. Although Stata generally makes sensible choices, it is bound to make mistakes
occasionally. The moral of this story is to make sure that the calculated degrees of freedom are as
you expect before interpreting the results.

Technical note
A second issue involves regress and related commands such as anova. Mainly for historical

reasons, regress does not treat the residual variance, σ2, the same way that it treats the regression
coefficients. Type estat vce after regress, and you will see the regression coefficients, not σ̂2.
Most estimation commands for models with ancillary parameters (for example, streg and heckman)
treat all parameters as equals. There is nothing technically wrong with regress here; we are usually
focused on the regression coefficients, and their estimators are uncorrelated with σ̂2. But, formally,
σ2 adds a degree of freedom to the model, which does not matter if you are comparing two regression
models by a likelihood-ratio test. This test depends on the difference in the degrees of freedom,
and hence being “off by 1” in each does not matter. But, if you are comparing a regression model
with a larger model—for example, a heteroskedastic regression model fit by arch—the automatic
determination of the degrees of freedom is incorrect, and you must specify the df(#) option.
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Example 2
Returning to the low-birthweight data in the example 1, we now wish to test that the coefficient

on 2.race is equal to that on 3.race. The base model is still stored under the name full, so we
need only fit the constrained model and perform the test. With z as the index of the logit model, the
base model is

z = β0 + β1age + β2lwt + β32.race + β43.race + · · ·
If β3 = β4, this can be written as

z = β0 + β1age + β2lwt + β3(2.race + 3.race) + · · ·
We can fit the constrained model as follows:

. constraint 1 2.race = 3.race

. logistic low age lwt i.race smoke ptl ht ui, constraints(1)

Logistic regression Number of obs = 189
Wald chi2(7) = 25.17

Log likelihood = -100.9997 Prob > chi2 = 0.0007

( 1) [low]2.race - [low]3.race = 0

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9716799 .0352638 -0.79 0.429 .9049649 1.043313
lwt .9864971 .0064627 -2.08 0.038 .9739114 .9992453

race
2 2.728186 1.080207 2.53 0.011 1.255586 5.927907
3 2.728186 1.080207 2.53 0.011 1.255586 5.927907

smoke 2.664498 1.052379 2.48 0.013 1.228633 5.778414
ptl 1.709129 .5924776 1.55 0.122 .8663666 3.371691
ht 6.116391 4.215585 2.63 0.009 1.58425 23.61385
ui 2.09936 .9699702 1.61 0.108 .8487997 5.192407

_cons 1.309371 1.527398 0.23 0.817 .1330839 12.8825

Comparing this model with our original model, we obtain
. lrtest full .

Likelihood-ratio test LR chi2(1) = 0.55
(Assumption: . nested in full) Prob > chi2 = 0.4577

By comparison, typing test 2.race=3.race after fitting our base model results in a significance
level of 0.4572. Alternatively, we can first store the restricted model, here using the name equal.
Next lrtest is invoked specifying the names of the restricted and unrestricted models (we do not
care about the order). This time, we also add the option stats requesting a table of model statistics,
including the model selection indices AIC and BIC.

. estimates store equal

. lrtest equal full, stats

Likelihood-ratio test LR chi2(1) = 0.55
(Assumption: equal nested in full) Prob > chi2 = 0.4577

Model Obs ll(null) ll(model) df AIC BIC

equal 189 . -100.9997 8 217.9994 243.9334
full 189 -117.336 -100.724 9 219.448 248.6237

Note: N=Obs used in calculating BIC; see [R] BIC note
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Composite models

lrtest supports composite models; that is, models that can be fit by fitting a series of simpler
models or by fitting models on subsets of the data. Theoretically, a composite model is one in which
the likelihood function, L(θ), of the parameter vector, θ, can be written as the product

L(θ) = L1(θ1)× L2(θ2)× · · · × Lk(θk)

of likelihood terms with θ = (θ1, . . . , θk) a partitioning of the full parameter vector. In such a
case, the full-model likelihood L(θ) is maximized by maximizing the likelihood terms Lj(θj) in
turn. Obviously, logL(θ̂) =

∑k
j=1 logLj(θ̂j). The degrees of freedom for the composite model is

obtained as the sum of the degrees of freedom of the constituting models.

Example 3

As an example of the application of composite models, we consider a test of the hypothesis that the
coefficients of a statistical model do not differ between different portions (“regimes”) of the covariate
space. Economists call a test for such a hypothesis a Chow test.

We continue the analysis of the data on children of low birthweight by using logistic regression
modeling and study whether the regression coefficients are the same among the three races: white,
black, and other. A likelihood-ratio Chow test can be obtained by fitting the logistic regression model
for each of the races and then comparing the combined results with those of the model previously
stored as full. Because the full model included dummies for the three races, this version of the
Chow test allows the intercept of the logistic regression model to vary between the regimes (races).

. logistic low age lwt smoke ptl ht ui if 1.race, nolog

Logistic regression Number of obs = 96
LR chi2(6) = 13.86
Prob > chi2 = 0.0312

Log likelihood = -45.927061 Pseudo R2 = 0.1311

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9869674 .0527757 -0.25 0.806 .8887649 1.096021
lwt .9900874 .0106101 -0.93 0.353 .9695089 1.011103

smoke 4.208697 2.680133 2.26 0.024 1.20808 14.66222
ptl 1.592145 .7474264 0.99 0.322 .6344379 3.995544
ht 2.900166 3.193537 0.97 0.334 .3350554 25.1032
ui 1.229523 .9474768 0.27 0.789 .2715165 5.567715

_cons .4891008 .993785 -0.35 0.725 .0091175 26.23746

. estimates store white
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. logistic low age lwt smoke ptl ht ui if 2.race, nolog

Logistic regression Number of obs = 26
LR chi2(6) = 10.12
Prob > chi2 = 0.1198

Log likelihood = -12.654157 Pseudo R2 = 0.2856

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .8735313 .1377846 -0.86 0.391 .6412332 1.189983
lwt .9747736 .016689 -1.49 0.136 .9426065 1.008038

smoke 16.50373 24.37044 1.90 0.058 .9133647 298.2083
ptl 4.866916 9.33151 0.83 0.409 .1135573 208.5895
ht 85.05605 214.6382 1.76 0.078 .6049308 11959.27
ui 67.61338 133.3313 2.14 0.033 1.417399 3225.322

_cons 48.7249 169.9216 1.11 0.265 .0523961 45310.94

. estimates store black

. logistic low age lwt smoke ptl ht ui if 3.race, nolog

Logistic regression Number of obs = 67
LR chi2(6) = 14.06
Prob > chi2 = 0.0289

Log likelihood = -37.228444 Pseudo R2 = 0.1589

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age .9263905 .0665386 -1.06 0.287 .8047407 1.06643
lwt .9724499 .015762 -1.72 0.085 .9420424 1.003839

smoke .7979034 .6340585 -0.28 0.776 .1680885 3.787586
ptl 2.845675 1.777944 1.67 0.094 .8363053 9.682908
ht 7.767503 10.00537 1.59 0.112 .6220764 96.98826
ui 2.925006 2.046473 1.53 0.125 .7423107 11.52571

_cons 49.09444 113.9165 1.68 0.093 .5199275 4635.769

. estimates store other

We are now ready to perform the likelihood-ratio Chow test:

. lrtest (full) (white black other), stats

Likelihood-ratio test LR chi2(12) = 9.83
Prob > chi2 = 0.6310

Assumption: (full) nested in (white, black, other)

Model Obs ll(null) ll(model) df AIC BIC

full 189 -117.336 -100.724 9 219.448 248.6237
white 96 -52.85752 -45.92706 7 105.8541 123.8046
black 26 -17.71291 -12.65416 7 39.30831 48.11499
other 67 -44.26039 -37.22844 7 88.45689 103.8897

Note: N=Obs used in calculating BIC; see [R] BIC note

We cannot reject the hypothesis that the logistic regression model applies to each of the races at any
reasonable significance level. By specifying the stats option, we can verify the degrees of freedom
of the test: 12 = 7 + 7 + 7 − 9. We can obtain the same test by fitting an expanded model with
interactions between all covariates and race.
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. logistic low race##c.(age lwt smoke ptl ht ui)

Logistic regression Number of obs = 189
LR chi2(20) = 43.05
Prob > chi2 = 0.0020

Log likelihood = -95.809661 Pseudo R2 = 0.1835

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

race
2 99.62137 402.0829 1.14 0.254 .0365434 271578.9
3 100.3769 309.586 1.49 0.135 .2378638 42358.38

age .9869674 .0527757 -0.25 0.806 .8887649 1.096021
lwt .9900874 .0106101 -0.93 0.353 .9695089 1.011103

smoke 4.208697 2.680133 2.26 0.024 1.20808 14.66222
ptl 1.592145 .7474264 0.99 0.322 .6344379 3.995544
ht 2.900166 3.193537 0.97 0.334 .3350554 25.1032
ui 1.229523 .9474768 0.27 0.789 .2715165 5.567715

race#c.age
2 .885066 .1474079 -0.73 0.464 .638569 1.226714
3 .9386232 .0840486 -0.71 0.479 .7875366 1.118695

race#c.lwt
2 .9845329 .0198857 -0.77 0.440 .9463191 1.02429
3 .9821859 .0190847 -0.93 0.355 .9454839 1.020313

race#c.smoke
2 3.921338 6.305992 0.85 0.395 .167725 91.67917
3 .1895844 .1930601 -1.63 0.102 .025763 1.395113

race#c.ptl
2 3.05683 6.034089 0.57 0.571 .0638301 146.3918
3 1.787322 1.396789 0.74 0.457 .3863582 8.268285

race#c.ht
2 29.328 80.7482 1.23 0.220 .1329492 6469.623
3 2.678295 4.538712 0.58 0.561 .0966916 74.18702

race#c.ui
2 54.99155 116.4274 1.89 0.058 .8672471 3486.977
3 2.378976 2.476124 0.83 0.405 .309335 18.29579

_cons .4891008 .993785 -0.35 0.725 .0091175 26.23746

. lrtest full .

Likelihood-ratio test LR chi2(12) = 9.83
(Assumption: full nested in .) Prob > chi2 = 0.6310

Applying lrtest for the full model against the model with all interactions yields the same test
statistic and p-value as for the full model against the composite model for the three regimes. Here
the specification of the model with interactions was convenient, and logistic had no problem
computing the estimates for the expanded model. In models with more complicated likelihoods, such
as Heckman’s selection model (see [R] heckman) or complicated survival-time models (see [ST] streg),
fitting the models with all interactions may be numerically demanding and may be much more time
consuming than fitting a series of models separately for each regime.

Given the model with all interactions, we could also test the hypothesis of no differences among
the regions (races) by a Wald version of the Chow test by using the testparm command; see [R] test.
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. testparm race#c.(age lwt smoke ptl ht ui)

( 1) [low]2.race#c.age = 0
( 2) [low]3.race#c.age = 0
( 3) [low]2.race#c.lwt = 0
( 4) [low]3.race#c.lwt = 0
( 5) [low]2.race#c.smoke = 0
( 6) [low]3.race#c.smoke = 0
( 7) [low]2.race#c.ptl = 0
( 8) [low]3.race#c.ptl = 0
( 9) [low]2.race#c.ht = 0
(10) [low]3.race#c.ht = 0
(11) [low]2.race#c.ui = 0
(12) [low]3.race#c.ui = 0

chi2( 12) = 8.24
Prob > chi2 = 0.7663

We conclude that, here, the Wald version of the Chow test is similar to the likelihood-ratio version
of the Chow test.

Saved results
lrtest saves the following in r():

Scalars
r(p) level of significance
r(df) degrees of freedom
r(chi2) LR test statistic

Programmers wishing their estimation commands to be compatible with lrtest should note that
lrtest requires that the following results be returned:

e(cmd) name of estimation command
e(ll) log likelihood
e(V) variance–covariance matrix of the estimators
e(N) number of observations

lrtest also verifies that e(N), e(ll 0), and e(depvar) are consistent between two noncomposite
models.

Methods and formulas
lrtest is implemented as an ado-file.

Let L0 and L1 be the log-likelihood values associated with the full and constrained models,
respectively. The test statistic of the likelihood-ratio test is LR = −2(L1 − L0). If the constrained
model is true, LR is approximately χ2 distributed with d0 − d1 degrees of freedom, where d0 and
d1 are the model degrees of freedom associated with the full and constrained models, respectively
(Greene 2012, 526–527).

lrtest determines the degrees of freedom of a model as the rank of e(V), computed as the
number of nonzero diagonal elements of invsym(e(V)).
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lv — Letter-value displays

Syntax
lv
[

varlist
] [

if
] [

in
] [

, generate tail(#)
]

by is allowed; see [D] by.

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Letter-value display

Description
lv shows a letter-value display (Tukey 1977, 44–49; Hoaglin 1983) for each variable in varlist.

If no variables are specified, letter-value displays are shown for each numeric variable in the data.

Options

� � �
Main �

generate adds four new variables to the data: mid, containing the midsummaries; spread,
containing the spreads; psigma, containing the pseudosigmas; and z2, containing the squared
values from a standard normal distribution corresponding to the particular letter value. If the
variables mid, spread, psigma, and z2 already exist, their contents are replaced. At most,
only the first 11 observations of each variable are used; the remaining observations contain missing.
If varlist specifies more than one variable, the newly created variables contain results for the last
variable specified. The generate option may not be used with the by prefix.

tail(#) indicates the inverse of the tail density through which letter values are to be displayed: 2
corresponds to the median (meaning half in each tail), 4 to the fourths (roughly the 25th and 75th
percentiles), 8 to the eighths, and so on. # may be specified as 4, 8, 16, 32, 64, 128, 256, 512, or
1,024 and defaults to a value of # that has corresponding depth just greater than 1. The default
is taken as 1,024 if the calculation results in a number larger than 1,024. Given the intelligent
default, this option is rarely specified.

Remarks
Letter-value displays are a collection of observations drawn systematically from the data, focusing

especially on the tails rather than the middle of the distribution. The displays are called letter-value
displays because letters have been (almost arbitrarily) assigned to tail densities:

Letter Tail area Letter Tail area
M 1/2 B 1/64
F 1/4 A 1/128
E 1/8 Z 1/256
D 1/16 Y 1/512
C 1/32 X 1/1024

1021
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Example 1

We have data on the mileage ratings of 74 automobiles. To obtain a letter-value display, we type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. lv mpg

# 74 Mileage (mpg)

M 37.5 20 spread pseudosigma
F 19 18 21.5 25 7 5.216359
E 10 15 21.5 28 13 5.771728
D 5.5 14 22.25 30.5 16.5 5.576303
C 3 14 24.5 35 21 5.831039
B 2 12 23.5 35 23 5.732448
A 1.5 12 25 38 26 6.040635

1 12 26.5 41 29 6.16562

# below # above
inner fence 7.5 35.5 0 1
outer fence -3 46 0 0

The decimal points can be made to line up and thus the output made more readable by specifying
a display format for the variable; see [U] 12.5 Formats: Controlling how data are displayed.

. format mpg %9.2f

. lv mpg

# 74 Mileage (mpg)

M 37.5 20.00 spread pseudosigma
F 19 18.00 21.50 25.00 7.00 5.22
E 10 15.00 21.50 28.00 13.00 5.77
D 5.5 14.00 22.25 30.50 16.50 5.58
C 3 14.00 24.50 35.00 21.00 5.83
B 2 12.00 23.50 35.00 23.00 5.73
A 1.5 12.00 25.00 38.00 26.00 6.04

1 12.00 26.50 41.00 29.00 6.17

# below # above
inner fence 7.50 35.50 0 1
outer fence -3.00 46.00 0 0

At the top, the number of observations is indicated as 74. The first line shows the statistics associated
with M, the letter value that puts half the density in each tail, or the median. The median has depth
37.5 (that is, in the ordered data, M is 37.5 observations in from the extremes) and has value 20. The
next line shows the statistics associated with F or the fourths. The fourths have depth 19 (that is, in
the ordered data, the lower fourth is observation 19, and the upper fourth is observation 74− 19 + 1),
and the values of the lower and upper fourths are 18 and 25. The number in the middle is the point
halfway between the fourths—called a midsummary. If the distribution were perfectly symmetric,
the midsummary would equal the median. The spread is the difference between the lower and upper
summaries (25− 18 = 7). For fourths, half the data lie within a 7-mpg band. The pseudosigma is a
calculation of the standard deviation using only the lower and upper summaries and assuming that
the variable is normally distributed. If the data really were normally distributed, all the pseudosigmas
would be roughly equal.

After the letter values, the line labeled with depth 1 reports the minimum and maximum values.
Here the halfway point between the extremes is 26.5, which is greater than the median, indicating
that 41 is more extreme than 12, at least relative to the median. And with each letter value, the
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midsummaries are increasing—our data are skewed. The pseudosigmas are also increasing, indicating
that the data are spreading out relative to a normal distribution, although, given the evident skewness,
this elongation may be an artifact of the skewness.

At the end is an attempt to identify outliers, although the points so identified are merely outside
some predetermined cutoff. Points outside the inner fence are called outside values or mild outliers.
Points outside the outer fence are called severe outliers. The inner fence is defined as (3/2)IQR and
the outer fence as 3IQR above and below the F summaries, where the interquartile range (IQR) is the
spread of the fourths.

Technical note
The form of the letter-value display has varied slightly with different authors. lv displays appear

as described by Hoaglin (1983) but as modified by Emerson and Stoto (1983), where they included the
midpoint of each of the spreads. This format was later adopted by Hoaglin (1985). If the distribution
is symmetric, the midpoints will all be roughly equal. On the other hand, if the midpoints vary
systematically, the distribution is skewed.

The pseudosigmas are obtained from the lower and upper summaries for each letter value. For
each letter value, they are the standard deviation a normal distribution would have if its spread for
the given letter value were to equal the observed spread. If the pseudosigmas are all roughly equal,
the data are said to have neutral elongation. If the pseudosigmas increase systematically, the data are
said to be more elongated than a normal, that is, have thicker tails. If the pseudosigmas decrease
systematically, the data are said to be less elongated than a normal, that is, have thinner tails.

Interpretation of the number of mild and severe outliers is more problematic. The following
discussion is drawn from Hamilton (1991):

Obviously, the presence of any such outliers does not rule out that the data have been drawn from
a normal distribution; in large datasets, there will most certainly be observations outside (3/2)IQR and
3IQR. Severe outliers, however, make up about two per million (0.0002%) of a normal population. In
samples, they lie far enough out to have substantial effects on means, standard deviations, and other
classical statistics. The 0.0002%, however, should be interpreted carefully; outliers appear more often
in small samples than one might expect from population proportions because of sampling variation in
estimated quartiles. Monte Carlo simulation by Hoaglin, Iglewicz, and Tukey (1986) obtained these
results on the percentages and numbers of outliers in random samples from a normal population:

percentage number
n any outliers severe any outliers severe

10 2.83 .362 .283 .0362
20 1.66 .074 .332 .0148
50 1.15 .011 .575 .0055

100 .95 .002 .95 .002
200 .79 .001 1.58 .002
300 .75 .001 2.25 .003
∞ .70 .0002 ∞ ∞

Thus the presence of any severe outliers in samples of less than 300 is sufficient to reject normality.
Hoaglin, Iglewicz, and Tukey (1981) suggested the approximation 0.00698 + 0.4/n for the fraction
of mild outliers in a sample of size n or, equivalently, 0.00698n+ 0.4 for the number of outliers.
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Example 2

The generate option adds the mid, spread, psigma, and z2 variables to our data, making
possible many of the diagnostic graphs suggested by Hoaglin (1985).

. lv mpg, generate
(output omitted )

. list _mid _spread _psigma _z2 in 1/12

_mid _spread _psigma _z2

1. 20 . . .
2. 21.5 7 5.216359 .4501955
3. 21.5 13 5.771728 1.26828
4. 22.25 16.5 5.576303 2.188846
5. 24.5 21 5.831039 3.24255

6. 23.5 23 5.732448 4.024532
7. 25 26 6.040635 4.631499
8. . . . .
9. . . . .

10. . . . .

11. 26.5 29 6.16562 5.53073
12. . . . .

Observations 12 through the end are missing for these new variables. The definition of the observations
is always the same. The first observation contains the M summary; the second, the F; the third, the E; and
so on. Observation 11 always contains the summary for depth 1. Observations 8–10—corresponding
to letter values Z, Y, and X—contain missing because these statistics were not calculated. We have
only 74 observations, and their depth would be 1.

Hoaglin (1985) suggests graphing the midsummary against z2. If the distribution is not skewed,
the points in the resulting graph will be along a horizontal line:

. scatter _mid _z2
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The graph clearly indicates the skewness of the distribution. We might also graph psigma against
z2 to examine elongation.
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Saved results
lv saves the following in r():

Scalars
r(N) number of observations r(u C) upper 32nd
r(min) minimum r(l B) lower 64th
r(max) maximum r(u B) upper 64th
r(median) median r(l A) lower 128th
r(l F) lower 4th r(u A) upper 128th
r(u F) upper 4th r(l Z) lower 256th
r(l E) lower 8th r(u Z) upper 256th
r(u E) upper 8th r(l Y) lower 512th
r(l D) lower 16th r(u Y) upper 512th
r(u D) upper 16th r(l X) lower 1024th
r(l C) lower 32nd r(u X) upper 1024th

The lower/upper 8ths, 16ths, . . . , 1024ths will be defined only if there are sufficient data.

Methods and formulas
lv is implemented as an ado-file.

Let N be the number of (nonmissing) observations on x, and let x(i) refer to the ordered data
when i is an integer. Define x(i+0.5) = (x(i) + x(i+1))/2; the median is defined as x{(N+1)/2}.

Define x[d] as the pair of numbers x(d) and x(N+1−d), where d is called the depth. Thus x[1]

refers to the minimum and maximum of the data. Define m = (N + 1)/2 as the depth of the median,
f = (bmc+ 1)/2 as the depth of the fourths, e = (bfc+ 1)/2 as the depth of the eighths, and so
on. Depths are reported on the far left of the letter-value display. The corresponding fourths of the
data are x[f ], the eighths are x[e], and so on. These values are reported inside the display. The middle
value is defined as the corresponding midpoint of x[·]. The spreads are defined as the difference in
x[·].

The corresponding point zi on a standard normal distribution is obtained as (Hoaglin 1985,
456–457)

zi =

{
F−1

{
(di − 1/3)/(N + 1/3)

}
if di > 1

F−1
{

0.695/(N + 0.390)
}

otherwise

where di is the depth of the letter value. The corresponding pseudosigma is obtained as the ratio of
the spread to −2zi (Hoaglin 1985, 431).

Define (Fl, Fu) = x[f ]. The inner fence has cutoffs Fl− 3
2 (Fu − Fl) and Fu + 3

2 (Fu − Fl). The
outer fence has cutoffs Fl − 3(Fu − Fl) and Fu + 3(Fu − Fl).

The inner-fence values reported by lv are almost equal to those used by graph, box to identify
outside points. The only difference is that graph uses a slightly different definition of fourths, namely,
the 25th and 75th percentiles as defined by summarize; see [R] summarize.
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margins — Marginal means, predictive margins, and marginal effects

Syntax
margins

[
marginlist

] [
if
] [

in
] [

weight
] [

, response options options
]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.
The variables may be typed with or without the i. prefix, and you may use any factor-variable syntax:

. margins i.sex i.group i.sex#i.group

. margins sex group sex#i.group

. margins sex##group

response options Description

Main

predict(pred opt) estimate margins for predict, pred opt
expression(pnl exp) estimate margins for pnl exp
dydx(varlist) estimate marginal effect of variables in varlist
eyex(varlist) estimate elasticities of variables in varlist
dyex(varlist) estimate semielasticity—d(y)/d(lnx)
eydx(varlist) estimate semielasticity—d(lny)/d(x)
continuous treat factor-level indicators as continuous

options Description

Main

grand add the overall margin; default if no marginlist

At

at(atspec) estimate margins at specified values of covariates
atmeans estimate margins at the means of covariates
asbalanced treat all factor variables as balanced

if/in/over

over(varlist) estimate margins at unique values of varlist
subpop(subspec) estimate margins for subpopulation

Within

within(varlist) estimate margins at unique values of the nesting factors in varlist

SE

vce(delta) estimate SEs using delta method; the default
vce(unconditional) estimate SEs allowing for sampling of covariates
nose do not estimate SEs

1027
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Advanced

noweights ignore weights specified in estimation
noesample do not restrict margins to the estimation sample
emptycells(empspec) treatment of empty cells for balanced factors
estimtolerance(tol) specify numerical tolerance used to determine estimable functions;

default is estimtolerance(1e-5)

noestimcheck suppress estimability checks
force estimate margins despite potential problems
chainrule use the chain rule when computing derivatives
nochainrule do not use the chain rule

Reporting

level(#) set confidence level; default is level(95)

mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)

noatlegend suppress legend of fixed covariate values
post post margins and their VCE as estimation results
display options control column formats, row spacing, and line width

method Description

noadjust do not adjust for multiple comparisons; the default
bonferroni

[
adjustall

]
Bonferroni’s method; adjust across all terms

sidak
[
adjustall

]
Šidák’s method; adjust across all terms

scheffe Scheffé’s method

Time-series operators are allowed if they were used in the estimation.
See at() under Options for a description of atspec.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Marginal means and predictive margins

Statistics > Postestimation > Marginal effects

Description
Margins are statistics calculated from predictions of a previously fit model at fixed values of some

covariates and averaging or otherwise integrating over the remaining covariates.

The margins command estimates margins of responses for specified values of covariates and
presents the results as a table.

Capabilities include estimated marginal means, least-squares means, average and conditional
marginal and partial effects (which may be reported as derivatives or as elasticities), average and
conditional adjusted predictions, and predictive margins.
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Options

Warning: The option descriptions are brief and use jargon. Skip to Remarks if you are reading about
margins for the first time.

� � �
Main �

predict(pred opt) and expression(pnl exp) are mutually exclusive; they specify the response. If
neither is specified, the response will be the default prediction that would be produced by predict
after the underlying estimation command.

predict(pred opt) specifies the option(s) to be specified with the predict command to produce
the variable that will be used as the response. After estimation by logistic, you could specify
predict(xb) to obtain linear predictions rather than the predict command’s default, the
probabilities.

expression(pnl exp) specifies the response as an expression. See [R] predictnl for a
full description of pnl exp. After estimation by logistic, you might specify expres-
sion(exp(predict(xb))) to use relative odds rather than probabilities as the response.
For examples, see Example 12: Margins of a specified expression.

dydx(varlist), eyex(varlist), dyex(varlist), and eydx(varlist) request that margins report deriva-
tives of the response with respect to varlist rather than on the response itself. eyex(), dyex(),
and eydx() report derivatives as elasticities; see Expressing derivatives as elasticities.

continuous is relevant only when one of dydx() or eydx() is also specified. It specifies that the
levels of factor variables be treated as continuous; see Derivatives versus discrete differences. This
option is implied if there is a single-level factor variable specified in dydx() or eydx().

grand specifies that the overall margin be reported. grand is assumed when marginlist is empty.

� � �
At �

at(atspec) specifies values for covariates to be treated as fixed.

at(age=20) fixes covariate age to the value specified. at() may be used to fix continuous or
factor covariates.

at(age=20 sex=1) simultaneously fixes covariates age and sex at the values specified.

at(age=(20 30 40 50)) fixes age first at 20, then at 30, . . . . margins produces separate results
for each specified value.

at(age=(20(10)50)) does the same as at(age=(20 30 40 50)); that is, you may specify a
numlist.

at((mean) age (median) distance) fixes the covariates at the summary statistics specified.
at((p25) all) fixes all covariates at their 25th percentile values. See Syntax of at() for the
full list of summary-statistic modifiers.

at((mean) all (median) x x2=1.2 z=(1 2 3)) is read from left to right, with latter specifiers
overriding former ones. Thus all covariates are fixed at their means except for x (fixed at its
median), x2 (fixed at 1.2), and z (fixed first at 1, then at 2, and finally at 3).

at((means) all (asobserved) x2) is a convenient way to set all covariates except x2 to the
mean.

Multiple at() options can be specified, and each will produce a different set of margins.

See Syntax of at() for more information.
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atmeans specifies that covariates be fixed at their means and is shorthand for at((mean) all).
atmeans differs from at((mean) all) in that atmeans will affect subsequent at() options.
For instance,

. margins . . . , atmeans at((p25) x) at((p75) x)

produces two sets of margins with both sets evaluated at the means of all covariates except x.

asbalanced is shorthand for at((asbalanced) factor) and specifies that factor covariates be
evaluated as though there were an equal number of observations in each level; see Obtaining margins
as though the data were balanced. asbalanced differs from at((asbalanced) factor) in
that asbalanced will affect subsequent at() options in the same way as atmeans does.

� � �
if/in/over �

over(varlist) specifies that separate sets of margins be estimated for the groups defined by varlist. The
variables in varlist must contain nonnegative integer values. The variables need not be covariates
in your model. When over() is combined with the vce(unconditional) option, each group is
treated as a subpopulation; see [SVY] subpopulation estimation.

subpop(
[

varname
] [

if
]
) is intended for use with the vce(unconditional) option. It specifies

that margins be estimated for the single subpopulation identified by the indicator variable or by
the if expression or by both. Zero indicates that the observation be excluded; nonzero, that it be
included; and missing value, that it be treated as outside of the population (and so ignored). See
[SVY] subpopulation estimation for why subpop() is preferred to if expressions and in ranges
when also using vce(unconditional). If subpop() is used without vce(unconditional), it
is treated merely as an additional if qualifier.

� � �
Within �

within(varlist) allows for nested designs. varlist contains the nesting variable(s) over which margins
are to be estimated. See Obtaining margins with nested designs. As with over(varlist), when
within(varlist) is combined with vce(unconditional), each level of the variables in varlist
is treated as a subpopulation.

� � �
SE �

vce(delta) and vce(unconditional) specify how the VCE and, correspondingly, standard errors
are calculated.

vce(delta) is the default. The delta method is applied to the formula for the response and the
VCE of the estimation command. This method assumes that values of the covariates used to
calculate the response are given or, if all covariates are not fixed using at(), that the data are
given.

vce(unconditional) specifies that the covariates that are not fixed be treated in a way that
accounts for their having been sampled. The VCE is estimated using the linearization method.
This method allows for heteroskedasticity or other violations of distributional assumptions
and allows for correlation among the observations in the same manner as vce(robust) and
vce(cluster . . . ), which may have been specified with the estimation command. This method
also accounts for complex survey designs if the data are svyset. See Obtaining margins with
survey data and representative samples.

nose suppresses calculation of the VCE and standard errors. See Requirements for model specification
for an example of the use of this option.
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� � �
Advanced �

noweights specifies that any weights specified on the previous estimation command be ignored by
margins. By default, margins uses the weights specified on the estimator to average responses and
to compute summary statistics. If weights are specified on the margins command, they override
previously specified weights, making it unnecessary to specify noweights. The noweights option
is not allowed after svy: estimation when the vce(unconditional) option is specified.

noesample specifies that margins not restrict its computations to the estimation sample used by the
previous estimation command. See Example 15: Margins evaluated out of sample.

With the default delta-method VCE, noesample margins may be estimated on samples other than
the estimation sample; such results are valid under the assumption that the data used are treated
as being given.

You can specify noesample and vce(unconditional) together, but if you do, you should be
sure that the data in memory correspond to the original e(sample). To show that you understand
that, you must also specify the force option. Be aware that making the vce(unconditional)
calculation on a sample different from the estimation sample would be equivalent to estimating
the coefficients on one set of data and computing the scores used by the linearization on another
set; see [P] robust.

emptycells(strict) and emptycells(reweight) are relevant only when the asbalanced option
is also specified. emptycells() specifies how empty cells are handled in interactions involving
factor variables that are being treated as balanced; see Obtaining margins as though the data were
balanced.

emptycells(strict) is the default; it specifies that margins involving empty cells be treated as
not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accom-
modate any missing cells. This makes the margin estimable but changes its interpretation.
emptycells(reweight) is implied when the within() option is specified.

estimtolerance(tol) specifies the numerical tolerance used to determine estimable functions. The
default is estimtolerance(1e-5).

A linear combination of the model coefficients z is found to be not estimable if

mreldif(z, z× H) > tol
where H is defined in Methods and formulas.

noestimcheck specifies that margins not check for estimability. By default, the requested margins
are checked and those found not estimable are reported as such. Nonestimability is usually caused
by empty cells. If noestimcheck is specified, estimates are computed in the usual way and
reported even though the resulting estimates are manipulable, which is to say they can differ across
equivalent models having different parameterizations. See Estimability of margins.

force instructs margins to proceed in some situations where it would otherwise issue an error
message because of apparent violations of assumptions. Do not be casual about specifying force.
You need to understand and fully evaluate the statistical issues. For an example of the use of
force, see Using margins after the estimates use command.

chainrule and nochainrule specify whether margins uses the chain rule when numerically
computing derivatives. You need not specify these options when using margins after any official
Stata estimator; margins will choose the appropriate method automatically.

Specify nochainrule after estimation by a user-written command. We recommend using nochain-
rule, even though chainrule is usually safe and is always faster. nochainrule is safer because
it makes no assumptions about how the parameters and covariates join to form the response.
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nochainrule is implied when the expression() option is specified.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

mcompare(method) specifies the method for computing p-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, αc, to achieve a prespecified experimentwise
error rate, αe.

mcompare(noadjust) is the default; it specifies no adjustment.
αc = αe

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the
Bonferroni inequality

αe≤mαc

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = αe/m

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

αe≤1− (1− αc)m

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = 1− (1− αe)1/m

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the F or χ2 distribution with
degrees of freedom equal to the rank of the term.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all
comparisons across all terms rather than performing multiple comparisons term by term. This
leads to more conservative adjustments when multiple variables or terms are specified in
marginslist. This option is compatible only with the bonferroni and sidak methods.

noatlegend specifies that the legend showing the fixed values of covariates be suppressed.

post causes margins to behave like a Stata estimation (e-class) command. margins posts the vector
of estimated margins along with the estimated variance–covariance matrix to e(), so you can treat
the estimated margins just as you would results from any other estimation command. For example,
you could use test to perform simultaneous tests of hypotheses on the margins, or you could use
lincom to create linear combinations. See Example 10: Testing margins—contrasts of margins.

display options: vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated
variables from other variables in the model be suppressed.

cformat(% fmt) specifies how to format margins, standard errors, and confidence limits in the
table of estimated margins.
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pformat(% fmt) specifies how to format p-values in the table of estimated margins.

sformat(% fmt) specifies how to format test statistics in the table of estimated margins.

nolstretch specifies that the width of the table of estimated margins not be automatically widened
to accommodate longer variable names. The default, lstretch, is to automatically widen the
table of estimated margins up to the width of the Results window. To change the default, use
set lstretch off. nolstretch is not shown in the dialog box.

Remarks
Remarks are presented under the following headings:

Introduction
Obtaining margins of responses

Example 1: A simple case after regress
Example 2: A simple case after logistic
Example 3: Average response versus response at average
Example 4: Multiple margins from one command
Example 5: Margins with interaction terms
Example 6: Margins with continuous variables
Example 7: Margins of continuous variables
Example 8: Margins of interactions
Example 9: Decomposing margins
Example 10: Testing margins—contrasts of margins
Example 11: Margins of a specified prediction
Example 12: Margins of a specified expression
Example 13: Margins with multiple outcomes (responses)
Example 14: Margins with multiple equations
Example 15: Margins evaluated out of sample

Obtaining margins of derivatives of responses (a.k.a. marginal effects)
Do not specify marginlist when you mean over()
Use at() freely, especially with continuous variables
Expressing derivatives as elasticities
Derivatives versus discrete differences
Example 16: Average marginal effect (partial effects)
Example 17: Average marginal effect of all covariates
Example 18: Evaluating marginal effects over the response surface

Obtaining margins with survey data and representative samples
Example 19: Inferences for populations, margins of response
Example 20: Inferences for populations, marginal effects
Example 21: Inferences for populations with svyset data

Standardizing margins
Obtaining margins as though the data were balanced

Balancing using asbalanced
Balancing by standardization
Balancing nonlinear responses
Treating a subset of covariates as balanced
Using fvset design
Balancing in the presence of empty cells

Obtaining margins with nested designs
Introduction
Margins with nested designs as though the data were balanced
Coding of nested designs

Special topics
Requirements for model specification
Estimability of margins
Manipulability of tests
Using margins after the estimates use command
Syntax of at()
Estimation commands that may be used with margins

Glossary
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Introduction

margins is a postestimation command, a command for use after you have fit a model using an
estimation command such as regress or logistic, or using almost any other estimation command.

margins estimates and reports margins of responses and margins of derivatives of responses, also
known as marginal effects. A margin is a statistic based on a fitted model in which some of or all the
covariates are fixed. Marginal effects are changes in the response for change in a covariate, which
can be reported as a derivative, elasticity, or semielasticity.

Obtaining margins of responses

What we call margins of responses are also known as predictive margins, adjusted predictions, and
recycled predictions. When applied to balanced data, margins of responses are also called estimated
marginal means and least-squares means.

A margin is a statistic based on a fitted model calculated over a dataset in which some of or
all the covariates are fixed at values different from what they really are. For instance, after a linear
regression fit on males and females, the marginal mean (margin of mean) for males is the predicted
mean of the dependent variable, where every observation is treated as if it represents a male; thus those
observations that in fact do represent males are included, as well as those observations that represent
females. The marginal mean for female would be similarly obtained by treating all observations as
if they represented females.

In making the calculation, sex is treated as male or female everywhere it appears in the model.
The model might be

. regress y age bp i.sex sex#c.age sex#c.bp

and then, in making the marginal calculation of the mean for males and females, margins not only
accounts for the direct effect of i.sex but also for the indirect effects of sex#c.age and sex#c.bp.

The response being margined can be any statistic produced by [R] predict, or any expression of
those statistics.

Standard errors are obtained by the delta method, at least by default. The delta method assumes
that the values at which the covariates are evaluated to obtain the marginal responses are fixed.
When your sample represents a population, whether you are using svy or not (see [SVY] svy), you
can specify margins’ vce(unconditional) option and margins will produce standard errors that
account for the sampling variability of the covariates. Some researchers reserve the term predictive
margins to describe this.

The best way to understand margins is to see some examples. You can run the following examples
yourself if you type

. use http://www.stata-press.com/data/r12/margex
(Artificial data for margins)
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Example 1: A simple case after regress

. regress y i.sex i.group
(output omitted )

. margins sex

Predictive margins Number of obs = 3000
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 60.56034 .5781782 104.74 0.000 59.42713 61.69355
1 78.88236 .5772578 136.65 0.000 77.75096 80.01377

The numbers reported in the “Margin” column are average values of y. Based on a linear regression
of y on sex and group, 60.6 would be the average value of y if everyone in the data were treated
as if they were male, and 78.9 would be the average value if everyone were treated as if they were
female.

Example 2: A simple case after logistic

margins may be used after almost any estimation command.

. logistic outcome i.sex i.group
(output omitted )

. margins sex

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1286796 .0111424 11.55 0.000 .106841 .1505182
1 .1905087 .0089719 21.23 0.000 .1729241 .2080933

The numbers reported in the “Margin” column are average predicted probabilities. Based on a
logistic regression of outcome on sex and group, 0.13 would be the average probability of outcome
if everyone in the data were treated as if they were male, and 0.19 would be the average probability
if everyone were treated as if they were female.

margins reports average values after regress and average probabilities after logistic. By
default, margins makes tables of whatever it is that predict (see [R] predict) predicts by default.
Alternatively, margins can make tables of anything that predict can produce if you use margins’
predict() option; see Example 11: Margins of a specified prediction.
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Example 3: Average response versus response at average

In example 2, margins reported average probabilities of outcome for sex = 0 and sex = 1.
If we instead wanted the predicted probabilities evaluated at the mean of the covariates, we would
specify margins’ atmeans option. We previously typed

. logistic outcome i.sex i.group
(output omitted )

. margins sex
(output omitted )

and now we type
. margins sex, atmeans

Adjusted predictions Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
at : 0.sex = .4993333 (mean)

1.sex = .5006667 (mean)
1.group = .3996667 (mean)
2.group = .3726667 (mean)
3.group = .2276667 (mean)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .0966105 .0089561 10.79 0.000 .0790569 .1141641
1 .1508362 .0118064 12.78 0.000 .127696 .1739764

The prediction at the average of the covariates is different from the average of the predictions.
The first is the expected probability of a person with average characteristics, a person who, in another
problem, might be 3/4 married and have 1.2 children. The second is the average of the probability
among actual persons in the data.

When you specify atmeans or any other at option, margins reports the values used for the
covariates in the legend above the table. margins lists the values for all the covariates, including
values it may not use, in the results that follow. In this example, margins reported means for sex
even though those means were not used. They were not used because we asked for the margins of
sex, so sex was fixed first at 0 and then at 1.

If you wish to suppress this legend, specify the nolegend option.

Example 4: Multiple margins from one command

More than one margin can be reported by just one margins command. You can type

. margins sex group

and doing that is equivalent in terms of the output to typing

. margins sex

. margins group

When multiple margins are requested on the same command, each is estimated separately. There
is, however, a difference when you also specify margins’ post option. Then the variance–covariance
matrix for all margins requested is posted, and that is what allows you to test equality of margins,
etc. Testing equality of margins is covered in Example 10: Testing margins—contrasts of margins.
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In any case, below we request margins for sex and for group.

. margins sex group

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1286796 .0111424 11.55 0.000 .106841 .1505182
1 .1905087 .0089719 21.23 0.000 .1729241 .2080933

group
1 .2826207 .0146234 19.33 0.000 .2539593 .311282
2 .1074814 .0094901 11.33 0.000 .0888812 .1260817
3 .0291065 .0073417 3.96 0.000 .0147169 .043496

Example 5: Margins with interaction terms

The estimation command on which margins bases its calculations may contain interaction terms,
such as an interaction of sex and group:

. logistic outcome i.sex i.group sex#group
(output omitted )

. margins sex group

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1561738 .0132774 11.76 0.000 .1301506 .182197
1 .1983749 .0101546 19.54 0.000 .1784723 .2182776

group
1 .3211001 .0176403 18.20 0.000 .2865257 .3556744
2 .1152127 .0099854 11.54 0.000 .0956417 .1347838
3 .0265018 .0109802 2.41 0.016 .0049811 .0480226

We fit the model by typing logistic outcome i.sex i.group sex#group, but the meaning
would have been the same had we typed logistic outcome sex##group.

As mentioned in example 4, the results for sex and the results for group are calculated independently,
and we would have obtained the same results had we typed margins sex followed by margins
group.

The margin for male (sex = 0) is 0.16. The probability 0.16 is the average probability if everyone
in the data were treated as if sex = 0, including sex = 0 in the main effect and sex = 0 in the
interaction of sex with group.

Had we specified margins sex, atmeans, we would have obtained not average probabilities but
the probabilities evaluated at the average. Rather than obtaining 0.16, we would have obtained 0.10
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for sex = 0. The 0.10 is calculated by taking the fitted model, plugging in sex = 0 everywhere, and
plugging in the average value of the group indicator variables everywhere they are used. That is, rather
than treating the group indicators as being (1, 0, 0), (0, 1, 0), or (0, 0, 1) depending on observation, the
group indicators are treated as being (0.40, 0.37, 0.23), which are the average values of group = 1,
group = 2, and group = 3.

Example 6: Margins with continuous variables

To the above example, we will add the continuous covariate age to the model and then rerun
margins sex group.

. logistic outcome i.sex i.group sex#group age
(output omitted )

. margins sex group

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1600644 .0125653 12.74 0.000 .1354368 .184692
1 .1966902 .0100043 19.66 0.000 .1770821 .2162983

group
1 .2251302 .0123233 18.27 0.000 .200977 .2492834
2 .150603 .0116505 12.93 0.000 .1277685 .1734376
3 .0736157 .0337256 2.18 0.029 .0075147 .1397167

Compared with the results presented in example 5, results for sex change little, but results for
groups 1 and 3 change markedly. The tables differ because now we are adjusting for the continuous
covariate age, as well as for sex and group.

We will continue examining interactions in example 8. Because we have added a continuous
variable, let’s take a detour to explain how to obtain margins for continuous variables and to explain
their interpretation.

Example 7: Margins of continuous variables

Continuing with our example of

. logistic outcome i.sex i.group sex#group age

let’s examine the continuous covariate age.

You are not allowed to type margins age; doing that will produce an error:
. margins age
‘age’ not found in list of covariates
r(322);

The message “‘age’ not found in list of covariates” is margins’ way of saying, “Yes, age might
be in the model, but if it is, it is not included as a factor variable; it is in as a continuous variable.”
Sometimes, Stata is overly terse. margins might also say that because age is continuous there are
an infinite number of values at which it could evaluate the margins. At what value(s) should age be
fixed? margins requires more guidance with continuous covariates. We can provide that guidance
by using the at() option and typing
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. margins, at(age=40)

To understand why that yields the desired result, let us tell you that if you were to type

. margins

margins would report the overall margin—the margin that holds nothing constant. Because our model
is logistic, the average value of the predicted probabilities would be reported. The at() option fixes
one or more covariates to the value(s) specified and can be used with both factor and continuous
variables. Thus, if you typed margins, at(age=40), then margins would average over the data
the responses for everybody, setting age=40. Here is what happens when you type that:

. margins, at(age=40)

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
at : age = 40

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .1133603 .0070731 16.03 0.000 .0994972 .1272234

Reported is the margin for age = 40, adjusted for the other covariates in our model.

If we wanted to obtain the margins for age 30, 35, 40, 45, and 50, we could type

. margins, at(age=(30 35 40 45 50))

or, equivalently,

. margins, at(age=(30(5)50))

Example 8: Margins of interactions

Our model is

. logistic outcome i.sex i.group sex#group age

We can obtain the margins of all possible combinations of the levels of sex and the levels of
group by typing

. margins sex#group

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex#group
0 1 .2379605 .0237178 10.03 0.000 .1914745 .2844465
0 2 .0658294 .0105278 6.25 0.000 .0451953 .0864636
0 3 .0538001 .0136561 3.94 0.000 .0270347 .0805656
1 1 .2158632 .0112968 19.11 0.000 .1937218 .2380045
1 2 .2054406 .0183486 11.20 0.000 .1694781 .2414032
1 3 .085448 .0533914 1.60 0.110 -.0191973 .1900932



1040 margins — Marginal means, predictive margins, and marginal effects

The first line in the table reports the marginal probability for sex = 0 and group = 1. That is,
it reports the estimated probability if everyone in the data were treated as if they were sex = 0 and
group = 1.

Also reported are all the other combinations of sex and group.

By the way, we could have typed margins sex#group even if our fitted model did not include
sex#group. Estimation is one thing, and asking questions about the nature of the estimates is another.
margins does, however, require that i.sex and i.group appear somewhere in the model, because
fixing a value outside the model would just produce the grand margin, and you can separately ask
for that if you want it by typing margins without arguments.

Example 9: Decomposing margins

We have the model

. logistic outcome i.sex i.group sex#group age

In example 6, we typed margins sex and obtained 0.160 for males and 0.197 for females. We
are going to decompose each of those numbers. Let us explain:

1. The margin for males, 0.160, treats everyone as if they were male, and that amounts to
simultaneously

1a. treating males as males and

1b. treating females as males.

2. The margin for females, 0.197, treats everyone as if they were female, and that amounts to
simultaneously

2a. treating males as females and

2b. treating females as females.

The margins 1a and 1b are the decomposition of 1, and the margins 2a and 2b are the decomposition
of 2.

We could obtain 1a and 2a by typing

. margins if sex==0, at(sex=(0 1))

because the qualifier if sex==0 would restrict margins to running on only the males. Similarly, we
could obtain 1b and 2b by typing

. margins if sex==1, at(sex=(0 1))
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We run these examples below:
. margins if sex==0, at(sex=(0 1))

Predictive margins Number of obs = 1498
Model VCE : OIM

Expression : Pr(outcome), predict()

1._at : sex = 0

2._at : sex = 1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .0794393 .0062147 12.78 0.000 .0672586 .0916199
2 .1335584 .0127351 10.49 0.000 .1085981 .1585187

. margins if sex==1, at(sex=(0 1))

Predictive margins Number of obs = 1502
Model VCE : OIM

Expression : Pr(outcome), predict()

1._at : sex = 0

2._at : sex = 1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .2404749 .0199709 12.04 0.000 .2013326 .2796171
2 .2596538 .0104756 24.79 0.000 .2391219 .2801857

Putting together the results from example 6 and the results above, we have

Margin treating everybody as themself 0.170

Margin treating everybody as male 0.160
Margin treating male as male 0.079
Margin treating female as male 0.240

Margin treating everybody as female 0.197
Margin treating male as female 0.134
Margin treating female as female 0.260

Example 10: Testing margins—contrasts of margins

Continuing with the previous example, it would be interesting to test the equality of 2b and 1b,
to test whether the average probability of a positive outcome for females treated as females is equal
to that for females treated as males. That test would be different from testing the overall significance
of sex in our model. The test performed on our model would be a test of whether the probability
of a positive outcome differs between males and females when they have equal values of the other
covariates. The test of equality of margins is a test of whether the average probabilities differ given
the different pattern of values of the other covariates that the two sexes have in our data.

We can also perform such tests by treating the results from margins as estimation results. There
are three steps required to perform tests on margins. First, you must arrange it so that all the margins
of interest are reported by just one margins command. Second, you must specify margins’ post
option. Third, you perform the test with the test command.
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Such tests and comparisons can be readily performed by contrasting margins; see [R] margins,
contrast. Also see Contrasts of margins—effects (discrete marginal effects) in [R] marginsplot.

In the previous example, we used two commands to obtain our results, namely,

. margins if sex==0, at(sex=(0 1))

. margins if sex==1, at(sex=(0 1))

We could, however, have obtained the same results by typing just one command:

. margins, over(sex) at(sex=(0 1))

Performing margins, over(sex) first restricts the sample to sex==0 and then restricts it to
sex==1, and that is equivalent to the two different if conditions that we specified before.

To test whether females treated as females is equal to females treated as males, we will need to
type

. margins, over(sex) at(sex=(0 1)) post

. test _b[2._at#1.sex] = _b[1._at#1.sex]

We admit that the second command may seem to have come out of nowhere. When we specify
post on the margins command, margins behaves as if it were an estimation command, which
means that 1) it posts its estimates and full VCE to e(), 2) it gains the ability to replay results just
as any estimation command can, and 3) it gains access to the standard postestimation commands.
Item 3 explains why we could use test. We learned that we wanted to test b[2. at#1.sex] and
b[1. at#1.sex] by replaying the estimation results, but this time with the standard estimation

command coeflegend option. So what we typed was

. margins, over(sex) at(sex=(0 1)) post

. margins, coeflegend

. test _b[2._at#1.sex] = _b[1._at#1.sex]

We will let you try margins, coeflegend for yourself. The results of running the other two
commands are

. margins, over(sex) at(sex=(0 1)) post

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
over : sex

1._at : 0.sex
sex = 0

1.sex
sex = 0

2._at : 0.sex
sex = 1

1.sex
sex = 1

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at#sex
1 0 .0794393 .0062147 12.78 0.000 .0672586 .0916199
1 1 .2404749 .0199709 12.04 0.000 .2013326 .2796171
2 0 .1335584 .0127351 10.49 0.000 .1085981 .1585187
2 1 .2596538 .0104756 24.79 0.000 .2391219 .2801857
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. test _b[2._at#1.sex] = _b[1._at#1.sex]

( 1) - 1bn._at#1.sex + 2._at#1.sex = 0

chi2( 1) = 0.72
Prob > chi2 = 0.3951

We can perform the same test in one command using contrasts of margins:

. logistic outcome i.sex i.group sex#group age
(output omitted )

. margins, over(sex) at(sex=(0 1)) contrast(atcontrast(r._at) wald)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : sex

1._at : 0.sex
sex = 0

1.sex
sex = 0

2._at : 0.sex
sex = 1

1.sex
sex = 1

df chi2 P>chi2

_at@sex
(2 vs 1) 0 1 14.59 0.0001
(2 vs 1) 1 1 0.72 0.3951

Joint 2 16.13 0.0003

Delta-method
Contrast Std. Err. [95% Conf. Interval]

_at@sex
(2 vs 1) 0 .0541192 .0141706 .0263453 .081893
(2 vs 1) 1 .0191789 .0225516 -.0250215 .0633793

We refitted our logistic model because its estimation results were replaced when we posted our
margins. The syntax to perform the contrast we want is admittedly not obvious. Contrasting (testing)
across at() groups is more difficult than contrasting across the margins themselves or across over()
groups, because we have no natural place for the contrast operators (r., in our case). We also explicitly
requested Wald tests of the contrasts, which are not provided by default. Nevertheless, the chi-squared
statistic and its p-value for (2 vs 1) for sex = 1 matches the results of our test command. We also
obtain the test of whether the response of males treated as males is equal to the response of males
treated as females.

For a gentler introduction to contrasts of margins, see [R] margins, contrast.

Example 11: Margins of a specified prediction

We will fit the model

. use http://www.stata-press.com/data/r12/margex

. tobit ycn i.sex i.group sex#group age, ul(90)
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and we will tell the following story about the variables: We run a peach orchard where we allow
people to pick their own peaches. A person receives one empty basket in exchange for $20, along
with the right to enter the orchard. There is no official limit on how many peaches a person can pick,
but only 90 peaches will fit into a basket. The dependent variable in the above tobit model, ycn, is
the number of peaches picked. We use tobit, a special case of censored-normal regression, because
ycn is censored at 90.

After fitting this model, if we typed

. margins sex

we would obtain the margins for males and for females of the uncensored number of peaches picked.
We would obtain that because predict after tobit produces the uncensored number by default. To
obtain the censored prediction, we would have to specify predict’s ystar(.,90) option. If we
want the margins based on that response, we type

. margins sex, predict(ystar(.,90))

The results of typing that are

. tobit ycn i.sex i.group sex#group age, ul(90)
(output omitted )

. margins sex, predict(ystar(.,90))

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : E(ycn*|ycn<90), predict(ystar(.,90))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 62.21804 .5996928 103.75 0.000 61.04266 63.39342
1 78.34272 .455526 171.98 0.000 77.4499 79.23553

In our previous examples, sex = 1 has designated females, so evidently the females visiting our
orchard are better at filling baskets than the men.

Example 12: Margins of a specified expression

Continuing with our peach orchard example and the previously fit model

. use http://www.stata-press.com/data/r12/margex

. tobit ycn i.sex i.group sex#group age, ul(90)

let’s examine how well our baskets are working for us. What is the proportion of the number of
peaches actually picked to the number that would have been picked were the baskets larger? As
mentioned in example 11, predict, ystar(.,90) produces the expected number picked given the
limit of basket size. predict, xb would predict the expected number without a limit. We want the
ratio of those two predictions. That ratio will measure as a proportion how well the baskets work.
Thus we could type

. margins sex, expression(predict(ystar(.,90))/predict(xb))

That would give us the proportion for everyone treated as male and everyone treated as female, but
what we want to know is how well baskets work for true males and true females, so we will type

. margins, over(sex) expression(predict(ystar(.,90))/predict(xb))
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. margins, over(sex) expression(predict(ystar(0,90))/predict(xb))

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : predict(ystar(0,90))/predict(xb)
over : sex

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .9811785 .0013037 752.60 0.000 .9786233 .9837337
1 .9419962 .0026175 359.88 0.000 .936866 .9471265

By the way, we could count the number of peaches saved by the limited basket size during the
period of data collection by typing

. count
3000

. margins, expression(3000*(predict(xb)-predict(ystar(.,90))))
(output omitted )

The number of peaches saved turns outs to be 9,183.

Example 13: Margins with multiple outcomes (responses)

Estimation commands such as mlogit and mprobit (see [R] mlogit and [R] mprobit) calculate
multiple responses, and those multiple responses are reflected in the options available with predict
after estimation. Obtaining margins for such estimators is thus the same as obtaining margins of a
specified prediction, which was demonstrated in example 11. The solution is to include the predict opt
that selects the desired response in margins’ predict(predict opt) option.

If we fit the multinomial logistic model

. mlogit group i.sex age

then to obtain the margins for the probability that group = 1, we would type

. margins sex, predict(outcome(1))

and to obtain the margins for the probability that group = 3, we would type

. margins sex, predict(outcome(3))

We learned about the outcome(1) and outcome(3) options by looking in [R] mlogit postestima-
tion. For an example using margins with a multiple-outcome estimator, see example 4 in [R] mlogit
postestimation.

Example 14: Margins with multiple equations

Estimation commands such as mvreg, manova, sureg, and reg3 (see [R] mvreg, [MV] manova,
[R] sureg, and [R] reg3) fit multiple equations. Obtaining margins for such estimators is the same as
obtaining margins with multiple outcomes (see example 13), which in turn is the same as obtaining
margins of a specified prediction (see example 11). You place the relevant option from the estimator’s
predict command into margins’ predict(predict opt) option.

If we fit the seemingly unrelated regression model

. sureg (y = i.sex age) (distance = i.sex i.group)
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we can obtain the marginal means of y for males and females by typing

. margins sex, predict(equation(y))

and we can obtain the marginal means of distance by typing

. margins sex, predict(equation(distance))

We could obtain the difference between the margins of y and distance by typing

. margins sex, expression(predict(equation(y)) -
> predict(equation(distance)))

More examples can be found in [MV] manova and [MV] manova postestimation.

Example 15: Margins evaluated out of sample

You can fit your model on one dataset and use margins on another if you specify margins’
noesample option. Remember that margins reports estimated average responses, and, unless you
lock all the covariates at fixed values by using the at() option, the remaining variables are allowed
to vary as they are observed to vary in the data. That is indeed the point of using margins. The
fitted model provides the basis for adjusting for the remaining variables, and the data provide their
values. The predictions produced by margins are of interest assuming the data used by margins
are in some sense interesting or representative. In some cases, you might need to fit your model on
one set of data and perform margins on another.

In example 11, we fit the model

. tobit ycn i.sex i.group sex#group age, ul(90)

and we told a story about our peach orchard in which we charged people $20 to collect a basket of
peaches, where baskets could hold at most 90 peaches. Let us now tell you that we believe the data on
which we estimated those margins were unrepresentative, or at least, we have a more representative
sample stored in another .dta file. That dataset includes the demographics of our customers but does
not include counts of peaches picked. It is a lot of work counting those peaches.

Thus we will fit our model just as we did previously using the detailed data, but we will bring the other,
more representative dataset into memory before issuing the margins sex, predict(ystar(.,90))
command, and we will add noesample to it.

. use http://www.stata-press.com/data/r12/margex
(Artificial data for margins)

. tobit ycn i.sex i.group sex#group age, ul(90)
(output omitted )

. use http://www.stata-press.com/data/r12/peach

. margins sex, predict(ystar(.,90)) noesample

Predictive margins Number of obs = 2727
Model VCE : OIM

Expression : E(ycn*|ycn<90), predict(ystar(.,90))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 56.79774 1.003727 56.59 0.000 54.83047 58.76501
1 75.02146 .643742 116.54 0.000 73.75975 76.28317
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In example 12, we produced an estimate of the number of peaches saved by the limited-size
baskets. We can update that estimate using the new demographic data by typing

. count
2727

. margins, exp(2727*(predict(xb)-predict(ystar(.,90)))) noesample
(output omitted )

By running the above, we find that the updated number of peaches saved is 6,408.

Obtaining margins of derivatives of responses (a.k.a. marginal effects)

Derivatives of responses are themselves responses, so everything said above in Obtaining margins
of responses is equally true of derivatives of responses, and every example above could be repeated
here substituting the derivative of the response for the response.

Derivatives are of interest because they are an informative way of summarizing fitted results. The
change in a response for a change in the covariate is easy to understand and to explain. In simple
models, one hardly needs margins to assist in obtaining such margins. Consider the simple linear
regression

y = β0 + β1 × sex + β2 × age + ε

The derivatives of the responses are
dy/d(sex) = β1

dy/d(age) = β2

The derivatives are the fitted coefficients. How does y change between males and females? It changes
by β1. How does y change with age? It changes by β2 per year.

If you make the model a little more complicated, however, the need for margins arises. Consider
the model

y = β0 + β1 × sex + β2 × age + β3 × age2 + ε

Now the derivative with respect to age is

dy/d(age) = β2 + 2× β3 × age

The change in y for a change in age itself changes with age, and so to better understand the fitted
results, you might want to make a table of the change in y for a change in age for age = 30, age = 40,
and age = 50. margins can do that.

Consider an even more complicated model, such as

y = β0 + β1 × sex + β2 × age + β3 × age2 + β4 × bp + β5 × sex× bp + β6 × tmt

+ β7 × tmt× age + β8 × tmt× age2 + ε
(1)

The derivatives are

dy/d(sex) = β1 + β5 × bp

dy/d(age) = β2 + 2× β3 × age + β7 × tmt + 2× β8 × tmt× age

dy/d(bp) = β4 + β5 × sex

dy/d(tmt) = β6 + β7 × age + β8 × age2

At this point, margins becomes indispensable.
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Do not specify marginlist when you mean over()

margins has the same syntax when used with derivatives of responses as when used with responses.
To obtain derivatives, one specifies the dydx() option. If we wanted to examine the response variable
dy/d(tmt), we would specify margins’ dydx(tmt) option. The rest of the margins command
has the same syntax as ordinarily, although one tends to specify different syntactical elements. For
instance, one usually does not specify a marginlist. If we typed

. margins sex, dydx(tmt)

we would obtain dy/d(tmt) calculated first as if everyone were male and then as if everyone were
female. At the least, we would probably want to specify

. margins sex, dydx(tmt) grand

so as also to obtain dy/d(tmt), the overall margin, the margin with everyone having their own value
of sex. Usually, however, all we want is the overall margin, and because grand is the default when
the marginlist is not specified, we would just type

. margins, dydx(tmt)

Alternatively, if we were interested in the decomposition by sex, then rather than type margins
sex, dydx(tmt), we probably want to type

. margins, over(sex) dydx(tmt)

This command gives us the average effect of tmt for males and again for females rather than the
average effect with everyone treated as male and then again with everyone treated as female.

Use at() freely, especially with continuous variables

Another option one tends to use more often with derivatives of responses than one does with
responses is at(). Such use is often to better understand or to communicate how the response varies,
or, in technical jargon, to explore the nature of the response surface.

For instance, the effect dy/d(tmt) in (1) is equal to β6 + β7× age + β8× age2, and so simply to
understand how treatment varies with age, we may want to fix age at various values. We might type

. margins, dydx(tmt) over(sex) at(age=(30 40 50))

Expressing derivatives as elasticities

You specify the dydx(varname) option on the margins command to use dy/d(varname) as the re-
sponse variable. If you want that derivative expressed as an elasticity, you can specify eyex(varname),
eydx(varname), or dyex(varname). You substitute e for d where you want an elasticity. The formulas
are

dydx() = dy/dx

eyex() = dy/dx× (x/y)

eydx() = dy/dx× (1/y)

dyex() = dy/dx× (x)
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and the interpretations are

dydx(): change in y for a change in x
eyex(): proportional change in y for a proportional change in x
eydx(): proportional change in y for a change in x
dyex(): change in y for a proportional change in x

As margins always does with response functions, calculations are made at the observational level
and are then averaged. Let’s assume that in observation 5, dy/dx = 0.5, y = 15, and x = 30; then

dydx() = 0.5

eyex() = 1.0

eydx() = 0.03

dyex() = 15.0

Many social scientists would informally explain the meaning of eyex() = 1 as “y increases 100%
when x increases 100%” or as “y doubles when x doubles”, although neither statement is literally
true. eyex(), eydx(), and dyex() are rates evaluated at a point, just as dydx() is a rate, and all
such interpretations are valid only for small (infinitesimal) changes in x. It is true that eyex() = 1
means y increases with x at a rate such that, if the rate were constant, y would double if x doubled.
This issue of casual interpretation is no different from casually interpreting dydx() as if it represents
the response to a unit change. It is not necessarily true that dydx() = 0.5 means that “y increases
by 0.5 if x increases by 1”. It is true that “y increases with x at a rate such that, if the rate were
constant, y would increase by 0.5 if x increased by 1”.

dydx(), eyex(), eydx(), and dyex() may be used with continuous x variables. dydx() and
eydx() may also be used with factor variables.

Derivatives versus discrete differences

In (1),

y = β0 + β1 × sex + β2 × age + β3 × age2 + β4 × bp + β5 × sex× bp + β6 × tmt

+ β7 × tmt× age + β8 × tmt× age2 + ε

Let us call your attention to the derivatives of y with respect to age and sex:

dy/d(age) = β2 + 2× β3 × age + β7 × tmt + 2× β8 × tmt× age (2)

dy/d(sex) = β1 + β5 × bp (3)

age is presumably a continuous variable and (2) is precisely how margins calculates its derivatives
when you type margins, dydx(age). sex, however, is presumably a factor variable, and margins
does not necessarily make the calculation using (3) were you to type margins, dydx(sex). We will
explain, but let us first clarify what we mean by a continuous and a factor variable. Say that you fit
(1) by typing

. regress y i.sex age c.age#c.age i.bp bp#sex
> i.tmt tmt#c.age tmt#c.age#c.age
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It is important that sex entered the model as a factor variable. It would not do to type regress y
sex . . . because then sex would be a continuous variable, or at least it would be a continuous variable
from Stata’s point of view. The model estimates would be the same, but margins’ understanding
of those estimates would be a little different. With the model estimated using i.sex, margins
understands that either sex is 0 or sex is 1. With the model estimated using sex, margins thinks
sex is continuous and, for instance, sex = 1.5 is a possibility.

margins calculates dydx() differently for continuous and for factor variables. For continuous
variables, margins calculates dy/dx. For factor variables, margins calculates the discrete first-
difference from the base category. To obtain that for sex, write down the model and then subtract
from it the model evaluated at the base category for sex, which is sex = 0. If you do that, you will
get the same formula as we obtained for the derivative, namely,

discrete difference{(sex = 1)− (sex = 0)} = β1 + β5 × bp

We obtain the same formula because our model is linear regression. Outside of linear regression,
and outside of linear response functions generally, the discrete difference is not equal to the derivative.
The discrete difference is not equal to the derivative for logistic regression, probit, etc. The discrete
difference calculation is generally viewed as better for factor variables than the derivative calculation
because the discrete difference is what would actually be observed.

If you want the derivative calculation for your factor variables, specify the continuous option
on the margins command.

Example 16: Average marginal effect (partial effects)

Concerning the title of this example, the way we use the term marginal effect, the effects of factor
variables are calculated using discrete first-differences. If you wanted the continuous calculation, you
would specify margins’ continuous option in what follows.

. use http://www.stata-press.com/data/r12/margex
(Artificial data for margins)

. logistic outcome treatment##group age c.age#c.age treatment#c.age
(output omitted )

. margins, dydx(treatment)

Average marginal effects Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
dy/dx w.r.t. : 1.treatment

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.treatment .0385625 .0162848 2.37 0.018 .0066449 .0704801

Note: dy/dx for factor levels is the discrete change from the base level.

The average marginal effect of treatment on the probability of a positive outcome is 0.039.
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Example 17: Average marginal effect of all covariates

We will continue with the model

. logistic outcome treatment##group age c.age#c.age treatment#c.age

if we wanted the average marginal effects for all covariates, we would type margins, dydx(*)
or margins, dydx( all); they mean the same thing. This is probably the most common way
margins, dydx() is used.

. margins, dydx(*)

Average marginal effects Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
dy/dx w.r.t. : 1.treatment 2.group 3.group age

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.treatment .0385625 .0162848 2.37 0.018 .0066449 .0704801

group
2 -.0776906 .0181584 -4.28 0.000 -.1132805 -.0421007
3 -.1505652 .0400882 -3.76 0.000 -.2291366 -.0719937

age .0095868 .0007796 12.30 0.000 .0080589 .0111148

Note: dy/dx for factor levels is the discrete change from the base level.

Example 18: Evaluating marginal effects over the response surface

Continuing with the model

. logistic outcome treatment##group age c.age#c.age treatment#c.age

What follows maps out the entire response surface of our fitted model. We report the marginal
effect of treatment evaluated at age = 20, 30, . . . , 60, by each level of group.
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. margins group, dydx(treatment) at(age=(20(10)60))

Conditional marginal effects Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()
dy/dx w.r.t. : 1.treatment

1._at : age = 20

2._at : age = 30

3._at : age = 40

4._at : age = 50

5._at : age = 60

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.treatment
_at#group

1 1 -.0208409 .0152862 -1.36 0.173 -.0508013 .0091196
1 2 .009324 .0059896 1.56 0.120 -.0024155 .0210635
1 3 .0006558 .0048682 0.13 0.893 -.0088856 .0101972
2 1 -.0436964 .0279271 -1.56 0.118 -.0984325 .0110397
2 2 .0382959 .0120405 3.18 0.001 .014697 .0618949
2 3 .0064564 .0166581 0.39 0.698 -.0261929 .0391057
3 1 -.055676 .0363191 -1.53 0.125 -.1268601 .015508
3 2 .1152235 .0209858 5.49 0.000 .074092 .156355
3 3 .0284808 .0471293 0.60 0.546 -.0638908 .1208524
4 1 -.027101 .0395501 -0.69 0.493 -.1046177 .0504158
4 2 .2447682 .0362623 6.75 0.000 .1736954 .315841
4 3 .0824401 .1025028 0.80 0.421 -.1184616 .2833418
5 1 .0292732 .0587751 0.50 0.618 -.0859239 .1444703
5 2 .3757777 .0578106 6.50 0.000 .2624709 .4890844
5 3 .1688268 .1642191 1.03 0.304 -.1530368 .4906904

Note: dy/dx for factor levels is the discrete change from the base level.

Obtaining margins with survey data and representative samples

The standard errors and confidence intervals produced by margins are based by default on the
delta method applied to the VCE of the current estimates. Delta-method standard errors treat the
covariates at which the response is evaluated as given or fixed. Such standard errors are appropriate
if you specify at() to fix the covariates, and they are appropriate when you are making inferences
about groups exactly like your sample whether you specify at() or not.

On the other hand, if you have a representative sample of the population or if you have complex survey
data and if you want to make inferences about the underlying population, you need to account for the vari-
ation in the covariates that would arise in repeated sampling. You do that using vce(unconditional),
which invokes a different standard-error calculation based on Korn and Graubard (1999). Syntactically,
there are three cases. They all involve specifying the vce(unconditional) option on the margins
command:

1. You have a representative random sample, and you have not svyset your data.
When you fit the model, you need to specify the vce(robust) or vce(cluster clustvar) op-
tion. When you issue the margins command, you need to specify the vce(unconditional)
option.
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2. You have a weighted sample, and you have not svyset your data.
You need to specify [pw=weight] when you fit the model and, of course, specify the
vce(unconditional) option on the margins command. You do not need to specify the
weights on the margins command because margins will obtain them from the estimation
results.

3. You have svyset your data, whether it be a simple random sample or something more
complex including weights, strata, sampling units, or poststratification.
You need to use the svy prefix when you fit the model. You need to specify
vce(unconditional) when you issue the margins command. You do not need to respecify
the weights.

Even though the data are svyset, and even though the estimation was svy esti-
mation, margins does not default to vce(unconditional). It does not default to
vce(unconditional) because there are valid reasons to want the data-specific, vce(delta)
standard-error estimates. Whether you specify vce(unconditional) or not, margins uses
the weights, so you do not need to respecify them even if you are using vce(unconditional).

vce(unconditional) is allowed only after estimation with vce(robust), vce(cluster . . .),
or the svy prefix. If the VCE of the current estimates was specified as clustered, so will be the VCE
estimates of margins. If the estimates were from a survey estimation, the survey settings in the
dataset will be used by margins.

When you use vce(unconditional), never specify if exp or in range on the margins
command; instead, specify the subpop(if exp) option. You do that for the usual reasons; see
[SVY] subpopulation estimation. If you specify over(varlist) to examine subgroups, the subgroups
will automatically be treated as subpopulations.

Example 19: Inferences for populations, margins of response

In example 6, we fit the model

. logistic outcome i.sex i.group sex#group age

and we obtained margins by sex and margins by group,

. margins sex group

If our data were randomly drawn from the population of interest and we wanted to account for
this, we would have typed

. logistic outcome i.sex i.group sex#group age, vce(robust)

. margins sex group, vce(unconditional)

We do that below:
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. logistic outcome i.sex i.group sex#group age, vce(robust)
(output omitted )

. margins sex group, vce(unconditional)

Predictive margins Number of obs = 3000

Expression : Pr(outcome), predict()

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1600644 .0131685 12.16 0.000 .1342546 .1858743
1 .1966902 .0104563 18.81 0.000 .1761963 .2171841

group
1 .2251302 .0127069 17.72 0.000 .200225 .2500354
2 .150603 .0118399 12.72 0.000 .1273972 .1738088
3 .0736157 .0343188 2.15 0.032 .0063522 .1408793

The estimated margins are the same as they were in example 6, but the standard errors and
confidence intervals differ, although not by much. Given that we have 3,000 observations in our
randomly drawn sample, we should expect this.

Example 20: Inferences for populations, marginal effects

In example 17, we fit a logistic model and then obtained the average marginal effects for all
covariates by typing

. logistic outcome treatment##group age c.age#c.age treatment#c.age

. margins, dydx(*)

To repeat that and also obtain standard errors for our population, we would type

. logistic outcome treatment##group age c.age#c.age treatment#c.age,
> vce(robust)

. margins, dydx(*) vce(unconditional)

The results are
. logistic outcome treatment##group age c.age#c.age treatment#c.age, vce(robust)

(output omitted )
. margins, dydx(*) vce(unconditional)

Average marginal effects Number of obs = 3000

Expression : Pr(outcome), predict()
dy/dx w.r.t. : 1.treatment 2.group 3.group age

Unconditional
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.treatment .0385625 .0163872 2.35 0.019 .0064442 .0706808

group
2 -.0776906 .0179573 -4.33 0.000 -.1128863 -.0424949
3 -.1505652 .0411842 -3.66 0.000 -.2312848 -.0698456

age .0095868 .0007814 12.27 0.000 .0080553 .0111183

Note: dy/dx for factor levels is the discrete change from the base level.
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Example 21: Inferences for populations with svyset data

See example 3 in [SVY] svy postestimation.

Standardizing margins

A standardized margin is the margin calculated on data different from the data used to fit the
model. Typically, the word standardized is reserved for situations in which the alternate population
is a reference population, which may be real or artificial, and which is treated as fixed.

Say that you work for a hospital and have fit a model of mortality on the demographic characteristics
of the hospital’s patients. At this stage, were you to type

. margins

you would obtain the mortality rate for your hospital. You have another dataset, hstandard.dta,
that contains demographic characteristics of patients across all hospitals along with the population
of each hospital recorded in the pop variable. You could obtain the expected mortality rate at your
hospital if your patients matched the characteristics of the standard population by typing

. use http://www.stata-press.com/data/r12/hstandard, clear

. margins [fw=pop], noesample

You specified noesample because the margin is being calculated on data other than the data used
to estimate the model. You specified [fw=pop] because the reference dataset you are using included
population counts, as many reference datasets do.

Obtaining margins as though the data were balanced

Here we discuss what are commonly called estimated marginal means or least-squares means.
These are margins assuming that all levels of factor variables are equally likely or, equivalently, that
the design is balanced. The seminal reference on these margins is Searle, Speed, and Milliken (1980).

In designed experiments, observations are often allocated in a balanced way so that the variances can
be easily compared and decomposed. At the Acme Portable Widget Company, they are experimenting
with a new machine. The machine has three temperature settings and two pressure settings; a
combination of settings will be optimal on any particular day, determined by the weather. At start-up,
one runs a quick test and chooses the optimal setting for the day. Across different days, each setting
will be used about equally, says the manufacturer.

In experiments with the machine, 10 widgets were collected for stress testing at each of the settings
over a six-week period. We wish to know the average stress-test value that can be expected from
these machines over a long period.

Balancing using asbalanced

The data were intended to be balanced, but unfortunately, the stress test sometimes destroys samples
before the stress can be measured. Thus even though the experiment was designed to be balanced,
the data are not balanced. You specify the asbalanced option to estimate the margins as if the data
were balanced. We will type

. use http://www.stata-press.com/data/r12/acmemanuf

. regress y pressure##temp

. margins, asbalanced
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So that you can compare the asbalanced results with the observed results, we will also include
margins without the asbalanced option in what follows:

. use http://www.stata-press.com/data/r12/acmemanuf

. regress y pressure##temp
(output omitted )

. margins

Predictive margins Number of obs = 49
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 109.9214 1.422629 77.27 0.000 107.1331 112.7097

. margins, asbalanced

Adjusted predictions Number of obs = 49
Model VCE : OLS

Expression : Linear prediction, predict()
at : pressure (asbalanced)

temp (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 115.3758 1.530199 75.40 0.000 112.3767 118.375

Technical note

Concerning how asbalanced calculations are performed, if a factor variable has l levels, then
each level’s coefficient contributes to the response weighted by 1/l. If two factors, a and b, interact,
then each coefficient associated with their interaction is weighted by 1/(la × lb).

If a balanced factor interacts with a continuous variable, then each coefficient in the interaction is
applied to the value of the continuous variable, and the results are weighted equally. So, if the factor
being interacted has la levels, the effect of each coefficient on the value of the continuous covariate
is weighted by 1/la.

Balancing by standardization

To better understand the balanced results, we can perform the balancing ourselves by using the
standardizing method shown in Standardizing margins. To do that, we will input a balanced dataset
and then type margins, noesample.
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. use http://www.stata-press.com/data/r12/acmemanuf

. regress y pressure##temp
(output omitted )

. drop _all

. input pressure temp

pressure temp
1. 1 1
2. 1 2
3. 1 3
4. 2 1
5. 2 2
6. 2 3
7. end

. margins, noesample

Predictive margins Number of obs = 6
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 115.3758 1.530199 75.40 0.000 112.3767 118.375

We obtain the same results as previously.

Balancing nonlinear responses

If our testing had produced a binary outcome, say, acceptable/unacceptable, rather than a continuous
variable, we would type

. use http://www.stata-press.com/data/r12/acmemanuf, clear

. logistic acceptable pressure##temp

. margins, asbalanced

The result of doing that would be 0.680. If we omitted the asbalanced option, the result would
have been 0.667. The two results are so similar because acmemanuf.dta is nearly balanced.

Even though the asbalanced option can be used on both linear and nonlinear responses, such
as probabilities, there is an issue of which you should be aware. The most widely used formulas for
balancing responses apply the balancing to the linear prediction, average that as if it were balanced,
and then apply the nonlinear transform. That is the calculation that produced 0.680.

An alternative would be to apply the standardization method. That amounts to making the linear
predictions observation by observation, applying the nonlinear transform to each, and then averaging
the nonlinear result as if it were balanced. You could do that by typing

. use http://www.stata-press.com/data/r12/acmemanuf, clear

. logistic acceptable pressure##temp

. clear

. input pressure temp
(see above for entered data)

. margins, noesample
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The result from the standardization procedure would be 0.672. These two ways of averaging
nonlinear responses are discussed in detail in Lane and Nelder (1982) within the context of general
linear models.

Concerning the method used by the asbalanced option, if your data start balanced and you have
a nonlinear response, you will get different results with and without the asbalanced option!

Treating a subset of covariates as balanced

So far, we have treated all the covariates as if they were balanced. margins will allow you to treat
a subset of the covariates as balanced, too. For instance, you might be performing an experiment in
which you are randomly allocating patients to a treatment arm and so want to balance on arm, but you
do not want to balance the other characteristics because you want mean effects for the experiment’s
population.

In this example, we will imagine that the outcome of the experiment is continuous. We type

. use http://www.stata-press.com/data/r12/margex, clear

. regress y arm##sex sex##agegroup

. margins, at((asbalanced) arm)

If we wanted results balanced on agegroup as well, we could type

. margins, at((asbalanced) arm agegroup)

If we wanted results balanced on all three covariates, we could type

. margins, at((asbalanced) arm agegroup sex)

or we could type

. margins, at((asbalanced) _factor)

or we could type

. margins, asbalanced

Using fvset design

As a convenience feature, equivalent to

. regress y arm##sex sex##agegroup

. margins, at((asbalanced) arm sex)

is

. fvset design asbalanced arm sex

. regress y arm##sex sex##agegroup

. margins

The advantage of the latter is that you have to set the variables as balanced only once. This is
useful when balancing is a design characteristic of certain variables and you wish to avoid accidentally
treating them as unbalanced.

If you save your data after fvsetting, the settings will be remembered in future sessions. If you
want to clear the setting(s), type

. fvset clear varlist

See [R] fvset.
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Balancing in the presence of empty cells

The issue of empty cells is not exclusively an issue of balancing, but there are special considerations
when balancing. Empty cells are discussed generally in Estimability of margins.

An empty cell is an interaction of levels of two or more factor variables for which you have
no data. Usually, margins involving empty cells cannot be estimated. When balancing, there is an
alternate definition of the margin that allows the margin to be estimated. margins makes the alternate
calculation when you specify the emptycells(reweight) option. By default, margins uses the
emptycells(strict) option.

If you have empty cells in your data and you request margins involving the empty cells, those
margins will be marked as not estimable even if you specify the asbalanced option.

. use http://www.stata-press.com/data/r12/estimability, clear
(margins estimability)

. regress y sex##group
(output omitted )

. margins sex, asbalanced

Adjusted predictions Number of obs = 69
Model VCE : OLS

Expression : Linear prediction, predict()
Empty cells : reweight
at : sex (asbalanced)

group (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 21.91389 1.119295 19.58 0.000 19.72011 24.10767
1 . (not estimable)

This example is discussed in Estimability of margins, although without the asbalanced option.
What is said there is equally relevant to the asbalanced case. For reasons explained there, the
margin for sex = 1 cannot be estimated.

The margin for sex = 1 can be estimated in the asbalanced case if you are willing to
make an assumption. Remember that margins makes the balanced calculation by summing the
responses associated with the levels and then dividing by the number of levels. If you specify
emptycells(reweight), margins sums what is available and divides by the number available.
Thus you are assuming that, whatever the responses in the empty cells, those responses are such that
they would not change the overall mean of what is observed.
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The results of specifying emptycells(reweight) are
. margins sex, asbalanced emptycells(reweight)

Adjusted predictions Number of obs = 69
Model VCE : OLS

Expression : Linear prediction, predict()
Empty cells : reweight
at : sex (asbalanced)

group (asbalanced)

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 21.91389 1.119295 19.58 0.000 19.72011 24.10767
1 24.85185 1.232304 20.17 0.000 22.43658 27.26712

Obtaining margins with nested designs

Introduction

Factors whose meaning depends on other factors are called nested factors, and the factors on which
their meaning depends are called the nesting factors. For instance, assume that we have a sample
of patients and each patient is assigned to one doctor. Then patient is nested within doctor. Let the
identifiers of the first 5 observations of our data be

Doctor Patient Name
1 1 Fred
1 2 Mary
1 3 Bob

2 1 Karen
2 2 Hank

The first patient on one doctor’s list has nothing whatsoever to do with the first patient on another
doctor’s list. The meaning of patient = 1 is defined only when the value of doctor is supplied.

Nested factors enter into models as interactions of nesting and nested; the nested factor does not
appear by itself. We might estimate a model such as

. regress y . . . i.doctor doctor#patient . . .

You do not include i.patient because the coding for patient has no meaning except within
doctor. Patient 1 is Fred for doctor 1 and Karen for doctor 2, etc.

margins provides an option to help account for the structure of nested models. The within(varlist)
option specifies that margins estimate and report a set of margins for the value combinations of
varlist. We might type

. margins, within(doctor)

Margin calculations are performed first for doctor = 1, then for doctor = 2, and so on.

Sometimes you need to specify within(), and other times you do not. Let’s consider the particular
model

. regress y i.doctor doctor#patient i.sex sex#doctor#patient
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The guidelines are the following:

1. You may compute overall margins by typing
margins.

2. You may compute overall margins within levels of a nesting factor by typing
margins, within(doctor).

3. You may compute margins of a nested factor within levels of its nesting factor by typing
margins patient, within(doctor).

4. You may compute margins of factors in your model, as long as the factor does not nest
other factors and is not nested within other factors, by typing
margins sex.

5. You may not compute margins of a nesting factor, such as margins doctor, because they
are not estimable.

For examples using within(), see [R] anova.

Margins with nested designs as though the data were balanced

To obtain margins with nested designs as though the data were balanced, the guidelines are the
same as above except that 1) you add the asbalanced option and 2) whenever you do not specify
within(), you specify emptycells(reweight). The updated guidelines are

1. You may compute overall margins by typing
margins, asbalanced emptycells(reweight).

2. You may compute overall margins within levels of a nesting factor by typing
margins, asbalanced within(doctor).

3. You may compute margins of a nested factor within levels of its nesting factor by typing
margins patient, asbalanced within(doctor).

4. You may compute margins of factors in your model, as long as the factor does not nest
other factors and is not nested within other factors, by typing
margins sex, asbalanced emptycells(reweight).

5. You may not compute margins of a nesting factor, such as margins doctor, because they
are not estimable.

Just as explained in Using fvset design, rather than specifying the asbalanced option, you may
set the balancing characteristic on the factor variables once and for all by using the command fvset
design asbalanced varlist.

Technical note
Specifying either emptycells(reweight) or within(varlist) causes margins to rebalance over

all empty cells in your model. If you have interactions in your model that are not involved in the
nesting, margins will lose its ability to detect estimability.

Technical note
Careful readers will note that the description of within(varlist) matches closely the description of

over(varlist). The concept of nesting is similar to the concept of subpopulations. within() differs
from over() in that it gracefully handles the missing cells when margins are computed as balanced.
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Coding of nested designs

In the Introduction to this section, we showed a coding of the nested variable patient, where
the coding started over with each doctor:

Doctor Patient Name
1 1 Fred
1 2 Mary
1 3 Bob

2 1 Karen
2 2 Hank

That coding style is not required. The data could just as well have been coded

Doctor Patient Name
1 1 Fred
1 2 Mary
1 3 Bob

2 4 Karen
2 5 Hank

or even

Doctor Patient Name
1 1037239 Fred
1 2223942 Mary
1 0611393 Bob

2 4433329 Karen
2 6110271 Hank

Actually, either of the above two alternatives are better than the first one because margins will
be better able to give you feedback about estimability should you make a mistake following the
guidelines. On the other hand, both of these two alternatives require more memory at the estimation
step. If you run short of memory, you will need to recode your patient ID to the first coding style,
which you could do by typing

. sort doctor patient

. by doctor: gen newpatient = _n

Alternatively, you can set emptycells drop and continue to use your patient ID variable just as
it is coded. If you do this, we recommend that you remember to type set emptycells keep when
you are finished; margins is better able to determine estimability that way. If you regularly work
with large nested models, you can set emptycells keep, permanently so that the setting persists
across sessions. See [R] set emptycells.
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Special topics

Requirements for model specification

The results that margins reports are based on the most recently fit model or, in Stata jargon, the
most recently issued estimation command. Here we discuss 1) mechanical requirements for how you
specify that estimation command, 2) work-arounds to use when those restrictions prove impossible,
and 3) requirements for margins’ predict(pred opt) option to work.

Concerning 1, when you specify the estimation command, covariates that are logically factor
variables must be Stata factor variables, and that includes indicator variables, binary variables, and
dummies. It will not do to type

. regress y . . . female . . .

even if female is a 0/1 variable. You must type

. regress y . . . i.female . . .

If you violate this rule, you will not get incorrect results, but you will discover that you will be
unable to obtain margins on female:

. margins female
factor female not found in e(b)
r(111);

It is also important that if the same continuous variable appears in your model more than once,
differently transformed, those transforms be performed via Stata’s factor-variable notation. It will not
do to type

. generate age2 = age^2

. regress y . . . age age2 . . .

You must type

. regress y . . . age c.age#c.age . . .

You must do that because margins needs to know everywhere that variable appears in the model
if it is to be able to set covariates to fixed values.

Concerning 2, sometimes the transformations you desire may not be achievable using the factor-
variable notation; in those situations, there is a work-around. Let’s assume you wish to estimate

. generate age1_5 = age^1.5

. regress y . . . age age1_5 . . .

There is no factor-variable notation for including age and age1.5 in a model, so obviously you
are going to obtain the estimates by typing just what we have shown. In what follows, it would be
okay if there are interactions of age and age1 5 with other variables specified by the factor-variable
notation, so the model could just as well be

. regress y . . . age age1_5 sex#c.age sex#c.age1_5 . . .

Let’s assume you have fit one of these two models. On any subsequent margins command where
you leave age free to vary, there will be no issue. You can type

. margins female
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and results will be correct. Issues arise when you attempt to fix age at predetermined values. The
following would produce incorrect results:

. margins female, at(age=20)

The results would be incorrect because they leave age1 5 free to vary, and, logically, fixing age
implies that age1 5 should also be fixed. Because we were unable to state the relationship between
age and age1 5 using the factor-variable notation, margins does not know to fix age1 5 at 201.5

when it fixes age at 20. To get the correct results, you must fix the value of age1 5 yourself:

. margins female, at(age=20 age1_5=89.442719)

That command produces correct results. In the command, 89.442719 is 201.5.

In summary, when there is a functional relationship between covariates of your model and that
functional relationship is not communicated to margins via the factor-variable notation, then it
becomes your responsibility to ensure that all variables that are functionally related are set to the
appropriate fixed values when any one of them is set to a fixed value.

Concerning 3, we wish to amend our claim that you can calculate margins for anything that
predict will produce. We need to add a qualifier. Let us show you an example where the statement
is not true. After regress, predict will predict something it calls pr(a,b), which is the probability
a ≤ y ≤ b. Yet if we attempted to use pr() with margins after estimation by regress, we would
obtain

. margins sex, predict(pr(10,20))
prediction is a function of possibly stochastic quantities other than e(b)
r(498);

What we should have stated was that you can calculate margins for anything that predict will
produce for which all the estimated quantities used in its calculation appear in e(V), the estimated
VCE. pr() is a function of β, the estimated coefficients, and of s2, the estimated variance of the
residual. regress does not post the variance of the residual variance (sic) in e(V), or even estimate it,
and therefore, predict(pr(10,20)) cannot be specified with margins after estimation by regress.

It is unlikely that you will ever encounter these kinds of problems because there are so few
predictions where the components are not posted to e(V). If you do encounter the problem, the
solution may be to specify nose to suppress the standard-error calculation. If the problem is not with
computing the margin, but with computing its standard error, margins will report the result:

. margins sex, predict(pr(10,20)) nose
(output appears with SEs, tests, and CIs left blank)

Technical note

Programmers: If you run into this after running an estimation command that you have written, be
aware that as of Stata 11, you are supposed to set in e(marginsok) the list of options allowed with
predict that are okay to use with margins. When that list is not set, margins looks for violations
of its assumptions and, if it finds any, refuses to proceed.
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Estimability of margins

Sometimes margins will report that a margin cannot be estimated:

. use http://www.stata-press.com/data/r12/estimability, clear
(margins estimability)

. regress y sex##group
(output omitted )

. margins sex

Predictive margins Number of obs = 69
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 21 .8500245 24.71 0.000 19.33398 22.66602
1 . (not estimable)

In the above output, the margin for sex = 0 is estimated, but the margin for sex = 1 is not
estimable. This occurs because of empty cells. An empty cell is an interaction of levels of two or
more factor variables for which you have no data. In the example, the lack of estimability arises
because we have two empty cells:

. table sex group

group
sex 1 2 3 4 5

0 2 9 27 8 2
1 9 9 3

To calculate the marginal mean response for sex = 1, we have no responses to average over for
group = 4 and group = 5. We obviously could calculate that mean for the observations that really
are sex = 1, but remember, the marginal calculation for sex = 1 treats everyone as if female, and
we will thus have 8 and 2 observations for which we have no basis for estimating the response.

There is no solution for this problem unless you are willing to treat the data as if it were balanced
and adjust your definition of a margin; see Balancing in the presence of empty cells.

Manipulability of tests

Manipulability is a problem that arises with some tests, and in particular, arises with Wald tests.
Tests of margins are based on Wald tests, hence our interest. This is a generic issue and not specific
to the margins command.

Let’s understand the problem. Consider performing a test of whether some statistic φ is 0. Whatever
the outcome of that test, it would be desirable if the outcome were the same were we to test whether
the sqrt(φ) were 0, or whether φ2 were 0, or whether any other monotonic transform of φ were 0
(for φ2, we were considering only the positive half of the number line). If a test does not have that
property, it is manipulable.

Wald tests are manipulable, and that means the tests produced by margins are manipulable. You
can see this for yourself by typing
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. use http://www.stata-press.com/data/r12/margex, clear

. replace y = y - 65

. regress y sex##group

. margins

. margins, expression(predict(xb)^2)

We would prefer if the test against zero produced by margins was equal to the test produced
by margins, expression(predict(xb)^2). But alas, they produce different results. The first
produces z = 12.93, and the second produces z = 12.57.

The difference is not much in our example, but behind the scenes, we worked to make it small.
We subtracted 65 from y so that the experiment would be for a case where it might be reasonable that
you would be testing against 0. One does not typically test whether the mean income in the United
States is zero or whether the mean blood pressure of live patients is zero. Had we left y as it was
originally, we would have obtained z = 377 and z = 128. We did not want to show that comparison
to you first because the mean of y is so far from 0 that you probably would never be testing it. The
corresponding difference in φ is tiny.

Regardless of the example, it is important that you base your tests in the metric where the
likelihood surface is most quadratic. For further discussion on manipulability, see Manipulability in
[R] predictnl.

This manipulability is not limited to Wald tests after estimation; you can also see the manipulability
of results produced by linear regression just by applying nonlinear transforms to a covariate (Phillips
and Park 1988; Gould 1996).

Using margins after the estimates use command

Assume you fit and used estimates save (see [R] estimates save) to save the estimation results:

. regress y sex##group age c.age*c.age if site==1

. . . .

. estimates save mymodel
(file mymodel.ster saved)

Later, perhaps in a different Stata session, you reload the estimation results by typing

. estimates use mymodel

You plan to use margins with the reloaded results. You must remember that margins bases its
results not only on the current estimation results but also on the current data in memory. Before you
can use margins, you must reload the dataset on which you fit the model or, if you wish to produce
standardized margins, some other dataset.

. use mydata, clear
(data for fitting models)

If the dataset you loaded contained the data for standardization, you can stop reading; you know
that to produce standardized margins, you need to specify the noesample option.

We reloaded the original data and want to produce margins for the estimation sample. In addition
to the data, margins requires that e(sample) be set, as margins will remind us:

. margins sex
e(sample) does not identify the estimation sample
r(322);
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The best solution is to use estimates esample to rebuild e(sample):

. estimates esample: y sex group age if site==1

If we knew we had no missing values in y and the covariates, we could type

. estimates esample: if site==1

Either way, margins would now work:

. margins sex
(usual output appears)

There is an alternative. We do not recommend it, but we admit that we have used it. Rather
than rebuilding e(sample), you can use margins’ noesample option to tell margins to skip
using e(sample). You could then specify the appropriate if statement (if necessary) to identify the
estimation sample:

. estimates use mymodel

. use mydata, clear
(data for fitting models)

. margins sex if !missing(y, sex, group age) & site==1, noesample
(usual output appears)

In the above, we are not really running on a sample different from the estimation sample; we are
merely using noesample to fool margins, and then we are specifying on the margins command
the conditions equivalent to re-create e(sample).

If we wish to obtain vce(unconditional) results, however, noesample will be insufficient. We
must also specify the force option,

. margins sex if !missing(y, sex, group age) & site==1,
> vce(unconditional) noesample force
(usual output appears)

Regardless of the approach you choose—resetting e(sample) or specifying noesample and
possibly force—make sure you are right. In the vce(delta) case, you want to be right to ensure
that you obtain the results you want. In the vce(unconditional) case, you need to be right because
otherwise results will be statistically invalid.

Syntax of at()

In at(atspec), atspec may contain one or more of the following specifications:

varlist

(stat) varlist

varname = #

varname = (numlist)

where

1. varnames must be covariates in the previously fit model (estimation command).

2. Variable names (whether in varname or varlist) may be continuous variables, factor variables,
or specific level variables, such as age, group, or 3.group.
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3. varlist may also be one of three standard lists:

a. all (all covariates),

b. factor (all factor-variable covariates), or

c. continuous (all continuous covariates).

4. Specifications are processed from left to right with latter specifications overriding previous
ones.

5. stat can be any of the following:

Variables
stat Description allowed

asobserved at observed values in the sample (default) all
mean means (default for varlist) all
median medians continuous
p1 1st percentile continuous
p2 2nd percentile continuous
. . . 3rd–49th percentiles continuous
p50 50th percentile (same as median) continuous
. . . 51st–97th percentiles continuous
p98 98th percentile continuous
p99 99th percentile continuous
min minimums continuous
max maximums continuous
zero fixed at zero continuous
base base level factors
asbalanced all levels equally probable and sum to 1 factors

Any stat except zero, base, and asbalanced may be prefixed with an o to get the overall
statistic—the sample over all over() groups. For example, omean, omedian, and op25. Overall
statistics differ from their correspondingly named statistics only when the over() or within() option
is specified. When no stat is specified, mean is assumed.

Estimation commands that may be used with margins

margins may be used after most estimation commands.

margins cannot be used after estimation commands that do not produce full variance matrices,
such as exlogistic and expoisson (see [R] exlogistic and [R] expoisson).

margins is all about covariates and cannot be used after estimation commands that do not post
the covariates, which eliminates gmm (see [R] gmm).

margins cannot be used after estimation commands that have an odd data organization, and
that excludes asclogit, asmprobit, asroprobit, and nlogit (see [R] asclogit, [R] asmprobit,
[R] asroprobit, and [R] nlogit).
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Glossary

adjusted mean. A margin when the response is the linear predictor from linear regression, ANOVA,
etc. For some authors, adjusting also implies adjusting for unbalanced data. See Obtaining margins
of responses and see Obtaining margins as though the data were balanced.

average marginal effect. See marginal effect and average marginal effect.

average partial effect. See partial effect and average partial effect.

conditional margin. A margin when the response is evaluated at fixed values of all the covariates.
If any covariates are left to vary, the margin is called a predictive margin.

effect. The effect of x is the derivative of the response with respect to covariate x, or it is the
difference in responses caused by a discrete change in x. Also see marginal effect.

The effect of x measures the change in the response for a change in x. Derivatives or differences
might be reported as elasticities. If x is continuous, the effect is measured continuously. If x is a
factor, the effect is measured with respect to each level of the factor and may be calculated as a
discrete difference or as a continuous change, as measured by the derivative. margins calculates
the discrete difference by default and calculates the derivative if the continuous option is specified.

elasticity and semielasticity. The elasticity of y with respect to x is d(lny)/d(lnx) = (x/y)×(dy/dx),
which is approximately equal to the proportional change in y for a proportional change in x.

The semielasticity of y with respect to x is either 1) dy/d(lnx) = x× (dy/dx) or 2) d(lny)/dx =
(1/y) × (dy/dx), which is approximately 1) the change in y for a proportional change in x or
2) the proportional change in y for a change in x.

empty cell. An interaction of levels of two or more factor variables for which you have no data. For
instance, you have sex interacted with group in your model, and in your data there are no females
in group 1. Empty cells affect which margins can be estimated; see Estimability of margins.

estimability. Estimability concerns whether a margin can be uniquely estimated (identified); see
Estimability of margins.

estimated marginal mean. This is one of the few terms that has the same meaning across authors.
An estimated marginal mean is a margin assuming the levels of each factor covariate are equally
likely (balanced), including interaction terms. This is obtained using margins’ asbalanced
option. In addition, there is an alternate definition of estimated marginal mean in which margins
involving empty cells are redefined so that they become estimable. This is invoked by margins’
emptycells(reweight) option. See Balancing in the presence of empty cells.

least-squares mean. Synonym for estimated marginal mean.

margin. A statistic calculated from predictions or other statistics of a previously fit model at fixed
values of some covariates and averaging or otherwise integrating over the remaining covariates.
The prediction or other statistic on which the margin is based is called the response.

If all the covariates are fixed, then the margin is called a conditional margin. If any covariates are
left to vary, the margin is called a predictive margin.

In this documentation, we divide margins on the basis of whether the statistic is a response or a
derivative of a response; see Obtaining margins of responses and Obtaining margins of derivatives
of responses.

marginal effect and average marginal effect. The marginal effect of x is the margin of the effect
of x. The term is popular with social scientists, and because of that, you might think the word
marginal in marginal effect means derivative because of terms like marginal cost and marginal
revenue. Marginal used in that way, however, refers to the derivative of revenue and the derivative
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of cost; it refers to the numerator, whereas marginal effect refers to the denominator. Moreover,
effect is already a derivative or difference.

Some researchers interpret marginal in marginal effect to mean instantaneous, and thus a marginal
effect is the instantaneous derivative rather than the discrete first-difference, corresponding to
margins’ continuous option. Researchers who use marginal in this way refer to the discrete
difference calculation of an effect as a partial effect.

Other researchers define marginal effect to be the margin when all covariates are held fixed and
the average marginal effect when some covariates are not fixed.

out-of-sample prediction. Predictions made in one dataset using the results from a model fit on
another. Sample here refers to the sample on which the model was fit, and out-of-sample refers
to the dataset on which the predictions are made.

partial effect and average partial effect. Some authors restrict the term marginal effect to mean
derivatives and use the term partial effect to denote discrete differences; see marginal effect and
average marginal effect.

population marginal mean. The theoretical (true) value that is estimated by estimated marginal mean.
We avoid this term because it can be confused with the concept of a population in survey statistics,
with which the population marginal mean has no connection.

posting results, posting margins. A Stata concept having to do with saving the results from the
margins command in e() so that those results can be used as if they were estimation results,
thus allowing the subsequent use of postestimation commands, such as test, testnl, lincom,
and nlcom (see [R] test, [R] testnl, [R] lincom, and [R] nlcom). This is achieved by specifying
margins’ post option. See Example 10: Testing margins—contrasts of margins.

predictive margin. A margin in which all the covariates are not fixed. When all covariates are fixed,
it is called a conditional margin.

recycled prediction. A synonym for predictive margin.

response. A prediction or other statistic derived from combining the parameter estimates of a fitted
model with data or specified values on covariates. Derivatives of responses are themselves responses.
Responses are what we take margins of.

standardized margin. The margin calculated on data different from the data used to fit the model.
The term standardized is usually reserved for situations in which the alternate population is a
reference population, which may be real or artificial, and which is treated as fixed.

subpopulation. A subset of your sample that represents a subset of the population, such as the
males in a sample of people. In survey contexts when it is desired to account for sampling of the
covariates, standard errors for marginal statistics and effects need to account for both the population
and the subpopulation. This is accomplished by specifying the vce(unconditional) option and
one of the subpop() or over() options. In fact, the above is allowed even when your data are
not svyset because vce(unconditional) implies that the sample represents a population.
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Saved results
margins saves the following in r():

Scalars
r(N) number of observations
r(N sub) subpopulation observations
r(N clust) number of clusters
r(N psu) number of sampled PSUs, survey data only
r(N strata) number of strata, survey data only
r(df r) variance degrees of freedom, survey data only
r(N poststrata) number of post strata, survey data only
r(k margins) number of terms in marginlist
r(k by) number of subpopulations
r(k at) number of at() options
r(level) confidence level of confidence intervals

Macros
r(cmd) margins
r(cmdline) command as typed
r(est cmd) e(cmd) from original estimation results
r(est cmdline) e(cmdline) from original estimation results
r(title) title in output
r(subpop) subspec from subpop()
r(model vce) vcetype from estimation command
r(model vcetype) Std. Err. title from estimation command
r(vce) vcetype specified in vce()
r(vcetype) title used to label Std. Err.
r(clustvar) name of cluster variable
r(margins) marginlist
r(predict label) label from predict()
r(expression) response expression
r(xvars) varlist from dydx(), dyex(), eydx(), or eyex()
r(derivatives) “ ”, “dy/dx”, “dy/ex”, “ey/dx”, “ey/ex”
r(over) varlist from over()
r(within) varlist from within()
r(by) union of r(over) and r(within) lists
r(by#) interaction notation identifying the #th subpopulation
r(atstats#) the #th at() specification
r(emptycells) empspec from emptycells()
r(mcmethod) method from mcompare()
r(mcadjustall) adjustall or empty

Matrices
r(b) estimates
r(V) variance–covariance matrix of the estimates
r(Jacobian) Jacobian matrix
r( N) sample size corresponding to each margin estimate
r(at) matrix of values from the at() options
r(chainrule) chainrule information from the fitted model
r(error) margin estimability codes;

0 means estimable,
8 means not estimable

r(table) matrix containing the margins with their standard errors, test statistics, p-values,
and confidence intervals
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margins with the post option also saves the following in e():

Scalars
e(N) number of observations
e(N sub) subpopulation observations
e(N clust) number of clusters
e(N psu) number of sampled PSUs, survey data only
e(N strata) number of strata, survey data only
e(df r) variance degrees of freedom, survey data only
e(N poststrata) number of post strata, survey data only
e(k margins) number of terms in marginlist
e(k by) number of subpopulations
e(k at) number of at() options

Macros
e(cmd) margins
e(cmdline) command as typed
e(est cmd) e(cmd) from original estimation results
e(est cmdline) e(cmdline) from original estimation results
e(title) title in estimation output
e(subpop) subspec from subpop()
e(model vce) vcetype from estimation command
e(model vcetype) Std. Err. title from estimation command
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(clustvar) name of cluster variable
e(margins) marginlist
e(predict label) label from predict()
e(expression) prediction expression
e(xvars) varlist from dydx(), dyex(), eydx(), or eyex()
e(derivatives) “ ”, “dy/dx”, “dy/ex”, “ey/dx”, “ey/ex”
e(over) varlist from over()
e(within) varlist from within()
e(by) union of r(over) and r(within) lists
e(by#) interaction notation identifying the #th subpopulation
e(atstats#) the #th at() specification
e(emptycells) empspec from emptycells()
e(mcmethod) method from mcompare()
e(mcadjustall) adjustall or empty

Matrices
e(b) estimates
e(V) variance–covariance matrix of the estimates
e(Jacobian) Jacobian matrix
e( N) sample size corresponding to each margin estimate
e(at) matrix of values from the at() options
e(chainrule) chainrule information from the fitted model

Functions
e(sample) marks estimation sample

Methods and formulas
margins is implemented as an ado-file.

Margins are statistics calculated from predictions of a previously fit model at fixed values of
some covariates and averaging or otherwise integrating over the remaining covariates. There are many
names for the different statistics that margins can compute: estimates marginal means (see Searle,
Speed, and Milliken [1980]), predictive margins (see Graubard and Korn [2004]), marginal effects
(see Greene [2012]), and average marginal/partial effects (see Wooldridge [2010] and Bartus [2005]).
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Methods and formulas are presented under the following headings:
Notation
Marginal effects
Fixing covariates and balancing factors
Estimable functions
Standard errors conditional on the covariates
Unconditional standard errors

Notation

Let θ be the vector of parameters in the current model fit, let z be a vector of covariate values, and
let f(z, θ) be a scalar-valued function returning the value of the predictions of interest. The following
table illustrates the parameters and default prediction for several of Stata’s estimation commands.

Command θ z f(z, θ)

regress β x xβ
cloglog β x 1− e−exβ

logit β x 1/(1 + e−xβ)
poisson β x exβ

probit β x Φ(xβ)
biprobit β1,β2, ρ x1,x2 Φ2(x1β1,x2β2, ρ)
mlogit β1,β2, . . . ,βk x e−xβ1/(

∑
i e
−xβi)

nbreg β, lnα x exβ

Φ() and Φ2() are cumulative distribution functions: Φ() for the standard normal distribution and
Φ2() for the standard bivariate normal distribution.

margins computes estimates of

p(θ) =
1

MSp

M∑
j=1

δj(Sp)f(zj , θ)

where δj(Sp) identifies elements within the subpopulation Sp (for the prediction of interest),

δj(Sp) =
{

1, j ∈ Sp

0, j 6∈ Sp

MSp is the subpopulation size,

MSp =
M∑
j=1

δj(Sp)

and M is the population size.

Let θ̂ be the vector of parameter estimates. Then margins estimates p(θ) via

p̂ =
1
w·

N∑
j=1

δj(Sp)wjf(zj , θ̂)
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where

w· =
N∑
j=1

δj(Sp)wj

δj(Sp) indicates whether observation j is in subpopulation Sp, wj is the weight for the jth observation,
and N is the sample size.

Marginal effects

margins also computes marginal/partial effects. For the marginal effect of continuous covariate
x, margins computes

p̂ =
1
w·

N∑
j=1

δj(Sp)wjh(zj , θ̂)

where

h(z, θ) =
∂f(z, θ)
∂x

The marginal effect for level k of factor variable A is the simple contrast (a.k.a. difference) comparing
its margin with the margin at the base level.

h(z, θ) = f(z, θ|A = k)− f(z, θ|A = base)

Fixing covariates and balancing factors

margins controls the values in each z vector through the marginlist, the at() option, the atmeans
option, and the asbalanced and emptycells() options. Suppose z is composed of the elements
from the equation specification

A##B x

where A is a factor variable with a levels, B is a factor variable with b levels, and x is a continuous
covariate. To simplify the notation for this discussion, assume the levels of A and B start with 1 and
are contiguous. Then

z = (A1, . . . , Aa, B1, . . . , Bb, A1B1, A1B2, . . . , AaBb, x, 1)

where Ai, Bj , and AiBj represent the indicator values for the factor variables A and B and the
interaction A#B.

When factor A is in the marginlist, margins replaces A with i and then computes the mean of the
subsequent prediction, for i = 1, . . . , a. When the interaction term A#B is in the marginlist, margins
replaces A with i and B with j, and then computes the mean of the subsequent prediction, for all
combinations of i = 1, . . . , a and j = 1, . . . , b.



margins — Marginal means, predictive margins, and marginal effects 1075

The at() option sets model covariates to fixed values. For example, at(x=15) causes margins
to temporarily set x to 15 for each observation in the dataset before computing any predictions.
Similarly, at((median) x) causes margins to temporarily set x to the median of x using the current
dataset.

When factor variable A is specified as asbalanced, margins sets each Ai to 1/a. Thus each z
vector will look like

z = (1/a, . . . , 1/a,B1, . . . , Bb, B1/a,B2/a, . . . , Bb/a, x, 1)

If B is also specified as asbalanced, then each Bj is set to 1/b, and each z vector will look like

z = (1/a, . . . , 1/a, 1/b, . . . , 1/b, 1/ab, 1/ab, . . . , 1/ab, x, 1)

If emptycells(reweight) is also specified, then margins uses a different balancing weight for each
element of z, depending on how many empty cells the element is associated with. Let δij indicate
that the ijth cell of A#B was observed in the estimation sample.

δij =
{

0, A= i and B= j was an empty cell
1, otherwise

For the grand margin, the affected elements of z and their corresponding balancing weights are

Ai =

∑
j δij∑

k

∑
j δkj

Bj =
∑
i δij∑

i

∑
k δik

AiBj =
δij∑

k

∑
l δkl

For the jth margin of B, the affected elements of z and their corresponding balancing weights are

Ai =
δij∑
k δkj

Bl =
{

1, if l = j and not all δij are zero
0, otherwise

AiBl =
δil∑
k δkl

Bl
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Estimable functions
The fundamental idea behind estimable functions is clearly defined in the statistical literature for

linear models; see Searle (1971). Assume that we are working with the following linear model:

y = Xb + e

where y is an N ×1 vector of responses, X is an N ×p matrix of covariate values, b is a p×1 vector
of coefficients, and e is a vector of random errors. Assuming a constant variance for the random
errors, the normal equations for the least-squares estimator, b̂, are

X′Xb̂ = X′y

When X is not of full column rank, we will need a generalized inverse (g-inverse) of X′X to solve
for b̂. Let G be a g-inverse of X′X.

Searle (1971) defines a linear function of the parameters as estimable if it is identically equal to
some linear function of the expected values of the y vector. Let H = GX′X. Then this definition
simplifies to the following rule:

zb is estimable if z = zH

margins generalizes this to nonlinear functions by assuming the prediction function f(z, θ) is a
function of one or more of the linear predictions from the equations in the model that θ represents.

f(z, θ) = h(z1β1, z2β2, . . . , zkβk)

ziβi is considered estimable if zi = ziHi, where Hi = GiX′iXi, Gi is a g-inverse for X′iXi, and
Xi is the matrix of covariates from the ith equation of the fitted model. margins considers p(θ) to
be estimable if every ziβi is estimable.

Standard errors conditional on the covariates
By default, margins uses the delta method to estimate the variance of p̂.

V̂ar(p̂ | z) = v′Vv

where V is a variance estimate for θ̂ and

v =
∂p̂

∂θ

∣∣∣∣
θ=θ̂

This variance estimate is conditional on the z vectors used to compute the marginalized predictions.
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Unconditional standard errors
margins with the vce(unconditional) option uses linearization to estimate the unconditional

variance of θ̂. Linearization uses the variance estimator for the total of a score variable for p̂ as an
approximate estimator for Var(p̂); see [SVY] variance estimation. margins requires that the model
was fit using some form of linearized variance estimator and that predict, scores computes the
appropriate score values for the linearized variance estimator.

The score for p̂ from the jth observation is given by

sj =
∂p̂

∂wj
= −δj(Sp)

w·
p̂+

δj(Sp)
w·

f(zj , θ̂) +
1
w·

N∑
i=1

δi(Sp)wi
∂f(zi, θ̂)
∂wj

The remaining partial derivative can be decomposed using the chain rule.

∂f(zi, θ̂)
∂wj

=
(
∂f(zi, θ)

∂θ

∣∣∣∣
θ=θ̂

)(
∂θ̂

∂wj

)′
This is the inner product of two vectors, the second of which is not a function of the i index. Thus
the score is

sj = −δj(Sp)
w·

p̂+
δj(Sp)
w·

f(zj , θ̂) +
(
∂p̂

∂θ

∣∣∣∣
θ=θ̂

)(
∂θ̂

∂wj

)′

If θ̂ was derived from a system of equations (such as in linear regression or maximum likelihood
estimation), then θ̂ is the solution to

G(θ) =
N∑
j=1

δj(Sm)wjg(θ,yj ,xj) = 0

where Sm identifies the subpopulation used to fit the model, g() is the model’s gradient function,
and yj and xj are the values of the dependent and independent variables for the jth observation. We
can use linearization to derive a first-order approximation for ∂θ̂/∂wj .

G(θ̂) ≈ G(θ0) +
∂G(θ)
∂θ

∣∣∣∣
θ=θ0

(θ̂− θ0)

Let H be the Hessian matrix

H =
∂G(θ)
∂θ

∣∣∣∣
θ=θ0

Then

θ̂ ≈ θ0 + (−H)−1G(θ0)



1078 margins — Marginal means, predictive margins, and marginal effects

and

∂θ̂

∂wj
≈ (−H)−1 ∂G(θ)

∂wj

∣∣∣∣
θ=θ̂

= (−H)−1δj(Sm)g(θ̂,yj ,xj)

The computed value of the score for p̂ for the jth observation is

sj = v′uj

where

v =


− p̂
w·
1
w·

∂p̂

∂θ̂
(−H)−1


and

uj =

 δj(Sp)
δj(Sp)f(zj , θ̂)

δj(Sm)g(θ̂,yj ,xj)


Thus the variance estimate for p̂ is

V̂ar(p̂) = v′V̂ar(Û)v

where

Û =
N∑
j=1

wjuj

margins uses the model-based variance estimates for (−H)−1 and the scores from predict for
g(θ̂,yj ,xj).
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[R] marginsplot — Graph results from margins (profile plots, etc.)

[R] lincom — Linear combinations of estimators

[R] nlcom — Nonlinear combinations of estimators
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[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[U] 20 Estimation and postestimation commands
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Title

margins postestimation — Postestimation tools for margins

Description
The following standard postestimation command is available after margins:

Command Description

marginsplot graph the results from margins—profile plots, interaction plots, etc.

For information on marginsplot, see [R] marginsplot.

The following standard postestimation commands are available after margins, post:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat estimation sample summary; estat summarize only
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

Remarks
Continuing with the example from Example 8: Margins of interactions in [R] margins, we use

the dataset and reestimate the logistic model of outcome:

. use http://www.stata-press.com/data/r12/margex
(Artificial data for margins)

. logistic outcome sex##group age
(output omitted )

1080
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We then estimate the margins for males and females and post the margins as estimation results
with a full VCE.

. margins sex, post

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1600644 .0125653 12.74 0.000 .1354368 .184692
1 .1966902 .0100043 19.66 0.000 .1770821 .2162983

We can now use nlcom (see [R] nlcom) to estimate a risk ratio of females to males using the
average probabilities for females and males posted by margins:

. nlcom (risk_ratio: _b[1.sex] / _b[0.sex])

risk_ratio: _b[1.sex] / _b[0.sex]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

risk_ratio 1.228819 .1149538 10.69 0.000 1.003514 1.454124

We could similarly estimate the average risk difference between females and males:

. nlcom (risk_diff: _b[1.sex] - _b[0.sex])

risk_diff: _b[1.sex] - _b[0.sex]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

risk_diff .0366258 .0160632 2.28 0.023 .0051425 .068109

Also see
[R] margins — Marginal means, predictive margins, and marginal effects

[U] 20 Estimation and postestimation commands



Title

margins, contrast — Contrasts of margins

Syntax
margins

[
marginlist

] [
if
] [

in
] [

weight
] [

, contrast margins options
]

margins
[

marginlist
] [

if
] [

in
] [

weight
] [

, contrast(suboptions) margins options
]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.
The variables may be typed with or without contrast operators, and you may use any factor-variable
syntax:

. margins sex##group, contrast

. margins sex##g.group, contrast

. margins sex@group, contrast

See the operators (op.) table in [R] contrast for the list of contrast operators. Contrast operators may
also be specified on the variables in margins’ over() and within() options to perform contrasts
across the levels of those variables.

See [R] margins for the available margins options.

suboptions Description

Contrast

overall add a joint hypothesis test for all specified contrasts
lincom treat user-defined contrasts as linear combinations
atcontrast(op

[
. at

]
) apply the op. contrast operator to the groups defined by at()

atjoint test jointly across all groups defined by at()

overjoint test jointly across all levels of the unoperated over() variables
withinjoint test jointly across all levels of the unoperated within() variables
marginswithin perform contrasts within the levels of the unoperated terms in marginlist

cieffects show effects table with confidence intervals
pveffects show effects table with p-values
effects show effects table with confidence intervals and p-values
nowald suppress table of Wald tests
noatlevels report only the overall Wald test for terms that use the within @

or nested | operator
nosvyadjust compute unadjusted Wald tests for survey results

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
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Menu
Statistics > Postestimation > Contrasts of margins

Description
margins with the contrast option or with contrast operators performs contrasts of margins. This

extends the capabilities of contrast to any of the nonlinear responses, predictive margins, or other
margins that can be estimated by margins.

Suboptions

� � �
Contrast �

overall specifies that a joint hypothesis test over all terms be performed.

lincom specifies that user-defined contrasts be treated as linear combinations. The default is to require
that all user-defined contrasts sum to zero. (Summing to zero is part of the definition of a contrast.)

atcontrast(op
[
. at

]
) specifies that the op. contrast operator be applied to the groups defined by

the at() option(s). The default behavior, by comparison, is to perform tests and contrasts within
the groups defined by the at() option(s).

See example 6 in Remarks.

atjoint specifies that joint tests be performed across all groups defined by the at() option. The
default behavior, by comparison, is to perform contrasts and tests within each group.

See example 5 in Remarks.

overjoint specifies how unoperated variables in the over() option are treated.

Each variable in the over() option may be specified either with or without a contrast operator.
For contrast-operated variables, the specified contrast comparisons are always performed.

overjoint specifies that joint tests be performed across all levels of the unoperated variables.
The default behavior, by comparison, is to perform contrasts and tests within each combination of
levels of the unoperated variables.

See example 3 in Remarks.

withinjoint specifies how unoperated variables in the within() option are treated.

Each variable in the within() option may be specified either with or without a contrast operator.
For contrast-operated variables, the specified contrast comparisons are always performed.

withinjoint specifies that joint tests be performed across all levels of the unoperated variables.
The default behavior, by comparison, is to perform contrasts and tests within each combination of
levels of the unoperated variables.

marginswithin specifies how unoperated variables in marginlist are treated.

Each variable in marginlist may be specified either with or without a contrast operator. For
contrast-operated variables, the specified contrast comparisons are always performed.

marginswithin specifies that contrasts and tests be performed within each combination of levels
of the unoperated variables. The default behavior, by comparison, is to perform joint tests across
all levels of the unoperated variables.

See example 4 in Remarks.
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cieffects specifies that a table containing a confidence interval for each individual contrast be
reported.

pveffects specifies that a table containing a p-value for each individual contrast be reported.

effects specifies that a single table containing a confidence interval and p-value for each individual
contrast be reported.

nowald suppresses the table of Wald tests.

noatlevels indicates that only the overall Wald test be reported for each term containing within or
nested (@ or |) operators.

nosvyadjust is for use with svy estimation commands. It specifies that the Wald test be carried out
without the default adjustment for the design degrees of freedom. That is to say the test is carried
out as W/k ∼ F (k, d) rather than as (d − k + 1)W/(kd) ∼ F (k, d − k + 1), where k is the
dimension of the test and d is the total number of sampled PSUs minus the total number of strata.

Remarks
Remarks are presented under the following headings:

Contrasts of margins
Contrasts and the over() option

The overjoint suboption
The marginswithin suboption

Contrasts and the at() option
Conclusion

Contrasts of margins

Example 1

Estimating contrasts of margins is as easy as adding a contrast operator to the variable name. Let’s
review Example 2: A simple case after logistic of [R] margins. Variable sex is coded 0 for males
and 1 for females.

. use http://www.stata-press.com/data/r12/margex

. logistic outcome i.sex i.group
(output omitted )

. margins sex

Predictive margins Number of obs = 3000
Model VCE : OIM

Expression : Pr(outcome), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

sex
0 .1286796 .0111424 11.55 0.000 .106841 .1505182
1 .1905087 .0089719 21.23 0.000 .1729241 .2080933

The first margin, 0.13, is the average probability of a positive outcome, treating everyone as if
they were male. The second margin, 0.19, is the average probability of a positive outcome, treating
everyone as if they were female. We can compare females with males by rerunning margins and
adding a contrast operator:
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. margins r.sex

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

sex
(1 vs 0) .0618291 .0151719 .0320927 .0915656

The r. prefix for sex is the reference-category contrast operator—see [R] contrast. (The default
reference category is zero, the lowest value of sex.) Contrast operators in a marginlist work just as
they do in the termlist of a contrast command.

The contrast estimate of 0.06 says that unconditional on group, females on average are about 6%
more likely than males to have a positive outcome. The chi-squared statistic of 16.61 shows that the
contrast is significantly different from zero.

You may be surprised that we did not need to include the contrast option to estimate our contrast.
If we had included the option, our output would not have changed:

. margins r.sex, contrast

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

sex
(1 vs 0) .0618291 .0151719 .0320927 .0915656

The contrast option is useful mostly for its suboptions, which control the output and how
contrasts are estimated in more complicated situations. But contrast may be specified on its own
(without contrast operators or suboptions) if we do not need estimates or confidence intervals:

. margins sex group, contrast

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()

df chi2 P>chi2

sex 1 16.61 0.0000

group 2 225.76 0.0000
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Each chi-squared statistic is a joint test of constituent contrasts. The test for group has two degrees
of freedom because group has three levels.

Contrasts and the over() option

Example 2

It is common to estimate margins at combinations of factor levels, and margins, contrast
includes several suboptions for contrasting such margins. Let’s fit a model with two categorical
predictors and their interaction:

. logistic outcome group##agegroup

Logistic regression Number of obs = 3000
LR chi2(8) = 520.64
Prob > chi2 = 0.0000

Log likelihood = -1105.7504 Pseudo R2 = 0.1906

outcome Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

group
2 .834507 .5663738 -0.27 0.790 .2206611 3.15598
3 .2146729 .1772897 -1.86 0.062 .0425407 1.083303

agegroup
2 3.54191 2.226951 2.01 0.044 1.032882 12.14576
3 16.23351 9.61188 4.71 0.000 5.086452 51.80955

group#
agegroup

2 2 .4426927 .3358505 -1.07 0.283 .1000772 1.958257
2 3 .440672 .3049393 -1.18 0.236 .1135259 1.71055
3 2 1.160885 1.103527 0.16 0.875 .1801543 7.480553
3 3 .4407912 .4034688 -0.89 0.371 .0733 2.650709

_cons .0379747 .0223371 -5.56 0.000 .0119897 .1202762

Each of group and agegroup has three levels. To compare each age group with the reference
category on the probability scale, we can again use margins with the r. contrast operator.

. margins r.agegroup

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()

df chi2 P>chi2

agegroup
(2 vs 1) 1 10.04 0.0015
(3 vs 1) 1 224.44 0.0000

Joint 2 238.21 0.0000
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Delta-method
Contrast Std. Err. [95% Conf. Interval]

agegroup
(2 vs 1) .044498 .0140448 .0169706 .0720253
(3 vs 1) .2059281 .0137455 .1789874 .2328688

Our model includes an interaction, though, so it would be nice to estimate the contrasts separately
for each value of group. We need the over() option:

. margins r.agegroup, over(group)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : group

df chi2 P>chi2

agegroup@group
(2 vs 1) 1 1 6.94 0.0084
(2 vs 1) 2 1 1.18 0.2783
(2 vs 1) 3 1 3.10 0.0783
(3 vs 1) 1 1 173.42 0.0000
(3 vs 1) 2 1 57.77 0.0000
(3 vs 1) 3 1 5.12 0.0236

Joint 6 266.84 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

agegroup@group
(2 vs 1) 1 .0819713 .0311208 .0209757 .142967
(2 vs 1) 2 .0166206 .0153309 -.0134275 .0466686
(2 vs 1) 3 .0243462 .0138291 -.0027583 .0514508
(3 vs 1) 1 .3447797 .0261811 .2934658 .3960937
(3 vs 1) 2 .1540882 .0202722 .1143554 .193821
(3 vs 1) 3 .0470319 .0207774 .006309 .0877548

The effect of agegroup appears to be greatest for the first level of group.

Including a variable in the over() option is not equivalent to including the variable in the main
marginlist. The variables in the marginlist are manipulated in the analysis, so that we can measure, for
example, the effect of being in age group 3 and not age group 1. (The manipulation could be mimicked
by running replace and then predict, but the manipulations actually performed by margins do not
change the data in memory.) The variables in the over() option are not so manipulated—the values
of the over() variables are left as they were observed, and the marginlist variables are manipulated
separately for each observed over() group. For more information, see Do not specify marginlist
when you mean over() in [R] margins.
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The overjoint suboption

Example 3

Each variable in an over() option may be specified with or without contrast operators. Our option
over(group) did not include a contrast operator, so margins estimated the contrasts separately for
each level of group. If we had instead specified over(r.group), we would have received differences
of the contrasts:

. margins r.agegroup, over(r.group)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : group

df chi2 P>chi2

group#agegroup
(2 vs 1) (2 vs 1) 1 3.55 0.0596
(2 vs 1) (3 vs 1) 1 33.17 0.0000
(3 vs 1) (2 vs 1) 1 2.86 0.0906
(3 vs 1) (3 vs 1) 1 79.36 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

group#agegroup
(2 vs 1) (2 vs 1) -.0653508 .0346921 -.133346 .0026445
(2 vs 1) (3 vs 1) -.1906915 .0331121 -.25559 -.1257931
(3 vs 1) (2 vs 1) -.0576251 .0340551 -.1243719 .0091216
(3 vs 1) (3 vs 1) -.2977479 .0334237 -.3632572 -.2322385

The contrasts are double differences: the estimate of −0.19, for example, says that the difference
in the probability of success between age group 3 and age group 1 is smaller in group 2 than in
group 1. We can jointly test pairs of the double differences with the overjoint suboption:

. margins r.agegroup, over(group) contrast(overjoint)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : group

df chi2 P>chi2

group#agegroup
(joint) (2 vs 1) 2 3.62 0.1641
(joint) (3 vs 1) 2 79.45 0.0000

Joint 4 83.88 0.0000

The contrast(overjoint) option overrides the default behavior of over() and requests joint
tests over the levels of the unoperated variable group. The chi-squared statistic of 3.62 tests that the
first and third contrasts from the previous table are jointly zero. The chi-squared statistic of 79.45
jointly tests the other pair of contrasts.
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The marginswithin suboption

Example 4

Another suboption that may usefully be combined with over() is marginswithin. margins-
within requests that contrasts be performed within the levels of unoperated variables in the main
marginlist, instead of performing them jointly across the levels. marginswithin affects only unop-
erated variables because contrast operators take precedence over suboptions.

Let’s first look at the default behavior, which occurs when marginswithin is not specified:

. margins agegroup, over(r.group) contrast(effects)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : group

df chi2 P>chi2

group#agegroup
(2 vs 1) (joint) 2 33.94 0.0000
(3 vs 1) (joint) 2 83.38 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast Std. Err. z P>|z| [95% Conf. Interval]

group#
agegroup

(2 vs 1)
(2 vs base) -.0653508 .0346921 -1.88 0.060 -.133346 .0026445

(2 vs 1)
(3 vs base) -.1906915 .0331121 -5.76 0.000 -.25559 -.1257931

(3 vs 1)
(2 vs base) -.0576251 .0340551 -1.69 0.091 -.1243719 .0091216

(3 vs 1)
(3 vs base) -.2977479 .0334237 -8.91 0.000 -.3632572 -.2322385

Here agegroup in the main marginlist is an unoperated variable, so margins by default performs
joint tests across the levels of agegroup: the chi-squared statistic of 33.94, for example, jointly tests
whether the first two contrast estimates in the lower table differ significantly from zero.
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When we specify marginswithin, the contrasts will instead be performed within the levels of
agegroup:

. margins agegroup, over(r.group) contrast(marginswithin effects)

Contrasts of predictive margins
Model VCE : OIM

Expression : Pr(outcome), predict()
over : group

df chi2 P>chi2

group@agegroup
(2 vs 1) 1 1 0.06 0.7991
(2 vs 1) 2 1 7.55 0.0060
(2 vs 1) 3 1 68.39 0.0000
(3 vs 1) 1 1 1.80 0.1798
(3 vs 1) 2 1 10.47 0.0012
(3 vs 1) 3 1 159.89 0.0000

Joint 6 186.87 0.0000

Delta-method
Contrast Std. Err. z P>|z| [95% Conf. Interval]

group@
agegroup

(2 vs 1) 1 -.0058686 .0230533 -0.25 0.799 -.0510523 .039315
(2 vs 1) 2 -.0712194 .0259246 -2.75 0.006 -.1220308 -.0204081
(2 vs 1) 3 -.1965602 .0237688 -8.27 0.000 -.2431461 -.1499742
(3 vs 1) 1 -.0284991 .0212476 -1.34 0.180 -.0701436 .0131453
(3 vs 1) 2 -.0861243 .0266137 -3.24 0.001 -.1382862 -.0339624
(3 vs 1) 3 -.326247 .0258009 -12.64 0.000 -.3768159 -.2756781

The joint tests in the top table have been replaced by one-degree-of-freedom tests, one for each
combination of the two reference comparisons and three levels of agegroup. The reference-category
contrasts for group have been performed within levels of agegroup.

Contrasts and the at() option

Example 5

The at() option of margins is used to set predictors to particular values. When at() is used,
contrasts are by default performed within each at() level:



margins, contrast — Contrasts of margins 1091

. margins r.agegroup, at(group=(1/3))

Contrasts of adjusted predictions
Model VCE : OIM

Expression : Pr(outcome), predict()

1._at : group = 1

2._at : group = 2

3._at : group = 3

df chi2 P>chi2

agegroup@_at
(2 vs 1) 1 1 6.94 0.0084
(2 vs 1) 2 1 1.18 0.2783
(2 vs 1) 3 1 3.10 0.0783
(3 vs 1) 1 1 173.42 0.0000
(3 vs 1) 2 1 57.77 0.0000
(3 vs 1) 3 1 5.12 0.0236

Joint 6 266.84 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

agegroup@_at
(2 vs 1) 1 .0819713 .0311208 .0209757 .142967
(2 vs 1) 2 .0166206 .0153309 -.0134275 .0466686
(2 vs 1) 3 .0243462 .0138291 -.0027583 .0514508
(3 vs 1) 1 .3447797 .0261811 .2934658 .3960937
(3 vs 1) 2 .1540882 .0202722 .1143554 .193821
(3 vs 1) 3 .0470319 .0207774 .006309 .0877548

Our option at(group=(1/3)) manipulates the values of group and is therefore not equivalent
to over(group). We see that the reference-category contrasts for agegroup have been performed
within each at() level. For a similar example that uses the . at operator instead of the at() option,
see Contrasts of at() groups—discrete effects in [R] marginsplot.

The default within behavior of at() may be changed to joint behavior with the atjoint suboption:

. margins r.agegroup, at(group=(1/3)) contrast(atjoint)

Contrasts of adjusted predictions
Model VCE : OIM

Expression : Pr(outcome), predict()

1._at : group = 1

2._at : group = 2

3._at : group = 3

df chi2 P>chi2

_at#agegroup
(joint) (2 vs 1) 2 3.62 0.1641
(joint) (3 vs 1) 2 79.45 0.0000

Joint 4 83.88 0.0000

Now the tests are performed jointly over the levels of group, the at() variable. The atjoint
suboption is the analogue for at() of the overjoint suboption from example 3.
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Example 6

What if we would like to apply a contrast operator, like r., to the at() levels? It is not possible
to specify the operator inside the at() option. Instead, we need a new suboption, atcontrast():

. margins r.agegroup, at(group=(1/3)) contrast(atcontrast(r))

Contrasts of adjusted predictions
Model VCE : OIM

Expression : Pr(outcome), predict()

1._at : group = 1

2._at : group = 2

3._at : group = 3

df chi2 P>chi2

_at#agegroup
(2 vs 1) (2 vs 1) 1 3.55 0.0596
(2 vs 1) (3 vs 1) 1 33.17 0.0000
(3 vs 1) (2 vs 1) 1 2.86 0.0906
(3 vs 1) (3 vs 1) 1 79.36 0.0000

Joint 4 83.88 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

_at#agegroup
(2 vs 1) (2 vs 1) -.0653508 .0346921 -.133346 .0026445
(2 vs 1) (3 vs 1) -.1906915 .0331121 -.25559 -.1257931
(3 vs 1) (2 vs 1) -.0576251 .0340551 -.1243719 .0091216
(3 vs 1) (3 vs 1) -.2977479 .0334237 -.3632572 -.2322385

When we specify contrast(atcontrast(r)), margins will apply the r. reference-category
operator to the levels of group, the variable specified inside at(). The default reference category is
1, the lowest level of group.

Conclusion
margins, contrast is a powerful command, and its abundance of suboptions may seem daunting.

The suboptions are in the service of only three goals, however. There are three things that margins,
contrast can do with a factor variable or a set of at() definitions:

1. Perform contrasts across the levels of the factor or set (as in example 1).

2. Perform a joint test across the levels of the factor or set (as in example 5).

3. Perform other tests and contrasts within each level of the factor or set (as in example 4).

The default behavior for variables specified inside at(), over(), and within() is to perform
contrasts within groups; the default behavior for variables in the marginlist is to perform joint tests
across groups.
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Saved results
margins, contrast saves the following additional items in r():

Scalars
r(k terms) number of terms participating in contrasts

Macros
r(cmd) contrast
r(cmd2) margins
r(overall) overall or empty

Matrices
r(L) matrix of contrasts applied to the margins
r(chi2) vector of χ2 statistics
r(p) vector of p-values corresponding to r(chi2)
r(df) vector of degrees of freedom corresponding to r(p)

margins, contrast with the post option also saves the following additional items in e():

Scalars
e(k terms) number of terms participating in contrasts

Macros
e(cmd) contrast
e(cmd2) margins
e(overall) overall or empty

Matrices
e(L) matrix of contrasts applied to the margins
e(chi2) vector of χ2 statistics
e(p) vector of p-values corresponding to e(chi2)
e(df) vector of degrees of freedom corresponding to e(p)

Methods and formulas
See Methods and formulas in [R] margins and Methods and formulas in [R] contrast.

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins postestimation — Postestimation tools for margins

[R] margins, pwcompare — Pairwise comparisons of margins

[R] nlcom — Nonlinear combinations of estimators

[R] predict — Obtain predictions, residuals, etc., after estimation

[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[R] pwcompare — Pairwise comparisons



Title

margins, pwcompare — Pairwise comparisons of margins

Syntax
margins

[
marginlist

] [
if
] [

in
] [

weight
] [

, pwcompare margins options
]

margins
[

marginlist
] [

if
] [

in
] [

weight
] [

, pwcompare(suboptions) margins options
]

where marginlist is a list of factor variables or interactions that appear in the current estimation results.
The variables may be typed with or without the i. prefix, and you may use any factor-variable syntax:

. margins i.sex i.group i.sex#i.group, pwcompare

. margins sex group sex#i.group, pwcompare

. margins sex##group, pwcompare

See [R] margins for the available margins options.

suboptions Description

Pairwise comparisons

cieffects show effects table with confidence intervals; the default
pveffects show effects table with p-values
effects show effects table with confidence intervals and p-values
cimargins show table of margins and confidence intervals
groups show table of margins and group codes
sort sort the margins or contrasts in each term

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Postestimation > Pairwise comparisons of margins

Description
margins with the pwcompare option performs pairwise comparisons of margins. margins,

pwcompare extends the capabilities of pwcompare to any of the nonlinear responses, predictive
margins, or other margins that can be estimated by margins.
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Suboptions

� � �
Pairwise comparisons �

cieffects specifies that a table of the pairwise comparisons with their standard errors and confidence
intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
and p-values be reported.

effects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
p-values, and confidence intervals be reported.

cimargins specifies that a table of the margins with their standard errors and confidence intervals
be reported.

groups specifies that a table of the margins with their standard errors and group codes be reported.
Margins with the same letter in the group code are not significantly different at the specified
significance level.

sort specifies that the reported tables be sorted on the margins or contrasts in each term.

Remarks
You should be familiar with the concepts and syntax of both margins and pwcompare before using

the pwcompare option of margins. These remarks build on those in [R] margins and [R] pwcompare.

margins can perform pairwise comparisons of any of the margins that it estimates.

In the Continuous covariates example in [R] marginsplot, we fit a logistic regression model using
the NHANES II dataset, ignoring the complex survey nature of the data. Our dependent variable is
highbp, an indicator for whether a person has high blood pressure. We fit a fully interacted model
including two factor variables representing gender and age group as well as the continuous covariate,
bmi.

. use http://www.stata-press.com/data/r12/nhanes2

. logistic highbp sex##agegrp##c.bmi
(output omitted )

By default, margins will compute the predictive margins of the probability of a positive outcome
for each of the terms in marginlist after logistic regression. We will margin on agegrp so that
margins will estimate the average predicted probabilities of having high blood pressure conditional
on being in each of the six age groups and unconditional on sex and BMI. We can specify the
pwcompare option to obtain all possible pairwise comparisons of these predictive margins:



1096 margins, pwcompare — Pairwise comparisons of margins

. margins agegrp, pwcompare

Pairwise comparisons of predictive margins
Model VCE : OIM

Expression : Pr(highbp), predict()

Delta-method Unadjusted
Contrast Std. Err. [95% Conf. Interval]

agegrp
2 vs 1 .0182344 .0069751 .0045635 .0319054
3 vs 1 .08395 .0097271 .0648852 .1030148
4 vs 1 .1443977 .0111944 .122457 .1663383
5 vs 1 .1517272 .0082323 .1355922 .1678622
6 vs 1 .1443064 .0126661 .1194813 .1691314
3 vs 2 .0657156 .010205 .0457141 .0857171
4 vs 2 .1261632 .0116121 .1034039 .1489225
5 vs 2 .1334928 .0087919 .116261 .1507245
6 vs 2 .1260719 .0130367 .1005205 .1516234
4 vs 3 .0604477 .0134464 .0340932 .0868021
5 vs 3 .0677772 .0111023 .046017 .0895374
6 vs 3 .0603564 .0146942 .0315562 .0891565
5 vs 4 .0073296 .012408 -.0169898 .0316489
6 vs 4 -.0000913 .0157041 -.0308707 .0306882
6 vs 5 -.0074208 .0137504 -.0343712 .0195295

This table gives each of the pairwise differences with confidence intervals. We can see that the
confidence interval in the row labeled (2 vs 1) does not include zero. At the 5% level, the predictive
margins for the first and second age groups are significantly different. The same is true of many of
the other comparisons. With many pairwise comparisons, output in this format can be difficult to sort
through. We can put some structure on this by adding the group suboption:

. margins agegrp, pwcompare(group)

Pairwise comparisons of predictive margins
Model VCE : OIM

Expression : Pr(highbp), predict()

Delta-method Unadjusted
Margin Std. Err. Groups

agegrp
1 .0375314 .004423
2 .0557658 .0053934
3 .1214814 .0086634
4 .181929 .0102836 A
5 .1892586 .0069432 A
6 .1818377 .0118687 A

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

The group output includes the predictive margins for each age group and letters denoting margins
that are not significantly different from each other. In this case, there is not a letter associated with
the first age group in the “Unadjusted Groups” column. This missingness indicates that the average
predicted probability for this age group is significantly different from the average predicted probability
for each of the other age groups at the 5% significance level. The absence of a letter next to the second
and third age groups is interpreted in a similar manner. The fourth, fifth, and sixth age groups each
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have an A in the “Unadjusted Groups” column, which indicates that the average predicted probabilities
for these groups are not significantly different at our 5% level.

We can also include the mcompare(bonferroni) option to perform tests using Bonferroni’s
method to account for making multiple comparisons.

. margins agegrp, pwcompare(group) mcompare(bonferroni)

Pairwise comparisons of predictive margins
Model VCE : OIM

Expression : Pr(highbp), predict()

Number of
Comparisons

agegrp 15

Delta-method Bonferroni
Margin Std. Err. Groups

agegrp
1 .0375314 .004423 B
2 .0557658 .0053934 B
3 .1214814 .0086634
4 .181929 .0102836 A
5 .1892586 .0069432 A
6 .1818377 .0118687 A

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

We now see the letter B on the rows corresponding to the first and second age groups. At the 5%
level and using Bonferroni’s adjustment, the predictive margins for the probability in the first and
second age groups are not significantly different.

Saved results
margins, pwcompare saves the following additional items in r():

Scalars
r(k terms) number of terms participating in pairwise comparisons

Macros
r(cmd) pwcompare
r(cmd2) margins
r(group#) group code for the #th margin in r(b)
r(mcmethod vs) method from mcompare()
r(mctitle vs) title for method from mcompare()
r(mcadjustall vs) adjustall or empty

Matrices
r(b) margin estimates
r(V) variance–covariance matrix of the margin estimates
r(b vs) margin difference estimates
r(V vs) variance–covariance margin difference of the margin estimates
r(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

r(table vs) matrix containing the margin differences with their standard errors, test statistics,
p-values, and confidence intervals

r(L) matrix that produces the margin differences
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margins, pwcompare with the post option also saves the following additional items in e():

Scalars
e(k terms) number of terms participating in pairwise comparisons

Macros
e(cmd) pwcompare
e(cmd2) margins

Matrices
e(b) margin estimates
e(V) variance–covariance matrix of the margin estimates
e(b vs) margin difference estimates
e(V vs) variance–covariance margin difference of the margin estimates
e(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix that produces the margin differences

Methods and formulas
See Methods and formulas in [R] margins and Methods and formulas in [R] pwcompare.

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins postestimation — Postestimation tools for margins

[R] nlcom — Nonlinear combinations of estimators

[R] predict — Obtain predictions, residuals, etc., after estimation

[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[R] pwcompare — Pairwise comparisons



Title

marginsplot — Graph results from margins (profile plots, etc.)

Syntax

marginsplot
[
, options

]
options Description

Main

xdimension(dimlist
[
, dimopts

]
) use dimlist to define x axis

plotdimension(dimlist
[
, dimopts

]
) create plots for groups in dimlist

bydimension(dimlist
[
, dimopts

]
) create subgraphs for groups in dimlist

graphdimension(dimlist
[
, dimopts

]
) create graphs for groups in dimlist

horizontal swap x and y axes
noci do not plot confidence intervals
name(name | stub

[
, replace

]
) name of graph, or stub if multiple graphs

Labels

allxlabels place ticks and labels on the x axis for each value
nolabels label groups with their values, not their labels
allsimplelabels forgo variable name and equal signs in all labels
nosimplelabels include variable name and equal signs in all labels
separator(string) separator for labels when multiple variables are specified

in a dimension
noseparator do not use a separator

Plot

plotopts(plot options) affect rendition of all margin plots
plot#opts(plot options) affect rendition of #th margin plot
recast(plottype) plot margins using plottype

CI plot

ciopts(rcap options) affect rendition of all confidence-interval plots
ci#opts(rcap options) affect rendition of #th confidence-interval plot
recastci(plottype) plot confidence intervals using plottype

Pairwise

unique plot only unique pairwise comparisons
csort sort comparison categories first

Add plots

addplot(plot) add other plots to the graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options
byopts(byopts) how subgraphs are combined, labeled, etc.
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where dimlist may be any of the dimensions across which margins were computed in the immediately preceding
margins command; see [R] margins. That is to say, dimlist may be any variable used in the margins command,
including variables specified in the at(), over(), and within() options. More advanced specifications of dimlist
are covered in Addendum: Advanced uses of dimlist.

dimopts Description

labels(lablist) list of quoted strings to label each level of the dimension
elabels(elablist) list of enumerated labels
nolabels label groups with their values, not their labels
allsimplelabels forgo variable name and equal signs in all labels
nosimplelabels include variable name and equal signs in all labels
separator(string) separator for labels when multiple variables are specified

in the dimension
noseparator do not use a separator

where lablist is defined as

"label"
[
"label"

[
. . .
] ]

elablist is defined as

# "label"
[

# "label"
[
. . .
] ]

and the #s are the indices of the levels of the dimension—1 is the first level, 2 is the second level,
and so on.

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change look of the line

Menu
Statistics > Postestimation > Margins plots and profile plots

Description

marginsplot graphs the results of the immediately preceding margins command; see [R] margins.
Common names for some of the graphs that marginsplot can produce are profile plots and interaction
plots.

Options

� � �
Main �

xdimension(), plotdimension(), bydimension(), and graphdimension() specify the variables
from the preceding margins command whose group levels will be used for the graph’s x axis,
plots, by() subgraphs, and graphs.
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marginsplot chooses default dimensions based on the margins command. In most cases, the
first variable appearing in an at() option and evaluated over more than one value is used for
the x axis. If no at() variable meets this condition, the first variable in the marginlist is usually
used for the x axis and the remaining variables determine the plotted lines or markers. Pairwise
comparisons and graphs of marginal effects (derivatives) have different defaults. In all cases, you
may override the defaults and explicitly control which variables are used on each dimension of
the graph by using these dimension options.

Each of these options supports suboptions that control the labeling of the dimension—axis labels
for xdimension(), plot labels for plotdimension(), subgraph titles for bydimension(), and
graph titles for graphdimension() titles.

For examples using the dimension options, see Controlling the graph’s dimensions.

xdimension(dimlist
[
, dimopts

]
) specifies the variables for the x axis in dimlist and controls

the content of those labels with dimopts.

plotdimension(dimlist
[
, dimopts

]
) specifies in dimlist the variables whose group levels

determine the plots and optionally specifies in dimopts the content of the plots’ labels.

bydimension(dimlist
[
, dimopts

]
) specifies in dimlist the variables whose group levels

determine the by() subgraphs and optionally specifies in dimopts the content of the subgraphs’
titles. For an example using by(), see Three-way interactions.

graphdimension(dimlist
[
, dimopts

]
) specifies in dimlist the variables whose group levels

determine the graphs and optionally specifies in dimopts the content of the graphs’ titles.

horizontal reverses the default x and y axes. By default, the y axis represents the estimates of
the margins and the x axis represents one or more factors or continuous covariates. Specifying
horizontal swaps the axes so that the x axis represents the estimates of the margins. This option
can be useful if the labels on the factor or continuous covariates are long.

The horizontal option is discussed in Horizontal is sometimes better.

noci removes plots of the pointwise confidence intervals. The default is to plot the confidence
intervals.

name(name | stub
[
, replace

]
) specifies the name of the graph or graphs. If the graphdimension()

option is specified, or if the default action is to produce multiple graphs, then the argument of
name() is taken to be stub and graphs named stub1, stub2, . . . are created.

The replace suboption causes existing graphs with the specified name or names to be replaced.

If name() is not specified, default names are used and the graphs may be replaced by subsequent
marginsplot or other graphing commands.

� � �
Labels �

With the exception of allxlabels, all these options may be specified either directly as options
or as dimopts within options xdimension(), plotdimension(), bydimension(), and graphdi-
mension(). When specified in one of the dimension options, only the labels for that dimension are
affected. When specified outside the dimension options, all labels on all dimensions are affected.
Specifications within the dimension options take precedence.

allxlabels specifies that tick marks and labels be placed on the x axis for each value of the
x-dimension variables. By default, if there are more than 25 ticks, default graph axis labeling rules
are applied. Labeling may also be specified using the standard graph twoway x-axis label rules
and options—xlabel(); see [G-3] axis label options.
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nolabels specifies that value labels not be used to construct graph labels and titles for the group
levels in the dimension. By default, if a variable in a dimension has value labels, those labels are
used to construct labels and titles for axis ticks, plots, subgraphs, and graphs.

Graphs of contrasts and pairwise comparisons are an exception to this rule and are always labeled
with values rather than value labels.

allsimplelabels and nosimplelabels control whether graphs’ labels and titles include just the
values of the variables or include variable names and equal signs. The default is to use just the
value label for variables that have value labels and to use variable names and equal signs for
variables that do not have value labels. An example of the former is “Female” and the latter is
“country=2”.

Sometimes value labels are universally descriptive, and sometimes they have meaning only when
considered in relation to their variable. For example, “Male” and “Female” are typically universal,
regardless of the variable from which they are taken. “High” and “Low” may not have mean-
ing unless you know they are in relation to a specific measure, say, blood-pressure level. The
allsimplelabels and nosimplelabels options let you override the default labeling.

allsimplelabels specifies that all titles and labels use just the value or value label of the
variable.

nosimplelabels specifies that all titles and labels include varname= before the value or value
label of the variable.

separator(string) and noseparator control the separator between label sections when more than
one variable is used to specify a dimension. The default separator is a comma followed by a space,
but no separator may be requested with noseparator or the default may be changed to any string
with separator().

For example, if plotdimension(a b) is specified, the plot labels in our graph legend might
be “a=1, b=1”, “a=1, b=2”, . . . . Specifying separator(:) would create labels “a=1:b=1”,
“a=1:b=2”, . . . .

� � �
Plot �

plotopts(plot options) affects the rendition of all margin plots. The plot options can affect the size
and color of markers, whether and how the markers are labeled, and whether and how the points
are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() option.

plot#opts(plot options) affects the rendition of the #th margin plot. The plot options can affect the
size and color of markers, whether and how the markers are labeled, and whether and how the points
are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that margins be plotted using plottype. plottype may be scatter, line,
connected, bar, area, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu of
plot options. For details on those options, follow the appropriate link from [G-2] graph twoway.

For an example using recast(), see Continuous covariates.

You may specify recast() within a plotopts() or plot#opts() option. It is better, however,
to specify it as documented here, outside those options. When specified outside those options, you
have greater access to the plot-specific rendition options of your specified plottype.
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� � �
CI plot �

ciopts(rcap options) affects the rendition of all confidence-interval plots; see [G-3] rcap options.

These settings may be overridden for specific confidence-interval plots with the ci#opts() option.

ci#opts(rcap options) affects the rendition of the #th confidence interval; see [G-3] rcap options.

recastci(plottype) specifies that confidence intervals be plotted using plottype. plottype may be
rarea, rbar, rspike, rcap, rcapsym, rline, rconnected, or rscatter; see [G-2] graph
twoway. When recastci() is specified, the plot-rendition options appropriate to the specified
plottype may be used in lieu of rcap options. For details on those options, follow the appropriate
link from [G-2] graph twoway.

For an example using recastci(), see Continuous covariates.

You may specify recastci() within a ciopts() or ci#opts() option. It is better, however, to
specify it as documented here, outside those options. When specified outside those options, you
have greater access to the plot-specific rendition options of your specified plottype.

� � �
Pairwise �

These options have an effect only when the pwcompare option was specified on the preceding
margins command.

unique specifies that only unique pairwise comparisons be plotted. The default is to plot all pairwise
comparisons, including those that are mirror images of each other—“male” versus “female”
and “female” versus “male”. margins reports only the unique pairwise comparisons. unique
also changes the default xdimension() for graphs of pairwise comparisons from the reference
categories ( pw0) to the comparisons of each pairwise category ( pw).

Unique comparisons are often preferred with horizontal graphs that put all pairwise comparisons
on the x axis, whereas including the full matrix of comparisons is preferred for charts showing
the reference groups on an axis and the comparison groups as plots; see Pairwise comparisons
and Horizontal is sometimes better .

csort specifies that comparison categories are sorted first, and then reference categories are sorted
within comparison category. The default is to sort reference categories first, and then sort comparison
categories within reference categories. This option has an observable effect only when pw is also
specified in one of the dimension options. It then determines the order of the labeling in the
dimension where pw is specified.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

For an example using addplot(), see Adding scatterplots of the data.

If multiple graphs are drawn by a single marginsplot command or if plot specifies plots with
multiple y variables, for example, scatter y1 y2 x, then the graph’s legend will not clearly identify
all the plots and will require customization using the legend() option; see [G-3] legend options.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include options
for titling the graph (see [G-3] title options); for saving the graph to disk (see [G-3] saving option);
for controlling the labeling and look of the axes (see [G-3] axis options); for controlling the look,
contents, position, and organization of the legend (see [G-3] legend options); for adding lines
(see [G-3] added line options) and text (see [G-3] added text options); and for controlling other
aspects of the graph’s appearance (see [G-3] twoway options).
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The label() suboption of the legend() option has no effect on marginsplot. Use the order()
suboption instead.

byopts(byopts) affects the appearance of the combined graph when bydimension() is specified or
when the default graph has subgraphs, including the overall graph title, the position of the legend,
and the organization of subgraphs. See [G-3] by option.

Remarks
Remarks are presented under the following headings:

Introduction
Dataset
Profile plots
Interaction plots
Contrasts of margins—effects (discrete marginal effects)
Three-way interactions
Continuous covariates
Plots at every value of a continuous covariate
Contrasts of at() groups—discrete effects
Controlling the graph’s dimensions
Pairwise comparisons
Horizontal is sometimes better
Marginal effects
Plotting a subset of the results from margins
Advanced usage

Plots with multiple terms
Plots with multiple at() options
Adding scatterplots of the data

Introduction

marginsplot is a post-margins command. It graphs the results of the margins command,
whether those results are marginal means, predictive margins, marginal effects, contrasts, pairwise
comparisons, or other statistics; see [R] margins.

By default, the margins are plotted on the y axis, and all continuous and factor covariates specified
in the margins command will usually be placed on the x axis or used to identify plots. Exceptions
are discussed in the following sections and in Addendum: Advanced uses of dimlist below.

marginsplot produces classic plots, such as profile plots and interaction plots. Beyond that,
anything that margins can compute, marginsplot can graph.

We will be using some relatively complicated margins commands with little explanation of the
syntax. We will also avoid lengthy interpretations of the results of margins. See [R] margins for the
complete syntax of margins and discussions of its results.

All graphs in this entry were drawn using the s2gmanual scheme; see [G-4] scheme s2.

Dataset

For continuity, we will use one dataset for most examples—the Second National Health and
Nutrition Examination Survey (NHANES II) (McDowell et al. 1981). NHANES II is part of a study to
assess the health and nutritional status of adults and children in the United States. It is designed to
be a nationally representative sample of the U.S. population. This particular sample is from 1976 to
1980.
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The survey nature of the dataset—weights, strata, and sampling units—will be ignored in our
analyses. We are discussing graphing, not survey statistics. If you would like to see the results with
the appropriate adjustments for the survey design, just add svy: before each estimation command, and
if you wish, add vce(unconditional) as an option to each margins command. See [R] margins,
particularly the discussion and examples under Obtaining margins with survey data and representative
samples, for reasons why you probably would want to add vce(unconditional) when analyzing
survey data. For the most part, adjusting for survey design produces moderately larger confidence
intervals and relatively small changes in point estimates.

Profile plots

What does my estimation say about how my response varies as one (or more) of my covariates
changes? That is the question that is answered by profile plots. Profile plots are also referred to as
plots of estimated (or expected, or least-squares) means, though that is unnecessarily restrictive when
considering models of binary, count, and ordered outcomes. In the latter cases, we might prefer to
say they plot conditional expectations of responses, where a response might be a probability.

What we do with the other covariates depends on the questions we wish to answer. Sometimes we
wish to hold other covariates at fixed values, and sometimes we wish to average the response over
their values. margins can do either, so you can graph either.

We can fit a fully factorial two-way ANOVA of systolic blood pressure on age group and sex using
the NHANES II data.

. use http://www.stata-press.com/data/r12/nhanes2

. anova bpsystol agegrp##sex

Number of obs = 10351 R-squared = 0.2497
Root MSE = 20.2209 Adj R-squared = 0.2489

Source Partial SS df MS F Prob > F

Model 1407229.28 11 127929.935 312.88 0.0000

agegrp 1243037.82 5 248607.565 608.02 0.0000
sex 27728.3794 1 27728.3794 67.81 0.0000

agegrp#sex 88675.043 5 17735.0086 43.37 0.0000

Residual 4227440.75 10339 408.882943

Total 5634670.03 10350 544.412563

If you are more comfortable with regression than ANOVA, then type

. regress bpsystol agegrp##sex

The anova and regress commands fit identical models. The output from anova displays all
the terms in the model and thus tends to be more conducive to exploration with margins and
marginsplot.
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We estimate the predictive margins of systolic blood pressure for each age group using margins.

. margins agegrp

Predictive margins Number of obs = 10351

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

agegrp
1 117.2684 .419845 279.31 0.000 116.4455 118.0913
2 120.2383 .5020813 239.48 0.000 119.2542 121.2224
3 126.9255 .56699 223.86 0.000 125.8142 128.0368
4 135.682 .5628593 241.06 0.000 134.5788 136.7852
5 141.5285 .3781197 374.30 0.000 140.7874 142.2696
6 148.1096 .6445073 229.80 0.000 146.8464 149.3728

The six predictive margins are just the averages of the predictions over the estimation sample,
holding agegrp to each of its six levels. If this were a designed experiment rather than survey data, we
might wish to assume the cells are balanced—that they have the same number of observations—and
thus estimate what are often called expected means or least-squares means. To do that, we would
simply add the asbalanced option to the margins command. The NHANES II data are decidedly
unbalanced over sex#agegrp cells. So much so that it is unreasonable to assume the cells are
balanced.

We graph the results:

. marginsplot
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Profile plots are often drawn without confidence intervals (CIs). The CIs may be removed by adding
the noci option. We prefer to see the CIs.

Disciplines vary widely in their use of the term profile plot. Some disciplines consider any connected
plot of a response over values of other variables to be a profile plot. By that definition, most graphs
in this entry are profile plots.
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Interaction plots

Interaction plots are often used to explore the form of an interaction. The interaction term in our
ANOVA results is highly significant. Are the interaction effects also large enough to matter? What form
do they take? We can answer these questions by fixing agegrp and sex to each possible combination
of the two covariates and estimating the margins for those cells.

. margins agegrp#sex

Then we can graph the results:

. marginsplot
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It is clear that the effect of age differs by sex—there is an interaction. If there were no interaction,
then the two lines would be parallel.

While males start out with higher systolic blood pressure, females catch up to the males as age
increases and may even surpass males in the upper age groups. We say “may” because we cannot
tell if the differences are statistically significant. The CIs overlap for the top three age groups. It is
tempting to conclude from this overlap that the differences are not statistically significant. Do not fall
into this trap. Likewise, do not fall into the trap that the first three age groups are different because
their CIs do not overlap. The CIs are for the point estimates, not the differences. There is a covariance
between the differences that we must consider if we are to make statements about those differences.

Contrasts of margins—effects (discrete marginal effects)

To assess the differences, all we need do is ask margins to contrast the sets of effects that we
just estimated; see [R] margins, contrast. With only two groups in sex, it does not matter much
which contrast operator we choose. We will use the reference contrast. It will compare the difference
between males and females, with males (the first category) as the reference category.
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. margins r.sex@agegrp

Contrasts of adjusted predictions

Expression : Linear prediction, predict()

df chi2 P>chi2

sex@agegrp
(2 vs 1) 1 1 224.92 0.0000
(2 vs 1) 2 1 70.82 0.0000
(2 vs 1) 3 1 12.15 0.0005
(2 vs 1) 4 1 0.47 0.4949
(2 vs 1) 5 1 3.88 0.0488
(2 vs 1) 6 1 6.37 0.0116

Joint 6 318.62 0.0000

Delta-method
Contrast Std. Err. [95% Conf. Interval]

sex@agegrp
(2 vs 1) 1 -12.60132 .8402299 -14.24814 -10.9545
(2 vs 1) 2 -8.461161 1.005448 -10.4318 -6.490518
(2 vs 1) 3 -3.956451 1.134878 -6.180771 -1.732131
(2 vs 1) 4 -.7699782 1.128119 -2.98105 1.441094
(2 vs 1) 5 1.491684 .756906 .0081759 2.975193
(2 vs 1) 6 3.264762 1.293325 .7298908 5.799633

Because we are looking for effects that are different from 0, we will add a reference line at 0 to
our graph.

. marginsplot, yline(0)
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We can now say that females’ systolic blood pressure is substantially and significantly lower than
males’ in the first three age groups but is significantly higher in the last two age groups. Despite the
overlapping CIs for the last two age groups in the interaction graph, the effect of sex is significant in
these age groups.

The terminology for what we just estimated and graphed varies widely across disciplines. Those
versed in design of experiments refer to these values as contrasts or effects. Economists and some other
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social scientists call them marginal or partial effects. The latter groups might be more comfortable if
we avoided the whole concept of contrasts and instead estimated the effects by typing

. margins agegrp, dydx(sex)

This will produce estimates that are identical to those shown above, and we can graph them by typing
marginsplot.

The advantage of using the contrast notation and thinking in contrasts is most evident when we
take marginal effects with respect to a categorical covariate with more than two levels. Marginal
effects for each level of the covariate will be taken with respect to a specified base level. Contrasts are
much more flexible. Using the r. operator, we can reproduce the marginal-effects results by taking
derivatives with respect to a reference level (as we saw above.) We can also estimate the marginal
effect of first moving from level 1 to level 2, then from level 2 to level 3, then from level 3 to
level 4, . . . using the ar. or “reverse adjacent” operator. Adjacent effects (marginal effects) can be
valuable when evaluating an ordinal covariate, such as agegrp in our current model. For a discussion
of contrasts, see [R] contrast and [R] margins, contrast.

Three-way interactions

marginsplot can handle any number of covariates in your margins command. Consider the
three-way ANOVA model that results from adding an indicator for whether an individual has been
diagnosed with diabetes. We will fully interact the new covariate with the others in the model.

. anova bpsystol agegrp##sex##diabetes

Number of obs = 10349 R-squared = 0.2572
Root MSE = 20.131 Adj R-squared = 0.2556

Source Partial SS df MS F Prob > F

Model 1448983.17 23 62999.2681 155.45 0.0000

agegrp 107963.582 5 21592.7164 53.28 0.0000
sex 1232.79267 1 1232.79267 3.04 0.0812

agegrp#sex 11679.5925 5 2335.91849 5.76 0.0000
diabetes 7324.98924 1 7324.98924 18.07 0.0000

agegrp#diabetes 5484.54623 5 1096.90925 2.71 0.0189
sex#diabetes 102.988239 1 102.988239 0.25 0.6142

agegrp#sex#diabetes 4863.14971 5 972.629943 2.40 0.0349

Residual 4184296.88 10325 405.258778

Total 5633280.05 10348 544.38346

The three-way interaction is significant, as is the main effect of diabetes and its interaction with
agegrp.

Again, if you are more comfortable with regression than ANOVA, you may type

. regress bpsystol agegrp##sex##diabetes

The margins and marginsplot results will be the same.
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We estimate the expected cell means for each combination of agegrp, sex, and diabetes, and
then graph the results by typing

. margins agegrp#sex#diabetes
(output omitted )

. marginsplot
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The graph is busy and difficult to interpret.

We can make it better by putting those with diabetes on one subgraph and those without on another:

. marginsplot, by(diabetes)
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We notice much larger CIs for diabetics. That is not surprising because our sample contains only 499
diabetics compared with 9,850 nondiabetics.
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A more interesting way to arrange the plots is by grouping the subgraphs on sex:

. marginsplot, by(sex)
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Aside from increased systolic blood pressure in the upper-age groups, which we saw earlier,
it appears that those with diabetes are at greater risk of higher systolic blood pressure for many
upper-age groups. We can check that by having margins estimate the differences between diabetics
and nondiabetics, and graphing the results.

. margins r.diabetes@agegrp#sex
(output omitted )

. marginsplot, by(sex) yline(0)
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With CIs above 0 for six of eight age groups over 40, this graph provides evidence that diabetes is
related to higher blood pressure in those over 40.
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Continuous covariates
margins and marginsplot are just as useful with continuous covariates as they are with factor

variables. As a variation on our ANOVA/regression models, let’s move to a logistic regression, using
as our dependent variable an indicator for whether a person has high blood pressure. We introduce a
continuous covariate—body mass index (BMI), a measure of weight relative to height. High BMI is
often associated with high blood pressure. We will allow the effect of BMI to vary across sexes, age
groups, and sex/age combinations by fully interacting the covariates.

. logistic highbp sex##agegrp##c.bmi

If we wished, we could perform all the analyses above on this model. Instead of estimating margins,
contrasts, and marginal effects on the level of systolic blood pressure, we would be estimating margins,
contrasts, and marginal effects on the probability of having high blood pressure. You can see those
results by repeating any of the prior commands that involve sex and agegrp. In this section, we will
focus on the continuous covariate bmi.

With continuous covariates, rather than specify them in the marginlist of margins, we specify the
specific values at which we want the covariate evaluated in an at() option. at() options are very
flexible, and there are many ways to specify values; see Syntax of at() in [R] margins.

BMI in our sample ranges from 12.4 to 61.2. Let’s estimate the predictive margins for males and
females at levels of BMI from 10 through 65 at intervals of 5 and graph the results:

. margins sex, at(bmi=(10(5)65))
(output omitted )

. marginsplot, xlabel(10(10)60)
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We added the xlabel(10(10)60) option to improve the labeling of the x axis. You may add
any twoway options (see [G-3] twoway options) to the marginsplot command.

For a given BMI, males are generally more susceptible to high blood pressure, though the effect
is attenuated by the logistic response when the probabilities approach 0 or 1.

Because bmi is continuous, we might prefer to see the response graphed using a line. We might
also prefer that the CIs be plotted as areas. We change the plottype of the response by using the
recast() option and the plottype of the CI by using the recastci() option:
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. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)
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The CIs are a little dark for our tastes. You can dim them a bit by reducing the intensity of their
color. Adding ciopts(color(*.8)) to our marginsplot command will do that. Any plot option
accepted by twoway rarea (see [G-2] graph twoway rarea) may be specified in a ciopts() option.

Given their confidence regions, the male and female profiles appear to be statistically different over
most of the range of BMI. As with the profiles of categorical covariates, we can check that assertion
by contrasting the two profiles on sex and graphing the results. Let’s improve the smoothness of the
response by specifying intervals of 1 instead of 5.

. margins r.sex, at(bmi=(10(1)65))
(output omitted )

. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)
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We see that the difference between the sexes is largest at a BMI of about 45 and that the sexes
respond more similarly with very high and very low BMI. This shape is largely determined by the
response of the logistic function, which is attenuated near probabilities 0 and 1, combined with the
fact that the lowest measured BMIs are associated with extremely low probabilities of high blood
pressure and the highest measured BMIs are associated with high probabilities of high blood pressure.
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As when we contrasted profiles of categorical variables, different disciplines will think of this
graph differently. Those familiar with designed experiments will be comfortable with the terms used
above—this is a contrast of profiles, or a profile of effects, or a profile of a contrast. Many social
scientists will prefer to think of this as a graph of marginal or partial effects. For them, this is a plot
of the discrete marginal effect of being female for various levels of BMI. They can obtain an identical
graph, with labeling more appropriate for the marginal effect’s interpretation, by typing

. margins, at(bmi=(10(1)65)) dydx(sex)

. marginsplot, xlabel(10(10)60) recast(line) recastci(rarea)

We can also plot profiles of the response of BMI by levels of another continuous covariate (rather
than by the categorical variable sex). To do so, we will need another continuous variable in our
model. We have been using age groups as a covariate to emphasize the treatment of categorical
variables and to allow the effect of age to be flexible. Our dataset also has age recorded in integer
years. We replace agegrp with continuous age in our logistic regression.

. logistic highbp sex##c.age##c.bmi

We can now obtain profiles of BMI for different ages by specifying ranges for both bmi and age
in a single at() option on the margins command:

. margins sex, at(bmi=(10(5)60) age=(20(10)80))

With seven ages specified, we have many profiles, so we will dispense with the CIs by adding the
noci option and also tidy up the graph by asking for four columns in the legend:

. marginsplot, noci by(sex) legend(cols(4))
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Our model seems to indicate that males have a much sharper reaction to body mass indices than
do females. Likewise, younger subjects display a sharper response, while older subjects have a more
gradual response with earlier onset. That interpretation might be a result of our parametric treatment
of age. As it turns out, the interpretation holds if we allow age to take more flexible forms or return
to our use of age groups, which allows each of seven age groups to have unique BMI profiles. Here
are the commands to perform that analysis:
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. logistic highbp sex##agegrp##c.bmi
(output omitted )

. margins sex#agegrp, at(bmi=(10(5)60))
(output omitted )

. marginsplot, noci by(sex) legend(cols(4))
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Plots at every value of a continuous covariate

In some cases, the specific values of a continuous covariate are important, and we want to plot
the response at those specific values. Return to our logistic example with age treated as a continuous
covariate.

. logistic highbp sex##c.age##c.bmi

We can use a programming trick to extract all the values of age and then supply them in an at()
option, just as we would any list of values.

. levelsof age

. margins sex, at(age=(‘r(levels)’))

See [P] levelsof for a discussion of the levelsof command. levelsof returns in r(levels) the
sorted list of unique values of the specified varlist, in our case, age.

We can then plot the results using marginsplot.

This is not a very interesting trick when using our age variable, which is recorded as integers
from 20 to 74, but the approach will work with almost any continuous variable. In our model, bmi
might seem more interesting, but there are 9,941 unique values of bmi in our dataset. A graph cannot
resolve so many different values. For that reason, we usually recommend against plotting at every
value of a covariate. Instead, graph at reasonable values over the range of the covariate by using the
at() option, as we did earlier. This trick is best reserved for variables with a few, or at most a few
dozen, unique values.
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Contrasts of at() groups—discrete effects

We have previously contrasted across the values of factor variables in our model. Put another way,
we have estimated the discrete marginal effects of factor variables. We can do the same for the levels
of variables in at() specifications and across separate at() specifications.

Returning to one of our logistic models and its margins, we earlier estimated the predictive margins
of BMI at 5-unit intervals for both sexes. These are the commands we typed:

. logistic highbp sex##agegrp##c.bmi

. margins sex, at(bmi=(10(5)65))

. marginsplot, xlabel(10(10)60)

We can estimate the discrete effects by sex of bmi moving from 10 to 15, then from 15 to 20, . . . ,
and then from 60 to 65 by contrasting the levels of the at() groups using the reverse-adjacent contrast
operator (ar.). We specify the operator within the atcontrast() suboption of the contrast()
option. We need to specify one other option. By default, margins, contrast will apply a contrast
to all variables in its marginlist when a contrast has been requested. In this case, we do not want
to contrast across sexes but rather to contrast across the levels of BMI within each sex. To prevent
margins from contrasting across the sexes, we specify the marginswithin option. Our margins
command is

. margins sex, at(bmi=(10(5)65)) contrast(atcontrast(ar._at) marginswithin)

And we graph the results using marginsplot:

. marginsplot
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The graph shows the contrasts (or if you prefer, discrete changes) in the probability of high blood
pressure by sex as one increases BMI in 5-unit increments.

We can even estimate contrasts (discrete effects) across at() options. To start, let’s compare the
age-group profiles of the probability of high blood pressure for those in the 25th and 75th percentile
of BMI.
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. margins agegrp, at((p25) bmi) at((p75) bmi)
(output omitted )

. marginsplot
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For each age group, people whose BMI is at the 75th percentile have a much higher probability of
high blood pressure than those at the 25th percentile. What is that difference in probability and its
CI? To contrast across the percentiles of BMI within age groups, we again specify a contrast operator
on the at() groups using atcontrast(), and we also tell margins to perform that contrast within
the levels of the marginlist by using the marginswithin option.

. margins agegrp, at((p25) bmi) at((p75) bmi)
> contrast(atcontrast(r._at) marginswithin)

(output omitted )
. marginsplot
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The differences in probability between 25th and 75th BMI percentiles are clearly significantly
greater than 0 and appear to be larger for those in higher age groups. The point estimate for those
over 70 drops but has a large CI.
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Controlling the graph’s dimensions

Thus far, marginsplot has miraculously done almost exactly what we want in most cases. The
things we want on the x axis have been there, the choice of plots has made sense, etc. Some of
that luck sprang from the relatively simple analyses we were performing, and some was from careful
specification of our margins command. Sometimes, we will not be so lucky.

Consider the following regress, margins, and marginsplot commands:

. regress bpsystol agegrp##sex##c.bmi
(output omitted )

. margins agegrp, over(sex) at(bmi=(10(10)60))
(output omitted )

. marginsplot
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By default, marginsplot places the levels of the first multilevel at() specification on the x axis,
and then usually plots the levels of all remaining variables as connected lines. That is what we see
in the graph above—bmi, the at() variable, is on the x axis, and each combination of agegrp and
sex is plotted as a separate connected line. If there is no multilevel at() specification, then the first
variable in marginlist becomes the x axis. There are many more rules, but it is usually best to simply
type marginsplot and see what happens. If you do not like marginsplot’s choices, change them.

What if we wanted agegrp on the x axis instead of BMI? We tell marginsplot to make that
change by specifying agegrp in the xdimension() option:
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. marginsplot, xdimension(agegrp)

Variables that uniquely identify margins: bmi agegrp sex
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We have been suppressing the Results window output for marginsplot, but that output is helpful
if we want to change how things are plotted. You may specify any variable used in your margins
command in any of the dimension options—xdimension(), plotdimension(), bydimension(),
and graphdimension(). (In fact, there are some pseudovariables that you may also specify in some
cases; see Addendum: Advanced uses of dimlist for details.) marginsplot tries to help you narrow
your choices by listing a set of variables that uniquely identify all your margins. You are not restricted
to this list.

We have a different x axis and a different set of plots, but our graph is still busy and difficult to
read. We can make it better by creating separate graph panels for each sex. We do that by adding a
bydimension() option with sex as the argument.

. marginsplot, xdimension(agegrp) bydimension(sex)
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The patterns and the differences between males and females are now easier to see.
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If our interest is in comparing males and females, we might even choose to create a separate panel
for each level of BMI:

. marginsplot, xdimension(agegrp) bydimension(bmi) xlabel(, angle(45))
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The x-axis labels did not fit, so we angled them.

We leave you to explore the use of the graphdimension() option. It is much like bydimension()
but creates separate graphs rather than separate panels. Operationally, the plotdimension() option
is rarely used. All variables not in the x dimension and not specified elsewhere become the plotted
connected lines.

You will likely use the dimension options frequently. This is one of the rare cases where we
recommend using the minimal abbreviations of the options—x() for xdimension(), plot() for
plotdimension(), by() for bydimension(), and graph() for graphdimension(). The abbre-
viations are easy to read and just as meaningful as the full option names. The full names exist to
reinforce the relationship between the dimension options.

Pairwise comparisons

marginsplot can graph the results of margins, pwcompare; see [R] margins, pwcompare. We
return to one of our ANOVA examples. Here we request pairwise comparisons with the pwcompare
option of margins, and we request Bonferroni-adjusted CIs with the mcompare() option:
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. anova bpsystol agegrp##sex
(output omitted )

. margins agegrp, pwcompare mcompare(bonferroni)
(output omitted )

. marginsplot
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Each connected line plot in the graph represents a reference age-group category for the pairwise
comparison. The ticks on the x axis represent comparison age-group categories. So, each plot is a
profile for a reference category showing its comparison to each other category.

Horizontal is sometimes better
Another interesting way to graph pairwise comparisons is to simply plot each comparison and

label the two categories being compared. This type of graph works better if it is oriented horizontally
rather than vertically.

Continuing with the example above, we will switch the graph to horizontal. We will also make
several changes to display the graph better. We specify that only unique comparisons be plotted. The
graph above plotted both 1 versus 2 and 2 versus 1, which are the same comparison with opposite
signs. We add a reference line at 0 because we are interested in comparisons that differ from 0. This
graph looks better without the connecting lines, so we add the option recast(scatter). We also
reverse the y scale so that the smallest levels of age group appear at the top of the axis.



1122 marginsplot — Graph results from margins (profile plots, etc.)

. marginsplot, horizontal unique xline(0) recast(scatter) yscale(reverse)
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Pairwise Comparisons of Predictive Margins of agegrp with 95% CIs

All the comparisons differ from 0, so all our age groups are statistically different from each other.

The horizontal option can be useful outside of pairwise comparisons. Profile plots are usually
oriented vertically. However, when your covariates have long labels or there are many levels at which
the margins are being evaluated, the graph may be easier to read when rendered horizontally.

Marginal effects

We have seen how to graph discrete effects for factor variables and continuous variables by using
contrasts, and optionally by using the dydx() option of margins: Contrasts of margins—effects
(discrete marginal effects) and Continuous covariates . Let’s now consider graphing instantaneous
marginal effects for continuous covariates. Begin by refitting our logistic model of high blood
pressure as a function of sex, age, and BMI:

. logistic highbp sex##agegrp##c.bmi
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We estimate the average marginal effect of BMI on the probability of high blood pressure for each
age group and then graph the results by typing

. margins agegrp, dydx(bmi)
(output omitted )

. marginsplot

.0
0

5
.0

1
.0

1
5

.0
2

E
ff

e
c
ts

 o
n

 P
r(

H
ig

h
b

p
)

20−29 30−39 40−49 50−59 60−69 70+
Age Group

Average Marginal Effects of bmi with 95% CIs

These are the conditional expectations of the marginal effects treating everyone in the sample as
though they were in each age group. We can estimate fully conditional marginal effects that do not
depend on averaging over the sample by also margining on our one remaining covariate—sex.

. margins agegrp#sex, dydx(bmi)
(output omitted )

. marginsplot
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The effect of BMI on the probability of high blood pressure looks to increase with age and is also
higher for males than for females.

You may want to confirm that assertion by contrasting across sexes within agegrp:
. margins r.sex@agegrp, dydx(bmi)
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Plotting a subset of the results from margins

marginsplot plots all the margins produced by the preceding margins command. If you want a
graph that does not include all the margins, then enter a margins command that produces a reduced
set of margins. Obvious ways to reduce the number of margins include not specifying some factors or
interactions in the marginlist of margins, not specifying some at() or over() options, or reducing
the values specified in an at() option. A less obvious technique uses selection lists in factor operators
to select specific sets of levels from factor variables specified in the marginlist.

Instead of typing

. margins agegrp

which will give you margins for all six age groups in our sample, type

. margins i(2/4).agegrp

which will give you only three margins—those for groups 2, 3, and 4. See [U] 11.4.3.4 Selecting
levels.

Advanced usage

margins is incredibly flexible in the statistics it can estimate and in the grouping of those estimates.
Many of the estimates that margins can produce do not make convincing graphs. marginsplot plots
the results of any margins command, regardless of whether the resulting graph is easily interpreted.
Here we demonstrate some options that can make complicated margins into graphs that are somewhat
more useful than those produced by marginsplot’s defaults. Others may find truly useful applications
for these approaches.

Plots with multiple terms

Margins plots are rarely interesting when you specify multiple terms on your margins command,
for example, margins a b. Such plots often compare things that are not comparable. The defaults
for marginsplot rarely produce useful plots with multiple terms. Perhaps the most interesting graph
in such cases puts all the levels of all the terms together on the vertical axis and plots their margins
on the horizontal axis. We do that by including the marginlist from margins in an xdimension()
option on marginsplot. The long labels on such graphs look better with a horizontal orientation,
and there is no need to connect the margin estimates, so we specify the recast(scatter) option.
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Using one of our ANOVA examples from earlier,

. anova bpsystol agegrp##sex
(output omitted )

. margins agegrp sex
(output omitted )

. marginsplot, xdimension(agegrp sex) horizontal recast(scatter)

20−29, asobserved

30−39, asobserved

40−49, asobserved

50−59, asobserved

60−69, asobserved

70+, asobserved

asobserved, Male

asobserved, Female

a
g

e
g

rp
, 

s
e

x

110 120 130 140 150
Linear Prediction

Predictive Margins with 95% CIs

The “asobserved” notations in the y-axis labels are informing us that, for example, when the margin
for females is evaluated, the values of age group are taken as they are observed in the dataset. The
margin is computed as an average over those values.

Plots with multiple at() options

Some disciplines like to compute margins at the means of other covariates in their model and
others like to compute the response for each observation and then take the means of the response.
These correspond to the margins options at((mean) all) and at((asobserved) all). For
responses that are linear functions of the coefficients, such as predict after regress, the two
computations yield identical results. For responses that are nonlinear functions of the coefficients, the
two computations estimate different things.

Using one of our logistic models of high blood pressure,

. logistic highbp sex##agegrp##c.bmi

and computing both sets of margins for each age group,

. margins agegrp, at((mean) _all) at((asobserved) _all)
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we can use marginsplot to compare the approaches:

. marginsplot
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In this case, the probabilities of high blood pressure are lower for each age group at the means of sex
and bpi than are the mean probabilities of high blood pressure averaged over the observed values of
sex and bpi.

Such comparisons come up even more frequently when evaluating marginal effects. We can estimate
the marginal effects of sex at each age group and graph the results by adding dydx(sex) to our
margins command:

. margins agegrp, at((mean) _all) at((asobserved) _all) dydx(sex)
(output omitted )

. marginsplot
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The average marginal effect is smaller for most age groups, but the CIs for both sets of estimates are
wide. Can we tell the difference between the estimates? To answer that, we use the now-familiar tactic of
taking the contrast of our estimated marginal-effects profiles. That means adding contrast(atjoint
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marginswithin) to our margins command. We will also add mcompare(bonferroni) to account
for the fact that we will be comparing six contrasts.

. margins agegrp, at((mean) _all) at((asobserved) _all) dydx(sex)
> contrast(atjoint marginswithin) mcompare(bonferroni)

We will also add the familiar reference line at 0 to our graph of the contrasts.

. marginsplot, yline(0)
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While the difference in the estimates of marginal effects is not large, we can distinguish the estimates
for three of the six age groups.

The at() option of margins provides far more flexibility than demonstrated above. It can be
used to evaluate a response or marginal effect at almost any point of interest or combinations of such
points. See Syntax of at() in [R] margins.

Adding scatterplots of the data

We can add scatterplots of the observed data to our plots of the margins. The NHANES II dataset
is too large for this to be interesting, so for this example, we will use auto.dta. We fit mileage
on whether the care is foreign and on a quadratic in the weight of the car. We convert the weight
into tons (U.S. definition) to improve the scaling, and we format the new tons variable to improve
its labels on the graph. For our graph, we create separate variables for mileage of domestic and of
foreign cars. We fit a fully interacted model so that the effect of weight on mileage can be different
for foreign and for domestic cars.

. use http://www.stata-press.com/data/r12/auto

. generate tons = weight/2000

. format tons %6.2f

. separate mpg, by(foreign)

. regress mpg foreign##c.tons##c.tons

We then estimate the margins over the range of tons, using the option over(foreign) to obtain
separate estimates for foreign and domestic cars.

. margins, at(tons=(.8(.05)2.4)) over(foreign)
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Adding scatterplots of mileage for domestic and foreign cars is easy. We insert into an addplot()
option of marginsplot the same scatterplot syntax for twoway that we would type to produce a
scatterplot of the data:

. marginsplot, addplot(scatter mpg0 tons || scatter mpg1 tons) recast(line) noci
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Many will be surprised that the mileage profile is higher in 1978 for domestic (U.S. built) cars.
Is the difference significant?

. margins, at(tons=(.8(.05)2.4)) over(r.for)
(output omitted )

. marginsplot, yline(0)
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As we did earlier, we contrast the two profiles. We can discern some difference between the two
profiles for midweight vehicles, but otherwise there is insufficient information to believe mileage
differs across domestic and foreign cars.
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Addendum: Advanced uses of dimlist
dimlist specifies the dimensions from the immediately preceding margins command that are to

be used for the marginsplot’s x axis, plots, subgraphs, and graphs. dimlist may contain:

dim Description

varname Any variable referenced in the preceding margins command.
at(varname) If a variable is specified in both the marginlist or the over() option and in the

at() option of margins, then the two uses can be distinguished in marginsplot
by typing the at() variables as at(varname) in dimlist.

deriv If the preceding margins command included a dydx(), eyex(), dyex(), or
eydx() option, dimlist may also contain deriv to specify all the variables over
which derivatives were taken.

term If the preceding margins command included multiple terms (for example, margins
a b), then dimlist may contain term to enumerate those terms.

atopt If the preceding margins command included multiple at() options, then dimlist
may contain atopt to enumerate those at() options.

When the pairwise option is specified on margins, you may specify dimensions that enumerate
the pairwise comparisons.

pw enumerates all the pairwise comparisons
pw0 enumerates the reference categories of the comparisons
pw1 enumerates the comparison categories of the comparisons

Methods and formulas
marginsplot is implemented as an ado-file.
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Also see
[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, contrast — Contrasts of margins

[R] margins, pwcompare — Pairwise comparisons of margins

[R] margins postestimation — Postestimation tools for margins



Title

matsize — Set the maximum number of variables in a model

Syntax

set matsize #
[
, permanently

]
where 10 ≤ # ≤ 11000 for Stata/MP and Stata/SE and where 10 ≤ # ≤ 800 for Stata/IC.

Description

set matsize sets the maximum number of variables that can be included in any of Stata’s
estimation commands.

For Stata/MP and Stata/SE, the default value is 400, but it may be changed upward or downward.
The upper limit is 11,000.

For Stata/IC, the initial value is 400, but it may be changed upward or downward. The upper limit
is 800.

This command may not be used with Small Stata; matsize is permanently frozen at 100.

Changing matsize has no effect on Mata.

Option
permanently specifies that, in addition to making the change right now, the matsize setting be

remembered and become the default setting when you invoke Stata.

Remarks
set matsize controls the internal size of matrices that Stata uses. The default of 400 for Stata/IC,

for instance, means that linear regression models are limited to 198 independent variables—198
because the constant uses one position and the dependent variable another, making a total of 200.

You may change matsize with data in memory, but increasing matsize increases the amount of
memory consumed by Stata, increasing the probability of page faults and thus of making Stata run
more slowly.

Example 1

We wish to fit a model of y on the variables x1 through x400. Without thinking, we type

. regress y x1-x400
matsize too small

You have attempted to create a matrix with more than 400 rows or columns
or to fit a model with more than 400 variables plus ancillary parameters.
You need to increase matsize by using the set matsize command; see help
matsize.

r(908);

1130
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We realize that we need to increase matsize, so we type

. set matsize 450

. regress y x1-x400
(output omitted )

Programmers should note that the current setting of matsize is stored as the c-class value
c(matsize); see [P] creturn.

Also see
[R] query — Display system parameters

[D] memory — Memory management

[U] 6 Managing memory



Title

maximize — Details of iterative maximization

Syntax

Maximum likelihood optimization

mle cmd . . .
[
, options

]
Set default maximum iterations

set maxiter #
[
, permanently

]
options Description

difficult use a different stepping algorithm in nonconcave regions
technique(algorithm spec) maximization technique
iterate(#) perform maximum of # iterations; default is iterate(16000)[
no
]
log display an iteration log of the log likelihood; typically, the default

trace display current parameter vector in iteration log
gradient display current gradient vector in iteration log
showstep report steps within an iteration in iteration log
hessian display current negative Hessian matrix in iteration log
showtolerance report the calculated result that is compared to the effective

convergence criterion
tolerance(#) tolerance for the coefficient vector; see Options for the defaults
ltolerance(#) tolerance for the log likelihood; see Options for the defaults
nrtolerance(#) tolerance for the scaled gradient; see Options for the defaults
qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs, the q−H

matrix is used as the final check for convergence rather than
nrtolerance() and the H matrix; seldom used

nonrtolerance ignore the nrtolerance() option
from(init specs) initial values for the coefficients

where algorithm spec is

algorithm
[

#
[

algorithm
[

#
] ]

. . .
]

algorithm is
{
nr | bhhh | dfp | bfgs

}
and init specs is one of

matname
[
, skip copy

]
{ [

eqname:
]
name = # | /eqname = #

} [
. . .
]

#
[

# . . .
]
, copy
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Description
All Stata commands maximize likelihood functions using moptimize() and optimize(); see

Methods and formulas below. Commands use the Newton–Raphson method with step halving
and special fixups when they encounter nonconcave regions of the likelihood. For details, see
[M-5] moptimize( ) and [M-5] optimize( ). For more information about programming maximum like-
lihood estimators in ado-files and Mata, see [R] ml and the fourth edition of Maximum Likelihood
Estimation with Stata (Gould, Pitblado, and Poi 2010).

set maxiter specifies the default maximum number of iterations for estimation commands that
iterate. The initial value is 16000, and # can be 0 to 16000. To change the maximum number of
iterations performed by a particular estimation command, you need not reset maxiter; you can
specify the iterate(#) option. When iterate(#) is not specified, the maxiter value is used.

Maximization options
difficult specifies that the likelihood function is likely to be difficult to maximize because of

nonconcave regions. When the message “not concave” appears repeatedly, ml’s standard stepping
algorithm may not be working well. difficult specifies that a different stepping algorithm be
used in nonconcave regions. There is no guarantee that difficult will work better than the
default; sometimes it is better and sometimes it is worse. You should use the difficult option
only when the default stepper declares convergence and the last iteration is “not concave” or
when the default stepper is repeatedly issuing “not concave” messages and producing only tiny
improvements in the log likelihood.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following
algorithms are allowed. For details, see Gould, Pitblado, and Poi (2010).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By
default, an algorithm is used for five iterations before switching to the next algorithm. To specify a
different number of iterations, include the number after the technique in the option. For example,
specifying technique(bhhh 10 nr 1000) requests that ml perform 10 iterations with the BHHH
algorithm followed by 1000 iterations with the NR algorithm, and then switch back to BHHH for
10 iterations, and so on. The process continues until convergence or until the maximum number
of iterations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals
iterate(), the optimizer stops and presents the current results. If convergence is declared before
this threshold is reached, it will stop when convergence is declared. Specifying iterate(0)
is useful for viewing results evaluated at the initial value of the coefficient vector. Specifying
iterate(0) and from() together allows you to view results evaluated at a specified coefficient
vector; however, not all commands allow the from() option. The default value of iterate(#)
for both estimators programmed internally and estimators programmed with ml is the current value
of set maxiter, which is iterate(16000) by default.

log and nolog specify whether an iteration log showing the progress of the log likelihood is to be
displayed. For most commands, the log is displayed by default, and nolog suppresses it. For a
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few commands (such as the svy maximum likelihood estimators), you must specify log to see
the log.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so
that developers at StataCorp could view the stepping when they were improving the ml optimizer
code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective
convergence criterion at the end of each iteration. Until convergence is achieved, the smallest
calculated value is reported.

shownrtolerance is a synonym of showtolerance.

Below we describe the three convergence tolerances. Convergence is declared when the nrtol-
erance() criterion is met and either the tolerance() or the ltolerance() criterion is also
met.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied.

tolerance(1e-4) is the default for estimators programmed with ml.

tolerance(1e-6) is the default.

ltolerance(#) specifies the tolerance for the log likelihood. When the relative change in the log
likelihood from one iteration to the next is less than or equal to ltolerance(), the ltolerance()
convergence is satisfied.

ltolerance(0) is the default for estimators programmed with ml.

ltolerance(1e-7) is the default.

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when
gH−1g′ < nrtolerance(). The default is nrtolerance(1e-5).

qtolerance(#) when specified with algorithms bhhh, dfp, or bfgs uses the q−H matrix as the
final check for convergence rather than nrtolerance() and the H matrix.

Beginning with Stata 12, by default, Stata now computes the H matrix when the q−H matrix passes
the convergence tolerance, and Stata requires that H be concave and pass the nrtolerance()
criterion before concluding convergence has occurred.

qtolerance() provides a way for the user to obtain Stata’s earlier behavior.

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

from() specifies initial values for the coefficients. Not all estimators in Stata support this option. You
can specify the initial values in one of three ways: by specifying the name of a vector containing
the initial values (for example, from(b0), where b0 is a properly labeled vector); by specifying
coefficient names with the values (for example, from(age=2.1 /sigma=7.4)); or by specifying
a list of values (for example, from(2.1 7.4, copy)). from() is intended for use when doing
bootstraps (see [R] bootstrap) and in other special situations (for example, with iterate(0)).
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Even when the values specified in from() are close to the values that maximize the likelihood,
only a few iterations may be saved. Poor values in from() may lead to convergence problems.

skip specifies that any parameters found in the specified initialization vector that are not also
found in the model be ignored. The default action is to issue an error message.

copy specifies that the list of values or the initialization vector be copied into the initial-value
vector by position rather than by name.

Option for set maxiter

permanently specifies that, in addition to making the change right now, the maxiter setting be
remembered and become the default setting when you invoke Stata.

Remarks
Only in rare circumstances would you ever need to specify any of these options, except nolog.

The nolog option is useful for reducing the amount of output appearing in log files.

The following is an example of an iteration log:

Iteration 0: log likelihood = -3791.0251
Iteration 1: log likelihood = -3761.738
Iteration 2: log likelihood = -3758.0632 (not concave)
Iteration 3: log likelihood = -3758.0447
Iteration 4: log likelihood = -3757.5861
Iteration 5: log likelihood = -3757.474
Iteration 6: log likelihood = -3757.4613
Iteration 7: log likelihood = -3757.4606
Iteration 8: log likelihood = -3757.4606

(table of results omitted )

At iteration 8, the model converged. The message “not concave” at the second iteration is notable.
This example was produced using the heckman command; its likelihood is not globally concave, so
it is not surprising that this message sometimes appears. The other message that is occasionally seen
is “backed up”. Neither of these messages should be of any concern unless they appear at the final
iteration.

If a “not concave” message appears at the last step, there are two possibilities. One is that the
result is valid, but there is collinearity in the model that the command did not otherwise catch. Stata
checks for obvious collinearity among the independent variables before performing the maximization,
but strange collinearities or near collinearities can sometimes arise between coefficients and ancillary
parameters. The second, more likely cause for a “not concave” message at the final step is that the
optimizer entered a flat region of the likelihood and prematurely declared convergence.

If a “backed up” message appears at the last step, there are also two possibilities. One is that Stata
found a perfect maximum and could not step to a better point; if this is the case, all is fine, but this
is a highly unlikely occurrence. The second is that the optimizer worked itself into a bad concave
spot where the computed gradient and Hessian gave a bad direction for stepping.

If either of these messages appears at the last step, perform the maximization again with the
gradient option. If the gradient goes to zero, the optimizer has found a maximum that may not
be unique but is a maximum. From the standpoint of maximum likelihood estimation, this is a valid
result. If the gradient is not zero, it is not a valid result, and you should try tightening up the
convergence criterion, or try ltol(0) tol(1e-7) to see if the optimizer can work its way out of
the bad region.
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If you get repeated “not concave” steps with little progress being made at each step, try specifying
the difficult option. Sometimes difficult works wonderfully, reducing the number of iterations
and producing convergence at a good (that is, concave) point. Other times, difficult works poorly,
taking much longer to converge than the default stepper.

Saved results
Maximum likelihood estimators save the following in e():

Scalars
e(N) number of observations always saved
e(k) number of parameters always saved
e(k eq) number of equations in e(b) usually saved
e(k eq model) number of equations in overall usually saved

model test
e(k dv) number of dependent variables usually saved
e(df m) model degrees of freedom always saved
e(r2 p) pseudo-R-squared sometimes saved
e(ll) log likelihood always saved
e(ll 0) log likelihood, constant-only model saved when constant-only model is fit
e(N clust) number of clusters saved when vce(cluster clustvar) is specified;

see [U] 20.20 Obtaining robust variance estimates
e(chi2) χ2 usually saved
e(p) significance of model of test usually saved
e(rank) rank of e(V) always saved
e(rank0) rank of e(V) for constant-only model saved when constant-only model is fit
e(ic) number of iterations usually saved
e(rc) return code usually saved
e(converged) 1 if converged, 0 otherwise usually saved
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Macros
e(cmd) name of command always saved
e(cmdline) command as typed always saved
e(depvar) names of dependent variables always saved
e(wtype) weight type saved when weights are specified or implied
e(wexp) weight expression saved when weights are specified or implied
e(title) title in estimation output usually saved by commands using ml

e(clustvar) name of cluster variable saved when vce(cluster clustvar) is specified;
see [U] 20.20 Obtaining robust variance estimates

e(chi2type) Wald or LR; type of model χ2 test usually saved
e(vce) vcetype specified in vce() saved when command allows (vce())
e(vcetype) title used to label Std. Err. sometimes saved
e(opt) type of optimization always saved
e(which) max or min; whether optimizer is to always saved

perform maximization or
minimization

e(ml method) type of ml method always saved by commands using ml

e(user) name of likelihood-evaluator program always saved
e(technique) from technique() option sometimes saved
e(singularHmethod) m-marquardt or hybrid; method sometimes saved1

used when Hessian is singular
e(crittype) optimization criterion always saved1

e(properties) estimator properties always saved
e(predict) program used to implement predict usually saved

Matrices
e(b) coefficient vector always saved
e(Cns) constraints matrix sometimes saved
e(ilog) iteration log (up to 20 iterations) usually saved
e(gradient) gradient vector usually saved
e(V) variance–covariance matrix of always saved

the estimators
e(V modelbased) model-based variance only saved when e(V) is neither the OIM nor

OPG variance

Functions
e(sample) marks estimation sample always saved

1. Type ereturn list, all to view these results; see [P] return.

See Saved results in the manual entry for any maximum likelihood estimator for a list of returned
results.

Methods and formulas
Optimization is currently performed by moptimize() and optimize(), with the former imple-

mented in terms of the latter; see [M-5] moptimize( ) and [M-5] optimize( ). Some estimators use
moptimize() and optimize() directly, and others use the ml ado-file interface to moptimize().

Prior to Stata 11, Stata had three separate optimization engines: an internal one used by estimation
commands implemented in C code; ml implemented in ado-code separately from moptimize()
and used by most estimators; and moptimize() and optimize() used by a few recently written
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estimators. These days, the internal optimizer and the old version of ml are used only under version
control. In addition, arch and arima (see [TS] arch and [TS] arima) are currently implemented using
the old ml.

Let L1 be the log likelihood of the full model (that is, the log-likelihood value shown on the
output), and let L0 be the log likelihood of the “constant-only” model. The likelihood-ratio χ2 model
test is defined as 2(L1 − L0). The pseudo-R2 (McFadden 1974) is defined as 1 − L1/L0. This
is simply the log likelihood on a scale where 0 corresponds to the “constant-only” model and 1
corresponds to perfect prediction for a discrete model (in which case the overall log likelihood is 0).

Some maximum likelihood routines can report coefficients in an exponentiated form, for example,
odds ratios in logistic. Let b be the unexponentiated coefficient, s its standard error, and b0 and b1
the reported confidence interval for b. In exponentiated form, the point estimate is eb, the standard
error ebs, and the confidence interval eb0 and eb1 . The displayed Z (or t) statistics and p-values are
the same as those for the unexponentiated results. This is justified because eb = 1 and b = 0 are
equivalent hypotheses, and normality is more likely to hold in the b metric.

References
Gould, W. W., J. S. Pitblado, and B. P. Poi. 2010. Maximum Likelihood Estimation with Stata. 4th ed. College

Station, TX: Stata Press.

McFadden, D. L. 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics, ed.
P. Zarembka, 105–142. New York: Academic Press.

Also see
[R] ml — Maximum likelihood estimation

[SVY] ml for svy — Maximum pseudolikelihood estimation for survey data

[M-5] moptimize( ) — Model optimization

[M-5] optimize( ) — Function optimization

http://www.stata-press.com/books/ml4.html
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mean — Estimate means

Syntax
mean varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

stdize(varname) variable identifying strata for standardization
stdweight(varname) weight variable for standardization
nostdrescale do not rescale the standard weight variable

if/in/over

over(varlist
[
, nolabel

]
) group over subpopulations defined by varlist; optionally,

suppress group labels

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
display options control column formats and line width

coeflegend display legend instead of statistics

bootstrap, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Means

Description
mean produces estimates of means, along with standard errors.
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Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the
strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in
the stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups.
This option requires stdize() but is ignored if the over() option is not specified.

� � �
if/in/over �

over(varlist
[
, nolabel

]
) specifies that estimates be computed for multiple subpopulations, which

are identified by the different values of the variables in varlist.

When this option is supplied with one variable name, such as over(varname), the value labels of
varname are used to identify the subpopulations. If varname does not have labeled values (or there
are unlabeled values), the values themselves are used, provided that they are nonnegative integers.
Noninteger values, negative values, and labels that are not valid Stata names are substituted with
a default identifier.

When over() is supplied with multiple variable names, each subpopulation is assigned a unique
default identifier.

nolabel requests that value labels attached to the variables identifying the subpopulations be
ignored.

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that allow for intragroup correlation, and that use bootstrap or jackknife
methods; see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the
sample mean.

� � �
Reporting �

level(#); see [R] estimation options.

noheader prevents the table header from being displayed. This option implies nolegend.

nolegend prevents the table legend identifying the subpopulations from being displayed.

display options: cformat(% fmt) and nolstretch; see [R] estimation options.

The following option is available with mean but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Example 1

Using the fuel data from example 2 of [R] ttest, we estimate the average mileage of the cars
without the fuel treatment (mpg1) and those with the fuel treatment (mpg2).

. use http://www.stata-press.com/data/r12/fuel

. mean mpg1 mpg2

Mean estimation Number of obs = 12

Mean Std. Err. [95% Conf. Interval]

mpg1 21 .7881701 19.26525 22.73475
mpg2 22.75 .9384465 20.68449 24.81551

Using these results, we can test the equality of the mileage between the two groups of cars.

. test mpg1 = mpg2

( 1) mpg1 - mpg2 = 0

F( 1, 11) = 5.04
Prob > F = 0.0463

Example 2

In example 1, the joint observations of mpg1 and mpg2 were used to estimate a covariance between
their means.

. matrix list e(V)

symmetric e(V)[2,2]
mpg1 mpg2

mpg1 .62121212
mpg2 .4469697 .88068182

If the data were organized this way out of convenience but the two variables represent independent
samples of cars (coincidentally of the same sample size), we should reshape the data and use the
over() option to ensure that the covariance between the means is zero.

. use http://www.stata-press.com/data/r12/fuel

. stack mpg1 mpg2, into(mpg) clear

. mean mpg, over(_stack)

Mean estimation Number of obs = 24

1: _stack = 1
2: _stack = 2

Over Mean Std. Err. [95% Conf. Interval]

mpg
1 21 .7881701 19.36955 22.63045
2 22.75 .9384465 20.80868 24.69132
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. matrix list e(V)

symmetric e(V)[2,2]
mpg: mpg:

1 2
mpg:1 .62121212
mpg:2 0 .88068182

Now we can test the equality of the mileage between the two independent groups of cars.

. test [mpg]1 = [mpg]2

( 1) [mpg]1 - [mpg]2 = 0

F( 1, 23) = 2.04
Prob > F = 0.1667

Example 3: standardized means

Suppose that we collected the blood pressure data from example 2 of [R] dstdize, and we wish to
obtain standardized high blood pressure rates for each city in 1990 and 1992, using, as the standard,
the age, sex, and race distribution of the four cities and two years combined. Our rate is really the
mean of a variable that indicates whether a sampled individual has high blood pressure. First, we
generate the strata and weight variables from our standard distribution, and then use mean to compute
the rates.

. use http://www.stata-press.com/data/r12/hbp, clear

. egen strata = group(age race sex) if inlist(year, 1990, 1992)
(675 missing values generated)

. by strata, sort: gen stdw = _N

. mean hbp, over(city year) stdize(strata) stdweight(stdw)

Mean estimation

N. of std strata = 24 Number of obs = 455

Over: city year
_subpop_1: 1 1990
_subpop_2: 1 1992
_subpop_3: 2 1990
_subpop_4: 2 1992
_subpop_5: 3 1990
_subpop_6: 3 1992
_subpop_7: 5 1990
_subpop_8: 5 1992

Over Mean Std. Err. [95% Conf. Interval]

hbp
_subpop_1 .058642 .0296273 .0004182 .1168657
_subpop_2 .0117647 .0113187 -.0104789 .0340083
_subpop_3 .0488722 .0238958 .0019121 .0958322
_subpop_4 .014574 .007342 .0001455 .0290025
_subpop_5 .1011211 .0268566 .0483425 .1538998
_subpop_6 .0810577 .0227021 .0364435 .1256719
_subpop_7 .0277778 .0155121 -.0027066 .0582622
_subpop_8 .0548926 . . .

The standard error of the high blood pressure rate estimate is missing for city 5 in 1992 because
there was only one individual with high blood pressure; that individual was the only person observed
in the stratum of white males 30–35 years old.
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By default, mean rescales the standard weights within the over() groups. In the following, we
use the nostdrescale option to prevent this, thus reproducing the results in [R] dstdize.

. mean hbp, over(city year) nolegend stdize(strata) stdweight(stdw)
> nostdrescale

Mean estimation

N. of std strata = 24 Number of obs = 455

Over Mean Std. Err. [95% Conf. Interval]

hbp
_subpop_1 .0073302 .0037034 .0000523 .0146082
_subpop_2 .0015432 .0014847 -.0013745 .004461
_subpop_3 .0078814 .0038536 .0003084 .0154544
_subpop_4 .0025077 .0012633 .000025 .0049904
_subpop_5 .0155271 .0041238 .007423 .0236312
_subpop_6 .0081308 .0022772 .0036556 .012606
_subpop_7 .0039223 .0021904 -.0003822 .0082268
_subpop_8 .0088735 0 . .

Saved results
mean saves the following in e():
Scalars

e(N) number of observations
e(N over) number of subpopulations
e(N stdize) number of standard strata
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom
e(rank) rank of e(V)

Macros
e(cmd) mean
e(cmdline) command as typed
e(varlist) varlist
e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(cluster) name of cluster variable
e(over) varlist from over()
e(over labels) labels from over() variables
e(over namelist) names from e(over labels)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) vector of mean estimates
e(V) (co)variance estimates
e( N) vector of numbers of nonmissing observations
e( N stdsum) number of nonmissing observations within the standard strata
e( p stdize) standardizing proportions
e(error) error code corresponding to e(b)

Functions
e(sample) marks estimation sample
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Methods and formulas
mean is implemented as an ado-file.

Methods and formulas are presented under the following headings:

The mean estimator
Survey data
The survey mean estimator
The standardized mean estimator
The poststratified mean estimator
The standardized poststratified mean estimator
Subpopulation estimation

The mean estimator

Let y be the variable on which we want to calculate the mean and yj an individual observation on
y, where j = 1, . . . , n and n is the sample size. Let wj be the weight, and if no weight is specified,
define wj = 1 for all j. For aweights, the wj are normalized to sum to n. See The survey mean
estimator for pweighted data.

Let W be the sum of the weights

W =
n∑
j=1

wj

The mean is defined as

y =
1
W

n∑
j=1

wjyj

The default variance estimator for the mean is

V̂ (y) =
1

W (W − 1)

n∑
j=1

wj(yj − y)2

The standard error of the mean is the square root of the variance.

If x, xj , and x are similarly defined for another variable (observed jointly with y), the covariance
estimator between x and y is

Ĉov(x, y) =
1

W (W − 1)

n∑
j=1

wj(xj − x)(yj − y)

Survey data

See [SVY] variance estimation, [SVY] direct standardization, and [SVY] poststratification for
discussions that provide background information for the following formulas. The following formulas
are derived from the fact that the mean is a special case of the ratio estimator where the denominator
variable is one, xj = 1; see [R] ratio.
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The survey mean estimator

Let Yj be a survey item for the jth individual in the population, where j = 1, . . . ,M and M

is the size of the population. The associated population mean for the item of interest is Y = Y/M
where

Y =
M∑
j=1

Yj

Let yj be the survey item for the jth sampled individual from the population, where j = 1, . . . ,m
and m is the number of observations in the sample.

The estimator for the mean is y = Ŷ /M̂ , where

Ŷ =
m∑
j=1

wjyj and M̂ =
m∑
j=1

wj

and wj is a sampling weight. The score variable for the mean estimator is

zj(y) =
yj − y
M̂

=
M̂yj − Ŷ
M̂2

The standardized mean estimator
Let Dg denote the set of sampled observations that belong to the gth standard stratum and define

IDg (j) to indicate if the jth observation is a member of the gth standard stratum; where g = 1, . . . ,
LD and LD is the number of standard strata. Also, let πg denote the fraction of the population that
belongs to the gth standard stratum, thus π1 + · · ·+ πLD = 1. πg is derived from the stdweight()
option.

The estimator for the standardized mean is

yD =
LD∑
g=1

πg
Ŷg

M̂g

where

Ŷg =
m∑
j=1

IDg (j)wjyj and M̂g =
m∑
j=1

IDg (j)wj

The score variable for the standardized mean is

zj(yD) =
LD∑
g=1

πgIDg (j)
M̂gyj − Ŷg

M̂2
g
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The poststratified mean estimator

Let Pk denote the set of sampled observations that belong to poststratum k and define IPk(j)
to indicate if the jth observation is a member of poststratum k; where k = 1, . . . , LP and LP is
the number of poststrata. Also let Mk denote the population size for poststratum k. Pk and Mk are
identified by specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified mean is

yP =
Ŷ P

M̂P
=
Ŷ P

M

where

Ŷ P =
LP∑
k=1

Mk

M̂k

Ŷk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)wjyj

and

M̂P =
LP∑
k=1

Mk

M̂k

M̂k =
LP∑
k=1

Mk = M

The score variable for the poststratified mean is

zj(yP ) =
zj(Ŷ P )
M

=
1
M

LP∑
k=1

IPk(j)
Mk

M̂k

(
yj −

Ŷk

M̂k

)

The standardized poststratified mean estimator
The estimator for the standardized poststratified mean is

yDP =
LD∑
g=1

πg
Ŷ Pg

M̂P
g

where

Ŷ Pg =
Lp∑
k=1

Mk

M̂k

Ŷg,k =
Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)wjyj

and

M̂P
g =

Lp∑
k=1

Mk

M̂k

M̂g,k =
Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)wj

The score variable for the standardized poststratified mean is

zj(yDP ) =
LD∑
g=1

πg
M̂P
g zj(Ŷ

P
g )− Ŷ Pg zj(M̂P

g )

(M̂P
g )2

where

zj(Ŷ Pg ) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)yj −

Ŷg,k

M̂k

}
and

zj(M̂P
g ) =

LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)− M̂g,k

M̂k

}
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Subpopulation estimation

Let S denote the set of sampled observations that belong to the subpopulation of interest, and
define IS(j) to indicate if the jth observation falls within the subpopulation.

The estimator for the subpopulation mean is yS = Ŷ S/M̂S , where

Ŷ S =
m∑
j=1

IS(j)wjyj and M̂S =
m∑
j=1

IS(j)wj

Its score variable is

zj(yS) = IS(j)
yj − yS

M̂S
= IS(j)

M̂Syj − Ŷ S

(M̂S)2

The estimator for the standardized subpopulation mean is

yDS =
LD∑
g=1

πg
Ŷ Sg

M̂S
g

where

Ŷ Sg =
m∑
j=1

IDg (j)IS(j)wjyj and M̂S
g =

m∑
j=1

IDg (j)IS(j)wj

Its score variable is

zj(yDS) =
LD∑
g=1

πgIDg (j)IS(j)
M̂S
g yj − Ŷ Sg
(M̂S

g )2

The estimator for the poststratified subpopulation mean is

yPS =
Ŷ PS

M̂PS

where

Ŷ PS =
LP∑
k=1

Mk

M̂k

Ŷ Sk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)IS(j)wjyj

and

M̂PS =
LP∑
k=1

Mk

M̂k

M̂S
k =

LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)IS(j)wj

Its score variable is

zj(yPS) =
M̂PSzj(Ŷ PS)− Ŷ PSzj(M̂PS)

(M̂PS)2

where

zj(Ŷ PS) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IS(j) yj −

Ŷ Sk

M̂k

}
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and

zj(M̂PS) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IS(j)− M̂S

k

M̂k

}

The estimator for the standardized poststratified subpopulation mean is

yDPS =
LD∑
g=1

πg
Ŷ PSg

M̂PS
g

where

Ŷ PSg =
Lp∑
k=1

Mk

M̂k

Ŷ Sg,k =
Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)IS(j)wjyj

and

M̂PS
g =

Lp∑
k=1

Mk

M̂k

M̂S
g,k =

Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)IS(j)wj

Its score variable is

zj(yDPS) =
LD∑
g=1

πg
M̂PS
g zj(Ŷ PSg )− Ŷ PSg zj(M̂PS

g )

(M̂PS
g )2

where

zj(Ŷ PSg ) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)IS(j) yj −

Ŷ Sg,k

M̂k

}
and

zj(M̂PS
g ) =

LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)IS(j)−

M̂S
g,k

M̂k

}
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Also see
[R] mean postestimation — Postestimation tools for mean

[R] ameans — Arithmetic, geometric, and harmonic means

[R] proportion — Estimate proportions

[R] ratio — Estimate ratios

[R] summarize — Summary statistics

[R] total — Estimate totals

[MI] estimation — Estimation commands for use with mi estimate

[SVY] direct standardization — Direct standardization of means, proportions, and ratios

[SVY] poststratification — Poststratification for survey data

[SVY] subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands



Title

mean postestimation — Postestimation tools for mean

Description
The following postestimation commands are available after mean:

Command Description

estat VCE

estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks

Example 1

We have a dataset with monthly rates of returns on the Dow and NASDAQ stock indices. We can
use mean to compute the average quarterly rates of return for the two indices separately;

. use http://www.stata-press.com/data/r12/rates

. mean dow nasdaq

Mean estimation Number of obs = 357

Mean Std. Err. [95% Conf. Interval]

dow .2489137 6.524386 -12.58227 13.0801
nasdaq 10.78477 4.160821 2.601887 18.96765

If you chose just one of the indices for your portfolio, you either did rather well or rather poorly,
depending on which one you picked. However, as we now show with the postestimation command
lincom, if you diversified your portfolio, you would have earned a respectable 5.5% rate of return
without having to guess which index would be the better performer.

. lincom .5*dow + .5*nasdaq

( 1) .5 dow + .5 nasdaq = 0

Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) 5.51684 4.262673 1.29 0.196 -2.866347 13.90003

1150
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] mean — Estimate means

[SVY] svy postestimation — Postestimation tools for svy



Title

meta — Meta-analysis

Remarks
Stata does not have a meta-analysis command. Stata users, however, have developed an excellent

suite of commands for performing meta-analysis, including commands for performing standard and
cumulative meta-analysis, commands for producing forest plots and contour-enhanced funnel plots,
and commands for nonparametric analysis of publication bias.

Many articles describing these commands have been published in the Stata Technical Bulletin and
the Stata Journal. These articles were updated and published in a cohesive collection: Meta-Analysis
in Stata: An Updated Collection from the Stata Journal.

In this collection, editor Jonathan Sterne discusses how these articles relate to each other and how
they fit in the overall literature of meta-analysis. Sterne has organized the collection into four areas:
classic meta-analysis; meta-regression; graphical and analytic tools for detecting bias; and recent
advances such as meta-analysis for dose–response curves, diagnostic accuracy, multivariate analysis,
and studies containing missing values.

All meta-analysis commands discussed in this collection may be downloaded by visiting
http://www.stata-press.com/books/mais.html.

We highly recommend that Stata users interested in meta-analysis read this book. Since the
publication of the meta-analysis collection, Kontopantelis and Reeves (2010) published an article
in the Stata Journal describing a new command metaan that performs fixed- or random-effects
meta-analysis.

Please also see the following FAQ on the Stata website:

What meta-analysis features are available in Stata?
http://www.stata.com/support/faqs/stat/meta.html

References
Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction to Meta-Analysis. Chichester,

UK: Wiley.

Egger, M., G. Davey Smith, and D. G. Altman, ed. 2001. Systematic Reviews in Health Care: Meta-analysis in
Context. 2nd ed. London: BMJ Books.

Kontopantelis, E., and D. Reeves. 2010. metaan: Random-effects meta-analysis. Stata Journal 10: 395–407.

Sterne, J. A. C., ed. 2009. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. College Station,
TX: Stata Press.

Sutton, A. J., K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. 2000. Methods for Meta-Analysis in Medical
Research. New York: Wiley.
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Title

mfp — Multivariable fractional polynomial models

Syntax
mfp

[
, options

]
: regression cmd

[
yvar1

[
yvar2

] ]
xvarlist

[
if
] [

in
] [

weight
]

[
, regression cmd options

]
options Description

Model 2

sequential use the Royston and Altman model-selection algorithm; default uses
closed-test procedure

cycles(#) maximum number of iteration cycles; default is cycles(5)

dfdefault(#) default maximum degrees of freedom; default is dfdefault(4)

center(cent list) specification of centering for the independent variables
alpha(alpha list) p-values for testing between FP models; default is alpha(0.05)

df(df list) degrees of freedom for each predictor
powers(numlist) list of FP powers to use; default is

powers(-2 -1(.5)1 2 3)

Adv. model

xorder(+ | - | n) order of entry into model-selection algorithm; default is xorder(+)

select(select list) nominal p-values for selection on each predictor
xpowers(xp list) FP powers for each predictor
zero(varlist) treat nonpositive values of specified predictors as zero when FP

transformed
catzero(varlist) add indicator variable for specified predictors
all include out-of-sample observations in generated variables

Reporting

level(#) set confidence level; default is level(95)

display options control column formats and line width

regression cmd options Description

Adv. model

regression cmd options options appropriate to the regression command in use

All weight types supported by regression cmd are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
fracgen may be used to create new variables containing fractional polynomial powers. See [R] fracpoly.
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where

regression cmd may be clogit, glm, intreg, logistic, logit, mlogit, nbreg, ologit,
oprobit, poisson, probit, qreg, regress, rreg, stcox, stcrreg, streg, or xtgee.

yvar1 is not allowed for streg, stcrreg, and stcox. For these commands, you must first stset
your data.

yvar1 and yvar2 must both be specified when regression cmd is intreg.

xvarlist has elements of type varlist and/or (varlist), for example, x1 x2 (x3 x4 x5)

Elements enclosed in parentheses are tested jointly for inclusion in the model and are not eligible
for fractional polynomial transformation.

Menu
Statistics > Linear models and related > Fractional polynomials > Multivariable fractional polynomial models

Description
mfp selects the multivariable fractional polynomial (MFP) model that best predicts the outcome

variable from the right-hand-side variables in xvarlist.

Options

� � �
Model 2 �

sequential chooses the sequential fractional polynomial (FP) selection algorithm (see Methods of
FP model selection).

cycles(#) sets the maximum number of iteration cycles permitted. cycles(5) is the default.

dfdefault(#) determines the default maximum degrees of freedom (df) for a predictor. The default
is dfdefault(4) (second-degree FP).

center(cent list) defines the centering of the covariates xvar1, xvar2, . . . of xvarlist. The default
is center(mean), except for binary covariates, where it is center(#), with # being the lower
of the two distinct values of the covariate. A typical item in cent list is varlist:{mean | # | no}.
Items are separated by commas. The first item is special in that varlist is optional, and if it is
omitted, the default is reset to the specified value (mean, #, or no). For example, center(no,
age:mean) sets the default to no (that is, no centering) and the centering of age to mean.

alpha(alpha list) sets the significance levels for testing between FP models of different degrees.
The rules for alpha list are the same as those for df list in the df() option (see below). The
default nominal p-value (significance level, selection level) is 0.05 for all variables.

Example: alpha(0.01) specifies that all variables have an FP selection level of 1%.

Example: alpha(0.05, weight:0.1) specifies that all variables except weight have an FP
selection level of 5%; weight has a level of 10%.

df(df list) sets the df for each predictor. The df (not counting the regression constant, cons) is
twice the degree of the FP, so, for example, an xvar fit as a second-degree FP (FP2) has 4 df. The
first item in df list may be either # or varlist:#. Subsequent items must be varlist:#. Items are
separated by commas, and varlist is specified in the usual way for variables. With the first type
of item, the df for all predictors is taken to be #. With the second type of item, all members of
varlist (which must be a subset of xvarlist) have # df.
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The default number of degrees of freedom for a predictor of type varlist specified in xvarlist but
not in df list is assigned according to the number of distinct (unique) values of the predictor, as
follows:

# of distinct values Default df
1 (invalid predictor)

2–3 1
4–5 min(2, dfdefault())
≥ 6 dfdefault()

Example: df(4)
All variables have 4 df.

Example: df(2, weight displ:4)
weight and displ have 4 df; all other variables have 2 df.

Example: df(weight displ:4, mpg:2)
weight and displ have 4 df, mpg has 2 df; all other variables have default df.

powers(numlist) is the set of FP powers to be used. The default set is −2, −1, −0.5, 0, 0.5, 1, 2,
3 (0 means log).

� � �
Adv. model �

xorder(+ | - | n) determines the order of entry of the covariates into the model-selection algorithm.
The default is xorder(+), which enters them in decreasing order of significance in a multiple
linear regression (most significant first). xorder(-) places them in reverse significance order,
whereas xorder(n) respects the original order in xvarlist.

select(select list) sets the nominal p-values (significance levels) for variable selection by backward
elimination. A variable is dropped if its removal causes a nonsignificant increase in deviance. The
rules for select list are the same as those for df list in the df() option (see above). Using the
default selection level of 1 for all variables forces them all into the model. Setting the nominal
p-value to be 1 for a given variable forces it into the model, leaving others to be selected or
not. The nominal p-value for elements of xvarlist bound by parentheses is specified by including
(varlist) in select list.

Example: select(0.05)
All variables have a nominal p-value of 5%.

Example: select(0.05, weight:1)
All variables except weight have a nominal p-value of 5%; weight is forced into the model.

Example: select(a (b c):0.05)
All variables except a, b, and c are forced into the model. b and c are tested jointly with 2 df at
the 5% level, and a is tested singly at the 5% level.

xpowers(xp list) sets the permitted FP powers for covariates individually. The rules for xp list are
the same as for df list in the df() option. The default selection is the same as that for the
powers() option.

Example: xpowers(-1 0 1)
All variables have powers −1, 0, 1.

Example: xpowers(x5:-1 0 1)
All variables except x5 have default powers; x5 has powers −1, 0, 1.
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zero(varlist) treats negative and zero values of members of varlist as zero when FP transformations
are applied. By default, such variables are subjected to a preliminary linear transformation to avoid
negative and zero values (see [R] fracpoly). varlist must be part of xvarlist.

catzero(varlist) is a variation on zero(); see Zeros and zero categories below. varlist must be
part of xvarlist.

regression cmd options may be any of the options appropriate to regression cmd.

all includes out-of-sample observations when generating the FP variables. By default, the generated
FP variables contain missing values outside the estimation sample.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Remarks
Remarks are presented under the following headings:

Iteration report
Estimation algorithm
Methods of FP model selection
Zeros and zero categories

For elements in xvarlist not enclosed in parentheses, mfp leaves variables in the data named
Ixvar 1, Ixvar 2, . . . , where xvar represents the first four letters of the name of xvar1, and so
on, for xvar2, xvar3, etc. The new variables contain the best-fitting FP powers of xvar1, xvar2, . . . .

Iteration report

By default, for each continuous predictor, x, mfp compares null, linear, and FP1 models for x
with an FP2 model. The deviance for each of these nested submodels is given in the column labeled
“Deviance”. The line labeled “Final” gives the deviance for the selected model and its powers. All
the other predictors currently selected are included, with their transformations (if any). For models
specified as having 1 df, the only choice is whether the variable enters the model.

Estimation algorithm

The estimation algorithm in mfp processes the xvars in turn. Initially, mfp silently arranges xvarlist
in order of increasing p-value (that is, of decreasing statistical significance) for omitting each predictor
from the model comprising xvarlist, with each term linear. The aim is to model relatively important
variables before unimportant ones. This approach may help to reduce potential model-fitting difficulties
caused by collinearity or, more generally, “concurvity” among the predictors. See the xorder() option
above for details on how to change the ordering.

At the initial cycle, the best-fitting FP function for xvar1 (the first of xvarlist) is determined, with
all the other variables assumed to be linear. Either the default or the alternative procedure is used
(see Methods of FP model selection below). The functional form (but not the estimated regression
coefficients) for xvar1 is kept, and the process is repeated for xvar2, xvar3, etc. The first iteration
concludes when all the variables have been processed in this way. The next cycle is similar, except
that the functional forms from the initial cycle are retained for all variables except the one currently
being processed.
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A variable whose functional form is prespecified to be linear (that is, to have 1 df) is tested
for exclusion within the above procedure when its nominal p-value (selection level) according to
select() is less than 1; otherwise, it is included.

Updating of FP functions and candidate variables continues until the functions and variables included
in the overall model do not change (convergence). Convergence is usually achieved within 1–4 cycles.

Methods of FP model selection

mfp includes two algorithms for FP model selection, both of which combine backward elimination
with the selection of an FP function. For each continuous variable in turn, they start from a most-
complex permitted FP model and attempt to simplify the model by reducing the degree. The default
algorithm resembles a closed-test procedure, a sequence of tests maintaining the overall type I error
rate at a prespecified nominal level, such as 5%. All significance tests are approximate; therefore, the
algorithm is not precisely a closed-test procedure (Royston and Sauerbrei 2008, chap. 6).

The closed-test algorithm for choosing an FP model with maximum permitted degree m = 2 (that
is, an FP2 model with 4 df) for one continuous predictor, x, is as follows:

1. Inclusion: Test FP2 against the null model for x on 4 df at the significance level determined
by select(). If x is significant, continue; otherwise, drop x from the model.

2. Nonlinearity: Test FP2 against a straight line in x on 3 df at the significance level determined
by alpha(). If significant, continue; otherwise, stop, with the chosen model for x being a
straight line.

3. Simplification: Test FP2 against FP1 on 2 df at the significance level determined by alpha().
If significant, the final model is FP2; otherwise, it is FP1.

The first step is omitted if x is to be retained in the model, that is, if its nominal p-value, according
to the select() option, is 1.

An alternative algorithm is available with the sequential option, as originally suggested by
Royston and Altman (1994):

1. Test FP2 against FP1 on 2 df at the alpha() significance level. If significant, the final model
is FP2; otherwise, continue.

2. Test FP1 against a straight line on 1 df at the alpha() level. If significant, the final model
is FP1; otherwise, continue.

3. Test a straight line against omitting x on 1 df at the select() level. If significant, the final
model is a straight line; otherwise, drop x.

The final step is omitted if x is to be retained in the model, that is, if its nominal p-value, according
to the select() option, is 1.

If x is uninfluential, the overall type I error rate of this procedure is about double that of the
closed-test procedure, for which the rate is close to the nominal value. This inflated type I error rate
confers increased apparent power to detect nonlinear relationships.

Zeros and zero categories

The zero() option permits fitting an FP model to the positive values of a covariate, taking
nonpositive values as zero. An application is the assessment of the effect of cigarette smoking as a
risk factor in an epidemiological study. Nonsmokers may be qualitatively different from smokers, so
the effect of smoking (regarded as a continuous variable) may not be continuous between one and
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zero cigarettes. To allow for this, the risk may be modeled as constant for the nonsmokers and as an
FP function of the number of cigarettes for the smokers:

. generate byte nonsmokr = cond(n_cigs==0, 1, 0) if n_cigs != .

. mfp, zero(n_cigs) df(4, nonsmokr:1): logit case n_cigs nonsmokr age

Omission of zero(n cigs) would cause n cigs to be transformed before analysis by the addition
of a suitable constant, probably 1.

A closely related approach involves the catzero() option. The command

. mfp, catzero(n_cigs): logit case n_cigs age

would achieve a similar result to the previous command but with important differences. First, mfp
would create the equivalent of the binary variable nonsmokr automatically and include it in the
model. Second, the two smoking variables would be treated as one predictor in the model. With the
select() option active, the two variables would be tested jointly for inclusion in the model. A
modified version is described in Royston and Sauerbrei (2008, sec. 4.15).

Example 1

We illustrate two of the analyses performed by Sauerbrei and Royston (1999). We use
brcancer.dta, which contains prognostic factors data from the German Breast Cancer Study
Group of patients with node-positive breast cancer. The response variable is recurrence-free survival
time (rectime), and the censoring variable is censrec. There are 686 patients with 299 events. We
use Cox regression to predict the log hazard of recurrence from prognostic factors, of which five are
continuous (x1, x3, x5, x6, x7) and three are binary (x2, x4a, x4b). Hormonal therapy (hormon) is
known to reduce recurrence rates and is forced into the model. We use mfp to build a model from the
initial set of eight predictors by using the backfitting model-selection algorithm. We set the nominal
p-value for variable and FP selection to 0.05 for all variables except hormon, for which it is set to 1:

. use http://www.stata-press.com/data/r12/brcancer
(German breast cancer data)

. stset rectime, fail(censrec)

(output omitted )
. mfp, alpha(.05) select(.05, hormon:1): stcox x1 x2 x3 x4a x4b x5 x6 x7 hormon,
> nohr

Deviance for model with all terms untransformed = 3471.637, 686 observations

Variable Model (vs.) Deviance Dev diff. P Powers (vs.)

x5 null FP2 3503.610 61.366 0.000* . .5 3
lin. 3471.637 29.393 0.000+ 1
FP1 3449.203 6.959 0.031+ 0
Final 3442.244 .5 3

x6 null FP2 3464.113 29.917 0.000* . -2 .5
lin. 3442.244 8.048 0.045+ 1
FP1 3435.550 1.354 0.508 .5
Final 3435.550 .5

[hormon included with 1 df in model]

x4a null lin. 3440.749 5.199 0.023* . 1
Final 3435.550 1

x3 null FP2 3436.832 3.560 0.469 . -2 3
Final 3436.832 .

x2 null lin. 3437.589 0.756 0.384 . 1
Final 3437.589 .

x4b null lin. 3437.848 0.259 0.611 . 1
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Final 3437.848 .

x1 null FP2 3437.893 18.085 0.001* . -2 -.5
lin. 3437.848 18.040 0.000+ 1
FP1 3433.628 13.820 0.001+ -2
Final 3419.808 -2 -.5

x7 null FP2 3420.805 3.715 0.446 . -.5 3
Final 3420.805 .

End of Cycle 1: deviance = 3420.805

x5 null FP2 3494.867 74.143 0.000* . -2 -1
lin. 3451.795 31.071 0.000+ 1
FP1 3428.023 7.299 0.026+ 0
Final 3420.724 -2 -1

x6 null FP2 3452.093 32.704 0.000* . 0 0
lin. 3427.703 8.313 0.040+ 1
FP1 3420.724 1.334 0.513 .5
Final 3420.724 .5

[hormon included with 1 df in model]

x4a null lin. 3425.310 4.586 0.032* . 1
Final 3420.724 1

x3 null FP2 3420.724 5.305 0.257 . -.5 0
Final 3420.724 .

x2 null lin. 3420.724 0.214 0.644 . 1
Final 3420.724 .

x4b null lin. 3420.724 0.145 0.703 . 1
Final 3420.724 .

x1 null FP2 3440.057 19.333 0.001* . -2 -.5
lin. 3440.038 19.314 0.000+ 1
FP1 3436.949 16.225 0.000+ -2
Final 3420.724 -2 -.5

x7 null FP2 3420.724 2.152 0.708 . -1 3
Final 3420.724 .

Fractional polynomial fitting algorithm converged after 2 cycles.

Transformations of covariates:

-> gen double Ix1__1 = X^-2-.0355294635 if e(sample)
-> gen double Ix1__2 = X^-.5-.4341573547 if e(sample)

(where: X = x1/10)
-> gen double Ix5__1 = X^-2-3.983723313 if e(sample)
-> gen double Ix5__2 = X^-1-1.99592668 if e(sample)

(where: X = x5/10)
-> gen double Ix6__1 = X^.5-.3331600619 if e(sample)

(where: X = (x6+1)/1000)

Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

x1 4 0.0500 0.0500 in 4 -2 -.5
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0

x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5 4 0.0500 0.0500 in 4 -2 -1
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0

hormon 1 1.0000 0.0500 in 1 1
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Cox regression -- Breslow method for ties
Entry time _t0 Number of obs = 686

LR chi2(7) = 155.62
Prob > chi2 = 0.0000

Log likelihood = -1710.3619 Pseudo R2 = 0.0435

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

Ix1__1 44.73377 8.256682 5.42 0.000 28.55097 60.91657
Ix1__2 -17.92302 3.909611 -4.58 0.000 -25.58571 -10.26032

x4a .5006982 .2496324 2.01 0.045 .0114276 .9899687
Ix5__1 .0387904 .0076972 5.04 0.000 .0237041 .0538767
Ix5__2 -.5490645 .0864255 -6.35 0.000 -.7184554 -.3796736
Ix6__1 -1.806966 .3506314 -5.15 0.000 -2.494191 -1.119741
hormon -.4024169 .1280843 -3.14 0.002 -.6534575 -.1513763

Deviance: 3420.724.

Some explanation of the output from the model-selection algorithm is desirable. Consider the first
few lines of output in the iteration log:

1. Deviance for model with all terms untransformed = 3471.637, 686 observations

Variable Model (vs.) Deviance Dev diff. P Powers (vs.)

2. x5 null FP2 3503.610 61.366 0.000* . .5 3
3. lin. 3471.637 29.393 0.000+ 1
4. FP1 3449.203 6.959 0.031+ 0
5. Final 3442.244 .5 3

Line 1 gives the deviance (−2× log partial likelihood) for the Cox model with all terms linear, the
place where the algorithm starts. The model is modified variable by variable in subsequent steps. The
most significant linear term turns out to be x5, which is therefore processed first. Line 2 compares
the best-fitting FP2 for x5 with a model omitting x5. The FP has powers (0.5, 3), and the test for
inclusion of x5 is highly significant. The reported deviance of 3,503.610 is of the null model, not
for the FP2 model. The deviance for the FP2 model may be calculated by subtracting the deviance
difference (Dev diff.) from the reported deviance, giving 3,503.610− 61.366 = 3,442.244. Line 3
shows that the FP2 model is also a significantly better fit than a straight line (lin.) and line 4 that
FP2 is also somewhat better than FP1 (p = 0.031). Thus at this stage in the model-selection procedure,
the final model for x5 (line 5) is FP2 with powers (0.5, 3). The overall model with an FP2 for x5 and
all other terms linear has a deviance of 3,442.244.

After all the variables have been processed (cycle 1) and reprocessed (cycle 2) in this way,
convergence is achieved because the functional forms (FP powers and variables included) after cycle
2 are the same as they were after cycle 1. The model finally chosen is Model II as given in tables 3
and 4 of Sauerbrei and Royston (1999). Because of scaling of variables, the regression coefficients
reported there are different, but the model and its deviance are identical. The model includes x1 with
powers (−2,−0.5), x4a, x5 with powers (−2,−1), and x6 with power 0.5. There is strong evidence
of nonlinearity for x1 and for x5, the deviance differences for comparison with a straight-line model
(FP2 vs lin.) being, respectively, 19.3 and 31.1 at convergence (cycle 2). Predictors x2, x3, x4b,
and x7 are dropped, as may be seen from their status out in the table Final multivariable
fractional polynomial model for t (the assumed depvar when using stcox).

All predictors except x4a and hormon, which are binary, have been centered on the mean of
the original variable. For example, the mean of x1 (age) is 53.05 years. The first FP-transformed
variable for x1 is x1^-2 and is created by the expression gen double Ix1 1 = X^-2-.0355
if e(sample). The value 0.0355 is obtained from (53.05/10)−2. The division by 10 is applied
automatically to improve the scaling of the regression coefficient for Ix1 1.
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According to Sauerbrei and Royston (1999), medical knowledge dictates that the estimated risk
function for x5 (number of positive nodes), which was based on the above FP with powers (−2,−1),
should be monotonic, but it was not. They improved Model II by estimating a preliminary exponential
transformation, x5e = exp(−0.12 · x5), for x5 and fitting a degree 1 FP for x5e, thus obtaining
a monotonic risk function. The value of −0.12 was estimated univariately using nonlinear Cox
regression with the ado-file boxtid (Royston and Ambler 1999b, 1999d). To ensure a negative
exponent, Sauerbrei and Royston (1999) restricted the powers for x5e to be positive. Their Model
III may be fit by using the following command:

. mfp, alpha(.05) select(.05, hormon:1) df(x5e:2) xpowers(x5e:0.5 1 2 3):
> stcox x1 x2 x3 x4a x4b x5e x6 x7 hormon

Other than the customization for x5e, the command is the same as it was before. The resulting
model is as reported in table 4 of Sauerbrei and Royston (1999):

. use http://www.stata-press.com/data/r12/brcancer, clear
(German breast cancer data)

. stset rectime, fail(censrec)

(output omitted )
. mfp, alpha(.05) select(.05, hormon:1) df(x5e:2) xpowers(x5e:0.5 1 2 3):
> stcox x1 x2 x3 x4a x4b x5e x6 x7 hormon, nohr

(output omitted )
Final multivariable fractional polynomial model for _t

Variable Initial Final
df Select Alpha Status df Powers

x1 4 0.0500 0.0500 in 4 -2 -.5
x2 1 0.0500 0.0500 out 0
x3 4 0.0500 0.0500 out 0

x4a 1 0.0500 0.0500 in 1 1
x4b 1 0.0500 0.0500 out 0
x5e 2 0.0500 0.0500 in 1 1
x6 4 0.0500 0.0500 in 2 .5
x7 4 0.0500 0.0500 out 0

hormon 1 1.0000 0.0500 in 1 1

Cox regression -- Breslow method for ties
Entry time _t0 Number of obs = 686

LR chi2(6) = 153.11
Prob > chi2 = 0.0000

Log likelihood = -1711.6186 Pseudo R2 = 0.0428

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

Ix1__1 43.55382 8.253433 5.28 0.000 27.37738 59.73025
Ix1__2 -17.48136 3.911882 -4.47 0.000 -25.14851 -9.814212

x4a .5174351 .2493739 2.07 0.038 .0286713 1.006199
Ix5e__1 -1.981213 .2268903 -8.73 0.000 -2.425909 -1.536516
Ix6__1 -1.84008 .3508432 -5.24 0.000 -2.52772 -1.15244
hormon -.3944998 .128097 -3.08 0.002 -.6455654 -.1434342

Deviance: 3423.237.
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Saved results
In addition to what regression cmd saves, mfp saves the following in e():

Scalars
e(fp nx) number of predictors in xvarlist
e(fp dev) deviance of final model fit
e(Fp id#) initial degrees of freedom for the #th element of xvarlist
e(Fp fd#) final degrees of freedom for the #th element of xvarlist
e(Fp al#) FP selection level for the #th element of xvarlist
e(Fp se#) backward elimination selection level for the #th element of xvarlist

Macros
e(fp cmd) fracpoly
e(fp cmd2) mfp
e(cmdline) command as typed
e(fracpoly) command used to fit the selected model using fracpoly
e(fp fvl) variables in final model
e(fp depv) yvar1 (yvar2)
e(fp opts) estimation command options
e(fp x1) first variable in xvarlist
e(fp x2) second variable in xvarlist
. . .
e(fp xN) last variable in xvarlist, N=e(fp nx)

e(fp k1) power for first variable in xvarlist (*)
e(fp k2) power for second variable in xvarlist (*)
. . .
e(fp kN) power for last var. in xvarlist (*), N=e(fp nx)

Note: (*) contains ‘.’ if the variable is not selected in the final model.

Methods and formulas
mfp is implemented as an ado-file.

Acknowledgments
mfp is an update of mfracpol by Royston and Ambler (1998).
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Title

mfp postestimation — Postestimation tools for mfp

Description
The following postestimation commands are of special interest after mfp:

Command Description

fracplot plot data and fit from most recently fit fractional polynomial model
fracpred create variable containing prediction, deviance residuals, or SEs of fitted values

For fracplot and fracpred, see [R] fracpoly postestimation.

The following standard postestimation commands are also available if available after regression cmd:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] mfp — Multivariable fractional polynomial models

[R] fracpoly postestimation — Postestimation tools for fracpoly

[U] 20 Estimation and postestimation commands
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Title

misstable — Tabulate missing values

Syntax

Report counts of missing values

misstable summarize
[

varlist
] [

if
] [

in
] [

, summarize options
]

Report pattern of missing values

misstable patterns
[

varlist
] [

if
] [

in
] [

, patterns options
]

Present a tree view of the pattern of missing values

misstable tree
[

varlist
] [

if
] [

in
] [

, tree options
]

List the nesting rules that describe the missing-value pattern

misstable nested
[

varlist
] [

if
] [

in
] [

, nested options
]

summarize options Description

all show all variables
showzeros show zeros in table
generate(stub

[
, exok

]
) generate missing-value indicators

patterns options Description

asis use variables in order given
frequency report frequencies instead of percentages
exok treat .a, .b, . . . , .z as nonmissing
replace replace data in memory with dataset of patterns
clear okay to replace even if original unsaved
bypatterns list by patterns rather than by frequency

tree options Description

asis use variables in order given
frequency report frequencies instead of percentages
exok treat .a, .b, . . . , .z as nonmissing

nested options Description

exok treat .a, .b, . . . , .z as nonmissing
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In addition, programmer’s option nopreserve is allowed with all syntaxes; see [P] nopreserve option.

Menu
Statistics > Summaries, tables, and tests > Tables > Tabulate missing values

Description
misstable makes tables that help you understand the pattern of missing values in your data.

Options for misstable summarize
all specifies that the table should include all the variables specified or all the variables in the dataset.

The default is to include only numeric variables that contain missing values.

showzeros specifies that zeros in the table should display as 0 rather than being omitted.

generate(stub
[
, exok

]
) requests that a missing-value indicator newvar, a new binary variable

containing 0 for complete observations and 1 for incomplete observations, be generated for every
numeric variable in varlist containing missing values. If the all option is specified, missing-value
indicators are created for all the numeric variables specified or for all the numeric variables in the
dataset. If exok is specified within generate(), the extended missing values .a, .b, . . . , .z are
treated as if they do not designate missing.

For each variable in varlist, newvar is the corresponding variable name varname prefixed with
stub. If the total length of stub and varname exceeds 32 characters, newvar is abbreviated so that
its name does not exceed 32 characters.

Options for misstable patterns

asis, frequency, and exok – see Common options below.

replace specifies that the data in memory be replaced with a dataset corresponding to the table just
displayed; see misstable patterns under Remarks below.

clear is for use with replace; it specifies that it is okay to change the data in memory even if they
have not been saved to disk.

bypatterns specifies the table be ordered by pattern rather than by frequency. That is, bypatterns
specifies that patterns containing one incomplete variable be listed first, followed by those for two
incomplete variables, and so on. The default is to list the most frequent pattern first, followed by
the next most frequent pattern, etc.

Options for misstable tree
asis, frequency, and exok – see Common options below.
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Option for misstable nested
exok – see Common options below.

Common options
asis specifies that the order of the variables in the table be the same as the order in which they

are specified on the misstable command. The default is to order the variables by the number of
missing values, and within that, by the amount of overlap of missing values.

frequency specifies that the table should report frequencies instead of percentages.

exok specifies that the extended missing values .a, .b, . . . , .z should be treated as if they do not
designate missing. Some users use extended missing values to designate values that are missing
for a known and valid reason.

nopreserve is a programmer’s option allowed with all misstable commands; see [P] nopreserve
option.

Remarks
Remarks are presented under the following headings:

misstable summarize
misstable patterns
misstable tree
misstable nested
Execution time of misstable nested

In what follows, we will use data from a 125-observation, fictional, student-satisfaction survey:

. use http://www.stata-press.com/data/r12/studentsurvey
(Student Survey)

. summarize

Variable Obs Mean Std. Dev. Min Max

m1 125 2.456 .8376619 1 4
m2 125 2.472 .8089818 1 4

age 122 18.97541 .8763477 17 21
female 122 .5245902 .5014543 0 1

dept 116 2.491379 1.226488 1 4

offcampus 125 .36 .4819316 0 1
comment 0

The m1 and m2 variables record the student’s satisfaction with teaching and with academics.
comment is a string variable recording any comments the student might have had.
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misstable summarize

Example 1

misstable summarize reports counts of missing values:

. misstable summarize
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

age 3 122 5 17 21
female 3 122 2 0 1

dept 9 116 4 1 4

Stata provides 27 different missing values, namely, ., .a, .b, . . . , .z. The first of those, ., is often
called system missing. The remaining missing values are called extended missings. The nonmissing
and missing values are ordered nonmissing < . < .a < .b < · · · < .z. Thus reported in the column
“Obs=.” are counts of system missing values; in the column “Obs>.”, extended missing values; and
in the column “Obs<.”, nonmissing values.

The rightmost portion of the table is included to remind you how the variables are encoded.

Our data contain seven variables and yet misstable reported only three of them. The omitted
variables contain no missing values or are string variables. Even if we specified the varlist explicitly,
those variables would not appear in the table unless we specified the all option.

We can also create missing-value indicators for each of the variables above using the generate()
option:

. quietly misstable summarize, generate(miss_)

. describe miss_*

storage display value
variable name type format label variable label

miss_age byte %8.0g (age>=.)
miss_female byte %8.0g (female>=.)
miss_dept byte %8.0g (dept>=.)

For each variable containing missing values, the generate() option creates a new binary variable
containing 0 for complete observations and 1 for incomplete observations. In our example, three new
missing-value indicators are generated, one for each of the incomplete variables age, female, and
dept. The naming convention of generate() is to prefix the corresponding variable names with the
specified stub, which is miss in this example.

Missing-value indicators are useful, for example, for checking whether data are missing completely
at random. They are also often used within the multiple-imputation context to identify the observed
and imputed data; see [MI] intro substantive for a general introduction to multiple imputation. Within
Stata’s multiple-imputation commands, an incomplete value is identified by the system missing value,
a dot. By default, misstable summarize, generate() marks the extended missing values as
incomplete values, as well. You can use exok within generate() to treat extended missing values
as complete when creating missing-value identifiers.
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misstable patterns

Example 2

misstable patterns reports the pattern of missing values:

. misstable patterns

Missing-value patterns

Pattern
Percent 1 2 3

93% 1 1 1

5 1 1 0
2 0 0 0

100%

Variables are (1) age (2) female (3) dept

There are three patterns in these data: (1,1,1), (1,1,0), and (0,0,0). By default, the rows of the table
are ordered by frequency. In larger tables that have more patterns, it is sometimes useful to order the
rows by pattern. We could have obtained that by typing mi misstable patterns, bypatterns.

In a pattern, 1 indicates that all values of the variable are nonmissing and 0 indicates that all values
are missing. Thus pattern (1,1,1) means no missing values, and 93% of our data have that pattern.
There are two patterns in which variables are missing, (1,1,0) and (0,0,0). Pattern (1,1,0) means that
age is nonmissing, female is nonmissing, and dept is missing. The order of the variables in the
patterns appears in the key at the bottom of the table. Five percent of the observations have pattern
(1,1,0). The remaining 2% have pattern (0,0,0), meaning that all three variables contain missing.

As with misstable summarize, only numeric variables that contain missing are listed, so had
we typed misstable patterns comments age female offcampus dept, we still would have
obtained the same table. Variables that are automatically omitted contain no missing values or are
string variables.

The variables in the table are ordered from lowest to highest frequency of missing values, although
you cannot see that from the information presented in the table. The variables are ordered this way
even if you explicitly specify the varlist with a different ordering. Typing misstable patterns
dept female age would produce the same table as above. Specify the asis option if you want the
variables in the order in which you specify them.

You can obtain a dataset of the patterns by specifying the replace option:

. misstable patterns, replace clear

Missing-value patterns

Pattern
Percent 1 2 3

93% 1 1 1

5 1 1 0
2 0 0 0

100%

Variables are (1) age (2) female (3) dept
(summary data now in memory)
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. list

_freq age female dept

1. 3 0 0 0
2. 6 1 1 0
3. 116 1 1 1

The differences between the dataset and the printed table are that 1) the dataset always records
frequency and 2) the rows are reversed.

misstable tree

Example 3

misstable tree presents a tree view of the pattern of missing values:

. use http://www.stata-press.com/data/r12/studentsurvey, clear
(Student Survey)

. misstable tree, frequency

Nested pattern of missing values
dept age female

9 3 3
0

6 0
6

116 0 0
0

116 0
116

(number missing listed first)

In this example, we specified the frequency option to see the table in frequency rather than
percentage terms. In the table, each column sums to the total number of observations in the data,
125. Variables are ordered from those with the most missing values to those with the least. Start with
the first column. The dept variable is missing in 9 observations and, farther down, the table reports
that it is not missing in 116 observations.

Go back to the first row and read across, but only to the second column. The dept variable is
missing in 9 observations. Within those 9, age is missing in 3 of them and is not missing in the
remaining 6. Reading down the second column, within the 116 observations that dept is not missing,
age is missing in 0 and not missing in 116.

Reading straight across the first row again, dept is missing in 9 observations, and within the 9,
age is missing in 3, and within the 3, female is also missing in 3. Skipping down just a little, within
the 6 observations for which dept is missing and age is not missing, female is not missing, too.
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misstable nested

Example 4

misstable nested lists the nesting rules that describe the missing-value pattern,

. misstable nested

1. female(3) <-> age(3) -> dept(9)

This line says that in observations in which female is missing, so is age missing, and vice versa,
and in observations in which age (or female) is missing, so is dept. The numbers in parentheses
are counts of the missing values. The female variable happens to be missing in 3 observations, and
the same is true for age; the dept variable is missing in 9 observations. Thus dept is missing in
the 3 observations for which age and female are missing, and in 6 more observations, too.

In these data, it turns out that the missing-value pattern can be summarized in one statement. In
a larger dataset, you might see something like this:

. misstable nested

1. female(50) <-> age(50) -> dept(120)
2. female(50) -> m1(58)
3. offcampus(11)

misstable nested accounts for every missing value. In the above, in addition to female <->
age -> dept, we have that female -> m1, and we have offcampus, the last all by itself. The last
line says that the 11 missing values in offcampus are not themselves nested in the missing value of
any other variable, nor do they imply the missing values in another variable. In some datasets, all
the statements will be of this last form.

In our data, however, we have one statement:

. misstable nested

1. female(3) <-> age(3) -> dept(9)

When the missing-value pattern can be summarized in one misstable nested statement, the
pattern of missing values in the data is said to be monotone.

Execution time of misstable nested
The execution time of misstable nested is affected little by the number of observations but can

grow quickly with the number of variables, depending on the fraction of missing values within variable.
The execution time of the example above, which has 3 variables containing missing, is instant. In
worst-case scenarios, with 500 variables, the time might be 25 seconds; with 1,000 variables, the
execution time might be closer to an hour.

In situations where misstable nested takes a long time to complete, it will produce thousands
of rules that will defy interpretation. A 523-variable dataset we have seen ran in 20 seconds and
produced 8,040 rules. Although we spotted a few rules in the output that did not surprise us, such
as the year of the date being missing implied that the month and the day were also missing, mostly
the output was not helpful.

If you have such a dataset, we recommend you run misstable on groups of variables that you
have reason to believe the pattern of missing values might be related.
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Saved results
misstable summarize saves the following values of the last variable summarized in r():

Scalars
r(N eq dot) number of observations containing .
r(N gt dot) number of observations containing .a, .b, . . . , .z
r(N lt dot) number of observations containing nonmissing
r(K uniq) number of unique, nonmissing values
r(min) variable’s minimum value
r(max) variable’s maximum value

Macros
r(vartype) numeric, string, or none

r(K uniq) contains . if the number of unique, nonmissing values is greater than 500. r(vartype)
contains none if no variables are summarized, and in that case, the value of the scalars are all set to
missing (.). Programmers intending to access results after misstable summarize should specify the
all option.

misstable patterns saves the following in r():

Scalars
r(N complete) number of complete observations
r(N incomplete) number of incomplete observations
r(K) number of patterns

Macros
r(vars) variables used in order presented

r(N complete) and r(N incomplete) are defined with respect to the variables specified if variables
were specified and otherwise, defined with respect to all the numeric variables in the dataset. r(N complete)
is the number of observations that contain no missing values.

misstable tree saves the following in r():

Macros
r(vars) variables used in order presented

misstable nested saves the following in r():

Scalars
r(K) number of statements

Macros
r(stmt1) first statement
r(stmt2) second statement
. .
. .
r(stmt‘r(K)’) last statement
r(stmt1wc) r(stmt1) with missing-value counts
r(vars) variables considered

A statement is encoded “varname”, “varname op varname”, or “varname op varname op varname”, and so on;
op is either “->” or “<->”.

Methods and formulas
misstable is implemented as an ado-file.
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Also see
[MI] mi misstable — Tabulate pattern of missing values

[R] summarize — Summary statistics

[R] tabulate oneway — One-way tables of frequencies

[R] tabulate twoway — Two-way tables of frequencies



Title

mkspline — Linear and restricted cubic spline construction

Syntax
Linear spline with knots at specified points

mkspline newvar1 #1 [newvar2 #2 [. . .] ] newvark = oldvar
[

if
] [

in
] [

, marginal

displayknots
]

Linear spline with knots equally spaced or at percentiles of data

mkspline stubname # = oldvar
[

if
] [

in
] [

weight
] [

, marginal pctile

displayknots
]

Restricted cubic spline

mkspline stubname = oldvar
[

if
] [

in
] [

weight
]
, cubic

[
nknots(#) knots(numlist)

displayknots
]

fweights are allowed with the second and third syntax; see [U] 11.1.6 weight.

Menu
Data > Create or change data > Other variable-creation commands > Linear and cubic spline construction

Description
mkspline creates variables containing a linear spline or a restricted cubic spline of oldvar.

In the first syntax, mkspline creates newvar1, . . . , newvark containing a linear spline of oldvar
with knots at the specified #1, . . . , #k−1.

In the second syntax, mkspline creates # variables named stubname1, . . . , stubname# containing
a linear spline of oldvar. The knots are equally spaced over the range of oldvar or are placed at the
percentiles of oldvar.

In the third syntax, mkspline creates variables containing a restricted cubic spline of oldvar.
This is also known as a natural spline. The location and spacing of the knots is determined by the
specification of the nknots() and knots() options.

Options

� � �
Options �

marginal is allowed with the first or second syntax. It specifies that the new variables be constructed
so that, when used in estimation, the coefficients represent the change in the slope from the
preceding interval. The default is to construct the variables so that, when used in estimation, the
coefficients measure the slopes for the interval.
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displayknots displays the values of the knots that were used in creating the linear or restricted
cubic spline.

pctile is allowed only with the second syntax. It specifies that the knots be placed at percentiles of
the data rather than being equally spaced over the range.

nknots(#) is allowed only with the third syntax. It specifies the number of knots that are to be used
for a restricted cubic spline. This number must be between 3 and 7 unless the knot locations are
specified using knots(). The default number of knots is 5.

knots(numlist) is allowed only with the third syntax. It specifies the exact location of the knots to
be used for a restricted cubic spline. The values of these knots must be given in increasing order.
When this option is omitted, the default knot values are based on Harrell’s recommended percentiles
with the additional restriction that the smallest knot may not be less than the fifth-smallest value
of oldvar and the largest knot may not be greater than the fifth-largest value of oldvar. If both
nknots() and knots() are given, they must specify the same number of knots.

Remarks
Remarks are presented under the following headings:

Linear splines
Restricted cubic splines

Linear splines

Linear splines allow estimating the relationship between y and x as a piecewise linear function,
which is a function composed of linear segments—straight lines. One linear segment represents the
function for values of x below x0, another linear segment handles values between x0 and x1, and
so on. The linear segments are arranged so that they join at x0, x1, . . . , which are called the knots.
An example of a piecewise linear function is shown below.

knot 1

knot 2

2
3

4
5

z

0 1 2 3
x

A piecewise linear function
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Example 1

We wish to fit a model of log income on education and age by using a piecewise linear function
for age:

lninc = b0 + b1 educ + f(age) + u

The knots are to be placed at 10-year intervals: 20, 30, 40, 50, and 60.

. use http://www.stata-press.com/data/r12/mksp1

. mkspline age1 20 age2 30 age3 40 age4 50 age5 60 age6 = age, marginal

. regress lninc educ age1-age6
(output omitted )

Because we specified the marginal option, we could test whether the age effect is the same in
the 30–40 and 40–50 intervals by asking whether the age4 coefficient is zero. With the marginal
option, coefficients measure the change in slope from the preceding group. Specifying marginal
changes only the interpretation of the coefficients; the same model is fit in either case. Without the
marginal option, the interpretation of the coefficients would have been

dy

dage
=



a1 if age < 20
a2 if 20 ≤ age < 30
a3 if 30 ≤ age < 40
a4 if 40 ≤ age < 50
a5 if 50 ≤ age < 60
a6 otherwise

With the marginal option, the interpretation is

dy

dage
=



a1 if age < 20
a1 + a2 if 20 ≤ age < 30
a1 + a2 + a3 if 30 ≤ age < 40
a1 + a2 + a3 + a4 if 40 ≤ age < 50
a1 + a2 + a3 + a4 + a5 if 50 ≤ age < 60
a1 + a2 + a3 + a4 + a5 + a6 otherwise

Example 2

Say that we have a binary outcome variable called outcome. We are beginning an analysis and
wish to parameterize the effect of dosage on outcome. We wish to divide the data into five equal-width
groups of dosage for the piecewise linear function.

. use http://www.stata-press.com/data/r12/mksp2

. mkspline dose 5 = dosage, displayknots

knot1 knot2 knot3 knot4

dosage 20 40 60 80

. logistic outcome dose1-dose5
(output omitted )
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mkspline dose 5 = dosage creates five variables—dose1, dose2, . . . , dose5—equally spacing the
knots over the range of dosage. Because dosage varied between 0 and 100, the mkspline command
above has the same effect as typing

. mkspline dose1 20 dose2 40 dose3 60 dose4 80 dose5 = dosage

The pctile option sets the knots to divide the data into five equal sample-size groups rather than
five equal-width ranges. Typing

. mkspline pctdose 5 = dosage, pctile displayknots

knot1 knot2 knot3 knot4

dosage 16 36.4 55.6 82

places the knots at the 20th, 40th, 60th, and 80th percentiles of the data.

Restricted cubic splines

A linear spline can be used to fit many functions well. However, a restricted cubic spline may
be a better choice than a linear spline when working with a very curved function. When using a
restricted cubic spline, one obtains a continuous smooth function that is linear before the first knot,
a piecewise cubic polynomial between adjacent knots, and linear again after the last knot.

Example 3

Returning to the data from example 1, we may feel that a curved function is a better fit. First, we
will use the knots() option to specify the five knots that we used previously.

. use http://www.stata-press.com/data/r12/mksp1, clear

. mkspline agesp = age, cubic knots(20 30 40 50 60)

. regress lninc educ agesp*
(output omitted )

Harrell (2001, 23) recommends placing knots at equally spaced percentiles of the original variable’s
marginal distribution. If we do not specify the knots() option, variables will be created containing
a restricted cubic spline with five knots determined by Harrell’s default percentiles.

. use http://www.stata-press.com/data/r12/mksp1, clear

. mkspline agesp = age, cubic displayknots

. regress lninc educ agesp*
(output omitted )

Methods and formulas
mkspline is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Linear splines
Restricted cubic splines
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Linear splines

Let Vi, i = 1, . . . , n, be the variables to be created; ki, i = 1, . . . , n − 1, be the corresponding
knots; and V be the original variable (the command is mkspline V1 k1 V2 k2 . . . Vn = V). Then

V1 = min(V, k1)

Vi = max
{

min(V, ki), ki−1

}
− ki−1 i = 2, . . . , n

If the marginal option is specified, the definitions are

V1 = V
Vi = max(0,V − ki−1) i = 2, . . . , n

In the second syntax, mkspline stubname # = V , so let m and M be the minimum and maximum
of V . Without the pctile option, knots are set at m + (M − m)(i/n) for i = 1, . . . , n − 1. If
pctile is specified, knots are set at the 100(i/n) percentiles, for i = 1, . . . , n− 1. Percentiles are
calculated by centile; see [R] centile.

Restricted cubic splines

Let ki, i = 1, . . . , n, be the knot values; Vi, i = 1, . . . , n− 1, be the variables to be created; and
V be the original variable. Then

V1 = V

Vi+1 =
(V − ki)3

+ − (kn − kn−1)−1{(V − kn−1)3
+(kn − ki)− (V − kn)3

+(kn−1 − ki)}
(kn − k1)2

i = 1, . . . , n− 2

where

(u)+ =

{
u, if u > 0

0, if u ≤ 0

Without the knots() option, the locations of the knots are determined by the percentiles rec-
ommended in Harrell (2001, 23). These percentiles are based on the chosen number of knots as
follows:

No.
of knots Percentiles

3 10 50 90
4 5 35 65 95
5 5 27.5 50 72.5 95
6 5 23 41 59 77 95
7 2.5 18.33 34.17 50 65.83 81.67 97.5

Harrell provides default percentiles when the number of knots is between 3 and 7. When using a
number of knots outside this range, the location of the knots must be specified in knots().
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Title

ml — Maximum likelihood estimation

Syntax

ml model in interactive mode

ml model method progname eq
[

eq . . .
] [

if
] [

in
] [

weight
][

, model options svy diparm options
]

ml model method funcname() eq
[

eq . . .
] [

if
] [

in
] [

weight
][

, model options svy diparm options
]

ml model in noninteractive mode

ml model method progname eq
[

eq . . .
] [

if
] [

in
] [

weight
]
, maximize[

model options svy diparm options noninteractive options
]

ml model method funcname() eq
[

eq . . .
] [

if
] [

in
] [

weight
]
, maximize[

model options svy diparm options noninteractive options
]

Noninteractive mode is invoked by specifying the maximize option. Use maximize when ml will
be used as a subroutine of another ado-file or program and you want to carry forth the problem,
from definition to posting of results, in one command.

ml clear

ml query

ml check

ml search
[ [

/
]
eqname

[
:
]

#lb #ub
] [

. . .
] [

, search options
]

ml plot
[

eqname:
]
name

[
#
[

#
[

#
] ] ] [

, saving(filename
[
, replace

]
)
]

ml init
{ [

eqname:
]
name=# | /eqname=#

} [
. . .
]

ml init #
[

# . . .
]
, copy

ml init matname
[
, copy skip

]
ml report

ml trace
{
on | off

}
ml count

[
clear | on | off

]
ml maximize

[
, ml maximize options display options eform option

]
1180
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ml graph
[

#
] [

, saving(filename
[
, replace

]
)
]

ml display
[
, display options eform option

]
ml footnote

ml score newvar
[

if
] [

in
] [

, equation(eqname) missing
]

ml score newvarlist
[

if
] [

in
] [

, missing
]

ml score
[

type
]

stub*
[

if
] [

in
] [

, missing
]

where method is one of
lf d0 lf0 gf0

d1 lf1
d1debug lf1debug
d2 lf2
d2debug lf2debug

or method can be specified using one of the longer, more descriptive names

method Longer name

lf linearform

d0 derivative0

d1 derivative1

d1debug derivative1debug

d2 derivative2

d2debug derivative2debug

lf0 linearform0

lf1 linearform1

lf1debug linearform1debug

lf2 linearform2

lf2debug linearform2debug

gf0 generalform0

eq is the equation to be estimated, enclosed in parentheses, and optionally with a name to be given
to the equation, preceded by a colon,

(
[

eqname:
] [

varlisty =
] [

varlistx
] [

, eq options
]
)

or eq is the name of a parameter, such as sigma, with a slash in front

/eqname which is equivalent to (eqname:)

and diparm options is one or more diparm(diparm args) options where diparm args is either
sep or anything accepted by the “undocumented” diparm command; see help diparm.

eq options Description

noconstant do not include an intercept in the equation
offset(varnameo) include varnameo in model with coefficient constrained to 1
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
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model options Description

group(varname) use varname to identify groups
vce(vcetype) vcetype may be robust, cluster clustvar, oim, or opg
constraints(numlist) constraints by number to be applied
constraints(matname) matrix that contains the constraints to be applied
nocnsnotes do not display notes when constraints are dropped
title(string) place a title on the estimation output
nopreserve do not preserve the estimation subsample in memory
collinear keep collinear variables within equations
missing keep observations containing variables with missing values
lf0(#k #ll) number of parameters and log-likelihood value of the

constant-only model
continue specifies that a model has been fit and sets the initial values

b0 for the model to be fit based on those results
waldtest(#) perform a Wald test; see Options for use with ml model in

interactive or noninteractive mode below
obs(#) number of observations
crittype(string) describe the criterion optimized by ml

subpop(varname) compute estimates for the single subpopulation
nosvyadjust carry out Wald test as W/k ∼ F (k, d)
technique(nr) Stata’s modified Newton–Raphson (NR) algorithm
technique(bhhh) Berndt–Hall–Hall–Hausman (BHHH) algorithm
technique(dfp) Davidon–Fletcher–Powell (DFP) algorithm
technique(bfgs) Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

noninteractive options Description

init(ml init args) set the initial values b0

search(on) equivalent to ml search, repeat(0); the default
search(norescale) equivalent to ml search, repeat(0) norescale

search(quietly) same as search(on), except that output is suppressed
search(off) prevents calling ml search

repeat(#) ml search’s repeat() option; see below
bounds(ml search bounds) specify bounds for ml search

nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix
negh indicates that the evaluator returns the negative Hessian matrix
score(newvars) new variables containing the contribution to the score
maximize options control the maximization process; seldom used
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search options Description

repeat(#) number of random attempts to find better initial-value
vector; default is repeat(10) in interactive mode and
repeat(0) in noninteractive mode

restart use random actions to find starting values; not recommended
norescale do not rescale to improve parameter vector; not recommended
maximize options control the maximization process; seldom used

ml maximize options Description

nowarning suppress “convergence not achieved” message of iterate(0)
novce substitute the zero matrix for the variance matrix
negh indicates that the evaluator returns the negative Hessian matrix
score(newvars | stub*) new variables containing the contribution to the score
nooutput suppress display of final results
noclear do not clear ml problem definition after model has converged
maximize options control the maximization process; seldom used

display options Description

noheader suppress header display above the coefficient table
nofootnote suppress footnote display below the coefficient table
level(#) set confidence level; default is level(95)

first display coefficient table reporting results for first equation only
neq(#) display coefficient table reporting first # equations
showeqns display equation names in the coefficient table
plus display coefficient table ending in dashes–plus-sign–dashes
nocnsreport suppress constraints display above the coefficient table
noomitted suppress display of omitted variables
vsquish suppress blank space separating factor-variable terms or

time-series–operated variables from other variables
noemptycells suppress empty cells for interactions of factor variables
baselevels report base levels of factor variables and interactions
allbaselevels display all base levels of factor variables and interactions
cformat(% fmt) format the coefficients, standard errors, and confidence limits in

the coefficient table
pformat(% fmt) format the p-values in the coefficient table
sformat(% fmt) format the test statistics in the coefficient table
nolstretch do not automatically widen the coefficient table to accommodate

longer variable names
coeflegend display legend instead of statistics
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eform option Description

eform(string) display exponentiated coefficients; column title is “string”
eform display exponentiated coefficients; column title is “exp(b)”
hr report hazard ratios
shr report subhazard ratios
irr report incidence-rate ratios
or report odds ratios
rrr report relative-risk ratios

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. With all but method lf,
you must write your likelihood-evaluation program carefully if pweights are to be specified, and
pweights may not be specified with method d0, d1, d1debug, d2, or d2debug. See Gould, Pitblado, and Poi
(2010, chap. 6) for details.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
To redisplay results, type ml display.

Syntax of subroutines for use by evaluator programs

mleval newvar = vecname
[
, eq(#)

]
mleval scalarname = vecname , scalar

[
eq(#)

]
mlsum scalarnamelnf = exp

[
if
] [

, noweight
]

mlvecsum scalarnamelnf rowvecname = exp
[

if
] [

, eq(#)
]

mlmatsum scalarnamelnf matrixname = exp
[

if
] [

, eq(#
[
,#
]
)
]

mlmatbysum scalarnamelnf matrixname varnamea varnameb
[

varnamec
] [

if
]
,

by(varname)
[

eq(#
[
,#
]
)
]

Syntax of user-written evaluator

Summary of notation
The log-likelihood function is lnL(θ1j , θ2j , . . . , θEj), where θij = xijbi, j = 1, . . . , N indexes
observations, and i = 1, . . . , E indexes the linear equations defined by ml model. If the likelihood
satisfies the linear-form restrictions, it can be decomposed as lnL =

∑N
j=1 ln `(θ1j , θ2j , . . . , θEj).

Method-lf evaluators
program progname

version 12
args lnfj theta1 theta2 . . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
quietly gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end
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where
‘lnfj’ variable to be filled in with observation-by-observation values of ln`j
‘theta1’ variable containing evaluation of first equation θ1j=x1jb1

‘theta2’ variable containing evaluation of second equation θ2j=x2jb2

. . .

Method-d0 evaluators
program progname

version 12
args todo b lnf

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL

Method-d1 evaluators
program progname

version 12
args todo b lnf g

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for ∂ ln`j/∂θ1j, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for ∂ ln`j/∂θ2j, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . . )

end

where
‘todo’ contains 0 or 1

0⇒‘lnf’to be filled in;
1⇒‘lnf’ and ‘g’ to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL
‘g’ row vector to be filled in with overall g=∂ lnL/∂b
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Method-d2 evaluators
program progname

version 12
args todo b lnf g H

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
mlsum ‘lnf’ = . . .
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2 . . .
mlvecsum ‘lnf’ ‘d1’ = formula for ∂ ln`j/∂θ1j, eq(1)
mlvecsum ‘lnf’ ‘d2’ = formula for ∂ ln`j/∂θ2j, eq(2)
. . .
matrix ‘g’ = (‘d1’,‘d2’, . . . )
if (‘todo’==1 | ‘lnf’>=.) exit

tempname d11 d12 d22 . . .
mlmatsum ‘lnf’ ‘d11’ = formula for ∂2 ln`j/∂θ21j, eq(1)

mlmatsum ‘lnf’ ‘d12’ = formula for ∂2 ln`j/∂θ1j∂θ2j, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for ∂2 ln`j/∂θ22j, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . . )

end

where
‘todo’ contains 0, 1, or 2

0⇒‘lnf’ to be filled in;
1⇒‘lnf’ and ‘g’ to be filled in;

2⇒‘lnf’, ‘g’, and ‘H’ to be filled in
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnf’ scalar to be filled in with overall lnL
‘g’ row vector to be filled in with overall g=∂ lnL/∂b

‘H’ matrix to be filled in with overall Hessian H=∂2 lnL/∂b∂b′

Method-lf0 evaluators
program progname

version 12
args todo b lnfj

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with observation-by-observation values of ln`j
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Method-lf1 evaluators
program progname

version 12
args todo b lnfj g1 g2 . . .
tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit

quietly replace ‘g1’ = formula for ∂ ln`j/∂θ1j
quietly replace ‘g2’ = formula for ∂ ln`j/∂θ2j
. . .

end

where
‘todo’ contains 0 or 1

0⇒‘lnfj’to be filled in;
1⇒‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with observation-by-observation values of ln`j
‘g1’ variable to be filled in with ∂ ln`j/∂θ1j
‘g2’ variable to be filled in with ∂ ln`j/∂θ2j
. . .

Method-lf2 evaluators
program progname

version 12
args todo b lnfj g1 g2 . . . H

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .
if (‘todo’==0) exit

quietly replace ‘g1’ = formula for ∂ ln`j/∂θ1j
quietly replace ‘g2’ = formula for ∂ ln`j/∂θ2j
. . .
if (‘todo’==1) exit

tempname d11 d12 d22 lnf . . .
mlmatsum ‘lnf’ ‘d11’ = formula for ∂2 ln`j/∂θ21j, eq(1)

mlmatsum ‘lnf’ ‘d12’ = formula for ∂2 ln`j/∂θ1j∂θ2j, eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = formula for ∂2 ln`j/∂θ22j, eq(2)
. . .
matrix ‘H’ = (‘d11’,‘d12’, . . . \ ‘d12’’,‘d22’, . . . )

end
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where
‘todo’ contains 0 or 1

0⇒‘lnfj’to be filled in;
1⇒‘lnfj’, ‘g1’, ‘g2’, . . ., to be filled in
2⇒‘lnfj’, ‘g1’, ‘g2’, . . ., and ‘H’ to be filled in

‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ scalar to be filled in with observation-by-observation lnL
‘g1’ variable to be filled in with ∂ ln`j/∂θ1j
‘g2’ variable to be filled in with ∂ ln`j/∂θ2j
. . .
‘H’ matrix to be filled in with overall Hessian H=∂2 lnL/∂b∂b′

Method-gf0 evaluators
program progname

version 12
args todo b lnfj

tempvar theta1 theta2 . . .
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2) // if there is a θ2
. . .
// if you need to create any intermediate results:
tempvar tmp1 tmp2 . . .
gen double ‘tmp1’ = . . .
. . .
quietly replace ‘lnfj’ = . . .

end

where
‘todo’ always contains 0 (may be ignored)
‘b’ full parameter row vector b=(b1,b2,...,bE)

‘lnfj’ variable to be filled in with the values of the log-likelihood ln`j

Global macros for use by all evaluators
$ML y1 name of first dependent variable
$ML y2 name of second dependent variable, if any
. . .
$ML samp variable containing 1 if observation to be used; 0 otherwise
$ML w variable containing weight associated with observation or 1 if no weights specified

Method-lf evaluators can ignore $ML samp, but restricting calculations to the $ML samp==1
subsample will speed execution. Method-lf evaluators must ignore $ML w; application of weights
is handled by the method itself.

Methods d0, d1, d2, lf0, lf1, lf2, and gf0 can ignore $ML samp as long as ml model’s nopreserve
option is not specified. These methods will run more quickly if nopreserve is specified. These
evaluators can ignore $ML w only if they use mlsum, mlvecsum, mlmatsum, and mlmatbysum to
produce all final results.

Description
ml model defines the current problem.

ml clear clears the current problem definition. This command is rarely used because when you type
ml model, any previous problem is automatically cleared.

ml query displays a description of the current problem.

ml check verifies that the log-likelihood evaluator you have written works. We strongly recommend
using this command.
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ml search searches for (better) initial values. We recommend using this command.

ml plot provides a graphical way of searching for (better) initial values.

ml init provides a way to specify initial values.

ml report reports lnL’s values, gradient, and Hessian at the initial values or current parameter
estimates, b0.

ml trace traces the execution of the user-defined log-likelihood evaluation program.

ml count counts the number of times the user-defined log-likelihood evaluation program is called;
this command is seldom used. ml count clear clears the counter. ml count on turns on the
counter. ml count without arguments reports the current values of the counter. ml count off
stops counting calls.

ml maximize maximizes the likelihood function and reports results. Once ml maximize has success-
fully completed, the previously mentioned ml commands may no longer be used unless noclear
is specified. ml graph and ml display may be used whether or not noclear is specified.

ml graph graphs the log-likelihood values against the iteration number.

ml display redisplays results.

ml footnote displays a warning message when the model did not converge within the specified
number of iterations.

ml score creates new variables containing the equation-level scores. The variables generated by ml
score are equivalent to those generated by specifying the score() option of ml maximize (and
ml model . . . , . . . maximize).

progname is the name of a Stata program you write to evaluate the log-likelihood function.

funcname() is the name of a Mata function you write to evaluate the log-likelihood function.

In this documentation, progname and funcname() are referred to as the user-written evaluator, the
likelihood evaluator, or sometimes simply as the evaluator. The program you write is written in
the style required by the method you choose. The methods are lf, d0, d1, d2, lf0, lf1, lf2, and
gf0. Thus, if you choose to use method lf, your program is called a method-lf evaluator.

Method-lf evaluators are required to evaluate the observation-by-observation log likelihood ln `j ,
j = 1, . . . , N .

Method-d0 evaluators are required to evaluate the overall log likelihood lnL. Method-d1 evaluators
are required to evaluate the overall log likelihood and its gradient vector g = ∂ lnL/∂b. Method-d2
evaluators are required to evaluate the overall log likelihood, its gradient, and its Hessian matrix
H = ∂2lnL/∂b∂b′.

Method-lf0 evaluators are required to evaluate the observation-by-observation log likelihood ln `j ,
j = 1, . . . , N . Method-lf1 evaluators are required to evaluate the observation-by-observation log
likelihood and its equation-level scores gji = ∂ln `/∂xjibi. Method-lf2 evaluators are required to
evaluate the observation-by-observation log likelihood, its equation-level scores, and its Hessian
matrix H = ∂2ln `/∂b∂b′.

Method-gf0 evaluators are required to evaluate the summable pieces of the log likelihood ln `k,
k = 1, . . . ,K.

mleval is a subroutine used by evaluators of methods d0, d1, d2, lf0, lf1, lf2, and gf0 to evaluate
the coefficient vector, b, that they are passed.

mlsum is a subroutine used by evaluators of methods d0, d1, and d2 to define the value, lnL, that is
to be returned.
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mlvecsum is a subroutine used by evaluators of methods d1 and d2 to define the gradient vector, g,
that is to be returned. It is suitable for use only when the likelihood function meets the linear-form
restrictions.

mlmatsum is a subroutine used by evaluators of methods d2 and lf2 to define the Hessian matrix, H,
that is to be returned. It is suitable for use only when the likelihood function meets the linear-form
restrictions.

mlmatbysum is a subroutine used by evaluator of method d2 to help define the Hessian matrix, H,
that is to be returned. It is suitable for use when the likelihood function contains terms made
up of grouped sums, such as in panel-data models. For such models, use mlmatsum to compute
the observation-level outer products and mlmatbysum to compute the group-level outer products.
mlmatbysum requires that the data be sorted by the variable identified in the by() option.

Options for use with ml model in interactive or noninteractive mode
group(varname) specifies the numeric variable that identifies groups. This option is typically used

to identify panels for panel-data models.

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification, that allow for intragroup correlation, and that are derived from
asymptotic theory; see [R] vce option.

vce(robust), vce(cluster clustvar), pweight, and svy will work with evaluators of methods
lf, lf0, lf1, lf2, and gf0; all you need do is specify them.

These options will not work with evaluators of methods d0, d1, or d2, and specifying these options
will produce an error message.

constraints(numlist |matname) specifies the linear constraints to be applied during estimation.
constraints(numlist) specifies the constraints by number. Constraints are defined by using
the constraint command; see [R] constraint. constraint(matname) specifies a matrix that
contains the constraints.

nocnsnotes prevents notes from being displayed when constraints are dropped. A constraint will
be dropped if it is inconsistent, contradicts other constraints, or causes some other error when the
constraint matrix is being built. Constraints are checked in the order in which they are specified.

title(string) specifies the title for the estimation output when results are complete.

nopreserve specifies that ml need not ensure that only the estimation subsample is in memory when
the user-written likelihood evaluator is called. nopreserve is irrelevant when you use method lf.

For the other methods, if nopreserve is not specified, ml saves the data in a file (preserves the
original dataset) and drops the irrelevant observations before calling the user-written evaluator.
This way, even if the evaluator does not restrict its attentions to the $ML samp==1 subsample,
results will still be correct. Later, ml automatically restores the original dataset.

ml need not go through these machinations for method lf because the user-written evaluator
calculates observation-by-observation values, and ml itself sums the components.

ml goes through these machinations if and only if the estimation sample is a subsample of the data
in memory. If the estimation sample includes every observation in memory, ml does not preserve
the original dataset. Thus programmers must not alter the original dataset unless they preserve
the data themselves.

We recommend that interactive users of ml not specify nopreserve; the speed gain is not worth
the possibility of getting incorrect results.
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We recommend that programmers specify nopreserve, but only after verifying that their evaluator
really does restrict its attentions solely to the $ML samp==1 subsample.

collinear specifies that ml not remove the collinear variables within equations. There is no reason
to leave collinear variables in place, but this option is of interest to programmers who, in their code,
have already removed collinear variables and do not want ml to waste computer time checking
again.

missing specifies that observations containing variables with missing values not be eliminated from
the estimation sample. There are two reasons you might want to specify missing:

Programmers may wish to specify missing because, in other parts of their code, they have already
eliminated observations with missing values and do not want ml to waste computer time looking
again.

You may wish to specify missing if your model explicitly deals with missing values. Stata’s
heckman command is a good example of this. In such cases, there will be observations where
missing values are allowed and other observations where they are not—where their presence should
cause the observation to be eliminated. If you specify missing, it is your responsibility to specify
an if exp that eliminates the irrelevant observations.

lf0(#k #ll) is typically used by programmers. It specifies the number of parameters and log-likelihood
value of the constant-only model so that ml can report a likelihood-ratio test rather than a Wald
test. These values may have been analytically determined, or they may have been determined by
a previous fitting of the constant-only model on the estimation sample.

Also see the continue option directly below.

If you specify lf0(), it must be safe for you to specify the missing option, too, else how did
you calculate the log likelihood for the constant-only model on the same sample? You must have
identified the estimation sample, and done so correctly, so there is no reason for ml to waste time
rechecking your results. All of which is to say, do not specify lf0() unless you are certain your
code identifies the estimation sample correctly.

lf0(), even if specified, is ignored if vce(robust), vce(cluster clustvar), pweight, or svy
is specified because, in that case, a likelihood-ratio test would be inappropriate.

continue is typically specified by programmers and does two things:

First, it specifies that a model has just been fit by either ml or some other estimation command,
such as logit, and that the likelihood value stored in e(ll) and the number of parameters stored
in e(b) as of that instant are the relevant values of the constant-only model. The current value of
the log likelihood is used to present a likelihood-ratio test unless vce(robust), vce(cluster
clustvar), pweight, svy, or constraints() is specified. A likelihood-ratio test is inappropriate
when vce(robust), vce(cluster clustvar), pweight, or svy is specified. We suggest using
lrtest when constraints() is specified; see [R] lrtest.

Second, continue sets the initial values, b0, for the model about to be fit according to the e(b)
currently stored.

The comments made about specifying missing with lf0() apply equally well here.

waldtest(#) is typically specified by programmers. By default, ml presents a Wald test, but that is
overridden if the lf0() or continue option is specified. A Wald test is performed if vce(robust),
vce(cluster clustvar), or pweight is specified.

waldtest(0) prevents even the Wald test from being reported.

waldtest(-1) is the default. It specifies that a Wald test be performed by constraining all coeffi-
cients except the intercept to 0 in the first equation. Remaining equations are to be unconstrained.
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A Wald test is performed if neither lf0() nor continue was specified, and a Wald test is forced
if vce(robust), vce(cluster clustvar), or pweight was specified.

waldtest(k) for k ≤ −1 specifies that a Wald test be performed by constraining all coefficients
except intercepts to 0 in the first |k| equations; remaining equations are to be unconstrained. A
Wald test is performed if neither lf0() nor continue was specified, and a Wald test is forced if
vce(robust), vce(cluster clustvar), or pweight was specified.

waldtest(k) for k ≥ 1 works like the options above, except that it forces a Wald test to be
reported even if the information to perform the likelihood-ratio test is available and even if none of
vce(robust), vce(cluster clustvar), or pweight was specified. waldtest(k), k ≥ 1, may
not be specified with lf0().

obs(#) is used mostly by programmers. It specifies that the number of observations reported and
ultimately stored in e(N) be #. Ordinarily, ml works that out for itself. Programmers may want
to specify this option when, for the likelihood evaluator to work for N observations, they first had
to modify the dataset so that it contained a different number of observations.

crittype(string) is used mostly by programmers. It allows programmers to supply a string (up to
32 characters long) that describes the criterion that is being optimized by ml. The default is "log
likelihood" for nonrobust and "log pseudolikelihood" for robust estimation.

svy indicates that ml is to pick up the svy settings set by svyset and use the robust variance
estimator. This option requires the data to be svyset; see [SVY] svyset. svy may not be specified
with vce() or weights.

subpop(varname) specifies that estimates be computed for the single subpopulation defined by the
observations for which varname 6= 0. Typically, varname = 1 defines the subpopulation, and
varname = 0 indicates observations not belonging to the subpopulation. For observations whose
subpopulation status is uncertain, varname should be set to missing (‘.’). This option requires the
svy option.

nosvyadjust specifies that the model Wald test be carried out as W/k ∼ F (k, d), where W is the
Wald test statistic, k is the number of terms in the model excluding the constant term, d is the total
number of sampled PSUs minus the total number of strata, and F (k, d) is an F distribution with
k numerator degrees of freedom and d denominator degrees of freedom. By default, an adjusted
Wald test is conducted: (d− k + 1)W/(kd) ∼ F (k, d− k + 1). See Korn and Graubard (1990)
for a discussion of the Wald test and the adjustments thereof. This option requires the svy option.

technique(algorithm spec) specifies how the likelihood function is to be maximized. The following
algorithms are currently implemented in ml. For details, see Gould, Pitblado, and Poi (2010).

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(bhhh) specifies the Berndt–Hall–Hall–Hausman (BHHH) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

The default is technique(nr).

You can switch between algorithms by specifying more than one in the technique() option. By
default, ml will use an algorithm for five iterations before switching to the next algorithm. To
specify a different number of iterations, include the number after the technique in the option. For
example, technique(bhhh 10 nr 1000) requests that ml perform 10 iterations using the BHHH
algorithm, followed by 1,000 iterations using the NR algorithm, and then switch back to BHHH for
10 iterations, and so on. The process continues until convergence or until reaching the maximum
number of iterations.
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Options for use with ml model in noninteractive mode

The following extra options are for use with ml model in noninteractive mode. Noninteractive
mode is for programmers who use ml as a subroutine and want to issue one command that will carry
forth the estimation from start to finish.

maximize is required. It specifies noninteractive mode.

init(ml init args) sets the initial values, b0. ml init args are whatever you would type after the
ml init command.

search(on | norescale | quietly | off) specifies whether ml search is to be used to improve the
initial values. search(on) is the default and is equivalent to separately running ml search, re-
peat(0). search(norescale) is equivalent to separately running ml search, repeat(0)
norescale. search(quietly) is equivalent to search(on), except that it suppresses ml
search’s output. search(off) prevents calling ml search.

repeat(#) is ml search’s repeat() option. repeat(0) is the default.

bounds(ml search bounds) specifies the search bounds. ml search bounds is specified as[
eqn name

]
lower bound upper bound . . .

[
eqn name

]
lower bound upper bound

for instance, bounds(100 100 lnsigma 0 10). The ml model command issues ml search
ml search bounds, repeat(#). Specifying search bounds is optional.

nowarning, novce, negh, and score() are ml maximize’s equivalent options.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Options for use when specifying equations

noconstant specifies that the equation not include an intercept.

offset(varnameo) specifies that the equation be xb + varnameo—that it include varnameo with
coefficient constrained to be 1.

exposure(varnamee) is an alternative to offset(varnameo); it specifies that the equation be
xb + ln(varnamee). The equation is to include ln(varnamee) with coefficient constrained to be 1.

Options for use with ml search
repeat(#) specifies the number of random attempts that are to be made to find a better initial-value

vector. The default is repeat(10).

repeat(0) specifies that no random attempts be made. More precisely, repeat(0) specifies that
no random attempts be made if the first initial-value vector is a feasible starting point. If it is
not, ml search will make random attempts, even if you specify repeat(0), because it has no
alternative. The repeat() option refers to the number of random attempts to be made to improve
the initial values. When the initial starting value vector is not feasible, ml search will make up to
1,000 random attempts to find starting values. It stops when it finds one set of values that works
and then moves into its improve-initial-values logic.

repeat(k), k > 0, specifies the number of random attempts to be made to improve the initial
values.
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restart specifies that random actions be taken to obtain starting values and that the resulting starting
values not be a deterministic function of the current values. Generally, you should not specify this
option because, with restart, ml search intentionally does not produce as good a set of starting
values as it could. restart is included for use by the optimizer when it gets into serious trouble.
The random actions ensure that the optimizer and ml search, working together, do not cause an
endless loop.

restart implies norescale, which is why we recommend that you do not specify restart.
In testing, sometimes rescale worked so well that, even after randomization, the rescaler would
bring the starting values right back to where they had been the first time and thus defeat the
intended randomization.

norescale specifies that ml search not engage in its rescaling actions to improve the parameter
vector. We do not recommend specifying this option because rescaling tends to work so well.

maximize options:
[
no
]
log and trace; see [R] maximize. These options are seldom used.

Option for use with ml plot
saving( filename[ , replace]) specifies that the graph be saved in filename.gph.

See [G-3] saving option.

Options for use with ml init
copy specifies that the list of numbers or the initialization vector be copied into the initial-value

vector by position rather than by name.

skip specifies that any parameters found in the specified initialization vector that are not also found
in the model be ignored. The default action is to issue an error message.

Options for use with ml maximize
nowarning is allowed only with iterate(0). nowarning suppresses the “convergence not achieved”

message. Programmers might specify iterate(0) nowarning when they have a vector b already
containing the final estimates and want ml to calculate the variance matrix and postestimation
results. Then specify init(b) search(off) iterate(0) nowarning nolog.

novce is allowed only with iterate(0). novce substitutes the zero matrix for the variance matrix,
which in effect posts estimation results as fixed constants.

negh indicates that the evaluator returns the negative Hessian matrix. By default, ml assumes d2 and
lf2 evaluators return the Hessian matrix.

score(newvars | stub*) creates new variables containing the contributions to the score for each
equation and ancillary parameter in the model; see [U] 20.21 Obtaining scores.

If score(newvars) is specified, the newvars must contain k new variables. For evaluators of
methods lf, lf0, lf1, and lf2, k is the number of equations. For evaluators of method gf0, k is the
number of parameters. If score(stub*) is specified, variables named stub1, stub2, . . . , stubk are
created.

For evaluators of methods lf, lf0, lf1, and lf2, the first variable contains ∂ln `j/∂(x1jb1), the
second variable contains ∂ln `j/∂(x2jb2), and so on.
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For evaluators of method gf0, the first variable contains ∂ln `j/∂b1, the second variable contains
∂ln `j/∂b2, and so on.

nooutput suppresses display of results. This option is different from prefixing ml maximize with
quietly in that the iteration log is still displayed (assuming that nolog is not specified).

noclear specifies that the ml problem definition not be cleared after the model has converged.
Perhaps you are having convergence problems and intend to run the model to convergence. If so,
use ml search to see if those values can be improved, and then restart the estimation.

maximize options: difficult, iterate(#),
[
no
]
log, trace, gradient, showstep, hessian,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), nonrtolerance; see
[R] maximize. These options are seldom used.

display options; see Options for use with ml display below.

eform option; see Options for use with ml display below.

Option for use with ml graph
saving( filename[ , replace]) specifies that the graph be saved in filename.gph.

See [G-3] saving option.

Options for use with ml display
noheader suppresses the header display above the coefficient table that displays the final log-likelihood

value, the number of observations, and the model significance test.

nofootnote suppresses the footnote display below the coefficient table, which displays a warning
if the model fit did not converge within the specified number of iterations. Use ml footnote to
display the warning if 1) you add to the coefficient table using the plus option or 2) you have
your own footnotes and want the warning to be last.

level(#) is the standard confidence-level option. It specifies the confidence level, as a percentage,
for confidence intervals of the coefficients. The default is level(95) or as set by set level;
see [U] 20.7 Specifying the width of confidence intervals.

first displays a coefficient table reporting results for the first equation only, and the report makes
it appear that the first equation is the only equation. This option is used by programmers who
estimate ancillary parameters in the second and subsequent equations and who wish to report the
values of such parameters themselves.

neq(#) is an alternative to first. neq(#) displays a coefficient table reporting results for the first
# equations. This option is used by programmers who estimate ancillary parameters in the # + 1
and subsequent equations and who wish to report the values of such parameters themselves.

showeqns is a seldom-used option that displays the equation names in the coefficient table. ml
display uses the numbers stored in e(k eq) and e(k aux) to determine how to display the
coefficient table. e(k eq) identifies the number of equations, and e(k aux) identifies how many
of these are for ancillary parameters. The first option is implied when showeqns is not specified
and all but the first equation are for ancillary parameters.

plus displays the coefficient table, but rather than ending the table in a line of dashes, ends it in
dashes–plus-sign–dashes. This is so that programmers can write additional display code to add
more results to the table and make it appear as if the combined result is one table. Programmers
typically specify plus with the first or neq() options. This option implies nofootnote.
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nocnsreport suppresses the display of constraints above the coefficient table. This option is ignored
if constraints were not used to fit the model.

noomitted specifies that variables that were omitted because of collinearity not be displayed. The
default is to include in the table any variables omitted because of collinearity and to label them
as “(omitted)”.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated variables
from other variables in the model be suppressed.

noemptycells specifies that empty cells for interactions of factor variables not be displayed. The
default is to include in the table interaction cells that do not occur in the estimation sample and
to label them as “(empty)”.

baselevels and allbaselevels control whether the base levels of factor variables and interactions
are displayed. The default is to exclude from the table all base categories.

baselevels specifies that base levels be reported for factor variables and for interactions whose
bases cannot be inferred from their component factor variables.

allbaselevels specifies that all base levels of factor variables and interactions be reported.

cformat(% fmt) specifies how to format coefficients, standard errors, and confidence limits in the
coefficient table.

pformat(% fmt) specifies how to format p-values in the coefficient table.

sformat(% fmt) specifies how to format test statistics in the coefficient table.

nolstretch specifies that the width of the coefficient table not be automatically widened to accom-
modate longer variable names. The default, lstretch, is to automatically widen the coefficient
table up to the width of the Results window. To change the default, use set lstretch off.
nolstretch is not shown in the dialog box.

coeflegend specifies that the legend of the coefficients and how to specify them in an expression
be displayed rather than displaying the statistics for the coefficients.

eform option: eform(string), eform, hr, shr, irr, or, and rrr display the coefficient table in
exponentiated form: for each coefficient, exp(b) rather than b is displayed, and standard errors and
confidence intervals are transformed. string is the table header that will be displayed above the
transformed coefficients and must be 11 characters or shorter in length—for example, eform("Odds
ratio"). The options eform, hr, shr, irr, or, and rrr provide a default string equivalent to
“exp(b)”, “Haz. Ratio”, “SHR”, “IRR”, “Odds Ratio”, and “RRR”, respectively. These options
may not be combined.

ml display looks at e(k eform) to determine how many equations are affected by an
eform option; by default, only the first equation is affected. Type ereturn list, all to view
e(k eform); see [P] ereturn.

Options for use with mleval
eq(#) specifies the equation number, i, for which θij = xijbi is to be evaluated. eq(1) is assumed

if eq() is not specified.

scalar asserts that the ith equation is known to evaluate to a constant, meaning that the equation
was specified as (), (name:), or /name on the ml model statement. If you specify this option,
the new variable created is created as a scalar. If the ith equation does not evaluate to a scalar,
an error message is issued.
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Option for use with mlsum
noweight specifies that weights ($ML w) be ignored when summing the likelihood function.

Option for use with mlvecsum
eq(#) specifies the equation for which a gradient vector ∂lnL/∂bi is to be constructed. The default

is eq(1).

Option for use with mlmatsum
eq(#

[
,#
]
) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means ∂2lnL/∂b1∂b′1. Specifying eq(i,j) results
in ∂2lnL/∂bi∂b′j .

Options for use with mlmatbysum
by(varname) is required and specifies the group variable.

eq(#
[
,#
]
) specifies the equations for which the Hessian matrix is to be constructed. The default is

eq(1), which is the same as eq(1,1), which means ∂2lnL/∂b1∂b′1. Specifying eq(i,j) results
in ∂2lnL/∂bi∂b′j .

Options for use with ml score
equation(eqname) identifies from which equation the observation scores are to come. This option

may be used only when generating one variable.

missing specifies that observations containing variables with missing values not be eliminated from
the estimation sample.

Remarks
For a thorough discussion of ml, see the fourth edition of Maximum Likelihood Estimation with

Stata (Gould, Pitblado, and Poi 2010). The book provides a tutorial introduction to ml, notes on
advanced programming issues, and a discourse on maximum likelihood estimation from both theoretical
and practical standpoints. See Survey options and ml at the end of Remarks for examples of the new
svy options. For more information about survey estimation, see [SVY] survey, [SVY] svy estimation,
and [SVY] variance estimation.

ml requires that you write a program that evaluates the log-likelihood function and, possibly, its
first and second derivatives. The style of the program you write depends upon the method you choose.
Methods lf, lf0, d0, and gf0 require that your program evaluate the log likelihood only. Methods d1
and lf1 require that your program evaluate the log likelihood and its first derivatives. Methods d2
and lf2 requires that your program evaluate the log likelihood and its first and second derivatives.
Methods lf, lf0, d0, and gf0 differ from each other in that, with methods lf and lf0, your program
is required to produce observation-by-observation log-likelihood values ln `j and it is assumed that
lnL =

∑
j ln `j ; with method d0, your program is required to produce only the overall value lnL;

and with method gf0, your program is required to produce the summable pieces of the log likelihood,
such as those in panel-data models.
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Once you have written the program—called an evaluator—you define a model to be fit using ml
model and obtain estimates using ml maximize. You might type

. ml model . . .

. ml maximize

but we recommend that you type

. ml model . . .

. ml check

. ml search

. ml maximize

ml check verifies your evaluator has no obvious errors, and ml search finds better initial values.

You fill in the ml model statement with 1) the method you are using, 2) the name of your
program, and 3) the “equations”. You write your evaluator in terms of θ1, θ2, . . . , each of which
has a linear equation associated with it. That linear equation might be as simple as θi = b0, it might
be θi = b1mpg + b2weight + b3, or it might omit the intercept b3. The equations are specified in
parentheses on the ml model line.

Suppose that you are using method lf and the name of your evaluator program is myprog. The
statement

. ml model lf myprog (mpg weight)

would specify one equation with θi = b1mpg+ b2weight+ b3. If you wanted to omit b3, you would
type

. ml model lf myprog (mpg weight, nocons)

and if all you wanted was θi = b0, you would type

. ml model lf myprog ()

With multiple equations, you list the equations one after the other; so, if you typed

. ml model lf myprog (mpg weight) ()

you would be specifying θ1 = b1mpg+ b2weight+ b3 and θ2 = b4. You would write your likelihood
in terms of θ1 and θ2. If the model was linear regression, θ1 might be the xb part and θ2 the variance
of the residuals.

When you specify the equations, you also specify any dependent variables. If you typed

. ml model lf myprog (price = mpg weight) ()

price would be the one and only dependent variable, and that would be passed to your program in
$ML y1. If your model had two dependent variables, you could type

. ml model lf myprog (price displ = mpg weight) ()

Then $ML y1 would be price and $ML y2 would be displ. You can specify however many dependent
variables are necessary and specify them on any equation. It does not matter on which equation you
specify them; the first one specified is placed in $ML y1, the second in $ML y2, and so on.
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Example 1: Method lf

Using method lf, we want to produce observation-by-observation values of the log likelihood. The
probit log-likelihood function is

ln `j =
{

ln Φ(θ1j) if yj = 1
ln Φ(−θ1j) if yj = 0

θ1j = xjb1

The following is the method-lf evaluator for this likelihood function:

program myprobit
version 12
args lnf theta1
quietly replace ‘lnf’ = ln(normal(‘theta1’)) if $ML_y1==1
quietly replace ‘lnf’ = ln(normal(-‘theta1’)) if $ML_y1==0

end

If we wanted to fit a model of foreign on mpg and weight, we would type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ml model lf myprobit (foreign = mpg weight)

. ml maximize

The ‘foreign =’ part specifies that y is foreign. The ‘mpg weight’ part specifies that θ1j =
b1mpgj + b2weightj + b3. The result of running this is

. ml model lf myprobit (foreign = mpg weight)

. ml maximize

initial: log likelihood = -51.292891
alternative: log likelihood = -45.055272
rescale: log likelihood = -45.055272
Iteration 0: log likelihood = -45.055272
Iteration 1: log likelihood = -27.904114
Iteration 2: log likelihood = -26.858048
Iteration 3: log likelihood = -26.844198
Iteration 4: log likelihood = -26.844189
Iteration 5: log likelihood = -26.844189

Number of obs = 74
Wald chi2(2) = 20.75

Log likelihood = -26.844189 Prob > chi2 = 0.0000

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772
weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
_cons 8.275464 2.554142 3.24 0.001 3.269438 13.28149

Example 2: Method lf for two-equation, two-dependent-variable model

A two-equation, two-dependent-variable model is a little different. Rather than receiving one θ,
our program will receive two. Rather than there being one dependent variable in $ML y1, there will
be dependent variables in $ML y1 and $ML y2. For instance, the Weibull regression log-likelihood
function is
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ln `j = −(tje−θ1j )exp(θ2j) + dj{θ2j − θ1j + (eθ2j − 1)(ln tj − θ1j)}
θ1j = xjb1

θ2j = s

where tj is the time of failure or censoring and dj = 1 if failure and 0 if censored. We can make
the log likelihood a little easier to program by introducing some extra variables:

pj = exp(θ2j)

Mj = {tj exp(−θ1j)}pj

Rj = ln tj − θ1j

ln `j = −Mj + dj{θ2j − θ1j + (pj − 1)Rj}

The method-lf evaluator for this is

program myweib
version 12
args lnf theta1 theta2

tempvar p M R
quietly gen double ‘p’ = exp(‘theta2’)
quietly gen double ‘M’ = ($ML_y1*exp(-‘theta1’))^‘p’
quietly gen double ‘R’ = ln($ML_y1)-‘theta1’

quietly replace ‘lnf’ = -‘M’ + $ML_y2*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)
end

We can fit a model by typing

. ml model lf myweib (studytime died = i.drug age) ()

. ml maximize

Note that we specified ‘()’ for the second equation. The second equation corresponds to the Weibull
shape parameter s, and the linear combination we want for s contains just an intercept. Alternatively,
we could type

. ml model lf myweib (studytime died = i.drug age) /s

Typing /s means the same thing as typing (s:), and both really mean the same thing as (). The
s, either after a slash or in parentheses before a colon, labels the equation. It makes the output look
prettier, and that is all:
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. use http://www.stata-press.com/data/r12/cancer, clear
(Patient Survival in Drug Trial)

. ml model lf myweib (studytime died = i.drug age) /s

. ml maximize

initial: log likelihood = -744
alternative: log likelihood = -356.14276
rescale: log likelihood = -200.80201
rescale eq: log likelihood = -136.69232
Iteration 0: log likelihood = -136.69232 (not concave)
Iteration 1: log likelihood = -124.11726
Iteration 2: log likelihood = -113.89828
Iteration 3: log likelihood = -110.30451
Iteration 4: log likelihood = -110.26747
Iteration 5: log likelihood = -110.26736
Iteration 6: log likelihood = -110.26736

Number of obs = 48
Wald chi2(3) = 35.25

Log likelihood = -110.26736 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
drug

2 1.012966 .2903917 3.49 0.000 .4438086 1.582123
3 1.45917 .2821195 5.17 0.000 .9062261 2.012114

age -.0671728 .0205688 -3.27 0.001 -.1074868 -.0268587
_cons 6.060723 1.152845 5.26 0.000 3.801188 8.320259

s
_cons .5573333 .1402154 3.97 0.000 .2825162 .8321504

Example 3: Method d0

Method-d0 evaluators receive b = (b1,b2, . . . ,bE), the coefficient vector, rather than the already
evaluated θ1, θ2, . . . , θE , and they are required to evaluate the overall log-likelihood lnL rather than
ln `j , j = 1, . . . , N .

Use mleval to produce the thetas from the coefficient vector.

Use mlsum to sum the components that enter into lnL.
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In the case of Weibull, lnL =
∑

ln `j , and our method-d0 evaluator is

program weib0
version 12
args todo b lnf

tempvar theta1 theta2
mleval ‘theta1’ = ‘b’, eq(1)
mleval ‘theta2’ = ‘b’, eq(2)

local t "$ML_y1" // this is just for readability
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘theta2’)
quietly gen double ‘M’ = (‘t’*exp(-‘theta1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘theta1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘theta2’-‘theta1’ + (‘p’-1)*‘R’)
end

To fit our model using this evaluator, we would type

. ml model d0 weib0 (studytime died = i.drug age) /s

. ml maximize

Technical note
Method d0 does not require lnL =

∑
j ln `j , j = 1, . . . , N , as method lf does. Your likelihood

function might have independent components only for groups of observations. Panel-data estimators
have a log-likelihood value lnL =

∑
i lnLi, where i indexes the panels, each of which contains

multiple observations. Conditional logistic regression has lnL =
∑
k lnLk, where k indexes the risk

pools. Cox regression has lnL =
∑

(t) lnL(t), where (t) denotes the ordered failure times.

To evaluate such likelihood functions, first calculate the within-group log-likelihood contributions.
This usually involves generate and replace statements prefixed with by, as in

tempvar sumd
by group: gen double ‘sumd’ = sum($ML_y1)

Structure your code so that the log-likelihood contributions are recorded in the last observation of
each group. Say that a variable is named ‘cont’. To sum the contributions, code

tempvar last
quietly by group: gen byte ‘last’ = (_n==_N)
mlsum ‘lnf’ = ‘cont’ if ‘last’

You must inform mlsum which observations contain log-likelihood values to be summed. First, you
do not want to include intermediate results in the sum. Second, mlsum does not skip missing values.
Rather, if mlsum sees a missing value among the contributions, it sets the overall result, ‘lnf’, to
missing. That is how ml maximize is informed that the likelihood function could not be evaluated
at the particular value of b. ml maximize will then take action to escape from what it thinks is an
infeasible area of the likelihood function.

When the likelihood function violates the linear-form restriction lnL =
∑
j ln `j , j = 1, . . . , N ,

with ln `j being a function solely of values within the jth observation, use method d0. In the following
examples, we will demonstrate methods d1 and d2 with likelihood functions that meet this linear-form
restriction. The d1 and d2 methods themselves do not require the linear-form restriction, but the
utility routines mlvecsum and mlmatsum do. Using method d1 or d2 when the restriction is violated
is difficult; however, mlmatbysum may be of some help for method-d2 evaluators.
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Example 4: Method d1

Method-d1 evaluators are required to produce the gradient vector g = ∂ lnL/∂b, as well as
the overall log-likelihood value. Using mlvecsum, we can obtain ∂ lnL/∂b from ∂ lnL/∂θi, i =
1, . . . , E. The derivatives of the Weibull log-likelihood function are

∂ln `j
∂θ1j

= pj(Mj − dj)

∂ln `j
∂θ2j

= dj −Rjpj(Mj − dj)

The method-d1 evaluator for this is

program weib1
version 12
args todo b lnf g // g is new

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit /* <-- new */

tempname d1 d2 /* <-- new */
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1) /* <-- new */
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2) /* <-- new */
matrix ‘g’ = (‘d1’,‘d2’) /* <-- new */

end

We obtained this code by starting with our method-d0 evaluator and then adding the extra lines that
method d1 requires. To fit our model using this evaluator, we could type

. ml model d1 weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

but we recommend substituting method d1debug for method d1 and typing

. ml model d1debug weib1 (studytime died = drug2 drug3 age) /s

. ml maximize

Method d1debug will compare the derivatives we calculate with numerical derivatives and thus verify
that our program is correct. Once we are certain the program is correct, then we would switch from
method d1debug to method d1.

Example 5: Method d2

Method-d2 evaluators are required to produce H = ∂2lnL/∂b∂b′, the Hessian matrix, as well as
the gradient and log-likelihood value. mlmatsum will help calculate ∂2lnL/∂b∂b′ from the second
derivatives with respect to θ. For the Weibull model, these second derivatives are
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∂2ln `j
∂θ2

1j

= −p2
jMj

∂2ln `j
∂θ1j∂θ2j

= pj(Mj − dj +RjpjMj)

∂2ln `j
∂θ2

2j

= −pjRj(RjpjMj +Mj − dj)

The method-d2 evaluator is
program weib2

version 12
args todo b lnf g H // H added

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

mlsum ‘lnf’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0 | ‘lnf’>=.) exit

tempname d1 d2
mlvecsum ‘lnf’ ‘d1’ = ‘p’*(‘M’-‘d’), eq(1)
mlvecsum ‘lnf’ ‘d2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’), eq(2)
matrix ‘g’ = (‘d1’,‘d2’)
if (‘todo’==1 | ‘lnf’>=.) exit // new from here down

tempname d11 d12 d22
mlmatsum ‘lnf’ ‘d11’ = -‘p’^2 * ‘M’, eq(1)
mlmatsum ‘lnf’ ‘d12’ = ‘p’*(‘M’-‘d’ + ‘R’*‘p’*‘M’), eq(1,2)
mlmatsum ‘lnf’ ‘d22’ = -‘p’*‘R’*(‘R’*‘p’*‘M’ + ‘M’ - ‘d’) , eq(2)
matrix ‘H’ = (‘d11’,‘d12’ \ ‘d12’’,‘d22’)

end

We started with our previous method-d1 evaluator and added the lines that method d2 requires. We
could now fit a model by typing

. ml model d2 weib2 (studytime died = drug2 drug3 age) /s

. ml maximize

but we would recommend substituting method d2debug for method d2 and typing
. ml model d2debug weib2 (studytime died = drug2 drug3 age) /s
. ml maximize

Method d2debug will compare the first and second derivatives we calculate with numerical derivatives
and thus verify that our program is correct. Once we are certain the program is correct, then we
would switch from method d2debug to method d2.

As we stated earlier, to produce the robust variance estimator with method lf, there is nothing to
do except specify vce(robust), vce(cluster clustvar), or pweight. For methods d0, d1, and d2,
these options do not work. If your likelihood function meets the linear-form restrictions, you can use
methods lf0, lf1, and lf2, then these options will work. The equation scores are defined as

∂ln `j
∂θ1j

,
∂ln `j
∂θ2j

, . . .
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Your evaluator will be passed variables, one for each equation, which you fill in with the equation
scores. For both method lf1 and lf2, these variables are passed in the fourth and subsequent positions
of the argument list. That is, you must process the arguments as

args todo b lnf g1 g2 ... H

Note that for method lf1, the ‘H’ argument is not used and can be ignored.

Example 6: Robust variance estimates

If you have used mlvecsum in your evaluator of method d1 or d2, it is easy to turn it into evaluator
of method lf1 or lf2 that allows the computation of the robust variance estimator. The expression that
you specified on the right-hand side of mlvecsum is the equation score.

Here we turn the program that we gave earlier in the method-d1 example into a method-lf1 evaluator
that allows vce(robust), vce(cluster clustvar), or pweight.

program weib1
version 12
args todo b lnfj g1 g2 // g1 and g2 are new

tempvar t1 t2
mleval ‘t1’ = ‘b’, eq(1)
mleval ‘t2’ = ‘b’, eq(2)

local t "$ML_y1"
local d "$ML_y2"

tempvar p M R
quietly gen double ‘p’ = exp(‘t2’)
quietly gen double ‘M’ = (‘t’*exp(-‘t1’))^‘p’
quietly gen double ‘R’ = ln(‘t’)-‘t1’

quietly replace ‘lnfj’ = -‘M’ + ‘d’*(‘t2’-‘t1’ + (‘p’-1)*‘R’)
if (‘todo’==0) exit

quietly replace ‘g1’ = ‘p’*(‘M’-‘d’) /* <-- new */
quietly replace ‘g2’ = ‘d’ - ‘R’*‘p’*(‘M’-‘d’) /* <-- new */

end

To fit our model and get the robust variance estimates, we type

. ml model lf1 weib1 (studytime died = drug2 drug3 age) /s, vce(robust)

. ml maximize

Survey options and ml

ml can handle stratification, poststratification, multiple stages of clustering, and finite population
corrections. Specifying the svy option implies that the data come from a survey design and also
implies that the survey linearized variance estimator is to be used; see [SVY] variance estimation.

Example 7

Suppose that we are interested in a probit analysis of data from a survey in which q1 is the answer
to a yes/no question and x1, x2, x3 are demographic responses. The following is a lf2 evaluator
for the probit model that meets the requirements for vce(robust) (linear form and computes the
scores).
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program mylf2probit
version 12
args todo b lnfj g1 H
tempvar z Fz lnf
mleval ‘z’ = ‘b’
quietly gen double ‘Fz’ = normal( ‘z’) if $ML_y1 == 1
quietly replace ‘Fz’ = normal(-‘z’) if $ML_y1 == 0
quietly replace ‘lnfj’ = log(‘Fz’)
if (‘todo’==0) exit
quietly replace ‘g1’ = normalden(‘z’)/‘Fz’ if $ML_y1 == 1
quietly replace ‘g1’ = -normalden(‘z’)/‘Fz’ if $ML_y1 == 0
if (‘todo’==1) exit
mlmatsum ‘lnf’ ‘H’ = -‘g1’*(‘g1’+‘z’), eq(1,1)

end

To fit a model, we svyset the data, then use svy with ml.

. svyset psuid [pw=w], strata(strid)

. ml model lf2 myd2probit (q1 = x1 x2 x3), svy

. ml maximize

We could also use the subpop() option to make inferences about the subpopulation identified by the
variable sub:

. svyset psuid [pw=w], strata(strid)

. ml model lf2 myd2probit (q1 = x1 x2 x3), svy subpop(sub)

. ml maximize

Saved results
For results saved by ml without the svy option, see [R] maximize.

For results saved by ml with the svy option, see [SVY] svy.

Methods and formulas
ml is implemented using moptimize; see [M-5] moptimize( ).
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Title

mlogit — Multinomial (polytomous) logistic regression

Syntax
mlogit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
baseoutcome(#) value of depvar that will be the base outcome
constraints(clist) apply specified linear constraints; clist has the form #

[
-#
] [

, #
[
-#
]
. . .
]

collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

rrr report relative-risk ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, rolling, statsby, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Categorical outcomes > Multinomial logistic regression
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Description
mlogit fits maximum-likelihood multinomial logit models, also known as polytomous logis-

tic regression. You can define constraints to perform constrained estimation. Some people refer to
conditional logistic regression as multinomial logit. If you are one of them, see [R] clogit.

See [R] logistic for a list of related estimation commands.

Options

� � �
Model �

noconstant; see [R] estimation options.

baseoutcome(#) specifies the value of depvar to be treated as the base outcome. The default is to
choose the most frequent outcome.

constraints(clist), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#); see [R] estimation options.

rrr reports the estimated coefficients transformed to relative-risk ratios, that is, eb rather than b; see
Description of the model below for an explanation of this concept. Standard errors and confidence
intervals are similarly transformed. This option affects how results are displayed, not how they are
estimated. rrr may be specified at estimation or when replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with mlogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Description of the model
Fitting unconstrained models
Fitting constrained models
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mlogit fits maximum likelihood models with discrete dependent (left-hand-side) variables when
the dependent variable takes on more than two outcomes and the outcomes have no natural ordering.
If the dependent variable takes on only two outcomes, estimates are identical to those produced by
logistic or logit; see [R] logistic or [R] logit. If the outcomes are ordered, see [R] ologit.

Description of the model

For an introduction to multinomial logit models, see Greene (2012, 763–766), Hosmer and
Lemeshow (2000, 260–287), Long (1997, chap. 6), Long and Freese (2006, chap. 6 and 7), and
Treiman (2009, 336–341). For a description emphasizing the difference in assumptions and data
requirements for conditional and multinomial logit, see Davidson and MacKinnon (1993).

Consider the outcomes 1, 2, 3, . . . , m recorded in y, and the explanatory variables X . Assume that
there are m = 3 outcomes: “buy an American car”, “buy a Japanese car”, and “buy a European car”.
The values of y are then said to be “unordered”. Even though the outcomes are coded 1, 2, and 3, the
numerical values are arbitrary because 1 < 2 < 3 does not imply that outcome 1 (buy American) is
less than outcome 2 (buy Japanese) is less than outcome 3 (buy European). This unordered categorical
property of y distinguishes the use of mlogit from regress (which is appropriate for a continuous
dependent variable), from ologit (which is appropriate for ordered categorical data), and from logit
(which is appropriate for two outcomes, which can be thought of as ordered).

In the multinomial logit model, you estimate a set of coefficients, β(1), β(2), and β(3), corresponding
to each outcome:

Pr(y = 1) =
eXβ

(1)

eXβ(1) + eXβ(2) + eXβ(3)

Pr(y = 2) =
eXβ

(2)

eXβ(1) + eXβ(2) + eXβ(3)

Pr(y = 3) =
eXβ

(3)

eXβ(1) + eXβ(2) + eXβ(3)

The model, however, is unidentified in the sense that there is more than one solution to β(1), β(2),
and β(3) that leads to the same probabilities for y = 1, y = 2, and y = 3. To identify the model, you
arbitrarily set one of β(1), β(2), or β(3) to 0—it does not matter which. That is, if you arbitrarily
set β(1) = 0, the remaining coefficients β(2) and β(3) will measure the change relative to the y = 1
group. If you instead set β(2) = 0, the remaining coefficients β(1) and β(3) will measure the change
relative to the y = 2 group. The coefficients will differ because they have different interpretations,
but the predicted probabilities for y = 1, 2, and 3 will still be the same. Thus either parameterization
will be a solution to the same underlying model.

Setting β(1) = 0, the equations become

Pr(y = 1) =
1

1 + eXβ(2) + eXβ(3)

Pr(y = 2) =
eXβ

(2)

1 + eXβ(2) + eXβ(3)

Pr(y = 3) =
eXβ

(3)

1 + eXβ(2) + eXβ(3)
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The relative probability of y = 2 to the base outcome is

Pr(y = 2)
Pr(y = 1)

= eXβ
(2)

Let’s call this ratio the relative risk, and let’s further assume that X and β(2)
k are vectors equal to

(x1, x2, . . . , xk) and (β(2)
1 , β

(2)
2 , . . . , β

(2)
k )′, respectively. The ratio of the relative risk for a one-unit

change in xi is then

eβ
(2)
1 x1+···+β(2)

i
(xi+1)+···+β(2)

k
xk

eβ
(2)
1 x1+···+β(2)

i
xi+···+β(2)

k
xk

= eβ
(2)
i

Thus the exponentiated value of a coefficient is the relative-risk ratio for a one-unit change in the
corresponding variable (risk is measured as the risk of the outcome relative to the base outcome).

Fitting unconstrained models

Example 1

We have data on the type of health insurance available to 616 psychologically depressed subjects
in the United States (Tarlov et al. 1989; Wells et al. 1989). The insurance is categorized as either an
indemnity plan (that is, regular fee-for-service insurance, which may have a deductible or coinsurance
rate) or a prepaid plan (a fixed up-front payment allowing subsequent unlimited use as provided,
for instance, by an HMO). The third possibility is that the subject has no insurance whatsoever. We
wish to explore the demographic factors associated with each subject’s insurance choice. One of the
demographic factors in our data is the race of the participant, coded as white or nonwhite:

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. tabulate insure nonwhite, chi2 col

Key

frequency
column percentage

nonwhite
insure 0 1 Total

Indemnity 251 43 294
50.71 35.54 47.73

Prepaid 208 69 277
42.02 57.02 44.97

Uninsure 36 9 45
7.27 7.44 7.31

Total 495 121 616
100.00 100.00 100.00

Pearson chi2(2) = 9.5599 Pr = 0.008
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Although insure appears to take on the values Indemnity, Prepaid, and Uninsure, it actually
takes on the values 1, 2, and 3. The words appear because we have associated a value label with the
numeric variable insure; see [U] 12.6.3 Value labels.

When we fit a multinomial logit model, we can tell mlogit which outcome to use as the base
outcome, or we can let mlogit choose. To fit a model of insure on nonwhite, letting mlogit
choose the base outcome, we type

. mlogit insure nonwhite

Iteration 0: log likelihood = -556.59502
Iteration 1: log likelihood = -551.78935
Iteration 2: log likelihood = -551.78348
Iteration 3: log likelihood = -551.78348

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
nonwhite .6608212 .2157321 3.06 0.002 .2379942 1.083648

_cons -.1879149 .0937644 -2.00 0.045 -.3716896 -.0041401

Uninsure
nonwhite .3779586 .407589 0.93 0.354 -.4209011 1.176818

_cons -1.941934 .1782185 -10.90 0.000 -2.291236 -1.592632

mlogit chose the indemnity outcome as the base outcome and presented coefficients for the
outcomes prepaid and uninsured. According to the model, the probability of prepaid for whites
(nonwhite = 0) is

Pr(insure = Prepaid) =
e−.188

1 + e−.188 + e−1.942
= 0.420

Similarly, for nonwhites, the probability of prepaid is

Pr(insure = Prepaid) =
e−.188+.661

1 + e−.188+.661 + e−1.942+.378
= 0.570

These results agree with the column percentages presented by tabulate because the mlogit model
is fully saturated. That is, there are enough terms in the model to fully explain the column percentage
in each cell. The model chi-squared and the tabulate chi-squared are in almost perfect agreement;
both test that the column percentages of insure are the same for both values of nonwhite.

Example 2

By specifying the baseoutcome() option, we can control which outcome of the dependent variable
is treated as the base. Left to its own, mlogit chose to make outcome 1, indemnity, the base outcome.
To make outcome 2, prepaid, the base, we would type
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. mlogit insure nonwhite, base(2)

Iteration 0: log likelihood = -556.59502
Iteration 1: log likelihood = -551.78935
Iteration 2: log likelihood = -551.78348
Iteration 3: log likelihood = -551.78348

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity
nonwhite -.6608212 .2157321 -3.06 0.002 -1.083648 -.2379942

_cons .1879149 .0937644 2.00 0.045 .0041401 .3716896

Prepaid (base outcome)

Uninsure
nonwhite -.2828627 .3977302 -0.71 0.477 -1.0624 .4966742

_cons -1.754019 .1805145 -9.72 0.000 -2.107821 -1.400217

The baseoutcome() option requires that we specify the numeric value of the outcome, so we could
not type base(Prepaid).

Although the coefficients now appear to be different, the summary statistics reported at the top
are identical. With this parameterization, the probability of prepaid insurance for whites is

Pr(insure = Prepaid) =
1

1 + e.188 + e−1.754
= 0.420

This is the same answer we obtained previously.

Example 3
By specifying rrr, which we can do at estimation time or when we redisplay results, we see the

model in terms of relative-risk ratios:

. mlogit, rrr

Multinomial logistic regression Number of obs = 616
LR chi2(2) = 9.62
Prob > chi2 = 0.0081

Log likelihood = -551.78348 Pseudo R2 = 0.0086

insure RRR Std. Err. z P>|z| [95% Conf. Interval]

Indemnity
nonwhite .516427 .1114099 -3.06 0.002 .3383588 .7882073

_cons 1.206731 .1131483 2.00 0.045 1.004149 1.450183

Prepaid (base outcome)

Uninsure
nonwhite .7536233 .2997387 -0.71 0.477 .3456255 1.643247

_cons .1730769 .0312429 -9.72 0.000 .1215024 .2465434

Looked at this way, the relative risk of choosing an indemnity over a prepaid plan is 0.516 for
nonwhites relative to whites.



mlogit — Multinomial (polytomous) logistic regression 1213

To illustrate, from the output and discussions of examples 1 and 2 we find that

Pr (insure = Indemnity | white) =
1

1 + e−.188 + e−1.942
= 0.507

and thus the relative risk of choosing indemnity over prepaid (for whites) is

Pr (insure = Indemnity | white)
Pr (insure = Prepaid | white)

=
0.507
0.420

= 1.207

For nonwhites,

Pr (insure = Indemnity | not white) =
1

1 + e−.188+.661 + e−1.942+.378
= 0.355

and thus the relative risk of choosing indemnity over prepaid (for nonwhites) is

Pr (insure = Indemnity | not white)
Pr (insure = Prepaid | not white)

=
0.355
0.570

= 0.623

The ratio of these two relative risks, hence the name “relative-risk ratio”, is 0.623/1.207 = 0.516, as
given in the output under the heading “RRR”.

Technical note
In models where only two categories are considered, the mlogit model reduces to standard logit.

Consequently the exponentiated regression coefficients, labeled as RRR within mlogit, are equal to
the odds ratios as given when the or option is specified under logit; see [R] logit.

As such, always referring to mlogit’s exponentiated coefficients as odds ratios may be tempting.
However, the discussion in example 3 demonstrates that doing so would be incorrect. In general
mlogit models, the exponentiated coefficients are ratios of relative risks, not ratios of odds.

Example 4

One of the advantages of mlogit over tabulate is that we can include continuous variables and
multiple categorical variables in the model. In examining the data on insurance choice, we decide
that we want to control for age, gender, and site of study (the study was conducted in three sites):
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. mlogit insure age male nonwhite i.site

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -534.67443
Iteration 2: log likelihood = -534.36284
Iteration 3: log likelihood = -534.36165
Iteration 4: log likelihood = -534.36165

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

These results suggest that the inclination of nonwhites to choose prepaid care is even stronger than
it was without controlling. We also see that subjects in site 2 are less likely to be uninsured.

Fitting constrained models

mlogit can fit models with subsets of coefficients constrained to be zero, with subsets of coefficients
constrained to be equal both within and across equations, and with subsets of coefficients arbitrarily
constrained to equal linear combinations of other estimated coefficients.

Before fitting a constrained model, you define the constraints with the constraint command;
see [R] constraint. Once the constraints are defined, you estimate using mlogit, specifying the
constraint() option. Typing constraint(4) would use the constraint you previously saved as
4. Typing constraint(1,4,6) would use the previously stored constraints 1, 4, and 6. Typing
constraint(1-4,6) would use the previously stored constraints 1, 2, 3, 4, and 6.

Sometimes you will not be able to specify the constraints without knowing the omitted outcome.
In such cases, assume that the omitted outcome is whatever outcome is convenient for you, and
include the baseoutcome() option when you specify the mlogit command.
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Example 5

We can use constraints to test hypotheses, among other things. In our insurance-choice model,
let’s test the hypothesis that there is no distinction between having indemnity insurance and being
uninsured. Indemnity-style insurance was the omitted outcome, so we type

. test [Uninsure]

( 1) [Uninsure]age = 0
( 2) [Uninsure]male = 0
( 3) [Uninsure]nonwhite = 0
( 4) [Uninsure]1b.site = 0
( 5) [Uninsure]2.site = 0
( 6) [Uninsure]3.site = 0

Constraint 4 dropped

chi2( 5) = 9.31
Prob > chi2 = 0.0973

If indemnity had not been the omitted outcome, we would have typed test [Uninsure=Indemnity].

The results produced by test are an approximation based on the estimated covariance matrix of
the coefficients. Because the probability of being uninsured is low, the log likelihood may be nonlinear
for the uninsured. Conventional statistical wisdom is not to trust the asymptotic answer under these
circumstances but to perform a likelihood-ratio test instead.

To use Stata’s lrtest (likelihood-ratio test) command, we must fit both the unconstrained and
constrained models. The unconstrained model is the one we have previously fit. Following the
instruction in [R] lrtest, we first save the unconstrained model results:

. estimates store unconstrained

To fit the constrained model, we must refit our model with all the coefficients except the constant set
to 0 in the Uninsure equation. We define the constraint and then refit:
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. constraint 1 [Uninsure]

. mlogit insure age male nonwhite i.site, constraints(1)

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -539.80523
Iteration 2: log likelihood = -539.75644
Iteration 3: log likelihood = -539.75643

Multinomial logistic regression Number of obs = 615
Wald chi2(5) = 29.70

Log likelihood = -539.75643 Prob > chi2 = 0.0000

( 1) [Uninsure]o.age = 0
( 2) [Uninsure]o.male = 0
( 3) [Uninsure]o.nonwhite = 0
( 4) [Uninsure]2o.site = 0
( 5) [Uninsure]3o.site = 0

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0107025 .0060039 -1.78 0.075 -.0224699 .0010649

male .4963616 .1939683 2.56 0.010 .1161907 .8765324
nonwhite .9421369 .2252094 4.18 0.000 .5007346 1.383539

site
2 .2530912 .2029465 1.25 0.212 -.1446767 .6508591
3 -.5521773 .2187237 -2.52 0.012 -.9808678 -.1234869

_cons .1792752 .3171372 0.57 0.572 -.4423023 .8008527

Uninsure
age 0 (omitted)

male 0 (omitted)
nonwhite 0 (omitted)

site
2 0 (omitted)
3 0 (omitted)

_cons -1.87351 .1601099 -11.70 0.000 -2.18732 -1.5597

We can now perform the likelihood-ratio test:

. lrtest unconstrained .

Likelihood-ratio test LR chi2(5) = 10.79
(Assumption: . nested in unconstrained) Prob > chi2 = 0.0557

The likelihood-ratio chi-squared is 10.79 with 5 degrees of freedom—just slightly greater than the
magic p = 0.05 level—so we should not call this difference significant.

Technical note
In certain circumstances, you should fit a multinomial logit model with conditional logit; see

[R] clogit. With substantial data manipulation, clogit can handle the same class of models with
some interesting additions. For example, if we had available the price and deductible of the most
competitive insurance plan of each type, mlogit could not use this information, but clogit could.
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Saved results
mlogit saves the following in e():

Scalars
e(N) number of observations
e(k out) number of outcomes
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(k eq base) equation number of the base outcome
e(baseout) the value of depvar to be treated as the base outcome
e(ibaseout) index of the base outcome
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(eqnames) names of equations
e(baselab) value label corresponding to base outcome
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(out) outcome values
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
mlogit is implemented as an ado-file.

The multinomial logit model is described in Greene (2012, 763–766).

Suppose that there are k categorical outcomes and—without loss of generality—let the base
outcome be 1. The probability that the response for the jth observation is equal to the ith outcome is

pij = Pr(yj = i) =



1

1 +
k∑

m=2
exp(xjβm)

, if i = 1

exp(xjβi)

1 +
k∑

m=2
exp(xjβm)

, if i > 1

where xj is the row vector of observed values of the independent variables for the jth observation
and βm is the coefficient vector for outcome m. The log pseudolikelihood is

lnL =
∑
j

wj

k∑
i=1

Ii(yj) lnpik

where wj is an optional weight and

Ii(yj) =

{
1, if yj = i

0, otherwise

Newton–Raphson maximum likelihood is used; see [R] maximize.

For constrained equations, the set of constraints is orthogonalized, and a subset of maximizable
parameters is selected. For example, a parameter that is constrained to zero is not a maximizable
parameter. If two parameters are constrained to be equal to each other, only one is a maximizable
parameter.

Let r be the vector of maximizable parameters. r is physically a subset of the solution parameters,
b. A matrix, T, and a vector, m, are defined as

b = Tr + m
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so that
∂f

∂b
=
∂f

∂r
T′

∂2f

∂b2
= T

∂2f

∂r2
T′

T consists of a block form in which one part is a permutation of the identity matrix and the other
part describes how to calculate the constrained parameters from the maximizable parameters.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

mlogit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] mlogit postestimation — Postestimation tools for mlogit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] mprobit — Multinomial probit regression

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[R] rologit — Rank-ordered logistic regression

[R] slogit — Stereotype logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

mlogit postestimation — Postestimation tools for mlogit

Description
The following postestimation commands are available after mlogit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

] {
stub* | newvar | newvarlist

} [
if
] [

in
] [

, statistic outcome(outcome)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction
stddp standard error of the difference in two linear predictions

1221



1222 mlogit postestimation — Postestimation tools for mlogit

If you do not specify outcome(), pr (with one new variable specified), xb, and stdp assume outcome(#1). You
must specify outcome() with the stddp option.

You specify one or k new variables with pr, where k is the number of outcomes.
You specify one new variable with xb, stdp, and stddp.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of each of the categories of the dependent variable or the
probability of the level specified in outcome(outcome). If you specify the outcome(outcome)
option, you need to specify only one new variable; otherwise, you must specify a new variable
for each category of the dependent variable.

xb calculates the linear prediction. You must also specify the outcome(outcome) option.

stdp calculates the standard error of the linear prediction. You must also specify the out-
come(outcome) option.

stddp calculates the standard error of the difference in two linear predictions. You must specify the
outcome(outcome) option, and here you specify the two particular outcomes of interest inside
the parentheses, for example, predict sed, stddp outcome(1,3).

outcome(outcome) specifies the outcome for which the statistic is to be calculated. equation() is
a synonym for outcome(): it does not matter which you use. outcome() or equation() can
be specified using

#1, #2, . . . , where #1 means the first category of the dependent variable, #2 means the
second category, etc.;

the values of the dependent variable; or

the value labels of the dependent variable if they exist.

scores calculates equation-level score variables. The number of score variables created will be one
less than the number of outcomes in the model. If the number of outcomes in the model were k,
then

the first new variable will contain ∂lnL/∂(xjβ1);

the second new variable will contain ∂lnL/∂(xjβ2);

. . .

the (k − 1)th new variable will contain ∂lnL/∂(xjβk−1).

Remarks
Remarks are presented under the following headings:

Obtaining predicted values
Calculating marginal effects
Testing hypotheses about coefficients
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Obtaining predicted values

Example 1

After estimation, we can use predict to obtain predicted probabilities, index values, and standard
errors of the index, or differences in the index. For instance, in example 4 of [R] mlogit, we fit a
model of insurance choice on various characteristics. We can obtain the predicted probabilities for
outcome 1 by typing

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mlogit insure age i.male i.nonwhite i.site
(output omitted )

. predict p1 if e(sample), outcome(1)
(option pr assumed; predicted probability)
(29 missing values generated)

. summarize p1

Variable Obs Mean Std. Dev. Min Max

p1 615 .4764228 .1032279 .1698142 .71939

We added the i. prefix to the male, nonwhite, and site variables to explicitly identify them as
factor variables. That makes no difference in the estimated results, but we will take advantage of it in
later examples. We also included if e(sample) to restrict the calculation to the estimation sample.
In example 4 of [R] mlogit, the multinomial logit model was fit on 615 observations, so there must
be missing values in our dataset.

Although we typed outcome(1), specifying 1 for the indemnity outcome, we could have typed
outcome(Indemnity). For instance, to obtain the probabilities for prepaid, we could type

. predict p2 if e(sample), outcome(prepaid)
(option pr assumed; predicted probability)
outcome prepaid not found
r(303);

. predict p2 if e(sample), outcome(Prepaid)
(option pr assumed; predicted probability)
(29 missing values generated)

. summarize p2

Variable Obs Mean Std. Dev. Min Max

p2 615 .4504065 .1125962 .1964103 .7885724

We must specify the label exactly as it appears in the underlying value label (or how it appears in
the mlogit output), including capitalization.

Here we have used predict to obtain probabilities for the same sample on which we estimated.
That is not necessary. We could use another dataset that had the independent variables defined (in
our example, age, male, nonwhite, and site) and use predict to obtain predicted probabilities;
here, we would not specify if e(sample).
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Example 2

predict can also be used to obtain the index values—the
∑
xiβ̂

(k)
i —as well as the probabilities:

. predict idx1, outcome(Indemnity) xb
(1 missing value generated)

. summarize idx1

Variable Obs Mean Std. Dev. Min Max

idx1 643 0 0 0 0

The indemnity outcome was our base outcome—the outcome for which all the coefficients were set
to 0—so the index is always 0. For the prepaid and uninsured outcomes, we type

. predict idx2, outcome(Prepaid) xb
(1 missing value generated)

. predict idx3, outcome(Uninsure) xb
(1 missing value generated)

. summarize idx2 idx3
Variable Obs Mean Std. Dev. Min Max

idx2 643 -.0566113 .4962973 -1.298198 1.700719
idx3 643 -1.980747 .6018139 -3.112741 -.8258458

We can obtain the standard error of the index by specifying the stdp option:

. predict se2, outcome(Prepaid) stdp
(1 missing value generated)

. list p2 idx2 se2 in 1/5

p2 idx2 se2

1. .3709022 -.4831167 .2437772
2. .4977667 .055111 .1694686
3. .4113073 -.1712106 .1793498
4. .5424927 .3788345 .2513701
5. . -.0925817 .1452616

We obtained the probability, p2, in the previous example.

Finally, predict can calculate the standard error of the difference in the index values between
two outcomes with the stddp option:

. predict se_2_3, outcome(Prepaid,Uninsure) stddp
(1 missing value generated)

. list idx2 idx3 se_2_3 in 1/5

idx2 idx3 se_2_3

1. -.4831167 -3.073253 .5469354
2. .055111 -2.715986 .4331918
3. -.1712106 -1.579621 .3053815
4. .3788345 -1.462007 .4492552
5. -.0925817 -2.814022 .4024784
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In the first observation, the difference in the indexes is −0.483 − (−3.073) = 2.59. The standard
error of that difference is 0.547.

Example 3

It is more difficult to interpret the results from mlogit than those from clogit or logit because
there are multiple equations. For example, suppose that one of the independent variables in our model
takes on the values 0 and 1, and we are attempting to understand the effect of this variable. Assume
that the coefficient on this variable for the second outcome, β(2), is positive. We might then be
tempted to reason that the probability of the second outcome is higher if the variable is 1 rather than
0. Most of the time, that will be true, but occasionally we will be surprised. The probability of some
other outcome could increase even more (say, β(3) > β(2)), and thus the probability of outcome 2
would actually fall relative to that outcome. We can use predict to help interpret such results.

Continuing with our previously fit insurance-choice model, we wish to describe the model’s
predictions by race. For this purpose, we can use the method of predictive margins (also known
as recycled predictions), in which we vary characteristics of interest across the whole dataset and
average the predictions. That is, we have data on both whites and nonwhites, and our individuals
have other characteristics as well. We will first pretend that all the people in our data are white but
hold their other characteristics constant. We then calculate the probabilities of each outcome. Next
we will pretend that all the people in our data are nonwhite, still holding their other characteristics
constant. Again we calculate the probabilities of each outcome. The difference in those two sets of
calculated probabilities, then, is the difference due to race, holding other characteristics constant.

. gen byte nonwhold = nonwhite // save real race

. replace nonwhite = 0 // make everyone white
(126 real changes made)

. predict wpind, outcome(Indemnity) // predict probabilities
(option pr assumed; predicted probability)
(1 missing value generated)

. predict wpp, outcome(Prepaid)
(option pr assumed; predicted probability)
(1 missing value generated)

. predict wpnoi, outcome(Uninsure)
(option pr assumed; predicted probability)
(1 missing value generated)

. replace nonwhite=1 // make everyone nonwhite
(644 real changes made)

. predict nwpind, outcome(Indemnity)
(option pr assumed; predicted probability)
(1 missing value generated)

. predict nwpp, outcome(Prepaid)
(option pr assumed; predicted probability)
(1 missing value generated)

. predict nwpnoi, outcome(Uninsure)
(option pr assumed; predicted probability)
(1 missing value generated)

. replace nonwhite=nonwhold // restore real race
(518 real changes made)
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. summarize wp* nwp*, sep(3)

Variable Obs Mean Std. Dev. Min Max

wpind 643 .5141673 .0872679 .3092903 .71939
wpp 643 .4082052 .0993286 .1964103 .6502247

wpnoi 643 .0776275 .0360283 .0273596 .1302816

nwpind 643 .3112809 .0817693 .1511329 .535021
nwpp 643 .630078 .0979976 .3871782 .8278881

nwpnoi 643 .0586411 .0287185 .0209648 .0933874

In example 1 of [R] mlogit, we presented a cross-tabulation of insurance type and race. Those
values were unadjusted. The means reported above are the values adjusted for age, sex, and site.
Combining the results gives

Unadjusted Adjusted
white nonwhite white nonwhite

Indemnity 0.51 0.36 0.51 0.31
Prepaid 0.42 0.57 0.41 0.63
Uninsured 0.07 0.07 0.08 0.06

We find, for instance, after adjusting for age, sex, and site, that although 57% of nonwhites in our
data had prepaid plans, 63% of nonwhites chose prepaid plans.

Computing predictive margins by hand was instructive, but we can compute these values more
easily using the margins command (see [R] margins). The two margins for the indemnity outcome
can be estimated by typing

. margins nonwhite, predict(outcome(Indemnity)) noesample

Predictive margins Number of obs = 643
Model VCE : OIM

Expression : Pr(insure==Indemnity), predict(outcome(Indemnity))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

nonwhite
0 .5141673 .0223485 23.01 0.000 .470365 .5579695
1 .3112809 .0418049 7.45 0.000 .2293448 .393217

margins also estimates the standard errors and confidence intervals of the margins. By default,
margins uses only the estimation sample. We added the noesample option so that margins would
use the entire sample and produce results comparable to our earlier analysis.
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We can use marginsplot to graph the results from margins:

. marginsplot

Variables that uniquely identify margins: nonwhite

.2
.3

.4
.5

.6
P

r(
In

s
u

re
=

=
In

d
e

m
n

it
y
)

0 1
nonwhite

Predictive Margins of nonwhite with 95% CIs

The margins for the other two outcomes can be computed by typing

. margins nonwhite, predict(outcome(Prepaid)) noesample
(output omitted )

. margins nonwhite, predict(outcome(Uninsure)) noesample
(output omitted )

Technical note
You can use predict to classify predicted values and compare them with the observed outcomes

to interpret a multinomial logit model. This is a variation on the notions of sensitivity and specificity
for logistic regression. Here we will classify indemnity and prepaid as definitely predicting indemnity,
definitely predicting prepaid, and ambiguous.

. predict indem, outcome(Indemnity) index // obtain indexes
(1 missing value generated)

. predict prepaid, outcome(Prepaid) index
(1 missing value generated)

. gen diff = prepaid-indem // obtain difference
(1 missing value generated)

. predict sediff, outcome(Indemnity,Prepaid) stddp // & its standard error
(1 missing value generated)

. gen type = 1 if diff/sediff < -1.96 // definitely indemnity
(504 missing values generated)

. replace type = 3 if diff/sediff > 1.96 // definitely prepaid
(100 real changes made)

. replace type = 2 if type>=. & diff/sediff < . // ambiguous
(404 real changes made)

. label def type 1 "Def Ind" 2 "Ambiguous" 3 "Def Prep"

. label values type type // label results
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. tabulate insure type

type
insure Def Ind Ambiguous Def Prep Total

Indemnity 78 183 33 294
Prepaid 44 177 56 277

Uninsure 12 28 5 45

Total 134 388 94 616

We can see that the predictive power of this model is modest. There are many misclassifications in
both directions, though there are more correctly classified observations than misclassified observations.

Also the uninsured look overwhelmingly as though they might have come from the indemnity
system rather than from the prepaid system.

Calculating marginal effects

Example 4

We have already noted that the coefficients from multinomial logit can be difficult to interpret
because they are relative to the base outcome. Another way to evaluate the effect of covariates is to
examine the marginal effect of changing their values on the probability of observing an outcome.

The margins command can be used for this too. We can estimate the marginal effect of each
covariate on the probability of observing the first outcome—indemnity insurance—by typing

. margins, dydx(*) predict(outcome(Indemnity))

Average marginal effects Number of obs = 615
Model VCE : OIM

Expression : Pr(insure==Indemnity), predict(outcome(Indemnity))
dy/dx w.r.t. : age 1.male 1.nonwhite 2.site 3.site

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0026655 .001399 1.91 0.057 -.0000765 .0054074
1.male -.1295734 .0450945 -2.87 0.004 -.2179571 -.0411898

1.nonwhite -.2032404 .0482554 -4.21 0.000 -.2978192 -.1086616

site
2 .0070995 .0479993 0.15 0.882 -.0869775 .1011765
3 .1216165 .0505833 2.40 0.016 .022475 .220758

Note: dy/dx for factor levels is the discrete change from the base level.

By default, margins estimates the average marginal effect over the estimation sample, and that is
what we see above. Being male decreases the average probability of having indemnity insurance by
0.130. We also see, from the note at the bottom of the table, that the marginal effect was computed
as a discrete change in the probability of being male rather than female. That is why we made male
a factor variable when fitting the model.

The dydx(*) option requested that margins estimate the marginal effect for each regressor,
dydx(age) would have produced estimates only for the effect of age. margins has many options
for controlling how the marginal effect is computed, including the ability to average over subgroups
or to compute estimates for specified values of the regressors; see [R] margins.
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We could evaluate the marginal effects on the other two outcomes by typing

. margins, dydx(*) predict(outcome(Prepaid))
(output omitted )

. margins, dydx(*) predict(outcome(Uninsure))
(output omitted )

Testing hypotheses about coefficients

Example 5

test tests hypotheses about the coefficients just as after any estimation command; see [R] test.
Note, however, test’s syntax for dealing with multiple-equation models. Because test bases its
results on the estimated covariance matrix, we might prefer a likelihood-ratio test; see example 5 in
[R] mlogit for an example of lrtest.

If we simply list variables after the test command, we are testing that the corresponding coefficients
are zero across all equations:

. test 2.site 3.site

( 1) [Indemnity]2.site = 0
( 2) [Prepaid]2.site = 0
( 3) [Uninsure]2.site = 0
( 4) [Indemnity]3.site = 0
( 5) [Prepaid]3.site = 0
( 6) [Uninsure]3.site = 0

Constraint 1 dropped
Constraint 4 dropped

chi2( 4) = 19.74
Prob > chi2 = 0.0006

We can test that all the coefficients (except the constant) in an equation are zero by simply typing
the outcome in square brackets:

. test [Uninsure]

( 1) [Uninsure]age = 0
( 2) [Uninsure]0b.male = 0
( 3) [Uninsure]1.male = 0
( 4) [Uninsure]0b.nonwhite = 0
( 5) [Uninsure]1.nonwhite = 0
( 6) [Uninsure]1b.site = 0
( 7) [Uninsure]2.site = 0
( 8) [Uninsure]3.site = 0

Constraint 2 dropped
Constraint 4 dropped
Constraint 6 dropped

chi2( 5) = 9.31
Prob > chi2 = 0.0973

We specify the outcome just as we do with predict; we can specify the label if the outcome variable
is labeled, or we can specify the numeric value of the outcome. We would have obtained the same
test as above if we had typed test [3] because 3 is the value of insure for the outcome uninsured.

We can combine the two syntaxes. To test that the coefficients on the site variables are 0 in the
equation corresponding to the outcome prepaid, we can type
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. test [Prepaid]: 2.site 3.site

( 1) [Prepaid]2.site = 0
( 2) [Prepaid]3.site = 0

chi2( 2) = 10.78
Prob > chi2 = 0.0046

We specified the outcome and then followed that with a colon and the variables we wanted to test.

We can also test that coefficients are equal across equations. To test that all coefficients except the
constant are equal for the prepaid and uninsured outcomes, we can type

. test [Prepaid=Uninsure]

( 1) [Prepaid]age - [Uninsure]age = 0
( 2) [Prepaid]0b.male - [Uninsure]0b.male = 0
( 3) [Prepaid]1.male - [Uninsure]1.male = 0
( 4) [Prepaid]0b.nonwhite - [Uninsure]0b.nonwhite = 0
( 5) [Prepaid]1.nonwhite - [Uninsure]1.nonwhite = 0
( 6) [Prepaid]1b.site - [Uninsure]1b.site = 0
( 7) [Prepaid]2.site - [Uninsure]2.site = 0
( 8) [Prepaid]3.site - [Uninsure]3.site = 0

Constraint 2 dropped
Constraint 4 dropped
Constraint 6 dropped

chi2( 5) = 13.80
Prob > chi2 = 0.0169

To test that only the site variables are equal, we can type

. test [Prepaid=Uninsure]: 2.site 3.site

( 1) [Prepaid]2.site - [Uninsure]2.site = 0
( 2) [Prepaid]3.site - [Uninsure]3.site = 0

chi2( 2) = 12.68
Prob > chi2 = 0.0018

Finally, we can test any arbitrary constraint by simply entering the equation and specifying the
coefficients as described in [U] 13.5 Accessing coefficients and standard errors. The following
hypothesis is senseless but illustrates the point:

. test ([Prepaid]age+[Uninsure]2.site)/2 = 2-[Uninsure]1.nonwhite

( 1) .5*[Prepaid]age + [Uninsure]1.nonwhite + .5*[Uninsure]2.site = 2

chi2( 1) = 22.45
Prob > chi2 = 0.0000

See [R] test for more information about test. The information there about combining hypotheses
across test commands (the accumulate option) also applies after mlogit.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] mlogit — Multinomial (polytomous) logistic regression

[U] 20 Estimation and postestimation commands



Title

more — The —more— message

Syntax

Tell Stata to pause or not pause for —more— messages

set more
{
on | off

} [
, permanently

]
Set number of lines between —more— messages

set pagesize #

Description
set more on, which is the default, tells Stata to wait until you press a key before continuing

when a more message is displayed.

set more off tells Stata not to pause or display the more message.

set pagesize # sets the number of lines between more messages. The permanently option
is not allowed with set pagesize.

Option
permanently specifies that, in addition to making the change right now, the more setting be

remembered and become the default setting when you invoke Stata.

Remarks
When you see more at the bottom of the screen,

Press . . . and Stata . . .
letter l or Enter displays the next line
letter q acts as if you pressed Break
Spacebar or any other key displays the next screen

You can also click on the More button or click on more to display the next screen.

more is Stata’s way of telling you that it has something more to show you but that showing
it to you will cause the information on the screen to scroll off.

If you type set more off, more conditions will never arise, and Stata’s output will scroll by
at full speed.

If you type set more on, more conditions will be restored at the appropriate places.

Programmers should see [P] more for information on the more programming command.

1232
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Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[P] more — Pause until key is pressed

[U] 7 –more– conditions



Title

mprobit — Multinomial probit regression

Syntax
mprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant terms
baseoutcome(# | lbl) outcome used to normalize location
probitparam use the probit variance parameterization
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Integration

intpoints(#) number of quadrature points

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, mi estimate, rolling, statsby, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Categorical outcomes > Independent multinomial probit

1234
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Description
mprobit fits multinomial probit (MNP) models via maximum likelihood. depvar contains the

outcome for each observation, and indepvars are the associated covariates. The error terms are
assumed to be independent, standard normal, random variables. See [R] asmprobit for the case where
the latent-variable errors are correlated or heteroskedastic and you have alternative-specific variables.

Options

� � �
Model �

noconstant suppresses the J − 1 constant terms.

baseoutcome(# | lbl) specifies the outcome used to normalize the location of the latent variable. The
base outcome may be specified as a number or a label. The default is to use the most frequent
outcome. The coefficients associated with the base outcome are zero.

probitparam specifies to use the probit variance parameterization by fixing the variance of the
differenced latent errors between the scale and the base alternatives to be one. The default is to
make the variance of the base and scale latent errors one, thereby making the variance of the
difference to be two.

constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Integration �

intpoints(#) specifies the number of Gaussian quadrature points to use in approximating the
likelihood. The default is 15.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with mprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
The MNP model is used with discrete dependent variables that take on more than two outcomes

that do not have a natural ordering. The stochastic error terms for this implementation of the model
are assumed to have independent, standard normal distributions. To use mprobit, you must have one
observation for each decision maker in the sample. See [R] asmprobit for another implementation of
the MNP model that permits correlated and heteroskedastic errors and is suitable when you have data
for each alternative that a decision maker faced.

The MNP model is frequently motivated using a latent-variable framework. The latent variable for
the jth alternative, j = 1, . . . , J , is

ηij = ziαj + ξij

where the 1× q row vector zi contains the observed independent variables for the ith decision maker.
Associated with zi are the J vectors of regression coefficients αj . The ξi,1, . . . , ξi,J are distributed
independently and identically standard normal. The decision maker chooses the alternative k such
that ηik ≥ ηim for m 6= k.

Suppose that case i chooses alternative k, and take the difference between latent variable ηik and
the J − 1 others:

vijk = ηij − ηik
= zi(αj − αk) + ξij − ξik
= ziγj′ + εij′

(1)

where j′ = j if j < k and j′ = j−1 if j > k so that j′ = 1, . . . , J−1. Var(εij′) = Var(ξij−ξik) = 2
and Cov(εij′ , εil′) = 1 for j′ 6= l′. The probability that alternative k is chosen is

Pr(i chooses k) = Pr(vi1k ≤ 0, . . . , vi,J−1,k ≤ 0)

= Pr(εi1 ≤ −ziγ1, . . . , εi,J−1 ≤ −ziγJ−1)

Hence, evaluating the likelihood function involves computing probabilities from the multivariate
normal distribution. That all the covariances are equal simplifies the problem somewhat; see Methods
and formulas for details.

In (1), not all J of the αj are identifiable. To remove the indeterminacy, αl is set to the zero vector,
where l is the base outcome as specified in the baseoutcome() option. That fixes the lth latent
variable to zero so that the remaining variables measure the attractiveness of the other alternatives
relative to the base.

Example 1

As discussed in example 1 of [R] mlogit, we have data on the type of health insurance available
to 616 psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989).
Patients may have either an indemnity (fee-for-service) plan or a prepaid plan such as an HMO, or
the patient may be uninsured. Demographic variables include age, gender, race, and site. Indemnity
insurance is the most popular alternative, so mprobit will choose it as the base outcome by default.



mprobit — Multinomial probit regression 1237

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mprobit insure age male nonwhite i.site

Iteration 0: log likelihood = -535.89424
Iteration 1: log likelihood = -534.56173
Iteration 2: log likelihood = -534.52835
Iteration 3: log likelihood = -534.52833

Multinomial probit regression Number of obs = 615
Wald chi2(10) = 40.18

Log likelihood = -534.52833 Prob > chi2 = 0.0000

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0098536 .0052688 -1.87 0.061 -.0201802 .000473

male .4774678 .1718316 2.78 0.005 .1406841 .8142515
nonwhite .8245003 .1977582 4.17 0.000 .4369013 1.212099

site
2 .0973956 .1794546 0.54 0.587 -.2543289 .4491201
3 -.495892 .1904984 -2.60 0.009 -.869262 -.1225221

_cons .22315 .2792424 0.80 0.424 -.324155 .7704549

Uninsure
age -.0050814 .0075327 -0.67 0.500 -.0198452 .0096823

male .3332637 .2432986 1.37 0.171 -.1435929 .8101203
nonwhite .2485859 .2767734 0.90 0.369 -.29388 .7910518

site
2 -.6899485 .2804497 -2.46 0.014 -1.23962 -.1402771
3 -.1788447 .2479898 -0.72 0.471 -.6648957 .3072063

_cons -.9855917 .3891873 -2.53 0.011 -1.748385 -.2227986

The likelihood function for mprobit is derived under the assumption that all decision-making
units face the same choice set, which is the union of all outcomes observed in the dataset. If that
is not true for your model, then an alternative is to use the asmprobit command, which does not
require this assumption. To do that, you will need to expand the dataset so that each decision maker
has ki observations, where ki is the number of alternatives in the choice set faced by decision maker
i. You will also need to create a binary variable to indicate the choice made by each decision maker.
Moreover, you will need to use the correlation(independent) and stddev(homoskedastic)
options with asmprobit unless you have alternative-specific variables.



1238 mprobit — Multinomial probit regression

Saved results
mprobit saves the following in e():

Scalars
e(N) number of observations
e(k out) number of outcomes
e(k points) number of quadrature points
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k indvars) number of independent variables
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log simulated-likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(i base) base outcome index
e(const) 0 if noconstant is specified, 1 otherwise
e(probitparam) 1 if probitparam is specified, 0 otherwise
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) mprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) independent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(outeqs) outcome equations
e(out#) outcome labels, #=1,...,e(k out)
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(outcomes) outcome values
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
mprobit is implemented as an ado-file.

See Cameron and Trivedi (2005, chap. 15) for a discussion of multinomial models, including
multinomial probit. Long and Freese (2006, chap. 6) discuss the multinomial logistic, multinomial
probit, and stereotype logistic regression models, with examples using Stata.

As discussed in Remarks, the latent variables for a J -alternative model are ηij = ziαj + ξij ,
for j = 1, . . . , J , i = 1, . . . , n, and {ξi,1, . . . , ξi,J} ∼ i.i.d.N(0, 1). The experimenter observes
alternative k for the ith observation if ηik > ηil for l 6= k. For j 6= k, let

vij′ = ηij − ηik
= zi(αj − αk) + ξij − ξik
= ziγj′ + εij′

where j′ = j if j < k and j′ = j − 1 if j > k so that j′ = 1, . . . , J − 1. εi = (εi1, . . . , εi,J−1) ∼
MVN(0,Σ), where

Σ =


2 1 1 . . . 1
1 2 1 . . . 1
1 1 2 . . . 1
...

...
...

. . .
...

1 1 1 . . . 2


Denote the deterministic part of the model as λij′ = ziγj′ ; the probability that subject i chooses
outcome k is

Pr(yi = k) = Pr(vi1 ≤ 0, . . . , vi,J−1 ≤ 0)

= Pr(εi1 ≤ −λi1, . . . , εi,J−1 ≤ −λi,J−1)

=
1

(2π)(J−1)/2 |Σ|1/2

∫ −λi1
−∞

· · ·
∫ −λi,J−1

−∞
exp

(
− 1

2z′Σ−1z
)
dz

Because of the exchangeable correlation structure of Σ (ρij = 1/2 for all i 6= j), we can use
Dunnett’s (1989) result to reduce the multidimensional integral to one dimension:

Pr(yi = k) =
1√
π

∫ ∞
0


J−1∏
j=1

Φ
(
−z
√

2− λij
)

+
J−1∏
j=1

Φ
(
z
√

2− λij
) e−z

2
dz
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Gaussian quadrature is used to approximate this integral, resulting in the K-point quadrature formula

Pr(yi = k) ≈ 1
2

K∑
k=1

wk


J−1∏
j=1

Φ
(
−
√

2xk − λij
)

+
J−1∏
j=1

Φ
(√

2xk − λij
)

where wk and xk are the weights and roots of the Laguerre polynomial of order K. In mprobit, K
is specified by the intpoints() option.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

mprobit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Wells, K. B., R. D. Hays, M. A. Burnam, W. H. Rogers, S. Greenfield, and J. E. Ware, Jr. 1989. Detection of
depressive disorder for patients receiving prepaid or fee-for-service care. Results from the Medical Outcomes Survey.
Journal of the American Medical Association 262: 3298–3302.

Also see
[R] mprobit postestimation — Postestimation tools for mprobit

[R] asmprobit — Alternative-specific multinomial probit regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] clogit — Conditional (fixed-effects) logistic regression

[R] nlogit — Nested logit regression

[R] ologit — Ordered logistic regression

[R] oprobit — Ordered probit regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/mma.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0104
http://www.stata-journal.com/sjpdf.html?articlenum=st0104
http://www.stata-journal.com/sjpdf.html?articlenum=st0133
http://www.stata-press.com/books/regmodcdvs.html


Title

mprobit postestimation — Postestimation tools for mprobit

Description
The following postestimation commands are available after mprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predicted probabilities, linear predictions, and standard errors
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

] {
stub* | newvar | newvarlist

} [
if
] [

in
] [

, statistic outcome(outcome)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction

If you do not specify outcome(), pr (with one new variable specified), xb, and stdp assume outcome(#1).
You specify one or k new variables with pr, where k is the number of outcomes.
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You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of each of the categories of the dependent variable or the
probability of the level specified in outcome(outcome). If you specify the outcome(outcome)
option, you need to specify only one new variable; otherwise, you must specify a new variable
for each category of the dependent variable.

xb calculates the linear prediction, xiαj , for alternative j and individual i. The index, j, corresponds
to the outcome specified in outcome().

stdp calculates the standard error of the linear prediction.

outcome(outcome) specifies the outcome for which the statistic is to be calculated. equation() is
a synonym for outcome(): it does not matter which you use. outcome() or equation() can
be specified using

#1, #2, . . . , where #1 means the first category of the dependent variable, #2 means the
second category, etc.;

the values of the dependent variable; or

the value labels of the dependent variable if they exist.

scores calculates the equation-level score variables. The jth new variable will contain the scores for
the jth fitted equation.

Remarks
Once you have fit a multinomial probit model, you can use predict to obtain probabilities that

an individual will choose each of the alternatives for the estimation sample, as well as other samples;
see [U] 20 Estimation and postestimation commands and [R] predict.

Example 1

In example 1 of [R] mprobit, we fit the multinomial probit model to a dataset containing the type
of health insurance available to 616 psychologically depressed subjects in the United States (Tarlov
et al. 1989; Wells et al. 1989). We can obtain the predicted probabilities by typing

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. mprobit insure age male nonwhite i.site
(output omitted )

. predict p1-p3
(option pr assumed; predicted probabilities)
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. list p1-p3 insure in 1/10

p1 p2 p3 insure

1. .5961306 .3741824 .029687 Indemnity
2. .4719296 .4972289 .0308415 Prepaid
3. .4896086 .4121961 .0981953 Indemnity
4. .3730529 .5416623 .0852848 Prepaid
5. .5063069 .4629773 .0307158 .

6. .4768125 .4923548 .0308327 Prepaid
7. .5035672 .4657016 .0307312 Prepaid
8. .3326361 .5580404 .1093235 .
9. .4758165 .4384811 .0857024 Uninsure

10. .5734057 .3316601 .0949342 Prepaid

insure contains a missing value for observations 5 and 8. Because of that, those two observations
were not used in the estimation. However, because none of the independent variables is missing,
predict can still calculate the probabilities. Had we typed

. predict p1-p3 if e(sample)

predict would have filled in missing values for p1, p2, and p3 for those observations because they
were not used in the estimation.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

References
Tarlov, A. R., J. E. Ware, Jr., S. Greenfield, E. C. Nelson, E. Perrin, and M. Zubkoff. 1989. The medical outcomes

study. An application of methods for monitoring the results of medical care. Journal of the American Medical
Association 262: 925–930.

Wells, K. B., R. D. Hays, M. A. Burnam, W. H. Rogers, S. Greenfield, and J. E. Ware, Jr. 1989. Detection of
depressive disorder for patients receiving prepaid or fee-for-service care. Results from the Medical Outcomes Survey.
Journal of the American Medical Association 262: 3298–3302.

Also see
[R] mprobit — Multinomial probit regression

[U] 20 Estimation and postestimation commands



Title

mvreg — Multivariate regression

Syntax
mvreg depvars = indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term

Reporting

level(#) set confidence level; default is level(95)

corr report correlation matrix
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

noheader suppress header table from above coefficient table
notable suppress coefficient table
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvars and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
noheader, notable, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Multiple-equation models > Multivariate regression

Description
mvreg fits multivariate regression models.

Options

� � �
Model �

noconstant suppresses the constant term (intercept) in the model.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

corr displays the correlation matrix of the residuals between the equations.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following options are available with mvreg but are not shown in the dialog box:

noheader suppresses display of the table reporting F statistics, R-squared, and root mean squared
error above the coefficient table.

notable suppresses display of the coefficient table.

coeflegend; see [R] estimation options.

Remarks
Multivariate regression differs from multiple regression in that several dependent variables are

jointly regressed on the same independent variables. Multivariate regression is related to Zellner’s
seemingly unrelated regression (see [R] sureg), but because the same set of independent variables is
used for each dependent variable, the syntax is simpler, and the calculations are faster.

The individual coefficients and standard errors produced by mvreg are identical to those that would
be produced by regress estimating each equation separately. The difference is that mvreg, being a
joint estimator, also estimates the between-equation covariances, so you can test coefficients across
equations and, in fact, the test syntax makes such tests more convenient.

Example 1

Using the automobile data, we fit a multivariate regression for space variables (headroom, trunk,
and turn) in terms of a set of other variables, including three performance variables (displacement,
gear ratio, and mpg):
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. mvreg headroom trunk turn = price mpg displ gear_ratio length weight

Equation Obs Parms RMSE "R-sq" F P

headroom 74 7 .7390205 0.2996 4.777213 0.0004
trunk 74 7 3.052314 0.5326 12.7265 0.0000
turn 74 7 2.132377 0.7844 40.62042 0.0000

Coef. Std. Err. t P>|t| [95% Conf. Interval]

headroom
price -.0000528 .000038 -1.39 0.168 -.0001286 .0000229

mpg -.0093774 .0260463 -0.36 0.720 -.061366 .0426112
displacement .0031025 .0024999 1.24 0.219 -.0018873 .0080922

gear_ratio .2108071 .3539588 0.60 0.553 -.4956976 .9173119
length .015886 .012944 1.23 0.224 -.0099504 .0417223
weight -.0000868 .0004724 -0.18 0.855 -.0010296 .0008561
_cons -.4525117 2.170073 -0.21 0.835 -4.783995 3.878972

trunk
price .0000445 .0001567 0.28 0.778 -.0002684 .0003573

mpg -.0220919 .1075767 -0.21 0.838 -.2368159 .1926322
displacement .0032118 .0103251 0.31 0.757 -.0173971 .0238207

gear_ratio -.2271321 1.461926 -0.16 0.877 -3.145149 2.690885
length .170811 .0534615 3.20 0.002 .0641014 .2775206
weight -.0015944 .001951 -0.82 0.417 -.0054885 .0022997
_cons -13.28253 8.962868 -1.48 0.143 -31.17249 4.607429

turn
price -.0002647 .0001095 -2.42 0.018 -.0004833 -.0000462

mpg -.0492948 .0751542 -0.66 0.514 -.1993031 .1007136
displacement .0036977 .0072132 0.51 0.610 -.0106999 .0180953

gear_ratio -.1048432 1.021316 -0.10 0.919 -2.143399 1.933712
length .072128 .0373487 1.93 0.058 -.0024204 .1466764
weight .0027059 .001363 1.99 0.051 -.0000145 .0054264
_cons 20.19157 6.261549 3.22 0.002 7.693467 32.68968

We should have specified the corr option so that we would also see the correlations between
the residuals of the equations. We can correct our omission because mvreg—like all estimation
commands—typed without arguments redisplays results. The noheader and notable (read “no-
table”) options suppress redisplaying the output we have already seen:

. mvreg, notable noheader corr

Correlation matrix of residuals:

headroom trunk turn
headroom 1.0000

trunk 0.4986 1.0000
turn -0.1090 -0.0628 1.0000

Breusch-Pagan test of independence: chi2(3) = 19.566, Pr = 0.0002

The Breusch–Pagan test is significant, so the residuals of these three space variables are not independent
of each other.

The three performance variables among our independent variables are mpg, displacement, and
gear ratio. We can jointly test the significance of these three variables in all the equations by
typing
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. test mpg displacement gear_ratio

( 1) [headroom]mpg = 0
( 2) [trunk]mpg = 0
( 3) [turn]mpg = 0
( 4) [headroom]displacement = 0
( 5) [trunk]displacement = 0
( 6) [turn]displacement = 0
( 7) [headroom]gear_ratio = 0
( 8) [trunk]gear_ratio = 0
( 9) [turn]gear_ratio = 0

F( 9, 67) = 0.33
Prob > F = 0.9622

These three variables are not, as a group, significant. We might have suspected this from their
individual significance in the individual regressions, but this multivariate test provides an overall
assessment with one p-value.

We can also perform a test for the joint significance of all three equations:

. test [headroom]
(output omitted )

. test [trunk], accum
(output omitted )

. test [turn], accum

( 1) [headroom]price = 0
( 2) [headroom]mpg = 0
( 3) [headroom]displacement = 0
( 4) [headroom]gear_ratio = 0
( 5) [headroom]length = 0
( 6) [headroom]weight = 0
( 7) [trunk]price = 0
( 8) [trunk]mpg = 0
( 9) [trunk]displacement = 0
(10) [trunk]gear_ratio = 0
(11) [trunk]length = 0
(12) [trunk]weight = 0
(13) [turn]price = 0
(14) [turn]mpg = 0
(15) [turn]displacement = 0
(16) [turn]gear_ratio = 0
(17) [turn]length = 0
(18) [turn]weight = 0

F( 18, 67) = 19.34
Prob > F = 0.0000

The set of variables as a whole is strongly significant. We might have suspected this, too, from the
individual equations.

Technical note
The mvreg command provides a good way to deal with multiple comparisons. If we wanted to

assess the effect of length, we might be dissuaded from interpreting any of its coefficients except that
in the trunk equation. [trunk]length—the coefficient on length in the trunk equation—has a
p-value of 0.002, but in the other two equations, it has p-values of only 0.224 and 0.058.

A conservative statistician might argue that there are 18 tests of significance in mvreg’s output
(not counting those for the intercept), so p-values more than 0.05/18 = 0.0028 should be declared
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insignificant at the 5% level. A more aggressive but, in our opinion, reasonable approach would
be to first note that the three equations are jointly significant, so we are justified in making some
interpretation. Then we would work through the individual variables using test, possibly using
0.05/6 = 0.0083 (6 because there are six independent variables) for the 5% significance level. For
instance, examining length:

. test length

( 1) [headroom]length = 0
( 2) [trunk]length = 0
( 3) [turn]length = 0

F( 3, 67) = 4.94
Prob > F = 0.0037

The reported significance level of 0.0037 is less than 0.0083, so we will declare this variable significant.
[trunk]length is certainly significant with its p-value of 0.002, but what about in the remaining
two equations with p-values 0.224 and 0.058? We perform a joint test:

. test [headroom]length [turn]length

( 1) [headroom]length = 0
( 2) [turn]length = 0

F( 2, 67) = 2.91
Prob > F = 0.0613

At this point, reasonable statisticians could disagree. The 0.06 significance value suggests no interpre-
tation, but these were the two least-significant values out of three, so we would expect the p-value to
be a little high. Perhaps an equivocal statement is warranted: there seems to be an effect, but chance
cannot be excluded.
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Saved results
mvreg saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters in each equation
e(k eq) number of equations in e(b)
e(df r) residual degrees of freedom
e(chi2) Breusch–Pagan χ2 (corr only)
e(df chi2) degrees of freedom for Breusch–Pagan χ2 (corr only)
e(rank) rank of e(V)

Macros
e(cmd) mvreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(eqnames) names of equations
e(wtype) weight type
e(wexp) weight expression
e(r2) R-squared for each equation
e(rmse) RMSE for each equation
e(F) F statistic for each equation
e(p F) significance of F for each equation
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
mvreg is implemented as an ado-file.

Given q equations and p independent variables (including the constant), the parameter estimates
are given by the p× q matrix

B = (X′WX)−1X′WY

where Y is an n× q matrix of dependent variables and X is a n×p matrix of independent variables.
W is a weighting matrix equal to I if no weights are specified. If weights are specified, let v: 1×n
be the specified weights. If fweight frequency weights are specified, W = diag(v). If aweight
analytic weights are specified, W = diag{v/(1′v)(1′1)}, meaning that the weights are normalized
to sum to the number of observations.

The residual covariance matrix is

R = {Y′WY −B′(X′WX)B}/(n− p)

The estimated covariance matrix of the estimates is R⊗ (X′WX)−1. These results are identical to
those produced by sureg when the same list of independent variables is specified repeatedly; see
[R] sureg.
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The Breusch and Pagan (1980) χ2 statistic—a Lagrange multiplier statistic—is given by

λ = n

q∑
i=1

i−1∑
j=1

r2
ij

where rij is the estimated correlation between the residuals of the equations and n is the number of
observations. It is distributed as χ2 with q(q − 1)/2 degrees of freedom.

Reference
Breusch, T. S., and A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model specification in

econometrics. Review of Economic Studies 47: 239–253.

Also see
[R] mvreg postestimation — Postestimation tools for mvreg

[MV] manova — Multivariate analysis of variance and covariance

[R] nlsur — Estimation of nonlinear systems of equations

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] regress — Linear regression

[R] regress postestimation — Postestimation tools for regress

[R] sureg — Zellner’s seemingly unrelated regression

[MI] estimation — Estimation commands for use with mi estimate

Stata Structural Equation Modeling Reference Manual

[U] 20 Estimation and postestimation commands



Title

mvreg postestimation — Postestimation tools for mvreg

Description
The following postestimation commands are available after mvreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(eqno
[
, eqno

]
) statistic

]
statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals
difference difference between the linear predictions of two equations
stddp standard error of the difference in linear predictions

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

1251



1252 mvreg postestimation — Postestimation tools for mvreg

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

equation(eqno
[
, eqno

]
) specifies the equation to which you are referring.

equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean the calculation is to be made for the first equation, equation(#2) would mean the
second, and so on. You could also refer to the equations by their names. equation(income)
would refer to the equation named income and equation(hours), to the equation named hours.

If you do not specify equation(), results are the same as if you specified equation(#1).

difference and stddp refer to between-equation concepts. To use these options, you must
specify two equations, for example, equation(#1,#2) or equation(income,hours). When
two equations must be specified, equation() is required. With equation(#1,#2), difference
computes the prediction of equation(#1) minus the prediction of equation(#2).

xb, the default, calculates the fitted values—the prediction of xjb for the specified equation.

stdp calculates the standard error of the prediction for the specified equation (the standard error of
the predicted expected value or mean for the observation’s covariate pattern). The standard error
of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.

difference calculates the difference between the linear predictions of two equations in the system.

stddp is allowed only after you have previously fit a multiple-equation model. The standard error of
the difference in linear predictions (x1jb− x2jb) between equations 1 and 2 is calculated.

For more information on using predict after multiple-equation estimation commands, see [R] predict.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] mvreg — Multivariate regression

[U] 20 Estimation and postestimation commands



Title

nbreg — Negative binomial regression

Syntax

Negative binomial regression model

nbreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, nbreg options
]

Generalized negative binomial model

gnbreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, gnbreg options
]

nbreg options Description

Model

noconstant suppress constant term
dispersion(mean) parameterization of dispersion; dispersion(mean) is the default
dispersion(constant) constant dispersion for all observations
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nolrtest suppress likelihood-ratio test
irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics
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gnbreg options Description

Model

noconstant suppress constant term
lnalpha(varlist) dispersion model variables
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators (nbreg only); see

[U] 11.4.4 Time-series varlists.
bootstrap, by (nbreg only), fracpoly (nbreg only), jackknife, mfp (nbreg only), mi estimate, nestreg

(nbreg only), rolling, statsby, stepwise, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
nbreg

Statistics > Count outcomes > Negative binomial regression

gnbreg

Statistics > Count outcomes > Generalized negative binomial regression
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Description
nbreg fits a negative binomial regression model of depvar on indepvars, where depvar is a

nonnegative count variable. In this model, the count variable is believed to be generated by a Poisson-
like process, except that the variation is greater than that of a true Poisson. This extra variation is
referred to as overdispersion. See [R] poisson before reading this entry.

gnbreg fits a generalization of the negative binomial mean-dispersion model; the shape parameter
α may also be parameterized.

If you have panel data, see [XT] xtnbreg.

Options for nbreg

� � �
Model �

noconstant; see [R] estimation options.

dispersion(mean | constant) specifies the parameterization of the model. dispersion(mean),
the default, yields a model with dispersion equal to 1+α exp(xjβ+offsetj); that is, the dispersion
is a function of the expected mean: exp(xjβ+ offsetj). dispersion(constant) has dispersion
equal to 1 + δ; that is, it is a constant for all observations.

exposure(varnamee), offset(varnameo), constraints(constraints), collinear; see [R] esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nolrtest suppresses fitting the Poisson model. Without this option, a comparison Poisson model is
fit, and the likelihood is used in a likelihood-ratio test of the null hypothesis that the dispersion
parameter is zero.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).
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The following option is available with nbreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for gnbreg

� � �
Model �

noconstant; see [R] estimation options.

lnalpha(varlist) allows you to specify a linear equation for lnα. Specifying lnalpha(male old)
means that lnα = γ0 + γ1male + γ2old, where γ0, γ1, and γ2 are parameters to be estimated
along with the other model coefficients. If this option is not specified, gnbreg and nbreg will
produce the same results because the shape parameter will be parameterized as a constant.

exposure(varnamee), offset(varnameo), constraints(constraints), collinear; see [R] esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with gnbreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction to negative binomial regression
nbreg
gnbreg
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Introduction to negative binomial regression

Negative binomial regression models the number of occurrences (counts) of an event when the
event has extra-Poisson variation, that is, when it has overdispersion. The Poisson regression model
is

yj ∼ Poisson(µj)
where

µj = exp(xjβ+ offsetj)

for observed counts yj with covariates xj for the jth observation. One derivation of the negative
binomial mean-dispersion model is that individual units follow a Poisson regression model, but there
is an omitted variable νj , such that eνj follows a gamma distribution with mean 1 and variance α:

yj ∼ Poisson(µ∗j )
where

µ∗j = exp(xjβ+ offsetj + νj)
and

eνj ∼ Gamma(1/α, α)

With this parameterization, a Gamma(a, b) distribution will have expectation ab and variance ab2.

We refer to α as the overdispersion parameter. The larger α is, the greater the overdispersion.
The Poisson model corresponds to α = 0. nbreg parameterizes α as lnα. gnbreg allows lnα to be
modeled as lnαj = zjγ, a linear combination of covariates zj .

nbreg will fit two different parameterizations of the negative binomial model. The default, described
above and also given by the dispersion(mean) option, has dispersion for the jth observation equal
to 1 + α exp(xjβ+ offsetj). This is seen by noting that the above implies that

µ∗j ∼ Gamma(1/α, αµj)

and thus

Var(yj) = E
{

Var(yj |µ∗j )
}

+ Var
{
E(yj |µ∗j )

}
= E(µ∗j ) + Var(µ∗j )

= µj(1 + αµj)

The alternative parameterization, given by the dispersion(constant) option, has dispersion equal
to 1 + δ; that is, it is constant for all observations. This is so because the constant-dispersion model
assumes instead that

µ∗j ∼ Gamma(µj/δ, δ)

and thus Var(yj) = µj(1 + δ). The Poisson model corresponds to δ = 0.

For detailed derivations of both models, see Cameron and Trivedi (1998, 70–77). In particular,
note that the mean-dispersion model is known as the NB2 model in their terminology, whereas the
constant-dispersion model is referred to as the NB1 model.

See Long and Freese (2006) and Cameron and Trivedi (2010, chap. 17) for a discussion of the
negative binomial regression model with Stata examples and for a discussion of other regression
models for count data.

Hilbe (2011) provides an extensive review of the negative binomial model and its variations, using
Stata examples.
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nbreg

It is not uncommon to posit a Poisson regression model and observe a lack of model fit. The
following data appeared in Rodrı́guez (1993):

. use http://www.stata-press.com/data/r12/rod93

. list

cohort age_mos deaths exposure

1. 1 0.5 168 278.4
2. 1 2.0 48 538.8
3. 1 4.5 63 794.4
4. 1 9.0 89 1,550.8
5. 1 18.0 102 3,006.0

6. 1 42.0 81 8,743.5
7. 1 90.0 40 14,270.0
8. 2 0.5 197 403.2
9. 2 2.0 48 786.0

10. 2 4.5 62 1,165.3

11. 2 9.0 81 2,294.8
12. 2 18.0 97 4,500.5
13. 2 42.0 103 13,201.5
14. 2 90.0 39 19,525.0
15. 3 0.5 195 495.3

16. 3 2.0 55 956.7
17. 3 4.5 58 1,381.4
18. 3 9.0 85 2,604.5
19. 3 18.0 87 4,618.5
20. 3 42.0 70 9,814.5

21. 3 90.0 10 5,802.5

. generate logexp = ln(exposure)

. poisson deaths i.cohort, offset(logexp)

Iteration 0: log likelihood = -2160.0544
Iteration 1: log likelihood = -2159.5162
Iteration 2: log likelihood = -2159.5159
Iteration 3: log likelihood = -2159.5159

Poisson regression Number of obs = 21
LR chi2(2) = 49.16
Prob > chi2 = 0.0000

Log likelihood = -2159.5159 Pseudo R2 = 0.0113

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

cohort
2 -.3020405 .0573319 -5.27 0.000 -.4144089 -.1896721
3 .0742143 .0589726 1.26 0.208 -.0413698 .1897983

_cons -3.899488 .0411345 -94.80 0.000 -3.98011 -3.818866
logexp 1 (offset)
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. estat gof

Deviance goodness-of-fit = 4190.689
Prob > chi2(18) = 0.0000

Pearson goodness-of-fit = 15387.67
Prob > chi2(18) = 0.0000

The extreme significance of the goodness-of-fit χ2 indicates that the Poisson regression model is
inappropriate, suggesting to us that we should try a negative binomial model:

. nbreg deaths i.cohort, offset(logexp) nolog

Negative binomial regression Number of obs = 21
LR chi2(2) = 0.40

Dispersion = mean Prob > chi2 = 0.8171
Log likelihood = -131.3799 Pseudo R2 = 0.0015

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

cohort
2 -.2676187 .7237203 -0.37 0.712 -1.686084 1.150847
3 -.4573957 .7236651 -0.63 0.527 -1.875753 .9609618

_cons -2.086731 .511856 -4.08 0.000 -3.08995 -1.083511
logexp 1 (offset)

/lnalpha .5939963 .2583615 .0876171 1.100376

alpha 1.811212 .4679475 1.09157 3.005295

Likelihood-ratio test of alpha=0: chibar2(01) = 4056.27 Prob>=chibar2 = 0.000

Our original Poisson model is a special case of the negative binomial—it corresponds to α = 0.
nbreg, however, estimates α indirectly, estimating instead lnα. In our model, lnα = 0.594, meaning
that α = 1.81 (nbreg undoes the transformation for us at the bottom of the output).

To test α = 0 (equivalent to lnα = −∞), nbreg performs a likelihood-ratio test. The staggering
χ2 value of 4,056 asserts that the probability that we would observe these data conditional on α = 0
is virtually zero, that is, conditional on the process being Poisson. The data are not Poisson. It is not
accidental that this χ2 value is close to the goodness-of-fit statistic from the Poisson regression itself.

Technical note
The usual Gaussian test of α = 0 is omitted because this test occurs on the boundary, invalidating

the usual theory associated with such tests. However, the likelihood-ratio test of α = 0 has been
modified to be valid on the boundary. In particular, the null distribution of the likelihood-ratio test
statistic is not the usual χ2

1, but rather a 50 : 50 mixture of a χ2
0 (point mass at zero) and a χ2

1,
denoted as χ2

01. See Gutierrez, Carter, and Drukker (2001) for more details.

Technical note
The negative binomial model deals with cases in which there is more variation than would

be expected if the process were Poisson. The negative binomial model is not helpful if there is
less than Poisson variation—if the variance of the count variable is less than its mean. However,
underdispersion is uncommon. Poisson models arise because of independently generated events.
Overdispersion comes about if some of the parameters (causes) of the Poisson processes are unknown.
To obtain underdispersion, the sequence of events somehow would have to be regulated; that is, events
would not be independent but controlled based on past occurrences.
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gnbreg

gnbreg is a generalization of nbreg, dispersion(mean). Whereas in nbreg, one lnα is
estimated, gnbreg allows lnα to vary, observation by observation, as a linear combination of another
set of covariates: lnαj = zjγ.

We will assume that the number of deaths is a function of age, whereas the lnα parameter is a
function of cohort. To fit the model, we type

. gnbreg deaths age_mos, lnalpha(i.cohort) offset(logexp)

Fitting constant-only model:

Iteration 0: log likelihood = -187.067 (not concave)
Iteration 1: log likelihood = -137.4064
Iteration 2: log likelihood = -134.07766
Iteration 3: log likelihood = -131.60668
Iteration 4: log likelihood = -131.57951
Iteration 5: log likelihood = -131.57948
Iteration 6: log likelihood = -131.57948

Fitting full model:

Iteration 0: log likelihood = -124.34327
Iteration 1: log likelihood = -117.70256
Iteration 2: log likelihood = -117.56373
Iteration 3: log likelihood = -117.56164
Iteration 4: log likelihood = -117.56164

Generalized negative binomial regression Number of obs = 21
LR chi2(1) = 28.04
Prob > chi2 = 0.0000

Log likelihood = -117.56164 Pseudo R2 = 0.1065

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

deaths
age_mos -.0516657 .0051747 -9.98 0.000 -.061808 -.0415233

_cons -1.867225 .2227944 -8.38 0.000 -2.303894 -1.430556
logexp 1 (offset)

lnalpha
cohort

2 .0939546 .7187747 0.13 0.896 -1.314818 1.502727
3 .0815279 .7365476 0.11 0.912 -1.362079 1.525135

_cons -.4759581 .5156502 -0.92 0.356 -1.486614 .5346978

We find that age is a significant determinant of the number of deaths. The standard errors for the
variables in the lnα equation suggest that the overdispersion parameter does not vary across cohorts.
We can test this assertion by typing

. test 2.cohort 3.cohort

( 1) [lnalpha]2.cohort = 0
( 2) [lnalpha]3.cohort = 0

chi2( 2) = 0.02
Prob > chi2 = 0.9904

There is no evidence of variation by cohort in these data.
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Technical note

Note the intentional absence of a likelihood-ratio test for α = 0 in gnbreg. The test is affected
by the same boundary condition that affects the comparison test in nbreg; however, when α is
parameterized by more than a constant term, the null distribution becomes intractable. For this reason,
we recommend using nbreg to test for overdispersion and, if you have reason to believe that
overdispersion exists, only then modeling the overdispersion using gnbreg.

Saved results
nbreg and gnbreg save the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only mode
e(ll c) log likelihood, comparison model
e(alpha) value of alpha
e(delta) value of delta
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) nbreg or gnbreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable (nbreg)
e(offset1) linear offset variable (gnbreg)
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(dispers) mean or constant
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
nbreg and gnbreg are implemented as ado-files.

See [R] poisson and Johnson, Kemp, and Kotz (2005, chap. 4) for an introduction to the Poisson
distribution.

Methods and formulas are presented under the following headings:
Mean-dispersion model
Constant-dispersion model

Mean-dispersion model

A negative binomial distribution can be regarded as a gamma mixture of Poisson random variables.
The number of times something occurs, yj , is distributed as Poisson(νjµj). That is, its conditional
likelihood is

f(yj | νj) =
(νjµj)yje−νjµj

Γ(yj + 1)

where µj = exp(xjβ+ offsetj) and νj is an unobserved parameter with a Gamma(1/α, α) density:

g(ν) =
ν(1−α)/αe−ν/α

α1/αΓ(1/α)

This gamma distribution has mean 1 and variance α, where α is our ancillary parameter.

The unconditional likelihood for the jth observation is therefore

f(yj) =
∫ ∞

0

f(yj | ν)g(ν) dν =
Γ(m+ yj)

Γ(yj + 1)Γ(m)
pmj (1− pj)yj

where pj = 1/(1 + αµj) and m = 1/α. Solutions for α are handled by searching for lnα because
α must be greater than zero.

The log likelihood (with weights wj and offsets) is given by

m = 1/α pj = 1/(1 + αµj) µj = exp(xjβ+ offsetj)

lnL =
n∑
j=1

wj

[
ln{Γ(m+ yj)} − ln{Γ(yj + 1)}

− ln{Γ(m)}+m ln(pj) + yj ln(1− pj)
]

For gnbreg, α can vary across the observations according to the parameterization lnαj = zjγ.
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Constant-dispersion model

The constant-dispersion model assumes that yj is conditionally distributed as Poisson(µ∗j ), where
µ∗j ∼ Gamma(µj/δ, δ) for some dispersion parameter δ (by contrast, the mean-dispersion model
assumes that µ∗j ∼ Gamma(1/α, αµj)). The log likelihood is given by

mj = µj/δ p = 1/(1 + δ)

lnL =
n∑
j=1

wj

[
ln{Γ(mj + yj)} − ln{Γ(yj + 1)}

− ln{Γ(mj)}+mj ln(p) + yj ln(1− p)
]

with everything else defined as before in the calculations for the mean-dispersion model.

nbreg and gnbreg support the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

These commands also support estimation with survey data. For details on VCEs with survey data,
see [SVY] variance estimation.
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Also see
[R] nbreg postestimation — Postestimation tools for nbreg and gnbreg

[R] glm — Generalized linear models

[R] poisson — Poisson regression

[R] tnbreg — Truncated negative binomial regression

[R] zinb — Zero-inflated negative binomial regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands



Title

nbreg postestimation — Postestimation tools for nbreg and gnbreg

Description
The following postestimation commands are available after nbreg and gnbreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvardisp

} [
if
] [

in
]
, scores

statistic Description

Main

n number of events; the default
ir incidence rate (equivalent to predict . . . , n nooffset)
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
stdp standard error of the linear prediction

1265
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In addition, relevant only after gnbreg are the following:

statistic Description

Main

alpha predicted values of αj
lnalpha predicted values of lnαj
stdplna standard error of predicted lnαj

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(xjβ) if neither off-
set(varnameo) nor exposure(varnamee) was specified when the model was fit; exp(xjβ +
offsetj) if offset() was specified; or exp(xjβ)× exposurej if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. This is equivalent to specifying both the n and the nooffset options.

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified;
xjβ+ offsetj if offset() was specified; or xjβ+ ln(exposurej) if exposure() was specified;
see nooffset below.

stdp calculates the standard error of the linear prediction.

alpha, lnalpha, and stdplna are relevant after gnbreg estimation only; they produce the predicted
values of αj , lnαj , and the standard error of the predicted lnαj , respectively.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.
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scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂( lnαj) for dispersion(mean) and gnbreg.

The second new variable will contain ∂lnL/∂( lnδ) for dispersion(constant).

Remarks
After nbreg and gnbreg, predict returns the expected number of deaths per cohort and the

probability of observing the number of deaths recorded or fewer.

. use http://www.stata-press.com/data/r12/rod93

. nbreg deaths i.cohort, nolog

Negative binomial regression Number of obs = 21
LR chi2(2) = 0.14

Dispersion = mean Prob > chi2 = 0.9307
Log likelihood = -108.48841 Pseudo R2 = 0.0007

deaths Coef. Std. Err. z P>|z| [95% Conf. Interval]

cohort
2 .0591305 .2978419 0.20 0.843 -.5246289 .64289
3 -.0538792 .2981621 -0.18 0.857 -.6382662 .5305077

_cons 4.435906 .2107213 21.05 0.000 4.0229 4.848912

/lnalpha -1.207379 .3108622 -1.816657 -.5980999

alpha .29898 .0929416 .1625683 .5498555

Likelihood-ratio test of alpha=0: chibar2(01) = 434.62 Prob>=chibar2 = 0.000

. predict count
(option n assumed; predicted number of events)

. predict p, pr(0, deaths)

. summarize deaths count p

Variable Obs Mean Std. Dev. Min Max

deaths 21 84.66667 48.84192 10 197
count 21 84.66667 4.00773 80 89.57143

p 21 .4991542 .2743702 .0070255 .9801285

The expected number of deaths ranges from 80 to 90. The probability Pr(yi ≤ deaths) ranges
from 0.007 to 0.98.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

In the following, we use the same notation as in [R] nbreg.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model
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Mean-dispersion model

The equation-level scores are given by

score(xβ)j = pj(yj − µj)

score(τ)j = −m
{
αj(µj − yj)

1 + αjµj
− ln(1 + αjµj) + ψ(yj +m)− ψ(m)

}
where τj = lnαj and ψ(z) is the digamma function.

Constant-dispersion model

The equation-level scores are given by

score(xβ)j = mj {ψ(yj +mj)− ψ(mj) + ln(p)}
score(τ)j = yj − (yj +mj)(1− p)− score(xβ)j

where τj = lnδj .

Also see
[R] nbreg — Negative binomial regression

[U] 20 Estimation and postestimation commands



Title

nestreg — Nested model statistics

Syntax
Standard estimation command syntax

nestreg
[
, options

]
: command name depvar (varlist)

[
(varlist) . . .

]
[

if
] [

in
] [

weight
] [

command options
]

Survey estimation command syntax

nestreg
[
, options

]
: svy

[
vcetype

] [
, svy options

]
: command name depvar

(varlist)
[
(varlist) . . .

] [
if
] [

in
] [

, command options
]

options Description

Reporting

waldtable report Wald test results; the default
lrtable report likelihood-ratio test results
quietly suppress any output from command name
store(stub) store nested estimation results in est stub#

by is allowed; see [U] 11.1.10 Prefix commands.
Weights are allowed if command name allows them; see [U] 11.1.6 weight.
A varlist in parentheses indicates that this list of variables is to be considered as a block. Each variable in a

varlist not bound in parentheses will be treated as its own block.
All postestimation commands behave as they would after command name without the nestreg prefix; see the

postestimation manual entry for command name.

Menu
Statistics > Other > Nested model statistics

Description

nestreg fits nested models by sequentially adding blocks of variables and then reports comparison
tests between the nested models.

Options

� � �
Reporting �

waldtable specifies that the table of Wald test results be reported. waldtable is the default.

lrtable specifies that the table of likelihood-ratio tests be reported. This option is not allowed if
pweights, the vce(robust) option, or the vce(cluster clustvar) option is specified. lrtable
is also not allowed with the svy prefix.

quietly suppresses the display of any output from command name.

1269
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store(stub) specifies that each model fit by nestreg be stored under the name est stub#, where
# is the nesting order from first to last.

Remarks
Remarks are presented under the following headings:

Estimation commands
Wald tests
Likelihood-ratio tests
Programming for nestreg

Estimation commands

nestreg removes collinear predictors and observations with missing values from the estimation
sample before calling command name.

The following Stata commands are supported by nestreg:

clogit nbreg regress
cloglog ologit scobit
glm oprobit stcox
intreg poisson stcrreg
logistic probit streg
logit qreg tobit

You do not supply a depvar for stcox, stcrreg, or streg; otherwise, depvar is required. You
must supply two depvars for intreg.

Wald tests
Use nestreg to test the significance of blocks of predictors, building the regression model one

block at a time. Using the data from example 1 of [R] test, we wish to test the significance of the
following predictors of birth rate: medage, medagesq, and region (already partitioned into four
indicator variables: reg1, reg2, reg3, and reg4).

. use http://www.stata-press.com/data/r12/census4
(birth rate, median age)

. nestreg: regress brate (medage) (medagesq) (reg2-reg4)

Block 1: medage

Source SS df MS Number of obs = 50
F( 1, 48) = 164.72

Model 32675.1044 1 32675.1044 Prob > F = 0.0000
Residual 9521.71561 48 198.369075 R-squared = 0.7743

Adj R-squared = 0.7696
Total 42196.82 49 861.159592 Root MSE = 14.084

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -15.24893 1.188141 -12.83 0.000 -17.63785 -12.86002
_cons 618.3935 35.15416 17.59 0.000 547.7113 689.0756
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Block 2: medagesq

Source SS df MS Number of obs = 50
F( 2, 47) = 158.75

Model 36755.8524 2 18377.9262 Prob > F = 0.0000
Residual 5440.96755 47 115.765267 R-squared = 0.8711

Adj R-squared = 0.8656
Total 42196.82 49 861.159592 Root MSE = 10.759

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -109.8925 15.96663 -6.88 0.000 -142.0132 -77.7718
medagesq 1.607332 .2707228 5.94 0.000 1.062708 2.151956

_cons 2007.071 235.4316 8.53 0.000 1533.444 2480.698

Block 3: reg2 reg3 reg4

Source SS df MS Number of obs = 50
F( 5, 44) = 100.63

Model 38803.419 5 7760.68381 Prob > F = 0.0000
Residual 3393.40095 44 77.1227489 R-squared = 0.9196

Adj R-squared = 0.9104
Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -109.0957 13.52452 -8.07 0.000 -136.3526 -81.83886
medagesq 1.635208 .2290536 7.14 0.000 1.173581 2.096835

reg2 15.00284 4.252068 3.53 0.001 6.433365 23.57233
reg3 7.366435 3.953336 1.86 0.069 -.6009898 15.33386
reg4 21.39679 4.650602 4.60 0.000 12.02412 30.76946

_cons 1947.61 199.8405 9.75 0.000 1544.858 2350.362

Block Residual Change
Block F df df Pr > F R2 in R2

1 164.72 1 48 0.0000 0.7743
2 35.25 1 47 0.0000 0.8711 0.0967
3 8.85 3 44 0.0001 0.9196 0.0485

This single call to nestreg ran regress three times, adding a block of predictors to the model
for each run as in

. regress brate medage

Source SS df MS Number of obs = 50
F( 1, 48) = 164.72

Model 32675.1044 1 32675.1044 Prob > F = 0.0000
Residual 9521.71561 48 198.369075 R-squared = 0.7743

Adj R-squared = 0.7696
Total 42196.82 49 861.159592 Root MSE = 14.084

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -15.24893 1.188141 -12.83 0.000 -17.63785 -12.86002
_cons 618.3935 35.15416 17.59 0.000 547.7113 689.0756
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. regress brate medage medagesq

Source SS df MS Number of obs = 50
F( 2, 47) = 158.75

Model 36755.8524 2 18377.9262 Prob > F = 0.0000
Residual 5440.96755 47 115.765267 R-squared = 0.8711

Adj R-squared = 0.8656
Total 42196.82 49 861.159592 Root MSE = 10.759

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -109.8925 15.96663 -6.88 0.000 -142.0132 -77.7718
medagesq 1.607332 .2707228 5.94 0.000 1.062708 2.151956

_cons 2007.071 235.4316 8.53 0.000 1533.444 2480.698

. regress brate medage medagesq reg2-reg4

Source SS df MS Number of obs = 50
F( 5, 44) = 100.63

Model 38803.419 5 7760.68381 Prob > F = 0.0000
Residual 3393.40095 44 77.1227489 R-squared = 0.9196

Adj R-squared = 0.9104
Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -109.0957 13.52452 -8.07 0.000 -136.3526 -81.83886
medagesq 1.635208 .2290536 7.14 0.000 1.173581 2.096835

reg2 15.00284 4.252068 3.53 0.001 6.433365 23.57233
reg3 7.366435 3.953336 1.86 0.069 -.6009898 15.33386
reg4 21.39679 4.650602 4.60 0.000 12.02412 30.76946

_cons 1947.61 199.8405 9.75 0.000 1544.858 2350.362

nestreg collected the F statistic for the corresponding block of predictors and the model R2

statistic from each model fit.

The F statistic for the first block, 164.72, is for a test of the joint significance of the first block
of variables; it is simply the F statistic from the regression of brate on medage. The F statistic
for the second block, 35.25, is for a test of the joint significance of the second block of variables
in a regression of both the first and second blocks of variables. In our example, it is an F test
of medagesq in the regression of brate on medage and medagesq. Similarly, the third block’s F
statistic of 8.85 corresponds to a joint test of reg2, reg3, and reg4 in the final regression.

Likelihood-ratio tests
The nestreg command provides a simple syntax for performing likelihood-ratio tests for nested

model specifications; also see lrtest. Using the data from example 1 of [R] lrtest, we wish to
jointly test the significance of the following predictors of low birthweight: age, lwt, ptl, and ht.
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. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. xi: nestreg, lr: logistic low (i.race smoke ui) (age lwt ptl ht)
i.race _Irace_1-3 (naturally coded; _Irace_1 omitted)

Block 1: _Irace_2 _Irace_3 smoke ui

Logistic regression Number of obs = 189
LR chi2(4) = 18.80
Prob > chi2 = 0.0009

Log likelihood = -107.93404 Pseudo R2 = 0.0801

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

_Irace_2 3.052746 1.498087 2.27 0.023 1.166747 7.987382
_Irace_3 2.922593 1.189229 2.64 0.008 1.316457 6.488285

smoke 2.945742 1.101838 2.89 0.004 1.415167 6.131715
ui 2.419131 1.047359 2.04 0.041 1.035459 5.651788

_cons .1402209 .0512295 -5.38 0.000 .0685216 .2869447

Block 2: age lwt ptl ht

Logistic regression Number of obs = 189
LR chi2(8) = 33.22
Prob > chi2 = 0.0001

Log likelihood = -100.724 Pseudo R2 = 0.1416

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

_Irace_2 3.534767 1.860737 2.40 0.016 1.259736 9.918406
_Irace_3 2.368079 1.039949 1.96 0.050 1.001356 5.600207

smoke 2.517698 1.00916 2.30 0.021 1.147676 5.523162
ui 2.1351 .9808153 1.65 0.099 .8677528 5.2534

age .9732636 .0354759 -0.74 0.457 .9061578 1.045339
lwt .9849634 .0068217 -2.19 0.029 .9716834 .9984249
ptl 1.719161 .5952579 1.56 0.118 .8721455 3.388787
ht 6.249602 4.322408 2.65 0.008 1.611152 24.24199

_cons 1.586014 1.910496 0.38 0.702 .1496092 16.8134

Block LL LR df Pr > LR AIC BIC

1 -107.934 18.80 4 0.0009 225.8681 242.0768
2 -100.724 14.42 4 0.0061 219.448 248.6237

The estimation results from the full model are left in e(), so we can later use estat and other
postestimation commands.

. estat gof

Logistic model for low, goodness-of-fit test

number of observations = 189
number of covariate patterns = 182

Pearson chi2(173) = 179.24
Prob > chi2 = 0.3567
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Programming for nestreg

If you want your user-written command (command name) to work with nestreg, it must follow
standard Stata syntax and allow the if qualifier. Furthermore, command name must have sw or swml
as a program property; see [P] program properties. If command name has swml as a property,
command name must save the log-likelihood value in e(ll) and the model degrees of freedom in
e(df m).

Saved results
nestreg saves the following in r():

Matrices
r(wald) matrix corresponding to the Wald table
r(lr) matrix corresponding to the likelihood-ratio table

Methods and formulas
nestreg is implemented as an ado-file.

Acknowledgment
We thank Paul H. Bern, Syracuse University, for developing the hierarchical regression command

that inspired nestreg.

Reference
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Also see
[P] program properties — Properties of user-defined programs
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Title

net — Install and manage user-written additions from the Internet

Syntax

Set current location for net

net from directory or url

Change to a different net directory

net cd path or url

Change to a different net site

net link linkname

Search for installed packages

net search (see [R] net search)

Report current net location

net

Describe a package

net describe pkgname
[
, from(directory or url)

]
Set location where packages will be installed

net set ado dirname

Set location where ancillary files will be installed

net set other dirname

Report net ‘from’, ‘ado’, and ‘other’ settings

net query

Install ado-files and help files from a package

net install pkgname
[
, all replace force from(directory or url)

]
Install ancillary files from a package

net get pkgname
[
, all replace force from(directory or url)

]
1275
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Shortcut to access Stata Journal (SJ) net site

net sj vol-issue
[

insert
]

Shortcut to access Stata Technical Bulletin (STB) net site

net stb issue
[

insert
]

List installed packages

ado
[
, find(string) from(dirname)

]
ado dir

[
pkgid

] [
, find(string) from(dirname)

]
Describe installed packages

ado describe
[

pkgid
] [

, find(string) from(dirname)
]

Uninstall an installed package

ado uninstall pkgid
[
, from(dirname)

]
where

pkgname is name of a package
pkgid is name of a package

or a number in square brackets: [#]
dirname is a directory name

or PLUS (default)
or PERSONAL
or SITE

Description

net downloads and installs additions to Stata. The additions can be obtained from the Internet or
from physical media. The additions can be ado-files (new commands), help files, or even datasets.
Collections of files are bound together into packages. For instance, the package named zz49 might
add the xyz command to Stata. At a minimum, such a package would contain xyz.ado, the code
to implement the new command, and xyz.sthlp, the online help to describe it. That the package
contains two files is a detail: you use net to download the package zz49, regardless of the number
of files.

ado manages the packages you have installed by using net. The ado command lets you list and
uninstall previously installed packages.

You can also access the net and ado features by selecting Help > SJ and User-written Programs;
this is the recommended method to find and install additions to Stata.

Options

all is used with net install and net get. Typing it with either one makes the command equivalent
to typing net install followed by net get.
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replace is for use with net install and net get. It specifies that the downloaded files replace
existing files if any of the files already exists.

force specifies that the downloaded files replace existing files if any of the files already exists, even
if Stata thinks all the files are the same. force implies replace.

find(string) is for use with ado, ado dir, and ado describe. It specifies that the descriptions of
the packages installed on your computer be searched, and that the package descriptions containing
string be listed.

from(dirname), when used with ado, specifies where the packages are installed. The default is
from(PLUS). PLUS is a code word that Stata understands to correspond to a particular directory
on your computer that was set at installation time. On Windows computers, PLUS probably means
the directory c:\ado\plus, but it might mean something else. You can find out what it means
by typing sysdir, but doing so is irrelevant if you use the defaults.

from(directory or url), when used with net, specifies the directory or URL where installable packages
may be found. The directory or URL is the same as the one that would have been specified with
net from.

Remarks
For an introduction to using net and ado, see [U] 28 Using the Internet to keep up to date. The

purpose of this documentation is

• to briefly, but accurately, describe net and ado and all their features and

• to provide documentation to those who wish to set up their own sites to distribute additions to
Stata.

Remarks are presented under the following headings:

Definition of a package
The purpose of the net and ado commands
Content pages
Package-description pages
Where packages are installed
A summary of the net command
A summary of the ado command
Relationship of net and ado to the point-and-click interface
Creating your own site
Format of content and package-description files
Example 1
Example 2
Additional package directives
SMCL in content and package-description files
Error-free file delivery

Definition of a package

A package is a collection of files—typically, .ado and .sthlp files—that together provide a new
feature in Stata. Packages contain additions that you wish had been part of Stata at the outset. We
write such additions, and so do other users.

One source of these additions is the Stata Journal, a printed and electronic journal with corresponding
software. If you want the journal, you must subscribe, but the software is available for free from our
website.

http://www.stata-journal.com
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The purpose of the net and ado commands

The net command makes it easy to distribute and install packages. The goal is to get you quickly
to a package-description page that summarizes the addition, for example,

. net describe rte_stat, from(http://www.wemakeitupaswego.edu/faculty/sgazer/)

package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer/

TITLE
rte_stat. The robust-to-everything statistic; update.

DESCRIPTION/AUTHOR(S)
S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.
Aleph-0 100% confidence intervals proved too conservative for some
applications; Aleph-1 confidence intervals have been substituted.
The new robust-to-everything supplants the previous robust-to-
everything-conceivable statistic. See "Inference in the absence
of data" (forthcoming). After installation, see help rte.

INSTALLATION FILES (type net install rte_stat)
rte.ado
rte.sthlp
nullset.ado
random.ado

If you decide that the addition might prove useful, net makes the installation easy:

. net install rte_stat
checking rte_stat consistency and verifying not already installed...
installing into c:\ado\plus\ ...
installation complete.

The ado command helps you manage packages installed with net. Perhaps you remember that
you installed a package that calculates the robust-to-everything statistic, but you cannot remember
the command’s name. You could use ado to search what you have previously installed for the rte
command,

. ado

[1] package sg145 from http://www.stata.com/stb/stb56
STB-56 sg145. Scalar measures of fit for regression models.

(output omitted )
[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer

rte_stat. The robust-to-everything statistic; update.

(output omitted )
[21] package st0119 from http://www.stata-journal.com/software/sj7-1

SJ7-1 st0119. Rasch analysis

or you might type

. ado, find("robust-to-everything")

[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer
rte_stat. The robust-to-everything statistic; update.

Perhaps you decide that rte, despite the author’s claims, is not worth the disk space it occupies. You
can use ado to erase it:

. ado uninstall rte_stat

package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer
rte_stat. The robust-to-everything statistic; update.

(package uninstalled)
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ado uninstall is easier than erasing the files by hand because ado uninstall erases every file
associated with the package, and, moreover, ado knows where on your computer rte stat is
installed; you would have to hunt for these files.

Content pages

There are two types of pages displayed by net: content pages and package-description pages.
When you type net from, net cd, net link, or net without arguments, Stata goes to the specified
place and displays the content page:

. net from http://www.stata.com

http://www.stata.com/
StataCorp

Welcome to StataCorp.

Below we provide links to sites providing additions to Stata, including
the Stata Journal, STB, and Statalist. These are NOT THE OFFICIAL UPDATES;
you fetch and install the official updates by typing -update-.

PLACES you could -net link- to:
sj The Stata Journal

DIRECTORIES you could -net cd- to:
stb materials published in the Stata Technical Bulletin
users materials written by various people, including StataCorp

employees
meetings software packages from Stata Users Group meetings
links links to other locations providing additions to Stata

A content page tells you about other content pages and package-description pages. The example above
lists other content pages only. Below we follow one of the links for the Stata Journal:

. net link sj

http://www.stata-journal.com/
The Stata Journal

The Stata Journal is a refereed, quarterly journal containing articles
of interest to Stata users. For more details and subscription information,
visit the Stata Journal website at http://www.stata-journal.com.

PLACES you could -net link- to:
stata StataCorp website

DIRECTORIES you could -net cd- to:
production Files for authors of the Stata Journal
software Software associated with Stata Journal articles
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. net cd software

http://www.stata-journal.com/software/
The Stata Journal

PLACES you could -net link- to:
stata StataCorp website
stb Stata Technical Bulletin (STB) software archive

DIRECTORIES you could -net cd- to:
(output omitted )

sj7-1 volume 7, issue 1
(output omitted )

sj1-1 volume 1, issue 1

. net cd sj7-1

http://www.stata-journal.com/software/sj7-1/
Stata Journal volume 7, issue 1

DIRECTORIES you could -net cd- to:
.. Other Stata Journals

PACKAGES you could -net describe-:
dm0027 File filtering in Stata: handling complex data

formats and navigating log files efficiently
st0119 Rasch analysis
st0120 Multivariable regression spline models
st0121 mhbounds - Sensitivity Analysis for Average

Treatment Effects

dm0027, st0119, . . . , st0121 are links to package-description pages.

1. When you type net from, you follow that with a location to display the location’s content
page.

a. The location could be a URL, such as http://www.stata.com. The content page at that
location would then be listed.

b. The location could be e: on a Windows computer or a mounted volume on a Mac
computer. The content page on that source would be listed. That would work if you had
special media obtained from StataCorp or special media prepared by another user.

c. The location could even be a directory on your computer, but that would work only if
that directory contained the right kind of files.

2. Once you have specified a location, typing net cd will take you into subdirectories of that
location, if there are any. Typing

. net from http://www.stata-journal.com

. net cd software

is equivalent to typing

. net from http://www.stata-journal.com/software

Typing net cd displays the content page from that location.

3. Typing net without arguments redisplays the current content page, which is the content page
last displayed.

http://www.stata.com
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4. net link is similar to net cd in that the result is to change the location, but rather than
changing to subdirectories of the current location, net link jumps to another location:

. net from http://www.stata-journal.com

http://www.stata-journal.com/
The Stata Journal

The Stata Journal is a refereed, quarterly journal containing articles
of interest to Stata users. For more details and subscription information,
visit the Stata Journal website at
http://www.stata-journal.com.

PLACES you could -net link- to:
stata StataCorp website

DIRECTORIES you could -net cd- to:
production Files for authors of the Stata Journal
software Software associated with Stata Journal articles

Typing net link stata would jump to http://www.stata.com:

. net link stata

http://www.stata.com/
StataCorp

Welcome to StataCorp.
(output omitted )

Package-description pages

Package-description pages describe what could be installed:

http://www.stata-journal.com
http://www.stata.com
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. net from http://www.stata-journal.com/software/sj7-1

http://www.stata-journal.com/software/sj7-1/
(output omitted )

. net describe st0119

package st0119 from http://www.stata-journal.com/software/sj7-1

TITLE
SJ7-1 st0119. Rasch analysis

DESCRIPTION/AUTHOR(S)
Rasch analysis
by Jean-Benoit Hardouin, University of Nantes, France
Support: jean-benoit.hardouin@univ-nantes.fr
After installation, type help gammasym, gausshermite,

geekel2d, raschtest, and raschtestv7

INSTALLATION FILES (type net install st0119)
st0119/raschtest.ado
st0119/raschtest.hlp
st0119/raschtestv7.ado
st0119/raschtestv7.hlp
st0119/gammasym.ado
st0119/gammasym.hlp
st0119/gausshermite.ado
st0119/gausshermite.hlp
st0119/geekel2d.ado
st0119/geekel2d.hlp

ANCILLARY FILES (type net get st0119)
st0119/data.dta
st0119/outrasch.do

A package-description page describes the package and tells you how to install the component files.
Package-description pages potentially describe two types of files:

1. Installation files: files that you type net install to install and that are required to make the
addition work.

2. Ancillary files: additional files that you might want to install—you type net get to install them—
but that you can ignore. Ancillary files are typically datasets that are useful for demonstration
purposes. Ancillary files are not really installed in the sense of being copied to an official place
for use by Stata itself. They are merely copied into the current directory so that you may use
them if you wish.

You install the official files by typing net install followed by the package name. For example, to
install st0119, you would type

. net install st0119
checking st0119 consistency and verifying not already installed...
installing into c:\ado\plus\ ...
installation complete.

You get the ancillary files—if there are any and if you want them—by typing net get followed by
the package name:
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. net get st0119
checking st0119 consistency and verifying not already installed...

copying into current directory...
copying data.dta
copying outrasch.do

ancillary files successfully copied.

Most users ignore the ancillary files.

Once you have installed a package—by typing net install—use ado to redisplay the package-
description page whenever you wish:

. ado describe st0119

[1] package st0119 from http://www.stata-journal.com/software/sj7-1

TITLE
SJ7-1 st0119. Rasch analysis

DESCRIPTION/AUTHOR(S)
Rasch analysis
by Jean-Benoit Hardouin, University of Nantes, France
Support: jean-benoit.hardouin@univ-nantes.fr
After installation, type help gammasym, gausshermite,

geekel2d, raschtest, and raschtestv7

INSTALLATION FILES
r/raschtest.ado
r/raschtest.hlp
r/raschtestv7.ado
r/raschtestv7.hlp
g/gammasym.ado
g/gammasym.hlp
g/gausshermite.ado
g/gausshermite.hlp
g/geekel2d.ado
g/geekel2d.hlp

INSTALLED ON
24 Apr 2011

The package-description page shown by ado includes the location from which we got the package and
when we installed it. It does not mention the ancillary files that were originally part of this package
because they are not tracked by ado.

Where packages are installed

Packages should be installed in PLUS or SITE, which are code words that Stata understands and
that correspond to some real directories on your computer. Typing sysdir will tell you where these
are, if you care.

. sysdir
STATA: C:\Program Files\Stata12\

UPDATES: C:\Program Files\Stata12\ado\updates\
BASE: C:\Program Files\Stata12\ado\base\
SITE: C:\Program Files\Stata12\ado\site\
PLUS: c:\ado\plus\

PERSONAL: c:\ado\personal\
OLDPLACE: c:\ado\

If you type sysdir, you may obtain different results.
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By default, net installs in the PLUS directory, and ado tells you about what is installed there. If
you are on a multiple-user system, you may wish to install some packages in the SITE directory.
This way, they will be available to other Stata users. To do that, before using net install, type

. net set ado SITE

and when reviewing what is installed or removing packages, redirect ado to that directory:

. ado . . ., from(SITE)

In both cases, you type SITE because Stata will understand that SITE means the site ado-directory
as defined by sysdir. To install into SITE, you must have write access to that directory.

If you reset where net installs and then, in the same session, wish to install into your private
ado-directory, type

. net set ado PLUS

That is how things were originally. If you are confused as to where you are, type net query.

A summary of the net command

The net command displays content pages and package-description pages. Such pages are provided
over the Internet, and most users get them there. We recommend that you start at http://www.stata.com
and work out from there. We also recommend using net search to find packages of interest to you;
see [R] net search.

net from moves you to a location and displays the content page.

net cd and net link change from your current location to other locations. net cd enters
subdirectories of the original location. net link jumps from one location to another, depending on
the code on the content page.

net describe lists a package-description page. Packages are named, and you type net describe
pkgname.

net install installs a package into your copy of Stata. net get copies any additional files
(ancillary files) to your current directory.

net sj and net stb simplify loading files from the Stata Journal and its predecessor, the Stata
Technical Bulletin.

net sj vol-issue

is a synonym for typing

net from http://www.stata-journal.com/software/sjvol-issue

whereas

net sj vol-issue insert

is a synonym for typing

net from http://www.stata-journal.com/software/sjvol-issue
net describe insert

net set controls where net installs files. By default, net installs in the PLUS directory; see
[P] sysdir. net set ado SITE would cause subsequent net commands to install in the SITE directory.
net set other sets where ancillary files, such as .dta files, are installed. The default is the current
directory.

net query displays the current net from, net set ado, and net set other settings.

http://www.stata.com
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A summary of the ado command

The ado command lists the package descriptions of previously installed packages.

Typing ado without arguments is the same as typing ado dir. Both list the names and titles of
the packages you have installed.

ado describe lists full package-description pages.

ado uninstall removes packages from your computer.

Because you can install packages from a variety of sources, the package names may not always be
unique. Thus the packages installed on your computer are numbered sequentially, and you may refer
to them by name or by number. For instance, say that you wanted to get rid of the robust-to-everything
statistic command you installed. Type

. ado, find("robust-to-everything")

[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer
rte_stat. The robust-to-everything statistic; update.

You could then type

. ado uninstall rte_stat

or

. ado uninstall [15]

Typing ado uninstall rte stat would work only if the name rte stat were unique; otherwise,
ado would refuse, and you would have to type the number.

The find() option is allowed with ado dir and ado describe. It searches the package description
for the word or phrase you specify, ignoring case (alpha matches Alpha). The complete package
description is searched, including the author’s name and the name of the files. Thus if rte was the
name of a command that you wanted to eliminate, but you could not remember the name of the
package, you could type

. ado, find(rte)

[15] package rte_stat from http://www.wemakeitupaswego.edu/faculty/sgazer
rte_stat. The robust-to-everything statistic; update.

Relationship of net and ado to the point-and-click interface

Users may instead select Help > SJ and User-written Programs. There are advantages and
disadvantages:

1. Flipping through content and package-description pages is easier; it is much like a browser.
See [GS] 19 Updating and extending Stata—Internet functionality (GSM, GSU, or GSW).

2. When browsing a product-description page, note that the .sthlp files are highlighted. You
may click on .sthlp files to review them before installing the package.

3. You may not redirect from where ado searches for files.
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Creating your own site

The rest of this entry concerns how to create your own site to distribute additions to Stata. The
idea is that you have written additions for use with Stata—say, xyz.ado and xyz.sthlp—and you
wish to put them out so that coworkers or researchers at other institutions can easily install them.
Or, perhaps you just have a dataset that you and others want to share.

In any case, all you need is a webpage. You place the files that you want to distribute on your
webpage (or in a subdirectory), and you add two more files—a content file and a package-description
file—and you are done.

Format of content and package-description files

The content file describes the content page. It must be named stata.toc:

begin stata.toc
OFF (to make site unavailable temporarily)
* lines starting with * are comments; they are ignored
* blank lines are ignored, too
* v indicates version—specify v 3, which is the current version of .toc files
v 3

* d lines display description text
* the first d line is the title, and the remaining ones are text
* blank d lines display a blank line
d title
d text
d text
d
. . .
* l lines display links
l word-to-show path-or-url [description]

l word-to-show path-or-url [description]

. . .
* t lines display other directories within the site
t path [description]

t path [description]

. . .
* p lines display packages
p pkgname [description]

p pkgname [description]

. . .
end stata.toc

Package files describe packages and are named pkgname.pkg:
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begin pkgname.pkg
* lines starting with * are comments; they are ignored
* blank lines are ignored, too
* v indicates version—specify v 3, which is the current version of .toc files
v 3

* d lines display package description text
* the first d line is the title, and the remaining ones are text
* blank d lines display a blank line
d title
d text
d Distribution-Date: date
d text
d
. . .
* f identifies the component files
f [path/]filename [description]

f [path/]filename [description]

. . .
* e line is optional; it means stop reading
e

end pkgname.pkg

Note the Distribution-Date description line. This line is optional but recommended. Stata can look
for updates to user-written programs with the adoupdate command if the package files from which
those programs were installed contain a Distribution-Date description line.

Example 1

Say that we want the user to see the following:

. net from http://www.university.edu/~me

http://www.university.edu/~me
Chris Farrar, Uni University

PACKAGES you could -net describe-:
xyz interval-truncated survival

. net describe xyz

package xyz from http://www.university.edu/~me

TITLE
xyz. interval-truncated survival.

DESCRIPTION/AUTHOR(S)
C. Farrar, Uni University.

INSTALLATION FILES (type net install xyz)
xyz.ado
xyz.sthlp

ANCILLARY FILES (type net get xyz)
sample.dta

The files needed to do this would be

begin stata.toc
v 3
d Chris Farrar, Uni University
p xyz interval-truncated survival

end stata.toc
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begin xyz.pkg
v 3
d xyz. interval-truncated survival.
d C. Farrar, Uni University.
f xyz.ado
f xyz.sthlp
f sample.dta

end xyz.pkg

On his homepage, Chris would place the following files:

stata.toc (shown above)
xyz.pkg (shown above)
xyz.ado file to be delivered (for use by net install)
xyz.sthlp file to be delivered (for use by net install)
sample.dta file to be delivered (for use by net get)

Chris does nothing to distinguish ancillary files from installation files.

Example 2

S. Gazer wants to create a more complex site:

. net from http://www.wemakeitupaswego.edu/faculty/sgazer

http://www.wemakeitupaswego.edu/faculty/sgazer
Data-free inference materials

S. Gazer, Department of Applied Theoretical Mathematics

Also see my homepage for the preprint of "Irrefutable inference".

PLACES you could -net link- to:
stata StataCorp website

DIRECTORIES you could -net cd- to:
ir irrefutable inference programs (work in progress)

PACKAGES you could -net describe-:
rtec Robust-to-everything-conceivable statistic
rte Robust-to-everything statistic
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. net describe rte

package rte from http://www.wemakeitupaswego.edu/faculty/sgazer/

TITLE
rte. The robust-to-everything statistic; update.

DESCRIPTION/AUTHOR(S)
S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.
Aleph-0 100% confidence intervals proved too conservative for some
applications; Aleph-1 confidence intervals have been substituted.
The new robust-to-everything supplants the previous robust-to-
everything-conceivable statistic. See "Inference in the absence
of data" (forthcoming). After installation, see help rte.

Distribution-Date: 20110420

Support: email sgazer@wemakeitupaswego.edu

INSTALLATION FILES (type net install rte_stat)
rte.ado
rte.sthlp
nullset.ado
random.ado

ANCILLARY FILES (type net get rte_stat)
empty.dta

The files needed to do this would be

begin stata.toc
v 3
d Data-free inference materials
d S. Gazer, Department of Applied Theoretical Mathematics
d
d Also see my homepage for the preprint of "Irrefutable inference".
l stata http://www.stata.com
t ir irrefutable inference programs (work in progress)
p rtec Robust-to-everything-conceivable statistic
p rte Robust-to-everything statistic

end stata.toc

begin rte.pkg
v 3
d rte. The robust-to-everything statistic; update.
d {bf:S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.}
d Aleph-0 100% confidence intervals proved too conservative for some
d applications; Aleph-1 confidence intervals have been substituted.
d The new robust-to-everything supplants the previous robust-to-
d everything-conceivable statistic. See "Inference in the absence
d of data" (forthcoming). After installation, see help {bf:rte}.
d
d Distribution-Date: 20110420
d
d Support: email sgazer@wemakeitupaswego.edu
f rte.ado
f rte.sthlp
f nullset.ado
f random.ado
f empty.dta

end rte.pkg
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On his homepage, Mr. Gazer would place the following files:

stata.toc (shown above)
rte.pkg (shown above)
rte.ado (file to be delivered)
rte.sthlp (file to be delivered)
nullset.ado (file to be delivered)
random.ado (file to be delivered)
empty.dta (file to be delivered)
rtec.pkg the other package referred to in stata.toc
rtec.ado the corresponding files to be delivered
rtec.sthlp

ir/stata.toc the contents file for when the user types net cd ir
ir/. . . whatever other .pkg files are referred to
ir/. . . whatever other files are to be delivered

If Mr. Gazer later updated the rte package, he could change the Distribution-Date description line
in his package. Then, if someone who had previously installed the rte packaged wanted to obtain
the latest version, that person could use the adoupdate command; see [R] adoupdate.

For complex sites, a different structure may prove more convenient:

stata.toc (shown above)
rte.pkg (shown above)
rtec.pkg the other package referred to in stata.toc

rte/ directory containing rte files to be delivered:
rte/rte.ado (file to be delivered)
rte/rte.sthlp (file to be delivered)
rte/nullset.ado (file to be delivered)
rte/random.ado (file to be delivered)
rte/empty.dta (file to be delivered)
rtec/ directory containing rtec files to be delivered:
rtec/. . . (files to be delivered)
ir/stata.toc the contents file for when the user types net cd ir
ir/*.pkg whatever other package files are referred to
ir/*/. . . whatever other files are to be delivered

If you prefer this structure, it is simply a matter of changing the bottom of the rte.pkg from

f rte.ado
f rte.sthlp
f nullset.ado
f random.ado
f empty.dta

to

f rte/rte.ado
f rte/rte.sthlp
f rte/nullset.ado
f rte/random.ado
f rte/empty.dta

In writing paths and files, the directory separator forward slash (/) is used, regardless of operating
system, because this is what the Internet uses.

It does not matter whether the files you put out are in Windows, Mac, or Unix format (how lines
end is recorded differently). When Stata reads the files over the Internet, it will figure out the file
format on its own and will automatically translate the files to what is appropriate for the receiver.
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Additional package directives

F filename is similar to f filename, except that, when the file is installed, it will always be copied to
the system directories (and not the current directory).

With f filename, the file is installed into a directory according to the file’s suffix. For instance,
xyz.ado would be installed in the system directories, whereas xyz.dta would be installed in the
current directory.

Coding F xyz.ado would have the same result as coding f xyz.ado.

Coding F xyz.dta, however, would state that xyz.dta is to be installed in the system directories.

g platformname filename is also a variation on f filename. It specifies that the file be installed only
if the user’s operating system is of type platformname; otherwise, the file is ignored. The platform
names are WIN (32-bit x86) and WIN64A (64-bit x86-64) for Windows; MACINTEL (32-bit Intel,
GUI), OSX.X86 (32-bit Intel, console), MACINTEL64 (64-bit Intel, GUI), OSX.X8664 (64-bit Intel,
console), MAC (32-bit PowerPC), and OSX.PPC (32-bit PowerPC), for Mac; and LINUX (32-bit
x86), LINUX64 (64-bit x86-64), SOL64, and SOLX8664 (64-bit x86-64) for Unix.

G platformname filename is a variation on F filename. The file, if not ignored, is to be installed in
the system directories.

g platformname filename1 filename2 is a more detailed version of g platformname filename. In this
case, filename1 is the name of the file on the server (the file to be copied), and filename2 is to
be the name of the file on the user’s system; for example, you might code

g WIN mydll.forwin mydll.plugin
g LINUX mydll.forlinux mydll.plugin

When you specify one filename, the result is the same as specifying two identical filenames.

G platformname filename1 filename2 is the install-in-system-directories version of g platformname
filename1 filename2.

h filename asserts that filename must be loaded, or this package is not to be installed; for example,
you might code

g WIN mydll.forwin mydll.plugin
g LINUX mydll.forlinux mydll.plugin
h mydll.plugin

if you were offering the plugin mydll.plugin for Windows and Linux only.

SMCL in content and package-description files

The text listed on the second and subsequent d lines in both stata.toc and pkgname.pkg may
contain SMCL as long as you include v 3; see [P] smcl.

Thus, in rte.pkg, S. Gazer coded the third line as

d {bf:S. Gazer, Dept. of Applied Theoretical Mathematics, WMIUAWG Univ.}
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Error-free file delivery

Most people transport files over the Internet and never worry about the file being corrupted in the
process because corruption rarely occurs. If, however, the files must be delivered perfectly or not at
all, you can include checksum files in the directory.

For instance, say that big.dta is included in your package and that it must be sent perfectly.
First, use Stata to make the checksum file for big.dta

. checksum big.dta, save

That command creates a small file called big.sum; see [D] checksum. Then copy both big.dta
and big.sum to your homepage. If set checksum is on (the default is off), whenever Stata reads
filename.whatever over the net, it also looks for filename.sum. If it finds such a file, it uses the
information recorded in it to verify that what was copied was error free.

If you do this, be cautious. If you put big.dta and big.sum on your homepage and then later
change big.dta without changing big.sum, people will think that there are transmission errors when
they try to download big.dta.
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net search — Search the Internet for installable packages

Syntax
net search word

[
word . . .

] [
, options

]
options Description

or list packages that contain any of the keywords; default is all
nosj search non-SJ and non-STB sources
tocpkg search both tables of contents and packages; the default
toc search tables of contents only
pkg search packages only
everywhere search packages for match
filenames search filenames associated with package for match
errnone make return code 111 instead of 0 when no matches found

Description

net search searches the Internet for user-written additions to Stata, including, but not limited to,
user-written additions published in the Stata Journal (SJ) and in the Stata Technical Bulletin (STB).
net search lists the available additions that contain the specified keywords.

The user-written materials found are available for immediate download by using the net command
or by clicking on the link.

In addition to typing net search, you may select Help > Search... and choose Search net
resources. This is the recommended way to search for user-written additions to Stata.

Options
or is relevant only when multiple keywords are specified. By default, net search lists only packages

that include all the keywords. or changes the command to list packages that contain any of the
keywords.

nosj specifies that net search not list matches that were published in the SJ or in the STB.

tocpkg, toc, and pkg determine what is searched. tocpkg is the default, meaning that both tables
of contents (tocs) and packages (pkgs) are searched. toc restricts the search to tables of contents.
pkg restricts the search to packages.

everywhere and filenames determine where in packages net search looks for keywords. The
default is everywhere. filenames restricts net search to search for matches only in the
filenames associated with a package. Specifying everywhere implies pkg.

errnone is a programmer’s option that causes the return code to be 111 instead of 0 when no matches
are found.
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Remarks
net search searches the Internet for user-written additions to Stata. If you want to search the

Stata documentation for a particular topic, command, or author, see [R] search. net search word[
word . . .

]
(without options) is equivalent to typing search word

[
word . . .

]
, net.

Remarks are presented under the following headings:

Topic searches
Author searches
Command searches
Where does net search look?
How does net search work?

Topic searches

Example: Find what is available about random effects
. net search random effect

Comments:

• It is best to search using the singular form of a word. net search random effect will find
both “random effect” and “random effects”.

• net search random effect will also find “random-effect” because net search performs a
string search and not a word search.

• net search random effect lists all packages containing the words “random” and “effect”,
not necessarily used together.

• If you wanted all packages containing the word “random” or the word “effect”, you would type
net search random effect, or.

Author searches

Example: Find what is available by author Jeroen Weesie
. net search weesie

Comments:

• You could type net search jeroen weesie, but that might list fewer results because sometimes
the last name is used without the first.

• You could type net search Weesie, but it would not matter. Capitalization is ignored in the
search.

Example: Find what is available by Jeroen Weesie, excluding SJ and STB materials
. net search weesie, nosj

• The SJ and the STB tend to dominate search results because so much has been published in
them. If you know that what you are looking for is not in the SJ or in the STB, specifying the
nosj option will narrow the search.

• net search weesie lists everything that net search weesie, nosj lists, and more. If you
just type net search weesie, look down the list. SJ and STB materials are listed first, and
non-SJ and non-STB materials are listed last.



net search — Search the Internet for installable packages 1295

Command searches

Example: Find the user-written command kursus
. net search kursus, file

• You could just type net search kursus, and that will list everything net search kursus,
file lists, and more. Because you know kursus is a command, however, there must be a
kursus.ado file associated with the package. Typing net search kursus, file narrows the
search.

• You could also type net search kursus.ado, file to narrow the search even more.

Where does net search look?
net search looks everywhere, not just at http://www.stata.com.

net search begins by looking at http://www.stata.com, but then follows every link, which takes
it to other places, and then follows every link again, which takes it to even more places, and so on.

Authors: Please let us know if you have a site that we should include in our search by sending
an email to webmaster@stata.com. We will then link to your site from ours to ensure that net
search finds your materials. That is not strictly necessary, however, as long as your site is directly
or indirectly linked from some site that is linked to ours.

How does net search work?

www.stata.com

The Internet

crawler

net search database

Your computer

talks to www.stata.com

http://www.stata.com
http://www.stata.com
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Our website maintains a database of Stata resources. When you use net search, it contacts
http://www.stata.com with your request, http://www.stata.com searches its database, and Stata returns
the results to you.

Another part of the system is called the crawler, which searches the web for new Stata resources
to add to the net search database and verifies that the resources already found are still available.
When a new resource becomes available, the crawler takes about 2 days to add it to the database, and,
similarly, if a resource disappears, the crawler takes roughly 2 days to remove it from the database.
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netio — Control Internet connections

Syntax

Turn on or off the use of a proxy server

set httpproxy
{
on | off

} [
, init

]
Set proxy host name

set httpproxyhost
[
"
]
name

[
"
]

Set the proxy port number

set httpproxyport #

Turn on or off proxy authorization

set httpproxyauth
{
on | off

}
Set proxy authorization user ID

set httpproxyuser
[
"
]
name

[
"
]

Set proxy authorization password

set httpproxypw
[
"
]
password

[
"
]

Set time limit for establishing initial connection

set timeout1 #seconds
[
, permanently

]
Set time limit for data transfer

set timeout2 #seconds
[
, permanently

]
Description

Several commands (for example, net, news, and update) are designed specifically for use over
the Internet. Many other Stata commands that read a file (for example, copy, type, and use) can
also read directly from a URL. All these commands will usually work without your ever needing to
concern yourself with the set commands discussed here. These set commands provide control over
network system parameters.

If you experience problems when using Stata’s network features, ask your system administrator if
your site uses a proxy. A proxy is a server between your computer and the rest of the Internet, and
your computer may need to communicate with other computers on the Internet through this proxy.
If your site uses a proxy, your system administrator can provide you with its host name and the port
your computer can use to communicate with it. If your site’s proxy requires you to log in to it before
it will respond, your system administrator will provide you with a user ID and password.
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set httpproxyhost sets the name of the host to be used as a proxy server. set httpproxyport
sets the port number. set httpproxy turns on or off the use of a proxy server, leaving the proxy
host name and port intact, even when not in use.

Under the Mac and Windows operating systems, when you set httpproxy on, Stata will attempt
to obtain the values of httpproxyhost and httpproxyport from the operating system if they have
not been previously set. set httpproxy on, init attempts to obtain these values from the operating
system, even if they have been previously set.

If the proxy requires authorization (user ID and password), set authorization on via set http-
proxyauth on. The proxy user and proxy password must also be set to the appropriate user ID and
password by using set httpproxyuser and set httpproxypw.

Stata remembers the various proxy settings between sessions and does not need a permanently
option.

set timeout1 changes the time limit in seconds that Stata imposes for establishing the initial
connection with a remote host. The default value is 30. set timeout2 changes the time limit in
seconds that Stata imposes for subsequent data transfer with the host. The default value is 180. If
these time limits are exceeded, a “connection timed out” message and error code 2 are produced.
You should seldom need to change these settings.

Options
init specifies that set httpproxy on attempts to initialize httpproxyhost and httpproxyport

from the operating system (Mac and Windows only).

permanently specifies that, in addition to making the change right now, the timeout1 and timeout2
settings be remembered and become the default setting when you invoke Stata.

The various httpproxy settings do not have a permanently option because permanently is
implied.

Remarks
If you receive an error message, see http://www.stata.com/support/faqs/web/ for the latest infor-

mation.

1. remote connection failed r(677);

If you see

remote connection failed
r(677);

then you asked for something to be done over the web, and Stata tried but could not contact the
specified host. Stata was able to talk over the network and look up the host but was not able to
establish a connection to that host. Perhaps the host is down; try again later.

If all your web accesses result in this message, then perhaps your network connection is through
a proxy server. If it is, then you must tell Stata.

http://www.stata.com/support/faqs/web/
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Contact your system administrator. Ask for the name and port of the “HTTP proxy server”. Say
that you are told

HTTP proxy server: jupiter.myuni.edu
port number: 8080

In Stata, type

. set httpproxyhost jupiter.myuni.edu

. set httpproxyport 8080

. set httpproxy on

Your web accesses should then work.

2. connection timed out r(2);

If you see

connection timed out
r(2);

then an Internet connection has timed out. This can happen when

a. the connection between you and the host is slow, or

b. the connection between you and the host has disappeared, and so it eventually “timed out”.

For (b), wait a while (say, 5 minutes) and try again (sometimes pieces of the Internet can break
for up to a day, but that is rare). For (a), you can reset the limits for what constitutes “timed out”.
There are two numbers to set.

The time to establish the initial connection is timeout1. By default, Stata waits 30 seconds before
declaring a timeout. You can change the limit:

. set timeout1 #seconds

You might try doubling the usual limit and specify 60; #seconds must be between 1 and 32,000.

The time to retrieve data from an open connection is timeout2. By default, Stata waits 180 seconds
(3 minutes) before declaring a timeout. To change the limit, type

. set timeout2 #seconds

You might try doubling the usual limit and specify 360; #seconds must be between 1 and 32,000.

Also see
[R] query — Display system parameters

[P] creturn — Return c-class values

[U] 28 Using the Internet to keep up to date



Title

news — Report Stata news

Syntax
news

Menu
Help > News

Description
news displays a brief listing of recent Stata news and information, which it obtains from Stata’s

website. news requires that your computer be connected to the Internet.

You may also execute news by selecting Help > News.

Remarks
news provides an easy way of displaying a brief list of the latest Stata news:

. news

___ ____ ____ ____ ____
/__ / ____/ / ____/

___/ / /___/ / /___/ News The latest from http://www.stata.com

8 October 2011. Official update available for download

Click here (equivalent to pulling down Help and selecting
Check for Updates) or type update from http://www.stata.com.

27 July 2011. Stata 12 available

Stata 12 -- structural equation models (SEM) -- multiple imputation
using chained equations -- contrasts and pairwise comparisons --
autoregressive fractionally integrated moving-average (ARFIMA) models --
multivariate GARCH -- unobserved-components models -- time-series filters --
receiver operating characteristic (ROC) regression -- contour plots --
import Excel -- PDF export -- is now available.
Visit http://www.stata.com/stata12/ for more information.

21 March 2011. NetCourse schedule updated

See http://www.stata.com/netcourse/ for more information.

(output omitted )

<end>

Also see
[U] 28 Using the Internet to keep up to date
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Title

nl — Nonlinear least-squares estimation

Syntax

Interactive version

nl (depvar = <sexp>)
[

if
] [

in
] [

weight
] [

, options
]

Programmed substitutable expression version

nl sexp prog : depvar
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Function evaluator program version

nl func prog @ depvar
[

varlist
] [

if
] [

in
] [

weight
]
,{

parameters(namelist) | nparameters(#)
} [

options
]

where

depvar is the dependent variable;

<sexp> is a substitutable expression;

sexp prog is a substitutable expression program; and

func prog is a function evaluator program.
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options Description

Model

variables(varlist) variables in model
initial(initial values) initial values for parameters
∗parameters(namelist) parameters in model (function evaluator program version only)
∗nparameters(#) number of parameters in model

(function evaluator program version only)
sexp options options for substitutable expression program
func options options for function evaluator program

Model 2

lnlsq(#) use log least-squares where ln(depvar− #) is assumed to be
normally distributed

noconstant the model has no constant term; seldom used
hasconstant(name) use name as constant term; seldom used

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap,
jacknife, hac kernel, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)

leave create variables containing derivative of E(y)
title(string) display string as title above the table of parameter estimates
title2(string) display string as subtitle
display options control column formats and line width

Optimization

optimization options control the optimization process; seldom used
eps(#) specify # for convergence criterion; default is eps(1e-5)

delta(#) specify # for computing derivatives; default is delta(4e-7)

coeflegend display legend instead of statistics

∗ For function evaluator program version, you must specify parameters(namelist) or nparameters(#), or both.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), leave, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Nonlinear least squares
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Description

nl fits an arbitrary nonlinear regression function by least squares. With the interactive version of
the command, you enter the function directly on the command line or in the dialog box by using a
substitutable expression. If you have a function that you use regularly, you can write a substitutable
expression program and use the second syntax to avoid having to reenter the function every time.
The function evaluator program version gives you the most flexibility in exchange for increased
complexity; with this version, your program is given a vector of parameters and a variable list, and
your program computes the regression function.

When you write a substitutable expression program or function evaluator program, the first two
letters of the name must be nl. sexp prog and func prog refer to the name of the program without
the first two letters. For example, if you wrote a function evaluator program named nlregss, you
would type nl regss @ . . . to estimate the parameters.

Options

� � �
Model �

variables(varlist) specifies the variables in the model. nl ignores observations for which any of
these variables have missing values. If you do not specify variables(), then nl issues an error
message with return code 480 if the estimation sample contains any missing values.

initial(initial values) specifies the initial values to begin the estimation. You can specify a 1× k
matrix, where k is the number of parameters in the model, or you can specify a parameter name,
its initial value, another parameter name, its initial value, and so on. For example, to initialize
alpha to 1.23 and delta to 4.57, you would type

nl . . . , initial(alpha 1.23 delta 4.57) . . .

Initial values declared using this option override any that are declared within substitutable expres-
sions. If you specify a parameter that does not appear in your model, nl exits with error code
480. If you specify a matrix, the values must be in the same order that the parameters are declared
in your model. nl ignores the row and column names of the matrix.

parameters(namelist) specifies the names of the parameters in the model. The names of the
parameters must adhere to the naming conventions of Stata’s variables; see [U] 11.3 Naming
conventions. If you specify both parameters() and nparameters(), the number of names in
the former must match the number specified in the latter; if not, nl issues an error message with
return code 198.

nparameters(#) specifies the number of parameters in the model. If you do not specify names with
the parameters() option, nl names them b1, b2, . . . , b#. If you specify both parameters()
and nparameters(), the number of names in the former must match the number specified in the
latter; if not, nl issues an error message with return code 198.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.

� � �
Model 2 �

lnlsq(#) fits the model by using log least-squares, which we define as least squares with shifted
lognormal errors. In other words, ln(depvar− #) is assumed to be normally distributed. Sums of
squares and deviance are adjusted to the same scale as depvar.
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noconstant indicates that the function does not include a constant term. This option is generally
not needed, even if there is no constant term in the model, unless the coefficient of variation (over
observations) of the partial derivative of the function with respect to a parameter is less than eps()
and that parameter is not a constant term.

hasconstant(name) indicates that parameter name be treated as the constant term in the model and
that nl should not use its default algorithm to find a constant term. As with noconstant, this
option is seldom used.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

nl also allows the following:

vce(hac kernel
[

#
]
) specifies that a heteroskedasticity- and autocorrelation-consistent (HAC)

variance estimate be used. HAC refers to the general form for combining weighted matrices to
form the variance estimate. There are three kernels available for nl:

nwest | gallant | anderson
# specifies the number of lags. If # is not specified, N − 2 is assumed.

vce(hac kernel
[

#
]
) is not allowed if weights are specified.

vce(hc2) and vce(hc3) specify alternative bias corrections for the robust variance calculation.
vce(hc2) and vce(hc3) may not be specified with the svy prefix. By default, vce(robust)
uses σ̂2

j = {n/(n−k)}u2
j as an estimate of the variance of the jth observation, where uj is the

calculated residual and n/(n − k) is included to improve the overall estimate’s small-sample
properties.

vce(hc2) instead uses u2
j/(1 − hjj) as the observation’s variance estimate, where hjj is

the jth diagonal element of the hat (projection) matrix. This produces an unbiased estimate
of the covariance matrix if the model is homoskedastic. vce(hc2) tends to produce slightly
more conservative confidence intervals than vce(robust).

vce(hc3) uses u2
j/(1−hjj)2 as suggested by Davidson and MacKinnon (1993 and 2004),

who report that this often produces better results when the model is heteroskedastic. vce(hc3)
produces confidence intervals that tend to be even more conservative.

See, in particular, Davidson and MacKinnon (2004, 239), who advocate the use of vce(hc2)
or vce(hc3) instead of the plain robust estimator for nonlinear least squares.

� � �
Reporting �

level(#); see [R] estimation options.

leave leaves behind after estimation a set of new variables with the same names as the estimated
parameters containing the derivatives of E(y) with respect to the parameters. If the dataset contains
an existing variable with the same name as a parameter, then using leave causes nl to issue an
error message with return code 110.

leave may not be specified with vce(cluster clustvar) or the svy prefix.

title(string) specifies an optional title that will be displayed just above the table of parameter
estimates.
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title2(string) specifies an optional subtitle that will be displayed between the title specified in
title() and the table of parameter estimates. If title2() is specified but title() is not,
title2() has the same effect as title().

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace. iterate() specifies the maximum number of

iterations, log/nolog specifies whether to show the iteration log, and trace specifies that the
iteration log should include the current parameter vector. These options are seldom used.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual
sum of squares. The default is eps(1e-5).

delta(#) specifies the relative change in a parameter to be used in computing the numeric deriva-
tives. The derivative for parameter βi is computed as {f(X,β1, β2, . . . , βi + d, βi+1, . . .) −
f(X,β1, β2, . . . , βi, βi+1, . . .)}/d, where d is δ(βi + δ). The default is delta(4e-7).

The following options are available with nl but are not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Substitutable expressions
Substitutable expression programs
Built-in functions
Lognormal errors
Other uses
Weights
Potential errors
General comments on fitting nonlinear models
Function evaluator programs

nl fits an arbitrary nonlinear function by least squares. The interactive version allows you to enter
the function directly on the command line or dialog box using substitutable expressions. You can
write a substitutable expression program for functions that you fit frequently to save yourself time.
Finally, function evaluator programs give you the most flexibility in defining your nonlinear function,
though they are more complicated to use.

The next section explains the substitutable expressions that are used to define the regression
function, and the section thereafter explains how to write substitutable expression program files so
that you do not need to type in commonly used functions over and over. Later sections highlight
other features of nl.

The final section discusses function evaluator programs. If you find substitutable expressions
adequate to define your nonlinear function, then you can skip that section entirely. Function evaluator
programs are generally needed only for complicated problems, such as multistep estimators. The
program receives a vector of parameters at which it is to compute the function and a variable into
which the results are to be placed.
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Substitutable expressions

You define the nonlinear function to be fit by nl by using a substitutable expression. Substitutable
expressions are just like any other mathematical expressions involving scalars and variables, such as
those you would use with Stata’s generate command, except that the parameters to be estimated are
bound in braces. See [U] 13.2 Operators and [U] 13.3 Functions for more information on expressions.

For example, suppose that you wish to fit the function

yi = β0(1− e−β1xi) + εi

where β0 and β1 are the parameters to be estimated and εi is an error term. You would simply type

. nl (y = {b0}*(1 - exp(-1*{b1}*x)))

You must enclose the entire equation in parentheses. Because b0 and b1 are enclosed in braces, nl
knows that they are parameters in the model. nl will initialize b0 and b1 to zero by default. To
request that nl initialize b0 to 1 and b1 to 0.25, you would type

. nl (y = {b0=1}*(1 - exp(-1*{b1=0.25}*x)))

That is, inside the braces denoting a parameter, you put the parameter name followed by an equal sign
and the initial value. If a parameter appears in your function multiple times, you need only specify
an initial value only once (or never, if you wish to set the initial value to zero). If you do specify
more than one initial value for the same parameter, nl will use the last value given. Parameter names
must follow the same conventions as variable names. See [U] 11.3 Naming conventions.

Frequently, even nonlinear functions contain linear combinations of variables. As an example,
suppose that you wish to fit the function

yi = β0

{
1− e−(β1x1i+β2x2i+β3x3i)

}
+ εi

nl allows you to declare a linear combination of variables by using the shorthand notation

. nl (y = {b0=1}*(1 - exp(-1*{xb: x1 x2 x3})))

In the syntax {xb: x1 x2 x3}, you are telling nl that you are declaring a linear combination named
xb that is a function of three variables, x1, x2, and x3. nl will create three parameters, named
xb x1, xb x2, and xb x3, and initialize them to zero. Instead of typing the previous command, you
could have typed

. nl (y = {b0=1}*(1 - exp(-1*({xb x1}*x1 + {xb x2}*x2 + {xb x3}*x3))))

and yielded the same result. You can refer to the parameters created by nl in the linear combination
later in the function, though you must declare the linear combination first if you intend to do that.
When creating linear combinations, nl ensures that the parameter names it chooses are unique and
have not yet been used in the function.

In general, there are three rules to follow when defining substitutable expressions:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.
2. Initial values for parameters are given by including an equal sign and

the initial value inside the braces: {b0=1}, {param=3.571}, etc.
3. Linear combinations of variables can be included using the notation

{eqname:varlist}, for example, {xb: mpg price weight}, {score: w x z}, etc.
Parameters of linear combinations are initialized to zero.
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If you specify initial values by using the initial() option, they override whatever initial values
are given within the substitutable expression. Substitutable expressions are so named because, once
values are assigned to the parameters, the resulting expression can be handled by generate and
replace.

Example 1

We wish to fit the CES production function

lnQi = β0 −
1
ρ

ln
{
δK−ρi + (1− δ)L−ρi

}
+ εi (1)

where lnQi is the log of output for firm i; Ki and Li are firm i’s capital and labor usage, respectively;
and εi is a regression error term. Because ρ appears in the denominator of a fraction, zero is not a
feasible initial value; for a CES production function, ρ = 1 is a reasonable choice. Setting δ = 0.5
implies that labor and capital have equal impacts on output, which is also a reasonable choice for an
initial value. We type

. use http://www.stata-press.com/data/r12/production

. nl (lnoutput = {b0} - 1/{rho=1}*ln({delta=0.5}*capital^(-1*{rho}) +
> (1 - {delta})*labor^(-1*{rho})))
(obs = 100)

Iteration 0: residual SS = 29.38631
Iteration 1: residual SS = 29.36637
Iteration 2: residual SS = 29.36583
Iteration 3: residual SS = 29.36581
Iteration 4: residual SS = 29.36581
Iteration 5: residual SS = 29.36581
Iteration 6: residual SS = 29.36581
Iteration 7: residual SS = 29.36581

Source SS df MS
Number of obs = 100

Model 91.1449924 2 45.5724962 R-squared = 0.7563
Residual 29.3658055 97 .302740263 Adj R-squared = 0.7513

Root MSE = .5502184
Total 120.510798 99 1.21728079 Res. dev. = 161.2538

lnoutput Coef. Std. Err. t P>|t| [95% Conf. Interval]

/b0 3.792158 .099682 38.04 0.000 3.594316 3.989999
/rho 1.386993 .472584 2.93 0.004 .4490443 2.324941

/delta .4823616 .0519791 9.28 0.000 .3791975 .5855258

Parameter b0 taken as constant term in model & ANOVA table

nl will attempt to find a constant term in the model and, if one is found, mention it at the bottom of
the output. nl found b0 to be a constant because the partial derivative ∂ lnQi/∂b0 has a coefficient
of variation less than eps() in the estimation sample.

The elasticity of substitution for the CES production function is σ = 1/(1 + ρ); and, having fit
the model, we can use nlcom to estimate it:

. nlcom (1/(1 + _b[/rho]))

_nl_1: 1/(1 + _b[/rho])

lnoutput Coef. Std. Err. t P>|t| [95% Conf. Interval]

_nl_1 .4189372 .0829424 5.05 0.000 .2543194 .583555
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See [R] nlcom and [U] 13.5 Accessing coefficients and standard errors for more information.

nl’s output closely mimics that of regress; see [R] regress for more information. The R2, sums
of squares, and similar statistics are calculated in the same way that regress calculates them. If
no “constant” term is specified, the usual caveats apply to the interpretation of the R2 statistic; see
the comments and references in Goldstein (1992). Unlike regress, nl does not report a model F
statistic, because a test of the joint significance of all the parameters except the constant term may
not be relevant in a nonlinear model.

Substitutable expression programs

If you fit the same model often or if you want to write an estimator that will operate on whatever
variables you specify, then you will want to write a substitutable expression program. That program
will return a macro containing a substitutable expression that nl can then evaluate, and it may
optionally calculate initial values as well. The name of the program must begin with the letters nl.

To illustrate, suppose that you use the CES production function often in your work. Instead of
typing in the formula each time, you can write a program like this:

program nlces, rclass
version 12
syntax varlist(min=3 max=3) [if]
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’
// Initial value for b0 given delta=0.5 and rho=1
tempvar y
generate double ‘y’ = ‘logout’ + ln(0.5*‘capital’^-1 + 0.5*‘labor’^-1)
summarize ‘y’ ‘if’, meanonly
local b0val = r(mean)
// Terms for substitutable expression
local capterm "{delta=0.5}*‘capital’^(-1*{rho})"
local labterm "(1-{delta})*‘labor’^(-1*{rho})"
local term2 "1/{rho=1}*ln(‘capterm’ + ‘labterm’)"
// Return substitutable expression and title
return local eq "‘logout’ = {b0=‘b0val’} - ‘term2’"
return local title "CES ftn., ln Q=‘logout’, K=‘capital’, L=‘labor’"

end

The program accepts three variables for log output, capital, and labor, and it accepts an if exp
qualifier to restrict the estimation sample. All programs that you write to use with nl must accept
an if exp qualifier because, when nl calls the program, it passes a binary variable that marks the
estimation sample (the variable equals one if the observation is in the sample and zero otherwise).
When calculating initial values, you will want to restrict your computations to the estimation sample,
and you can do so by using if with any commands that accept if exp qualifiers. Even if your
program does not calculate initial values or otherwise use the if qualifier, the syntax statement must
still allow it. See [P] syntax for more information on the syntax command and the use of if.

As in the previous example, reasonable initial values for δ and ρ are 0.5 and 1, respectively.
Conditional on those values, (1) can be rewritten as

β0 = lnQi + ln(0.5K−1
i + 0.5L−1

i )− εi (2)

so a good initial value for β0 is the mean of the right-hand side of (2) ignoring εi. Lines 7–10 of
the function evaluator program calculate that mean and store it in a local macro. Notice the use of
if in the summarize statement so that the mean is calculated only for the estimation sample.
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The final part of the program returns two macros. The macro title is optional and defines a
short description of the model that will be displayed in the output immediately above the table of
parameter estimates. The macro eq is required and defines the substitutable expression that nl will
use. If the expression is short, you can define it all at once. However, because the expression used
here is somewhat lengthy, defining local macros and then building up the final expression from them
is easier.

To verify that there are no errors in your program, you can call it directly and then use return
list:

. use http://www.stata-press.com/data/r12/production

. nlces lnoutput capital labor
(output omitted )

. return list

macros:
r(title) : "CES ftn., ln Q=lnoutput, K=capital, L=labor"

r(eq) : "lnoutput = {b0=3.711606264663641} - 1/{rho=1}*ln({delt
> a=0.5}*capital^(-1*{rho}) + (1-{delta})*labor^(-1*{rho}))"

The macro r(eq) contains the same substitutable expression that we specified at the command line
in the preceding example, except for the initial value for b0. In short, an nl substitutable expression
program should return in r(eq) the same substitutable expression you would type at the command
line. The only difference is that when writing a substitutable expression program, you do not bind
the entire expression inside parentheses.

Having written the program, you can use it by typing

. nl ces: lnoutput capital labor

(There is a space between nl and ces.) The output is identical to that shown in example 1, save
for the title defined in the function evaluator program that appears immediately above the table of
parameter estimates.

Technical note

You will want to store nlces as an ado-file called nlces.ado. The alternative is to type the code
into Stata interactively or to place the code in a do-file. While those alternatives are adequate for
occasional use, if you save the program as an ado-file, you can use the function anytime you use
Stata without having to redefine the program. When nl attempts to execute nlces, if the program is
not in Stata’s memory, Stata will search the disk(s) for an ado-file of the same name and, if found,
automatically load it. All you have to do is name the file with the .ado suffix and then place it
in a directory where Stata will find it. You should put the file in the directory Stata reserves for
user-written ado-files, which, depending on your operating system, is c:\ado\personal (Windows),

~/ado/personal (Unix), or ~:ado:personal (Mac). See [U] 17 Ado-files.

Sometimes you may want to pass additional options to the substitutable expression program. You
can modify the syntax statement of your program to accept whatever options you wish. Then when
you call nl with the syntax

. nl func prog: varlist, options

any options that are not recognized by nl (see the table of options at the beginning of this entry) are
passed on to your function evaluator program. The only other restriction is that your program cannot
accept an option named at because nl uses that option with function evaluator programs.
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Built-in functions
Some functions are used so often that nl has them built in so that you do not need to write

them yourself. nl automatically chooses initial values for the parameters, though you can use the
initial(. . .) option to override them.

Three alternatives are provided for exponential regression with one asymptote:
exp3 yi = β0 + β1β

xi
2 + εi

exp2 yi = β1β
xi
2 + εi

exp2a yi = β1

(
1− βxi2

)
+ εi

For instance, typing nl exp3: ras dvl fits the three-parameter exponential model (parameters β0,
β1, and β2) using yi = ras and xi = dvl.

Two alternatives are provided for the logistic function (symmetric sigmoid shape; not to be confused
with logistic regression):

log4 yi = β0 + β1

/[
1 + exp

{
−β2(xi − β3)

}]
+ εi

log3 yi = β1

/[
1 + exp

{
−β2(xi − β3)

}]
+ εi

Finally, two alternatives are provided for the Gompertz function (asymmetric sigmoid shape):

gom4 yi = β0 + β1 exp
[
− exp

{
−β2(xi − β3)

}]
+ εi

gom3 yi = β1 exp
[
− exp

{
−β2(xi − β3)

}]
+ εi

Lognormal errors
A nonlinear model with errors that are independent and identically distributed normal may be

written
yi = f(xi,β) + ui, ui ∼ N(0, σ2) (3)

for i = 1, . . . , n. If the yi are thought to have a k-shifted lognormal instead of a normal distribution—
that is, ln(yi−k) ∼ N(ζi, τ2), and the systematic part f(xi,β) of the original model is still thought
appropriate for yi—the model becomes

ln(yi − k) = ζi + vi = ln
{
f(xi,β)− k

}
+ vi, vi ∼ N(0, τ2) (4)

This model is fit if lnlsq(k) is specified.

If model (4) is correct, the variance of (yi − k) is proportional to
{
f(xi,β)− k

}2
. Probably the

most common case is k = 0, sometimes called “proportional errors” because the standard error of yi
is proportional to its expectation, f(xi,β). Assuming that the value of k is known, (4) is just another
nonlinear model in β, and it may be fit as usual. However, we may wish to compare the fit of (3) with
that of (4) using the residual sum of squares (RSS) or the deviance D, D = −2× log-likelihood, from
each model. To do so, we must allow for the change in scale introduced by the log transformation.

Assuming, then, the yi to be normally distributed, Atkinson (1985, 85–87, 184), by considering
the Jacobian

∏
|∂ ln(yi − k)/∂yi|, showed that multiplying both sides of (4) by the geometric mean

of yi − k, ẏ, gives residuals on the same scale as those of yi. The geometric mean is given by

ẏ = en
−1
∑

ln(yi−k)

which is a constant for a given dataset. The residual deviance for (3) and for (4) may be expressed
as

D(β̂) =
{

1 + ln(2πσ̂2)
}
n (5)
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where β̂ is the maximum likelihood estimate (MLE) of β for each model and nσ̂2 is the RSS from
(3), or that from (4) multiplied by ẏ2.

Because (3) and (4) are models with different error structures but the same functional form, the
arithmetic difference in their RSS or deviances is not easily tested for statistical significance. However,
if the deviance difference is large (>4, say), we would naturally prefer the model with the smaller
deviance. Of course, the residuals for each model should be examined for departures from assumptions
(nonconstant variance, nonnormality, serial correlations, etc.) in the usual way.

Alternatively, consider modeling

E(yi) = 1/(C +AeBxi) (6)

E(1/yi) = E(y′i) = C +AeBxi (7)

where C, A, and B are parameters to be estimated. Using the data (y, x) = (0.04, 5), (0.06, 12),
(0.08, 25), (0.1, 35), (0.15, 42), (0.2, 48), (0.25, 60), (0.3, 75), and (0.5, 120) (Danuso 1991), fitting
the models yields

Model C A B RSS Deviance
(6) 1.781 25.74 −0.03926 −0.001640 −51.95
(6) with lnlsq(0) 1.799 25.45 −0.04051 −0.001431 −53.18
(7) 1.781 25.74 −0.03926 8.197 24.70
(7) with lnlsq(0) 1.799 27.45 −0.04051 3.651 17.42

There is little to choose between the two versions of the logistic model (6), whereas for the exponential
model (7), the fit using lnlsq(0) is much better (a deviance difference of 7.28). The reciprocal
transformation has introduced heteroskedasticity into y′i, which is countered by the proportional
errors property of the lognormal distribution implicit in lnlsq(0). The deviances are not comparable
between the logistic and exponential models because the change of scale has not been allowed for,
although in principle it could be.

Other uses
Even if you are fitting linear regression models, you may find that nl can save you some typing.

Because you specify the parameters of your model explicitly, you can impose constraints on them
directly.

Example 2

In example 2 of [R] cnsreg, we showed how to fit the model

mpg = β0 + β1price + β2weight + β3displ + β4gear ratio + β5foreign +
β6length + u

subject to the constraints

β1 = β2 = β3 = β6

β4 = −β5 = β0/20



1312 nl — Nonlinear least-squares estimation

An alternative way is to use nl:

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. nl (mpg = {b0} + {b1}*price + {b1}*weight + {b1}*displ +
> {b0}/20*gear_ratio - {b0}/20*foreign + {b1}*length)
(obs = 74)

Iteration 0: residual SS = 1578.522
Iteration 1: residual SS = 1578.522

Source SS df MS
Number of obs = 74

Model 34429.4777 2 17214.7389 R-squared = 0.9562
Residual 1578.52226 72 21.9239203 Adj R-squared = 0.9549

Root MSE = 4.682299
Total 36008 74 486.594595 Res. dev. = 436.4562

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

/b0 26.52229 1.375178 19.29 0.000 23.78092 29.26365
/b1 -.000923 .0001534 -6.02 0.000 -.0012288 -.0006172

The point estimates and standard errors for β0 and β1 are identical to those reported in example 2
of [R] cnsreg. To get the estimate for β4, we can use nlcom:

. nlcom _b[/b0]/20

_nl_1: _b[/b0]/20

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

_nl_1 1.326114 .0687589 19.29 0.000 1.189046 1.463183

The advantage to using nl is that we do not need to use the constraint command six times.

nl is also a useful tool when doing exploratory data analysis. For example, you may want to run
a regression of y on a function of x, though you have not decided whether to use sqrt(x) or ln(x).
You can use nl to run both regressions without having first to generate two new variables:

. nl (y = {b0} + {b1}*ln(x))

. nl (y = {b0} + {b1}*sqrt(x))

Poi (2008) shows the advantages of using nl when marginal effects of transformed variables are
desired as well.

Weights

Weights are specified in the usual way—analytic and frequency weights as well as iweights
are supported; see [U] 20.22 Weighted estimation. Use of analytic weights implies that the yi have
different variances. Therefore, model (3) may be rewritten as

yi = f(xi,β) + ui, ui ∼ N(0, σ2/wi) (3a)

where wi are (positive) weights, assumed to be known and normalized such that their sum equals the
number of observations. The residual deviance for (3a) is

D(β̂) =
{

1 + ln(2πσ̂2)
}
n−

∑
ln(wi) (5a)
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[compare with (5)], where

nσ̂2 = RSS =
∑

wi
{
yi − f(xi, β̂)

}2

Defining and fitting a model equivalent to (4) when weights have been specified as in (3a) is not
straightforward and has not been attempted. Thus deviances using and not using the lnlsq() option
may not be strictly comparable when analytic weights (other than 0 and 1) are used.

You do not need to modify your substitutable expression in any way to use weights. If, however,
you write a substitutable expression program, then you should account for weights when obtaining
initial values. When nl calls your program, it passes whatever weight expression (if any) was specified
by the user. Here is an outline of a substitutable expression program that accepts weights:

program nl name, rclass
version 12
syntax varlist [aw fw iw] if
...
// Obtain initial values allowing weights
// Use the syntax [‘weight’‘exp’]. For example,
summarize varname [‘weight’‘exp’] ‘if’
regress depvar varlist [‘weight’‘exp’] ‘if’
...
// Return substitutable expression
return local eq "substitutable expression"
return local title "description of estimator"

end

For details on how the syntax command processes weight expressions, see [P] syntax.

Potential errors
nl is reasonably robust to the inability of your nonlinear function to be evaluated at some parameter

values. nl does assume that your function can be evaluated at the initial values of the parameters. If
your function cannot be evaluated at the initial values, an error message is issued with return code
480. Recall that if you do not specify an initial value for a parameter, then nl initializes it to zero.
Many nonlinear functions cannot be evaluated when some parameters are zero, so in those cases
specifying alternative initial values is crucial.

Thereafter, as nl changes the parameter values, it monitors your function for unexpected missing
values. If these are detected, nl backs up. That is, nl finds a point between the previous, known-to-
be-good parameter vector and the new, known-to-be-bad vector at which the function can be evaluated
and continues its iterations from that point.

nl requires that once a parameter vector is found where the predictions can be calculated, small
changes to the parameter vector be made to calculate numeric derivatives. If a boundary is encountered
at this point, an error message is issued with return code 481.

When specifying lnlsq(), an attempt to take logarithms of yi − k when yi ≤ k results in an
error message with return code 482.

If iterate() iterations are performed and estimates still have not converged, results are presented
with a warning, and the return code is set to 430.

If you use the programmed substitutable expression version of nl with a function evaluator program,
or vice versa, Stata issues an error message. Verify that you are using the syntax appropriate for the
program you have.
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General comments on fitting nonlinear models

Achieving convergence is often problematic. For example, a unique minimum of the sum-of-
squares function may not exist. Much literature exists on different algorithms that have been used,
on strategies for obtaining good initial parameter values, and on tricks for parameterizing the model
to make its behavior as linear-like as possible. Selected references are Kennedy and Gentle (1980,
chap. 10) for computational matters and Ross (1990) and Ratkowsky (1983) for all three aspects.
Ratkowsky’s book is particularly clear and approachable, with useful discussion on the meaning and
practical implications of intrinsic and parameter-effects nonlinearity. An excellent text on nonlinear
estimation is Gallant (1987). Also see Davidson and MacKinnon (1993 and 2004).

To enhance the success of nl, pay attention to the form of the model fit, along the lines of
Ratkowsky and Ross. For example, Ratkowsky (1983, 49–59) analyzes three possible three-parameter
yield-density models for plant growth:

E(yi) =

 (α+ βxi)−1/θ

(α+ βxi + γx2
i )
−1

(α+ βxφi )−1

All three models give similar fits. However, he shows that the second formulation is dramatically
more linear-like than the other two and therefore has better convergence properties. In addition, the
parameter estimates are virtually unbiased and normally distributed, and the asymptotic approximation
to the standard errors, correlations, and confidence intervals is much more accurate than for the other
models. Even within a given model, the way the parameters are expressed (for example, φxi or eθxi )
affects the degree of linearity and convergence behavior.

Function evaluator programs

Occasionally, a nonlinear function may be so complex that writing a substitutable expression for it
is impractical. For example, there could be many parameters in the model. Alternatively, if you are
implementing a two-step estimator, writing a substitutable expression may be altogether impossible.
Function evaluator programs can be used in these situations.

nl will pass to your function evaluator program a list of variables, a weight expression, a variable
marking the estimation sample, and a vector of parameters. Your program is to replace the dependent
variable, which is the first variable in the variables list, with the values of the nonlinear function
evaluated at those parameters. As with substitutable expression programs, the first two letters of the
name must be nl.

To focus on the mechanics of the function evaluator program, again let’s compare the CES production
function to the previous examples. The function evaluator program is
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program nlces2
version 12
syntax varlist(min=3 max=3) if, at(name)
local logout : word 1 of ‘varlist’
local capital : word 2 of ‘varlist’
local labor : word 3 of ‘varlist’
// Retrieve parameters out of at matrix
tempname b0 rho delta
scalar ‘b0’ = ‘at’[1, 1]
scalar ‘rho’ = ‘at’[1, 2]
scalar ‘delta’ = ‘at’[1, 3]
tempvar kterm lterm
generate double ‘kterm’ = ‘delta’*‘capital’^(-1*‘rho’) ‘if’
generate double ‘lterm’ = (1-‘delta’)*‘labor’^(-1*‘rho’) ‘if’
// Fill in dependent variable
replace ‘logout’ = ‘b0’ - 1/‘rho’*ln(‘kterm’ + ‘lterm’) ‘if’

end

Unlike the previous nlces program, this one is not declared to be r-class. The syntax statement
again accepts three variables: one for log output, one for capital, and one for labor. An if exp is
again required because nl will pass a binary variable marking the estimation sample. All function
evaluator programs must accept an option named at() that takes a name as an argument—that is
how nl passes the parameter vector to your program.

The next part of the program retrieves the output, labor, and capital variables from the variables
list. It then breaks up the temporary matrix at and retrieves the parameters b0, rho, and delta. Pay
careful attention to the order in which the parameters refer to the columns of the at matrix because
that will affect the syntax you use with nl. The temporary names you use inside this program are
immaterial, however.

The rest of the program computes the nonlinear function, using some temporary variables to hold
intermediate results. The final line of the program then replaces the dependent variable with the values
of the function. Notice the use of ‘if’ to restrict attention to the estimation sample. nl makes a
copy of your dependent variable so that when the command is finished your data are left unchanged.

To use the program and fit your model, you type

. use http://www.stata-press.com/data/r12/production, clear

. nl ces2 @ lnoutput capital labor, parameters(b0 rho delta)
> initial(b0 0 rho 1 delta 0.5)

The output is again identical to that shown in example 1. The order in which the parameters were
specified in the parameters() option is the same in which they are retrieved from the at matrix in
the program. To initialize them, you simply list the parameter name, a space, the initial value, and
so on.

If you use the nparameters() option instead of the parameters() option, the parameters are
named b1, b2, . . . , bk, where k is the number of parameters. Thus you could have typed

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(b1 0 b2 1 b3 0.5)

With that syntax, the parameters called b0, rho, and delta in the program will be labeled b1, b2,
and b3, respectively. In programming situations or if there are many parameters, instead of listing
the parameter names and initial values in the initial() option, you may find it more convenient
to pass a column vector. In those cases, you could type

. matrix myvals = (0, 1, 0.5)

. nl ces2 @ lnoutput capital labor, nparameters(3) initial(myvals)
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In summary, a function evaluator program receives a list of variables, the first of which is the
dependent variable that you are to replace with the values of your nonlinear function. Additionally,
it must accept an if exp, as well as an option named at that will contain the vector of parameters
at which nl wants the function evaluated. You are then free to do whatever is necessary to evaluate
your function and replace the dependent variable.

If you wish to use weights, your function evaluator program’s syntax statement must accept
them. If your program consists only of, for example, generate statements, you need not do anything
with the weights passed to your program. However, if in calculating the nonlinear function you
use commands such as summarize or regress, then you will want to use the weights with those
commands.

As with substitutable expression programs, nl will pass to it any options specified that nl does
not accept, providing you with a way to pass more information to your function.

Technical note

Before version 9 of Stata, the nl command used a different syntax, which required you to write
an nlfcn program, and it did not have a syntax for interactive use other than the seven functions that
were built-in. The old syntax of nl still works, and you can still use those nlfcn programs. If nl
does not see a colon, an at sign, or a set of parentheses surrounding the equation in your command,
it assumes that the old syntax is being used.

The current version of nl uses scalars and matrices to store intermediate calculations instead of
local and global macros as the old version did, so the current version produces more accurate results.
In practice, however, any discrepancies are likely to be small.
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Saved results
nl saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq model) number of equations in overall model test; always 0
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(df t) total degrees of freedom
e(mss) model sum of squares
e(rss) residual sum of squares
e(tss) total sum of squares
e(mms) model mean square
e(msr) residual mean square
e(ll) log likelihood assuming i.i.d. normal errors
e(r2) R-squared
e(r2 a) adjusted R-squared
e(rmse) root mean squared error
e(dev) residual deviance
e(N clust) number of clusters
e(lnlsq) value of lnlsq if specified
e(log t) 1 if lnlsq specified, 0 otherwise
e(gm 2) square of geometric mean of (y−k) if lnlsq; 1 otherwise
e(cj) position of constant in e(b) or 0 if no constant
e(delta) relative change used to compute derivatives
e(rank) rank of e(V)
e(ic) number of iterations
e(converge) 1 if converged, 0 otherwise

Macros
e(cmd) nl
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title 2) secondary title in estimation output
e(clustvar) name of cluster variable
e(hac kernel) HAC kernel
e(hac lag) HAC lag
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(type) 1 = interactively entered expression

2 = substitutable expression program
3 = function evaluator program

e(sexp) substitutable expression
e(params) names of parameters
e(funcprog) function evaluator program
e(rhs) contents of variables()
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(init) initial values vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
nl is implemented as an ado-file.

The derivation here is based on Davidson and MacKinnon (2004, chap. 6). Let β denote the k× 1
vector of parameters, and write the regression function using matrix notation as y = f(x,β) + u so
that the objective function can be written as

SSR(β) = {y − f(x,β)}′D {y − f(x,β)}

The D matrix contains the weights and is defined in [R] regress; if no weights are specified, then D
is the N ×N identity matrix. Taking a second-order Taylor series expansion centered at β0 yields

SSR(β) ≈ SSR(β0) + g′(β0)(β− β0) +
1
2

(β− β0)′H(β0)(β− β0) (8)

where g(β0) denotes the k × 1 gradient of SSR(β) evaluated at β0 and H(β0) denotes the k × k
Hessian of SSR(β) evaluated at β0. Letting X denote the N × k matrix of derivatives of f(x,β)
with respect to β, the gradient g(β) is

g(β) = −2X′Du (9)

X and u are obviously functions of β, though for notational simplicity that dependence is not shown
explicitly. The (m,n) element of the Hessian can be written

Hmn(β) = −2
i=N∑
i=1

dii

[
∂2fi

∂βm∂βn
ui −XimXin

]
(10)

where dii is the ith diagonal element of D. As discussed in Davidson and MacKinnon (2004, chap. 6),
the first term inside the brackets of (10) has expectation zero, so the Hessian can be approximated as

H(β) = 2X′DX (11)

Differentiating the Taylor series expansion of SSR(β) shown in (8) yields the first-order condition
for a minimum

g(β0) + H(β0)(β− β0) = 0

which suggests the iterative procedure

βj+1 = βj − αH−1(βj)g(βj) (12)

where α is a “step size” parameter chosen at each iteration to improve convergence. Using (9) and
(11), we can write (12) as

βj+1 = βj + α(X′DX)−1X′Du (13)

where X and u are evaluated at βj . Apart from the scalar α, the second term on the right-hand
side of (13) can be computed via a (weighted) regression of the columns of X on the errors. nl
computes the derivatives numerically and then calls regress. At each iteration, α is set to one, and
a candidate value β∗j+1 is computed by (13). If SSR(β∗j+1) < SSR(βj), then βj+1 = β∗j+1 and the
iteration is complete. Otherwise, α is halved, a new β∗j+1 is calculated, and the process is repeated.
Convergence is declared when α|βj+1,m| ≤ ε(|βjm|+ τ) for all m = 1, . . . , k. nl uses τ = 10−3

and, by default, ε = 10−5, though you can specify an alternative value of ε with the eps() option.
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As derived, for example, in Davidson and MacKinnon (2004, chap. 6), an expedient way to
obtain the covariance matrix is to compute u and the columns of X at the final estimate β̂ and then
regress that u on X. The covariance matrix of the estimated parameters of that regression serves
as an estimate of Var(β̂). If that regression employs a robust covariance matrix estimator, then the
covariance matrix for the parameters of the nonlinear regression will also be robust.

All other statistics are calculated analogously to those in linear regression, except that the nonlinear
function f(xi,β) plays the role of the linear function x′iβ. See [R] regress.

This command supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] nl postestimation — Postestimation tools for nl

[R] gmm — Generalized method of moments estimation

[R] ml — Maximum likelihood estimation

[R] nlcom — Nonlinear combinations of estimators

[R] nlsur — Estimation of nonlinear systems of equations

[R] regress — Linear regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

nl postestimation — Postestimation tools for nl

Description
The following postestimation commands are available after nl:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest1 likelihood-ratio test
margins2 marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions and residuals
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.
2 You must specify the variables() option with nl.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

predict
[

type
] {

stub* | newvar1 . . . newvark
} [

if
] [

in
]
, scores

where k is the number of parameters in the model.

statistic Description

Main

yhat fitted values; the default
residuals residuals
pr(a,b) Pr(yj | a < yj < b)

e(a,b) E(yj | a < yj < b)

ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

yhat, the default, calculates the fitted values.

residuals calculates the residuals.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated. a and b are specified as they
are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

scores calculates the scores. The jth new variable created will contain the score for the jth parameter
in e(b).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] nl — Nonlinear least-squares estimation

[U] 20 Estimation and postestimation commands



Title

nlcom — Nonlinear combinations of estimators

Syntax

Nonlinear combination of estimators—one expression

nlcom
[

name:
]
exp

[
, options

]
Nonlinear combinations of estimators—more than one expression

nlcom (
[

name:
]
exp)

[
(
[

name:
]
exp

[
, options

]
options Description

level(#) set confidence level; default is level(95)

iterate(#) maximum number of iterations
post post estimation results
display options control column formats and line width

noheader suppress output header

noheader does not appear in the dialog box.

The second syntax means that if more than one expression is specified, each must be surrounded by
parentheses. The optional name is any valid Stata name and labels the transformations.

exp is a possibly nonlinear expression containing
b[coef]
b[eqno:coef]

[eqno]coef
[eqno] b[coef]

eqno is
##
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an
interaction indicator, or an interaction involving continuous variables. Level indicators identify one
level of a factor variable and interaction indicators identify one combination of levels of an interaction;
see [U] 11.4.3 Factor variables. coef may contain time-series operators; see [U] 11.4.4 Time-series
varlists.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.
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Menu
Statistics > Postestimation > Nonlinear combinations of estimates

Description

nlcom computes point estimates, standard errors, test statistics, significance levels, and confidence
intervals for (possibly) nonlinear combinations of parameter estimates after any Stata estimation
command. Results are displayed in the usual table format used for displaying estimation results.
Calculations are based on the “delta method”, an approximation appropriate in large samples.

nlcom can be used with svy estimation results; see [SVY] svy postestimation.

Options
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

iterate(#) specifies the maximum number of iterations used to find the optimal step size in
calculating numerical derivatives of the transformation(s) with respect to the original parameters.
By default, the maximum number of iterations is 100, but convergence is usually achieved after
only a few iterations. You should rarely have to use this option.

post causes nlcom to behave like a Stata estimation (eclass) command. When post is specified,
nlcom will post the vector of transformed estimators and its estimated variance–covariance matrix to
e(). This option, in essence, makes the transformation permanent. Thus you could, after posting,
treat the transformed estimation results in the same way as you would treat results from other
Stata estimation commands. For example, after posting, you could redisplay the results by typing
nlcom without any arguments, or use test to perform simultaneous tests of hypotheses on linear
combinations of the transformed estimators; see [R] test.
Specifying post clears out the previous estimation results, which can be recovered only by refitting
the original model or by storing the estimation results before running nlcom and then restoring
them; see [R] estimates store.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

The following option is available with nlcom but is not shown in the dialog box:

noheader suppresses the output header.

Remarks
Remarks are presented under the following headings:

Introduction
Basics
Using the post option
Reparameterizing ML estimators for univariate data
nlcom versus eform
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Introduction

nlcom and predictnl both use the delta method. They take nonlinear transformations of the
estimated parameter vector from some fitted model and apply the delta method to calculate the variance,
standard error, Wald test statistic, etc., of the transformations. nlcom is designed for functions of the
parameters, and predictnl is designed for functions of the parameters and of the data, that is, for
predictions.

nlcom generalizes lincom (see [R] lincom) in two ways. First, nlcom allows the transformations
to be nonlinear. Second, nlcom can be used to simultaneously estimate many transformations (whether
linear or nonlinear) and to obtain the estimated variance–covariance matrix of these transformations.

Basics
In [R] lincom, the following regression was performed:

. use http://www.stata-press.com/data/r12/regress

. regress y x1 x2 x3

Source SS df MS Number of obs = 148
F( 3, 144) = 96.12

Model 3259.3561 3 1086.45203 Prob > F = 0.0000
Residual 1627.56282 144 11.3025196 R-squared = 0.6670

Adj R-squared = 0.6600
Total 4886.91892 147 33.2443464 Root MSE = 3.3619

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.457113 1.07461 1.36 0.177 -.666934 3.581161
x2 2.221682 .8610358 2.58 0.011 .5197797 3.923583
x3 -.006139 .0005543 -11.08 0.000 -.0072345 -.0050435

_cons 36.10135 4.382693 8.24 0.000 27.43863 44.76407

Then lincom was used to estimate the difference between the coefficients of x1 and x2:

. lincom _b[x2] - _b[x1]

( 1) - x1 + x2 = 0

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) .7645682 .9950282 0.77 0.444 -1.20218 2.731316

It was noted, however, that nonlinear expressions are not allowed with lincom:

. lincom _b[x2]/_b[x1]
not possible with test
r(131);

Nonlinear transformations are instead estimated using nlcom:

. nlcom _b[x2]/_b[x1]

_nl_1: _b[x2]/_b[x1]

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

_nl_1 1.524714 .9812848 1.55 0.122 -.4148688 3.464297
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Technical note

The notation b[name] is the standard way in Stata to refer to regression coefficients; see
[U] 13.5 Accessing coefficients and standard errors. Some commands, such as lincom and test,
allow you to drop the b[] and just refer to the coefficients by name. nlcom, however, requires the
full specification b[name].

Returning to our linear regression example, nlcom also allows simultaneous estimation of more
than one combination:

. nlcom (_b[x2]/_b[x1]) (_b[x3]/_b[x1]) (_b[x3]/_b[x2])

_nl_1: _b[x2]/_b[x1]
_nl_2: _b[x3]/_b[x1]
_nl_3: _b[x3]/_b[x2]

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

_nl_1 1.524714 .9812848 1.55 0.122 -.4148688 3.464297
_nl_2 -.0042131 .0033483 -1.26 0.210 -.0108313 .002405
_nl_3 -.0027632 .0010695 -2.58 0.011 -.0048772 -.0006493

We can also label the transformations to produce more informative names in the estimation table:

. nlcom (ratio21:_b[x2]/_b[x1]) (ratio31:_b[x3]/_b[x1]) (ratio32:_b[x3]/_b[x2])

ratio21: _b[x2]/_b[x1]
ratio31: _b[x3]/_b[x1]
ratio32: _b[x3]/_b[x2]

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

ratio21 1.524714 .9812848 1.55 0.122 -.4148688 3.464297
ratio31 -.0042131 .0033483 -1.26 0.210 -.0108313 .002405
ratio32 -.0027632 .0010695 -2.58 0.011 -.0048772 -.0006493

nlcom saves the vector of estimated combinations and its estimated variance–covariance matrix
in r().

. matrix list r(b)

r(b)[1,3]
ratio21 ratio31 ratio32

c1 1.5247143 -.00421315 -.00276324

. matrix list r(V)

symmetric r(V)[3,3]
ratio21 ratio31 ratio32

ratio21 .96291982
ratio31 -.00287781 .00001121
ratio32 -.00014234 2.137e-06 1.144e-06
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Using the post option

When used with the post option, nlcom saves the estimation vector and variance–covariance
matrix in e(), making the transformation permanent:

. quietly nlcom (ratio21:_b[x2]/_b[x1]) (ratio31:_b[x3]/_b[x1])
> (ratio32:_b[x3]/_b[x2]), post

. matrix list e(b)

e(b)[1,3]
ratio21 ratio31 ratio32

y1 1.5247143 -.00421315 -.00276324

. matrix list e(V)

symmetric e(V)[3,3]
ratio21 ratio31 ratio32

ratio21 .96291982
ratio31 -.00287781 .00001121
ratio32 -.00014234 2.137e-06 1.144e-06

After posting, we can proceed as if we had just run a Stata estimation (eclass) command. For
instance, we can replay the results,

. nlcom

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

ratio21 1.524714 .9812848 1.55 0.122 -.4148688 3.464297
ratio31 -.0042131 .0033483 -1.26 0.210 -.0108313 .002405
ratio32 -.0027632 .0010695 -2.58 0.011 -.0048772 -.0006493

or perform other postestimation tasks in the transformed metric, this time making reference to the
new “coefficients”:

. display _b[ratio31]
-.00421315

. estat vce, correlation

Correlation matrix of coefficients of nlcom model

e(V) ratio21 ratio31 ratio32

ratio21 1.0000
ratio31 -0.8759 1.0000
ratio32 -0.1356 0.5969 1.0000

. test _b[ratio21] = 1

( 1) ratio21 = 1

F( 1, 144) = 0.29
Prob > F = 0.5937

We see that testing b[ratio21]=1 in the transformed metric is equivalent to testing using testnl
b[x2]/ b[x1]=1 in the original metric:

. quietly reg y x1 x2 x3

. testnl _b[x2]/_b[x1] = 1

(1) _b[x2]/_b[x1] = 1

F(1, 144) = 0.29
Prob > F = 0.5937

We needed to refit the regression model to recover the original parameter estimates.
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Technical note
In a previous technical note, we mentioned that commands such as lincom and test permit

reference to name instead of b[name]. This is not the case when lincom and test are used after
nlcom, post. In the above, we used

. test _b[ratio21] = 1

rather than
. test ratio21 = 1

which would have returned an error. Consider this a limitation of Stata. For the shorthand notation
to work, you need a variable named name in the data. In nlcom, however, name is just a coefficient
label that does not necessarily correspond to any variable in the data.

Reparameterizing ML estimators for univariate data

When run using only a response and no covariates, Stata’s maximum likelihood (ML) estimation
commands will produce ML estimates of the parameters of some assumed univariate distribution for
the response. The parameterization, however, is usually not one we are used to dealing with in a
nonregression setting. In such cases, nlcom can be used to transform the estimation results from a
regression model to those from a maximum likelihood estimation of the parameters of a univariate
probability distribution in a more familiar metric.

Example 1

Consider the following univariate data on Y = # of traffic accidents at a certain intersection in a
given year:

. use http://www.stata-press.com/data/r12/trafint

. summarize accidents

Variable Obs Mean Std. Dev. Min Max

accidents 12 13.83333 14.47778 0 41

A quick glance of the output from summarize leads us to quickly reject the assumption that Y is
distributed as Poisson because the estimated variance of Y is much greater than the estimated mean
of Y .

Instead, we choose to model the data as univariate negative binomial, of which a common
parameterization is

Pr(Y = y) =
Γ(r + y)

Γ(r)Γ(y + 1)
pr(1− p)y 0 ≤ p ≤ 1, r > 0, y = 0, 1, . . .

with

E(Y ) =
r(1− p)

p
Var(Y ) =

r(1− p)
p2

There exist no closed-form solutions for the maximum likelihood estimates of p and r, yet they
may be estimated by the iterative method of Newton–Raphson. One way to get these estimates would
be to write our own Newton–Raphson program for the negative binomial. Another way would be to
write our own ML evaluator; see [R] ml.
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The easiest solution, however, would be to use Stata’s existing negative binomial ML regres-
sion command, nbreg. The only problem with this solution is that nbreg estimates a different
parameterization of the negative binomial, but we can worry about that later.

. nbreg accidents

Fitting Poisson model:

Iteration 0: log likelihood = -105.05361
Iteration 1: log likelihood = -105.05361

Fitting constant-only model:

Iteration 0: log likelihood = -43.948619
Iteration 1: log likelihood = -43.891483
Iteration 2: log likelihood = -43.89144
Iteration 3: log likelihood = -43.89144

Fitting full model:

Iteration 0: log likelihood = -43.89144
Iteration 1: log likelihood = -43.89144

Negative binomial regression Number of obs = 12
LR chi2(0) = 0.00

Dispersion = mean Prob > chi2 = .
Log likelihood = -43.89144 Pseudo R2 = 0.0000

accidents Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 2.627081 .3192233 8.23 0.000 2.001415 3.252747

/lnalpha .1402425 .4187147 -.6804233 .9609083

alpha 1.150553 .4817534 .5064026 2.61407

Likelihood-ratio test of alpha=0: chibar2(01) = 122.32 Prob>=chibar2 = 0.000

. nbreg, coeflegend

Negative binomial regression Number of obs = 12
LR chi2(0) = 0.00

Dispersion = mean Prob > chi2 = .
Log likelihood = -43.89144 Pseudo R2 = 0.0000

accidents Coef. Legend

_cons 2.627081 _b[accidents:_cons]

/lnalpha .1402425 _b[lnalpha:_cons]

alpha 1.150553

Likelihood-ratio test of alpha=0: chibar2(01) = 122.32 Prob>=chibar2 = 0.000

From this output, we see that, when used with univariate data, nbreg estimates a regression
intercept, β0, and the logarithm of some parameter α. This parameterization is useful in regression
models: β0 is the intercept meant to be augmented with other terms of the linear predictor, and α is
an overdispersion parameter used for comparison with the Poisson regression model.

However, we need to transform (β0, lnα) to (p, r). Examining Methods and formulas of [R] nbreg
reveals the transformation as

p = {1 + α exp(β0)}−1 r = α−1

which we apply using nlcom:
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. nlcom (p:1/(1 + exp([lnalpha]_b[_cons] + _b[_cons])))
> (r:exp(-[lnalpha]_b[_cons]))

p: 1/(1 + exp([lnalpha]_b[_cons] + _b[_cons]))
r: exp(-[lnalpha]_b[_cons])

accidents Coef. Std. Err. z P>|z| [95% Conf. Interval]

p .0591157 .0292857 2.02 0.044 .0017168 .1165146
r .8691474 .3639248 2.39 0.017 .1558679 1.582427

Given the invariance of maximum likelihood estimators and the properties of the delta method, the
above parameter estimates, standard errors, etc., are precisely those we would have obtained had we
instead performed the Newton–Raphson optimization in the (p, r) metric.

Technical note
Note how we referred to the estimate of lnα above as [lnalpha] b[ cons]. This is not entirely

evident from the output of nbreg, which is why we redisplayed the results using the coeflegend
option so that we would know how to refer to the coefficients; [U] 13.5 Accessing coefficients and
standard errors.

nlcom versus eform
Many Stata estimation commands allow you to display exponentiated regression coefficients, some

by default, some optionally. Known as “eform” in Stata terminology, this reparameterization serves
many uses: it gives odds ratios for logistic models, hazard ratios in survival models, incidence-rate
ratios in Poisson models, and relative-risk ratios in multinomial logit models, to name a few.

For example, consider the following estimation taken directly from the technical note in [R] poisson:

. use http://www.stata-press.com/data/r12/airline

. gen lnN = ln(n)

. poisson injuries XYZowned lnN

Iteration 0: log likelihood = -22.333875
Iteration 1: log likelihood = -22.332276
Iteration 2: log likelihood = -22.332276

Poisson regression Number of obs = 9
LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries Coef. Std. Err. z P>|z| [95% Conf. Interval]

XYZowned .6840667 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154285

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603
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When we replay results and specify the irr (incidence-rate ratios) option,

. poisson, irr

Poisson regression Number of obs = 9
LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries IRR Std. Err. z P>|z| [95% Conf. Interval]

XYZowned 1.981921 .7721322 1.76 0.079 .9235678 4.253085
lnN 4.154402 1.547579 3.82 0.000 2.00181 8.621728

_cons 129.5272 91.84126 6.86 0.000 32.2713 519.8828

we obtain the exponentiated regression coefficients and their estimated standard errors.

Contrast this with what we obtain if we exponentiate the coefficients manually by using nlcom:

. nlcom (E_XYZowned:exp(_b[XYZowned])) (E_lnN:exp(_b[lnN]))

E_XYZowned: exp(_b[XYZowned])
E_lnN: exp(_b[lnN])

injuries Coef. Std. Err. z P>|z| [95% Conf. Interval]

E_XYZowned 1.981921 .7721322 2.57 0.010 .4685701 3.495273
E_lnN 4.154402 1.547579 2.68 0.007 1.121203 7.187602

There are three things to note when comparing poisson, irr (and eform in general) with nlcom:

1. The exponentiated coefficients and standard errors are identical. This is certainly good news.

2. The Wald test statistic (z) and level of significance are different. When using poisson, irr and
other related eform options, the Wald test does not change from what you would have obtained
without the eform option, and you can see this by comparing both versions of the poisson output
given previously.

When you use eform, Stata knows that what is usually desired is a test of

H0 : exp(β) = 1

and not the uninformative-by-comparison

H0 : exp(β) = 0

The test of H0 : exp(β) = 1 is asymptotically equivalent to a test of H0 : β = 0, the Wald test in
the original metric, but the latter has better small-sample properties. Thus if you specify eform,
you get a test of H0 : β = 0.

nlcom, however, is general. It does not attempt to infer the test of greatest interest for a given
transformation, and so a test of

H0 : transformed coefficient = 0

is always given, regardless of the transformation.

3. You may be surprised to see that, even though the coefficients and standard errors are identical,
the confidence intervals (both 95%) are different.
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eform confidence intervals are standard confidence intervals with the endpoints transformed. For
example, the confidence interval for the coefficient on lnN is [0.694, 2.154], whereas the confidence
interval for the incidence-rate ratio due to lnN is [exp(0.694), exp(2.154)] = [2.002, 8.619], which,
except for some roundoff error, is what we see from the output of poisson, irr. For exponentiated
coefficients, confidence intervals based on transform-the-endpoints methodology generally have
better small-sample properties than their asymptotically equivalent counterparts.

The transform-the-endpoints method, however, gives valid coverage only when the transformation
is monotonic. nlcom uses a more general and asymptotically equivalent method for calculating
confidence intervals, as described in Methods and formulas.

Saved results
nlcom saves the following in r():

Scalars
r(N) number of observations
r(df r) residual degrees of freedom

Matrices
r(b) vector of transformed coefficients
r(V) estimated variance–covariance matrix of the transformed coefficients

If post is specified, nlcom also saves the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(N strata) number of strata L, if used after svy
e(N psu) number of sampled PSUs n, if used after svy
e(rank) rank of e(V)

Macros
e(cmd) nlcom
e(predict) program used to implement predict
e(properties) b V

Matrices
e(b) vector of transformed coefficients
e(V) estimated variance–covariance matrix of the transformed coefficients
e(V srs) simple-random-sampling-without-replacement (co)variance V̂srswor, if svy

e(V srswr) simple-random-sampling-with-replacement (co)variance V̂srswr, if svy and fpc()

e(V msp) misspecification (co)variance V̂msp, if svy and available
Functions

e(sample) marks estimation sample

Methods and formulas
nlcom is implemented as an ado-file.

Given a 1×k vector of parameter estimates, θ̂ = (θ̂1, . . . , θ̂k), consider the estimated p-dimensional
transformation

g(θ̂) = [g1(θ̂), g2(θ̂), . . . , gp(θ̂)]

The estimated variance–covariance of g(θ̂) is given by

V̂ar
{
g(θ̂)

}
= GVG′
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where G is the p× k matrix of derivatives for which

Gij =
∂gi(θ)
∂θj

∣∣∣∣
θ=θ̂

i = 1, . . . , p j = 1, . . . , k

and V is the estimated variance–covariance matrix of θ̂. Standard errors are obtained as the square
roots of the variances.

The Wald test statistic for testing
H0 : gi(θ) = 0

versus the two-sided alternative is given by

Zi =
gi(θ̂)[

V̂arii
{
g(θ̂)

}]1/2
When the variance–covariance matrix of θ̂ is an asymptotic covariance matrix, Zi is approximately
distributed as Gaussian. For linear regression, Zi is taken to be approximately distributed as t1,r
where r is the residual degrees of freedom from the original fitted model.

A (1− α)× 100% confidence interval for gi(θ) is given by

gi(θ̂)± zα/2
[
V̂arii

{
g(θ̂)

}]1/2
for those cases where Zi is Gaussian and

gi(θ̂)± tα/2,r
[
V̂arii

{
g(θ̂)

}]1/2
for those cases where Zi is t distributed. zp is the 1− p quantile of the standard normal distribution,
and tp,r is the 1− p quantile of the t distribution with r degrees of freedom.
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Also see
[R] lincom — Linear combinations of estimators

[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[U] 20 Estimation and postestimation commands
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Title

nlogit — Nested logit regression

Syntax

Nested logit regression

nlogit depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

|| lev1 equation[
|| lev2 equation . . .

] ]
|| altvar:

[
byaltvarlist

]
, case(varname)

[
options

]
where the syntax of lev# equation is

altvar:
[

byaltvarlist
] [

, base(# | lbl) estconst
]

Create variable based on specification of branches

nlogitgen newaltvar = altvar (branchlist)
[
, nolog

]
where branchlist is

branch, branch
[
, branch . . .

]
and branch is[

label:
]

alternative
[
| alternative

[
| alternative . . .

] ]

Display tree structure

nlogittree altvarlist
[

if
] [

in
] [

weight
] [

, choice(depvar) nolabel nobranches
]
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options Description

Model
∗case(varname) use varname to identify cases
base(# | lbl) use the specified level or label of altvar as the base alternative for

the bottom level
noconstant suppress the constant terms for the bottom-level alternatives
nonnormalized use the nonnormalized parameterization
altwise use alternativewise deletion instead of casewise deletion
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

notree suppress display of tree-structure output; see also
nolabel and nobranches

nocnsreport do not display constraints
display options control column formats and line width

Maximization

maximize options control the maximization process; seldom used

∗case(varname) is required.
bootstrap, by, jackknife, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed with nlogit, and fweights are allowed with nlogittree;

see [U] 11.1.6 weight. Weights for nlogit must be constant within case.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
nlogit

Statistics > Categorical outcomes > Nested logit regression

nlogitgen

Statistics > Categorical outcomes > Setup for nested logit regression

nlogittree

Statistics > Categorical outcomes > Display nested logit tree structure

Description
nlogit performs full information maximum-likelihood estimation for nested logit models. These

models relax the assumption of independently distributed errors and the independence of irrelevant
alternatives inherent in conditional and multinomial logit models by clustering similar alternatives
into nests.
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By default, nlogit uses a parameterization that is consistent with random utility maximization
(RUM). Before version 10 of Stata, a nonnormalized version of the nested logit model was fit, which
you can request by specifying the nonnormalized option.

You must use nlogitgen to generate a new categorical variable to specify the branches of the
decision tree before calling nlogit.

Options

Specification and options for lev# equation

altvar is a variable identifying alternatives at this level of the hierarchy.

byaltvarlist specifies the variables to be used to compute the by-alternative regression coefficients for
that level. For each variable specified in the variable list, there will be one regression coefficient
for each alternative of that level of the hierarchy. If the variable is constant across each alternative
(a case-specific variable), the regression coefficient associated with the base alternative is not
identifiable. These regression coefficients are labeled as (base) in the regression table. If the
variable varies among the alternatives, a regression coefficient is estimated for each alternative.

base(# | lbl) can be specified in each level equation where it identifies the base alternative to be
used at that level. The default is the alternative that has the highest frequency.

If vce(bootstrap) or vce(jackknife) is specified, you must specify the base alternative for
each level that has a byaltvarlist or if the constants will be estimated. Doing so ensures that the
same model is fit with each call to nlogit.

estconst applies to all the level equations except the bottom-level equation. Specifying estconst
requests that constants for each alternative (except the base alternative) be estimated. By default,
no constant is estimated at these levels. Constants can be estimated in only one level of the tree
hierarchy. If you specify estconst for one of the level equations, you must specify noconstant
for the bottom-level equation.

Options for nlogit

� � �
Model �

case(varname) specifies the variable that identifies each case. case() is required.

base(# | lbl) can be specified in each level equation where it identifies the base alternative to be
used at that level. The default is the alternative that has the highest frequency.

If vce(bootstrap) or vce(jackknife) is specified, you must specify the base alternative for
each level that has a byaltvarlist or if the constants will be estimated. Doing so ensures that the
same model is fit with each call to nlogit.

noconstant applies only to the equation defining the bottom level of the hierarchy. By default,
constants are estimated for each alternative of altvar, less the base alternative. To suppress the
constant terms for this level, specify noconstant. If you do not specify noconstant, you cannot
specify estconst for the higher-level equations.

nonnormalized requests a nonnormalized parameterization of the model that does not scale the
inclusive values by the degree of dissimilarity of the alternatives within each nest. Use this
option to replicate results from older versions of Stata. The default is to use the RUM–consistent
parameterization.
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altwise specifies that alternativewise deletion be used when marking out observations because of
missing values in your variables. The default is to use casewise deletion. This option does not
apply to observations that are marked out by the if or in qualifier or the by prefix.

constraints(constraints); see [R] estimation options.

The inclusive-valued/dissimilarity parameters are parameterized as ml ancillary parameters. They
are labeled as

[
alternative tau

]
const, where alternative is one of the alternatives defining a

branch in the tree. To constrain the inclusive-valued/dissimilarity parameter for alternative a1 to
be, say, equal to alternative a2, you would use the following syntax:

. constraint 1 [a1_tau]_cons = [a2_tau]_cons

. nlogit ..., constraints(1)

collinear prevents collinear variables from being dropped. Use this option when you know that
you have collinear variables and you are applying constraints() to handle the rank reduction.
See [R] estimation options for details on using collinear with constraints().

nlogit will not allow you to specify an independent variable in more than one level equation.
Specifying the collinear option will allow execution to proceed in this case, but it is your
responsibility to ensure that the parameters are identified.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If vce(robust) or vce(cluster clustvar) is specified, the likelihood-ratio test for the indepen-
dence of irrelevant alternatives (IIA) is not computed.

� � �
Reporting �

level(#); see [R] estimation options.

notree specifies that the tree structure of the nested logit model not be displayed. See also nolabel
and nobranches below for when notree is not specified.

nocnsreport; see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The technique(bhhh) option is not allowed.

Specification and options for nlogitgen

newaltvar and altvar are variables identifying alternatives at each level of the hierarchy.

label defines a label to associate with the branch. If no label is given, a numeric value is used.

alternative specifies an alternative, of altvar specified in the syntax, to be included in the branch. It
is either a numeric value or the label associated with that value. An example of nlogitgen is
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. nlogitgen type = restaurant(fast: 1 | 2,
> family: CafeEccell | LosNortenos | WingsNmore, fancy: 6 | 7)

nolog suppresses the display of the iteration log.

Specification and options for nlogittree� � �
Main �

altvarlist is a list of alternative variables that define the tree hierarchy. The first variable must define
bottom-level alternatives, and the order continues to the variable defining the top-level alternatives.

choice(depvar) defines the choice indicator variable and forces nlogittree to compute and display
choice frequencies for each bottom-level alternative.

nolabel forces nlogittree to suppress value labels in tree-structure output.

nobranches forces nlogittree to suppress drawing branches in the tree-structure output.

Remarks
Remarks are presented under the following headings:

Introduction
Data setup and the tree structure
Estimation
Testing for the IIA
Nonnormalized model

Introduction

nlogit performs full information maximum-likelihood estimation for nested logit models. These
models relax the assumption of independently distributed errors and the IIA inherent in conditional
and multinomial logit models by clustering similar alternatives into nests. Because the nested logit
model is a direct generalization of the alternative-specific conditional logit model (also known as
McFadden’s choice model), you may want to read [R] asclogit before continuing.

By default, nlogit uses a parameterization that is consistent with RUM. Before version 10 of
Stata, a nonnormalized version of the nested logit model was fit, which you can request by specifying
the nonnormalized option. We recommend using the RUM-consistent version of the model for new
projects because it is based on a sound model of consumer behavior.

McFadden (1977, 1981) showed how this model can be derived from a rational choice framework.
Amemiya (1985, chap. 9) contains a nice discussion of how this model can be derived under the
assumption of utility maximization. Hensher, Rose, and Greene (2005) provide a lucid introduction
to choice models including nested logit.

Throughout this entry, we consider a model of restaurant choice. We begin by introducing the
data.

Example 1

We have fictional data on 300 families and their choice of seven local restaurants. Freebirds and
Mama’s Pizza are fast food restaurants; Café Eccell, Los Norteños, and Wings ’N More are family
restaurants; and Christopher’s and Mad Cows are fancy restaurants. We want to model the decision
of where to eat as a function of household income (income, in thousands of dollars), the number
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of children in the household (kids), the rating of the restaurant according to a local restaurant
guide (rating, coded 0–5), the average meal cost per person (cost), and the distance between the
household and the restaurant (distance, in miles). income and kids are attributes of the family,
rating is an attribute of the alternative (the restaurant), and cost and distance are attributes of
the alternative as perceived by the families—that is, each family has its own cost and distance for
each restaurant.

We begin by loading the data and listing some of the variables for the first three families:

. use http://www.stata-press.com/data/r12/restaurant

. describe

Contains data from http://www.stata-press.com/data/r12/restaurant.dta
obs: 2,100

vars: 8 10 Mar 2011 01:17
size: 67,200

storage display value
variable name type format label variable label

family_id float %9.0g family ID
restaurant float %12.0g names choices of restaurants
income float %9.0g household income
cost float %9.0g average meal cost per person
kids float %9.0g number of kids in the household
rating float %9.0g ratings in local restaurant

guide
distance float %9.0g distance between home and

restaurant
chosen float %9.0g 0 no 1 yes

Sorted by: family_id
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. list family_id restaurant chosen kids rating distance in 1/21, sepby(fam)
> abbrev(10)

family_id restaurant chosen kids rating distance

1. 1 Freebirds 1 1 0 1.245553
2. 1 MamasPizza 0 1 1 2.82493
3. 1 CafeEccell 0 1 2 4.21293
4. 1 LosNortenos 0 1 3 4.167634
5. 1 WingsNmore 0 1 2 6.330531
6. 1 Christophers 0 1 4 10.19829
7. 1 MadCows 0 1 5 5.601388

8. 2 Freebirds 0 3 0 4.162657
9. 2 MamasPizza 0 3 1 2.865081

10. 2 CafeEccell 0 3 2 5.337799
11. 2 LosNortenos 1 3 3 4.282864
12. 2 WingsNmore 0 3 2 8.133914
13. 2 Christophers 0 3 4 8.664631
14. 2 MadCows 0 3 5 9.119597

15. 3 Freebirds 1 3 0 2.112586
16. 3 MamasPizza 0 3 1 2.215329
17. 3 CafeEccell 0 3 2 6.978715
18. 3 LosNortenos 0 3 3 5.117877
19. 3 WingsNmore 0 3 2 5.312941
20. 3 Christophers 0 3 4 9.551273
21. 3 MadCows 0 3 5 5.539806

Because each family chose among seven restaurants, there are 7 observations in the dataset for each
family. The variable chosen is coded 0/1, with 1 indicating the chosen restaurant and 0 otherwise.

We could fit a conditional logit model to our data. Because income and kids are constant within
each family, we would use the asclogit command instead of clogit. However, the conditional
logit may be inappropriate. That model assumes that the random errors are independent, and as a
result it forces the odds ratio of any two alternatives to be independent of the other alternatives, a
property known as the IIA. We will discuss the IIA assumption in more detail later.

Assuming that unobserved shocks influencing a decision maker’s attitude toward one alternative
have no effect on his attitudes toward the other alternatives may seem innocuous, but often this
assumption is too restrictive. Suppose that when a family was deciding which restaurant to visit, they
were pressed for time because of plans to attend a movie later. The unobserved shock (being in a
hurry) would raise the likelihood that the family goes to either fast food restaurant (Freebirds or
Mama’s Pizza). Similarly, another family might be choosing a restaurant to celebrate a birthday and
therefore be inclined to attend a fancy restaurant (Christopher’s or Mad Cows).

Nested logit models relax the independence assumption and allow us to group alternatives for
which unobserved shocks may have concomitant effects. Here we suspect that restaurants should be
grouped by type (fast, family, or fancy). The tree structure of a family’s decision about where to eat
might look like this:
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Dining

Fast food
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Family

restaurants

Fancy
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Christopher's

At the bottom of the tree are the individual restaurants, indicating that there are some random
shocks that affect a family’s decision to eat at each restaurant independently. Above the restaurants
are the three types of restaurants, indicating that other random shocks affect the type of restaurant
chosen. As is customary when drawing decision trees, at the top level is one box, representing the
family making the decision.

We use the following terms to describe nested logit models.

level, or decision level, is the level or stage at which a decision is made. The example above has
only two levels. In the first level, a type of restaurant is chosen—fast food, family, or fancy—and
in the second level, a specific restaurant is chosen.

bottom level is the level where the final decision is made. In our example, this is when we choose a
specific restaurant.

alternative set is the set of all possible alternatives at any given decision level.

bottom alternative set is the set of all possible alternatives at the bottom level. This concept is
often referred to as the choice set in the economics-choice literature. In our example, the bottom
alternative set is all seven of the specific restaurants.

alternative is a specific alternative within an alternative set. In the first level of our example, “fast
food” is an alternative. In the second or bottom level, “Mad Cows” is an alternative. Not all
alternatives within an alternative set are available to someone making a choice at a specific stage,
only those that are nested within all higher-level decisions.

chosen alternative is the alternative from an alternative set that we observe someone having chosen.

Technical note

Although decision trees in nested logit analysis are often interpreted as implying that the highest-
level decisions are made first, followed by decisions at lower levels, and finally the decision among
alternatives at the bottom level, no such temporal ordering is implied. See Hensher, Rose, and
Greene (2005, chap. 13). In our example, we are not assuming that families first choose whether to
attend a fast, family, or fancy restaurant and then choose the particular restaurant; we assume merely
that they choose one of the seven restaurants.
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Data setup and the tree structure

To fit a nested logit model, you must first create a variable that defines the structure of your
decision tree.

Example 2

To run nlogit, we need to generate a categorical variable that identifies the first-level set
of alternatives: fast food, family restaurants, or fancy restaurants. We can do so easily by using
nlogitgen.

. nlogitgen type = restaurant(fast: Freebirds | MamasPizza,
> family: CafeEccell | LosNortenos| WingsNmore, fancy: Christophers | MadCows)
new variable type is generated with 3 groups
label list lb_type
lb_type:

1 fast
2 family
3 fancy

. nlogittree restaurant type, choice(chosen)

tree structure specified for the nested logit model

type N restaurant N k

fast 600 Freebirds 300 12
MamasPizza 300 15

family 900 CafeEccell 300 78
LosNortenos 300 75
WingsNmore 300 69

fancy 600 Christophers 300 27
MadCows 300 24

total 2100 300

k = number of times alternative is chosen
N = number of observations at each level

The new categorical variable is type, which takes on value 1 (fast) if restaurant is Freebirds
or Mama’s Pizza; value 2 (family) if restaurant is Café Eccell, Los Norteños, or Wings ’N More;
and value 3 (fancy) otherwise. nlogittree displays the tree structure.

Technical note
We could also use values instead of value labels of restaurant in nlogitgen. Value labels are

optional, and the default value labels for type are type1, type2, and type3. The vertical bar is
also optional.

. use http://www.stata-press.com/data/r12/restaurant, clear

. nlogitgen type = restaurant(1 2, 3 4 5, 6 7)
new variable type is generated with 3 groups
label list lb_type
lb_type:

1 type1
2 type2
3 type3
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. nlogittree restaurant type

tree structure specified for the nested logit model

type N restaurant N

type1 600 Freebirds 300
MamasPizza 300

type2 900 CafeEccell 300
LosNortenos 300
WingsNmore 300

type3 600 Christophers 300
MadCows 300

total 2100

N = number of observations at each level

In our dataset, every family was able to choose among all seven restaurants. However, in other
applications some decision makers may not have been able to choose among all possible alternatives.
For example, two cases may have choice hierarchies of

case 1 case 2
type restaurant type restaurant

fast Freebirds fast Freebirds
MamasPizza MamasPizza

family CafeEccell family LosNortenos
LosNortenos WingsNmore
WingsNmore

fancy Christophers fancy Christophers
MadCows

where the second case does not have the restaurant alternatives Café Eccell or Mad Cows available
to them. The only restriction is that the relationships between higher- and lower-level alternative sets
be the same for all decision makers. In this two-level example, Freebirds and Mama’s Pizza are
classified as fast food restaurants for both cases; Café Eccell, Los Norteños, and Wings ’N More are
family restaurants; and Christopher’s and Mad Cows are fancy restaurants. nlogit requires only that
hierarchy be maintained for all cases.

Estimation

Example 3

With our type variable created that defines the three types of restaurants, we can now examine how
the alternative-specific attributes (cost, rating, and distance) apply to the bottom alternative set
(the seven restaurants) and how family-specific attributes (income and kid) apply to the alternative
set at the first decision level (the three types of restaurants).
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. nlogit chosen cost rating distance || type: income kids, base(family) ||
> restaurant:, noconstant case(family_id)

tree structure specified for the nested logit model

type N restaurant N k

fast 600 Freebirds 300 12
MamasPizza 300 15

family 900 CafeEccell 300 78
LosNortenos 300 75
WingsNmore 300 69

fancy 600 Christophers 300 27
MadCows 300 24

total 2100 300

k = number of times alternative is chosen
N = number of observations at each level

Iteration 0: log likelihood = -541.93581
(output omitted )

Iteration 17: log likelihood = -485.47331

RUM-consistent nested logit regression Number of obs = 2100
Case variable: family_id Number of cases = 300

Alternative variable: restaurant Alts per case: min = 7
avg = 7.0
max = 7

Wald chi2(7) = 46.71
Log likelihood = -485.47331 Prob > chi2 = 0.0000

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

restaurant
cost -.1843847 .0933975 -1.97 0.048 -.3674404 -.0013289

rating .463694 .3264935 1.42 0.156 -.1762215 1.10361
distance -.3797474 .1003828 -3.78 0.000 -.5764941 -.1830007

type equations

fast
income -.0266038 .0117306 -2.27 0.023 -.0495952 -.0036123

kids -.0872584 .1385026 -0.63 0.529 -.3587184 .1842016

family
income 0 (base)

kids 0 (base)

fancy
income .0461827 .0090936 5.08 0.000 .0283595 .0640059

kids -.3959413 .1220356 -3.24 0.001 -.6351267 -.1567559

dissimilarity parameters

type
/fast_tau 1.712878 1.48685 -1.201295 4.627051

/family_tau 2.505113 .9646351 .614463 4.395763
/fancy_tau 4.099844 2.810123 -1.407896 9.607583

LR test for IIA (tau = 1): chi2(3) = 6.87 Prob > chi2 = 0.0762

First, let’s examine how we called nlogit. The delimiters (||) separate equations. The first
equation specifies the dependent variable, chosen, and three alternative-specific variables, cost,
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rating, and distance. We refer to these variables as alternative-specific because they vary among
the bottom-level alternatives, the restaurants. We obtain one parameter estimate for each variable.
These estimates are listed in the equation subtable labeled restaurant.

For the second equation, we specify the type variable. It identifies the first-level alternatives, the
restaurant types. Following the colon after type, we specify two case-specific variables, income and
kids. Here we obtain a parameter estimate for each variable for each alternative at this level. That is
why we call these variable lists by-alternative variables. Because income and kids do not vary within
each case, to identify the model one alternative’s set of parameters must be set to zero. We specified
the base(family) option with this equation to restrict the parameters for the family alternative.

The variable identifying the bottom-level alternatives, restaurant, is specified after the second
equation delimiter. We do not specify any variables after the colon delimiter at this level. Had we
specified variables here, we would have obtained an estimate for each variable in each equation. As
we will see below, these variables parameterize the constant term in the utility equation for each
bottom-level alternative. The noconstant option suppresses bottom-level alternative-specific constant
terms.

Near the bottom of the output are the dissimilarity parameters, which measure the degree of
correlation of random shocks within each of the three types of restaurants. Dissimilarity parameters
greater than one imply that the model is inconsistent with RUM; Hensher, Rose, and Greene (2005,
sec. 13.6) discuss this in detail. We will ignore the fact that all our dissimilarity parameters exceed
one.

The conditional logit model is a special case of nested logit in which all the dissimilarity parameters
are equal to one. At the bottom of the output, we find a likelihood-ratio test of this hypothesis. Here
we have mixed evidence of the null hypothesis that all the parameters are one. Equivalently, the
property known as the IIA imposed by the conditional logit model holds if and only if all dissimilarity
parameters are equal to one. We discuss the IIA in more detail now.

Testing for the IIA

The IIA is a property of the multinomial and conditional logit models that forces the odds of
choosing one alternative over another to be independent of the other alternatives. For simplicity,
suppose that a family was choosing only between Freebirds and Mama’s Pizza, and the family was
equally likely to choose either of the restaurants. The probability of going to each restaurant is 50%.
Now suppose that Bill’s Burritos opens up next door to Freebirds, which is also a burrito restaurant.
If the IIA holds, then the probability of going to each restaurant must now be 33.33% so that the
family remains equally likely to go to Mama’s Pizza or Freebirds.

The IIA may sometimes be a plausible assumption. However, a more likely scenario would be for
the probability of going to Mama’s Pizza to remain at 50% and the probabilities of going to Freebirds
and Bill’s Burritos to be 25% each, because the two restaurants are next door to each other and serve
the same food. Nested logit analysis would allow us to relax the IIA assumption of conditional logit.
We could group Bill’s Burritos and Freebirds into one nest that encompasses all burrito restaurants
and create a second nest for pizzerias.

The IIA is a consequence of assuming that the errors are independent and identically distributed (i.i.d.).
Because the errors are i.i.d., they cannot contain any alternative-specific unobserved information, and
therefore adding a new alternative cannot affect the relationship between a pair of existing alternatives.

In the previous example, we saw that a joint test that the dissimilarity parameters were equal
to one is one way to test for IIA. However, that test required us to specify a decision tree for the
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nested logit model, and different specifications could lead to conflicting results of the test. Hausman
and McFadden (1984) suggest that if part of the choice set truly is irrelevant with respect to the
other alternatives, omitting that subset from the conditional logit model will not lead to inconsistent
estimates. Therefore, Hausman’s (1978) specification test can be used to test for IIA, and this test
will not be sensitive to the tree structure we specify for a nested logit model.

Example 4

We want to test the IIA for the subset of family restaurants against the alternatives of fast food
and fancy restaurants. To do so, we need to use Stata’s hausman command; see [R] hausman.

We first run the estimation on the full bottom alternative set, save the results by using estimates
store, and then run the estimation on the bottom alternative set, excluding the alternatives of family
restaurants. We then run the hausman test.

. generate incFast = (type == 1) * income

. generate incFancy = (type == 3) * income

. generate kidFast = (type == 1) * kids

. generate kidFancy = (type == 3) * kids

. clogit chosen cost rating distance incFast incFancy kidFast kidFancy,
> group(family_id) nolog

Conditional (fixed-effects) logistic regression Number of obs = 2100
LR chi2(7) = 189.73
Prob > chi2 = 0.0000

Log likelihood = -488.90834 Pseudo R2 = 0.1625

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

cost -.1367799 .0358479 -3.82 0.000 -.2070404 -.0665193
rating .3066622 .1418291 2.16 0.031 .0286823 .584642

distance -.1977505 .0471653 -4.19 0.000 -.2901927 -.1053082
incFast -.0390183 .0094018 -4.15 0.000 -.0574455 -.0205911

incFancy .0407053 .0080405 5.06 0.000 .0249462 .0564644
kidFast -.2398757 .1063674 -2.26 0.024 -.448352 -.0313994

kidFancy -.3893862 .1143797 -3.40 0.001 -.6135662 -.1652061

. estimates store fullset

. clogit chosen cost rating distance incFast kidFast if type != 2,
> group(family_id) nolog
note: 222 groups (888 obs) dropped because of all positive or

all negative outcomes.

Conditional (fixed-effects) logistic regression Number of obs = 312
LR chi2(5) = 44.35
Prob > chi2 = 0.0000

Log likelihood = -85.955324 Pseudo R2 = 0.2051

chosen Coef. Std. Err. z P>|z| [95% Conf. Interval]

cost -.0616621 .067852 -0.91 0.363 -.1946496 .0713254
rating .1659001 .2832041 0.59 0.558 -.3891698 .72097

distance -.244396 .0995056 -2.46 0.014 -.4394234 -.0493687
incFast -.0737506 .0177444 -4.16 0.000 -.108529 -.0389721
kidFast .4105386 .2137051 1.92 0.055 -.0083157 .8293928



nlogit — Nested logit regression 1347

. hausman . fullset

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. fullset Difference S.E.

cost -.0616621 -.1367799 .0751178 .0576092
rating .1659001 .3066622 -.1407621 .2451308

distance -.244396 -.1977505 -.0466456 .0876173
incFast -.0737506 -.0390183 -.0347323 .015049
kidFast .4105386 -.2398757 .6504143 .1853533

b = consistent under Ho and Ha; obtained from clogit
B = inconsistent under Ha, efficient under Ho; obtained from clogit

Test: Ho: difference in coefficients not systematic

chi2(5) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 10.70

Prob>chi2 = 0.0577
(V_b-V_B is not positive definite)

Similar to our findings in example 3, the results of the test of the IIA are mixed. We cannot reject
the IIA at the commonly used 5% significance level, but we could at the 10% level. Substantively, a
significant test result suggests that the odds of going to one of the fancy restaurants versus going to
one of the fast food restaurants changes if we include the family restaurants in the alternative set and
that a nested logit specification may be warranted.

Nonnormalized model
Previous versions of Stata fit a nonnormalized nested logit model that is available via the nonnor-

malized option. The nonnormalized version is presented in, for example, Greene (2012, 768–770).
Here we outline the differences between the RUM-consistent and nonnormalized models. Our discus-
sion follows Heiss (2002) and assumes the decision tree has two levels, with M alternatives at the
upper level and a total of J alternatives at the bottom level.

In a RUM framework, by consuming alternative j, decision maker i obtains utility

Uij = Vij + εij = αj + xijβj + ziγj + εij

where Vij is the deterministic part of utility and εij is the random part. xij are alternative-specific
variables and zi are case-specific variables. The set of errors εi1, . . . , εiJ are assumed to follow the
generalized extreme-value (GEV) distribution, which is a generalization of the type 1 extreme-value
distribution that allows for alternatives within nests of the tree structure to be correlated. Let ρm
denote the correlation in nest m, and define the dissimilarity parameter τm =

√
1− ρm. τm = 0

implies that the alternatives in nest m are perfectly correlated, whereas τm = 1 implies independence.

The inclusive value for the mth nest corresponds to the expected value of the utility that decision
maker i obtains by consuming an alternative in nest m. Denote this value by IVm:

IVm = ln
∑
j∈Bm

exp (Vk/τm) (1)

where Bm denotes the set of alternatives in nest m. Given the inclusive values, we can show that
the probability that random-utility–maximizing decision maker i chooses alternative j is

Prj =
exp {Vj/τ(j)}

exp {IV(j)}
exp {τ(j)IV(j)}∑
m exp (τmIVm)
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where τ(j) and IV(j) are the dissimilarity parameter and inclusive value for the nest in which
alternative j lies.

In contrast, for the nonnormalized model, we have a latent variable

Ṽi,j = α̃j + xi,jβ̃j + ziγ̃j

and corresponding inclusive values

ĨVm = ln
∑
j∈Bm

exp (Ṽk) (2)

The probability of choosing alternative j is

Prj =
exp (Ṽj)

exp
{

ĨV(j)
} exp

{
τ(j)ĨV(j)

}∑
m exp (τm ĨVm)

Equations (1) and (2) represent the key difference between the RUM-consistent and nonnormalized
models. By scaling the Vij within each nest, the RUM-consistent model allows utilities to be compared
across nests. Without the rescaling, utilities can be compared only for goods within the same nest.
Moreover, adding a constant to each Vij for consumer i will not affect the probabilities of the RUM-
consistent model, but adding a constant to each Ṽij will affect the probabilities from the nonnormalized
model. Decisions based on utility maximization can depend only on utility differences and not the
scale or zero point of the utility function because utility is an ordinal concept, so the nonnormalized
model cannot be consistent with utility maximization.

Heiss (2002) showed that the nonnormalized model can be RUM consistent in the special case
where all the variables are specified in the bottom-level equation. Then multiplying the nonnormalized
coefficients by the respective dissimilarity parameters results in the RUM-consistent coefficients.

Technical note

Degenerate nests occur when there is only one alternative in a branch of the tree hierarchy. The
associated dissimilarity parameter of the RUM model is not defined. The inclusive-valued parameter
of the nonnormalized model will be identifiable if there are alternative-specific variables specified
in (1) of the model specification (the indepvars in the model syntax). Numerically, you can skirt
the issue of nonidentifiable/undefined parameters by setting constraints on them. For the RUM model
constraint, set the dissimilarity parameter to 1. See the description of constraints() in Options
for details on setting constraints on the dissimilarity parameters.
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Saved results
nlogit saves the following in e():

Scalars
e(N) number of observations
e(N case) number of cases
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k alt) number of alternatives for bottom level
e(k altj) number of alternatives for jth level
e(k indvars) number of independent variables
e(k ind2vars) number of by-alternative variables for bottom level
e(k ind2varsj) number of by-alternative variables for jth level
e(df m) model degrees of freedom
e(df c) clogit model degrees of freedom
e(ll) log likelihood
e(ll c) clogit model log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) likelihood-ratio test for IIA
e(p) p-value for model Wald test
e(p c) p-value for IIA test
e(i base) base index for bottom level
e(i basej) base index for jth level
e(levels) number of levels
e(alt min) minimum number of alternatives
e(alt avg) average number of alternatives
e(alt max) maximum number of alternatives
e(const) constant indicator for bottom level
e(constj) constant indicator for jth level
e(rum) 1 if RUM model, 0 otherwise
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) nlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) name of independent variables
e(ind2vars) by-alternative variables for bottom level
e(ind2varsj) by-alternative variables for jth level
e(case) variable defining cases
e(altvar) alternative variable for bottom level
e(altvarj) alternative variable for jth level
e(alteqs) equation names for bottom level
e(alteqsj) equation names for jth level
e(alti) ith alternative for bottom level
e(altj i) ith alternative for jth level
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald, type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(datasignature) the checksum
e(datasignaturevars) variables used in calculation of checksum
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(k altern) number of alternatives at each level
e(k branchj) number of branches at each alternative of jth level
e(stats) alternative statistics for bottom level
e(statsj) alternative statistics for jth level
e(altidxj) alternative indices for jth level
e(alt ind2vars) indicators for bottom level estimated by-alternative

variable—e(k alt)×e(k ind2vars)
e(alt ind2varsj) indicators for jth level estimated by-alternative variable—e(k altj)×e(k ind2varsj)
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
nlogit, nlogitgen, and nlogittree are implemented as ado-files.

Methods and formulas are presented under the following headings:

Two-level nested logit model
Three-level nested logit model
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Two-level nested logit model

Consider our two-level nested logit model for restaurant choice. We define T = {1, 2, 3} to be the
set of indices denoting the three restaurant types and R1 = {1, 2}, R2 = {3, 4, 5}, and R3 = {6, 7}
to be the set of indices representing each restaurant within type t ∈ T . Let C1 and C2 be the
random variables that represent the choices made for the first level, restaurant type, and second level,
restaurant, of the hierarchy, where we observe the choices C1 = t, t ∈ T , and C2 = j, j ∈ Rt.
Let zt and xtj , for t ∈ T and j ∈ Rt, refer to the row vectors of explanatory variables for the
first-level alternatives and bottom-level alternatives for one case, respectively. We write the utilities
(latent variables) as Utj = ztαt+ xtjβj + εtj = ηtj + εtj , where αt and βj are column vectors and
the εtj are random disturbances. When the xtj are alternative specific, we can drop the indices from
β, where we estimate one coefficient for each alternative in Rt, t ∈ T . These variables are specified
in the first equation of the nlogit syntax (see example 3).

When the random-utility framework is used to describe the choice behavior, the alternative that is
chosen is the alternative that has the highest utility. Assume for our restaurant example that we choose
restaurant type t ∈ T . For the RUM parameterization of nlogit, the conditional distribution of εtj
given choice of restaurant type t is a multivariate version of Gumbel’s extreme-value distribution,

FR|T (ε | t) = exp

[
−

{ ∑
m∈Rt

exp(εtm/τt)

}τt]
(3)

where it has been shown that the εtj , j ∈ Rt, are exchangeable with correlation 1−τ2
t , for τt ∈ (0, 1]

(Kotz and Nadarajah 2000). For example, the probability of choosing Christopher’s, j = 6 given type
t = 3, is

Pr(C2 = 6 |C1 = 3) = Pr (U36 − U37 > 0)

= Pr (ε37 ≤ ε36 + η36 − η37)

=
∫ ∞
−∞

{∫ ε36+η36−η37

−∞
fR|T (ε36, ε37) dε37

}
dε36

where f =
∂F

∂ε36∂ε37
is the joint density function of ε given t. U37 is the utility of eating at Mad

Cows, the other fancy (t = 3) restaurant. Amemiya (1985) demonstrates that this integral evaluates
to the logistic function

Pr(C2 = 6 |C1 = 3) =
exp(η36/τ3)

exp(η36/τ3) + exp(η37/τ3)

=
exp(x36β6/τ3)

exp(x36β6/τ3) + exp(x37β7/τ3)

and in general

Pr(C2 = j |C1 = t) =
exp(xtjβj/τt)∑

m∈Rt exp(xtmβm/τt)
(4)

Letting τt = 1 in (3) reduces to the product of independent extreme-value distributions, and (4)
reduces to the multinomial logistic function.

For the logistic function in (4), we scale the linear predictors by the dissimilarity parameters.
Another formulation of the conditional probability of choosing alternative j ∈ Rt given choice t ∈ T
is the logistic function without this normalization:
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Pr(C2 = j |C1 = t) =
exp(xtjβj)∑

m∈Rt exp(xtmβm)

and this is what is used in nlogit’s nonnormalized parameterization.

Amemiya (1985) defines the general form for the joint distribution of the ε’s as

FT,R(ε) = exp

{
−
∑
k∈T

θk

( ∑
m∈Rk

exp(−εkm/τk)

)τk}

from which the probability of choice t, t ∈ T can be derived as

Pr(C1 = t) =
θt
{∑

m∈Rt exp(ηtm/τt)
}τt∑

k∈T θk
{∑

m∈Rk exp(ηkm/τk)
}τk (5)

nlogit sets θt = 1. Noting that{ ∑
m∈Rt

exp(ηtm/τt)

}τt
=

{ ∑
m∈Rt

exp
(

ztαt + xtmβm
τt

)}τt

= exp(ztαt)

{ ∑
m∈Rt

exp (xtmβm/τt)

}τt
= exp(ztαt + τtIt)

we define the inclusive values It as

It = ln
{ ∑
m∈Rt

exp(xtmβm/τt)
}

and we can view

exp(τtIt) =

{ ∑
m∈Rt

exp(xtmβm)1/τt

}τt
as a weighted average of the exp(xtmβm), for m ∈ Rt. For the nlogit RUM parameterization, we
can express (5) as

Pr(C1 = t) =
exp(ztαt + τtIt)∑

k∈T exp(zkαk + τkIk)

Next we define inclusive values for the nonnormalized model to be

Ĩt = ln
{ ∑
m∈Rt

exp(xtmβm)
}

and we express Pr(C1 = t) as

Pr(C1 = t) =
exp(ztαt + τtĨt)∑

k∈T exp(zkαk + τk Ĩk)
(6)
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Equation (5) is consistent with (6) only when ηij = xijβj , so in general the nlogit nonnormalized
model is not consistent with the RUM model.

Now assume that we have N cases where we add a third subscript, i, to denote case i, i = 1, . . . , N .
Denote yitj to be a binary variable indicating the choice made by case i so that for each i only
one yitj is 1 and the rest are 0 for all t ∈ T and j ∈ Rt. The log likelihood for the two-level
RUM-consistent model is

log ` =
N∑
i=1

∑
k∈T

∑
m∈Rk

yikm log {Pr(Ci1 = i)Pr(Ci2 = m|Ci1 = i)}

=
N∑
i=1

∑
k∈T

∑
m∈Rk

yikm

[
zikαk + τkIik − log

{∑
l∈T

exp(zilαl + τlIil)

}
+

xikmβm/τk − log

{∑
l∈Rk

exp(xiklβl/τk)

}]

The likelihood for the nonnormalized model has a similar form, replacing I with Ĩ and by not scaling
xikjβj by τk.

Three-level nested logit model

Here we define a three-level nested logit model that can be generalized to the four-level and higher
models. As before, let the integer set T be the indices for the first level of choices. Let sets St,
t ∈ T , be mutually exclusive sets of integers representing the choices of the second level of the
hierarchy. Finally, let Rj , j ∈ St, be the bottom-level choices. Let Utjk = ηtjk + εtjk, k ∈ Rj , and
the distribution of εtjk be Gumbel’s multivariate extreme value of the form

F (ε) = exp

−∑
t∈T

∑
j∈St

∑
k∈Rj

exp(−ηtjk/τj)


τj/υt


υj

Let C1, C2, and C3 represent the choice random variables for levels 1, 2, and the bottom, respectively.
Then the set of conditional probabilities is

Pr(C3 = k |C1 = t, C2 = j) =
exp(ηtjk/τj)∑
l∈Rj exp(ηtjl/τj)

Pr(C2 = j |C1 = t) =

{∑
k∈Rj exp(ηtjk/τj)

}τj/υt
∑
l∈St

{∑
k∈Rl exp(ηtlk/τl)

}τl/υt
Pr(C1 = t) =

[∑
j∈St

{∑
k∈Rj exp(ηtjk/τj)

}τj/υt]υt
∑
l∈T

[∑
j∈Sl

{∑
k∈Rj exp(ηljk/τj)

}τj/υl]υl
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Assume that we can decompose the linear predictor as ηtjk = ztαt + utjγj + xtjkβk. Here zt,
utj , and xtjk are the row vectors of explanatory variables for the first, second, and bottom levels of
the hierarchy, respectively, and αt, γj , and βk are the corresponding column vectors of regression
coefficients for t ∈ T , j ∈ St, and k ∈ Rj . We then can define the inclusive values for the first and
second levels as

Itj = log
∑
k∈Rj

exp(xtjkβk/τj)

Jt = log
∑
j∈St

exp(utjγj/υt +
τj
υt
Itj)

and rewrite the probabilities

Pr(C3 = k |C1 = t, C2 = j) =
exp(xtjkβk/τj)∑
l∈Rj exp(xtjlβl/τj)

Pr(C2 = j |C1 = t) =
exp(utjγj/υt + τj

υt
Itj)∑

l∈St exp(utlγl/υt + τl
υt
Itl)

Pr(C1 = t) =
exp(ztαt + υtJt)∑
l∈T exp(zlαl + υlJl)

We add a fourth index, i, for case and define the indicator variable ylijk, l = 1, . . . , N , to
indicate the choice made by case i, t ∈ T , j ∈ St, and k ∈ Rj . The log likelihood for the nlogit
RUM-consistent model is

` =
N∑
i=1

∑
t∈T

∑
j∈St

∑
k∈Rj

yitjk

{
zitαt + υtJit − log

(∑
m∈T

zimαm + υmJim

)
+

uitjγj/υt +
τj
υt
Iitj − log

(∑
m∈St

uitmγm/υt +
τm
υt
Iitm

)
+

xitjkβk/τk −
∑
m∈Rt

exp(xitjmβm/τk)

}

and for the nonnormalized nlogit model the log likelihood is

` =
N∑
i=1

∑
t∈T

∑
j∈St

∑
k∈Rj

yitjk

{
zitαt + υtJit − log

(∑
m∈T

zimαm + υmJim

)
+

uitjγj + τjIitj − log

(∑
m∈St

uitmγm + τmIitm

)
+

xitjkβk −
∑
m∈Rt

exp(xitjmβm)

}

Extending the model to more than three levels is straightforward, albeit notationally cumbersome.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.
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[R] nlogit postestimation — Postestimation tools for nlogit

[R] asclogit — Alternative-specific conditional logit (McFadden’s choice) model

[R] clogit — Conditional (fixed-effects) logistic regression

[R] mlogit — Multinomial (polytomous) logistic regression

[R] ologit — Ordered logistic regression

[R] rologit — Rank-ordered logistic regression

[R] slogit — Stereotype logistic regression
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Title

nlogit postestimation — Postestimation tools for nlogit

Description
The following postestimation command is of special interest after nlogit:

Command Description

estat alternatives alternative summary statistics

For information about this command, see [R] asmprobit postestimation.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic hlevel(#) altwise
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr predicted probabilities of choosing the alternatives at all levels of the hierarchy or at
level #, where # is specified by hlevel(#); the default

xb linear predictors for all levels of the hierarchy or at level #, where # is specified by
hlevel(#)

condp predicted conditional probabilities at all levels of the hierarchy or at level #, where #
is specified by hlevel(#)

iv inclusive values for levels 2, . . . , e(levels) or for hlevel(#)

The inclusive value for the first-level alternatives is not used in estimation; therefore, it is not calculated.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted

only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr calculates the probability of choosing each alternative at each level of the hierarchy. Use the
hlevel(#) option to compute the alternative probabilities at level #. When hlevel(#) is not
specified, j new variables must be given, where j is the number of levels, or use the stub* option to
have predict generate j variables with the prefix stub and numbered from 1 to j. The pr option
is the default and if one new variable is given, the probability of the bottom-level alternatives are
computed. Otherwise, probabilities for all levels are computed and the stub* option is still valid.

xb calculates the linear prediction for each alternative at each level. Use the hlevel(#) option to
compute the linear predictor at level #. When hlevel(#) is not specified, j new variables must
be given, where j is the number of levels, or use the stub* option to have predict generate j
variables with the prefix stub and numbered from 1 to j.

condp calculates the conditional probabilities for each alternative at each level. Use the hlevel(#)
option to compute the conditional probabilities of the alternatives at level #. When hlevel(#) is
not specified, j new variables must be given, where j is the number of levels, or use the stub*
option to have predict generate j variables with the prefix stub and numbered from 1 to j.

iv calculates the inclusive value for each alternative at each level. Use the hlevel(#) option to
compute the inclusive value at level #. There is no inclusive value at level 1. If hlevel(#) is
not used, j − 1 new variables are required, where j is the number of levels, or use stub* to have
predict generate j − 1 variables with the prefix stub and numbered from 2 to j. See Methods
and formulas in [R] nlogit for a definition of the inclusive values.

hlevel(#) calculates the prediction only for hierarchy level #.
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altwise specifies that alternativewise deletion be used when marking out observations due to missing
values in your variables. The default is to use casewise deletion. The xb option always uses
alternativewise deletion.

scores calculates the scores for each coefficient in e(b). This option requires a new-variable list of
length equal to the number of columns in e(b). Otherwise, use the stub* option to have predict
generate enumerated variables with prefix stub.

Remarks
predict may be used after nlogit to obtain the predicted values of the probabilities, the conditional

probabilities, the linear predictions, and the inclusive values for each level of the nested logit model.
Predicted probabilities for nlogit must be interpreted carefully. Probabilities are estimated for each
case as a whole and not for individual observations.

Example 1

Continuing with our model in example 3 of [R] nlogit, we refit the model and then examine a
summary of the alternatives and their frequencies in the estimation sample.

. use http://www.stata-press.com/data/r12/restaurant

. nlogitgen type = restaurant(fast: Freebirds | MamasPizza,
> family: CafeEccell | LosNortenos | WingsNmore, fancy: Christophers | MadCows)

(output omitted )
. nlogit chosen cost rating distance || type: income kids, base(family) ||
> restaurant:, noconst case(family_id)

(output omitted )
. estat alternatives

Alternatives summary for type

Alternative Cases Frequency Percent
index value label present selected selected

1 1 fast 600 27 9.00
2 2 family 900 222 74.00
3 3 fancy 600 51 17.00

Alternatives summary for restaurant

Alternative Cases Frequency Percent
index value label present selected selected

1 1 Freebirds 300 12 4.00
2 2 MamasPizza 300 15 5.00
3 3 CafeEccell 300 78 26.00
4 4 LosNortenos 300 75 25.00
5 5 WingsNmore 300 69 23.00
6 6 Christophers 300 27 9.00
7 7 MadCows 300 24 8.00



nlogit postestimation — Postestimation tools for nlogit 1359

Next we predict p2 = Pr(restaurant); p1 = Pr(type); condp = Pr(restaurant | type); xb2,
the linear prediction for the bottom-level alternatives; xb1, the linear prediction for the first-level
alternatives; and iv, the inclusive values for the bottom-level alternatives.

. predict p*
(option pr assumed)

. predict condp, condp hlevel(2)

. sort family_id type restaurant

. list restaurant type chosen p2 p1 condp in 1/14, sepby(family_id) divider

restaurant type chosen p2 p1 condp

1. Freebirds fast 1 .0642332 .1189609 .5399519
2. MamasPizza fast 0 .0547278 .1189609 .4600481
3. CafeEccell family 0 .284409 .7738761 .3675124
4. LosNortenos family 0 .3045242 .7738761 .3935051
5. WingsNmore family 0 .1849429 .7738761 .2389825
6. Christophers fancy 0 .0429508 .107163 .4007991
7. MadCows fancy 0 .0642122 .107163 .5992009

8. Freebirds fast 0 .0183578 .0488948 .3754559
9. MamasPizza fast 0 .030537 .0488948 .6245441

10. CafeEccell family 0 .2832149 .756065 .3745907
11. LosNortenos family 1 .3038883 .756065 .4019341
12. WingsNmore family 0 .1689618 .756065 .2234752
13. Christophers fancy 0 .1041277 .1950402 .533878
14. MadCows fancy 0 .0909125 .1950402 .466122

. predict xb*, xb

. predict iv, iv

. list restaurant type chosen xb* iv in 1/14, sepby(family_id) divider

restaurant type chosen xb1 xb2 iv

1. Freebirds fast 1 -1.124805 -1.476914 -.2459659
2. MamasPizza fast 0 -1.124805 -1.751229 -.2459659
3. CafeEccell family 0 0 -2.181112 .1303341
4. LosNortenos family 0 0 -2.00992 .1303341
5. WingsNmore family 0 0 -3.259229 .1303341
6. Christophers fancy 0 1.405185 -6.804211 -.745332
7. MadCows fancy 0 1.405185 -5.155514 -.745332

8. Freebirds fast 0 -1.804794 -2.552233 -.5104123
9. MamasPizza fast 0 -1.804794 -1.680583 -.5104123

10. CafeEccell family 0 0 -2.400434 .0237072
11. LosNortenos family 1 0 -2.223939 .0237072
12. WingsNmore family 0 0 -3.694409 .0237072
13. Christophers fancy 0 1.490775 -5.35932 -.6796131
14. MadCows fancy 0 1.490775 -5.915751 -.6796131

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] nlogit — Nested logit regression

[U] 20 Estimation and postestimation commands



Title

nlsur — Estimation of nonlinear systems of equations

Syntax

Interactive version

nlsur (depvar 1 = <sexp 1>) (depvar 2 = <sexp 2>) . . .
[

if
] [

in
] [

weight
] [

, options
]

Programmed substitutable expression version

nlsur sexp prog : depvar 1 depvar 2 . . .
[

varlist
] [

if
] [

in
] [

weight
] [

, options
]

Function evaluator program version

nlsur func prog @ depvar 1 depvar 2 . . .
[

varlist
] [

if
] [

in
] [

weight
]
,

nequations(#)
{
parameters(namelist) | nparameters(#)

} [
options

]
where

depvar j is the dependent variable for equation j;

<sexp> j is the substitutable expression for equation j;

sexp prog is a substitutable expression program; and

func prog is a function evaluator program.

1361
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options Description

Model

fgnls use two-step FGNLS estimator; the default
ifgnls use iterative FGNLS estimator
nls use NLS estimator
variables(varlist) variables in model
initial(initial values) initial values for parameters
nequations(#) number of equations in model (function evaluator program version only)
∗parameters(namelist) parameters in model (function evaluator program version only)
∗nparameters(#) number of parameters in model

(function evaluator program version only)
sexp options options for substitutable expression program
func options options for function evaluator program

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

title(string) display string as title above the table of parameter estimates
title2(string) display string as subtitle
display options control column formats and line width

Optimization

optimization options control the optimization process; seldom used
eps(#) specify # for convergence criteria; default is eps(1e-5)

ifgnlsiterate(#) set maximum number of FGNLS iterations
ifgnlseps(#) specify # for FGNLS convergence criterion; default is ifgnlseps(1e-10)

delta(#) specify stepsize # for computing derivatives; default is delta(4e-7)

noconstants no equations have constant terms
hasconstants(namelist) use namelist as constant terms

coeflegend display legend instead of statistics

∗ You must specify parameters(namelist), nparameters(#), or both.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Multiple-equation models > Nonlinear seemingly unrelated regression
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Description
nlsur fits a system of nonlinear equations by feasible generalized nonlinear least squares (FGNLS).

With the interactive version of the command, you enter the system of equations on the command line
or in the dialog box by using substitutable expressions. If you have a system that you use regularly,
you can write a substitutable expression program and use the second syntax to avoid having to
reenter the system every time. The function evaluator program version gives you the most flexibility
in exchange for increased complexity; with this version, your program is given a vector of parameters
and a variable list, and your program computes the system of equations.

When you write a substitutable expression program or a function evaluator program, the first five
letters of the name must be nlsur. sexp prog and func prog refer to the name of the program without
the first five letters. For example, if you wrote a function evaluator program named nlsurregss,
you would type nlsur regss @ . . . to estimate the parameters.

Options

� � �
Model �

fgnls requests the two-step FGNLS estimator; this is the default.

ifgnls requests the iterative FGNLS estimator. For the nonlinear systems estimator, this is equivalent
to maximum likelihood estimation.

nls requests the nonlinear least-squares (NLS) estimator.

variables(varlist) specifies the variables in the system. nlsur ignores observations for which any
of these variables has missing values. If you do not specify variables(), nlsur issues an error
message if the estimation sample contains any missing values.

initial(initial values) specifies the initial values to begin the estimation. You can specify a 1× k
matrix, where k is the total number of parameters in the system, or you can specify a parameter
name, its initial value, another parameter name, its initial value, and so on. For example, to
initialize alpha to 1.23 and delta to 4.57, you would type

. nlsur . . . , initial(alpha 1.23 delta 4.57) . . .

Initial values declared using this option override any that are declared within substitutable expres-
sions. If you specify a matrix, the values must be in the same order in which the parameters are
declared in your model. nlsur ignores the row and column names of the matrix.

nequations(#) specifies the number of equations in the system.

parameters(namelist) specifies the names of the parameters in the system. The names of the
parameters must adhere to the naming conventions of Stata’s variables; see [U] 11.3 Naming
conventions. If you specify both parameters() and nparameters(), the number of names in
the former must match the number specified in the latter.

nparameters(#) specifies the number of parameters in the system. If you do not specify names with
the parameters() options, nlsur names them b1, b2, . . . , b#. If you specify both parameters()
and nparameters(), the number of names in the former must match the number specified in the
latter.

sexp options refer to any options allowed by your sexp prog.

func options refer to any options allowed by your func prog.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit
using Gauss–Newton regression.

� � �
Reporting �

level(#); see [R] estimation options.

title(string) specifies an optional title that will be displayed just above the table of parameter
estimates.

title2(string) specifies an optional subtitle that will be displayed between the title specified in
title() and the table of parameter estimates. If title2() is specified but title() is not,
title2() has the same effect as title().

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace. iterate() specifies the maximum number

of iterations to use for NLS at each round of FGNLS estimation. This option is different from
ifgnlsiterate(), which controls the maximum rounds of FGNLS estimation to use when the
ifgnls option is specified. log/nolog specifies whether to show the iteration log, and trace
specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual
sum of squares (RSS). The default is eps(1e-5) (0.00001). eps() also specifies the convergence
criterion for successive parameter estimates between rounds of iterative FGNLS estimation when
ifgnls is specified.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default is
the number set using set maxiter (see [R] maximize), which is 16,000 by default. To use this
option, you must also specify the ifgnls option.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance
matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10). To use this option,
you must also specify the ifgnls option.

delta(#) specifies the relative change in a parameter, δ, to be used in computing the numeric
derivatives. The derivative for parameter βi is computed as

{fi (xi, β1, β2, . . . , βi + d, βi+1, . . .)− fi (xi, β1, β2, . . . , βi, βi+1, . . .)} /d

where d = δ(|βi|+ δ). The default is delta(4e-7).

noconstants indicates that none of the equations in the system includes constant terms. This option
is generally not needed, even if there are no constant terms in the system; though in rare cases
without this option, nlsur may claim that there is one or more constant terms even if there are
none.

hasconstants(namelist) indicates the parameters that are to be treated as constant terms in the
system of equations. The number of elements of namelist must equal the number of equations in
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the system. The ith entry of namelist specifies the constant term in the ith equation. If an equation
does not include a constant term, specify a period (.) instead of a parameter name. This option is
seldom needed with the interactive and programmed substitutable expression versions, because in
those cases nlsur can almost always find the constant terms automatically.

The following options are available with nlsur but are not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
Substitutable expression programs
Function evaluator programs

Introduction

nlsur fits a system of nonlinear equations by FGNLS. It can be viewed as a nonlinear variant of
Zellner’s seemingly unrelated regression model (Zellner 1962; Zellner and Huang 1962; Zellner 1963)
and is therefore commonly called nonlinear SUR or nonlinear SURE. The model is also discussed in
textbooks such as Davidson and MacKinnon (1993, 2004) and Greene (2012, 305–306). Formally,
the model fit by nlsur is

yi1 = f1(xi, β) + ui1

yi2 = f2(xi, β) + ui2
... =

...
yiM = fM (xi, β) + uiM

for i = 1, . . . , N observations and m = 1, . . . ,M equations. The errors for the ith observation,
ui1, ui2, . . . , uiM , may be correlated, so fitting the m equations jointly may lead to more efficient
estimates. Moreover, fitting the equations jointly allows us to impose cross-equation restrictions on
the parameters. Not all elements of the parameter vector β and data vector xi must appear in all the
equations, though each element of β must appear in at least one equation for β to be identified. For this
model, iterative FGNLS estimation is equivalent to maximum likelihood estimation with multivariate
normal disturbances.

The syntax you use with nlsur closely mirrors that used with nl. In particular, you use substitutable
expressions with the interactive and programmed substitutable expression versions to define the functions
in your system. See [R] nl for more information on substitutable expressions. Here we reiterate the
three rules that you must follow:

1. Parameters of the model are bound in braces: {b0}, {param}, etc.

2. Initial values for parameters are given by including an equal sign and the initial value
inside the braces: {b0=1}, {param=3.571}, etc. If you do not specify an initial value, that
parameter is initialized to zero. The initial() option overrides initial values in substitutable
expressions.
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3. Linear combinations of variables can be included using the notation {eqname:varlist}, for
example, {xb: mpg price weight}, {score: w x z}, etc. Parameters of linear combinations
are initialized to zero.

Example 1: Interactive version using two-step FGNLS estimator

We have data from an experiment in which two closely related types of bacteria were placed
in a Petri dish, and the number of each type of bacteria were recorded every hour. We suspect a
two-parameter exponential growth model can be used to model each type of bacteria, but because
they shared the same dish, we want to allow for correlation in the error terms. We want to fit the
system of equations

p1 = β1β2
t + u1

p2 = γ1γ2
t + u2

where p1 and p2 are the two populations and t is time, and we want to allow for nonzero correlation
between u1 and u2. We type

. use http://www.stata-press.com/data/r12/petridish

. nlsur (p1 = {b1}*{b2}^t) (p2 = {g1}*{g2}^t)
(obs = 25)

Calculating NLS estimates...
Iteration 0: Residual SS = 335.5286
Iteration 1: Residual SS = 333.8583
Iteration 2: Residual SS = 219.9233
Iteration 3: Residual SS = 127.9355
Iteration 4: Residual SS = 14.86765
Iteration 5: Residual SS = 8.628459
Iteration 6: Residual SS = 8.281268
Iteration 7: Residual SS = 8.28098
Iteration 8: Residual SS = 8.280979
Iteration 9: Residual SS = 8.280979
Calculating FGNLS estimates...
Iteration 0: Scaled RSS = 49.99892
Iteration 1: Scaled RSS = 49.99892
Iteration 2: Scaled RSS = 49.99892

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 p1 25 2 .4337019 0.9734* (none)
2 p2 25 2 .3783479 0.9776* (none)

* Uncentered R-sq

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 .3926631 .064203 6.12 0.000 .2668275 .5184987
/b2 1.119593 .0088999 125.80 0.000 1.102149 1.137036
/g1 .5090441 .0669495 7.60 0.000 .3778256 .6402626
/g2 1.102315 .0072183 152.71 0.000 1.088167 1.116463

The header of the output contains a summary of each equation, including the number of observations
and parameters and the root mean squared error of the residuals. nlsur checks to see whether each
equation contains a constant term, and if an equation does contain a constant term, an R2 statistic is
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presented. If an equation does not have a constant term, an uncentered R2 is instead reported. The
R2 statistic for each equation measures the percentage of variance explained by the nonlinear function
and may be useful for descriptive purposes, though it does not have the same formal interpretation
in the context of FGNLS as it does with NLS estimation. As we would expect, β2 and γ2 are both
greater than one, indicating the two bacterial populations increased in size over time.

The model we fit in the next three examples is in fact linear in the parameters, so it could be fit
using the sureg command. However, we will fit the model using nlsur so that we can focus on the
mechanics of using the command. Moreover, using nlsur will obviate the need to generate several
variables as well as the need to use the constraint command to impose parameter restrictions.

Example 2: Interactive version using iterative FGNLS estimator—the translog production
function

Greene (1997, sec. 15.6) discusses the transcendental logarithmic (translog) cost function and
provides cost and input price data for capital, labor, energy, and materials for the U.S. economy. One
way to fit the translog production function to these data is to fit the system of three equations

sk = βk + δkk ln
(
pk
pm

)
+ δkl ln

(
pl
pm

)
+ δke ln

(
pe
pm

)
+ u1

sl = βl + δkl ln
(
pk
pm

)
+ δll ln

(
pl
pm

)
+ δle ln

(
pe
pm

)
+ u2

se = βe + δke ln
(
pk
pm

)
+ δle ln

(
pl
pm

)
+ δee ln

(
pe
pm

)
+ u3

where sk is capital’s cost share, sl is labor’s cost share, and se is energy’s cost share; pk, pl, pe, and
pm are the prices of capital, labor, energy, and materials, respectively; the u’s are regression error
terms; and the βs and δs are parameters to be estimated. There are three cross-equation restrictions
on the parameters: δkl, δke, and δle each appear in two equations. To fit this model by using the
iterative FGNLS estimator, we type
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. use http://www.stata-press.com/data/r12/mfgcost

. nlsur (s_k = {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {dke}*ln(pe/pm))
> (s_l = {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {dle}*ln(pe/pm))
> (s_e = {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {dee}*ln(pe/pm)),
> ifgnls
(obs = 25)

Calculating NLS estimates...
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates...
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197

(output omitted )
FGNLS iteration 10...
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 4.076e-06
Covariance matrix change = 6.264e-10

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093502 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

We draw your attention to the iteration log at the top of the output. When iterative FGNLS estimation
is used, the final scaled RSS will equal the product of the number of observations in the estimation
sample and the number of equations; see Methods and formulas for details. Because the RSS is
scaled by the error covariance matrix during each round of FGNLS estimation, the scaled RSS is not
comparable from one FGNLS iteration to the next.

Technical note
You may have noticed that we mentioned having data for four factors of production, yet we fit only

three share equations. Because the four shares sum to one, we must drop one of the equations to avoid
having a singular error covariance matrix. The iterative FGNLS estimator is equivalent to maximum
likelihood estimation, and thus it is invariant to which one of the four equations we choose to drop.
The (linearly restricted) parameters of the fourth equation can be obtained using the lincom command.
Nonlinear functions of the parameters, such as the elasticities of substitution, can be computed using
nlcom.
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Substitutable expression programs

If you fit the same model repeatedly or you want to share code with colleagues, you can write
a substitutable expression program to define your system of equations and avoid having to retype
the system every time. The first five letters of the program’s name must be nlsur, and the program
must set the r-class macro r(n eq) to the number of equations in your system. The first equation’s
substitutable expression must be returned in r(eq 1), the second equation’s in r(eq 2), and so on.
You may optionally set r(title) to label your output; that has the same effect as specifying the
title() option.

Example 3: Programmed substitutable expression version

We return to our translog cost function, for which a substitutable expression program is

program nlsurtranslog, rclass

version 12

syntax varlist(min=7 max=7) [if]

tokenize ‘varlist’
args sk sl se pk pl pe pm

local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)

return scalar n_eq = 3

return local eq_1 "‘sk’= {bk} + {dkk}*‘pkpm’ + {dkl}*‘plpm’ + {dke}*‘pepm’"
return local eq_2 "‘sl’= {bl} + {dkl}*‘pkpm’ + {dll}*‘plpm’ + {dle}*‘pepm’"
return local eq_3 "‘se’= {be} + {dke}*‘pkpm’ + {dle}*‘plpm’ + {dee}*‘pepm’"

return local title "4-factor translog cost function"

end

We made our program accept seven variables, for the three dependent variables sk, sl, and se,
and the four factor prices pk, pl, pm, and pe. The tokenize command assigns to macros ‘1’, ‘2’,
. . . , ‘7’ the seven variables stored in ‘varlist’, and the args command transfers those numbered
macros to macros ‘sk’, ‘sl’, . . . , ‘pm’. Because we knew our substitutable expressions were
going to be somewhat long, we created local macros to hold the log price ratios. These are simply
macros that hold strings such as ln(pk/pm), not variables, and they will save us some repetitious
typing when we define our substitutable expressions. Our program returns the number of equations
in r(n eq), and we defined our substitutable expressions in eq 1, eq 2, and eq 3. We do not bind
the expressions in parentheses as we do with the interactive version of nlsur. Finally, we put a title
in r(title) to label our output.

Our syntax command also accepts an if clause, and that is how nlsur indicates the estimation
sample to our program. In this application, we can safely ignore it, because our program does not
compute initial values. However, had we used commands such as summarize or regress to obtain
initial values, then we would need to restrict those commands to analyze only the estimation sample.
In those cases, typically, you simply need to include ‘if’ with the commands you are using. For
example, instead of the command

summarize ‘depvar’, meanonly

you would use

summarize ‘depvar’ ‘if’, meanonly
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We can check our program by typing

. nlsurtranslog s_k s_l s_e pk pl pe pm

. return list

scalars:
r(n_eq) = 3

macros:
r(title) : "4-factor translog cost function"
r(eq_3) : "s_e= {be} + {dke}*ln(pk/pm) + {dle}*ln(pl/pm) + {dee.."
r(eq_2) : "s_l= {bl} + {dkl}*ln(pk/pm) + {dll}*ln(pl/pm) + {dle.."
r(eq_1) : "s_k= {bk} + {dkk}*ln(pk/pm) + {dkl}*ln(pl/pm) + {dke.."

Now that we know that our program works, we fit our model by typing

. nlsur translog: s_k s_l s_e pk pl pe pm, ifgnls
(obs = 25)

Calculating NLS estimates...
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates...
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197
FGNLS iteration 2...
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Parameter change = 6.537e-03
Covariance matrix change = 1.002e-06

(output omitted )
FGNLS iteration 10...
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 4.076e-06
Covariance matrix change = 6.264e-10

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 4 .0031722 0.4776 bk
2 s_l 25 4 .0053963 0.8171 bl
3 s_e 25 4 .00177 0.6615 be

4-factor translog cost function

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093502 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

Because we set r(title) in our substitutable expression program, the coefficient table has a title
attached to it. The estimates are identical to those we obtained in example 2.
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Technical note
nlsur accepts frequency and analytic weights as well as pweights (sampling weights) and

iweights (importance weights). You do not need to modify your substitutable expressions in any
way to perform weighted estimation, though you must make two changes to your substitutable
expression program. The general outline of a sexp prog program is

program nlsur name, rclass

version 12
syntax varlist [fw aw pw iw] [if]

// Obtain initial values incorporating weights. For example,
summarize varname [‘weight’‘exp’] ‘if’
. . .
// Return n_eqn and substitutable expressions
return scalar n_eq = #
return local eq_1 = . . .
. . .

end

First, we wrote the syntax statement to accept a weight expression. Here we allow all four types
of weights, but if you know that your estimator is valid, say, for only frequency weights, then you
should modify the syntax line to accept only fweights. Second, if your program computes starting
values, then any commands you use must incorporate the weights passed to the program; you do that
by including [‘weight’‘exp’] when calling those commands.

Function evaluator programs

Although substitutable expressions are extremely flexible, there are some problems for which the
nonlinear system cannot be defined using them. You can use the function evaluator program version of
nlsur in these cases. We present two examples, a simple one to illustrate the mechanics of function
evaluator programs and a more complicated one to illustrate the power of nlsur.
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Example 4: Function evaluator program version

Here we write a function evaluator program to fit the translog cost function used in examples 2
and 3. The function evaluator program is

program nlsurtranslog2

version 12

syntax varlist(min=7 max=7) [if], at(name)

tokenize ‘varlist’
args sk sl se pk pl pe pm

tempname bk dkk dkl dke bl dll dle be dee
scalar ‘bk’ = ‘at’[1,1]
scalar ‘dkk’ = ‘at’[1,2]
scalar ‘dkl’ = ‘at’[1,3]
scalar ‘dke’ = ‘at’[1,4]
scalar ‘bl’ = ‘at’[1,5]
scalar ‘dll’ = ‘at’[1,6]
scalar ‘dle’ = ‘at’[1,7]
scalar ‘be’ = ‘at’[1,8]
scalar ‘dee’ = ‘at’[1,9]

local pkpm ln(‘pk’/‘pm’)
local plpm ln(‘pl’/‘pm’)
local pepm ln(‘pe’/‘pm’)

quietly {
replace ‘sk’ = ‘bk’ + ‘dkk’*‘pkpm’ + ‘dkl’*‘plpm’ + ///

‘dke’*‘pepm’ ‘if’
replace ‘sl’ = ‘bl’ + ‘dkl’*‘pkpm’ + ‘dll’*‘plpm’ + ///

‘dle’*‘pepm’ ‘if’
replace ‘se’ = ‘be’ + ‘dke’*‘pkpm’ + ‘dle’*‘plpm’ + ///

‘dee’*‘pepm’ ‘if’
}

end

Unlike the substitutable expression program we wrote in example 3, nlsurtranslog2 is not
declared as r-class because we will not be returning any saved results. We are again expecting seven
variables: three shares and four factor prices, and nlsur will again mark the estimation sample with
an if expression.

Our function evaluator program also accepts an option named at(), which will receive a parameter
vector at which we are to evaluate the system of equations. All function evaluator programs must
accept this option. Our model has nine parameters to estimate, and we created nine temporary scalars
to hold the elements of the ‘at’ matrix.

Because our model has three equations, the first three variables passed to our program are the
dependent variables that we are to fill in with the function values. We replaced only the observations
in our estimation sample by including the ‘if’ qualifier in the replace statements. Here we could
have ignored the ‘if’ qualifier because nlsur will skip over observations not in the estimation
sample and we did not perform any computations requiring knowledge of the estimation sample.
However, including the ‘if’ is good practice and may result in a slight speed improvement if the
functions of your model are complicated and the estimation sample is much smaller than the dataset
in memory.

We could have avoided creating temporary scalars to hold our individual parameters by writing
the replace statements as, for example,

replace ‘sk’ = ‘at’[1,1] + ‘at’[1,2]*‘pkpm’ + ‘at’[1,3]*‘plpm’ + ‘at’[1,4]*‘pepm’ ‘if’

You can use whichever method you find more appealing, though giving the parameters descriptive
names reduces the chance for mistakes and makes debugging easier.
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To fit our model by using the function evaluator program version of nlsur, we type

. nlsur translog2 @ s_k s_l s_e pk pl pe pm, ifgnls nequations(3)
> parameters(bk dkk dkl dke bl dll dle be dee)
> hasconstants(bk bl be)
(obs = 25)

Calculating NLS estimates...
Iteration 0: Residual SS = .0009989
Iteration 1: Residual SS = .0009989
Calculating FGNLS estimates...
Iteration 0: Scaled RSS = 65.45197
Iteration 1: Scaled RSS = 65.45197
FGNLS iteration 2...
Iteration 0: Scaled RSS = 73.28311
Iteration 1: Scaled RSS = 73.28311
Parameter change = 6.537e-03
Covariance matrix change = 1.002e-06
FGNLS iteration 3...
Iteration 0: Scaled RSS = 74.7113
Iteration 1: Scaled RSS = 74.7113
Parameter change = 2.577e-03
Covariance matrix change = 3.956e-07
FGNLS iteration 4...
Iteration 0: Scaled RSS = 74.95356
Iteration 1: Scaled RSS = 74.95356
Parameter change = 1.023e-03
Covariance matrix change = 1.571e-07
FGNLS iteration 5...
Iteration 0: Scaled RSS = 74.99261
Iteration 1: Scaled RSS = 74.99261
Iteration 2: Scaled RSS = 74.99261
Iteration 3: Scaled RSS = 74.99261
Parameter change = 4.067e-04
Covariance matrix change = 6.250e-08
FGNLS iteration 6...
Iteration 0: Scaled RSS = 74.99883
Iteration 1: Scaled RSS = 74.99883
Parameter change = 1.619e-04
Covariance matrix change = 2.489e-08
FGNLS iteration 7...
Iteration 0: Scaled RSS = 74.99981
Iteration 1: Scaled RSS = 74.99981
Parameter change = 6.449e-05
Covariance matrix change = 9.912e-09
FGNLS iteration 8...
Iteration 0: Scaled RSS = 74.99997
Iteration 1: Scaled RSS = 74.99997
Iteration 2: Scaled RSS = 74.99997
Parameter change = 2.569e-05
Covariance matrix change = 3.948e-09
FGNLS iteration 9...
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 1.023e-05
Covariance matrix change = 1.573e-09
FGNLS iteration 10...
Iteration 0: Scaled RSS = 75
Iteration 1: Scaled RSS = 75
Iteration 2: Scaled RSS = 75
Parameter change = 4.076e-06
Covariance matrix change = 6.264e-10
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FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 s_k 25 . .0031722 0.4776 bk
2 s_l 25 . .0053963 0.8171 bl
3 s_e 25 . .00177 0.6615 be

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/bk .0568925 .0013454 42.29 0.000 .0542556 .0595294
/dkk .0294833 .0057956 5.09 0.000 .0181241 .0408425
/dkl -.0000471 .0038478 -0.01 0.990 -.0075887 .0074945
/dke -.0106749 .0033882 -3.15 0.002 -.0173157 -.0040341
/bl .253438 .0020945 121.00 0.000 .2493329 .2575432

/dll .0754327 .0067572 11.16 0.000 .0621889 .0886766
/dle -.004756 .002344 -2.03 0.042 -.0093502 -.0001619
/be .0444099 .0008533 52.04 0.000 .0427374 .0460823

/dee .0183415 .0049858 3.68 0.000 .0085694 .0281135

When we use the function evaluator program version, nlsur requires us to specify the number of
equations in nequations(), and it requires us to either specify names for each of our parameters
or the number of parameters in the model. Here we used the parameters() option to name our
parameters; the order in which we specified them in this option is the same as the order in which we
extracted them from the ‘at’ matrix in our program. Had we instead specified nparameters(9),
our parameters would have been labeled /b1, /b2, . . . , /b9 in the output.

nlsur has no way of telling how many parameters appear in each equation, so the Parms column
in the header contains missing values. Moreover, the function evaluator program version of nlsur
does not attempt to identify constant terms, so we used the hasconstant option to tell nlsur which
parameter in each equation is a constant term.

The estimates are identical to those we obtained in examples 2 and 3.

Technical note
As with substitutable expression programs, if you intend to do weighted estimation with a function

evaluator program, you must modify your func prog program’s syntax statement to accept weights.
Moreover, if you use any statistical commands when computing your nonlinear functions, then you
must include the weight expression with those commands.

Example 5: Fitting the basic AIDS model using nlsur

Poi (2002) showed how to fit a quadratic almost ideal demand system (AIDS) by using the ml
command. Here we show how to fit the basic AIDS model by using nlsur. Poi (2008) shows how to
fit the quadratic AIDS model using nlsur. The dataset food.dta contains household expenditures,
expenditure shares, and log prices for four broad food groups. For a four-good demand system, we
need to fit the following system of three equations:
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w1 = α1 + γ11 lnp1 + γ12 lnp2 + γ13 lnp3 + β1 ln
{

m

P (p)

}
+ u1

w2 = α2 + γ12 lnp1 + γ22 lnp2 + γ23 lnp3 + β2 ln
{

m

P (p)

}
+ u2

w3 = α3 + γ13 lnp1 + γ23 lnp2 + γ33 lnp3 + β3 ln
{

m

P (p)

}
+ u3

where wk denotes a household’s fraction of expenditures on good k, lnpk denotes the logarithm of
the price paid for good k, m denotes a household’s total expenditure on all four goods, the u’s are
regression error terms, and

lnP (p) = α0 +
4∑
i=1

αi lnpi +
1
2

4∑
i=1

4∑
j=1

γij lnpi lnpj

The parameters for the fourth good’s share equation can be recovered from the following constraints
that are imposed by economic theory:

4∑
i=1

αi = 1
4∑
i=1

βi = 0 γij = γji and
4∑
i=1

γij = 0 for all j

Our model has a total of 12 unrestricted parameters. We will not estimate α0 directly. Instead, we
will set it equal to 5 as was done in Poi (2002); see Deaton and Muellbauer (1980) for a discussion
of why treating α0 as fixed is acceptable.
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Our function evaluator program is
program nlsuraids

version 12

syntax varlist(min=8 max=8) if, at(name)

tokenize ‘varlist’
args w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnm

tempname a1 a2 a3 a4
scalar ‘a1’ = ‘at’[1,1]
scalar ‘a2’ = ‘at’[1,2]
scalar ‘a3’ = ‘at’[1,3]
scalar ‘a4’ = 1 - ‘a1’ - ‘a2’ - ‘a3’

tempname b1 b2 b3
scalar ‘b1’ = ‘at’[1,4]
scalar ‘b2’ = ‘at’[1,5]
scalar ‘b3’ = ‘at’[1,6]

tempname g11 g12 g13 g14
tempname g21 g22 g23 g24
tempname g31 g32 g33 g34
tempname g41 g42 g43 g44
scalar ‘g11’ = ‘at’[1,7]
scalar ‘g12’ = ‘at’[1,8]
scalar ‘g13’ = ‘at’[1,9]
scalar ‘g14’ = -‘g11’-‘g12’-‘g13’

scalar ‘g21’ = ‘g12’
scalar ‘g22’ = ‘at’[1,10]
scalar ‘g23’ = ‘at’[1,11]
scalar ‘g24’ = -‘g21’-‘g22’-‘g23’

scalar ‘g31’ = ‘g13’
scalar ‘g32’ = ‘g23’
scalar ‘g33’ = ‘at’[1,12]
scalar ‘g34’ = -‘g31’-‘g32’-‘g33’

scalar ‘g41’ = ‘g14’
scalar ‘g42’ = ‘g24’
scalar ‘g43’ = ‘g34’
scalar ‘g44’ = -‘g41’-‘g42’-‘g43’

quietly {
tempvar lnpindex
gen double ‘lnpindex’ = 5 + ‘a1’*‘lnp1’ + ‘a2’*‘lnp2’ + ///

‘a3’*‘lnp3’ + ‘a4’*‘lnp4’
forvalues i = 1/4 {

forvalues j = 1/4 {
replace ‘lnpindex’ = ‘lnpindex’ + ///

0.5*‘g‘i’‘j’’*‘lnp‘i’’*‘lnp‘j’’
}

}
replace ‘w1’ = ‘a1’ + ‘g11’*‘lnp1’ + ‘g12’*‘lnp2’ + ///

‘g13’*‘lnp3’ + ‘g14’*‘lnp4’ + ///
‘b1’*(‘lnm’ - ‘lnpindex’)

replace ‘w2’ = ‘a2’ + ‘g21’*‘lnp1’ + ‘g22’*‘lnp2’ + ///
‘g23’*‘lnp3’ + ‘g24’*‘lnp4’ + ///
‘b2’*(‘lnm’ - ‘lnpindex’)

replace ‘w3’ = ‘a3’ + ‘g31’*‘lnp1’ + ‘g32’*‘lnp2’ + ///
‘g33’*‘lnp3’ + ‘g34’*‘lnp4’ + ///
‘b3’*(‘lnm’ - ‘lnpindex’)

}

end

The syntax statement accepts eight variables: three expenditure share variables, all four log-price
variables, and a variable for log expenditures ( lnm). Most of the code simply extracts the parameters



nlsur — Estimation of nonlinear systems of equations 1377

from the ‘at’ matrix. Although we are estimating only 12 parameters, to calculate the price index
term and the expenditure share equations, we need the restricted parameters as well. Notice how we
impose the constraints on the parameters. We then created a temporary variable to hold lnP (p), and
we filled the three dependent variables with the predicted expenditure shares.

To fit our model, we type

. use http://www.stata-press.com/data/r12/food

. nlsur aids @ w1 w2 w3 lnp1 lnp2 lnp3 lnp4 lnexp,
> parameters(a1 a2 a3 b1 b2 b3
> g11 g12 g13 g22 g32 g33)
> neq(3) ifgnls
(obs = 4048)

Calculating NLS estimates...
Iteration 0: Residual SS = 126.9713
Iteration 1: Residual SS = 125.669
Iteration 2: Residual SS = 125.669
Iteration 3: Residual SS = 125.669
Iteration 4: Residual SS = 125.669
Calculating FGNLS estimates...
Iteration 0: Scaled RSS = 12080.14
Iteration 1: Scaled RSS = 12080.14
Iteration 2: Scaled RSS = 12080.14
Iteration 3: Scaled RSS = 12080.14
FGNLS iteration 2...
Iteration 0: Scaled RSS = 12143.99
Iteration 1: Scaled RSS = 12143.99
Iteration 2: Scaled RSS = 12143.99
Parameter change = 1.972e-04
Covariance matrix change = 2.936e-06
FGNLS iteration 3...
Iteration 0: Scaled RSS = 12144
Iteration 1: Scaled RSS = 12144
Parameter change = 2.178e-06
Covariance matrix change = 3.467e-08

FGNLS regression

Equation Obs Parms RMSE R-sq Constant

1 w1 4048 . .1333175 0.9017* (none)
2 w2 4048 . .1024166 0.8480* (none)
3 w3 4048 . .053777 0.7906* (none)

* Uncentered R-sq

Coef. Std. Err. z P>|z| [95% Conf. Interval]

/a1 .3163958 .0073871 42.83 0.000 .3019175 .3308742
/a2 .2712501 .0056938 47.64 0.000 .2600904 .2824097
/a3 .1039898 .0029004 35.85 0.000 .0983051 .1096746
/b1 .0161044 .0034153 4.72 0.000 .0094105 .0227983
/b2 -.0260771 .002623 -9.94 0.000 -.0312181 -.0209361
/b3 .0014538 .0013776 1.06 0.291 -.0012463 .004154

/g11 .1215838 .0057186 21.26 0.000 .1103756 .1327921
/g12 -.0522943 .0039305 -13.30 0.000 -.0599979 -.0445908
/g13 -.0351292 .0021788 -16.12 0.000 -.0393996 -.0308588
/g22 .0644298 .0044587 14.45 0.000 .0556909 .0731687
/g32 -.0011786 .0019767 -0.60 0.551 -.0050528 .0026957
/g33 .0424381 .0017589 24.13 0.000 .0389909 .0458854
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To get the restricted parameters for the fourth share equation, we can use lincom. For example,
to obtain α4, we type

. lincom 1 - [a1]_cons - [a2]_cons - [a3]_cons

( 1) - [a1]_cons - [a2]_cons - [a3]_cons = -1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .3083643 .0052611 58.61 0.000 .2980528 .3186758

For more information on lincom, see [R] lincom.

Saved results
nlsur saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k #) number of parameters for equation #
e(k eq) number of equation names in e(b)
e(k eq model) number of equations in overall model test
e(n eq) number of equations
e(mss #) model sum of squares for equation #
e(rss #) RSS for equation #
e(rmse #) root mean squared error for equation #
e(r2 #) R2 for equation #
e(ll) Gaussian log likelihood (iflgs version only)
e(N clust) number of clusters
e(rank) rank of e(V)
e(converge) 1 if converged, 0 otherwise

Macros
e(cmd) nlsur
e(cmdline) command as typed
e(method) fgnls, ifgnls, or nls
e(depvar) names of dependent variables
e(depvar #) dependent variable for equation #
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title 2) secondary title in estimation output
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used in label Std. Err.
e(type) 1 = interactively entered expression

2 = substitutable expression program
3 = function evaluator program

e(sexpprog) substitutable expression program
e(sexp #) substitutable expression for equation #
e(params) names of all parameters
e(params #) parameters in equation #
e(funcprog) function evaluator program
e(rhs) contents of variables()
e(constants) identifies constant terms
e(properties) b V
e(predict) program used to implement predict
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Matrices
e(b) coefficient vector
e(init) initial values vector
e(Sigma) error covariance matrix (Σ̂)
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
nlsur is implemented as an ado-file.

Write the system of equations for the ith observation as

yi = f(xi, β) + ui (1)

where yi and ui are 1×M vectors, for i = 1, . . . , N ; f is a function that returns a 1×M vector;
xi represents all the exogenous variables in the system; and β is a 1× k vector of parameters. The
generalized nonlinear least-squares system estimator is defined as

β̂ ≡ argminβ
N∑
i=1

{yi − f(xi, β)}Σ−1 {yi − f(xi, β)}′

where Σ = E(u′iui) is an M ×M positive-definite weight matrix. Let T be the Cholesky decom-
position of Σ−1; that is, TT′ = Σ−1. Postmultiply (1) by T:

yiT = f(xi, β)T + uiT (2)

Because E(T′u′iuiT) = I, we can “stack” the columns of (2) and write

y1T1 = f(x1, β)T1 + ũ11

y1T2 = f(x1, β)T2 + ũ12

... =
...

y1TM = f(x1, β)TM + ũ1M

... =
...

yNT1 = f(xN , β)T1 + ũN1

yNT2 = f(xN , β)T2 + ũN2

... =
...

yNTM = f(xN , β)TM + ũNM

(3)

where Tj denotes the jth column of T. By construction, all ũij are independently distributed with
unit variance. As a result, by transforming the model in (1) to that shown in (3), we have reduced the
multivariate generalized nonlinear least-squares system estimator to a univariate nonlinear least-squares
problem; and the same parameter estimation technique used by nl can be used here. See [R] nl for
the details. Moreover, because the ũij all have variance 1, the final scaled RSS reported by nlsur is
equal to NM .
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To make the estimator feasible, we require an estimate Σ̂ of Σ. nlsur first sets Σ̂ = I. Although
not efficient, the resulting estimate, β̂NLS, is consistent. If the nls option is specified, estimation is
complete. Otherwise, the residuals

ûi = yi − f(xi, β̂NLS)

are calculated and used to compute

Σ̂ =
1
N

N∑
i=1

û′iûi

With Σ̂ in hand, a new estimate β̂ is then obtained.

If the ifgnls option is specified, the new β̂ is used to recompute the residuals and obtain a new
estimate of Σ̂, from which β̂ can then be reestimated. Iterations stop when the relative change in
β̂ is less than eps(), the relative change in Σ̂ is less than ifgnlseps(), or if ifgnlsiterate()
iterations have been performed.

If the vce(robust) and vce(cluster clustvar) options were not specified, then

V (β̂) =

(
N∑
i=1

X′iΣ̂
−1Xi

)−1

where the M × k matrix Xi has typical element Xist, the derivative of the sth element of f with
respect to the tth element of β, evaluated at xi and β̂. As a practical matter, once the model is
written in the form of (3), the variance–covariance matrix can be calculated via a Gauss–Newton
regression; see Davidson and MacKinnon (1993, chap. 6).

If robust is specified, then

VR(β̂) =

(
N∑
i=1

X′iΣ̂
−1Xi

)−1 N∑
i=1

X′iΣ̂
−1û′iûiΣ̂

−1Xi

(
N∑
i=1

X′iΣ̂
−1Xi

)−1

The cluster–robust variance matrix is

VC(β̂) =

(
N∑
i=1

X′iΣ̂
−1Xi

)−1 NC∑
c=1

w′cwc

(
N∑
i=1

X′iΣ̂
−1Xi

)−1

where NC is the number of clusters and

wc =
∑
j∈Ck

X′jΣ̂
−1û′j

with Ck denoting the set of observations in the kth cluster. In evaluating these formulas, we use the
value of Σ̂ used in calculating the final estimate of β̂. That is, we do not recalculate Σ̂ after we
obtain the final value of β̂.
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The RSS for the jth equation, RSSj , is

RSSj =
N∑
i=1

(ŷij − yij)2

where ŷij is the predicted value of the ith observation on the jth dependent variable; the total sum
of squares (TSS) for the jth equation, TSSj , is

TSSj =
N∑
i=1

(yij − ȳj)2

if there is a constant term in the jth equation, where ȳj is the sample mean of the jth dependent
variable, and

TSSj =
N∑
i=1

y2
ij

if there is no constant term in the jth equation; and the model sum of squares (MSS) for the jth
equation, MSSj , is TSSj − RSSj .

The R2 for the jth equation is MSSj/TSSj . If an equation does not have a constant term, then the
reported R2 for that equation is “uncentered” and based on the latter definition of TSSj .

Under the assumption that the ui are independent and identically distributed N(0, Σ̂), the log
likelihood for the model is

lnL = −MN

2
{1 + ln(2π)} − N

2
ln
∣∣∣Σ̂∣∣∣

The log likelihood is reported only when the ifgnls option is specified.
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Also see
[R] nlsur postestimation — Postestimation tools for nlsur

[R] nl — Nonlinear least-squares estimation

[R] gmm — Generalized method of moments estimation

[R] sureg — Zellner’s seemingly unrelated regression

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] ml — Maximum likelihood estimation

[U] 20 Estimation and postestimation commands



Title

nlsur postestimation — Postestimation tools for nlsur

Description
The following postestimation commands are available after nlsur:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest likelihood-ratio test
margins1 marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 You must specify the variables() option with nlsur.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(#eqno) yhat residuals
]

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only
for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

equation(#eqno) specifies to which equation you are referring. equation(#1) would mean that the
calculation is to be made for the first equation, equation(#2) would mean the second, and so on.
If you do not specify equation(), results are the same as if you had specified equation(#1).

yhat, the default, calculates the fitted values for the specified equation.

residuals calculates the residuals for the specified equation.
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Remarks

Example 1

In example 2 of [R] nlsur, we fit a four-factor translog cost function to data for the U.S. economy.
The own-price elasticity for a factor measures the percentage change in its usage as a result of a
1% increase in the factor’s price, assuming that output is held constant. For the translog production
function, the own-price factor elasticities are

ηi =
δii + si(si − 1)

si

Here we compute the elasticity for capital at the sample mean of capital’s factor share. First, we
use summarize to get the mean of s k and store that value in a scalar:

. summarize s_k

Variable Obs Mean Std. Dev. Min Max

s_k 25 .053488 .0044795 .04602 .06185

. scalar kmean = r(mean)

Now we can use nlcom to calculate the elasticity:

. nlcom (([dkk]_cons + kmean*(kmean-1)) / kmean)

_nl_1: ([dkk]_cons + kmean*(kmean-1)) / kmean

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.3952986 .1083535 -3.65 0.000 -.6076676 -.1829295

If the price of capital increases by 1%, its usage will decrease by about 0.4%. To maintain its current
level of output, a firm would increase its usage of other inputs to compensate for the lower capital
usage. The standard error reported by nlcom reflects the sampling variance of the estimated parameter
δ̂kk, but nlcom treats the sample mean of s k as a fixed parameter that does not contribute to the
sampling variance of the estimated elasticity.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] nlsur — Estimation of nonlinear systems of equations

[U] 20 Estimation and postestimation commands



Title

nptrend — Test for trend across ordered groups

Syntax
nptrend varname

[
if
] [

in
]
, by(groupvar)

[
nodetail score(scorevar)

]
Menu

Statistics > Nonparametric analysis > Tests of hypotheses > Trend test across ordered groups

Description
nptrend performs a nonparametric test for trend across ordered groups.

Options

� � �
Main �

by(groupvar) is required; it specifies the group on which the data are to be ordered.

nodetail suppresses the listing of group rank sums.

score(scorevar) defines scores for groups. When it is not specified, the values of groupvar are used
for the scores.

Remarks
nptrend performs the nonparametric test for trend across ordered groups developed by Cuz-

ick (1985), which is an extension of the Wilcoxon rank-sum test (see [R] ranksum). A correction
for ties is incorporated into the test. nptrend is a useful adjunct to the Kruskal–Wallis test; see
[R] kwallis.

If your data are not grouped, you can test for trend with the signtest and spearman commands;
see [R] signrank and [R] spearman. With signtest, you can perform the Cox and Stuart test, a
sign test applied to differences between equally spaced observations of varname. With spearman,
you can perform the Daniels test, a test of zero Spearman correlation between varname and a time
index. See Conover (1999, 169–175, 323) for a discussion of these tests and their asymptotic relative
efficiency.

Example 1

The following data (Altman 1991, 217) show ocular exposure to ultraviolet radiation for 32 pairs
of sunglasses classified into three groups according to the amount of visible light transmitted.

Transmission of
Group visible light Ocular exposure to ultraviolet radiation

1 < 25% 1.4 1.4 1.4 1.6 2.3 2.3
2 25 to 35% 0.9 1.0 1.1 1.1 1.2 1.2 1.5 1.9 2.2 2.6 2.6

2.6 2.8 2.8 3.2 3.5 4.3 5.1
3 > 35% 0.8 1.7 1.7 1.7 3.4 7.1 8.9 13.5
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Entering these data into Stata, we have

. use http://www.stata-press.com/data/r12/sg

. list, sep(6)

group exposure

1. 1 1.4
2. 1 1.4
3. 1 1.4
4. 1 1.6
5. 1 2.3
6. 1 2.3

7. 2 .9
(output omitted )

31. 3 8.9
32. 3 13.5

We use nptrend to test for a trend of (increasing) exposure across the three groups by typing

. nptrend exposure, by(group)

group score obs sum of ranks
1 1 6 76
2 2 18 290
3 3 8 162

z = 1.52
Prob > |z| = 0.129

When the groups are given any equally spaced scores (such as −1, 0, 1), we will obtain the same
answer as above. To illustrate the effect of changing scores, an analysis of these data with scores 1,
2, and 5 (admittedly not sensible here) produces

. gen mysc = cond(group==3,5,group)

. nptrend exposure, by(group) score(mysc)

group score obs sum of ranks
1 1 6 76
2 2 18 290
3 5 8 162

z = 1.46
Prob > |z| = 0.143

This example suggests that the analysis is not all that sensitive to the scores chosen.

Technical note
The grouping variable may be either a string variable or a numeric variable. If it is a string variable

and no score variable is specified, the natural numbers 1, 2, 3, . . . are assigned to the groups in
the sort order of the string variable. This may not always be what you expect. For example, the sort
order of the strings “one”, “two”, “three” is “one”, “three”, “two”.
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Saved results
nptrend saves the following in r():

Scalars
r(N) number of observations r(z) z statistic
r(p) two-sided p-value r(T) test statistic

Methods and formulas
nptrend is implemented as an ado-file.

nptrend is based on a method in Cuzick (1985). The following description of the statistic is from
Altman (1991, 215–217). We have k groups of sample sizes ni (i = 1, . . . , k). The groups are given
scores, li, which reflect their ordering, such as 1, 2, and 3. The scores do not have to be equally
spaced, but they usually are. N =

∑
ni observations are ranked from 1 to N , and the sums of the

ranks in each group, Ri, are obtained. L, the weighted sum of all the group scores, is

L =
k∑
i=1

lini

The statistic T is calculated as

T =
k∑
i=1

liRi

Under the null hypothesis, the expected value of T is E(T ) = 0.5(N + 1)L, and its standard error is

se(T ) =

√√√√N + 1
12

(
N

k∑
i=1

l2i ni − L2

)

so that the test statistic, z, is given by z = {T −E(T ) }/se(T ), which has an approximately standard
normal distribution when the null hypothesis of no trend is true.

The correction for ties affects the standard error of T . Let Ñ be the number of unique values of
the variable being tested (Ñ ≤ N ), and let tj be the number of times the jth unique value of the
variable appears in the data. Define

a =

∑Ñ
j=1 tj(t

2
j − 1)

N(N2 − 1)

The corrected standard error of T is s̃e(T ) =
√

1− a se(T ).
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Title

ologit — Ordered logistic regression

Syntax
ologit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Ordinal outcomes > Ordered logistic regression

Description
ologit fits ordered logit models of ordinal variable depvar on the independent variables indepvars.

The actual values taken on by the dependent variable are irrelevant, except that larger values are
assumed to correspond to “higher” outcomes.

See [R] logistic for a list of related estimation commands.
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Options

� � �
Model �

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with ologit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Ordered logit models are used to estimate relationships between an ordinal dependent variable and

a set of independent variables. An ordinal variable is a variable that is categorical and ordered, for
instance, “poor”, “good”, and “excellent”, which might indicate a person’s current health status or
the repair record of a car. If there are only two outcomes, see [R] logistic, [R] logit, and [R] probit.
This entry is concerned only with more than two outcomes. If the outcomes cannot be ordered (for
example, residency in the north, east, south, or west), see [R] mlogit. This entry is concerned only
with models in which the outcomes can be ordered.

In ordered logit, an underlying score is estimated as a linear function of the independent variables
and a set of cutpoints. The probability of observing outcome i corresponds to the probability that the
estimated linear function, plus random error, is within the range of the cutpoints estimated for the
outcome:

Pr(outcomej = i) = Pr(κi−1 < β1x1j + β2x2j + · · ·+ βkxkj + uj ≤ κi)
uj is assumed to be logistically distributed in ordered logit. In either case, we estimate the coefficients
β1, β2, . . . , βk together with the cutpoints κ1, κ2, . . . , κk−1, where k is the number of possible
outcomes. κ0 is taken as −∞, and κk is taken as +∞. All of this is a direct generalization of the
ordinary two-outcome logit model.
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Example 1

We wish to analyze the 1977 repair records of 66 foreign and domestic cars. The data are a
variation of the automobile dataset described in [U] 1.2.2 Example datasets. The 1977 repair records,
like those in 1978, take on values “Poor”, “Fair”, “Average”, “Good”, and “Excellent”. Here is a
cross-tabulation of the data:

. use http://www.stata-press.com/data/r12/fullauto
(Automobile Models)

. tabulate rep77 foreign, chi2

Repair
Record Foreign

1977 Domestic Foreign Total

Poor 2 1 3
Fair 10 1 11

Average 20 7 27
Good 13 7 20

Excellent 0 5 5

Total 45 21 66

Pearson chi2(4) = 13.8619 Pr = 0.008

Although it appears that foreign takes on the values “ Domestic” and “ Foreign”, it is actually a
numeric variable taking on the values 0 and 1. Similarly, rep77 takes on the values 1, 2, 3, 4, and 5,
corresponding to “ Poor”, “ Fair”, and so on. The more meaningful words appear because we have
attached value labels to the data; see [U] 12.6.3 Value labels.

Because the chi-squared value is significant, we could claim that there is a relationship between
foreign and rep77. Literally, however, we can only claim that the distributions are different; the
chi-squared test is not directional. One way to model these data is to model the categorization that
took place when the data were created. Cars have a true frequency of repair, which we will assume
is given by Sj = β foreignj + uj , and a car is categorized as “poor” if Sj ≤ κ0, as “fair” if
κ0 < Sj ≤ κ1, and so on:

. ologit rep77 foreign

Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -85.951765
Iteration 2: log likelihood = -85.908227
Iteration 3: log likelihood = -85.908161
Iteration 4: log likelihood = -85.908161

Ordered logistic regression Number of obs = 66
LR chi2(1) = 7.97
Prob > chi2 = 0.0047

Log likelihood = -85.908161 Pseudo R2 = 0.0444

rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 1.455878 .5308951 2.74 0.006 .4153425 2.496413

/cut1 -2.765562 .5988208 -3.939229 -1.591895
/cut2 -.9963603 .3217706 -1.627019 -.3657016
/cut3 .9426153 .3136398 .3278925 1.557338
/cut4 3.123351 .5423257 2.060412 4.18629

Our model is Sj = 1.46 foreignj +uj ; the expected value for foreign cars is 1.46 and, for domestic
cars, 0; foreign cars have better repair records.
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The estimated cutpoints tell us how to interpret the score. For a foreign car, the probability of
a poor record is the probability that 1.46 + uj ≤ −2.77, or equivalently, uj ≤ −4.23. Making this
calculation requires familiarity with the logistic distribution: the probability is 1/(1 + e4.23) = 0.014.
On the other hand, for domestic cars, the probability of a poor record is the probability uj ≤ −2.77,
which is 0.059.

This, it seems to us, is a far more reasonable prediction than we would have made based on
the table alone. The table showed that 2 of 45 domestic cars had poor records, whereas 1 of 21
foreign cars had poor records—corresponding to probabilities 2/45 = 0.044 and 1/21 = 0.048. The
predictions from our model imposed a smoothness assumption—foreign cars should not, overall,
have better repair records without the difference revealing itself in each category. In our data, the
fractions of foreign and domestic cars in the poor category are virtually identical only because of the
randomness associated with small samples.

Thus if we were asked to predict the true fractions of foreign and domestic cars that would be
classified in the various categories, we would choose the numbers implied by the ordered logit model:

tabulate logit
Domestic Foreign Domestic Foreign

Poor 0.044 0.048 0.059 0.014
Fair 0.222 0.048 0.210 0.065
Average 0.444 0.333 0.450 0.295
Good 0.289 0.333 0.238 0.467
Excellent 0.000 0.238 0.043 0.159

See [R] ologit postestimation for a more complete explanation of how to generate predictions
from an ordered logit model.

Technical note
Here ordered logit provides an alternative to ordinary two-outcome logistic models with an arbitrary

dichotomization, which might otherwise have been tempting. We could, for instance, have summarized
these data by converting the five-outcome rep77 variable to a two-outcome variable, combining cars
in the average, fair, and poor categories to make one outcome and combining cars in the good and
excellent categories to make the second.

Another even less appealing alternative would have been to use ordinary regression, arbitrarily
labeling “excellent” as 5, “good” as 4, and so on. The problem is that with different but equally valid
labelings (say, 10 for “excellent”), we would obtain different estimates. We would have no way of
choosing one metric over another. That assertion is not, however, true of ologit. The actual values
used to label the categories make no difference other than through the order they imply.

In fact, our labeling was 5 for “excellent”, 4 for “good”, and so on. The words “excellent” and
“good” appear in our output because we attached a value label to the variables; see [U] 12.6.3 Value
labels. If we were to now go back and type replace rep77=10 if rep77==5, changing all the 5s
to 10s, we would still obtain the same results when we refit our model.
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Example 2

In the example above, we used ordered logit as a way to model a table. We are not, however,
limited to including only one explanatory variable or to including only categorical variables. We can
explore the relationship of rep77 with any of the variables in our data. We might, for instance, model
rep77 not only in terms of the origin of manufacture, but also including length (a proxy for size)
and mpg:

. ologit rep77 foreign length mpg

Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -78.775147
Iteration 2: log likelihood = -78.254294
Iteration 3: log likelihood = -78.250719
Iteration 4: log likelihood = -78.250719

Ordered logistic regression Number of obs = 66
LR chi2(3) = 23.29
Prob > chi2 = 0.0000

Log likelihood = -78.250719 Pseudo R2 = 0.1295

rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 2.896807 .7906411 3.66 0.000 1.347179 4.446435
length .0828275 .02272 3.65 0.000 .0382972 .1273579

mpg .2307677 .0704548 3.28 0.001 .0926788 .3688566

/cut1 17.92748 5.551191 7.047344 28.80761
/cut2 19.86506 5.59648 8.896161 30.83396
/cut3 22.10331 5.708936 10.914 33.29262
/cut4 24.69213 5.890754 13.14647 36.2378

foreign still plays a role—and an even larger role than previously. We find that larger cars tend to
have better repair records, as do cars with better mileage ratings.
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Saved results
ologit saves the following in e():

Scalars
e(N) number of observations
e(N cd) number of completely determined observations
e(k cat) number of categories
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) ologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(cat) category values
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
ologit is implemented as an ado-file.

See Long and Freese (2006, chap. 5) for a discussion of models for ordinal outcomes and examples
that use Stata. Cameron and Trivedi (2005, chap. 15) describe multinomial models, including the
model fit by ologit. When you have a qualitative dependent variable, several estimation procedures
are available. A popular choice is multinomial logistic regression (see [R] mlogit), but if you use this
procedure when the response variable is ordinal, you are discarding information because multinomial
logit ignores the ordered aspect of the outcome. Ordered logit and probit models provide a means to
exploit the ordering information.

There is more than one “ordered logit” model. The model fit by ologit, which we will call the
ordered logit model, is also known as the proportional odds model. Another popular choice, not fit
by ologit, is known as the stereotype model; see [R] slogit. All ordered logit models have been
derived by starting with a binary logit/probit model and generalizing it to allow for more than two
outcomes.

The proportional-odds ordered logit model is so called because, if we consider the odds odds(k) =
P (Y ≤ k)/P (Y > k), then odds(k1) and odds(k2) have the same ratio for all independent variable
combinations. The model is based on the principle that the only effect of combining adjoining categories
in ordered categorical regression problems should be a loss of efficiency in estimating the regression
parameters (McCullagh 1980). This model was also described by McKelvey and Zavoina (1975) and,
previously, by Aitchison and Silvey (1957) in a different algebraic form. Brant (1990) offers a set of
diagnostics for the model.

Peterson and Harrell (1990) suggest a model that allows nonproportional odds for a subset of the
explanatory variables. ologit does not allow this, but a model similar to this was implemented by
Fu (1998).

The stereotype model rejects the principle on which the ordered logit model is based. An-
derson (1984) argues that there are two distinct types of ordered categorical variables: “grouped
continuous”, such as income, where the “type a” model applies; and “assessed”, such as extent
of pain relief, where the stereotype model applies. Greenland (1985) independently developed the
same model. The stereotype model starts with a multinomial logistic regression model and imposes
constraints on this model.

Goodness of fit for ologit can be evaluated by comparing the likelihood value with that obtained by
fitting the model with mlogit. Let lnL1 be the log-likelihood value reported by ologit, and let lnL0

be the log-likelihood value reported by mlogit. If there are p independent variables (excluding the
constant) and k categories, mlogit will estimate p(k−1) additional parameters. We can then perform
a “likelihood-ratio test”, that is, calculate −2( lnL1 − lnL0), and compare it with χ2

{
p(k − 2)

}
.

This test is suggestive only because the ordered logit model is not nested within the multinomial logit
model. A large value of −2( lnL1 − lnL0) should, however, be taken as evidence of poorness of fit.
Marginally large values, on the other hand, should not be taken too seriously.

The coefficients and cutpoints are estimated using maximum likelihood as described in [R] maximize.
In our parameterization, no constant appears, because the effect is absorbed into the cutpoints.

ologit and oprobit begin by tabulating the dependent variable. Category i = 1 is defined as
the minimum value of the variable, i = 2 as the next ordered value, and so on, for the empirically
determined k categories.
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The probability of a given observation for ordered logit is

pij = Pr(yj = i) = Pr
(
κi−1 < xjβ+ u ≤ κi

)
=

1
1 + exp(−κi + xjβ)

− 1
1 + exp(−κi−1 + xjβ)

κ0 is defined as −∞ and κk as +∞.

For ordered probit, the probability of a given observation is

pij = Pr(yj = i) = Pr
(
κi−1 < xjβ+ u ≤ κi

)
= Φ

(
κi − xjβ

)
− Φ

(
κi−1 − xjβ

)
where Φ(·) is the standard normal cumulative distribution function.

The log likelihood is

lnL =
N∑
j=1

wj

k∑
i=1

Ii(yj) lnpij

where wj is an optional weight and

Ii(yj) =

{
1, if yj = i

0, otherwise

ologit and oprobit support the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

These commands also support estimation with survey data. For details on VCEs with survey data,
see [SVY] variance estimation.
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Also see
[R] ologit postestimation — Postestimation tools for ologit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] mlogit — Multinomial (polytomous) logistic regression

[R] oprobit — Ordered probit regression

[R] rologit — Rank-ordered logistic regression

[R] slogit — Stereotype logistic regression
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ologit postestimation — Postestimation tools for ologit

Description
The following postestimation commands are available after ologit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

] {
stub* | newvar | newvarlist

} [
if
] [

in
] [

, statistic

outcome(outcome) nooffset
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr predicted probabilities; the default
xb linear prediction
stdp standard error of the linear prediction

1398
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If you do not specify outcome(), pr (with one new variable specified) assumes outcome(#1).
You specify one or k new variables with pr, where k is the number of outcomes.
You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities. If you do not also specify the outcome()
option, you specify k new variables, where k is the number of categories of the dependent variable.
Say that you fit a model by typing ologit result x1 x2, and result takes on three values.
Then you could type predict p1 p2 p3 to obtain all three predicted probabilities. If you specify
the outcome() option, you must specify one new variable. Say that result takes on the values
1, 2, and 3. Typing predict p1, outcome(1) would produce the same p1.

xb calculates the linear prediction. You specify one new variable, for example, predict linear,
xb. The linear prediction is defined, ignoring the contribution of the estimated cutpoints.

stdp calculates the standard error of the linear prediction. You specify one new variable, for example,
predict se, stdp.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

nooffset is relevant only if you specified offset(varname) for ologit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

scores calculates equation-level score variables. The number of score variables created will equal
the number of outcomes in the model. If the number of outcomes in the model was k, then

the first new variable will contain ∂lnL/∂(xjb);

the second new variable will contain ∂lnL/∂κ1;

the third new variable will contain ∂lnL/∂κ2;

. . .

and the kth new variable will contain ∂lnL/∂κk−1, where κi refers to the ith cutpoint.

Remarks
See [U] 20 Estimation and postestimation commands for instructions on obtaining the variance–

covariance matrix of the estimators, predicted values, and hypothesis tests. Also see [R] lrtest for
performing likelihood-ratio tests.
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Example 1

In example 2 of [R] ologit, we fit the model ologit rep77 foreign length mpg. The predict
command can be used to obtain the predicted probabilities.

We type predict followed by the names of the new variables to hold the predicted probabilities,
ordering the names from low to high. In our data, the lowest outcome is “poor”, and the highest is
“excellent”. We have five categories, so we must type five names following predict; the choice of
names is up to us:

. predict poor fair avg good exc
(option pr assumed; predicted probabilities)

. list exc good make model rep78 if rep77>=., sep(4) divider

exc good make model rep78

3. .0033341 .0393056 AMC Spirit .
10. .0098392 .1070041 Buick Opel .
32. .0023406 .0279497 Ford Fiesta Good
44. .015697 .1594413 Merc. Monarch Average

53. .065272 .4165188 Peugeot 604 .
56. .005187 .059727 Plym. Horizon Average
57. .0261461 .2371826 Plym. Sapporo .
63. .0294961 .2585825 Pont. Phoenix .

The eight cars listed were introduced after 1977, so they do not have 1977 repair records in our data.
We predicted what their 1977 repair records might have been using the fitted model. We see that,
based on its characteristics, the Peugeot 604 had about a 41.65 + 6.53 ≈ 48.2% chance of a good or
excellent repair record. The Ford Fiesta, which had only a 3% chance of a good or excellent repair
record, in fact, had a good record when it was introduced in the following year.

Technical note

For ordered logit, predict, xb produces Sj = x1jβ1 + x2jβ2 + · · ·+ xkjβk. The ordered-logit
predictions are then the probability that Sj +uj lies between a pair of cutpoints, κi−1 and κi. Some
handy formulas are

Pr(Sj + uj < κ) = 1/(1 + eSj−κ)

Pr(Sj + uj > κ) = 1− 1/(1 + eSj−κ)

Pr(κ1 < Sj + uj < κ2) = 1/(1 + eSj−κ2)− 1/(1 + eSj−κ1)

Rather than using predict directly, we could calculate the predicted probabilities by hand. If we
wished to obtain the predicted probability that the repair record is excellent and the probability that it
is good, we look back at ologit’s output to obtain the cutpoints. We find that “good” corresponds
to the interval /cut3 < Sj + u < /cut4 and “excellent” to the interval Sj + u > /cut4:

. predict score, xb

. generate probgood = 1/(1+exp(score-_b[/cut4])) - 1/(1+exp(score-_b[/cut3]))

. generate probexc = 1 - 1/(1+exp(score-_b[/cut4]))
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The results of our calculation will be the same as those produced in the previous example. We refer
to the estimated cutpoints just as we would any coefficient, so b[/cut3] refers to the value of the
/cut3 coefficient; see [U] 13.5 Accessing coefficients and standard errors.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] ologit — Ordered logistic regression

[U] 20 Estimation and postestimation commands
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oneway — One-way analysis of variance

Syntax
oneway response var factor var

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

bonferroni Bonferroni multiple-comparison test
scheffe Scheffé multiple-comparison test
sidak Šidák multiple-comparison test
tabulate produce summary table[
no
]
means include or suppress means; default is means[

no
]
standard include or suppress standard deviations; default is standard[

no
]
freq include or suppress frequencies; default is freq[

no
]
obs include or suppress number of obs; default is obs if data are weighted

noanova suppress the ANOVA table
nolabel show numeric codes, not labels
wrap do not break wide tables
missing treat missing values as categories

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Linear models and related > ANOVA/MANOVA > One-way ANOVA

Description
The oneway command reports one-way analysis-of-variance (ANOVA) models and performs multiple-

comparison tests.

If you wish to fit more complicated ANOVA layouts or wish to fit analysis-of-covariance (ANCOVA)
models, see [R] anova.

See [D] encode for examples of fitting ANOVA models on string variables.

See [R] loneway for an alternative oneway command with slightly different features.

Options

� � �
Main �

bonferroni reports the results of a Bonferroni multiple-comparison test.

scheffe reports the results of a Scheffé multiple-comparison test.

sidak reports the results of a Šidák multiple-comparison test.

1402
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tabulate produces a table of summary statistics of the response var by levels of the factor var.
The table includes the mean, standard deviation, frequency, and, if the data are weighted, the
number of observations. Individual elements of the table may be included or suppressed by using
the [no]means, [no]standard, [no]freq, and [no]obs options. For example, typing

oneway response factor, tabulate means standard

produces a summary table that contains only the means and standard deviations. You could achieve
the same result by typing

oneway response factor, tabulate nofreq

[no]means includes or suppresses only the means from the table produced by the tabulate option.
See tabulate above.

[no]standard includes or suppresses only the standard deviations from the table produced by the
tabulate option. See tabulate above.

[no]freq includes or suppresses only the frequencies from the table produced by the tabulate
option. See tabulate above.

[no]obs includes or suppresses only the reported number of observations from the table produced by
the tabulate option. If the data are not weighted, only the frequency is reported. If the data are
weighted, the frequency refers to the sum of the weights. See tabulate above.

noanova suppresses the display of the ANOVA table.

nolabel causes the numeric codes to be displayed rather than the value labels in the ANOVA and
multiple-comparison test tables.

wrap requests that Stata not break up wide tables to make them more readable.

missing requests that missing values of factor var be treated as a category rather than as observations
to be omitted from the analysis.

Remarks
Remarks are presented under the following headings:

Introduction
Obtaining observed means
Multiple-comparison tests
Weighted data

Introduction

The oneway command reports one-way ANOVA models. To perform a one-way layout of a variable
called endog on exog, type oneway endog exog.

Example 1

We run an experiment varying the amount of fertilizer used in growing apple trees. We test four
concentrations, using each concentration in three groves of 12 trees each. Later in the year, we
measure the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the
four concentrations. Instead, two of the groves were mistakenly leveled by a confused man on a large
bulldozer. We are left with the following dataset:
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. use http://www.stata-press.com/data/r12/apple
(Apple trees)

. describe
Contains data from http://www.stata-press.com/data/r12/apple.dta

obs: 10 Apple trees
vars: 2 16 Jan 2011 11:23
size: 100

storage display value
variable name type format label variable label

treatment int %8.0g Fertilizer
weight double %10.0g Average weight in grams

Sorted by:

. list, abbreviate(10)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4
4. 2 48.9
5. 2 50.4

6. 2 58.9
7. 3 70.4
8. 3 86.9
9. 4 87.7

10. 4 67.3

To obtain the one-way ANOVA results, we type

. oneway weight treatment
Analysis of Variance

Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

We find significant (at better than the 1% level) differences among the four concentrations.

Technical note

Rather than using the oneway command, we could have performed this analysis by using anova.
Example 1 in [R] anova repeats this same analysis. You may wish to compare the output.

You will find the oneway command quicker than the anova command, and, as you will learn,
oneway allows you to perform multiple-comparison tests. On the other hand, anova will let you
generate predictions, examine the covariance matrix of the estimators, and perform more general
hypothesis tests.
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Technical note
Although the output is a usual ANOVA table, let’s run through it anyway. The between-group

sum of squares for the model is 5295.5 with 3 degrees of freedom, resulting in a mean square of
5295.5/3 ≈ 1765.2. The corresponding F statistic is 21.46 and has a significance level of 0.0013.
Thus the model appears to be significant at the 0.13% level.

The second line summarizes the within-group (residual) variation. The within-group sum of squares
is 493.59 with 6 degrees of freedom, resulting in a mean squared error of 82.27.

The between- and residual-group variations sum to the total sum of squares (TSS), which is reported
as 5789.1 in the last line of the table. This is the TSS of weight after removal of the mean. Similarly,
the between plus residual degrees of freedom sum to the total degrees of freedom, 9. Remember that
there are 10 observations. Subtracting 1 for the mean, we are left with 9 total degrees of freedom.

At the bottom of the table, Bartlett’s test for equal variances is reported. The value of the statistic
is 1.39. The corresponding significance level (χ2 with 3 degrees of freedom) is 0.708, so we cannot
reject the assumption that the variances are homogeneous.

Obtaining observed means

Example 2

We typed oneway weight treatment to obtain an ANOVA table of weight of fruit by fertilizer
concentration. Although we obtained the table, we obtained no information on which fertilizer seems
to work the best. If we add the tabulate option, we obtain that additional information:

. oneway weight treatment, tabulate

Summary of Average weight in grams
Fertilizer Mean Std. Dev. Freq.

1 111.9 6.7535176 3
2 52.733333 5.3928966 3
3 78.65 11.667262 2
4 77.5 14.424978 2

Total 80.62 25.362124 10

Analysis of Variance
Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

We find that the average weight was largest when we used fertilizer concentration 1.
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Multiple-comparison tests

Example 3

oneway can also perform multiple-comparison tests using either Bonferroni, Scheffé, or Šidák
normalizations. For instance, to obtain the Bonferroni multiple-comparison test, we specify the
bonferroni option:

. oneway weight treatment, bonferroni

Analysis of Variance
Source SS df MS F Prob > F

Between groups 5295.54433 3 1765.18144 21.46 0.0013
Within groups 493.591667 6 82.2652778

Total 5789.136 9 643.237333

Bartlett’s test for equal variances: chi2(3) = 1.3900 Prob>chi2 = 0.708

Comparison of Average weight in grams by Fertilizer
(Bonferroni)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.042 0.122

4 -34.4 24.7667 -1.15
0.036 0.146 1.000

The results of the Bonferroni test are presented as a matrix. The first entry, −59.17, represents the
difference between fertilizer concentrations 2 and 1 (labeled “Row Mean - Col Mean” in the upper stub
of the table). Remember that in the previous example we requested the tabulate option. Looking
back, we find that the means of concentrations 1 and 2 are 111.90 and 52.73, respectively. Thus
52.73− 111.90 = −59.17.

Underneath that number is reported “0.001”. This is the Bonferroni-adjusted significance of the
difference. The difference is significant at the 0.1% level. Looking down the column, we see that
concentration 3 is also worse than concentration 1 (4.2% level), as is concentration 4 (3.6% level).

On the basis of this evidence, we would use concentration 1 if we grew apple trees.

Example 4

We can just as easily obtain the Scheffé-adjusted significance levels. Rather than specifying the
bonferroni option, we specify the scheffe option.
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We will also add the noanova option to prevent Stata from redisplaying the ANOVA table:

. oneway weight treatment, noanova scheffe

Comparison of Average weight in grams by Fertilizer
(Scheffe)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.039 0.101

4 -34.4 24.7667 -1.15
0.034 0.118 0.999

The differences are the same as those we obtained in the Bonferroni output, but the significance levels
are not. According to the Bonferroni-adjusted numbers, the significance of the difference between
fertilizer concentrations 1 and 3 is 4.2%. The Scheffé-adjusted significance level is 3.9%.

We will leave it to you to decide which results are more accurate.

Example 5

Let’s conclude this example by obtaining the Šidák-adjusted multiple-comparison tests. We do this
to illustrate Stata’s capabilities to calculate these results, because searching across adjustment methods
until you find the results you want is not a valid technique for obtaining significance levels.

. oneway weight treatment, noanova sidak

Comparison of Average weight in grams by Fertilizer
(Sidak)

Row Mean-
Col Mean 1 2 3

2 -59.1667
0.001

3 -33.25 25.9167
0.041 0.116

4 -34.4 24.7667 -1.15
0.035 0.137 1.000

We find results that are similar to the Bonferroni-adjusted numbers.

� �
Henry Scheffé (1907–1977) was born in New York. He studied mathematics at the University of
Wisconsin, gaining a doctorate with a dissertation on differential equations. He taught mathematics
at Wisconsin, Oregon State University, and Reed College, but his interests changed to statistics and
he joined Wilks at Princeton. After periods at Syracuse, UCLA, and Columbia, Scheffé settled in
Berkeley from 1953. His research increasingly focused on linear models and particularly ANOVA,
on which he produced a celebrated monograph. His death was the result of a bicycle accident.� �
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Weighted data

Example 6

oneway can work with both weighted and unweighted data. Let’s assume that we wish to perform
a one-way layout of the death rate on the four census regions of the United States using state data.
Our data contain three variables, drate (the death rate), region (the region), and pop (the population
of the state).

To fit the model, we type oneway drate region [weight=pop], although we typically abbreviate
weight as w. We will also add the tabulate option to demonstrate how the table of summary statistics
differs for weighted data:

. use http://www.stata-press.com/data/r12/census8
(1980 Census data by state)

. oneway drate region [w=pop], tabulate
(analytic weights assumed)

Census Summary of Death Rate
region Mean Std. Dev. Freq. Obs.

NE 97.15 5.82 49135283 9
N Cntrl 88.10 5.58 58865670 12

South 87.05 10.40 74734029 16
West 75.65 8.23 43172490 13

Total 87.34 10.43 2.259e+08 50

Analysis of Variance
Source SS df MS F Prob > F

Between groups 2360.92281 3 786.974272 12.17 0.0000
Within groups 2974.09635 46 64.6542685

Total 5335.01916 49 108.877942

Bartlett’s test for equal variances: chi2(3) = 5.4971 Prob>chi2 = 0.139

When the data are weighted, the summary table has four columns rather than three. The column
labeled “Freq.” reports the sum of the weights. The overall frequency is 2.259× 108, meaning that
there are approximately 226 million people in the United States.

The ANOVA table is appropriately weighted. Also see [U] 11.1.6 weight.

Saved results
oneway saves the following in r():

Scalars
r(N) number of observations r(df m) between-group degrees of freedom
r(F) F statistic r(rss) within-group sum of squares
r(df r) within-group degrees of freedom r(chi2bart) Bartlett’s χ2

r(mss) between-group sum of squares r(df bart) Bartlett’s degrees of freedom
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Methods and formulas
Methods and formulas are presented under the following headings:

One-way analysis of variance
Bartlett’s test
Multiple-comparison tests

One-way analysis of variance

The model of one-way ANOVA is

yij = µ+ αi + εij

for levels i = 1, . . . , k and observations j = 1, . . . , ni. Define yi as the (weighted) mean of yij over
j and y as the overall (weighted) mean of yij . Define wij as the weight associated with yij , which
is 1 if the data are unweighted. wij is normalized to sum to n =

∑
i ni if aweights are used and

is otherwise not normalized. wi refers to
∑
j wij , and w refers to

∑
i wi.

The between-group sum of squares is then

S1 =
∑
i

wi(yi − y)2

The TSS is
S =

∑
i

∑
j

wij(yij − y)2

The within-group sum of squares is given by Se = S − S1.

The between-group mean square is s2
1 = S1/(k − 1), and the within-group mean square is

s2
e = Se/(w − k). The test statistic is F = s2

1/s
2
e. See, for instance, Snedecor and Cochran (1989).

Bartlett’s test
Bartlett’s test assumes that you have m independent, normal, random samples and tests the

hypothesis σ2
1 = σ2

2 = · · · = σ2
m. The test statistic, M , is defined as

M =
(T −m) lnσ̂2 −

∑
(Ti − 1) lnσ̂2

i

1 + 1
3(m−1)

{(∑
1

Ti−1

)
− 1

T−m

}
where there are T overall observations, Ti observations in the ith group, and

(Ti − 1)σ̂2
i =

Ti∑
j=1

(yij − yi)2

(T −m)σ̂2 =
m∑
i=1

(Ti − 1)σ̂2
i

An approximate test of the homogeneity of variance is based on the statistic M with critical values
obtained from the χ2 distribution of m − 1 degrees of freedom. See Bartlett (1937) or Draper and
Smith (1998, 56–57).
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Multiple-comparison tests

Let’s begin by reviewing the logic behind these adjustments. The “standard” t statistic for the
comparison of two means is

t =
yi − yj

s
√

1
ni

+ 1
nj

where s is the overall standard deviation, yi is the measured average of y in group i, and ni is the
number of observations in the group. We perform hypothesis tests by calculating this t statistic. We
simultaneously choose a critical level, α, and look up the t statistic corresponding to that level in
a table. We reject the hypothesis if our calculated t exceeds the value we looked up. Alternatively,
because we have a computer at our disposal, we calculate the significance level e corresponding to
our calculated t statistic, and if e < α, we reject the hypothesis.

This logic works well when we are performing one test. Now consider what happens when we
perform several separate tests, say, n of them. Let’s assume, just for discussion, that we set α equal to
0.05 and that we will perform six tests. For each test, we have a 0.05 probability of falsely rejecting
the equality-of-means hypothesis. Overall, then, our chances of falsely rejecting at least one of the
hypotheses is 1− (1− 0.05)6 ≈ 0.26 if the tests are independent.

The idea behind multiple-comparison tests is to control for the fact that we will perform multiple
tests and to reduce our overall chances of falsely rejecting each hypothesis to α rather than letting
our chances increase with each additional test. (See Miller [1981] and Hochberg and Tamhane [1987]
for rather advanced texts on multiple-comparison procedures.)

The Bonferroni adjustment (see Miller [1981]; also see van Belle et al. [2004, 534–537]) does
this by (falsely but approximately) asserting that the critical level we should use, a, is the true critical
level, α, divided by the number of tests, n; that is, a = α/n. For instance, if we are going to perform
six tests, each at the 0.05 significance level, we want to adopt a critical level of 0.05/6 ≈ 0.00833.

We can just as easily apply this logic to e, the significance level associated with our t statistic, as
to our critical level α. If a comparison has a calculated significance of e, then its “real” significance,
adjusted for the fact of n comparisons, is n × e. If a comparison has a significance level of, say,
0.012, and we perform six tests, then its “real” significance is 0.072. If we adopt a critical level of
0.05, we cannot reject the hypothesis. If we adopt a critical level of 0.10, we can reject it.

Of course, this calculation can go above 1, but that just means that there is no α < 1 for which
we could reject the hypothesis. (This situation arises because of the crude nature of the Bonferroni
adjustment.) Stata handles this case by simply calling the significance level 1. Thus the formula for
the Bonferroni significance level is

eb = min(1, en)

where n = k(k − 1)/2 is the number of comparisons.

The Šidák adjustment (Šidák [1967]; also see Winer, Brown, and Michels [1991, 165–166]) is
slightly different and provides a tighter bound. It starts with the assertion that

a = 1− (1− α)1/n

Turning this formula around and substituting calculated significance levels, we obtain

es = min
{

1, 1− (1− e)n
}

For example, if the calculated significance is 0.012 and we perform six tests, the “real” significance
is approximately 0.07.
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The Scheffé test (Scheffé [1953, 1959]; also see Kuehl [2000, 97–98]) differs in derivation, but
it attacks the same problem. Let there be k means for which we want to make all the pairwise tests.
Two means are declared significantly different if

t ≥
√

(k − 1)F (α; k − 1, ν)

where F (α; k − 1, ν) is the α-critical value of the F distribution with k − 1 numerator and ν
denominator degrees of freedom. Scheffé’s test has the nicety that it never declares a contrast
significant if the overall F test is not significant.

Turning the test around, Stata calculates a significance level

ê = F

(
t2

k − 1
, k − 1, ν

)
For instance, you have a calculated t statistic of 4.0 with 50 degrees of freedom. The simple t test says
that the significance level is 0.00021. The F test equivalent, 16 with 1 and 50 degrees of freedom,
says the same. If you are comparing three means, however, you calculate an F test of 8.0 with 2 and
50 degrees of freedom, which says that the significance level is 0.0010.
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Title

oprobit — Ordered probit regression

Syntax
oprobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or

jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Ordinal outcomes > Ordered probit regression

Description
oprobit fits ordered probit models of ordinal variable depvar on the independent variables

indepvars. The actual values taken on by the dependent variable are irrelevant, except that larger
values are assumed to correspond to “higher” outcomes.

See [R] logistic for a list of related estimation commands.
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Options

� � �
Model �

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following option is available with oprobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
An ordered probit model is used to estimate relationships between an ordinal dependent variable

and a set of independent variables. An ordinal variable is a variable that is categorical and ordered,
for instance, “poor”, “good”, and “excellent”, which might indicate a person’s current health status or
the repair record of a car. If there are only two outcomes, see [R] logistic, [R] logit, and [R] probit.
This entry is concerned only with more than two outcomes. If the outcomes cannot be ordered (for
example, residency in the north, east, south, or west), see [R] mlogit. This entry is concerned only
with models in which the outcomes can be ordered.

In ordered probit, an underlying score is estimated as a linear function of the independent variables
and a set of cutpoints. The probability of observing outcome i corresponds to the probability that the
estimated linear function, plus random error, is within the range of the cutpoints estimated for the
outcome:

Pr(outcomej = i) = Pr(κi−1 < β1x1j + β2x2j + · · ·+ βkxkj + uj ≤ κi)

uj is assumed to be normally distributed. In either case, we estimate the coefficients β1, β2, . . . ,
βk together with the cutpoints κ1, κ2, . . . , κI−1, where I is the number of possible outcomes.
κ0 is taken as −∞, and κI is taken as +∞. All of this is a direct generalization of the ordinary
two-outcome probit model.
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Example 1

In example 2 of [R] ologit, we use a variation of the automobile dataset (see [U] 1.2.2 Example
datasets) to analyze the 1977 repair records of 66 foreign and domestic cars. We use ordered logit
to explore the relationship of rep77 in terms of foreign (origin of manufacture), length (a proxy
for size), and mpg. Here we fit the same model using ordered probit rather than ordered logit:

. use http://www.stata-press.com/data/r12/fullauto
(Automobile Models)
. oprobit rep77 foreign length mpg

Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -78.106316
Iteration 2: log likelihood = -78.020086
Iteration 3: log likelihood = -78.020025
Iteration 4: log likelihood = -78.020025

Ordered probit regression Number of obs = 66
LR chi2(3) = 23.75
Prob > chi2 = 0.0000

Log likelihood = -78.020025 Pseudo R2 = 0.1321

rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 1.704861 .4246796 4.01 0.000 .8725037 2.537217
length .0468675 .012648 3.71 0.000 .022078 .0716571

mpg .1304559 .0378628 3.45 0.001 .0562463 .2046656

/cut1 10.1589 3.076754 4.128577 16.18923
/cut2 11.21003 3.107527 5.119389 17.30067
/cut3 12.54561 3.155233 6.361467 18.72975
/cut4 13.98059 3.218793 7.671874 20.28931

We find that foreign cars have better repair records, as do larger cars and cars with better mileage
ratings.
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Saved results
oprobit saves the following in e():

Scalars
e(N) number of observations
e(N cd) number of completely determined observations
e(k cat) number of categories
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) oprobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(cat) category values
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
oprobit is implemented as an ado-file.

See Methods and formulas of [R] ologit.
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Also see
[R] oprobit postestimation — Postestimation tools for oprobit

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] mprobit — Multinomial probit regression

[R] ologit — Ordered logistic regression

[R] probit — Probit regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

oprobit postestimation — Postestimation tools for oprobit

Description
The following postestimation commands are available after oprobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

] {
stub* | newvar | newvarlist

} [
if
] [

in
] [

, statistic

outcome(outcome) nooffset
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr predicted probabilities; the default
xb linear prediction
stdp standard error of the linear prediction
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If you do not specify outcome(), pr (with one new variable specified) assumes outcome(#1).
You specify one or k new variables with pr, where k is the number of outcomes.
You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the predicted probabilities. If you do not also specify the outcome()
option, you specify k new variables, where k is the number of categories of the dependent variable.
Say that you fit a model by typing oprobit result x1 x2, and result takes on three values.
Then you could type predict p1 p2 p3 to obtain all three predicted probabilities. If you specify
the outcome() option, you must specify one new variable. Say that result takes on values 1,
2, and 3. Typing predict p1, outcome(1) would produce the same p1.

xb calculates the linear prediction. You specify one new variable, for example, predict linear,
xb. The linear prediction is defined ignoring the contribution of the estimated cutpoints.

stdp calculates the standard error of the linear prediction. You specify one new variable, for example,
predict se, stdp.

outcome(outcome) specifies for which outcome the predicted probabilities are to be calculated.
outcome() should contain either one value of the dependent variable or one of #1, #2, . . . , with
#1 meaning the first category of the dependent variable, #2 meaning the second category, etc.

nooffset is relevant only if you specified offset(varname) for oprobit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

scores calculates equation-level score variables. The number of score variables created will equal
the number of outcomes in the model. If the number of outcomes in the model was k, then

the first new variable will contain ∂lnL/∂(xjb);

the second new variable will contain ∂lnL/∂κ1;

the third new variable will contain ∂lnL/∂κ2;

. . .

and the kth new variable will contain ∂lnL/∂κk−1, where κi refers to the ith cutpoint.

Remarks
See [U] 20 Estimation and postestimation commands for instructions on obtaining the variance–

covariance matrix of the estimators, predicted values, and hypothesis tests. Also see [R] lrtest for
performing likelihood-ratio tests.
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Example 1

In example 1 of [R] oprobit, we fit the model oprobit rep77 foreign length mpg. The
predict command can be used to obtain the predicted probabilities. We type predict followed by
the names of the new variables to hold the predicted probabilities, ordering the names from low to
high. In our data, the lowest outcome is “poor” and the highest is “excellent”. We have five categories,
so we must type five names following predict; the choice of names is up to us:

. predict poor fair avg good exc
(option pr assumed; predicted probabilities)

. list make model exc good if rep77>=., sep(4) divider

make model exc good

3. AMC Spirit .0006044 .0351813
10. Buick Opel .0043803 .1133763
32. Ford Fiesta .0002927 .0222789
44. Merc. Monarch .0093209 .1700846

53. Peugeot 604 .0734199 .4202766
56. Plym. Horizon .001413 .0590294
57. Plym. Sapporo .0197543 .2466034
63. Pont. Phoenix .0234156 .266771

Technical note
For ordered probit, predict, xb produces Sj = x1jβ1 +x2jβ2 + · · ·+xkjβk. Ordered probit is

identical to ordered logit, except that we use different distribution functions for calculating probabilities.
The ordered-probit predictions are then the probability that Sj + uj lies between a pair of cutpoints
κi−1 and κi. The formulas for ordered probit are

Pr(Sj + u < κ) = Φ(κ− Sj)
Pr(Sj + u > κ) = 1− Φ(κ− Sj) = Φ(Sj − κ)

Pr(κ1 < Sj + u < κ2) = Φ(κ2 − Sj)− Φ(κ1 − Sj)

Rather than using predict directly, we could calculate the predicted probabilities by hand.

. predict pscore, xb

. generate probexc = normal(pscore-_b[/cut4])

. generate probgood = normal(_b[/cut4]-pscore) - normal(_b[/cut3]-pscore)

Methods and formulas
All postestimation tools listed above are implemented as ado-files.
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Also see
[R] oprobit — Ordered probit regression

[U] 20 Estimation and postestimation commands



Title

orthog — Orthogonalize variables and compute orthogonal polynomials

Syntax

Orthogonalize variables

orthog
[

varlist
] [

if
] [

in
] [

weight
]
, generate(newvarlist)

[
matrix(matname)

]
Compute orthogonal polynomial

orthpoly varname
[

if
] [

in
] [

weight
]
,{

generate(newvarlist) | poly(matname)
} [

degree(#)
]

orthpoly requires that generate(newvarlist) or poly(matname), or both, be specified.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
iweights, fweights, pweights, and aweights are allowed, see [U] 11.1.6 weight.

Menu
orthog

Data > Create or change data > Other variable-creation commands > Orthogonalize variables

orthpoly

Data > Create or change data > Other variable-creation commands > Orthogonal polynomials

Description
orthog orthogonalizes a set of variables, creating a new set of orthogonal variables (all of type

double), using a modified Gram–Schmidt procedure (Golub and Van Loan 1996). The order of the
variables determines the orthogonalization; hence, the “most important” variables should be listed
first.

Execution time is proportional to the square of the number of variables. With many (>10) variables,
orthog will be fairly slow.

orthpoly computes orthogonal polynomials for one variable.

Options for orthog

� � �
Main �

generate(newvarlist) is required. generate() creates new orthogonal variables of type double.
For orthog, newvarlist will contain the orthogonalized varlist. If varlist contains d variables, then
so will newvarlist. newvarlist can be specified by giving a list of exactly d new variable names,
or it can be abbreviated using the styles newvar1-newvard or newvar*. For these two styles of
abbreviation, new variables newvar1, newvar2, . . . , newvard are generated.
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matrix(matname) creates a (d+ 1)× (d+ 1) matrix containing the matrix R defined by X = QR,
where X is the N × (d+ 1) matrix representation of varlist plus a column of ones and Q is the
N × (d+ 1) matrix representation of newvarlist plus a column of ones (d = number of variables
in varlist, and N = number of observations).

Options for orthpoly

� � �
Main �

generate(newvarlist) or poly(), or both, must be specified. generate() creates new orthogonal
variables of type double. newvarlist will contain orthogonal polynomials of degree 1, 2, . . . ,
d evaluated at varname, where d is as specified by degree(d). newvarlist can be specified by
giving a list of exactly d new variable names, or it can be abbreviated using the styles newvar1-
newvard or newvar*. For these two styles of abbreviation, new variables newvar1, newvar2, . . . ,
newvard are generated.

poly(matname) creates a (d + 1) × (d + 1) matrix called matname containing the coefficients of
the orthogonal polynomials. The orthogonal polynomial of degree i ≤ d is

matname[ i, d+ 1 ] + matname[ i, 1 ]*varname + matname[ i, 2 ]*varname2

+ · · · + matname[ i, i ]*varnamei

The coefficients corresponding to the constant term are placed in the last column of the matrix.
The last row of the matrix is all zeros, except for the last column, which corresponds to the
constant term.

degree(#) specifies the highest-degree polynomial to include. Orthogonal polynomials of degree 1,
2, . . . , d = # are computed. The default is d = 1.

Remarks
Orthogonal variables are useful for two reasons. The first is numerical accuracy for highly collinear

variables. Stata’s regress and other estimation commands can face much collinearity and still produce
accurate results. But, at some point, these commands will drop variables because of collinearity. If
you know with certainty that the variables are not perfectly collinear, you may want to retain all their
effects in the model. If you use orthog or orthpoly to produce a set of orthogonal variables, all
variables will be present in the estimation results.

Users are more likely to find orthogonal variables useful for the second reason: ease of interpreting
results. orthog and orthpoly create a set of variables such that the “effects” of all the preceding
variables have been removed from each variable. For example, if we issue the command

. orthog x1 x2 x3, generate(q1 q2 q3)

the effect of the constant is removed from x1 to produce q1; the constant and x1 are removed from
x2 to produce q2; and finally the constant, x1, and x2 are removed from x3 to produce q3. Hence,

q1 = r01 + r11 x1

q2 = r02 + r12 x1 + r22 x2

q3 = r03 + r13 x1 + r23 x2 + r33 x3

This effect can be generalized and written in matrix notation as

X = QR
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where X is the N × (d + 1) matrix representation of varlist plus a column of ones, and Q is the
N × (d + 1) matrix representation of newvarlist plus a column of ones (d = number of variables
in varlist and N = number of observations). The (d+ 1)× (d+ 1) matrix R is a permuted upper-
triangular matrix, that is, R would be upper triangular if the constant were first, but the constant is
last, so the first row/column has been permuted with the last row/column. Because Stata’s estimation
commands list the constant term last, this allows R, obtained via the matrix() option, to be used
to transform estimation results.

Example 1

Consider Stata’s auto.dta dataset. Suppose that we postulate a model in which price depends
on the car’s length, weight, headroom, and trunk size (trunk). These predictors are collinear, but
not extremely so—the correlations are not that close to 1:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. correlate length weight headroom trunk
(obs=74)

length weight headroom trunk

length 1.0000
weight 0.9460 1.0000

headroom 0.5163 0.4835 1.0000
trunk 0.7266 0.6722 0.6620 1.0000

regress certainly has no trouble fitting this model:

. regress price length weight headroom trunk

Source SS df MS Number of obs = 74
F( 4, 69) = 10.20

Model 236016580 4 59004145 Prob > F = 0.0000
Residual 399048816 69 5783316.17 R-squared = 0.3716

Adj R-squared = 0.3352
Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

length -101.7092 42.12534 -2.41 0.018 -185.747 -17.67147
weight 4.753066 1.120054 4.24 0.000 2.518619 6.987512

headroom -711.5679 445.0204 -1.60 0.114 -1599.359 176.2236
trunk 114.0859 109.9488 1.04 0.303 -105.2559 333.4277
_cons 11488.47 4543.902 2.53 0.014 2423.638 20553.31

However, we may believe a priori that length is the most important predictor, followed by weight,
headroom, and trunk. We would like to remove the “effect” of length from all the other predictors,
remove weight from headroom and trunk, and remove headroom from trunk. We can do this by
running orthog, and then we fit the model again using the orthogonal variables:
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. orthog length weight headroom trunk, gen(olength oweight oheadroom otrunk)
> matrix(R)

. regress price olength oweight oheadroom otrunk

Source SS df MS Number of obs = 74
F( 4, 69) = 10.20

Model 236016580 4 59004145 Prob > F = 0.0000
Residual 399048816 69 5783316.17 R-squared = 0.3716

Adj R-squared = 0.3352
Total 635065396 73 8699525.97 Root MSE = 2404.9

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

olength 1265.049 279.5584 4.53 0.000 707.3454 1822.753
oweight 1175.765 279.5584 4.21 0.000 618.0617 1733.469

oheadroom -349.9916 279.5584 -1.25 0.215 -907.6955 207.7122
otrunk 290.0776 279.5584 1.04 0.303 -267.6262 847.7815
_cons 6165.257 279.5584 22.05 0.000 5607.553 6722.961

Using the matrix R, we can transform the results obtained using the orthogonal predictors back to
the metric of original predictors:

. matrix b = e(b)*inv(R)’

. matrix list b

b[1,5]
length weight headroom trunk _cons

y1 -101.70924 4.7530659 -711.56789 114.08591 11488.475

Technical note
The matrix R obtained using the matrix() option with orthog can also be used to recover X

(the original varlist) from Q (the orthogonalized newvarlist), one variable at a time. Continuing with
the previous example, we illustrate how to recover the trunk variable:

. matrix C = R[1...,"trunk"]’

. matrix score double rtrunk = C

. compare rtrunk trunk

difference
count minimum average maximum

rtrunk>trunk 74 1.42e-14 2.27e-14 3.55e-14

jointly defined 74 1.42e-14 2.27e-14 3.55e-14

total 74

Here the recovered variable rtrunk is almost exactly the same as the original trunk variable.
When you are orthogonalizing many variables, this procedure can be performed to check the numerical
soundness of the orthogonalization. Because of the ordering of the orthogonalization procedure, the
last variable and the variables near the end of the varlist are the most important ones to check.

The orthpoly command effectively does for polynomial terms what the orthog command does
for an arbitrary set of variables.
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Example 2

Again consider the auto.dta dataset. Suppose that we wish to fit the model

mpg = β0 + β1 weight + β2 weight
2 + β3 weight

3 + β4 weight
4 + ε

We will first compute the regression with natural polynomials:

. gen double w1 = weight

. gen double w2 = w1*w1

. gen double w3 = w2*w1

. gen double w4 = w3*w1

. correlate w1-w4
(obs=74)

w1 w2 w3 w4

w1 1.0000
w2 0.9915 1.0000
w3 0.9665 0.9916 1.0000
w4 0.9279 0.9679 0.9922 1.0000

. regress mpg w1-w4

Source SS df MS Number of obs = 74
F( 4, 69) = 36.06

Model 1652.73666 4 413.184164 Prob > F = 0.0000
Residual 790.722803 69 11.4597508 R-squared = 0.6764

Adj R-squared = 0.6576
Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

w1 .0289302 .1161939 0.25 0.804 -.2028704 .2607307
w2 -.0000229 .0000566 -0.40 0.687 -.0001359 .0000901
w3 5.74e-09 1.19e-08 0.48 0.631 -1.80e-08 2.95e-08
w4 -4.86e-13 9.14e-13 -0.53 0.596 -2.31e-12 1.34e-12

_cons 23.94421 86.60667 0.28 0.783 -148.8314 196.7198

Some of the correlations among the powers of weight are very large, but this does not create any
problems for regress. However, we may wish to look at the quadratic trend with the constant
removed, the cubic trend with the quadratic and constant removed, etc. orthpoly will generate
polynomial terms with this property:

. orthpoly weight, generate(pw*) deg(4) poly(P)

. regress mpg pw1-pw4

Source SS df MS Number of obs = 74
F( 4, 69) = 36.06

Model 1652.73666 4 413.184164 Prob > F = 0.0000
Residual 790.722803 69 11.4597508 R-squared = 0.6764

Adj R-squared = 0.6576
Total 2443.45946 73 33.4720474 Root MSE = 3.3852

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

pw1 -4.638252 .3935245 -11.79 0.000 -5.423312 -3.853192
pw2 .8263545 .3935245 2.10 0.039 .0412947 1.611414
pw3 -.3068616 .3935245 -0.78 0.438 -1.091921 .4781982
pw4 -.209457 .3935245 -0.53 0.596 -.9945168 .5756028

_cons 21.2973 .3935245 54.12 0.000 20.51224 22.08236
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Compare the p-values of the terms in the natural polynomial regression with those in the orthogonal
polynomial regression. With orthogonal polynomials, it is easy to see that the pure cubic and quartic
trends are not significant and that the constant, linear, and quadratic terms each have p < 0.05.

The matrix P obtained with the poly() option can be used to transform coefficients for orthogonal
polynomials to coefficients for natural polynomials:

. orthpoly weight, poly(P) deg(4)

. matrix b = e(b)*P

. matrix list b

b[1,5]
deg1 deg2 deg3 deg4 _cons

y1 .02893016 -.00002291 5.745e-09 -4.862e-13 23.944212

Methods and formulas
orthog and orthpoly are implemented as ado-files.

orthog’s orthogonalization can be written in matrix notation as

X = QR

where X is the N × (d + 1) matrix representation of varlist plus a column of ones and Q is the
N × (d+ 1) matrix representation of newvarlist plus a column of ones (d = number of variables in
varlist, and N = number of observations). The (d + 1) × (d + 1) matrix R is a permuted upper-
triangular matrix; that is, R would be upper triangular if the constant were first, but the constant is
last, so the first row/column has been permuted with the last row/column.

Q and R are obtained using a modified Gram–Schmidt procedure; see Golub and Van Loan (1996,
218–219) for details. The traditional Gram–Schmidt procedure is notoriously unsound, but the modified
procedure is good. orthog performs two passes of this procedure.

orthpoly uses the Christoffel–Darboux recurrence formula (Abramowitz and Stegun 1972).

Both orthog and orthpoly normalize the orthogonal variables such that

Q′WQ = MI

where W = diag(w1, w2, . . . , wN ) with weights w1, w2, . . . , wN (all 1 if weights are not specified),
and M is the sum of the weights (the number of observations if weights are not specified).
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Also see
[R] regress — Linear regression



Title

pcorr — Partial and semipartial correlation coefficients

Syntax
pcorr varname1 varlist

[
if
] [

in
] [

weight
]

varname1 and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Partial correlations

Description
pcorr displays the partial and semipartial correlation coefficients of varname1 with each variable

in varlist after removing the effects of all other variables in varlist. The squared correlations and
corresponding significance are also reported.

Remarks
Assume that y is determined by x1, x2, . . . , xk. The partial correlation between y and x1 is an

attempt to estimate the correlation that would be observed between y and x1 if the other x’s did
not vary. The semipartial correlation, also called part correlation, between y and x1 is an attempt to
estimate the correlation that would be observed between y and x1 after the effects of all other x’s
are removed from x1 but not from y.

Both squared correlations estimate the proportion of the variance of y that is explained by each
predictor. The squared semipartial correlation between y and x1 represents the proportion of variance
in y that is explained by x1 only. This squared correlation can also be interpreted as the decrease
in the model’s R2 value that results from removing x1 from the full model. Thus one could use
the squared semipartial correlations as criteria for model selection. The squared partial correlation
between y and x1 represents the proportion of variance in y not associated with any other x’s that is
explained by x1. Thus the squared partial correlation gives an estimate of how much of the variance
of y not explained by the other x’s is explained by x1.

Example 1

Using our automobile dataset (described in [U] 1.2.2 Example datasets), we can obtain the simple
correlations between price, mpg, weight, and foreign from correlate (see [R] correlate):

1429
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. correlate price mpg weight foreign
(obs=74)

price mpg weight foreign

price 1.0000
mpg -0.4686 1.0000

weight 0.5386 -0.8072 1.0000
foreign 0.0487 0.3934 -0.5928 1.0000

Although correlate gave us the full correlation matrix, our interest is in just the first column. We
find, for instance, that the higher the mpg, the lower the price. We obtain the partial and semipartial
correlation coefficients by using pcorr:

. pcorr price mpg weight foreign
(obs=74)

Partial and semipartial correlations of price with

Partial Semipartial Partial Semipartial Significance
Variable Corr. Corr. Corr.^2 Corr.^2 Value

mpg 0.0352 0.0249 0.0012 0.0006 0.7693
weight 0.5488 0.4644 0.3012 0.2157 0.0000

foreign 0.5402 0.4541 0.2918 0.2062 0.0000

We now find that the partial and semipartial correlations of price with mpg are near 0. In the
simple correlations, we found that price and foreign were virtually uncorrelated. In the partial and
semipartial correlations, we find that price and foreign are positively correlated. The nonsignificance
of mpg tells us that the amount in which R2 decreases by removing mpg from the model is not
significant. We find that removing either weight or foreign results in a significant drop in the R2

of the model.

Technical note
Use caution when interpreting the above results. As we said at the outset, the partial and semipartial

correlation coefficients are an attempt to estimate the correlation that would be observed if the effects
of all other variables were taken out of both y and x or only x. pcorr makes it too easy to ignore
the fact that we are fitting a model. In the example above, the model is

price = β0 + β1mpg + β2weight + β3foreign + ε

which is, in all honesty, a rather silly model. Even if we accept the implied economic assumptions of
the model—that consumers value mpg, weight, and foreign—do we really believe that consumers
place equal value on every extra 1,000 pounds of weight? That is, have we correctly parameterized
the model? If we have not, then the estimated partial and semipartial correlation coefficients may not
represent what they claim to represent. Partial and semipartial correlation coefficients are a reasonable
way to summarize data if we are convinced that the underlying model is reasonable. We should
not, however, pretend that there is no underlying model and that these correlation coefficients are
unaffected by the assumptions and parameterization.
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Saved results
pcorr saves the following in r():

Scalars
r(N) number of observations
r(df) degrees of freedom

Matrices
r(p corr) partial correlation coefficient vector
r(sp corr) semipartial correlation coefficient vector

Methods and formulas
pcorr is implemented as an ado-file.

Results are obtained by fitting a linear regression of varname1 on varlist; see [R] regress. The
partial correlation coefficient between varname1 and each variable in varlist is then calculated as

t√
t2 + n− k

(Greene 2012, 37), where t is the t statistic, n is the number of observations, and k is the number
of independent variables, including the constant but excluding any dropped variables.

The semipartial correlation coefficient between varname1 and each variable in varlist is calculated
as

sign(t)

√
t2(1−R2)
n− k

(Cohen et al. 2003, 89), where R2 is the model R2 value, and t, n, and k are as described above.

The significance is given by 2Pr(tn−k > |t|), where tn−k follows a Student’s t distribution with
n− k degrees of freedom.

Acknowledgment
The addition of semipartial correlation coefficients to pcorr is based on the pcorr2 command

by Richard Williams, University of Notre Dame.
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Also see
[R] correlate — Correlations (covariances) of variables or coefficients

[R] spearman — Spearman’s and Kendall’s correlations
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Title

permute — Monte Carlo permutation tests

Syntax

Compute permutation test

permute permvar exp list
[
, options

]
: command

Report saved results

permute
[

varlist
] [

using filename
] [

, display options
]

options Description

Main

reps(#) perform # random permutations; default is reps(100)

left | right compute one-sided p-values; default is two-sided

Options

strata(varlist) permute within strata
saving( filename, . . .) save results to filename; save statistics in double precision;

save results to filename every # replications

Reporting

level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
verbose display full table legend
nodrop do not drop observations
nodots suppress replication dots
noisily display any output from command
trace trace command
title(text) use text as title for permutation results

Advanced

eps(#) numerical tolerance; seldom used
nowarn do not warn when e(sample) is not set
force do not check for weights or svy commands; seldom used
reject(exp) identify invalid results
seed(#) set random-number seed to #

weights are not allowed in command.
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display options Description

left | right compute one-sided p-values; default is two-sided
level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
verbose display full table legend
title(text) use text as title for results
eps(#) numerical tolerance; seldom used

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Menu
Statistics > Resampling > Permutation tests

Description

permute estimates p-values for permutation tests on the basis of Monte Carlo simulations. Typing

. permute permvar exp list, reps(#): command

randomly permutes the values in permvar # times, each time executing command and collecting the
associated values from the expression in exp list.

These p-value estimates can be one-sided: Pr(T ∗ ≤ T ) or Pr(T ∗ ≥ T ). The default is two-sided:
Pr(|T ∗| ≥ |T |). Here T ∗ denotes the value of the statistic from a randomly permuted dataset, and
T denotes the statistic as computed on the original data.

permvar identifies the variable whose observed values will be randomly permuted.



1434 permute — Monte Carlo permutation tests

command defines the statistical command to be executed. Most Stata commands and user-written
programs can be used with permute, as long as they follow standard Stata syntax; see [U] 11 Language
syntax. The by prefix may not be part of command.

exp list specifies the statistics to be collected from the execution of command.

permute may be used for replaying results, but this feature is appropriate only when a dataset
generated by permute is currently in memory or is identified by the using option. The variables
specified in varlist in this context must be present in the respective dataset.

Options

� � �
Main �

reps(#) specifies the number of random permutations to perform. The default is 100.

left or right requests that one-sided p-values be computed. If left is specified, an estimate of
Pr(T ∗ ≤ T ) is produced, where T ∗ is the test statistic and T is its observed value. If right is
specified, an estimate of Pr(T ∗ ≥ T ) is produced. By default, two-sided p-values are computed;
that is, Pr(|T ∗| ≥ |T |) is estimated.

� � �
Options �

strata(varlist) specifies that the permutations be performed within each stratum defined by the
values of varlist.

saving( filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the replicates.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals.

every(#) specifies that results are to be written to disk every #th replication. every() should
be specified only in conjunction with saving() when command takes a long time for each
replication. This will allow recovery of partial results should some other software crash your
computer. See [P] postfile.

replace specifies that filename be overwritten if it exists. This option does not appear in the
dialog box.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [R] level.

noheader suppresses display of the table header. This option implies the nolegend option.

nolegend suppresses display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

nodrop prevents permute from dropping observations outside the if and in qualifiers. nodrop
will also cause permute to ignore the contents of e(sample) if it exists as a result of running
command. By default, permute temporarily drops out-of-sample observations.
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nodots suppresses display of the replication dots. By default, one dot character is displayed for each
successful replication. A red ‘x’ is displayed if command returns an error or if one of the values
in exp list is missing.

noisily requests that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

title(text) specifies a title to be displayed above the table of permutation results; the default title
is Monte Carlo permutation results.

� � �
Advanced �

eps(#) specifies the numerical tolerance for testing |T ∗| ≥ |T |, T ∗ ≤ T , or T ∗ ≥ T . These are
considered true if, respectively, |T ∗| ≥ |T |−#, T ∗ ≤ T+#, or T ∗ ≥ T−#. The default is 1e-7.
You will not have to specify eps() under normal circumstances.

nowarn suppresses the printing of a warning message when command does not set e(sample).

force suppresses the restriction that command may not specify weights or be a svy command.
permute is not suited for weighted estimation, thus permute should not be used with weights
or svy. permute reports an error when it encounters weights or svy in command if the force
option is not specified. This is a seldom used option, so use it only if you know what you are
doing!

reject(exp) identifies an expression that indicates when results should be rejected. When exp is
true, the resulting values are reset to missing values.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following
command prior to calling permute:

. set seed #

Remarks
Permutation tests determine the significance of the observed value of a test statistic in light of

rearranging the order (permuting) of the observed values of a variable.

Example 1

Suppose that we conducted an experiment to determine the effect of a treatment on the development
of cells. Further suppose that we are restricted to six experimental units because of the extreme cost
of the experiment. Thus three units are to be given a placebo, and three units are given the treatment.
The measurement is the number of newly developed healthy cells. The following listing gives the
hypothetical data, along with some summary statistics.

. input y treatment

y treatment
1. 7 0
2. 9 0
3. 11 0
4. 10 1
5. 12 1
6. 14 1
7. end

. sort treatment
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. summarize y

Variable Obs Mean Std. Dev. Min Max

y 6 10.5 2.428992 7 14

. by treatment: summarize y

-> treatment = 0

Variable Obs Mean Std. Dev. Min Max

y 3 9 2 7 11

-> treatment = 1

Variable Obs Mean Std. Dev. Min Max

y 3 12 2 10 14

Clearly, there are more cells in the treatment group than in the placebo group, but a statistical
test is needed to conclude that the treatment does affect the development of cells. If the sum of the
treatment measures is our test statistic, we can use permute to determine the probability of observing
36 or more cells, given the observed data and assuming that there is no effect due to the treatment.

. set seed 1234

. permute y sum=r(sum), saving(permdish) right nodrop nowarn: sum y if treatment
(running summarize on estimation sample)

Permutation replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Monte Carlo permutation results Number of obs = 6

command: summarize y if treatment
sum: r(sum)

permute var: y

T T(obs) c n p=c/n SE(p) [95% Conf. Interval]

sum 36 10 100 0.1000 0.0300 .0490047 .1762226

Note: confidence interval is with respect to p=c/n.
Note: c = #{T >= T(obs)}

We see that 10 of the 100 randomly permuted datasets yielded sums from the treatment group
larger than or equal to the observed sum of 36. Thus the evidence is not strong enough, at the 5%
level, to reject the null hypothesis that there is no effect of the treatment.

Because of the small size of this experiment, we could have calculated the exact permutation
p-value from all possible permutations. There are six units, but we want the sum of the treatment
units. Thus there are

(
6
3

)
= 20 permutation sums from the possible unique permutations.
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7 + 9 + 10 = 26

7 + 9 + 11 = 27

7 + 9 + 12 = 28

7 + 9 + 14 = 30

7 + 10 + 11 = 28

7 + 10 + 12 = 29

7 + 10 + 14 = 31

7 + 11 + 12 = 30

7 + 11 + 14 = 32

7 + 12 + 14 = 33

9 + 10 + 11 = 30

9 + 10 + 12 = 31

9 + 10 + 14 = 33

9 + 11 + 12 = 32

9 + 11 + 14 = 34

9 + 12 + 14 = 35

10 + 11 + 12 = 33

10 + 11 + 14 = 35

10 + 12 + 14 = 36

11 + 12 + 14 = 37

Two of the 20 permutation sums are greater than or equal to 36. Thus the exact p-value for this
permutation test is 0.1. Tied values will decrease the number of unique permutations.

When the saving() option is supplied, permute saves the values of the permutation statistic to
the indicated file, in our case, permdish.dta. This file can be used to replay the result of permute.
The level() option controls the confidence level of the confidence interval for the permutation
p-value. This confidence interval is calculated using cii with the reported n (number of nonmissing
replications) and c (the counter for events of significance).

. permute using permdish, level(80)

Monte Carlo permutation results Number of obs = 6

command: summarize y if treatment
sum: r(sum)

permute var: y

T T(obs) c n p=c/n SE(p) [80% Conf. Interval]

sum 36 10 100 0.1000 0.0300 .0631113 .1498826

Note: confidence interval is with respect to p=c/n.
Note: c = #{|T| >= |T(obs)|}

Example 2

Consider some fictional data from a randomized complete-block design in which we wish to
determine the significance of five treatments.

. use http://www.stata-press.com/data/r12/permute1, clear

. list y treatment in 1/10, abbrev(10)

y treatment

1. 4.407557 1
2. 5.693386 1
3. 7.099699 1
4. 3.12132 1
5. 5.242648 1

6. 4.280349 2
7. 4.508785 2
8. 4.079967 2
9. 5.904368 2

10. 3.010556 2
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These data may be analyzed using anova.

. anova y treatment subject

Number of obs = 50 R-squared = 0.3544
Root MSE = .914159 Adj R-squared = 0.1213

Source Partial SS df MS F Prob > F

Model 16.5182188 13 1.27063221 1.52 0.1574

treatment 13.0226706 9 1.44696341 1.73 0.1174
subject 3.49554813 4 .873887032 1.05 0.3973

Residual 30.0847503 36 .835687509

Total 46.6029691 49 .951081002

Suppose that we want to compute the significance of the F statistic for treatment by using
permute. All we need to do is write a short program that will save the result of this statistic for
permute to use. For example,

program panova, rclass
version 12
args response fac_intrst fac_other
anova ‘response’ ‘fac_intrst’ ‘fac_other’
return scalar Fmodel = e(F)
test ‘fac_intrst’
return scalar F = r(F)

end

Now in panova, test saves the F statistic for the factor of interest in r(F). This is different
from e(F), which is the overall model F statistic for the model fit by anova that panova saves
in r(Fmodel). In the following example, we use the strata() option so that the treatments are
randomly rearranged within each subject. It should not be too surprising that the estimated p-values
are equal for this example, because the two F statistics are equivalent when controlling for differences
between subjects. However, we would not expect to always get the same p-values every time we
reran permute.

. set seed 1234

. permute treatment treatmentF=r(F) modelF=e(F), reps(1000) strata(subject)
> saving(permanova) nodots: panova y treatment subject

Monte Carlo permutation results

Number of strata = 5 Number of obs = 50

command: panova y treatment subject
treatmentF: r(F)

modelF: e(F)
permute var: treatment

T T(obs) c n p=c/n SE(p) [95% Conf. Interval]

treatmentF 1.731465 118 1000 0.1180 0.0102 .0986525 .1396277
modelF 1.520463 118 1000 0.1180 0.0102 .0986525 .1396277

Note: confidence intervals are with respect to p=c/n.
Note: c = #{|T| >= |T(obs)|}
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Example 3

As a final example, let’s consider estimating the p-value of the Z statistic returned by ranksum.
Suppose that we collected data from some experiment: y is some measure we took on 17 individuals,
and group identifies the group that an individual belongs to.

. use http://www.stata-press.com/data/r12/permute2

. list

group y

1. 1 6
2. 1 11
3. 1 20
4. 1 2
5. 1 9

6. 1 5
7. 0 2
8. 0 1
9. 0 6

10. 0 0

11. 0 2
12. 0 3
13. 0 3
14. 0 12
15. 0 4

16. 0 1
17. 0 5

Next we analyze the data using ranksum and notice that the observed value of the test statistic
(saved as r(z)) is −2.02 with an approximate p-value of 0.0434.

. ranksum y, by(group)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

group obs rank sum expected

0 11 79 99
1 6 74 54

combined 17 153 153

unadjusted variance 99.00
adjustment for ties -0.97

adjusted variance 98.03

Ho: y(group==0) = y(group==1)
z = -2.020

Prob > |z| = 0.0434

The observed value of the rank-sum statistic is 79, with an expected value (under the null
hypothesis of no group effect) of 99. There are 17 observations, so the permutation distribution
contains

(
17
6

)
= 12,376 possible values of the rank-sum statistic if we ignore ties. With ties, we have

fewer possible values but still too many to want to count them. Thus we use permute with 10,000
replications and see that the Monte Carlo permutation test agrees with the result of the test based on
the normal approximation.
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. set seed 18385766

. permute y z=r(z), reps(10000) nowarn nodots: ranksum y, by(group)

Monte Carlo permutation results Number of obs = 17

command: ranksum y, by(group)
z: r(z)

permute var: y

T T(obs) c n p=c/n SE(p) [95% Conf. Interval]

z -2.020002 468 10000 0.0468 0.0021 .0427429 .0511236

Note: confidence interval is with respect to p=c/n.
Note: c = #{|T| >= |T(obs)|}

For an application of a permutation test to a problem in epidemiology, see Hayes and Moulton (2009,
190–193).

Technical note

permute reports confidence intervals for p to emphasize that it is based on the binomial estimator
for proportions. When the variability implied by the confidence interval makes conclusions difficult,
you may increase the number of replications to determine more precisely the significance of the test
statistic of interest. In other words, the value of p from permute will converge to the true permutation
p-value as the number of replications gets arbitrarily large.

Saved results
permute saves the following in r():

Scalars
r(N) sample size r(k exp) number of standard expressions
r(N reps) number of requested replications r(k eexp) number of b/ se expressions
r(level) confidence level

Macros
r(cmd) permute r(left) left or empty
r(command) command following colon r(right) right or empty
r(permvar) permutation variable r(seed) initial random-number seed
r(title) title in output r(event) T <= T(obs), T >= T(obs),
r(exp#) #th expression or |T| <= |T(obs)|

Matrices
r(b) observed statistics r(p) observed proportions
r(c) count when r(event) is true r(se) standard errors of observed proportions
r(reps) number of nonmissing results r(ci) confidence intervals of observed pro-

portions

Methods and formulas
permute is implemented as an ado-file.
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[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[R] simulate — Monte Carlo simulations
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Title

pk — Pharmacokinetic (biopharmaceutical) data

Description
The term pk refers to pharmacokinetic data and the Stata commands, all of which begin with the

letters pk, designed to do some of the analyses commonly performed in the pharmaceutical industry.
The system is intended for the analysis of pharmacokinetic data, although some of the commands are
for general use.

The pk commands are

pkexamine [R] pkexamine Calculate pharmacokinetic measures
pksumm [R] pksumm Summarize pharmacokinetic data
pkshape [R] pkshape Reshape (pharmacokinetic) Latin-square data
pkcross [R] pkcross Analyze crossover experiments
pkequiv [R] pkequiv Perform bioequivalence tests
pkcollapse [R] pkcollapse Generate pharmacokinetic measurement dataset

Remarks
Several types of clinical trials are commonly performed in the pharmaceutical industry. Examples

include combination trials, multicenter trials, equivalence trials, and active control trials. For each
type of trial, there is an optimal study design for estimating the effects of interest. Currently, the
pk system can be used to analyze equivalence trials, which are usually conducted using a crossover
design; however, it is possible to use a parallel design and still draw conclusions about equivalence.

Equivalence trials assess bioequivalence between two drugs. Although proving that two drugs
behave the same is impossible, the United States Food and Drug Administration believes that if the
absorption properties of two drugs are similar, the two drugs will produce similar effects and have
similar safety profiles. Generally, the goal of an equivalence trial is to assess the equivalence of a generic
drug to an existing drug. This goal is commonly accomplished by comparing a confidence interval
about the difference between a pharmacokinetic measurement of two drugs with a confidence limit
constructed from U.S. federal regulations. If the confidence interval is entirely within the confidence
limit, the drugs are declared bioequivalent. Another approach to assessing bioequivalence is to use
the method of interval hypotheses testing. pkequiv is used to conduct these tests of bioequivalence.

Several pharmacokinetic measures can be used to ascertain how available a drug is for cellular
absorption. The most common measure is the area under the time-versus-concentration curve (AUC).
Another common measure of drug availability is the maximum concentration (Cmax) achieved by
the drug during the follow-up period. Stata reports these and other less common measures of drug
availability, including the time at which the maximum drug concentration was observed and the
duration of the period during which the subject was being measured. Stata also reports the elimination
rate, that is, the rate at which the drug is metabolized, and the drug’s half-life, that is, the time it
takes for the drug concentration to fall to one-half of its maximum concentration.

pkexamine computes and reports all the pharmacokinetic measures that Stata produces, including
four calculations of the area under the time-versus-concentration curve. The standard area under the
curve from 0 to the maximum observed time (AUC0,tmax ) is computed using cubic splines or the
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trapezoidal rule. Additionally, pkexamine also computes the area under the curve from 0 to infinity
by extending the standard time-versus-concentration curve from the maximum observed time by using
three different methods. The first method simply extends the standard curve by using a least-squares
linear fit through the last few data points. The second method extends the standard curve by fitting
a decreasing exponential curve through the last few data points. Finally, the third method extends
the curve by fitting a least-squares linear regression line on the log concentration. The mathematical
details of these extensions are described in Methods and formulas of [R] pkexamine.

Data from an equivalence trial may also be analyzed using methods appropriate to the particular
study design. When you have a crossover design, pkcross can be used to fit an appropriate ANOVA
model. As an aside, a crossover design is simply a restricted Latin square; therefore, pkcross can
also be used to analyze any Latin-square design.

There are some practical concerns when dealing with data from equivalence trials. Primarily, the
data must be organized in a manner that Stata can use. The pk commands include pkcollapse and
pkshape, which are designed to help transform data from a common format to one that is suitable
for analysis with Stata.

In the following example, we illustrate several different data formats that are often encountered in
pharmaceutical research and describe how these formats can be transformed to formats that can be
analyzed with Stata.

Example 1

Assume that we have one subject and are interested in determining the drug profile for that subject.
A reasonable experiment would be to give the subject the drug and then measure the concentration
of the drug in the subject’s blood over a given period. For example, here is a part of a dataset from
Chow and Liu (2009, 13):

. use http://www.stata-press.com/data/r12/auc

. list, abbrev(14)

id time concentration

1. 1 0 0
2. 1 .5 0
3. 1 1 2.8
4. 1 1.5 4.4
5. 1 2 4.4

6. 1 3 4.7
7. 1 4 4.1
8. 1 6 4
9. 1 8 3.6

10. 1 12 3

11. 1 16 2.5
12. 1 24 2
13. 1 32 1.6

Examining these data, we notice that the concentration quickly increases, plateaus for a short
period, and then slowly decreases over time. pkexamine is used to calculate the pharmacokinetic
measures of interest. pkexamine is explained in detail in [R] pkexamine. The output is
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. pkexamine time conc

Maximum concentration = 4.7
Time of maximum concentration = 3

Time of last observation (Tmax) = 32
Elimination rate = 0.0279

Half life = 24.8503

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 142.603 107.759 142.603

Fit based on last 3 points.

Clinical trials, however, require that data be collected on more than one subject. There are several
ways to enter raw measured data collected on several subjects. It would be reasonable to enter for
each subject the drug concentration value at specific points in time. Such data could be

id conc1 conc2 conc3 conc4 conc5 conc6 conc7
1 0 1 4 7 5 3 1
2 0 2 6 5 4 3 2
3 0 1 2 3 5 4 1

where conc1 is the concentration at the first measured time, conc2 is the concentration at the second
measured time, etc. This format requires that each drug concentration measurement be made at the
same time on each subject. Another more flexible way to enter the data is to have an observation
with three variables for each time measurement on a subject. Each observation would have a subject
ID, the time at which the measurement was made, and the corresponding drug concentration at that
time. The data would be
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. use http://www.stata-press.com/data/r12/pkdata

. list id concA time, sepby(id)

id concA time

1. 1 0 0
2. 1 3.073403 .5
3. 1 5.188444 1
4. 1 5.898577 1.5
5. 1 5.096378 2
6. 1 6.094085 3
7. 1 5.158772 4
8. 1 5.7065 6
9. 1 5.272467 8

10. 1 4.4576 12
11. 1 5.146423 16
12. 1 4.947427 24
13. 1 1.920421 32

14. 2 0 0
15. 2 2.48462 .5
16. 2 4.883569 1
17. 2 7.253442 1.5
18. 2 5.849345 2
19. 2 6.761085 3
20. 2 4.33839 4
21. 2 5.04199 6
22. 2 4.25128 8
23. 2 6.205004 12
24. 2 5.566165 16
25. 2 3.689007 24
26. 2 3.644063 32

27. 3 0 0
(output omitted )

207. 20 4.673281 24
208. 20 3.487347 32

Stata expects the data to be organized in the second form. If your data are organized as described in
the first dataset, you will need to use reshape to change the data to the second form; see [D] reshape.
Because the data in the second (or long) format contain information for one drug on several subjects,
pksumm can be used to produce summary statistics of the pharmacokinetic measurements. The output
is

. pksumm id time concA

................

Summary statistics for the pharmacokinetic measures

Number of observations = 16

Measure Mean Median Variance Skewness Kurtosis p-value

auc 151.63 152.18 127.58 -0.34 2.07 0.55
aucline 397.09 219.83 178276.59 2.69 9.61 0.00
aucexp 668.60 302.96 720356.98 2.67 9.54 0.00
auclog 665.95 298.03 752573.34 2.71 9.70 0.00

half 90.68 29.12 17750.70 2.36 7.92 0.00
ke 0.02 0.02 0.00 0.88 3.87 0.08

cmax 7.37 7.42 0.40 -0.64 2.75 0.36
tomc 3.38 3.00 7.25 2.27 7.70 0.00
tmax 32.00 32.00 0.00 . . .
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Until now, we have been concerned with the profile of only one drug. We have characterized the
profile of that drug by individual subjects by using pkexamine and by a group of subjects by using
pksumm. The goal of an equivalence trial, however, is to compare two drugs, which we will do in
the rest of this example.

For equivalence trials, the study design most often used is the crossover design. For a complete
discussion of crossover designs, see Ratkowsky, Evans, and Alldredge (1993).

In brief, crossover designs require that each subject be given both treatments at two different times.
The order in which the treatments are applied changes between groups. For example, if we had 20
subjects numbered 1–20, the first 10 would receive treatment A during the first period of the study,
and then they would be given treatment B. The second 10 subjects would be given treatment B during
the first period of the study, and then they would be given treatment A. Each subject in the study
will have four variables that describe the observation: a subject identifier, a sequence identifier that
indicates the order of treatment, and two outcome variables, one for each treatment. The outcome
variables for each subject are the pharmacokinetic measures. The data must be transformed from a
series of measurements on individual subjects to data containing the pharmacokinetic measures for
each subject. In Stata parlance, this is referred to as a collapse, which can be done with pkcollapse;
see [R] pkcollapse.

Here is a part of our data:

. list, sepby(id)

id seq time concA concB

1. 1 1 0 0 0
2. 1 1 .5 3.073403 3.712592
3. 1 1 1 5.188444 6.230602
4. 1 1 1.5 5.898577 7.885944
5. 1 1 2 5.096378 9.241735
6. 1 1 3 6.094085 13.10507
7. 1 1 4 5.158772 .169429
8. 1 1 6 5.7065 8.759894
9. 1 1 8 5.272467 7.985409

10. 1 1 12 4.4576 7.740126
11. 1 1 16 5.146423 7.607208
12. 1 1 24 4.947427 7.588428
13. 1 1 32 1.920421 2.791115

14. 2 1 0 0 0
15. 2 1 .5 2.48462 .9209593
16. 2 1 1 4.883569 5.925818
17. 2 1 1.5 7.253442 8.710549
18. 2 1 2 5.849345 10.90552
19. 2 1 3 6.761085 8.429898
20. 2 1 4 4.33839 5.573152
21. 2 1 6 5.04199 6.32341
22. 2 1 8 4.25128 .5251224
23. 2 1 12 6.205004 7.415988
24. 2 1 16 5.566165 6.323938
25. 2 1 24 3.689007 1.133553
26. 2 1 32 3.644063 5.759489

27. 3 1 0 0 0
(output omitted )

207. 20 2 24 4.673281 6.059818
208. 20 2 32 3.487347 5.213639
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This format is similar to the second format described above, except that now we have measurements
for two drugs at each time for each subject. We transform these data with pkcollapse:

. pkcollapse time concA concB, id(id) keep(seq) stat(auc)

................................

. list, sep(8) abbrev(10)

id seq auc_concA auc_concB

1. 1 1 150.9643 218.5551
2. 2 1 146.7606 133.3201
3. 3 1 160.6548 126.0635
4. 4 1 157.8622 96.17461
5. 5 1 133.6957 188.9038
6. 7 1 160.639 223.6922
7. 8 1 131.2604 104.0139
8. 9 1 168.5186 237.8962

9. 10 2 137.0627 139.7382
10. 12 2 153.4038 202.3942
11. 13 2 163.4593 136.7848
12. 14 2 146.0462 104.5191
13. 15 2 158.1457 165.8654
14. 18 2 147.1977 139.235
15. 19 2 164.9988 166.2391
16. 20 2 145.3823 158.5146

For this example, we chose to use the AUC for two drugs as our pharmacokinetic measure. We
could have used any of the measures computed by pkexamine. In addition to the AUCs, the dataset
also contains a sequence variable for each subject indicating when each treatment was administered.

The data produced by pkcollapse are in what Stata calls wide format; that is, there is one
observation per subject containing two or more outcomes. To use pkcross and pkequiv, we need to
transform these data to long format. This goal can be accomplished using pkshape; see [R] pkshape.

Consider the first subject in the dataset. This subject is in sequence one, which means that
treatment A was applied during the first period of the study and treatment B was applied in the second
period of the study. We need to split the first observation into two observations so that the outcome
measure is only in one variable. Also we need two new variables, one indicating the treatment the
subject received and another recording the period of the study when the subject received that treatment.
We might expect the expansion of the first subject to be

id sequence auc treat period
1 1 150.9643 A 1
1 1 218.5551 B 2

We see that subject number 1 was in sequence 1, had an AUC of 150.9643 when treatment A was
applied in the first period of the study, and had an AUC of 218.5551 when treatment B was applied.

Similarly, the expansion of subject 10 (the first subject in sequence 2) would be

id sequence auc treat period
10 2 137.0627 B 1
10 2 139.7382 A 2

Here treatment B was applied to the subject during the first period of the study, and treatment A
was applied to the subject during the second period of the study.

An additional complication is common in crossover study designs. The treatment applied in the first
period of the study might still have some effect on the outcome in the second period. In this example,
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each subject was given one treatment followed by another treatment. To get accurate estimates of
treatment effects, it is necessary to account for the effect that the first treatment has in the second
period of the study. This is called the carryover effect. We must, therefore, have a variable that
indicates which treatment was applied in the first treatment period. pkshape creates a variable that
indicates the carryover effect. For treatments applied during the first treatment period, there will never
be a carryover effect. Thus the expanded data created by pkshape for subject 1 will be

id sequence outcome treat period carry
1 1 150.9643 A 1 0
1 1 218.5551 B 2 A

and the data for subject 10 will be
id sequence outcome treat period carry
10 2 137.0627 B 1 0
10 2 139.7382 A 2 B

We pkshape the data:
. pkshape id seq auc*, order(ab ba)

. sort id sequence period

. list, sep(16)

id sequence outcome treat carry period

1. 1 1 150.9643 1 0 1
2. 1 1 218.5551 2 1 2
3. 2 1 146.7606 1 0 1
4. 2 1 133.3201 2 1 2
5. 3 1 160.6548 1 0 1
6. 3 1 126.0635 2 1 2
7. 4 1 157.8622 1 0 1
8. 4 1 96.17461 2 1 2
9. 5 1 133.6957 1 0 1

10. 5 1 188.9038 2 1 2
11. 7 1 160.639 1 0 1
12. 7 1 223.6922 2 1 2
13. 8 1 131.2604 1 0 1
14. 8 1 104.0139 2 1 2
15. 9 1 168.5186 1 0 1
16. 9 1 237.8962 2 1 2

17. 10 2 137.0627 2 0 1
18. 10 2 139.7382 1 2 2
19. 12 2 153.4038 2 0 1
20. 12 2 202.3942 1 2 2
21. 13 2 163.4593 2 0 1
22. 13 2 136.7848 1 2 2
23. 14 2 146.0462 2 0 1
24. 14 2 104.5191 1 2 2
25. 15 2 158.1457 2 0 1
26. 15 2 165.8654 1 2 2
27. 18 2 147.1977 2 0 1
28. 18 2 139.235 1 2 2
29. 19 2 164.9988 2 0 1
30. 19 2 166.2391 1 2 2
31. 20 2 145.3823 2 0 1
32. 20 2 158.5146 1 2 2

As an aside, crossover designs do not require that each subject receive each treatment, but if they
do, the crossover design is referred to as a complete crossover design.



pk — Pharmacokinetic (biopharmaceutical) data 1449

The last dataset is organized in a manner that can be analyzed with Stata. To fit an ANOVA model
to these data, we can use anova or pkcross. To conduct equivalence tests, we can use pkequiv.
This example is further analyzed in [R] pkcross and [R] pkequiv.
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Title

pkcollapse — Generate pharmacokinetic measurement dataset

Syntax
pkcollapse time concentration

[
if
]
, id(id var)

[
options

]
options Description

Main
∗id(id var) subject ID variable
stat(measures) create specified measures; default is all
trapezoid use trapezoidal rule; default is cubic splines
fit(#) use # points to estimate AUC0,∞; default is fit(3)

keep(varlist) keep variables in varlist
force force collapse
nodots suppress dots during calculation

∗id(id var) is required.

measures Description

auc area under the concentration-time curve (AUC0,∞)
aucline area under the concentration-time curve from 0 to ∞ using a linear extension
aucexp area under the concentration-time curve from 0 to ∞ using an exponential

extension
auclog area under the log-concentration-time curve extended with a linear fit
half half-life of the drug
ke elimination rate
cmax maximum concentration
tmax time at last concentration
tomc time of maximum concentration

Menu
Statistics > Epidemiology and related > Other > Generate pharmacokinetic measurement dataset

Description
pkcollapse generates new variables with the pharmacokinetic summary measures of interest.

pkcollapse is one of the pk commands. Please read [R] pk before reading this entry.
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Options

� � �
Main �

id(id var) is required and specifies the variable that contains the subject ID over which pkcollapse
is to operate.

stat(measures) specifies the measures to be generated. The default is to generate all the measures.

trapezoid tells Stata to use the trapezoidal rule when calculating the AUC. The default is to use
cubic splines, which give better results for most functions. When the curve is irregular, trapezoid
may give better results.

fit(#) specifies the number of points to use in estimating the AUC0,∞. The default is fit(3), the
last three points. This number should be viewed as a minimum; the appropriate number of points
will depend on your data.

keep(varlist) specifies the variables to be kept during the collapse. Variables not specified with the
keep() option will be dropped. When keep() is specified, the keep variables are checked to
ensure that all values of the variables are the same within id var.

force forces the collapse, even when the values of the keep() variables are different within the
id var.

nodots suppresses the display of dots during calculation.

Remarks
pkcollapse generates all the summary pharmacokinetic measures.

Example 1

We demonstrate the use of pkcollapse with the data described in [R] pk. We have drug
concentration data on 15 subjects. Each subject is measured at 13 time points over a 32-hour period.
Some of the records are

. use http://www.stata-press.com/data/r12/pkdata

. list, sep(0)

id seq time concA concB

1. 1 1 0 0 0
2. 1 1 .5 3.073403 3.712592
3. 1 1 1 5.188444 6.230602
4. 1 1 1.5 5.898577 7.885944
5. 1 1 2 5.096378 9.241735
6. 1 1 3 6.094085 13.10507

(output omitted )
14. 2 1 0 0 0
15. 2 1 .5 2.48462 .9209593
16. 2 1 1 4.883569 5.925818
17. 2 1 1.5 7.253442 8.710549
18. 2 1 2 5.849345 10.90552
19. 2 1 3 6.761085 8.429898

(output omitted )
207. 20 2 24 4.673281 6.059818
208. 20 2 32 3.487347 5.213639
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Although pksumm allows us to view all the pharmacokinetic measures, we can create a dataset with
the measures by using pkcollapse.

. pkcollapse time concA concB, id(id) stat(auc) keep(seq)

................................

. list, sep(8) abbrev(10)

id seq auc_concA auc_concB

1. 1 1 150.9643 218.5551
2. 2 1 146.7606 133.3201
3. 3 1 160.6548 126.0635
4. 4 1 157.8622 96.17461
5. 5 1 133.6957 188.9038
6. 7 1 160.639 223.6922
7. 8 1 131.2604 104.0139
8. 9 1 168.5186 237.8962

9. 10 2 137.0627 139.7382
10. 12 2 153.4038 202.3942
11. 13 2 163.4593 136.7848
12. 14 2 146.0462 104.5191
13. 15 2 158.1457 165.8654
14. 18 2 147.1977 139.235
15. 19 2 164.9988 166.2391
16. 20 2 145.3823 158.5146

The resulting dataset, which we will call pkdata2, contains 1 observation per subject. This dataset
is in wide format. If we want to use pkcross or pkequiv, we must transform these data to long
format, which we do in the last example of [R] pkshape.

Methods and formulas
pkcollapse is implemented as an ado-file.

The statistics generated by pkcollapse are described in [R] pkexamine.

Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data
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pkcross — Analyze crossover experiments

Syntax

pkcross outcome
[

if
] [

in
] [

, options
]

options Description

Model

sequence(varname) sequence variable; default is sequence(sequence)

treatment(varname) treatment variable; default is treatment(treat)

period(varname) period variable; default is period(period)

id(varname) ID variable
carryover(varname) name of carryover variable; default is carryover(carry)

carryover(none) omit carryover effects from model; default is carryover(carry)

model(string) specify the model to fit
sequential estimate sequential instead of partial sums of squares

Parameterization

param(3) estimate mean and the period, treatment, and sequence effects;
assume no carryover effects exist; the default

param(1) estimate mean and the period, treatment, and carryover effects;
assume no sequence effects exist

param(2) estimate mean, period and treatment effects, and period-by-treatment
interaction; assume no sequence or carryover effects exist

param(4) estimate mean, period and treatment effects, and period-by-treatment
interaction; assume no period or crossover effects exist

Menu
Statistics > Epidemiology and related > Other > Analyze crossover experiments

Description
pkcross analyzes data from a crossover design experiment. When analyzing pharmaceutical trial

data, if the treatment, carryover, and sequence variables are known, the omnibus test for separability
of the treatment and carryover effects is calculated.

pkcross is one of the pk commands. Please read [R] pk before reading this entry.

Options

� � �
Model �

sequence(varname) specifies the variable that contains the sequence in which the treatment was
administered. If this option is not specified, sequence(sequence) is assumed.
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treatment(varname) specifies the variable that contains the treatment information. If this option is
not specified, treatment(treat) is assumed.

period(varname) specifies the variable that contains the period information. If this option is not
specified, period(period) is assumed.

id(varname) specifies the variable that contains the subject identifiers. If this option is not specified,
id(id) is assumed.

carryover(varname | none) specifies the variable that contains the carryover information. If
carry(none) is specified, the carryover effects are omitted from the model. If this option is
not specified, carryover(carry) is assumed.

model(string) specifies the model to be fit. For higher-order crossover designs, this option can be
useful if you want to fit a model other than the default. However, anova (see [R] anova) can also
be used to fit a crossover model. The default model for higher-order crossover designs is outcome
predicted by sequence, period, treatment, and carryover effects. By default, the model statement
is model(sequence period treat carry).

sequential specifies that sequential sums of squares be estimated.

� � �
Parameterization �

param(#) specifies which of the four parameterizations to use for the analysis of a 2× 2 crossover
experiment. This option is ignored with higher-order crossover designs. The default is param(3).
See the technical note for 2× 2 crossover designs for more details.

param(3) estimates the overall mean, the period effects, the treatment effects, and the sequence
effects, assuming that no carryover effects exist. This is the default parameterization.

param(1) estimates the overall mean, the period effects, the treatment effects, and the carryover
effects, assuming that no sequence effects exist.

param(2) estimates the overall mean, the period effects, the treatment effects, and the period-by-
treatment interaction, assuming that no sequence or carryover effects exist.

param(4) estimates the overall mean, the sequence effects, the treatment effects, and the sequence-
by-treatment interaction, assuming that no period or crossover effects exist. When the sequence
by treatment is equivalent to the period effect, this reduces to the third parameterization.

Remarks
pkcross is designed to analyze crossover experiments. Use pkshape first to reshape your data;

see [R] pkshape. pkcross assumes that the data were reshaped by pkshape or are organized in the
same manner as produced with pkshape. Washout periods are indicated by the number 0. See the
technical note in this entry for more information on analyzing 2× 2 crossover experiments.

Technical note

The 2× 2 crossover design cannot be used to estimate more than four parameters because there
are only four pieces of information (the four cell means) collected. pkcross uses ANOVA models to
analyze the data, so one of the four parameters must be the overall mean of the model, leaving just
3 degrees of freedom to estimate the remaining effects (period, sequence, treatment, and carryover).
Thus the model is overparameterized. Estimation of treatment and carryover effects requires the
assumption of either no period effects or no sequence effects. Some researchers maintain that it
estimating carryover effects at the expense of other effects is a bad idea. This is a limitation of this
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design. pkcross implements four parameterizations for this model. They are numbered sequentially
from one to four and are described in Options.

Example 1

Consider the example data published in Chow and Liu (2009, 71) and described in [R] pkshape.
We have entered and reshaped the data with pkshape and have variables that identify the subjects,
periods, treatments, sequence, and carryover treatment. To compute the ANOVA table, use pkcross:

. use http://www.stata-press.com/data/r12/chowliu

. pkshape id seq period1 period2, order(ab ba)

. pkcross outcome
sequence variable = sequence

period variable = period
treatment variable = treat
carryover variable = carry

id variable = id

Analysis of variance (ANOVA) for a 2x2 crossover study
Source of Variation SS df MS F Prob > F

Intersubjects
Sequence effect 276.00 1 276.00 0.37 0.5468

Residuals 16211.49 22 736.89 4.41 0.0005

Intrasubjects
Treatment effect 62.79 1 62.79 0.38 0.5463

Period effect 35.97 1 35.97 0.22 0.6474
Residuals 3679.43 22 167.25

Total 20265.68 47

Omnibus measure of separability of treatment and carryover = 29.2893%

There is evidence of intersubject variability, but there are no other significant effects. The omnibus
test for separability is a measure reflecting the degree to which the study design allows the treatment
effects to be estimated independently of the carryover effects. The measure of separability of the
treatment and carryover effects indicates approximately 29% separability, which can be interpreted
as the degree to which the treatment and carryover effects are orthogonal. This is a characteristic
of the design of the study. For a complete discussion, see Ratkowsky, Evans, and Alldredge (1993).
Compared to the output in Chow and Liu (2009), the sequence effect is mislabeled as a carryover effect.
See Ratkowsky, Evans, and Alldredge (1993, sec. 3.2) for a complete discussion of the mislabeling.
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By specifying param(1), we obtain parameterization 1 for this model.

. pkcross outcome, param(1)
sequence variable = sequence

period variable = period
treatment variable = treat
carryover variable = carry

id variable = id

Analysis of variance (ANOVA) for a 2x2 crossover study
Source of Variation Partial SS df MS F Prob > F

Treatment effect 301.04 1 301.04 0.67 0.4189
Period effect 255.62 1 255.62 0.57 0.4561

Carryover effect 276.00 1 276.00 0.61 0.4388
Residuals 19890.92 44 452.07

Total 20265.68 47

Omnibus measure of separability of treatment and carryover = 29.2893%

Example 2

Consider the case of a two-treatment, four-sequence, two-period crossover design. This design is
commonly referred to as Balaam’s design (Balaam 1968). Ratkowsky, Evans, and Alldredge (1993,
140) published the following data from an amantadine trial, originally published by Taka and
Armitage (1983):

. use http://www.stata-press.com/data/r12/balaam, clear

. list, sep(0)

id seq period1 period2 period3

1. 1 -ab 9 8.75 8.75
2. 2 -ab 12 10.5 9.75
3. 3 -ab 17 15 18.5
4. 4 -ab 21 21 21.5
5. 1 -ba 23 22 18
6. 2 -ba 15 15 13
7. 3 -ba 13 14 13.75
8. 4 -ba 24 22.75 21.5
9. 5 -ba 18 17.75 16.75

10. 1 -aa 14 12.5 14
11. 2 -aa 27 24.25 22.5
12. 3 -aa 19 17.25 16.25
13. 4 -aa 30 28.25 29.75
14. 1 -bb 21 20 19.51
15. 2 -bb 11 10.5 10
16. 3 -bb 20 19.5 20.75
17. 4 -bb 25 22.5 23.5

The sequence identifier must be a string with zeros to indicate washout or baseline periods, or
a number. If the sequence identifier is numeric, the order option must be specified with pkshape.
If the sequence identifier is a string, pkshape will create sequence, period, and treatment identifiers
without the order option. In this example, the dash is used to indicate a baseline period, which is
an invalid code for this purpose. As a result, the data must be encoded; see [D] encode.
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. encode seq, gen(num_seq)

. pkshape id num_seq period1 period2 period3, order(0aa 0ab 0ba 0bb)

. pkcross outcome, se
sequence variable = sequence

period variable = period
treatment variable = treat
carryover variable = carry

id variable = id

Analysis of variance (ANOVA) for a crossover study
Source of Variation SS df MS F Prob > F

Intersubjects
Sequence effect 285.82 3 95.27 1.01 0.4180

Residuals 1221.49 13 93.96 59.96 0.0000

Intrasubjects
Period effect 15.13 2 7.56 6.34 0.0048

Treatment effect 8.48 1 8.48 8.86 0.0056
Carryover effect 0.11 1 0.11 0.12 0.7366

Residuals 29.56 30 0.99

Total 1560.59 50

Omnibus measure of separability of treatment and carryover = 64.6447%

In this example, the sequence specifier used dashes instead of zeros to indicate a baseline period
during which no treatment was given. For pkcross to work, we need to encode the string sequence
variable and then use the order option with pkshape. A word of caution: encode does not necessarily
choose the first sequence to be sequence 1, as in this example. Always double-check the sequence
numbering when using encode.
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Example 3

Continuing with the example from [R] pkshape, we fit an ANOVA model.

. use http://www.stata-press.com/data/r12/pkdata3, clear

. list, sep(8)

id sequence outcome treat carry period

1. 1 1 150.9643 A 0 1
2. 2 1 146.7606 A 0 1
3. 3 1 160.6548 A 0 1
4. 4 1 157.8622 A 0 1
5. 5 1 133.6957 A 0 1
6. 7 1 160.639 A 0 1
7. 8 1 131.2604 A 0 1
8. 9 1 168.5186 A 0 1

9. 10 2 137.0627 B 0 1
10. 12 2 153.4038 B 0 1
11. 13 2 163.4593 B 0 1
12. 14 2 146.0462 B 0 1
13. 15 2 158.1457 B 0 1
14. 18 2 147.1977 B 0 1
15. 19 2 164.9988 B 0 1
16. 20 2 145.3823 B 0 1

17. 1 1 218.5551 B A 2
18. 2 1 133.3201 B A 2
19. 3 1 126.0635 B A 2
20. 4 1 96.17461 B A 2
21. 5 1 188.9038 B A 2
22. 7 1 223.6922 B A 2
23. 8 1 104.0139 B A 2
24. 9 1 237.8962 B A 2

25. 10 2 139.7382 A B 2
26. 12 2 202.3942 A B 2
27. 13 2 136.7848 A B 2
28. 14 2 104.5191 A B 2
29. 15 2 165.8654 A B 2
30. 18 2 139.235 A B 2
31. 19 2 166.2391 A B 2
32. 20 2 158.5146 A B 2
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The ANOVA model is fit using pkcross:

. pkcross outcome
sequence variable = sequence

period variable = period
treatment variable = treat
carryover variable = carry

id variable = id

Analysis of variance (ANOVA) for a 2x2 crossover study
Source of Variation SS df MS F Prob > F

Intersubjects
Sequence effect 378.04 1 378.04 0.29 0.5961

Residuals 17991.26 14 1285.09 1.40 0.2691

Intrasubjects
Treatment effect 455.04 1 455.04 0.50 0.4931

Period effect 419.47 1 419.47 0.46 0.5102
Residuals 12860.78 14 918.63

Total 32104.59 31

Omnibus measure of separability of treatment and carryover = 29.2893%

Example 4

Consider the case of a six-treatment crossover trial in which the squares are not variance balanced.
The following dataset is from a partially balanced crossover trial published by Patterson and Lucas (1962)
and reproduced in Ratkowsky, Evans, and Alldredge (1993, 231):

. use http://www.stata-press.com/data/r12/nobalance

. list, sep(4)

cow seq period1 period2 period3 period4 block

1. 1 adbe 38.7 37.4 34.3 31.3 1
2. 2 baed 48.9 46.9 42 39.6 1
3. 3 ebda 34.6 32.3 28.5 27.1 1
4. 4 deab 35.2 33.5 28.4 25.1 1

5. 1 dafc 32.9 33.1 27.5 25.1 2
6. 2 fdca 30.4 29.5 26.7 23.1 2
7. 3 cfad 30.8 29.3 26.4 23.2 2
8. 4 acdf 25.7 26.1 23.4 18.7 2

9. 1 efbc 25.4 26 23.9 19.9 3
10. 2 becf 21.8 23.9 21.7 17.6 3
11. 3 fceb 21.4 22 19.4 16.6 3
12. 4 cbfe 22.8 21 18.6 16.1 3
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When there is no variance balance in the design, a square or blocking variable is needed to indicate
in which treatment cell a sequence was observed, but the mechanical steps are the same.

. pkshape cow seq period1 period2 period3 period4

. pkcross outcome, model(block cow|block period|block treat carry) se

Number of obs = 48 R-squared = 0.9965
Root MSE = .740408 Adj R-squared = 0.9903

Source Seq. SS df MS F Prob > F

Model 2650.1331 30 88.3377701 161.14 0.0000

block 1607.01128 2 803.505642 1465.71 0.0000
cow|block 628.706274 9 69.8562527 127.43 0.0000

period|block 408.031253 9 45.3368059 82.70 0.0000
treat 2.50000057 5 .500000114 0.91 0.4964
carry 3.88428906 5 .776857812 1.42 0.2680

Residual 9.31945887 17 .548203463

Total 2659.45256 47 56.584097

When the model statement is used and the omnibus measure of separability is desired, specify the
variables in the treatment(), carryover(), and sequence() options to pkcross.

Methods and formulas
pkcross is implemented as an ado-file.

pkcross uses ANOVA to fit models for crossover experiments; see [R] anova.

The omnibus measure of separability is

S = 100(1− V )%

where V is Cramér’s V and is defined as

V =

{
χ2

N

min(r − 1, c− 1)

} 1
2

The χ2 is calculated as

χ2 =
∑
i

∑
j

{
(Oij − Eij)2

Eij

}
where O and E are the observed and expected counts in a table of the number of times each treatment
is followed by the other treatments.
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Title

pkequiv — Perform bioequivalence tests

Syntax
pkequiv outcome treatment period sequence id

[
if
] [

in
] [

, options
]

options Description

Options

compare(string) compare the two specified values of the treatment variable
limit(#) equivalence limit (between 0.10 and 0.99); default is 0.2
level(#) set confidence level; default is level(90)

fieller calculate confidence interval by Fieller’s theorem
symmetric calculate symmetric equivalence interval
anderson Anderson and Hauck hypothesis test for bioequivalence
tost two one-sided hypothesis tests for bioequivalence
noboot do not estimate probability that CI lies within confidence limits

Menu
Statistics > Epidemiology and related > Other > Bioequivalence tests

Description
pkequiv performs bioequivalence testing for two treatments. By default, pkequiv calculates

a standard confidence interval symmetric about the difference between the two treatment means.
pkequiv also calculates confidence intervals symmetric about zero and intervals based on Fieller’s
theorem. Also, pkequiv can perform interval hypothesis tests for bioequivalence.

pkequiv is one of the pk commands. Please read [R] pk before reading this entry.

Options

� � �
Options �

compare(string) specifies the two treatments to be tested for equivalence. Sometimes there may be
more than two treatments, but the equivalence can be determined only between any two treatments.

limit(#) specifies the equivalence limit. The default is 0.2. The equivalence limit can be changed
only symmetrically; that is, it is not possible to have a 0.15 lower limit and a 0.2 upper limit in
the same test.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(90). This setting is not controlled by the set level command.

fieller specifies that an equivalence interval based on Fieller’s theorem be calculated.

symmetric specifies that a symmetric equivalence interval be calculated.

anderson specifies that the Anderson and Hauck (1983) hypothesis test for bioequivalence be computed.
This option is ignored when calculating equivalence intervals based on Fieller’s theorem or when
calculating a confidence interval that is symmetric about zero.
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tost specifies that the two one-sided hypothesis tests for bioequivalence be computed. This option
is ignored when calculating equivalence intervals based on Fieller’s theorem or when calculating
a confidence interval that is symmetric about zero.

noboot prevents the estimation of the probability that the confidence interval lies within the confidence
limits. If this option is not specified, this probability is estimated by resampling the data.

Remarks
pkequiv is designed to conduct tests for bioequivalence based on data from a crossover experiment.

pkequiv requires that the user specify the outcome, treatment, period, sequence, and id variables.
The data must be in the same format as that produced by pkshape; see [R] pkshape.

Example 1

Continuing with example 4 from [R] pkshape, we will conduct equivalence testing.
. use http://www.stata-press.com/data/r12/pkdata3

. list, sep(4)

id sequence outcome treat carry period

1. 1 1 150.9643 A 0 1
2. 2 1 146.7606 A 0 1
3. 3 1 160.6548 A 0 1
4. 4 1 157.8622 A 0 1

5. 5 1 133.6957 A 0 1
6. 7 1 160.639 A 0 1
7. 8 1 131.2604 A 0 1
8. 9 1 168.5186 A 0 1

9. 10 2 137.0627 B 0 1
10. 12 2 153.4038 B 0 1
11. 13 2 163.4593 B 0 1
12. 14 2 146.0462 B 0 1

13. 15 2 158.1457 B 0 1
14. 18 2 147.1977 B 0 1
15. 19 2 164.9988 B 0 1
16. 20 2 145.3823 B 0 1

17. 1 1 218.5551 B A 2
18. 2 1 133.3201 B A 2
19. 3 1 126.0635 B A 2
20. 4 1 96.17461 B A 2

21. 5 1 188.9038 B A 2
22. 7 1 223.6922 B A 2
23. 8 1 104.0139 B A 2
24. 9 1 237.8962 B A 2

25. 10 2 139.7382 A B 2
26. 12 2 202.3942 A B 2
27. 13 2 136.7848 A B 2
28. 14 2 104.5191 A B 2

29. 15 2 165.8654 A B 2
30. 18 2 139.235 A B 2
31. 19 2 166.2391 A B 2
32. 20 2 158.5146 A B 2
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Now we can conduct a bioequivalence test between treat = A and treat = B.

. set seed 1

. pkequiv outcome treat period seq id

Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -30.296 30.296 -11.332 26.416
ratio: 80% 120% 92.519% 117.439%

probability test limits are within equivalence limits = 0.6410
note: reference treatment = 1

The default output for pkequiv shows a confidence interval for the difference of the means (test
limits), the ratio of the means, and the federal equivalence limits. The classic confidence interval can
be constructed around the difference between the average measure of effect for the two drugs or around
the ratio of the average measure of effect for the two drugs. pkequiv reports both the difference
measure and the ratio measure. For these data, U.S. federal government regulations state that the
confidence interval for the difference must be entirely contained within the range [−30.296, 30.296 ]
and between 80% and 120% for the ratio. Here the test limits are within the equivalence limits.
Although the test limits are inside the equivalence limits, there is only a 64% assurance that the
observed confidence interval will be within the equivalence limits in the long run. This is an interesting
case because, although this sample shows bioequivalence, the evaluation of the long-run performance
indicates possible problems. These fictitious data were generated with high intersubject variability,
which causes poor long-run performance.

If we conduct a bioequivalence test with the data published in Chow and Liu (2009, 71), which
we introduced in [R] pk and fully described in [R] pkshape, we observe that the probability that the
test limits are within the equivalence limits is high.

. use http://www.stata-press.com/data/r12/chowliu2

. set seed 1

. pkequiv outcome treat period seq id

Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -16.512 16.512 -8.698 4.123
ratio: 80% 120% 89.464% 104.994%

probability test limits are within equivalence limits = 0.9980
note: reference treatment = 1

For these data, the test limits are well within the equivalence limits, and the probability that the
test limits are within the equivalence limits is 99.8%.
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Example 2

We compute a confidence interval that is symmetric about zero:

. pkequiv outcome treat period seq id, symmetric

Westlake’s symmetric confidence interval for bioequivalence

[Equivalence limits] [ Test mean ]

Test formulation: 75.145 89.974 80.272

note: reference treatment = 1

The reported equivalence limit is constructed symmetrically about the reference mean, which is
equivalent to constructing a confidence interval symmetric about zero for the difference in the two
drugs. In the output above, we see that the test formulation mean of 80.272 is within the equivalence
limits, indicating that the test drug is bioequivalent to the reference drug.

pkequiv displays interval hypothesis tests of bioequivalence if you specify the tost or the
anderson option, or both. For example,

. set seed 1

. pkequiv outcome treat period seq id, tost anderson

Classic confidence interval for bioequivalence

[equivalence limits] [ test limits ]

difference: -16.512 16.512 -8.698 4.123
ratio: 80% 120% 89.464% 104.994%

probability test limits are within equivalence limits = 0.9980

Schuirmann’s two one-sided tests

upper test statistic = -5.036 p-value = 0.000
lower test statistic = 3.810 p-value = 0.001

Anderson and Hauck’s test

noncentrality parameter = 4.423
test statistic = -0.613 empirical p-value = 0.0005

note: reference treatment = 1

Both of Schuirmann’s one-sided tests are highly significant, suggesting that the two drugs are
bioequivalent. A similar conclusion is drawn from the Anderson and Hauck test of bioequivalence.

Saved results
pkequiv saves the following in r():

Scalars
r(stddev) pooled-sample standard deviation of period differences from both sequences
r(uci) upper confidence interval for a classic interval
r(lci) lower confidence interval for a classic interval
r(delta) delta value used in calculating a symmetric confidence interval
r(u3) upper confidence interval for Fieller’s confidence interval
r(l3) lower confidence interval for Fieller’s confidence interval
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Methods and formulas
pkequiv is implemented as an ado-file.

The lower confidence interval for the difference in the two treatments for the classic shortest
confidence interval is

L1 =
(
Y T − Y R

)
− t(α,n1+n2−2)σ̂d

√
1
n1

+
1
n2

The upper limit is

U1 =
(
Y T − Y R

)
+ t(α,n1+n2−2)σ̂d

√
1
n1

+
1
n2

The limits for the ratio measure are

L2 =
(
L1

Y R
+ 1
)

100%

and

U2 =
(
U1

Y R
+ 1
)

100%

where Y T is the mean of the test formulation of the drug, Y R is the mean of the reference formulation
of the drug, and t(α,n1+n2−2) is the t distribution with n1 + n2 − 2 degrees of freedom. σ̂d is the
pooled sample variance of the period differences from both sequences, defined as

σ̂d =
1

n1 + n2 − 2

2∑
k=1

nk∑
i=1

(
dik − d.k

)2
The upper and lower limits for the symmetric confidence interval are Y R+∆ and Y R−∆, where

∆ = k1σ̂d

√
1
n1

+
1
n2
−
(
Y T − Y R

)
and (simultaneously)

∆ = −k2σ̂d

√
1
n1

+
1
n2

+ 2
(
Y T − Y R

)
and k1 and k2 are computed iteratively to satisfy the above equalities and the condition∫ k2

k1

f(t)dt = 1− 2α

where f(t) is the probability density function of the t distribution with n1 + n2 − 2 degrees of
freedom.

See Chow and Liu (2009, 88–92) for details about calculating the confidence interval based on
Fieller’s theorem.
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The two test statistics for the two one-sided tests of equivalence are

TL =

(
Y T − Y R

)
− θL

σ̂d

√
1
n1

+ 1
n2

and

TU =

(
Y T − Y R

)
− θU

σ̂d

√
1
n1

+ 1
n2

where −θL = θU and are the regulated confidence limits.

The logic of the Anderson and Hauck test is tricky; see Chow and Liu (2009) for a complete
explanation. However, the test statistic is

TAH =

(
Y T − Y R

)
−
(
θL+θU

2

)
σ̂d

√
1
n1

+ 1
n2

and the noncentrality parameter is estimated by

δ̂ =
θU − θL

2σ̂d
√

1
n1

+ 1
n2

The empirical p-value is calculated as

p = Ft

(
|TAH | − δ̂

)
− Ft

(
− |TAH | − δ̂

)
where Ft is the cumulative distribution function of the t distribution with n1 + n2 − 2 degrees of
freedom.
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Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data



Title

pkexamine — Calculate pharmacokinetic measures

Syntax
pkexamine time concentration

[
if
] [

in
] [

, options
]

options Description

Main

fit(#) use # points to estimate AUC0,∞; default is fit(3)

trapezoid use trapezoidal rule; default is cubic splines
graph graph the AUC

line graph the linear extension
log graph the log extension
exp(#) plot the exponential fit for the AUC0,∞

AUC plot

cline options affect rendition of plotted points connected by lines
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

by is allowed; see [D] by.

Menu
Statistics > Epidemiology and related > Other > Pharmacokinetic measures

Description
pkexamine calculates pharmacokinetic measures from time-and-concentration subject-level data.

pkexamine computes and displays the maximum measured concentration, the time at the maximum
measured concentration, the time of the last measurement, the elimination time, the half-life, and the
area under the concentration-time curve (AUC). Three estimates of the area under the concentration-time
curve from 0 to infinity (AUC0,∞) are also calculated.

pkexamine is one of the pk commands. Please read [R] pk before reading this entry.
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Options

� � �
Main �

fit(#) specifies the number of points, counting back from the last measurement, to use in fitting
the extension to estimate the AUC0,∞. The default is fit(3), or the last three points. This value
should be viewed as a minimum; the appropriate number of points will depend on your data.

trapezoid specifies that the trapezoidal rule be used to calculate the AUC. The default is cubic
splines, which give better results for most functions. When the curve is irregular, trapezoid may
give better results.

graph tells pkexamine to graph the concentration-time curve.

line and log specify the estimates of the AUC0,∞ to display when graphing the AUC0,∞. These
options are ignored, unless they are specified with the graph option.

exp(#) specifies that the exponential fit for the AUC0,∞ be plotted. You must specify the maximum
time value to which you want to plot the curve, and this time value must be greater than the
maximum time measurement in the data. If you specify 0, the curve will be plotted to the point
at which the linear extension would cross the x axis. This option is not valid with the line or
log option and is ignored, unless the graph option is also specified.

� � �
AUC plot �

cline options affect the rendition of the plotted points connected by lines; see [G-3] cline options.

marker options specify the look of markers. This look includes the marker symbol, the marker size,
and its color and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see
[G-3] marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
pkexamine computes summary statistics for a given patient in a pharmacokinetic trial. If by idvar:

is specified, statistics will be displayed for each subject in the data.

Example 1

Chow and Liu (2009, 13) present data on a study examining primidone concentrations versus time
for a subject over a 32-hour period after dosing.
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. use http://www.stata-press.com/data/r12/auc

. list, abbrev(14)

id time concentration

1. 1 0 0
2. 1 .5 0
3. 1 1 2.8
4. 1 1.5 4.4
5. 1 2 4.4

6. 1 3 4.7
7. 1 4 4.1
8. 1 6 4
9. 1 8 3.6

10. 1 12 3

11. 1 16 2.5
12. 1 24 2
13. 1 32 1.6

We use pkexamine to produce the summary statistics:

. pkexamine time conc, graph

Maximum concentration = 4.7
Time of maximum concentration = 3

Time of last observation (Tmax) = 32
Elimination rate = 0.0279

Half life = 24.8503

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 142.603 107.759 142.603

Fit based on last 3 points.
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The maximum concentration of 4.7 occurs at time 3, and the time of the last observation (Tmax) is
32. In addition to the AUC, which is calculated from 0 to the maximum value of time, pkexamine
also reports the area under the curve, computed by extending the curve with each of three methods:
a linear fit to the log of the concentration, a linear regression line, and a decreasing exponential
regression line. See Methods and formulas for details on these three methods.

By default, all extensions to the AUC are based on the last three points. Looking at the graph for
these data, it seems more appropriate to use the last seven points to estimate the AUC0,∞:

. pkexamine time conc, fit(7)

Maximum concentration = 4.7
Time of maximum concentration = 3

Time of last observation (Tmax) = 32
Elimination rate = 0.0349

Half life = 19.8354

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 131.027 96.805 129.181

Fit based on last 7 points.

This approach decreased the estimate of the AUC0,∞ for all extensions. To see a graph of the AUC0,∞
using a linear extension, specify the graph and line options.

. pkexamine time conc, fit(7) graph line
Maximum concentration = 4.7

Time of maximum concentration = 3
Time of last observation (Tmax) = 32

Elimination rate = 0.0349
Half life = 19.8354

Area under the curve

AUC [0, inf.) AUC [0, inf.) AUC [0, inf.)
AUC [0, Tmax] Linear of log conc. Linear fit Exponential fit

85.24 131.027 96.805 129.181

Fit based on last 7 points.
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Saved results
pkexamine saves the following in r():

Scalars
r(auc) area under the concentration curve
r(half) half-life of the drug
r(ke) elimination rate
r(tmax) time at last concentration measurement
r(cmax) maximum concentration
r(tomc) time of maximum concentration
r(auc line) AUC0,∞ estimated with a linear fit
r(auc exp) AUC0,∞ estimated with an exponential fit
r(auc ln) AUC0,∞ estimated with a linear fit of the natural log

Methods and formulas
pkexamine is implemented as an ado-file.

Let i index the observations sorted by time, let k be the number of observations, and let f be the
number of points specified in the fit(#) option.

The AUC0,tmax is defined as

AUC0,tmax =
∫ tmax

0

Ctdt

where Ct is the concentration at time t. By default, the integral is calculated numerically using cubic
splines. However, if the trapezoidal rule is used, the AUC0,tmax is given as

AUC0,tmax =
k∑
i=2

Ci−1 + Ci
2

(ti − ti−1)
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The AUC0,∞ is the AUC0,tmax + AUCtmax,∞, or

AUC0,∞ =
∫ tmax

0

Ctdt+
∫ ∞
tmax

Ctdt

When using the linear extension to the AUC0,tmax , the integration is cut off when the line crosses
the x axis. The log extension is a linear extension on the log concentration scale. The area for the
exponential extension is

AUC0,∞ =
∫ ∞
tmax

e−(β0+tβ1)dt = − e−(β0+tmaxβ1)

β1

The elimination rate Keq is the negative of the slope from a linear regression of log concentration
on time fit to the number of points specified in the fit(#) option:

Keq = −
∑k
i=k−f+1

(
ti − t

) (
lnCi − lnC

)∑k
i=k−f+1

(
ti − t

)2
The half-life is

thalf =
ln2
Keq

Reference
Chow, S.-C., and J.-P. Liu. 2009. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. Boca

Raton, FL: Chapman & Hall/CRC.

Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data
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pkshape — Reshape (pharmacokinetic) Latin-square data

Syntax
pkshape id sequence period1 period2

[
period list

] [
, options

]
options Description

order(string) apply treatments in specified order
outcome(newvar) name for outcome variable; default is outcome(outcome)

treatment(newvar) name for treatment variable; default is treatment(treat)

carryover(newvar) name for carryover variable; default is carryover(carry)

sequence(newvar) name for sequence variable; default is sequence(sequence)

period(newvar) name for period variable; default is period(period)

Menu
Statistics > Epidemiology and related > Other > Reshape pharmacokinetic latin-square data

Description
pkshape reshapes the data for use with anova, pkcross, and pkequiv; see [R] anova, [R] pkcross,

and [R] pkequiv. Latin-square and crossover data are often organized in a manner that cannot be
analyzed easily with Stata. pkshape reorganizes the data in memory for use in Stata.

pkshape is one of the pk commands. Please read [R] pk before reading this entry.

Options
order(string) specifies the order in which treatments were applied. If the sequence() specifier is a

string variable that specifies the order, this option is not necessary. Otherwise, order() specifies
how to generate the treatment and carryover variables. Any string variable can be used to specify
the order. For crossover designs, any washout periods can be indicated with the number 0.

outcome(newvar) specifies the name for the outcome variable in the reorganized data. By default,
outcome(outcome) is used.

treatment(newvar) specifies the name for the treatment variable in the reorganized data. By default,
treatment(treat) is used.

carryover(newvar) specifies the name for the carryover variable in the reorganized data. By default,
carryover(carry) is used.

sequence(newvar) specifies the name for the sequence variable in the reorganized data. By default,
sequence(sequence) is used.

period(newvar) specifies the name for the period variable in the reorganized data. By default,
period(period) is used.

1475
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Remarks
Often data from a Latin-square experiment are naturally organized in a manner that Stata cannot

manage easily. pkshape reorganizes Latin-square data so that they can be used with anova (see
[R] anova) or any pk command. This includes the classic 2× 2 crossover design commonly used in
pharmaceutical research, as well as many other Latin-square designs.

Example 1

Consider the example data published in Chow and Liu (2009, 71). There are 24 patients, 12 in
each sequence. Sequence 1 consists of the reference formulation followed by the test formulation;
sequence 2 is the test formulation followed by the reference formulation. The measurements reported
are the AUC0−tmax for each patient and for each period.

. use http://www.stata-press.com/data/r12/chowliu

. list, sep(4)

id seq period1 period2

1. 1 1 74.675 73.675
2. 4 1 96.4 93.25
3. 5 1 101.95 102.125
4. 6 1 79.05 69.45

5. 11 1 79.05 69.025
6. 12 1 85.95 68.7
7. 15 1 69.725 59.425
8. 16 1 86.275 76.125

9. 19 1 112.675 114.875
10. 20 1 99.525 116.25
11. 23 1 89.425 64.175
12. 24 1 55.175 74.575

13. 2 2 74.825 37.35
14. 3 2 86.875 51.925
15. 7 2 81.675 72.175
16. 8 2 92.7 77.5

17. 9 2 50.45 71.875
18. 10 2 66.125 94.025
19. 13 2 122.45 124.975
20. 14 2 99.075 85.225

21. 17 2 86.35 95.925
22. 18 2 49.925 67.1
23. 21 2 42.7 59.425
24. 22 2 91.725 114.05

Because the outcome for one person is in two different variables, the treatment that was applied to
an individual is a function of the period and the sequence. To analyze this treatment using anova, all
the outcomes must be in one variable, and each covariate must be in its own variable. To reorganize
these data, use pkshape:

. pkshape id seq period1 period2, order(ab ba)

. sort seq id treat
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. list, sep(8)

id sequence outcome treat carry period

1. 1 1 74.675 1 0 1
2. 1 1 73.675 2 1 2
3. 4 1 96.4 1 0 1
4. 4 1 93.25 2 1 2
5. 5 1 101.95 1 0 1
6. 5 1 102.125 2 1 2
7. 6 1 79.05 1 0 1
8. 6 1 69.45 2 1 2

9. 11 1 79.05 1 0 1
10. 11 1 69.025 2 1 2
11. 12 1 85.95 1 0 1
12. 12 1 68.7 2 1 2
13. 15 1 69.725 1 0 1
14. 15 1 59.425 2 1 2
15. 16 1 86.275 1 0 1
16. 16 1 76.125 2 1 2

17. 19 1 112.675 1 0 1
18. 19 1 114.875 2 1 2
19. 20 1 99.525 1 0 1
20. 20 1 116.25 2 1 2
21. 23 1 89.425 1 0 1
22. 23 1 64.175 2 1 2
23. 24 1 55.175 1 0 1
24. 24 1 74.575 2 1 2

25. 2 2 37.35 1 2 2
26. 2 2 74.825 2 0 1
27. 3 2 51.925 1 2 2
28. 3 2 86.875 2 0 1
29. 7 2 72.175 1 2 2
30. 7 2 81.675 2 0 1
31. 8 2 77.5 1 2 2
32. 8 2 92.7 2 0 1

33. 9 2 71.875 1 2 2
34. 9 2 50.45 2 0 1
35. 10 2 94.025 1 2 2
36. 10 2 66.125 2 0 1
37. 13 2 124.975 1 2 2
38. 13 2 122.45 2 0 1
39. 14 2 85.225 1 2 2
40. 14 2 99.075 2 0 1

41. 17 2 95.925 1 2 2
42. 17 2 86.35 2 0 1
43. 18 2 67.1 1 2 2
44. 18 2 49.925 2 0 1
45. 21 2 59.425 1 2 2
46. 21 2 42.7 2 0 1
47. 22 2 114.05 1 2 2
48. 22 2 91.725 2 0 1

Now the data are organized into separate variables that indicate each factor level for each of the
covariates, so the data may be used with anova or pkcross; see [R] anova and [R] pkcross.
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Example 2

Consider the study of background music on bank teller productivity published in Kutner et al. (2005).
The data are

Week Monday Tuesday Wednesday Thursday Friday

1 18(D) 17(C) 14(A) 21(B) 17(E)
2 13(C) 34(B) 21(E) 16(A) 15(D)
3 7(A) 29(D) 32(B) 27(E) 13(C)
4 17(E) 13(A) 24(C) 31(D) 25(B)
5 21(B) 26(E) 26(D) 31(C) 7(A)

The numbers are the productivity scores, and the letters represent the treatment. We entered the
data into Stata:

. use http://www.stata-press.com/data/r12/music, clear

. list

id seq day1 day2 day3 day4 day5

1. 1 dcabe 18 17 14 21 17
2. 2 cbead 13 34 21 16 15
3. 3 adbec 7 29 32 27 13
4. 4 eacdb 17 13 24 31 25
5. 5 bedca 21 26 26 31 7

We reshape these data with pkshape:

. pkshape id seq day1 day2 day3 day4 day5

. list, sep(0)

id sequence outcome treat carry period

1. 3 1 7 1 0 1
2. 5 2 21 3 0 1
3. 2 3 13 5 0 1
4. 1 4 18 2 0 1
5. 4 5 17 4 0 1
6. 3 1 29 2 1 2
7. 5 2 26 4 3 2
8. 2 3 34 3 5 2
9. 1 4 17 5 2 2

10. 4 5 13 1 4 2
11. 3 1 32 3 2 3
12. 5 2 26 2 4 3
13. 2 3 21 4 3 3
14. 1 4 14 1 5 3
15. 4 5 24 5 1 3
16. 3 1 27 4 3 4
17. 5 2 31 5 2 4
18. 2 3 16 1 4 4
19. 1 4 21 3 1 4
20. 4 5 31 2 5 4
21. 3 1 13 5 4 5
22. 5 2 7 1 5 5
23. 2 3 15 2 1 5
24. 1 4 17 4 3 5
25. 4 5 25 3 2 5
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Here the sequence variable is a string variable that specifies how the treatments were applied, so
the order option is not used. When the sequence variable is a string and the order is specified, the
arguments from the order option are used. We could now produce an ANOVA table:

. anova outcome seq period treat

Number of obs = 25 R-squared = 0.8666
Root MSE = 3.96232 Adj R-squared = 0.7331

Source Partial SS df MS F Prob > F

Model 1223.6 12 101.966667 6.49 0.0014

sequence 82 4 20.5 1.31 0.3226
period 477.2 4 119.3 7.60 0.0027
treat 664.4 4 166.1 10.58 0.0007

Residual 188.4 12 15.7

Total 1412 24 58.8333333

Example 3

Consider the Latin-square crossover example published in Kutner et al. (2005). The example is
about apple sales given different methods for displaying apples.

Pattern Store Week 1 Week 2 Week 3
1 1 9(B) 12(C) 15(A)

2 4(B) 12(C) 9(A)
2 1 12(A) 14(B) 3(C)

2 13(A) 14(B) 3(C)
3 1 7(C) 18(A) 6(B)

2 5(C) 20(A) 4(B)

We entered the data into Stata:

. use http://www.stata-press.com/data/r12/applesales, clear

. list, sep(2)

id seq p1 p2 p3 square

1. 1 1 9 12 15 1
2. 2 1 4 12 9 2

3. 3 2 12 14 3 1
4. 4 2 13 14 3 2

5. 5 3 7 18 6 1
6. 6 3 5 20 4 2

Now the data can be reorganized using descriptive names for the outcome variables.

. pkshape id seq p1 p2 p3, order(bca abc cab) seq(pattern) period(order)
> treat(displays)



1480 pkshape — Reshape (pharmacokinetic) Latin-square data

. anova outcome pattern order display id|pattern

Number of obs = 18 R-squared = 0.9562
Root MSE = 1.59426 Adj R-squared = 0.9069

Source Partial SS df MS F Prob > F

Model 443.666667 9 49.2962963 19.40 0.0002

pattern .333333333 2 .166666667 0.07 0.9370
order 233.333333 2 116.666667 45.90 0.0000

displays 189 2 94.5 37.18 0.0001
id|pattern 21 3 7 2.75 0.1120

Residual 20.3333333 8 2.54166667

Total 464 17 27.2941176

These are the same results reported by Kutner et al. (2005).

Example 4

We continue with example 1 from [R] pkcollapse; the data are

. use http://www.stata-press.com/data/r12/pkdata2, clear

. list, sep(4) abbrev(10)

id seq auc_concA auc_concB

1. 1 1 150.9643 218.5551
2. 2 1 146.7606 133.3201
3. 3 1 160.6548 126.0635
4. 4 1 157.8622 96.17461

5. 5 1 133.6957 188.9038
6. 7 1 160.639 223.6922
7. 8 1 131.2604 104.0139
8. 9 1 168.5186 237.8962

9. 10 2 137.0627 139.7382
10. 12 2 153.4038 202.3942
11. 13 2 163.4593 136.7848
12. 14 2 146.0462 104.5191

13. 15 2 158.1457 165.8654
14. 18 2 147.1977 139.235
15. 19 2 164.9988 166.2391
16. 20 2 145.3823 158.5146

. pkshape id seq auc_concA auc_concB, order(ab ba)

. sort period id
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. list, sep(4)

id sequence outcome treat carry period

1. 1 1 150.9643 1 0 1
2. 2 1 146.7606 1 0 1
3. 3 1 160.6548 1 0 1
4. 4 1 157.8622 1 0 1

5. 5 1 133.6957 1 0 1
6. 7 1 160.639 1 0 1
7. 8 1 131.2604 1 0 1
8. 9 1 168.5186 1 0 1

9. 10 2 137.0627 2 0 1
10. 12 2 153.4038 2 0 1
11. 13 2 163.4593 2 0 1
12. 14 2 146.0462 2 0 1

13. 15 2 158.1457 2 0 1
14. 18 2 147.1977 2 0 1
15. 19 2 164.9988 2 0 1
16. 20 2 145.3823 2 0 1

17. 1 1 218.5551 2 1 2
18. 2 1 133.3201 2 1 2
19. 3 1 126.0635 2 1 2
20. 4 1 96.17461 2 1 2

21. 5 1 188.9038 2 1 2
22. 7 1 223.6922 2 1 2
23. 8 1 104.0139 2 1 2
24. 9 1 237.8962 2 1 2

25. 10 2 139.7382 1 2 2
26. 12 2 202.3942 1 2 2
27. 13 2 136.7848 1 2 2
28. 14 2 104.5191 1 2 2

29. 15 2 165.8654 1 2 2
30. 18 2 139.235 1 2 2
31. 19 2 166.2391 1 2 2
32. 20 2 158.5146 1 2 2

We call the resulting dataset pkdata3. We conduct equivalence testing on the data in [R] pkequiv,
and we fit an ANOVA model to these data in the third example of [R] pkcross.

Methods and formulas
pkshape is implemented as an ado-file.

References
Chow, S.-C., and J.-P. Liu. 2009. Design and Analysis of Bioavailability and Bioequivalence Studies. 3rd ed. Boca

Raton, FL: Chapman & Hall/CRC.

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied Linear Statistical Models. 5th ed. New York:
McGraw–Hill/Irwin.
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Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data



Title

pksumm — Summarize pharmacokinetic data

Syntax
pksumm id time concentration

[
if
] [

in
] [

, options
]

options Description

Main

trapezoid use trapezoidal rule to calculate AUC; default is cubic splines
fit(#) use # points to estimate AUC; default is fit(3)

notimechk do not check whether follow-up time for all subjects is the same
nodots suppress the dots during calculation
graph graph the distribution of statistic
stat(statistic) graph the specified statistic; default is stat(auc)

Histogram, Density plots, Y axis, X axis, Titles, Legend, Overall

histogram options any option other than by() documented in [R] histogram

statistic Description

auc area under the concentration-time curve (AUC0,∞); the default
aucline area under the concentration-time curve from 0 to ∞ using a linear extension
aucexp area under the concentration-time curve from 0 to ∞ using an exponential extension
auclog area under the log-concentration-time curve extended with a linear fit
half half-life of the drug
ke elimination rate
cmax maximum concentration
tmax time at last concentration
tomc time of maximum concentration

Menu
Statistics > Epidemiology and related > Other > Summarize pharmacokinetic data

Description
pksumm obtains summary measures based on the first four moments from the empirical distribution

of each pharmacokinetic measurement and tests the null hypothesis that the distribution of that
measurement is normally distributed.

pksumm is one of the pk commands. Please read [R] pk before reading this entry.

1483
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Options

� � �
Main �

trapezoid specifies that the trapezoidal rule be used to calculate the AUC. The default is cubic
splines, which give better results for most situations. When the curve is irregular, the trapezoidal
rule may give better results.

fit(#) specifies the number of points, counting back from the last time measurement, to use in
fitting the extension to estimate the AUC0,∞. The default is fit(3), the last three points. This
default should be viewed as a minimum; the appropriate number of points will depend on the data.

notimechk suppresses the check that the follow-up time for all subjects is the same. By default,
pksumm expects the maximum follow-up time to be equal for all subjects.

nodots suppresses the progress dots during calculation. By default, a period is displayed for every
call to calculate the pharmacokinetic measures.

graph requests a graph of the distribution of the statistic specified with stat().

stat(statistic) specifies the statistic that pksumm should graph. The default is stat(auc). If the
graph option is not specified, this option is ignored.

� � �
Histogram, Density plots, Y axis, X axis, Titles, Legend, Overall �

histogram options are any of the options documented in [R] histogram, excluding by(). For pksumm,
fraction is the default, not density.

Remarks
pksumm produces summary statistics for the distribution of nine common pharmacokinetic mea-

surements. If there are more than eight subjects, pksumm also computes a test for normality on each
measurement. The nine measurements summarized by pksumm are listed above and are described in
Methods and formulas of [R] pkexamine.

Example 1

We demonstrate the use of pksumm on a variation of the data described in [R] pk. We have drug
concentration data on 15 subjects, each measured at 13 time points over a 32-hour period. A few of
the records are
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. use http://www.stata-press.com/data/r12/pksumm

. list, sep(0)

id time conc

1. 1 0 0
2. 1 .5 3.073403
3. 1 1 5.188444
4. 1 1.5 5.898577
5. 1 2 5.096378
6. 1 3 6.094085

(output omitted )
183. 15 0 0
184. 15 .5 3.86493
185. 15 1 6.432444
186. 15 1.5 6.969195
187. 15 2 6.307024
188. 15 3 6.509584
189. 15 4 6.555091
190. 15 6 7.318319
191. 15 8 5.329813
192. 15 12 5.411624
193. 15 16 3.891397
194. 15 24 5.167516
195. 15 32 2.649686

We can use pksumm to view the summary statistics for all the pharmacokinetic parameters.

. pksumm id time conc

...............

Summary statistics for the pharmacokinetic measures

Number of observations = 15

Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00

half 94.84 29.39 18722.13 2.26 7.37 0.00
ke 0.02 0.02 0.00 0.89 3.70 0.09

cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .

For the 15 subjects, the mean AUC0,tmax is 150.74, and σ2 = 123.07. The skewness of −0.26 indicates
that the distribution is slightly skewed left. The p-value of 0.69 for the χ2 test of normality indicates
that we cannot reject the null hypothesis that the distribution is normal.

If we were to consider any of the three variants of the AUC0,∞, we would see that there is huge
variability and that the distribution is heavily skewed. A skewness different from 0 and a kurtosis
different from 3 are expected because the distribution of the AUC0,∞ is not normal.

We now graph the distribution of AUC0,tmax by specifying the graph option.
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. pksumm id time conc, graph bin(20)

...............

Summary statistics for the pharmacokinetic measures

Number of observations = 15

Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00

half 94.84 29.39 18722.13 2.26 7.37 0.00
ke 0.02 0.02 0.00 0.89 3.70 0.09

cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .
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graph, by default, plots AUC0,tmax . To plot a graph of one of the other pharmacokinetic measurements,
we need to specify the stat() option. For example, we can ask Stata to produce a plot of the AUC0,∞
using the log extension:

. pksumm id time conc, stat(auclog) graph bin(20)

...............

Summary statistics for the pharmacokinetic measures

Number of observations = 15

Measure Mean Median Variance Skewness Kurtosis p-value

auc 150.74 150.96 123.07 -0.26 2.10 0.69
aucline 408.30 214.17 188856.87 2.57 8.93 0.00
aucexp 691.68 297.08 762679.94 2.56 8.87 0.00
auclog 688.98 297.67 797237.24 2.59 9.02 0.00

half 94.84 29.39 18722.13 2.26 7.37 0.00
ke 0.02 0.02 0.00 0.89 3.70 0.09

cmax 7.36 7.42 0.42 -0.60 2.56 0.44
tomc 3.47 3.00 7.62 2.17 7.18 0.00
tmax 32.00 32.00 0.00 . . .
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Methods and formulas
pksumm is implemented as an ado-file.

The χ2 test for normality is conducted with sktest; see [R] sktest for more information on the
test of normality.

The statistics reported by pksumm are identical to those reported by summarize and sktest; see
[R] summarize and [R] sktest.

Also see
[R] pk — Pharmacokinetic (biopharmaceutical) data



Title

poisson — Poisson regression

Syntax
poisson depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, varnamee, and varnameo may contain time-series operators; see

[U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Count outcomes > Poisson regression
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Description
poisson fits a Poisson regression of depvar on indepvars, where depvar is a nonnegative count

variable.

If you have panel data, see [XT] xtpoisson.

Options

� � �
Model �

noconstant, exposure(varnamee), offset(varnameo), constraints(constraints), collinear;
see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with poisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The basic idea of Poisson regression was outlined by Coleman (1964, 378–379). See Cameron

and Trivedi (1998; 2010, chap. 17) and Johnson, Kemp, and Kotz (2005, chap. 4) for information
about the Poisson distribution. See Cameron and Trivedi (1998), Long (1997, chap. 8), Long and
Freese (2006, chap. 8), McNeil (1996, chap. 6), and Selvin (2004, chap. 9) for an introduction
to Poisson regression. Also see Selvin (2004, chap. 5) for a discussion of the analysis of spatial
distributions, which includes a discussion of the Poisson distribution. An early example of Poisson
regression was Cochran (1940).
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Poisson regression fits models of the number of occurrences (counts) of an event. The Poisson
distribution has been applied to diverse events, such as the number of soldiers kicked to death by
horses in the Prussian army (von Bortkiewicz 1898); the pattern of hits by buzz bombs launched
against London during World War II (Clarke 1946); telephone connections to a wrong number
(Thorndike 1926); and disease incidence, typically with respect to time, but occasionally with respect
to space. The basic assumptions are as follows:

1. There is a quantity called the incidence rate that is the rate at which events occur. Examples
are 5 per second, 20 per 1,000 person-years, 17 per square meter, and 38 per cubic centimeter.

2. The incidence rate can be multiplied by exposure to obtain the expected number of observed
events. For example, a rate of 5 per second multiplied by 30 seconds means that 150 events
are expected; a rate of 20 per 1,000 person-years multiplied by 2,000 person-years means that
40 events are expected; and so on.

3. Over very small exposures ε, the probability of finding more than one event is small compared
with ε.

4. Nonoverlapping exposures are mutually independent.

With these assumptions, to find the probability of k events in an exposure of size E, you divide
E into n subintervals E1, E2, . . . , En, and approximate the answer as the binomial probability of
observing k successes in n trials. If you let n→∞, you obtain the Poisson distribution.

In the Poisson regression model, the incidence rate for the jth observation is assumed to be given
by

rj = eβ0+β1x1,j+···+βkxk,j

If Ej is the exposure, the expected number of events, Cj , will be

Cj = Eje
β0+β1x1,j+···+βkxk,j

= e ln(Ej)+β0+β1x1,j+···+βkxk,j

This model is fit by poisson. Without the exposure() or offset() options, Ej is assumed to be
1 (equivalent to assuming that exposure is unknown), and controlling for exposure, if necessary, is
your responsibility.

Comparing rates is most easily done by calculating incidence-rate ratios (IRRs). For instance,
what is the relative incidence rate of chromosome interchanges in cells as the intensity of radiation
increases; the relative incidence rate of telephone connections to a wrong number as load increases;
or the relative incidence rate of deaths due to cancer for females relative to males? That is, you want
to hold all the x’s in the model constant except one, say, the ith. The IRR for a one-unit change in
xi is

e ln(E)+β1x1+···+βi(xi+1)+···+βkxk

e ln(E)+β1x1+···+βixi+···+βkxk
= eβi

More generally, the IRR for a ∆xi change in xi is eβi∆xi . The lincom command can be used after
poisson to display incidence-rate ratios for any group relative to another; see [R] lincom.

Example 1

Chatterjee and Hadi (2006, 162) give the number of injury incidents and the proportion of flights
for each airline out of the total number of flights from New York for nine major U.S. airlines in one
year:
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. use http://www.stata-press.com/data/r12/airline

. list

airline injuries n XYZowned

1. 1 11 0.0950 1
2. 2 7 0.1920 0
3. 3 7 0.0750 0
4. 4 19 0.2078 0
5. 5 9 0.1382 0

6. 6 4 0.0540 1
7. 7 3 0.1292 0
8. 8 1 0.0503 0
9. 9 3 0.0629 1

To their data, we have added a fictional variable, XYZowned. We will imagine that an accusation is
made that the airlines owned by XYZ Company have a higher injury rate.

. poisson injuries XYZowned, exposure(n) irr

Iteration 0: log likelihood = -23.027197
Iteration 1: log likelihood = -23.027177
Iteration 2: log likelihood = -23.027177

Poisson regression Number of obs = 9
LR chi2(1) = 1.77
Prob > chi2 = 0.1836

Log likelihood = -23.027177 Pseudo R2 = 0.0370

injuries IRR Std. Err. z P>|z| [95% Conf. Interval]

XYZowned 1.463467 .406872 1.37 0.171 .8486578 2.523675
_cons 58.04416 8.558145 27.54 0.000 43.47662 77.49281
ln(n) 1 (exposure)

We specified irr to see the IRRs rather than the underlying coefficients. We estimate that XYZ Airlines’
injury rate is 1.46 times larger than that for other airlines, but the 95% confidence interval is 0.85 to
2.52; we cannot even reject the hypothesis that XYZ Airlines has a lower injury rate.

Technical note
In example 1, we assumed that each airline’s exposure was proportional to its fraction of flights

out of New York. What if “large” airlines, however, also used larger planes, and so had even more
passengers than would be expected, given this measure of exposure? A better measure would be each
airline’s fraction of passengers on flights out of New York, a number that we do not have. Even so,
we suppose that n represents this number to some extent, so a better estimate of the effect might be
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. gen lnN=ln(n)

. poisson injuries XYZowned lnN

Iteration 0: log likelihood = -22.333875
Iteration 1: log likelihood = -22.332276
Iteration 2: log likelihood = -22.332276

Poisson regression Number of obs = 9
LR chi2(2) = 19.15
Prob > chi2 = 0.0001

Log likelihood = -22.332276 Pseudo R2 = 0.3001

injuries Coef. Std. Err. z P>|z| [95% Conf. Interval]

XYZowned .6840667 .3895877 1.76 0.079 -.0795111 1.447645
lnN 1.424169 .3725155 3.82 0.000 .6940517 2.154285

_cons 4.863891 .7090501 6.86 0.000 3.474178 6.253603

Here rather than specifying the exposure() option, we explicitly included the variable that would
normalize for exposure in the model. We did not specify the irr option, so we see coefficients rather
than IRRs. We started with the model

rate = eβ0+β1XYZowned

The observed counts are therefore

count = neβ0+β1XYZowned = e ln(n)+β0+β1XYZowned

which amounts to constraining the coefficient on ln(n) to 1. This is what was estimated when
we specified the exposure(n) option. In the above model, we included the normalizing exposure
ourselves and, rather than constraining the coefficient to be 1, estimated the coefficient.

The estimated coefficient is 1.42, a respectable distance away from 1, and is consistent with our
speculation that larger airlines also use larger airplanes. With this small amount of data, however, we
also have a wide confidence interval that includes 1.

Our estimated coefficient on XYZowned is now 0.684, and the implied IRR is e0.684 ≈ 1.98 (which
we could also see by typing poisson, irr). The 95% confidence interval for the coefficient still
includes 0 (the interval for the IRR includes 1), so although the point estimate is now larger, we still
cannot be certain of our results.

Our expert opinion would be that, although there is not enough evidence to support the charge,
there is enough evidence to justify collecting more data.

Example 2

In a famous age-specific study of coronary disease deaths among male British doctors, Doll and
Hill (1966) reported the following data (reprinted in Rothman, Greenland, and Lash [2008, 264]):

Smokers Nonsmokers
Age Deaths Person-years Deaths Person-years

35–44 32 52,407 2 18,790
45–54 104 43,248 12 10,673
55–64 206 28,612 28 5,710
65–74 186 12,663 28 2,585
75–84 102 5,317 31 1,462
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The first step is to enter these data into Stata, which we have done:

. use http://www.stata-press.com/data/r12/dollhill3, clear

. list

agecat smokes deaths pyears

1. 1 1 32 52,407
2. 2 1 104 43,248
3. 3 1 206 28,612
4. 4 1 186 12,663
5. 5 1 102 5,317

6. 1 0 2 18,790
7. 2 0 12 10,673
8. 3 0 28 5,710
9. 4 0 28 2,585

10. 5 0 31 1,462

agecat 1 corresponds to 35–44, agecat 2 to 45–54, and so on. The most “natural” analysis of
these data would begin by introducing indicator variables for each age category and one indicator for
smoking:

. poisson deaths smokes i.agecat, exposure(pyears) irr

Iteration 0: log likelihood = -33.823284
Iteration 1: log likelihood = -33.600471
Iteration 2: log likelihood = -33.600153
Iteration 3: log likelihood = -33.600153

Poisson regression Number of obs = 10
LR chi2(5) = 922.93
Prob > chi2 = 0.0000

Log likelihood = -33.600153 Pseudo R2 = 0.9321

deaths IRR Std. Err. z P>|z| [95% Conf. Interval]

smokes 1.425519 .1530638 3.30 0.001 1.154984 1.759421

agecat
2 4.410584 .8605197 7.61 0.000 3.009011 6.464997
3 13.8392 2.542638 14.30 0.000 9.654328 19.83809
4 28.51678 5.269878 18.13 0.000 19.85177 40.96395
5 40.45121 7.775511 19.25 0.000 27.75326 58.95885

_cons .0003636 .0000697 -41.30 0.000 .0002497 .0005296
ln(pyears) 1 (exposure)

In the above, we specified irr to obtain IRRs. We estimate that smokers have 1.43 times the mortality
rate of nonsmokers. See, however, example 1 in [R] poisson postestimation.
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Saved results
poisson saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) poisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Siméon-Denis Poisson (1781–1840) was a French mathematician and physicist who contributed
to several fields: his name is perpetuated in Poisson brackets, Poisson’s constant, Poisson’s
differential equation, Poisson’s integral, and Poisson’s ratio. Among many other results, he
produced a version of the law of large numbers. His rather misleadingly titled Recherches sur la
probabilité des jugements embraces a complete treatise on probability, as the subtitle indicates,
including what is now known as the Poisson distribution. That, however, was discovered earlier
by the Huguenot–British mathematician Abraham de Moivre (1667–1754).� �

Methods and formulas
poisson is implemented as an ado-file.

The log likelihood (with weights wj and offsets) is given by

Pr(Y = y) =
e−λλy

y!

ξj = xjβ+ offsetj

f(yj) =
e− exp(ξj)eξjyj

yj !

lnL =
n∑
j=1

wj
{
−eξj + ξjyj − ln(yj !)

}
This command supports the Huber/White/sandwich estimator of the variance and its clustered

version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

poisson also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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des règles générales du calcul des probabilités. Paris: Bachelier.

Raciborski, R. 2011. Right-censored Poisson regression model. Stata Journal 11: 95–105.

Rodrı́guez, G. 1993. sbe10: An improvement to poisson. Stata Technical Bulletin 11: 11–14. Reprinted in Stata
Technical Bulletin Reprints, vol. 2, pp. 94–98. College Station, TX: Stata Press.

Rogers, W. H. 1991. sbe1: Poisson regression with rates. Stata Technical Bulletin 1: 11–12. Reprinted in Stata
Technical Bulletin Reprints, vol. 1, pp. 62–64. College Station, TX: Stata Press.

Rothman, K. J., S. Greenland, and T. L. Lash. 2008. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams
& Wilkins.

Rutherford, E., J. Chadwick, and C. D. Ellis. 1930. Radiations from Radioactive Substances. Cambridge: Cambridge
University Press.

Rutherford, M. J., P. C. Lambert, and J. R. Thompson. 2010. Age–period–cohort modeling. Stata Journal 10: 606–627.

Schonlau, M. 2005. Boosted regression (boosting): An introductory tutorial and a Stata plugin. Stata Journal 5:
330–354.

Selvin, S. 2004. Statistical Analysis of Epidemiologic Data. 3rd ed. New York: Oxford University Press.

Thorndike, F. 1926. Applications of Poisson’s probability summation. Bell System Technical Journal 5: 604–624.

Tobı́as, A., and M. J. Campbell. 1998. sg90: Akaike’s information criterion and Schwarz’s criterion. Stata Technical
Bulletin 45: 23–25. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 174–177. College Station, TX: Stata
Press.

von Bortkiewicz, L. 1898. Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.

Also see
[R] poisson postestimation — Postestimation tools for poisson

[R] glm — Generalized linear models

[R] nbreg — Negative binomial regression

[R] tpoisson — Truncated Poisson regression

[R] zip — Zero-inflated Poisson regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands

http://www.stata.com/products/stb/journals/stb47.pdf
http://www.stata.com/products/stb/journals/stb46.pdf
http://www.stata.com/bookstore/regmod.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0002
http://www.stata-press.com/books/regmodcdvs.html
http://www.stata-journal.com/sjpdf.html?articlenum=st0107
http://www.stata-journal.com/sjpdf.html?articlenum=st0107
http://www.stata.com/bookstore/bmie.html
http://www.stata-journal.com/article.html?article=st0219
http://www.stata.com/products/stb/journals/stb11.pdf
http://www.stata.com/products/stb/journals/stb1.pdf
http://www.stata.com/bookstore/me.html
http://www.stata-journal.com/article.html?article=st0211
http://www.stata-journal.com/sjpdf.html?articlenum=st0087
http://www.stata.com/bookstore/saed.html
http://www.stata.com/products/stb/journals/stb45.pdf


Title

poisson postestimation — Postestimation tools for poisson

Description

The following postestimation command is of special interest after poisson:

Command Description

estat gof goodness-of-fit test

estat gof is not appropriate after the svy prefix. For information about estat gof, see below.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Special-interest postestimation command

estat gof performs a goodness-of-fit test of the model. Both the deviance statistic and the Pearson
statistic are reported. If the tests are significant, the Poisson regression model is inappropriate. Then
you could try a negative binomial model; see [R] nbreg.
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

n number of events; the default
ir incidence rate
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(xjβ) if neither offset()
nor exposure() was specified when the model was fit; exp(xjβ + offsetj) if offset() was
specified; or exp(xjβ)× exposurej if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. Specifying ir is equivalent to specifying n when neither offset() nor exposure() was
specified when the model was fit.

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified;
xjβ+ offsetj if offset() was specified; or xjβ+ ln(exposurej) if exposure() was specified;
see nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, ∂lnL/∂(xjβ).
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nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.

Syntax for estat gof
estat gof

Menu
Statistics > Postestimation > Reports and statistics

Remarks

Example 1

Continuing with example 2 of [R] poisson, we use estat gof to determine whether the model
fits the data well.

. use http://www.stata-press.com/data/r12/dollhill3

. poisson deaths smokes i.agecat, exp(pyears) irr
(output omitted )

. estat gof

Deviance goodness-of-fit = 12.13244
Prob > chi2(4) = 0.0164

Pearson goodness-of-fit = 11.15533
Prob > chi2(4) = 0.0249

The deviance goodness-of-fit test tells us that, given the model, we can reject the hypothesis that
these data are Poisson distributed at the 1.64% significance level. The Pearson goodness-of-fit test
tells us that we can reject the hypothesis at the 2.49% significance level.

So let us now back up and be more careful. We can most easily obtain the incidence-rate ratios
within age categories by using ir; see [ST] epitab:

. ir deaths smokes pyears, by(agecat) nohet

agecat IRR [95% Conf. Interval] M-H Weight

1 5.736638 1.463557 49.40468 1.472169 (exact)
2 2.138812 1.173714 4.272545 9.624747 (exact)
3 1.46824 .9863624 2.264107 23.34176 (exact)
4 1.35606 .9081925 2.096412 23.25315 (exact)
5 .9047304 .6000757 1.399687 24.31435 (exact)

Crude 1.719823 1.391992 2.14353 (exact)
M-H combined 1.424682 1.154703 1.757784

We find that the mortality incidence ratios are greatly different within age category, being highest
for the youngest categories and actually dropping below 1 for the oldest. (In the last case, we might
argue that those who smoke and who have not died by age 75 are self-selected to be particularly
robust.)

Seeing this, we will now parameterize the smoking effects separately for each age category, although
we will begin by constraining the smoking effects on age categories 3 and 4 to be equivalent:
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. constraint 1 smokes#3.agecat = smokes#4.agecat

. poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1)

Iteration 0: log likelihood = -31.95424
Iteration 1: log likelihood = -27.796801
Iteration 2: log likelihood = -27.574177
Iteration 3: log likelihood = -27.572645
Iteration 4: log likelihood = -27.572645

Poisson regression Number of obs = 10
Wald chi2(8) = 632.14

Log likelihood = -27.572645 Prob > chi2 = 0.0000

( 1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0

deaths IRR Std. Err. z P>|z| [95% Conf. Interval]

agecat#c.smokes
1 5.736637 4.181256 2.40 0.017 1.374811 23.93711
2 2.138812 .6520701 2.49 0.013 1.176691 3.887609
3 1.412229 .2017485 2.42 0.016 1.067343 1.868557
4 1.412229 .2017485 2.42 0.016 1.067343 1.868557
5 .9047304 .1855513 -0.49 0.625 .6052658 1.35236

agecat
2 10.5631 8.067701 3.09 0.002 2.364153 47.19623
3 47.671 34.37409 5.36 0.000 11.60056 195.8978
4 98.22765 70.85012 6.36 0.000 23.89324 403.8244
5 199.2099 145.3356 7.26 0.000 47.67693 832.3648

_cons .0001064 .0000753 -12.94 0.000 .0000266 .0004256
ln(pyears) 1 (exposure)

. estat gof

Deviance goodness-of-fit = .0774185
Prob > chi2(1) = 0.7808

Pearson goodness-of-fit = .0773882
Prob > chi2(1) = 0.7809

The goodness-of-fit is now small; we are no longer running roughshod over the data. Let us now
consider simplifying the model. The point estimate of the incidence-rate ratio for smoking in age
category 1 is much larger than that for smoking in age category 2, but the confidence interval for
smokes#1.agecat is similarly wide. Is the difference real?

. test smokes#1.agecat = smokes#2.agecat

( 1) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0

chi2( 1) = 1.56
Prob > chi2 = 0.2117

The point estimates may be far apart, but there is insufficient data, and we may be observing random
differences. With that success, might we also combine the smokers in age categories 3 and 4 with
those in 1 and 2?

. test smokes#2.agecat = smokes#3.agecat, accum

( 1) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0
( 2) [deaths]2.agecat#c.smokes - [deaths]3.agecat#c.smokes = 0

chi2( 2) = 4.73
Prob > chi2 = 0.0938

Combining age categories 1–4 may be overdoing it—the 9.38% significance level is enough to stop
us, although others may disagree.
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Thus we now fit our final model:

. constraint 2 smokes#1.agecat = smokes#2.agecat

. poisson deaths c.smokes#agecat i.agecat, exposure(pyears) irr constraints(1/2)

Iteration 0: log likelihood = -31.550722
Iteration 1: log likelihood = -28.525057
Iteration 2: log likelihood = -28.514535
Iteration 3: log likelihood = -28.514535

Poisson regression Number of obs = 10
Wald chi2(7) = 642.25

Log likelihood = -28.514535 Prob > chi2 = 0.0000

( 1) [deaths]3.agecat#c.smokes - [deaths]4.agecat#c.smokes = 0
( 2) [deaths]1b.agecat#c.smokes - [deaths]2.agecat#c.smokes = 0

deaths IRR Std. Err. z P>|z| [95% Conf. Interval]

agecat#c.smokes
1 2.636259 .7408403 3.45 0.001 1.519791 4.572907
2 2.636259 .7408403 3.45 0.001 1.519791 4.572907
3 1.412229 .2017485 2.42 0.016 1.067343 1.868557
4 1.412229 .2017485 2.42 0.016 1.067343 1.868557
5 .9047304 .1855513 -0.49 0.625 .6052658 1.35236

agecat
2 4.294559 .8385329 7.46 0.000 2.928987 6.296797
3 23.42263 7.787716 9.49 0.000 12.20738 44.94164
4 48.26309 16.06939 11.64 0.000 25.13068 92.68856
5 97.87965 34.30881 13.08 0.000 49.24123 194.561

_cons .0002166 .0000652 -28.03 0.000 .0001201 .0003908
ln(pyears) 1 (exposure)

The above strikes us as a fair representation of the data. The probabilities of observing the deaths
seen in these data are estimated using the following predict command:

. predict p, pr(0, deaths)

. list deaths p

deaths p

1. 32 .6891766
2. 104 .4456625
3. 206 .5455328
4. 186 .4910622
5. 102 .5263011

6. 2 .227953
7. 12 .7981917
8. 28 .4772961
9. 28 .6227565

10. 31 .5475718

The probability Pr(y ≤ deaths) ranges from 0.23 to 0.80.
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

In the following, we use the same notation as in [R] poisson.

The equation-level scores are given by

score(xβ)j = yj − eξj

The deviance (D) and Pearson (P) goodness-of-fit statistics are given by

lnLmax =
n∑
j=1

wj [−yj{ ln(yj)− 1} − ln(yj !)]

χ2
D = −2{ lnL− lnLmax}

χ2
P =

n∑
j=1

wj(yj − eξj )2

eξj

Also see
[R] poisson — Poisson regression

[U] 20 Estimation and postestimation commands



Title

predict — Obtain predictions, residuals, etc., after estimation

Syntax
After single-equation (SE) models

predict
[

type
]

newvar
[

if
] [

in
] [

, single options
]

After multiple-equation (ME) models

predict
[

type
]

newvar
[

if
] [

in
] [

, multiple options
]

predict
[

type
] {

stub* | newvar1 . . . newvarq
} [

if
] [

in
]
, scores

single options Description

Main

xb calculate linear prediction
stdp calculate standard error of the prediction
score calculate first derivative of the log likelihood with respect to xjβ

Options

nooffset ignore any offset() or exposure() variable
other options command-specific options

multiple options Description

Main

equation(eqno
[
, eqno

]
) specify equations

xb calculate linear prediction
stdp calculate standard error of the prediction
stddp calculate the difference in linear predictions

Options

nooffset ignore any offset() or exposure() variable
other options command-specific options

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Description

predict calculates predictions, residuals, influence statistics, and the like after estimation. Exactly
what predict can do is determined by the previous estimation command; command-specific options
are documented with each estimation command. Regardless of command-specific options, the actions
of predict share certain similarities across estimation commands:

1503
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1. predict newvar creates newvar containing “predicted values”—numbers related to the
E(yj |xj). For instance, after linear regression, predict newvar creates xjb and, after probit,
creates the probability Φ(xjb).

2. predict newvar, xb creates newvar containing xjb. This may be the same result as option
1 (for example, linear regression) or different (for example, probit), but regardless, option xb
is allowed.

3. predict newvar, stdp creates newvar containing the standard error of the linear prediction
xjb.

4. predict newvar, other options may create newvar containing other useful quantities; see
help or the reference manual entry for the particular estimation command to find out about
other available options.

5. nooffset added to any of the above commands requests that the calculation ignore any offset
or exposure variable specified by including the offset(varnameo) or exposure(varnamee)
option when you fit the model.

predict can be used to make in-sample or out-of-sample predictions:

6. predict calculates the requested statistic for all possible observations, whether they were used
in fitting the model or not. predict does this for standard options 1–3 and generally does this
for estimator-specific options 4.

7. predict newvar if e(sample), . . . restricts the prediction to the estimation subsample.

8. Some statistics make sense only with respect to the estimation subsample. In such cases, the
calculation is automatically restricted to the estimation subsample, and the documentation for
the specific option states this. Even so, you can still specify if e(sample) if you are uncertain.

9. predict can make out-of-sample predictions even using other datasets. In particular, you can

. use ds1

. (fit a model)

. use two /* another dataset */

. predict yhat, ... /* fill in the predictions */

Options

� � �
Main �

xb calculates the linear prediction from the fitted model. That is, all models can be thought of as
estimating a set of parameters b1, b2, . . . , bk, and the linear prediction is ŷj = b1x1j + b2x2j +
· · · + bkxkj , often written in matrix notation as ŷj = xjb. For linear regression, the values ŷj
are called the predicted values or, for out-of-sample predictions, the forecast. For logit and probit,
for example, ŷj is called the logit or probit index.

x1j , x2j , . . . , xkj are obtained from the data currently in memory and do not necessarily correspond
to the data on the independent variables used to fit the model (obtaining b1, b2, . . . , bk).

stdp calculates the standard error of the linear prediction. Here the prediction means the same thing
as the “index”, namely, xjb. The statistic produced by stdp can be thought of as the standard
error of the predicted expected value, or mean index, for the observation’s covariate pattern. The
standard error of the prediction is also commonly referred to as the standard error of the fitted
value. The calculation can be made in or out of sample.
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stddp is allowed only after you have previously fit a multiple-equation model. The standard error of
the difference in linear predictions (x1jb− x2jb) between equations 1 and 2 is calculated. This
option requires that equation(eqno1,eqno2) be specified.

score calculates the equation-level score, ∂lnL/∂(xjβ). Here lnL refers to the log-likelihood
function.

scores is the ME model equivalent of the score option, resulting in multiple equation-level score
variables. An equation-level score variable is created for each equation in the model; ancillary
parameters—such as lnσ and atanhρ—make up separate equations.

equation(eqno
[
,eqno

]
)—synonym outcome()—is relevant only when you have previously fit a

multiple-equation model. It specifies the equation to which you are referring.

equation() is typically filled in with one eqno—it would be filled in that way with options
xb and stdp, for instance. equation(#1) would mean the calculation is to be made for the
first equation, equation(#2) would mean the second, and so on. You could also refer to the
equations by their names. equation(income) would refer to the equation named income and
equation(hours) to the equation named hours.

If you do not specify equation(), results are the same as if you specified equation(#1).

Other statistics, such as stddp, refer to between-equation concepts. In those cases, you might
specify equation(#1,#2) or equation(income,hours). When two equations must be specified,
equation() is required.

� � �
Options �

nooffset may be combined with most statistics and specifies that the calculation should be made,
ignoring any offset or exposure variable specified when the model was fit.

This option is available, even if it is not documented for predict after a specific command. If
neither the offset(varnameo) option nor the exposure(varnamee) option was specified when
the model was fit, specifying nooffset does nothing.

other options refers to command-specific options that are documented with each command.

Remarks
Remarks are presented under the following headings:

Estimation-sample predictions
Out-of-sample predictions
Residuals
Single-equation (SE) models
SE model scores
Multiple-equation (ME) models
ME model scores

Most of the examples are presented using linear regression, but the general syntax is applicable
to all estimators.

You can think of any estimation command as estimating a set of coefficients b1, b2, . . . , bk
corresponding to the variables x1, x2, . . . , xk, along with a (possibly empty) set of ancillary
statistics γ1, γ2, . . . , γm. All estimation commands save the bis and γis. predict accesses that
saved information and combines it with the data currently in memory to make various calculations.
For instance, predict can calculate the linear prediction, ŷj = b1x1j + b2x2j + · · · + bkxkj . The
data on which predict makes the calculation can be the same data used to fit the model or a different
dataset—it does not matter. predict uses the saved parameter estimates from the model, obtains
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the corresponding values of x for each observation in the data, and then combines them to produce
the desired result.

Estimation-sample predictions

Example 1

We have a 74-observation dataset on automobiles, including the mileage rating (mpg), the car’s
weight (weight), and whether the car is foreign (foreign). We fit the model

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight if foreign

Source SS df MS Number of obs = 22
F( 1, 20) = 17.47

Model 427.990298 1 427.990298 Prob > F = 0.0005
Residual 489.873338 20 24.4936669 R-squared = 0.4663

Adj R-squared = 0.4396
Total 917.863636 21 43.7077922 Root MSE = 4.9491

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.010426 .0024942 -4.18 0.000 -.0156287 -.0052232
_cons 48.9183 5.871851 8.33 0.000 36.66983 61.16676

If we were to type predict pmpg now, we would obtain the linear predictions for all 74 observations.
To obtain the predictions just for the sample on which we fit the model, we could type

. predict pmpg if e(sample)
(option xb assumed; fitted values)
(52 missing values generated)

Here e(sample) is true only for foreign cars because we typed if foreign when we fit the model
and because there are no missing values among the relevant variables. If there had been missing
values, e(sample) would also account for those.

By the way, the if e(sample) restriction can be used with any Stata command, so we could
obtain summary statistics on the estimation sample by typing

. summarize if e(sample)
(output omitted )

Out-of-sample predictions

By out-of-sample predictions, we mean predictions extending beyond the estimation sample. In
the example above, typing predict pmpg would generate linear predictions using all 74 observations.

predict will work on other datasets, too. You can use a new dataset and type predict to obtain
results for that sample.
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Example 2

Using the same auto dataset, assume that we wish to fit the model

mpg = β1weight + β2ln(weight) + β3foreign + β4

We first create the ln(weight) variable, and then type the regress command:

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. generate lnweight = ln(weight)

. regress mpg weight lnweight foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 52.36

Model 1690.27997 3 563.426657 Prob > F = 0.0000
Residual 753.179489 70 10.759707 R-squared = 0.6918

Adj R-squared = 0.6785
Total 2443.45946 73 33.4720474 Root MSE = 3.2802

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .003304 .0038995 0.85 0.400 -.0044734 .0110813
lnweight -29.59133 11.52018 -2.57 0.012 -52.5676 -6.615061
foreign -2.125299 1.052324 -2.02 0.047 -4.224093 -.0265044

_cons 248.0548 80.37079 3.09 0.003 87.76035 408.3493

If we typed predict pmpg now, we would obtain predictions for all 74 cars in the current data.
Instead, we are going to use a new dataset.

The dataset newautos.dta contains the make, weight, and place of manufacture of two cars, the
Pontiac Sunbird and the Volvo 260. Let’s use the dataset and create the predictions:

. use http://www.stata-press.com/data/r12/newautos, clear
(New Automobile Models)

. list

make weight foreign

1. Pont. Sunbird 2690 Domestic
2. Volvo 260 3170 Foreign

. predict mpg
(option xb assumed; fitted values)
variable lnweight not found
r(111);

Things did not work. We typed predict mpg, and Stata responded with the message “variable
lnweight not found”. predict can calculate predicted values on a different dataset only if that dataset
contains the variables that went into the model. Here our dataset does not contain a variable called
lnweight. lnweight is just the log of weight, so we can create it and try again:

. generate lnweight = ln(weight)

. predict mpg
(option xb assumed; fitted values)
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. list

make weight foreign lnweight mpg

1. Pont. Sunbird 2690 Domestic 7.897296 23.25097
2. Volvo 260 3170 Foreign 8.061487 17.85295

We obtained our predicted values. The Pontiac Sunbird has a predicted mileage rating of 23.3 mpg,
whereas the Volvo 260 has a predicted rating of 17.9 mpg.

Residuals

Example 3

With many estimators, predict can calculate more than predicted values. With most regression-
type estimators, we can, for instance, obtain residuals. Using our regression example, we return to
our original data and obtain residuals by typing

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. generate lnweight = ln(weight)

. regress mpg weight lnweight foreign
(output omitted )

. predict double resid, residuals

. summarize resid

Variable Obs Mean Std. Dev. Min Max

resid 74 -1.51e-15 3.212091 -5.453078 13.83719

We could do this without refitting the model. Stata always remembers the last set of estimates, even
as we use new datasets.

It was not necessary to type the double in predict double resid, residuals, but we wanted
to remind you that you can specify the type of a variable in front of the variable’s name; see
[U] 11.4.2 Lists of new variables. We made the new variable resid a double rather than the default
float.

If you want your residuals to have a mean as close to zero as possible, remember to request the
extra precision of double. If we had not specified double, the mean of resid would have been
roughly 10−9 rather than 10−14. Although 10−14 sounds more precise than 10−9, the difference
really does not matter.

For linear regression, predict can also calculate standardized residuals and Studentized residuals
with the options rstandard and rstudent; for examples, see [R] regress postestimation.
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Single-equation (SE) models

If you have not read the discussion above on using predict after linear regression, please do
so. And predict’s default calculation almost always produces a statistic in the same metric as the
dependent variable of the fitted model—for example, predicted counts for Poisson regression. In any
case, xb can always be specified to obtain the linear prediction.

predict can calculate the standard error of the prediction, which is obtained by using the covariance
matrix of the estimators.

Example 4

After most binary outcome models (for example, logistic, logit, probit, cloglog, scobit),
predict calculates the probability of a positive outcome if we do not tell it otherwise. We can
specify the xb option if we want the linear prediction (also known as the logit or probit index). The
odd abbreviation xb is meant to suggest xβ. In logit and probit models, for example, the predicted
probability is p = F (xβ), where F () is the logistic or normal cumulative distribution function,
respectively.

. logistic foreign mpg weight
(output omitted )

. predict phat
(option pr assumed; Pr(foreign))

. predict idxhat, xb

. summarize foreign phat idxhat

Variable Obs Mean Std. Dev. Min Max

foreign 74 .2972973 .4601885 0 1
phat 74 .2972973 .3052979 .000729 .8980594

idxhat 74 -1.678202 2.321509 -7.223107 2.175845

Because this is a logit model, we could obtain the predicted probabilities ourselves from the predicted
index

. generate phat2 = exp(idxhat)/(1+exp(idxhat))

but using predict without options is easier.

Example 5

For all models, predict attempts to produce a predicted value in the same metric as the dependent
variable of the model. We have seen that for dichotomous outcome models, the default statistic
produced by predict is the probability of a success. Similarly, for Poisson regression, the default
statistic produced by predict is the predicted count for the dependent variable. You can always
specify the xb option to obtain the linear combination of the coefficients with an observation’s x values
(the inner product of the coefficients and x values). For poisson (without an explicit exposure), this
is the natural log of the count.

. use http://www.stata-press.com/data/r12/airline, clear

. poisson injuries XYZowned
(output omitted )

. predict injhat
(option n assumed; predicted number of events)
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. predict idx, xb

. generate exp_idx = exp(idx)

. summarize injuries injhat exp_idx idx

Variable Obs Mean Std. Dev. Min Max

injuries 9 7.111111 5.487359 1 19
injhat 9 7.111111 .8333333 6 7.666667

exp_idx 9 7.111111 .8333333 6 7.666667
idx 9 1.955174 .1225612 1.791759 2.036882

We note that our “hand-computed” prediction of the count (exp idx) matches what was produced
by the default operation of predict.

If our model has an exposure-time variable, we can use predict to obtain the linear prediction
with or without the exposure. Let’s verify what we are getting by obtaining the linear prediction with
and without exposure, transforming these predictions to count predictions and comparing them with
the default count prediction from predict. We must remember to multiply by the exposure time
when using predict . . . , nooffset.

. use http://www.stata-press.com/data/r12/airline, clear

. poisson injuries XYZowned, exposure(n)
(output omitted )

. predict double injhat
(option n assumed; predicted number of events)

. predict double idx, xb

. generate double exp_idx = exp(idx)

. predict double idxn, xb nooffset

. generate double exp_idxn = exp(idxn)*n

. summarize injuries injhat exp_idx exp_idxn idx idxn

Variable Obs Mean Std. Dev. Min Max

injuries 9 7.111111 5.487359 1 19
injhat 9 7.111111 3.10936 2.919621 12.06158

exp_idx 9 7.111111 3.10936 2.919621 12.06158
exp_idxn 9 7.111111 3.10936 2.919621 12.06158

idx 9 1.869722 .4671044 1.071454 2.490025

idxn 9 4.18814 .1904042 4.061204 4.442013

Looking at the identical means and standard deviations for injhat, exp idx, and exp idxn, we
see that we can reproduce the default computations of predict for poisson estimations. We have
also demonstrated the relationship between the count predictions and the linear predictions with and
without exposure.

SE model scores

Example 6

With most maximum likelihood estimators, predict can calculate equation-level scores. The first
derivative of the log likelihood with respect to xjβ is the equation-level score.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. logistic foreign mpg weight
(output omitted )
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. predict double sc, score

. summarize sc

Variable Obs Mean Std. Dev. Min Max

sc 74 -1.37e-12 .3533133 -.8760856 .8821309

See [P] robust and [SVY] variance estimation for details regarding the role equation-level scores
play in linearization-based variance estimators.

Technical note
predict after some estimation commands, such as regress and cnsreg, allows the score option

as a synonym for the residuals option.

Multiple-equation (ME) models

If you have not read the above discussion on using predict after SE models, please do so. With
the exception of the ability to select specific equations to predict from, the use of predict after ME
models follows almost the same form that it does for SE models.

Example 7

The details of prediction statistics that are specific to particular ME models are documented with
the estimation command. If you are using ME commands that do not have separate discussions on
obtaining predictions, read Obtaining predicted values in [R] mlogit postestimation, even if your
interest is not in multinomial logistic regression. As a general introduction to the ME models, we will
demonstrate predict after sureg:

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. sureg (price foreign displ) (weight foreign length)

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

price 74 2 2202.447 0.4348 45.21 0.0000
weight 74 2 245.5238 0.8988 658.85 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

price
foreign 3137.894 697.3805 4.50 0.000 1771.054 4504.735

displacement 23.06938 3.443212 6.70 0.000 16.32081 29.81795
_cons 680.8438 859.8142 0.79 0.428 -1004.361 2366.049

weight
foreign -154.883 75.3204 -2.06 0.040 -302.5082 -7.257674
length 30.67594 1.531981 20.02 0.000 27.67331 33.67856
_cons -2699.498 302.3912 -8.93 0.000 -3292.173 -2106.822
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sureg estimated two equations, one called price and the other weight; see [R] sureg.

. predict pred_p, equation(price)
(option xb assumed; fitted values)

. predict pred_w, equation(weight)
(option xb assumed; fitted values)

. summarize price pred_p weight pred_w

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
pred_p 74 6165.257 1678.805 2664.81 10485.33
weight 74 3019.459 777.1936 1760 4840
pred_w 74 3019.459 726.0468 1501.602 4447.996

You may specify the equation by name, as we did above, or by number: equation(#1) means the
same thing as equation(price) in this case.

ME model scores

Example 8

For ME models, predict allows you to specify a stub when generating equation-level score variables.
predict generates new variables using this stub by appending an equation index. Depending upon
the command, the index will start with 0 or 1. Here is an example where predict starts indexing
the score variables with 0.

. ologit rep78 mpg weight
(output omitted )

. predict double sc*, scores

. summarize sc*

Variable Obs Mean Std. Dev. Min Max

sc0 69 -1.33e-11 .5337363 -.9854088 .921433
sc1 69 -7.69e-13 .186919 -.2738537 .9854088
sc2 69 -2.87e-11 .4061637 -.5188487 1.130178
sc3 69 -1.04e-10 .5315368 -1.067351 .8194842
sc4 69 1.47e-10 .360525 -.921433 .6140182

Although it involves much more typing, we could also specify the new variable names individually.

. predict double (sc_xb sc_1 sc_2 sc_3 sc_4), scores

. summarize sc_*

Variable Obs Mean Std. Dev. Min Max

sc_xb 69 -1.33e-11 .5337363 -.9854088 .921433
sc_1 69 -7.69e-13 .186919 -.2738537 .9854088
sc_2 69 -2.87e-11 .4061637 -.5188487 1.130178
sc_3 69 -1.04e-10 .5315368 -1.067351 .8194842
sc_4 69 1.47e-10 .360525 -.921433 .6140182
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Methods and formulas
predict is implemented as an ado-file.

Denote the previously estimated coefficient vector as b and its estimated variance matrix as V.
predict works by recalling various aspects of the model, such as b, and combining that information
with the data currently in memory. Let’s write xj for the jth observation currently in memory.

The predicted value (xb option) is defined as ŷj = xjb + offsetj

The standard error of the prediction (the stdp option) is defined as spj =
√

xjVx′j

The standard error of the difference in linear predictions between equations 1 and 2 is defined as

sdpj = {(x1j ,−x2j ,0, . . . ,0) V (x1j ,−x2j ,0, . . . ,0)′}
1
2

See the individual estimation commands for information about calculating command-specific
predict statistics.

Also see
[R] predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

[P] predict — Obtain predictions, residuals, etc., after estimation programming command

[U] 20 Estimation and postestimation commands



Title

predictnl — Obtain nonlinear predictions, standard errors, etc., after estimation

Syntax
predictnl

[
type

]
newvar = pnl exp

[
if
] [

in
] [

, options
]

options Description

Main

se(newvar) create newvar containing standard errors
variance(newvar) create newvar containing variances
wald(newvar) create newvar containing the Wald test statistic
p(newvar) create newvar containing the significance level (p-value) of the

Wald test
ci(newvars) create newvars containing lower and upper confidence intervals
level(#) set confidence level; default is level(95)

g(stub) create stub1, stub2, . . . , stubk variables containing observation-
specific derivatives

Advanced

iterate(#) maximum iterations for finding optimal step size; default is 100
force calculate standard errors, etc., even when possibly inappropriate

Menu
Statistics > Postestimation > Nonlinear predictions

Description
predictnl calculates (possibly) nonlinear predictions after any Stata estimation command and

optionally calculates the variances, standard errors, Wald test statistics, significance levels, and
confidence limits for these predictions. Unlike its companion nonlinear postestimation commands
testnl and nlcom, predictnl generates functions of the data (that is, predictions), not scalars. The
quantities generated by predictnl are thus vectorized over the observations in the data.

Consider some general prediction, g(θ,xi), for i = 1, . . . , n, where θ are the model parameters
and xi are some data for the ith observation; xi is assumed fixed. Typically, g(θ,xi) is estimated
by g(θ̂,xi), where θ̂ are the estimated model parameters, which are stored in e(b) following any
Stata estimation command.

In its most common use, predictnl generates two variables: one containing the estimated
prediction, g(θ̂,xi), the other containing the estimated standard error of g(θ̂,xi). The calculation of
standard errors (and other obtainable quantities that are based on the standard errors, such as test
statistics) is based on the delta method, an approximation appropriate in large samples; see Methods
and formulas.

predictnl can be used with svy estimation results (assuming that predict is also allowed), see
[SVY] svy postestimation.

1514
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The specification of g(θ̂,xi) is handled by specifying pnl exp, and the values of g(θ̂,xi) are
stored in the new variable newvar of storage type type. pnl exp is any valid Stata expression and
may also contain calls to two special functions unique to predictnl:

1. predict([predict options]): When you are evaluating pnl exp, predict() is a convenience
function that replicates the calculation performed by the command

predict . . ., predict options

As such, the predict() function may be used either as a shorthand for the formula used to
make this prediction or when the formula is not readily available. When used without arguments,
predict() replicates the default prediction for that particular estimation command.

2. xb([eqno]): The xb() function replicates the calculation of the linear predictor xib for equation
eqno. If xb() is specified without eqno, the linear predictor for the first equation (or the only
equation in single-equation estimation) is obtained.

For example, xb(#1) (or equivalently, xb() with no arguments) translates to the linear predictor
for the first equation, xb(#2) for the second, and so on. You could also refer to the equations by
their names, such as xb(income).

When specifying pnl exp, both of these functions may be used repeatedly, in combination, and in
combination with other Stata functions and expressions. See Remarks for examples that use both
of these functions.

Options

� � �
Main �

se(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the estimated standard error of g(θ̂,xi).

variance(newvar) adds newvar of storage type type, where for each i in the prediction sample,
newvar[i] contains the estimated variance of g(θ̂,xi).

wald(newvar) adds newvar of storage type type, where for each i in the prediction sample, newvar[i]
contains the Wald test statistic for the test of the hypothesis H0 : g(θ,xi) = 0.

p(newvar) adds newvar of storage type type, where newvar[i] contains the significance level (p-value)
of the Wald test of H0 : g(θ,xi) = 0 versus the two-sided alternative.

ci(newvars) requires the specification of two newvars, such that the ith observation of each will
contain the left and right endpoints (respectively) of a confidence interval for g(θ,xi). The level
of the confidence intervals is determined by level(#).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

g(stub) specifies that new variables, stub1, stub2, . . . , stubk be created, where k is the dimension
of θ. stub1 will contain the observation-specific derivatives of g(θ,xi) with respect to the first
element, θ1, of θ; stub2 will contain the derivatives of g(θ,xi) with respect to θ2, etc.; If the
derivative of g(θ,xi) with respect to a particular coefficient in θ equals zero for all observations
in the prediction sample, the stub variable for that coefficient is not created. The ordering of the
parameters in θ is precisely that of the stored vector of parameter estimates e(b).
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� � �
Advanced �

iterate(#) specifies the maximum number of iterations used to find the optimal step size in the
calculation of numerical derivatives of g(θ,xi) with respect to θ. By default, the maximum number
of iterations is 100, but convergence is usually achieved after only a few iterations. You should
rarely have to use this option.

force forces the calculation of standard errors and other inference-related quantities in situations
where predictnl would otherwise refuse to do so. The calculation of standard errors takes place
by evaluating (at θ̂) the numerical derivative of g(θ,xi) with respect to θ. If predictnl detects
that g() is possibly a function of random quantities other than θ̂, it will refuse to calculate standard
errors or any other quantity derived from them. The force option forces the calculation to take
place anyway. If you use the force option, there is no guarantee that any inference quantities (for
example, standard errors) will be correct or that the values obtained can be interpreted.

Remarks
Remarks are presented under the following headings:

Introduction
Nonlinear transformations and standard errors
Using xb() and predict()
Multiple-equation (ME) estimators
Test statistics and significance levels
Manipulability
Confidence intervals

Introduction

predictnl and nlcom both use the delta method. They take a nonlinear transformation of the
estimated parameter vector from some fitted model and apply the delta method to calculate the
variance, standard error, Wald test statistic, etc., of this transformation. nlcom is designed for scalar
functions of the parameters, and predictnl is designed for functions of the parameters and of the
data, that is, for predictions.

Nonlinear transformations and standard errors
We begin by fitting a probit model to the low-birthweight data of Hosmer and Lemeshow (2000,

25). The data are described in detail in example 1 of [R] logistic.
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. use http://www.stata-press.com/data/r12/lbw
(Hosmer & Lemeshow data)

. probit low lwt smoke ptl ht

Iteration 0: log likelihood = -117.336
Iteration 1: log likelihood = -106.75886
Iteration 2: log likelihood = -106.67852
Iteration 3: log likelihood = -106.67851

Probit regression Number of obs = 189
LR chi2(4) = 21.31
Prob > chi2 = 0.0003

Log likelihood = -106.67851 Pseudo R2 = 0.0908

low Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwt -.0095164 .0036875 -2.58 0.010 -.0167438 -.0022891
smoke .3487004 .2041772 1.71 0.088 -.0514794 .7488803

ptl .365667 .1921201 1.90 0.057 -.0108815 .7422154
ht 1.082355 .410673 2.64 0.008 .2774503 1.887259

_cons .4238985 .4823224 0.88 0.379 -.5214361 1.369233

After we fit such a model, we first would want to generate the predicted probabilities of a low
birthweight, given the covariate values in the estimation sample. This is easily done using predict
after probit, but it doesn’t answer the question, “What are the standard errors of those predictions?”

For the time being, we will consider ourselves ignorant of any automated way to obtain the
predicted probabilities after probit. The formula for the prediction is

Pr(y 6= 0|xi) = Φ(xiβ)

where Φ is the standard cumulative normal. Thus for this example, g(θ,xi) = Φ(xiβ). Armed with
the formula, we can use predictnl to generate the predictions and their standard errors:

. predictnl phat = normal(_b[_cons] + _b[ht]*ht + _b[ptl]*ptl +
> _b[smoke]*smoke + _b[lwt]*lwt), se(phat_se)

. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 0 0 0
181. .6577712 .1580714 154 0 1 1
182. .2793261 .0519958 106 0 0 0
183. .1502118 .0676338 190 1 0 0
184. .5702871 .0819911 101 1 1 0

185. .4477045 .079889 95 1 0 0
186. .2988379 .0576306 100 0 0 0
187. .4514706 .080815 94 1 0 0
188. .5615571 .1551051 142 0 0 1
189. .7316517 .1361469 130 1 0 1

Thus subject 180 in our data has an estimated probability of low birthweight of 23.6% with standard
error 4.3%.

Used without options, predictnl is not much different from generate. By specifying the
se(phat se) option, we were able to obtain a variable containing the standard errors of the
predictions; therein lies the utility of predictnl.
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Using xb() and predict()

As was the case above, a prediction is often not a function of a few isolated parameters and
their corresponding variables but instead is some (possibly elaborate) function of the entire linear
predictor. For models with many predictors, the brute-force expression for the linear predictor can be
cumbersome to type. An alternative is to use the inline function xb(). xb() is a shortcut for having
to type b[ cons] + b[ht]*ht + b[ptl]*ptl + . . . ,

. drop phat phat_se

. predictnl phat = normal(xb()), se(phat_se)

. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 0 0 0
181. .6577712 .1580714 154 0 1 1
182. .2793261 .0519958 106 0 0 0
183. .1502118 .0676338 190 1 0 0
184. .5702871 .0819911 101 1 1 0

185. .4477045 .079889 95 1 0 0
186. .2988379 .0576306 100 0 0 0
187. .4514706 .080815 94 1 0 0
188. .5615571 .1551051 142 0 0 1
189. .7316517 .1361469 130 1 0 1

which yields the same results. This approach is easier, produces more readable code, and is less prone
to error, such as forgetting to include a term in the sum.

Here we used xb() without arguments because we have only one equation in our model. In
multiple-equation (ME) settings, xb() (or equivalently xb(#1)) yields the linear predictor from the
first equation, xb(#2) from the second, etc. You can also refer to equations by their names, for
example, xb(income).

Technical note
Most estimation commands in Stata allow the postestimation calculation of linear predictors and

their standard errors via predict. For example, to obtain these for the first (or only) equation in the
model, you could type

predict xbvar, xb
predict stdpvar, stdp

Equivalently, you could type

predictnl xbvar = xb(), se(stdpvar)

but we recommend the first method, as it is faster. As we demonstrated above, however, predictnl
is more general.

Returning to our probit example, we can further simplify the calculation by using the inline function
predict(). predict(pred options) works by substituting, within our predictnl expression, the
calculation performed by

predict . . ., pred options
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In our example, we are interested in the predicted probabilities after a probit regression, normally
obtained via

predict . . ., p

We can obtain these predictions (and standard errors) by using

. drop phat phat_se

. predictnl phat = predict(p), se(phat_se)

. list phat phat_se lwt smoke ptl ht in -10/l

phat phat_se lwt smoke ptl ht

180. .2363556 .042707 120 0 0 0
181. .6577712 .1580714 154 0 1 1
182. .2793261 .0519958 106 0 0 0
183. .1502118 .0676338 190 1 0 0
184. .5702871 .0819911 101 1 1 0

185. .4477045 .079889 95 1 0 0
186. .2988379 .0576306 100 0 0 0
187. .4514706 .080815 94 1 0 0
188. .5615571 .1551051 142 0 0 1
189. .7316517 .1361469 130 1 0 1

which again replicates what we have already done by other means. However, this version did not
require knowledge of the formula for the predicted probabilities after a probit regression—predict(p)
took care of that for us.

Because the predicted probability is the default prediction after probit, we could have just used
predict() without arguments, namely,

. predictnl phat = predict(), se(phat_se)

Also, the expression pnl exp can be inordinately complicated, with multiple calls to predict() and
xb(). For example,

. predictnl phat = normal(invnormal(predict()) + predict(xb)/xb() - 1),
> se(phat_se)

is perfectly valid and will give the same result as before, albeit a bit inefficiently.

Technical note

When using predict() and xb(), the formula for the calculation is substituted within pnl exp,
not the values that result from the application of that formula. To see this, note the subtle difference
between

. predict xbeta, xb

. predictnl phat = normal(xbeta), se(phat_se)

and

. predictnl phat = normal(xb()), se(phat_se)
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Both sequences will yield the same phat, yet for the first sequence, phat se will equal zero
for all observations. The reason is that, once evaluated, xbeta will contain the values of the linear
predictor, yet these values are treated as fixed and nonstochastic as far as predictnl is concerned. By
contrast, because xb() is shorthand for the formula used to calculate the linear predictor, it contains
not values, but references to the estimated regression coefficients and corresponding variables. Thus
the second method produces the desired result.

Multiple-equation (ME) estimators

In [R] mlogit, data on insurance choice (Tarlov et al. 1989; Wells et al. 1989) were examined,
and a multinomial logit was used to assess the effects of age, gender, race, and site of study (one of
three sites) on the type of insurance:

. use http://www.stata-press.com/data/r12/sysdsn1, clear
(Health insurance data)

. mlogit insure age male nonwhite i.site, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Of particular interest is the estimation of the relative risk, which, for a given selection, is the ratio of
the probability of making that selection to the probability of selecting the base category (Indemnity
here), given a set of covariate values. In a multinomial logit model, the relative risk (when comparing
to the base category) simplifies to the exponentiated linear predictor for that selection.

Using this example, we can estimate the observation-specific relative risks of selecting a prepaid
plan over the base category (with standard errors) by either referring to the Prepaid equation by
name or number,
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. predictnl RRppaid = exp(xb(Prepaid)), se(SERRppaid)

or

. predictnl RRppaid = exp(xb(#1)), se(SERRppaid)

because Prepaid is the first equation in the model.

Those of us for whom the simplified formula for the relative risk does not immediately come to
mind may prefer to calculate the relative risk directly from its definition, that is, as a ratio of two
predicted probabilities. After mlogit, the predicted probability for a category may be obtained using
predict, but we must specify the category as the outcome:

. predictnl RRppaid = predict(outcome(Prepaid))/predict(outcome(Indemnity)),
> se(SERRppaid)
(1 missing value generated)

. list RRppaid SERRppaid age male nonwhite site in 1/10

RRppaid SERRpp~d age male nonwhite site

1. .6168578 .1503759 73.722107 0 0 2
2. 1.056658 .1790703 27.89595 0 0 2
3. .8426442 .1511281 37.541397 0 0 1
4. 1.460581 .3671465 23.641327 0 1 3
5. .9115747 .1324168 40.470901 0 0 2

6. 1.034701 .1696923 29.683777 0 0 2
7. .9223664 .1344981 39.468857 0 0 2
8. 1.678312 .4216626 26.702255 1 0 1
9. .9188519 .2256017 63.101974 0 1 3

10. .5766296 .1334877 69.839828 0 0 1

The “(1 missing value generated)” message is not an error; further examination of the data would
reveal that age is missing in one observation and that the offending observation (among others) is
not in the estimation sample. Just as with predict, predictnl can generate predictions in or out
of the estimation sample.

Thus we estimate (among other things) that a white, female, 73-year-old from site 2 is less likely
to choose a prepaid plan over an indemnity plan—her relative risk is about 62% with standard error
15%.

Test statistics and significance levels

Often a standard error calculation is just a means to an end, and what is really desired is a test
of the hypothesis,

H0 : g(θ,xi) = 0

versus the two-sided alternative.

We can use predictnl to obtain the Wald test statistics or significance levels (or both) for the
above tests, whether or not we want standard errors. To obtain the Wald test statistics, we use the
wald() option; for significance levels, we use p().

Returning to our mlogit example, suppose that we wanted for each observation a test of whether
the relative risk of choosing a prepaid plan over an indemnity plan is different from one. One way to
do this would be to define g() to be the relative risk minus one and then test whether g() is different
from zero.
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. predictnl RRm1 = exp(xb(Prepaid)) - 1, wald(W_RRm1) p(sig_RRm1)
(1 missing value generated)
note: significance levels are with respect to the chi-squared(1) distribution.

. list RRm1 W_RRm1 sig_RRm1 age male nonwhite in 1/10

RRm1 W_RRm1 sig_RRm1 age male nonwhite

1. -.3831422 6.491778 .0108375 73.722107 0 0
2. .0566578 .100109 .7516989 27.89595 0 0
3. -.1573559 1.084116 .2977787 37.541397 0 0
4. .4605812 1.573743 .2096643 23.641327 0 1
5. -.0884253 .4459299 .5042742 40.470901 0 0

6. .0347015 .0418188 .8379655 29.683777 0 0
7. -.0776336 .3331707 .563798 39.468857 0 0
8. .6783119 2.587788 .1076906 26.702255 1 0
9. -.0811482 .1293816 .719074 63.101974 0 1

10. -.4233705 10.05909 .001516 69.839828 0 0

The newly created variable W RRm1 contains the Wald test statistic for each observation, and
sig RRm1 contains the level of significance. Thus our 73-year-old white female represented by the
first observation would have a relative risk of choosing prepaid over indemnity that is significantly
different from 1, at least at the 5% level. For this test, it was not necessary to generate a variable
containing the standard error of the relative risk minus 1, but we could have done so had we wanted.
We could have also omitted specifying wald(W RRm1) if all we cared about were, say, the significance
levels of the tests.

In this regard, predictnl acts as an observation-specific version of testnl, with the test results
vectorized over the observations in the data. The significance levels are pointwise—they are not
adjusted to reflect any simultaneous testing over the observations in the data.

Manipulability

There are many ways to specify g(θ,xi) to yield tests such that, for multiple specifications of
g(), the theoretical conditions for which

H0 : g(θ,xi) = 0

is true will be equivalent. However, this does not mean that the tests themselves will be equivalent.
This is known as the manipulability of the Wald test for nonlinear hypotheses; also see [R] boxcox.

As an example, consider the previous section where we defined g() to be the relative risk between
choosing a prepaid plan over an indemnity plan, minus 1. We could also have defined g() to be
the risk difference—the probability of choosing a prepaid plan minus the probability of choosing
an indemnity plan. Either specification of g() yields a mathematically equivalent specification of
H0 : g() = 0; that is, the risk difference will equal zero when the relative risk equals one. However,
the tests themselves do not give the same results:
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. predictnl RD = predict(outcome(Prepaid)) - predict(outcome(Indemnity)),
> wald(W_RD) p(sig_RD)
(1 missing value generated)
note: significance levels are with respect to the chi-squared(1) distribution.

. list RD W_RD sig_RD RRm1 W_RRm1 sig_RRm1 in 1/10

RD W_RD sig_RD RRm1 W_RRm1 sig_RRm1

1. -.2303744 4.230243 .0397097 -.3831422 6.491778 .0108375
2. .0266902 .1058542 .7449144 .0566578 .100109 .7516989
3. -.0768078 .9187646 .3377995 -.1573559 1.084116 .2977787
4. .1710702 2.366535 .1239619 .4605812 1.573743 .2096643
5. -.0448509 .4072922 .5233471 -.0884253 .4459299 .5042742

6. .0165251 .0432816 .835196 .0347015 .0418188 .8379655
7. -.0391535 .3077611 .5790573 -.0776336 .3331707 .563798
8. .22382 4.539085 .0331293 .6783119 2.587788 .1076906
9. -.0388409 .1190183 .7301016 -.0811482 .1293816 .719074

10. -.2437626 6.151558 .0131296 -.4233705 10.05909 .001516

In certain cases (such as subject 8), the difference can be severe enough to potentially change the
conclusion. The reason for this inconsistency is that the nonlinear Wald test is actually a standard
Wald test of a first-order Taylor approximation of g(), and this approximation can differ according
to how g() is specified.

As such, keep in mind the manipulability of nonlinear Wald tests when drawing scientific conclusions.

Confidence intervals

We can also use predictnl to obtain confidence intervals for the observation-specific g(θ,xi)
by using the ci() option to specify two new variables to contain the left and right endpoints of the
confidence interval, respectively. For example, we could generate confidence intervals for the risk
differences calculated previously:

. drop RD

. predictnl RD = predict(outcome(Prepaid)) - predict(outcome(Indemnity)),
> ci(RD_lcl RD_rcl)
(1 missing value generated)
note: Confidence intervals calculated using Z critical values.

. list RD RD_lcl RD_rcl age male nonwhite in 1/10

RD RD_lcl RD_rcl age male nonwhite

1. -.2303744 -.4499073 -.0108415 73.722107 0 0
2. .0266902 -.1340948 .1874752 27.89595 0 0
3. -.0768078 -.2338625 .080247 37.541397 0 0
4. .1710702 -.0468844 .3890248 23.641327 0 1
5. -.0448509 -.1825929 .092891 40.470901 0 0

6. .0165251 -.1391577 .1722078 29.683777 0 0
7. -.0391535 -.177482 .099175 39.468857 0 0
8. .22382 .0179169 .4297231 26.702255 1 0
9. -.0388409 -.2595044 .1818226 63.101974 0 1

10. -.2437626 -.4363919 -.0511332 69.839828 0 0
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The confidence level, here, 95%, is either set using the level() option or obtained from the current
default level, c(level); see [U] 20.7 Specifying the width of confidence intervals.

From the above output, we can see that, for subjects 1, 8, and 10, a 95% confidence interval for
the risk difference does not contain zero, meaning that, for these subjects, there is some evidence of
a significant difference in risks.

The confidence intervals calculated by predictnl are pointwise; there is no adjustment (such
as a Bonferroni correction) made so that these confidence intervals may be considered jointly at the
specified level.

Methods and formulas
predictnl is implemented as an ado-file.

For the ith observation, consider the transformation g(θ,xi), estimated by g(θ̂,xi), for the 1× k
parameter vector θ and data xi (xi is assumed fixed). The variance of g(θ̂,xi) is estimated by

V̂ar
{
g(θ̂,xi)

}
= GVG′

where G is the vector of derivatives

G =
{
∂g(θ,xi)

∂θ

∣∣∣∣
θ=θ̂

}
(1×k)

and V is the estimated variance–covariance matrix of θ̂. Standard errors, ŝe{g(θ̂,xi)}, are obtained
as the square roots of the variances.

The Wald test statistic for testing
H0 : g(θ,xi) = 0

versus the two-sided alternative is given by

Wi =

{
g(θ̂,xi)

}2

V̂ar
{
g(θ̂,xi)

}
When the variance–covariance matrix of θ̂ is an asymptotic covariance matrix, Wi is approximately
distributed as χ2 with 1 degree of freedom. For linear regression, Wi is taken to be approximately
distributed as F1,r, where r is the residual degrees of freedom from the original model fit. The levels
of significance of the observation-by-observation tests of H0 versus the two-sided alternative are given
by

pi = Pr(T > Wi)

where T is either a χ2- or F -distributed random variable, as described above.

A (1− α)× 100% confidence interval for g(θ,xi) is given by

g(θ̂,xi)± zα/2
[
ŝe
{
g(θ̂,xi)

}]
when Wi is χ2-distributed, and

g(θ̂,xi)± tα/2,r
[
ŝe
{
g(θ̂,xi)

}]
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when Wi is F -distributed. zp is the 1 − p quantile of the standard normal distribution, and tp,r is
the 1− p quantile of the t distribution with r degrees of freedom.
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Title

probit — Probit regression

Syntax
probit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

nocoef do not display the coefficient table; seldom used
coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), nocoef, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
nocoef and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Binary outcomes > Probit regression
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Description
probit fits a maximum-likelihood probit model.

If estimating on grouped data, see the bprobit command described in [R] glogit.
Several auxiliary commands may be run after probit, logit, or logistic; see [R] logistic

postestimation for a description of these commands.

See [R] logistic for a list of related estimation commands.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

asis specifies that all specified variables and observations be retained in the maximization process.
This option is typically not specified and may introduce numerical instability. Normally probit
drops variables that perfectly predict success or failure in the dependent variable along with their
associated observations. In those cases, the effective coefficient on the dropped variables is infinity
(negative infinity) for variables that completely determine a success (failure). Dropping the variable
and perfectly predicted observations has no effect on the likelihood or estimates of the remaining
coefficients and increases the numerical stability of the optimization process. Specifying this option
forces retention of perfect predictor variables and their associated observations.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

The following options are available with probit but are not shown in the dialog box:

nocoef specifies that the coefficient table not be displayed. This option is sometimes used by
programmers but is of no use interactively.

coeflegend; see [R] estimation options.
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Remarks
Remarks are presented under the following headings:

Robust standard errors
Model identification

probit fits maximum likelihood models with dichotomous dependent (left-hand-side) variables
coded as 0/1 (more precisely, coded as 0 and not 0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.
We wish to fit a probit model explaining whether a car is foreign based on its weight and mileage.
Here is an overview of our data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign

. describe

Contains data from http://www.stata-press.com/data/r12/auto.dta
obs: 74 1978 Automobile Data

vars: 4 13 Apr 2011 17:45
size: 1,702 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car type

Sorted by: foreign
Note: dataset has changed since last saved

. inspect foreign

foreign: Car type Number of Observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The foreign variable takes on two unique values, 0 and 1. The value 0 denotes a domestic car,
and 1 denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = Φ(β0 + β1weight + β2mpg)

where Φ is the cumulative normal distribution.
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To fit this model, we type
. probit foreign weight mpg

Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -27.914626

(output omitted )
Iteration 5: log likelihood = -26.844189

Probit regression Number of obs = 74
LR chi2(2) = 36.38
Prob > chi2 = 0.0000

Log likelihood = -26.844189 Pseudo R2 = 0.4039

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0023355 .0005661 -4.13 0.000 -.003445 -.0012261
mpg -.1039503 .0515689 -2.02 0.044 -.2050235 -.0028772

_cons 8.275464 2.554142 3.24 0.001 3.269437 13.28149

We find that heavier cars are less likely to be foreign and that cars yielding better gas mileage are
also less likely to be foreign, at least holding the weight of the car constant.

See [R] maximize for an explanation of the output.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except

missing) as positive outcomes (successes). Thus if your dependent variable takes on the values 0 and
1, then 0 is interpreted as failure and 1 as success. If your dependent variable takes on the values 0,
1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

If you prefer a more formal mathematical statement, when you type probit y x, Stata fits the
model

Pr(yj 6= 0 | xj) = Φ(xjβ)
where Φ is the standard cumulative normal.

Robust standard errors
If you specify the vce(robust) option, probit reports robust standard errors; see [U] 20.20 Ob-

taining robust variance estimates.

Example 2

For the model from example 1, the robust calculation increases the standard error of the coefficient
on mpg by almost 15%:

. probit foreign weight mpg, vce(robust) nolog

Probit regression Number of obs = 74
Wald chi2(2) = 30.26
Prob > chi2 = 0.0000

Log pseudolikelihood = -26.844189 Pseudo R2 = 0.4039

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight -.0023355 .0004934 -4.73 0.000 -.0033025 -.0013686
mpg -.1039503 .0593548 -1.75 0.080 -.2202836 .0123829

_cons 8.275464 2.539177 3.26 0.001 3.298769 13.25216
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Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.052 with
a resulting confidence interval of [−0.21,−0.00 ].

Example 3

The vce(cluster clustvar) option can relax the independence assumption required by the probit
estimator to independence between clusters. To demonstrate, we will switch to a different dataset.

We are studying unionization of women in the United States and have a dataset with 26,200
observations on 4,434 women between 1970 and 1988. We will use the variables age (the women
were 14–26 in 1968, and our data span the age range of 16–46), grade (years of schooling completed,
ranging from 0 to 18), not smsa (28% of the person-time was spent living outside an SMSA—standard
metropolitan statistical area), south (41% of the person-time was in the South), and year. Each of
these variables is included in the regression as a covariate along with the interaction between south
and year. This interaction, along with the south and year variables, is specified in the probit
command using factor-variables notation, south##c.year. We also have variable union, indicating
union membership. Overall, 22% of the person-time is marked as time under union membership, and
44% of these women have belonged to a union.

We fit the following model, ignoring that the women are observed an average of 5.9 times each
in these data:

. use http://www.stata-press.com/data/r12/union, clear
(NLS Women 14-24 in 1968)

. probit union age grade not_smsa south##c.year

Iteration 0: log likelihood = -13864.23
Iteration 1: log likelihood = -13545.541
Iteration 2: log likelihood = -13544.385
Iteration 3: log likelihood = -13544.385

Probit regression Number of obs = 26200
LR chi2(6) = 639.69
Prob > chi2 = 0.0000

Log likelihood = -13544.385 Pseudo R2 = 0.0231

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0118481 .0029072 4.08 0.000 .0061502 .017546
grade .0267365 .0036689 7.29 0.000 .0195457 .0339273

not_smsa -.1293525 .0202595 -6.38 0.000 -.1690604 -.0896445
1.south -.8281077 .2472219 -3.35 0.001 -1.312654 -.3435618

year -.0080931 .0033469 -2.42 0.016 -.0146529 -.0015333

south#c.year
1 .0057369 .0030917 1.86 0.064 -.0003226 .0117965

_cons -.6542487 .2007777 -3.26 0.001 -1.047766 -.2607316

The reported standard errors in this model are probably meaningless. Women are observed repeatedly,
and so the observations are not independent. Looking at the coefficients, we find a large southern
effect against unionization and a time trend for the south that is almost significantly different from
the overall downward trend. The vce(cluster clustvar) option provides a way to fit this model and
obtains correct standard errors:
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. probit union age grade not_smsa south##c.year, vce(cluster id)

Iteration 0: log pseudolikelihood = -13864.23
Iteration 1: log pseudolikelihood = -13545.541
Iteration 2: log pseudolikelihood = -13544.385
Iteration 3: log pseudolikelihood = -13544.385

Probit regression Number of obs = 26200
Wald chi2(6) = 166.53
Prob > chi2 = 0.0000

Log pseudolikelihood = -13544.385 Pseudo R2 = 0.0231

(Std. Err. adjusted for 4434 clusters in idcode)

Robust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0118481 .0056625 2.09 0.036 .0007499 .0229463
grade .0267365 .0078124 3.42 0.001 .0114244 .0420486

not_smsa -.1293525 .0403885 -3.20 0.001 -.2085125 -.0501925
1.south -.8281077 .3201584 -2.59 0.010 -1.455607 -.2006089

year -.0080931 .0060829 -1.33 0.183 -.0200153 .0038292

south#c.year
1 .0057369 .0040133 1.43 0.153 -.002129 .0136029

_cons -.6542487 .3485976 -1.88 0.061 -1.337487 .02899

These standard errors are larger than those reported by the inappropriate conventional calculation. By
comparison, another model we could fit is an equal-correlation population-averaged probit model:

. xtprobit union age grade not_smsa south##c.year, pa

Iteration 1: tolerance = .12544249
Iteration 2: tolerance = .0034686
Iteration 3: tolerance = .00017448
Iteration 4: tolerance = 8.382e-06
Iteration 5: tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26200
Group variable: idcode Number of groups = 4434
Link: probit Obs per group: min = 1
Family: binomial avg = 5.9
Correlation: exchangeable max = 12

Wald chi2(6) = 242.57
Scale parameter: 1 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382

not_smsa -.0715717 .027543 -2.60 0.009 -.1255551 -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308

year -.0062708 .0055314 -1.13 0.257 -.0171122 .0045706

south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686

_cons -.8670997 .294771 -2.94 0.003 -1.44484 -.2893592
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The coefficient estimates are similar, but these standard errors are smaller than those produced by
probit, vce(cluster clustvar), as we would expect. If the equal-correlation assumption is valid,
the population-averaged probit estimator above should be more efficient.

Is the assumption valid? That is a difficult question to answer. The default population-averaged
estimates correspond to an assumption of exchangeable correlation within person. It would not be
unreasonable to assume an AR(1) correlation within person or to assume that the observations are
correlated but that we do not wish to impose any structure. See [XT] xtprobit and [XT] xtgee for full
details.

probit, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That
is, it inefficiently sums within cluster for the standard error calculation rather than attempting to
exploit what might be assumed about the within-cluster correlation.

Model identification

The probit command has one more feature that is probably the most useful. It will automatically
check the model for identification and, if the model is underidentified, drop whatever variables and
observations are necessary for estimation to proceed.

Example 4

Have you ever fit a probit model where one or more of your independent variables perfectly
predicted one or the other outcome?

For instance, consider the following data:

Outcome y Independent variable x

0 1
0 1
0 0
1 0

Say that we wish to predict the outcome on the basis of the independent variable. The outcome is
always zero when the independent variable is one. In our data, Pr(y = 0 | x = 1) = 1, which means
that the probit coefficient on x must be minus infinity with a corresponding infinite standard error.
At this point, you may suspect that we have a problem.

Unfortunately, not all such problems are so easily detected, especially if you have many independent
variables in your model. If you have ever had such difficulties, then you have experienced one of the
more unpleasant aspects of computer optimization. The computer has no idea that it is trying to solve
for an infinite coefficient as it begins its iterative process. All it knows is that, at each step, making
the coefficient a little bigger, or a little smaller, works wonders. It continues on its merry way until
either 1) the whole thing comes crashing to the ground when a numerical overflow error occurs or
2) it reaches some predetermined cutoff that stops the process. Meanwhile, you have been waiting.
And the estimates that you finally receive, if any, may be nothing more than numerical roundoff.

Stata watches for these sorts of problems, alerts you, fixes them, and then properly fits the model.

Let’s return to our automobile data. Among the variables we have in the data is one called repair
that takes on three values. A value of 1 indicates that the car has a poor repair record, 2 indicates
an average record, and 3 indicates a better-than-average record. Here is a tabulation of our data:
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. use http://www.stata-press.com/data/r12/repair
(1978 Automobile Data)

. tabulate foreign repair

repair
Car type 1 2 3 Total

Domestic 10 27 9 46
Foreign 0 3 9 12

Total 10 30 18 58

All the cars with poor repair records (repair = 1) are domestic. If we were to attempt to predict
foreign on the basis of the repair records, the predicted probability for the repair = 1 category
would have to be zero. This in turn means that the probit coefficient must be minus infinity, and that
would set most computer programs buzzing.

Let’s try using Stata on this problem.

. probit foreign b3.repair

note: 1.repair != 0 predicts failure perfectly
1.repair dropped and 10 obs not used

Iteration 0: log likelihood = -26.992087
Iteration 1: log likelihood = -22.276479
Iteration 2: log likelihood = -22.229184
Iteration 3: log likelihood = -22.229138
Iteration 4: log likelihood = -22.229138

Probit regression Number of obs = 48
LR chi2(1) = 9.53
Prob > chi2 = 0.0020

Log likelihood = -22.229138 Pseudo R2 = 0.1765

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

repair
1 0 (empty)
2 -1.281552 .4297326 -2.98 0.003 -2.123812 -.4392911

_cons 9.89e-17 .295409 0.00 1.000 -.578991 .578991

Remember that all the cars with poor repair records (repair = 1) are domestic, so the model cannot
be fit, or at least it cannot be fit if we restrict ourselves to finite coefficients. Stata noted that fact
“note: 1.repair != 0 predicts failure perfectly”. This is Stata’s mathematically precise way of saying
what we said in English. When repair is 1, the car is domestic.

Stata then went on to say, “1.repair dropped and 10 obs not used”. This is Stata eliminating
the problem. First, 1.repair had to be removed from the model because it would have an infinite
coefficient. Then the 10 observations that led to the problem had to be eliminated, as well, so as
not to bias the remaining coefficients in the model. The 10 observations that are not used are the 10
domestic cars that have poor repair records.

Stata then fit what was left of the model, using the remaining observations. Because no observations
remained for cars with poor repair records, Stata reports “(empty)” in the row for repair = 1.
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Technical note
Stata is pretty smart about catching these problems. It will catch “one-way causation by a dummy

variable”, as we demonstrated above.

Stata also watches for “two-way causation”, that is, a variable that perfectly determines the outcome,
both successes and failures. Here Stata says that the variable “predicts outcome perfectly” and stops.
Statistics dictate that no model can be fit.

Stata also checks your data for collinear variables; it will say “so-and-so omitted because of
collinearity”. No observations need to be eliminated here and model fitting will proceed without the
offending variable.

It will also catch a subtle problem that can arise with continuous data. For instance, if we were
estimating the chances of surviving the first year after an operation, and if we included in our model
age, and if all the persons over 65 died within the year, Stata will say, “age> 65 predicts failure
perfectly”. It will then inform us about how it resolves the issue and fit what can be fit of our model.

probit (and logit, logistic, and ivprobit) will also occasionally fail to converge and then
display messages such as

Note: 4 failures and 0 successes completely determined.

The cause of this message and what to do if you see it are described in [R] logit.

Saved results
probit saves the following in e():

Scalars
e(N) number of observations
e(N cds) number of completely determined successes
e(N cdf) number of completely determined failures
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) probit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(mns) vector of means of the independent variables
e(rules) information about perfect predictors
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
probit is implemented as an ado-file.

Probit analysis originated in connection with bioassay, and the word probit, a contraction of
“probability unit”, was suggested by Bliss (1934a, 1934b). For an introduction to probit and logit, see,
for example, Aldrich and Nelson (1984), Cameron and Trivedi (2010), Greene (2012), Long (1997),
Pampel (2000), or Powers and Xie (2008). Long and Freese (2006, chap. 4) and Jones (2007, chap. 3)
provide introductions to probit and logit, along with Stata examples.

The log-likelihood function for probit is

lnL =
∑
j∈S

wj lnΦ(xjβ) +
∑
j 6∈S

wj ln
{

1− Φ(xjβ)
}



1536 probit — Probit regression

where Φ is the cumulative normal and wj denotes the optional weights. lnL is maximized, as
described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas. The scores are calculated as uj =
{φ(xjb)/Φ(xjb)}xj for the positive outcomes and −[φ(xjb)/{1 − Φ(xjb)}]xj for the negative
outcomes, where φ is the normal density.

probit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

� �
Chester Ittner Bliss (1899–1979) was born in Ohio. He was educated as an entomologist, earning
degrees from Ohio State and Columbia, and was employed by the United States Department of
Agriculture until 1933. When he lost his job because of the Depression, Bliss then worked with
R. A. Fisher in London and at the Institute of Plant Protection in Leningrad before returning
to a post at the Connecticut Agricultural Experiment Station in 1938. He was also a lecturer at
Yale for 25 years. Among many contributions to biostatistics, his development and application
of probit methods to biological problems are outstanding.� �
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Also see
[R] probit postestimation — Postestimation tools for probit

[R] asmprobit — Alternative-specific multinomial probit regression

[R] biprobit — Bivariate probit regression

[R] brier — Brier score decomposition

[R] glm — Generalized linear models

[R] hetprob — Heteroskedastic probit model

[R] ivprobit — Probit model with continuous endogenous regressors

[R] logistic — Logistic regression, reporting odds ratios

[R] logit — Logistic regression, reporting coefficients

[R] mprobit — Multinomial probit regression

[R] roc — Receiver operating characteristic (ROC) analysis

[R] scobit — Skewed logistic regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[XT] xtprobit — Random-effects and population-averaged probit models

[U] 20 Estimation and postestimation commands



Title

probit postestimation — Postestimation tools for probit

Description

The following postestimation commands are of special interest after probit:

Command Description

estat classification report various summary statistics, including the classification table
estat gof Pearson or Hosmer–Lemeshow goodness-of-fit test
lroc compute area under ROC curve and graph the curve
lsens graph sensitivity and specificity versus probability cutoff

These commands are not appropriate after the svy prefix.

For information about these commands, see [R] logistic postestimation.

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

1538



probit postestimation — Postestimation tools for probit 1539

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset rules asif
]

statistic Description

Main

pr probability of a positive outcome; the default
xb linear prediction
stdp standard error of the linear prediction
∗deviance deviance residual
score first derivative of the log likelihood with respect to xjβ

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

deviance calculates the deviance residual.

score calculates the equation-level score, ∂lnL/∂(xjβ).

nooffset is relevant only if you specified offset(varname) for probit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

rules requests that Stata use any rules that were used to identify the model when making the
prediction. By default, Stata calculates missing for excluded observations.

asif requests that Stata ignore the rules and exclusion criteria and calculate predictions for all
observations possible using the estimated parameter from the model.

Remarks
Remarks are presented under the following headings:

Obtaining predicted values
Performing hypothesis tests
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Obtaining predicted values

Once you have fit a probit model, you can obtain the predicted probabilities by using the predict
command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. Here we will make only a few additional comments.

predict without arguments calculates the predicted probability of a positive outcome. With the
xb option, predict calculates the linear combination xjb, where xj are the independent variables
in the jth observation and b is the estimated parameter vector. This is known as the index function
because the cumulative density indexed at this value is the probability of a positive outcome.

In both cases, Stata remembers any rules used to identify the model and calculates missing for
excluded observations unless rules or asif is specified. This is covered in the following example.

With the stdp option, predict calculates the standard error of the prediction, which is not
adjusted for replicated covariate patterns in the data.

You can calculate the unadjusted-for-replicated-covariate-patterns diagonal elements of the hat
matrix, or leverage, by typing

. predict pred

. predict stdp, stdp

. generate hat = stdp^2*pred*(1-pred)

Example 1

In example 4 of [R] probit, we fit the probit model probit foreign b3.repair. To obtain
predicted probabilities, we type

. predict p
(option pr assumed; Pr(foreign))
(10 missing values generated)

. summarize foreign p

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

Stata remembers any rules used to identify the model and sets predictions to missing for any excluded
observations. In the previous example, probit dropped the variable 1.repair from our model
and excluded 10 observations. When we typed predict p, those same 10 observations were again
excluded and their predictions set to missing.

predict’s rules option uses the rules in the prediction. During estimation, we were told, “1.repair
!= 0 predicts failure perfectly”, so the rule is that when 1.repair is not zero, we should predict 0
probability of success or a positive outcome:

. predict p2, rules

. summarize foreign p p2

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5

predict’s asif option ignores the rules and the exclusion criteria and calculates predictions for
all observations possible using the estimated parameters from the model:
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. predict p3, asif

. summarize for p p2 p3

Variable Obs Mean Std. Dev. Min Max

foreign 58 .2068966 .4086186 0 1
p 48 .25 .1956984 .1 .5

p2 58 .2068966 .2016268 0 .5
p3 58 .2931034 .2016268 .1 .5

Which is right? By default, predict uses the most conservative approach. If many observations
had been excluded due to a simple rule, we could be reasonably certain that the rules prediction is
correct. The asif prediction is correct only if the exclusion is a fluke and we would be willing to
exclude the variable from the analysis, anyway. Then, however, we should refit the model to include
the excluded observations.

Performing hypothesis tests

After estimation with probit, you can perform hypothesis tests by using the test or testnl
command; see [U] 20 Estimation and postestimation commands.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

predict after probit

Let index j be used to index observations, not covariate patterns. Define Mj for each observation
as the total number of observations sharing j’s covariate pattern. Define Yj as the total number
of positive responses among observations sharing j’s covariate pattern. Define pj as the predicted
probability of a positive outcome for observation j.

For Mj > 1, the deviance residual dj is defined as

dj = ±

(
2

[
Yj ln

(
Yj

Mjpj

)
+ (Mj − Yj) ln

{
Mj − Yj
Mj(1− pj)

}])1/2

where the sign is the same as the sign of (Yj −Mjpj). In the limiting cases, the deviance residual
is given by

dj =

{
−
√

2Mj | ln(1− pj)| if Yj = 0√
2Mj | lnpj | if Yj = Mj

Also see
[R] probit — Probit regression

[R] logistic postestimation — Postestimation tools for logistic

[U] 20 Estimation and postestimation commands



Title

proportion — Estimate proportions

Syntax
proportion varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

stdize(varname) variable identifying strata for standardization
stdweight(varname) weight variable for standardization
nostdrescale do not rescale the standard weight variable
nolabel suppress value labels from varlist
missing treat missing values like other values

if/in/over

over(varlist
[
, nolabel

]
) group over subpopulations defined by varlist; optionally,

suppress group labels

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
display options control column formats and line width

coeflegend display legend instead of statistics

bootstrap, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Proportions

Description
proportion produces estimates of proportions, along with standard errors, for the categories

identified by the values in each variable of varlist.
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Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the
strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in
the stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups.
This option requires stdize() but is ignored if the over() option is not specified.

nolabel specifies that value labels attached to the variables in varlist be ignored.

missing specifies that missing values in varlist be treated as valid categories, rather than omitted
from the analysis (the default).

� � �
if/in/over �

over(varlist
[
, nolabel

]
) specifies that estimates be computed for multiple subpopulations, which

are identified by the different values of the variables in varlist.

When this option is supplied with one variable name, such as over(varname), the value labels of
varname are used to identify the subpopulations. If varname does not have labeled values (or there
are unlabeled values), the values themselves are used, provided that they are nonnegative integers.
Noninteger values, negative values, and labels that are not valid Stata names are substituted with
a default identifier.

When over() is supplied with multiple variable names, each subpopulation is assigned a unique
default identifier.

nolabel requests that value labels attached to the variables identifying the subpopulations be
ignored.

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that allow for intragroup correlation, and that use bootstrap or jackknife
methods; see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the
sample proportion.

� � �
Reporting �

level(#); see [R] estimation options.

noheader prevents the table header from being displayed. This option implies nolegend.

nolegend prevents the table legend identifying the subpopulations from being displayed.

display options: cformat(% fmt) and nolstretch; see [R] estimation options.

The following option is available with proportion but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Example 1

We can estimate the proportion of each repair rating in the auto data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. proportion rep78

Proportion estimation Number of obs = 69

Proportion Std. Err. [95% Conf. Interval]

rep78
1 .0289855 .0203446 -.0116115 .0695825
2 .115942 .0388245 .0384689 .1934152
3 .4347826 .0601159 .3148232 .554742
4 .2608696 .0532498 .1546113 .3671278
5 .1594203 .0443922 .070837 .2480036

Here we use the missing option to include missing values as a category of rep78:

. proportion rep78, missing

Proportion estimation Number of obs = 74

_prop_6: rep78 = .

Proportion Std. Err. [95% Conf. Interval]

rep78
1 .027027 .0189796 -.0107994 .0648534
2 .1081081 .0363433 .0356761 .1805401
3 .4054054 .0574637 .2908804 .5199305
4 .2432432 .0502154 .1431641 .3433224
5 .1486486 .0416364 .0656674 .2316299

_prop_6 .0675676 .0293776 .0090181 .1261171
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Example 2

We can also estimate proportions over groups:

. proportion rep78, over(foreign)

Proportion estimation Number of obs = 69

_prop_1: rep78 = 1
_prop_2: rep78 = 2
_prop_3: rep78 = 3
_prop_4: rep78 = 4
_prop_5: rep78 = 5

Domestic: foreign = Domestic
Foreign: foreign = Foreign

Over Proportion Std. Err. [95% Conf. Interval]

_prop_1
Domestic .0416667 .0291477 -.0164966 .0998299
Foreign . (no observations)

_prop_2
Domestic .1666667 .0543607 .0581916 .2751417
Foreign . (no observations)

_prop_3
Domestic .5625 .0723605 .4181069 .7068931
Foreign .1428571 .0782461 -.0132805 .2989948

_prop_4
Domestic .1875 .0569329 .0738921 .3011079
Foreign .4285714 .1106567 .2077595 .6493834

_prop_5
Domestic .0416667 .0291477 -.0164966 .0998299
Foreign .4285714 .1106567 .2077595 .6493834

Saved results
proportion saves the following in e():

Scalars
e(N) number of observations
e(N over) number of subpopulations
e(N stdize) number of standard strata
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom
e(rank) rank of e(V)

Macros
e(cmd) proportion
e(cmdline) command as typed
e(varlist) varlist
e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(cluster) name of cluster variable
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e(over) varlist from over()
e(over labels) labels from over() variables
e(over namelist) names from e(over labels)
e(namelist) proportion identifiers
e(label#) labels from #th variable in varlist
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) vector of proportion estimates
e(V) (co)variance estimates
e( N) vector of numbers of nonmissing observations
e( N stdsum) number of nonmissing observations within the standard strata
e( p stdize) standardizing proportions
e(error) error code corresponding to e(b)

Functions
e(sample) marks estimation sample

Methods and formulas
proportion is implemented as an ado-file.

Proportions are means of indicator variables; see [R] mean.

References
Cochran, W. G. 1977. Sampling Techniques. 3rd ed. New York: Wiley.

Stuart, A., and J. K. Ord. 1994. Kendall’s Advanced Theory of Statistics: Distribution Theory, Vol I. 6th ed. London:
Arnold.

Also see
[R] proportion postestimation — Postestimation tools for proportion

[R] mean — Estimate means

[R] ratio — Estimate ratios

[R] total — Estimate totals

[MI] estimation — Estimation commands for use with mi estimate

[SVY] direct standardization — Direct standardization of means, proportions, and ratios

[SVY] poststratification — Poststratification for survey data

[SVY] subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands



Title

proportion postestimation — Postestimation tools for proportion

Description
The following postestimation commands are available after proportion:

Command Description

estat VCE
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] proportion — Estimate proportions

[SVY] svy postestimation — Postestimation tools for svy

[U] 20 Estimation and postestimation commands
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prtest — One- and two-sample tests of proportions

Syntax
One-sample test of proportion

prtest varname == #p
[

if
] [

in
] [

, level(#)
]

Two-sample test of proportions

prtest varname1 == varname2

[
if
] [

in
] [

, level(#)
]

Two-group test of proportions

prtest varname
[

if
] [

in
]
, by(groupvar)

[
level(#)

]
Immediate form of one-sample test of proportion

prtesti #obs1 #p1 #p2
[
, level(#) count

]
Immediate form of two-sample test of proportions

prtesti #obs1 #p1 #obs2 #p2
[
, level(#) count

]
by is allowed with prtest; see [D] by.

Menu
one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample proportion test

two-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample proportion test

two-group

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-group proportion test

immediate command: one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample proportion calculator

immediate command: two-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample proportion calculator
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Description
prtest performs tests on the equality of proportions using large-sample statistics.

In the first form, prtest tests that varname has a proportion of #p. In the second form, prtest
tests that varname1 and varname2 have the same proportion. In the third form, prtest tests that
varname has the same proportion within the two groups defined by groupvar.

prtesti is the immediate form of prtest; see [U] 19 Immediate commands.

The bitest command is a better version of the first form of prtest in that it gives exact p-values.
Researchers should use bitest when possible, especially for small samples; see [R] bitest.

Options

� � �
Main �

by(groupvar) specifies a numeric variable that contains the group information for a given observation.
This variable must have only two values. Do not confuse the by() option with the by prefix; both
may be specified.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

count specifies that integer counts instead of proportions be used in the immediate forms of prtest.
In the first syntax, prtesti expects that #obs1 and #p1 are counts—#p1 ≤ #obs1—and #p2 is a
proportion. In the second syntax, prtesti expects that all four numbers are integer counts, that
#obs1 ≥ #p1, and that #obs2 ≥ #p2.

Remarks
The prtest output follows the output of ttest in providing a lot of information. Each proportion

is presented along with a confidence interval. The appropriate one- or two-sample test is performed,
and the two-sided and both one-sided results are included at the bottom of the output. For a two-sample
test, the calculated difference is also presented with its confidence interval. This command may be
used for both large-sample testing and large-sample interval estimation.

Example 1: One-sample test of proportion

In the first form, prtest tests whether the mean of the sample is equal to a known constant. Assume
that we have a sample of 74 automobiles. We wish to test whether the proportion of automobiles that
are foreign is different from 40%.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. prtest foreign == .4

One-sample test of proportion foreign: Number of obs = 74

Variable Mean Std. Err. [95% Conf. Interval]

foreign .2972973 .0531331 .1931583 .4014363

p = proportion(foreign) z = -1.8034
Ho: p = 0.4

Ha: p < 0.4 Ha: p != 0.4 Ha: p > 0.4
Pr(Z < z) = 0.0357 Pr(|Z| > |z|) = 0.0713 Pr(Z > z) = 0.9643
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The test indicates that we cannot reject the hypothesis that the proportion of foreign automobiles is
0.40 at the 5% significance level.

Example 2: Two-sample test of proportions

We have two headache remedies that we give to patients. Each remedy’s effect is recorded as 0
for failing to relieve the headache and 1 for relieving the headache. We wish to test the equality of
the proportion of people relieved by the two treatments.

. use http://www.stata-press.com/data/r12/cure

. prtest cure1 == cure2

Two-sample test of proportions cure1: Number of obs = 50
cure2: Number of obs = 59

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

cure1 .52 .0706541 .3815205 .6584795
cure2 .7118644 .0589618 .5963013 .8274275

diff -.1918644 .0920245 -.372229 -.0114998
under Ho: .0931155 -2.06 0.039

diff = prop(cure1) - prop(cure2) z = -2.0605
Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0197 Pr(|Z| < |z|) = 0.0394 Pr(Z > z) = 0.9803

We find that the proportions are statistically different from each other at any level greater than 3.9%.

Example 3: Immediate form of one-sample test of proportion

prtesti is like prtest, except that you specify summary statistics rather than variables as
arguments. For instance, we are reading an article that reports the proportion of registered voters
among 50 randomly selected eligible voters as 0.52. We wish to test whether the proportion is 0.7:

. prtesti 50 .52 .70

One-sample test of proportion x: Number of obs = 50

Variable Mean Std. Err. [95% Conf. Interval]

x .52 .0706541 .3815205 .6584795

p = proportion(x) z = -2.7775
Ho: p = 0.7

Ha: p < 0.7 Ha: p != 0.7 Ha: p > 0.7
Pr(Z < z) = 0.0027 Pr(|Z| > |z|) = 0.0055 Pr(Z > z) = 0.9973
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Example 4: Immediate form of two-sample test of proportions

To judge teacher effectiveness, we wish to test whether the same proportion of people from
two classes will answer an advanced question correctly. In the first classroom of 30 students, 40%
answered the question correctly, whereas in the second classroom of 45 students, 67% answered the
question correctly.

. prtesti 30 .4 45 .67

Two-sample test of proportions x: Number of obs = 30
y: Number of obs = 45

Variable Mean Std. Err. z P>|z| [95% Conf. Interval]

x .4 .0894427 .2246955 .5753045
y .67 .0700952 .532616 .807384

diff -.27 .1136368 -.4927241 -.0472759
under Ho: .1169416 -2.31 0.021

diff = prop(x) - prop(y) z = -2.3088
Ho: diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(Z < z) = 0.0105 Pr(|Z| < |z|) = 0.0210 Pr(Z > z) = 0.9895

Saved results
prtest and prtesti save the following in r():
Scalars

r(z) z statistic r(N #) number of observations for variable #
r(P #) proportion for variable #

Methods and formulas
prtest and prtesti are implemented as ado-files.

See Acock (2010, 149–155) for additional examples of tests of proportions using Stata.

A large-sample 100(1− α)% confidence interval for a proportion p is

p̂± z1−α/2

√
p̂ q̂

n

and a 100(1− α)% confidence interval for the difference of two proportions is given by

(p̂1 − p̂2)± z1−α/2

√
p̂1q̂1

n1
+
p̂2q̂2

n2

where q̂ = 1− p̂ and z is calculated from the inverse cumulative standard normal distribution.

The one-tailed and two-tailed tests of a population proportion use a normally distributed test
statistic calculated as

z =
p̂− p0√
p0q0/n

where p0 is the hypothesized proportion. A test of the difference of two proportions also uses a
normally distributed test statistic calculated as
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z =
p̂1 − p̂2√

p̂pq̂p(1/n1 + 1/n2)

where
p̂p =

x1 + x2

n1 + n2

and x1 and x2 are the total number of successes in the two populations.

References
Acock, A. C. 2010. A Gentle Introduction to Stata. 3rd ed. College Station, TX: Stata Press.

Wang, D. 2000. sg154: Confidence intervals for the ratio of two binomial proportions by Koopman’s method. Stata
Technical Bulletin 58: 16–19. Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 244–247. College Station,
TX: Stata Press.

Also see
[R] bitest — Binomial probability test

[R] proportion — Estimate proportions

[R] ttest — Mean-comparison tests

[MV] hotelling — Hotelling’s T-squared generalized means test

http://www.stata-press.com/books/acock3.html
http://www.stata.com/products/stb/journals/stb58.pdf


Title

pwcompare — Pairwise comparisons

Syntax
pwcompare marginlist

[
, options

]
where marginlist is a list of factor variables or interactions that appear in the current estimation results
or eqns to reference equations. The variables may be typed with or without the i. prefix, and you
may use any factor-variable syntax:

. pwcompare i.sex i.group i.sex#i.group

. pwcompare sex group sex#group

. pwcompare sex##group

options Description

Main

mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)

asobserved treat all factor variables as observed

Equations

equation(eqspec) perform comparisons within equation eqspec
atequations perform comparisons within each equation

Advanced

emptycells(empspec) treatment of empty cells for balanced factors
noestimcheck suppress estimability checks

Reporting

level(#) confidence level; default is level(95)

cieffects show effects table with confidence intervals; the default
pveffects show effects table with p-values
effects show effects table with confidence intervals and p-values
cimargins show table of margins and confidence intervals
groups show table of margins and group codes
sort sort the margins or contrasts within each term
post post margins and their VCEs as estimation results
display options control column formats, line width, and suppress blank lines between

terms
eform option report exponentiated contrasts

1553
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method Description

noadjust do not adjust for multiple comparisons; the default
bonferroni

[
adjustall

]
Bonferroni’s method; adjust across all terms

sidak
[
adjustall

]
Šidák’s method; adjust across all terms

scheffe Scheffé’s method
∗tukey Tukey’s method
∗snk Student–Newman–Keuls’ method
∗duncan Duncan’s method
∗dunnett Dunnett’s method

∗ tukey, snk, duncan, and dunnett are only allowed with results from anova, manova, regress, and mvreg.
tukey, snk, duncan, and dunnett are not allowed with results from svy.

Time-series operators are allowed if they were used in the estimation.

Menu
Statistics > Postestimation > Pairwise comparisons

Description
pwcompare performs pairwise comparisons across the levels of factor variables from the most

recently fit model. pwcompare can compare estimated cell means, marginal means, intercepts, marginal
intercepts, slopes, or marginal slopes—collectively called margins. pwcompare reports the comparisons
as contrasts (differences) of margins along with significance tests or confidence intervals for the
contrasts. The tests and confidence intervals can be adjusted for multiple comparisons.

pwcompare can be used with svy estimation results; see [SVY] svy postestimation.

See [R] margins, pwcompare for performing pairwise comparisons of margins of linear and
nonlinear predictions.

Options

� � �
Main �

mcompare(method) specifies the method for computing p-values and confidence intervals that account
for multiple comparisons within a factor-variable term.

Most methods adjust the comparisonwise error rate, αc, to achieve a prespecified experimentwise
error rate, αe.

mcompare(noadjust) is the default; it specifies no adjustment.
αc = αe

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the
Bonferroni inequality:

αe≤mαc
where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = αe/m
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mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

αe≤1− (1− αc)m

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = 1− (1− αe)1/m

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the F (or χ2) distribution with
degrees of freedom equal to the rank of the term.

For results from anova, regress, manova, and mvreg (see [R] anova, [R] regress, [MV] manova,
and [R] mvreg), pwcompare allows the following additional methods. These methods are not
allowed with results that used vce(robust) or vce(cluster clustvar).

mcompare(tukey) uses what is commonly referred to as Tukey’s honestly significant difference.
This method uses the Studentized range distribution instead of the t distribution.

mcompare(snk) is a variation on mcompare(tukey) that counts only the number of margins in
the range for a given comparison instead of the full number of margins.

mcompare(duncan) is a variation on mcompare(snk) with additional adjustment to the significance
probabilities.

mcompare(dunnett) uses Dunnett’s method for making comparisons with a reference category.

mcompare(method adjustall) specifies that the multiple-comparison adjustments count all
comparisons across all terms rather than performing multiple comparisons term by term. This
leads to more conservative adjustments when multiple variables or terms are specified in
marginlist. This option is compatible only with the bonferroni and sidak methods.

asobserved specifies that factor covariates be evaluated using the cell frequencies observed when the
model was fit. The default is to treat all factor covariates as though there were an equal number
of observations at each level.

� � �
Equations �

equation(eqspec) specifies the equation from which margins are to be computed. The default is to
compute margins from the first equation.

atequations specifies that the margins be computed within each equation.

� � �
Advanced �

emptycells(empspec) specifies how empty cells are handled in interactions involving factor variables
that are being treated as balanced.

emptycells(strict) is the default; it specifies that margins involving empty cells be treated as
not estimable.

emptycells(reweight) specifies that the effects of the observed cells be increased to accommodate
any missing cells. This makes the margins estimable but changes their interpretation.

noestimcheck specifies that pwcompare not check for estimability. By default, the requested margins
are checked and those found not estimable are reported as such. Nonestimability is usually caused
by empty cells. If noestimcheck is specified, estimates are computed in the usual way and
reported even though the resulting estimates are manipulable, which is to say they can differ across
equivalent models having different parameterizations.
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� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
The significance level used by the groups option is 100− #, expressed as a percentage.

cieffects specifies that a table of the pairwise comparisons with their standard errors and confidence
intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
and p-values be reported.

effects specifies that a table of the pairwise comparisons with their standard errors, test statistics,
p-values, and confidence intervals be reported.

cimargins specifies that a table of the margins with their standard errors and confidence intervals
be reported.

groups specifies that a table of the margins with their standard errors and group codes be reported.
Margins with the same letter in the group code are not significantly different at the specified
significance level.

sort specifies that the reported tables be sorted on the margins or differences in each term.

post causes pwcompare to behave like a Stata estimation (e-class) command. pwcompare posts the
vector of estimated margins along with the estimated variance–covariance matrix to e(), so you
can treat the estimated margins just as you would results from any other estimation command. For
example, you could use test to perform simultaneous tests of hypotheses on the margins, or you
could use lincom to create linear combinations.

display options: vsquish, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

vsquish specifies that the blank space separating factor-variable terms or time-series–operated
variables from other variables in the model be suppressed.

cformat(% fmt) specifies how to format contrasts or margins, standard errors, and confidence
limits in the table of pairwise comparisons.

pformat(% fmt) specifies how to format p-values in the table of pairwise comparisons.

sformat(% fmt) specifies how to format test statistics in the table of pairwise comparisons.

nolstretch specifies that the width of the table of pairwise comparisons not be automatically
widened to accommodate longer variable names. The default, lstretch, is to automatically
widen the table of pairwise comparisons up to the width of the Results window. To change the
default, use set lstretch off. nolstretch is not shown in the dialog box.

eform option specifies that the contrasts table be displayed in exponentiated form. econtrast is
displayed rather than contrast. Standard errors and confidence intervals are also transformed. See
[R] eform option for the list of available options.

Remarks
pwcompare performs pairwise comparisons of margins across the levels of factor variables from

the most recently fit model. The margins can be estimated cell means, marginal means, intercepts,
marginal intercepts, slopes, or marginal slopes. With the exception of slopes, we can also consider
these margins to be marginal linear predictions.
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The margins are calculated as linear combinations of the coefficients. Let k be the number of
levels for a factor term in our model; then there are k margins for that term, and

m =
(
k

2

)
=
k(k − 1)

2

unique pairwise comparisons of those margins.

The confidence intervals and p-values for these pairwise comparisons can be adjusted to account
for multiple comparisons. Bonferroni’s, Šidák’s, and Scheffé’s adjustments can be made for multiple
comparisons after fitting any type of model. In addition, Tukey’s, Student–Newman–Keuls’, Duncan’s,
and Dunnett’s adjustments are available when fitting ANOVA, linear regression, MANOVA, or multivariate
regression models.

Remarks are presented under the following headings:

Pairwise comparisons of means
Marginal means
All pairwise comparisons

Overview of multiple-comparison methods
Fisher’s protected least-significant difference (LSD)
Bonferroni’s adjustment
Šidák’s adjustment
Scheffé’s adjustment
Tukey’s HSD adjustment
Student–Newman–Keuls’ adjustment
Duncan’s adjustment
Dunnett’s adjustment

Example adjustments using one-way models
Fisher’s protected LSD
Tukey’s HSD
Dunnett’s method for comparisons to a control

Two-way models
Pairwise comparisons of slopes
Nonlinear models
Multiple-equation models
Unbalanced data
Empty cells

Pairwise comparisons of means

Suppose we are interested in the effects of five different fertilizers on wheat yield. We could
estimate the following linear regression model to determine the effect of each type of fertilizer on
the yield.
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. use http://www.stata-press.com/data/r12/yield
(Artificial wheat yield dataset)

. regress yield i.fertilizer

Source SS df MS Number of obs = 200
F( 4, 195) = 5.33

Model 1078.84207 4 269.710517 Prob > F = 0.0004
Residual 9859.55334 195 50.561812 R-squared = 0.0986

Adj R-squared = 0.0801
Total 10938.3954 199 54.9668111 Root MSE = 7.1107

yield Coef. Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 3.62272 1.589997 2.28 0.024 .4869212 6.758518
3 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
4 4.922803 1.589997 3.10 0.002 1.787005 8.058602
5 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747

_cons 41.36243 1.124298 36.79 0.000 39.14509 43.57977

In this simple case, the coefficients for fertilizers 2 through 5 indicate the difference in the mean yield
for that fertilizer versus the mean yield for fertilizer 1. That the standard errors of all four coefficients
are identical results from having perfectly balanced data.

Marginal means

We can use pwcompare with the cimargins option to compute the mean yield for each of the
fertilizers.

. pwcompare fertilizer, cimargins

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted
Margin Std. Err. [95% Conf. Interval]

fertilizer
1 41.36243 1.124298 39.14509 43.57977
2 44.98515 1.124298 42.7678 47.20249
3 41.85306 1.124298 39.63571 44.0704
4 46.28523 1.124298 44.06789 48.50258
5 40.1241 1.124298 37.90676 42.34145

Looking at the confidence intervals for fertilizers 1 and 2 in the table above, we might be tempted to
conclude that these means are not significantly different because the intervals overlap. However, as
discussed in Interaction plots of [R] marginsplot, we cannot draw conclusions about the differences
in means by looking at confidence intervals for the means themselves. Instead, we would need to
look at confidence intervals for the difference in means.
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All pairwise comparisons

By default, pwcompare calculates all pairwise differences of the margins, in this case pairwise
differences of the mean yields.

. pwcompare fertilizer

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted
Contrast Std. Err. [95% Conf. Interval]

fertilizer
2 vs 1 3.62272 1.589997 .4869212 6.758518
3 vs 1 .4906299 1.589997 -2.645169 3.626428
4 vs 1 4.922803 1.589997 1.787005 8.058602
5 vs 1 -1.238328 1.589997 -4.374127 1.89747
3 vs 2 -3.13209 1.589997 -6.267889 .0037086
4 vs 2 1.300083 1.589997 -1.835715 4.435882
5 vs 2 -4.861048 1.589997 -7.996847 -1.725249
4 vs 3 4.432173 1.589997 1.296375 7.567972
5 vs 3 -1.728958 1.589997 -4.864757 1.406841
5 vs 4 -6.161132 1.589997 -9.29693 -3.025333

If a confidence interval does not include zero, the means for the compared fertilizers are significantly
different. Therefore, at the 5% significance level, we would reject the hypothesis that the means for
fertilizers 1 and 2 are equivalent—as we would do for 4 vs 1, 5 vs 2, 4 vs 3, and 5 vs 4.

We may prefer to see the p-values instead of looking at confidence intervals to determine whether
the pairwise differences are significantly different from zero. We could use the pveffects option
to see the differences with standard errors and p-values, or we could use the effects option to see
both p-values and confidence intervals in the same table. Here we specify effects as well as the
sort option so that the differences are sorted from smallest to largest.

. pwcompare fertilizer, effects sort

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted Unadjusted
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
5 vs 2 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
3 vs 2 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
5 vs 3 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
5 vs 1 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
3 vs 1 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
4 vs 2 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
2 vs 1 3.62272 1.589997 2.28 0.024 .4869212 6.758518
4 vs 3 4.432173 1.589997 2.79 0.006 1.296375 7.567972
4 vs 1 4.922803 1.589997 3.10 0.002 1.787005 8.058602

We find that 5 of the 10 pairs of means are significantly different at the 5% significance level.

We can use the groups option to obtain a table that identifies groups whose means are not
significantly different by assigning them the same letter.



1560 pwcompare — Pairwise comparisons

. pwcompare fertilizer, groups sort

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted
Margin Std. Err. Groups

fertilizer
5 40.1241 1.124298 A
1 41.36243 1.124298 A
3 41.85306 1.124298 AB
2 44.98515 1.124298 BC
4 46.28523 1.124298 C

Note: Margins sharing a letter in the group label
are not significantly different at the 5%
level.

The letter A that is assigned to fertilizers 5, 1, and 3 designates that the mean yields for these fertilizers
are not different at the 5% level.

Overview of multiple-comparison methods

For a single test, if we choose a 5% significance level, we would have a 5% chance of concluding
that two margins are different when the population values are actually equal. This is known as making
a type I error. When we perform m = k(k − 1)/2 pairwise comparisons of the k margins, we have
m opportunities to make a type I error.

pwcompare with the mcompare() option allows us to adjust the confidence intervals and p-values
for each comparison to account for the increased probability of making a type I error when making
multiple comparisons. Bonferroni’s adjustment, Šidák’s adjustment, and Scheffé’s adjustment can be
used when making pairwise comparisons of the margins after any estimation command. Tukey’s
honestly significant difference, Student–Newman–Keuls’ method, Duncan’s method, and Dunnett’s
method are only available when fitting linear models after anova, manova, regress, or mvreg.

Fisher’s protected least-significant difference (LSD)

pwcompare does not offer an mcompare() option specifically for Fisher’s protected least-significant
difference (LSD). In this methodology, no adjustment is made to the confidence intervals or p-values.
However, it is protected in the sense that no pairwise comparisons are tested unless the joint test
for the corresponding term in the model is significant. Therefore, the default mcompare(noadjust)
corresponds to Fisher’s protected LSD assuming that the corresponding joint test was performed before
using pwcompare.

Milliken and Johnson (2009) recommend using this methodology for planned comparisons, assuming
the corresponding joint test is significant.

Bonferroni’s adjustment

mcompare(bonferroni) adjusts significance levels based on the Bonferroni inequality, which,
in the case of multiple testing, tells us that the maximum error rate for all comparisons is the sum
of the error rates for the individual comparisons. Assuming that we are using the same significance
level for all tests, the experimentwise error rate is the error rate for a single test multiplied by the
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number of comparisons. Therefore, a p-value for each comparison can be computed by multiplying
the unadjusted p-value by the total number of comparisons. If the adjusted p-value is greater than 1,
then pwcompare will report a p-value of 1.

Bonferroni’s adjustment is popular because it is easy to compute manually and because it can be
applied to any set of tests, not only the pairwise comparisons available in pwcompare. In addition,
this method does not require equal sample sizes.

Because Bonferroni’s adjustment is so general, it is more conservative than many of the other
adjustments. It is especially conservative when a large number of tests is being performed.

Šidák’s adjustment

mcompare(sidak) performs an adjustment using Šidák’s method. This adjustment, like Bonfer-
roni’s adjustment, is derived from an inequality. However, in this case, the inequality is based on the
probability of not making a type I error. For a single test, the probability that we do not make a type
I error is 1 − α. For two independent tests, both using α as a significance level, the probability is
(1 − α)(1 − α). Likewise, for m independent tests, the probability of not making a type I error is
(1 − α)m. Therefore, the probability of making one or more type I errors is 1 − (1 − α)m. When
tests are not independent, the probability of making at least one error is less than 1 − (1 − α)m.
Therefore, we can compute an adjusted p-value as 1− (1−up)m, where up is the unadjusted p-value
for a single comparison.

Šidák’s method is also conservative although slightly less so than Bonferroni’s method. Like
Bonferroni’s method, this method does not require equal sample sizes.

Scheffé’s adjustment

Scheffé’s adjustment is used when mcompare(scheffe) is specified. This adjustment is derived
from the joint F test and its correspondence to the maximum normalized comparison. To adjust for
multiple comparisons, the absolute value of the t statistic for a particular comparison can be compared
with a critical value of

√
(k − 1)Fk−1,ν , where ν is the residual degrees of freedom. Fk−1,ν is

the distribution of the joint F test for the corresponding term in a one-way ANOVA model. Winer,
Brown, and Michels (1991, 191–195) discuss this in detail. For estimation commands that report z
statistics instead of t statistics for the tests on coefficients, a χ2 distribution is used instead of an F
distribution.

Scheffé’s method allows for making all possible comparisons of the k margins, not just the
pairwise comparisons. Unlike the methods described above, it does not take into account the number
of comparisons that are currently being made. Therefore, this method is even more conservative
than the others. Because this method adjusts for all possible comparisons of the levels of the term,
Milliken and Johnson (2009) recommend using this procedure when making unplanned contrasts that
are suggested by the data. As Winer, Brown, and Michels (1991, 191) put it, this method is often
used to adjust for “unfettered data snooping”. When using this adjustment, a contrast will never be
significant if the joint F or χ2 test for the term is not also significant.

This is another method that does not require equal sample sizes.
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Tukey’s HSD adjustment

Tukey’s adjustment is also referred to as Tukey’s honestly significant difference (HSD) and is
used when mcompare(tukey) is specified. It is often applied to all pairwise comparisons of means.
Tukey’s HSD is commonly used as a post hoc test although this is not a requirement.

To adjust for multiple comparisons, Tukey’s method compares the absolute value of the t statistic
from the individual comparison with a critical value based on a Studentized range distribution with
parameter equal to the number of levels in the term. When applied to pairwise comparisons of means,

q =
meanmax −meanmin

s

follows a Studentized range distribution with parameter k and ν degrees of freedom. Here meanmax

and meanmin are the largest and smallest marginal means, and s is an estimate of the standard error
of the means.

Now for the comparison of the smallest and largest means, we can say that the probability of not
making a type I error is

Pr
(

meanmax −meanmin

s
≤ qk,ν

)
= 1− α

Then the following inquality holds for all pairs of means simultaneously:

Pr
(
|meani −meanj |

s
≤ qk,ν

)
≥ 1− α

Based on this procedure, Tukey’s HSD computes the p-value for each of the individual comparisons
using the Studentized range distribution. However, because the equality holds only for the difference
in the largest and smallest means, this procedure produces conservative tests for the remaining
comparisons. Winer, Brown, and Michels (1991, 172–182) discuss this in further detail.

Tukey’s HSD requires equal sample sizes.

Student–Newman–Keuls’ adjustment

The Student–Newman–Keuls (SNK) method is used when mcompare(snk) is specified. It is a
modification to Tukey’s method and is less conservative. In this procedure, we first order the means.
We then test the difference in the smallest and largest means using a critical value from the Studentized
range distribution with parameter k, where k is the number of levels in the term. This step uses
the same methodology as in Tukey’s procedure. However, in the next step, we will then test for
differences in the two sets of means that are the endpoints of the two ranges including k− 1 means.
Specifically, we test the difference in the smallest mean and the second-largest mean using a critical
value from the Studentized range distribution with parameter k−1. We would also test the difference
in the second-smallest mean and the largest mean using this critical value. Likewise, the means that
are the endpoints of ranges including k − 2 means when ordered are tested using the Studentized
range distribution with parameter k − 2, and so on.

As with Tukey’s method, equal sample sizes are required.
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Duncan’s adjustment

When mcompare(duncan) is specified, tests are adjusted for multiple comparisons using Duncan’s
method, which is sometimes referred to as Duncan’s new multiple range method. This adjustment
produces tests that are less conservative than both Tukey’s HSD and SNK. This procedure is performed
in the same manner as SNK except that the p-values for the individual comparisons are adjusted as
1− (1− snkpi)1/(r+1), where snkp is the p-value computed using the SNK method and r represents
the number of means that, when ordered, fall between the two that are being compared.

Again equal sample sizes are required for this adjustment.

Dunnett’s adjustment

Dunnett’s adjustment is obtained by specifying mcompare(dunnett). It is used when one of the
levels of a factor can be considered a control or reference level with which each of the other levels
is being compared. When Dunnett’s adjustment is requested, k − 1 instead of k(k − 1)/2 pairwise
comparisons are made. Dunnett (1955, 1964) developed tables of critical values for what Miller (1981,
76) refers to as the “many-one t statistic”. The t statistics for individual comparisons are compared
with these critical values when making many comparisons to a single reference level.

This method also requires equal sample sizes.

Example adjustments using one-way models

Fisher’s protected LSD

Fisher’s protected LSD requires that we first verify that the joint test for a term in our model is
significant before proceeding with pairwise comparisons. Using our previous example, we could have
first used the contrast command to obtain a joint test for the effects of fertilizer.

. contrast fertilizer

Contrasts of marginal linear predictions

Margins : asbalanced

df F P>F

fertilizer 4 5.33 0.0004

Residual 195

This test for the effects of fertilizer is highly significant. Now we can say we are using Fisher’s
protected LSD when looking at the unadjusted p-values that were obtained from our previous command,

. pwcompare fertilizer, effects sort
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Tukey’s HSD

Because we fit a linear regression model and are interested in all pairwise comparisons of the
marginal means, we may instead choose to use Tukey’s HSD.

. pwcompare fertilizer, effects sort mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer 10

Tukey Tukey
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312
5 vs 2 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368
3 vs 2 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921
5 vs 3 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053
5 vs 1 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683
3 vs 1 .4906299 1.589997 0.31 0.998 -3.887381 4.868641
4 vs 2 1.300083 1.589997 0.82 0.925 -3.077928 5.678095
2 vs 1 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
4 vs 3 4.432173 1.589997 2.79 0.046 .0541623 8.810185
4 vs 1 4.922803 1.589997 3.10 0.019 .5447922 9.300815

This time, our p-values have been modified, and we find that only four of the pairwise differences
are considered significantly different from zero at the 5% level.

If we only are interested in performing pairwise comparisons of a subset of our means, we can use
factor-variable operators to select the levels of the factor that we want to compare. Here we exclude
all comparisons involving fertilizer 1.

. pwcompare i(2/5).fertilizer, effects sort mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer 6

Tukey Tukey
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.589997 -3.87 0.001 -10.28133 -2.040937
5 vs 2 -4.861048 1.589997 -3.06 0.013 -8.981242 -.7408538
3 vs 2 -3.13209 1.589997 -1.97 0.203 -7.252284 .9881042
5 vs 3 -1.728958 1.589997 -1.09 0.698 -5.849152 2.391236
4 vs 2 1.300083 1.589997 0.82 0.846 -2.820111 5.420278
4 vs 3 4.432173 1.589997 2.79 0.030 .3119792 8.552368
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The adjusted p-values and confidence intervals differ from those in the previous output because
Tukey’s adjustment takes into account the total number of comparisons being made when determining
the appropriate degrees of freedom to use for the Studentized range distribution.

Dunnett’s method for comparisons to a control

If one of our five fertilizer groups represents fields where no fertilizer was applied, we may want
to use Dunnett’s method to compare each of the four fertilizers with the control group. In this case,
we make only k − 1 comparisons for k groups.

. pwcompare fertilizer, effects mcompare(dunnett)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer 4

Dunnett Dunnett
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 vs 1 3.62272 1.589997 2.28 0.079 -.2918331 7.537273
3 vs 1 .4906299 1.589997 0.31 0.994 -3.423923 4.405183
4 vs 1 4.922803 1.589997 3.10 0.008 1.00825 8.837356
5 vs 1 -1.238328 1.589997 -0.78 0.852 -5.152881 2.676225

In our previous regress command, fertilizer 1 was treated as the base. Therefore, by default, it was
treated as the control when using Dunnett’s adjustment, and the pairwise comparisons are equivalent
to the coefficients reported by regress. Based on our regress output, we would conclude that
fertilizers 2 and 4 are different from fertilizer 1 at the 5% level. However, using Dunnett’s adjustment,
we find only fertilizer 4 to be different from fertilizer 1 at this same significance level.

If the model is fit without a base level for a factor variable, then pwcompare will choose the
first level as the reference level. If we want to make comparisons with a different level than the one
mcompare(dunnett) chooses by default, we can use the b. operator to override the default. Here
we use fertilizer 5 as the reference level.
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. pwcompare b5.fertilizer, effects sort mcompare(dunnett)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer 4

Dunnett Dunnett
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
1 vs 5 1.238328 1.589997 0.78 0.852 -2.676225 5.152881
3 vs 5 1.728958 1.589997 1.09 0.649 -2.185595 5.643511
2 vs 5 4.861048 1.589997 3.06 0.009 .9464951 8.775601
4 vs 5 6.161132 1.589997 3.87 0.001 2.246579 10.07568

Two-way models

In the previous examples, we have performed pairwise comparisons after fitting a model with a
single factor. Now we include two factors and their interaction in our model.

. regress yield fertilizer##irrigation

Source SS df MS Number of obs = 200
F( 9, 190) = 27.63

Model 6200.81605 9 688.979561 Prob > F = 0.0000
Residual 4737.57936 190 24.9346282 R-squared = 0.5669

Adj R-squared = 0.5464
Total 10938.3954 199 54.9668111 Root MSE = 4.9935

yield Coef. Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 1.882256 1.57907 1.19 0.235 -1.232505 4.997016
3 -.5687418 1.57907 -0.36 0.719 -3.683502 2.546019
4 4.904999 1.57907 3.11 0.002 1.790239 8.01976
5 -1.217496 1.57907 -0.77 0.442 -4.332257 1.897264

1.irrigation 8.899721 1.57907 5.64 0.000 5.784961 12.01448

fertilizer#
irrigation

2 1 3.480928 2.233143 1.56 0.121 -.9240084 7.885865
3 1 2.118743 2.233143 0.95 0.344 -2.286193 6.52368
4 1 .0356082 2.233143 0.02 0.987 -4.369328 4.440545
5 1 -.0416636 2.233143 -0.02 0.985 -4.4466 4.363273

_cons 36.91257 1.116571 33.06 0.000 34.7101 39.11504

We can perform pairwise comparisons of the cell means defined by the fertilizer and irrigation
interaction.
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. pwcompare fertilizer#irrigation, sort groups mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer#irrigation 45

Tukey
Margin Std. Err. Groups

fertilizer#irrigation
5 0 35.69507 1.116571 A
3 0 36.34383 1.116571 A
1 0 36.91257 1.116571 AB
2 0 38.79482 1.116571 AB
4 0 41.81757 1.116571 BC
5 1 44.55313 1.116571 CD
1 1 45.81229 1.116571 CDE
3 1 47.36229 1.116571 DEF
4 1 50.7529 1.116571 EF
2 1 51.17547 1.116571 F

Note: Margins sharing a letter in the group label are
not significantly different at the 5% level.

Based on Tukey’s HSD and a 5% significance level, we would conclude that the mean yield for
fertilizer 5 without irrigation is not significantly different from the mean yields for fertilizers 1, 2,
and 3 when used without irrigation but is significantly different from the remaining means.

Up to this point, most of the pairwise comparisons that we have performed could have also been
obtained with pwmean (see [R] pwmean) if we had not been interested in examining the results from
the estimation command before making pairwise comparisons of the means. For instance, we could
reproduce the results from the above pwcompare command by typing

. pwmean yield, over(fertilizer irrigation) sort group mcompare(tukey)

However, pwcompare extends the capabilities of pwmean in many ways. For instance, pwmean
only allows for pairwise comparisons of the cell means determined by the highest level interaction of
the variables specified in the over() option. However, pwcompare allows us to fit a single model,
such as the two-way model that we fit above,

. regress yield fertilizer##irrigation
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and compute pairwise comparisons of the marginal means for only one of the variables in the model:

. pwcompare fertilizer, sort effects mcompare(tukey)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer 10

Tukey Tukey
Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.116571 -5.52 0.000 -9.236338 -3.085925
5 vs 2 -4.861048 1.116571 -4.35 0.000 -7.936255 -1.785841
3 vs 2 -3.13209 1.116571 -2.81 0.044 -6.207297 -.0568832
5 vs 3 -1.728958 1.116571 -1.55 0.532 -4.804165 1.346249
5 vs 1 -1.238328 1.116571 -1.11 0.802 -4.313535 1.836879
3 vs 1 .4906299 1.116571 0.44 0.992 -2.584577 3.565837
4 vs 2 1.300083 1.116571 1.16 0.772 -1.775123 4.37529
2 vs 1 3.62272 1.116571 3.24 0.012 .5475131 6.697927
4 vs 3 4.432173 1.116571 3.97 0.001 1.356967 7.50738
4 vs 1 4.922803 1.116571 4.41 0.000 1.847597 7.99801

Here the standard errors for the differences in marginal means and the residual degrees of freedom
are based on the full model. Therefore, the results will differ from those obtained from pwcompare
after fitting the one-way model with only fertilizer (or equivalently using pwmean).

Pairwise comparisons of slopes

If we fit a model with a factor variable that is interacted with a continuous variable, pwcompare
will even allow us to make pairwise comparisons of the slopes of the continuous variable for the
levels of the factor variable.

In this case, we have a continuous variable, N03 N, indicating the amount of nitrate nitrogen
already existing in the soil, based on a sample taken from each field.
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. regress yield fertilizer##c.N03_N

Source SS df MS Number of obs = 200
F( 9, 190) = 37.61

Model 7005.69932 9 778.411035 Prob > F = 0.0000
Residual 3932.69609 190 20.6984005 R-squared = 0.6405

Adj R-squared = 0.6234
Total 10938.3954 199 54.9668111 Root MSE = 4.5495

yield Coef. Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 18.65019 8.452061 2.21 0.029 1.97826 35.32212
3 -13.34076 10.07595 -1.32 0.187 -33.21585 6.534327
4 24.35061 9.911463 2.46 0.015 4.799973 43.90125
5 17.58529 8.446736 2.08 0.039 .9238646 34.24671

N03_N 4.915653 .7983509 6.16 0.000 3.340884 6.490423

fertilizer#
c.N03_N

2 -1.282039 .8953419 -1.43 0.154 -3.048126 .4840487
3 -1.00571 .9025862 -1.11 0.267 -2.786087 .7746662
4 -2.97627 .9136338 -3.26 0.001 -4.778438 -1.174102
5 -3.275947 .8247385 -3.97 0.000 -4.902767 -1.649127

_cons -5.459168 7.638241 -0.71 0.476 -20.52581 9.607477

These are the pairwise differences of the slopes of NO3 N for each pair of fertilizers:

. pwcompare fertilizer#c.N03_N, pveffects sort mcompare(scheffe)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

fertilizer#c.N03_N 10

Scheffe
Contrast Std. Err. t P>|t|

fertilizer#c.N03_N
5 vs 1 -3.275947 .8247385 -3.97 0.004
4 vs 1 -2.97627 .9136338 -3.26 0.034
5 vs 3 -2.270237 .4691771 -4.84 0.000
5 vs 2 -1.993909 .4550851 -4.38 0.001
4 vs 3 -1.97056 .612095 -3.22 0.038
4 vs 2 -1.694232 .6013615 -2.82 0.099
2 vs 1 -1.282039 .8953419 -1.43 0.727
3 vs 1 -1.00571 .9025862 -1.11 0.871
5 vs 4 -.2996772 .4900939 -0.61 0.984
3 vs 2 .276328 .5844405 0.47 0.994

Using Scheffé’s adjustment, we find that five of the pairs have significantly different slopes at the
5% level.
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Nonlinear models

pwcompare can also perform pairwise comparisons of the marginal linear predictions after fitting
a nonlinear model. For instance, we can use the dataset from Beyond linear models in [R] contrast
and fit the following logistic regression model of patient satisfaction on hospital:

. use http://www.stata-press.com/data/r12/hospital
(Artificial hospital satisfaction data)

. logit satisfied i.hospital

Iteration 0: log likelihood = -393.72216
Iteration 1: log likelihood = -387.55736
Iteration 2: log likelihood = -387.4768
Iteration 3: log likelihood = -387.47679

Logistic regression Number of obs = 802
LR chi2(2) = 12.49
Prob > chi2 = 0.0019

Log likelihood = -387.47679 Pseudo R2 = 0.0159

satisfied Coef. Std. Err. z P>|z| [95% Conf. Interval]

hospital
2 .5348129 .2136021 2.50 0.012 .1161604 .9534654
3 .7354519 .2221929 3.31 0.001 .2999618 1.170942

_cons 1.034708 .1391469 7.44 0.000 .7619855 1.307431

For this model, the marginal linear predictions are the predicted log odds for each hospital and
can be obtained with the cimargins option:

. pwcompare hospital, cimargins

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted
Margin Std. Err. [95% Conf. Interval]

hospital
1 1.034708 .1391469 .7619855 1.307431
2 1.569521 .1620618 1.251886 1.887157
3 1.77016 .1732277 1.43064 2.10968

The pairwise comparisons are, therefore, differences in the log odds. We can specify mcom-
pare(bonferroni) and effects to request Bonferroni-adjusted p-values and confidence intervals.

. pwcompare hospital, effects mcompare(bonferroni)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

satisfied
hospital 3
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Bonferroni Bonferroni
Contrast Std. Err. z P>|z| [95% Conf. Interval]

satisfied
hospital
2 vs 1 .5348129 .2136021 2.50 0.037 .0234537 1.046172
3 vs 1 .7354519 .2221929 3.31 0.003 .2035265 1.267377
3 vs 2 .200639 .2372169 0.85 1.000 -.3672535 .7685314

For nonlinear models, only Bonferroni’s adjustment, Šidák’s adjustment, and Scheffé’s adjustment
are available.

If we want pairwise comparisons reported as odds ratios, we can specify the or option.

. pwcompare hospital, effects mcompare(bonferroni) or

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

satisfied
hospital 3

Bonferroni Bonferroni
Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

satisfied
hospital
2 vs 1 1.707129 .3646464 2.50 0.037 1.023731 2.846733
3 vs 1 2.086425 .4635888 3.31 0.003 1.225718 3.551525
3 vs 2 1.222183 .2899226 0.85 1.000 .6926341 2.156597

Notice that these tests are still performed on the marginal linear predictions. The odds ratios reported
here are the exponentiated versions of the pairwise differences of log odds in the previous output.
For further discussion, see [R] contrast.

Multiple-equation models

pwcompare works with models containing multiple equations. Commands such as intreg and
gnbreg allow their ancillary parameters to be modeled as a function of independent variables,
and pwcompare can compare the margins within these equations. The equation() option can be
used to specify the equation for which pairwise comparisons of the margins should be made. The
atequations option specifies that pairwise comparisons be computed for each equation. In addition,
pwcompare allows a special pseudofactor for equation—called eqns—when working with results
from manova, mvreg, mlogit, and mprobit.

Here we use the jaw fracture dataset described in example 4 of [MV] manova. We fit a multivariate
regression model including one independent factor variable, fracture.
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. use http://www.stata-press.com/data/r12/jaw
(Table 4.6 Two-Way Unbalanced Data for Fractures of the Jaw -- Rencher (1998))

. mvreg y1 y2 y3 = i.fracture

Equation Obs Parms RMSE "R-sq" F P

y1 27 3 10.42366 0.2966 5.060804 0.0147
y2 27 3 6.325398 0.1341 1.858342 0.1777
y3 27 3 5.976973 0.1024 1.368879 0.2735

Coef. Std. Err. t P>|t| [95% Conf. Interval]

y1
fracture

2 -8.833333 4.957441 -1.78 0.087 -19.06499 1.398322
3 6 5.394759 1.11 0.277 -5.134235 17.13423

_cons 37 3.939775 9.39 0.000 28.8687 45.1313

y2
fracture

2 -5.761905 3.008327 -1.92 0.067 -11.97079 .446977
3 -3.053571 3.273705 -0.93 0.360 -9.810166 3.703023

_cons 38.42857 2.390776 16.07 0.000 33.49425 43.36289

y3
fracture

2 4.261905 2.842618 1.50 0.147 -1.60497 10.12878
3 .9285714 3.093377 0.30 0.767 -5.455846 7.312989

_cons 58.57143 2.259083 25.93 0.000 53.90891 63.23395

pwcompare performs pairwise comparisons of the margins using the coefficients from the first
equation by default:

. pwcompare fracture, mcompare(bonferroni)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

y1
fracture 3

Bonferroni
Contrast Std. Err. [95% Conf. Interval]

y1
fracture
2 vs 1 -8.833333 4.957441 -21.59201 3.925341
3 vs 1 6 5.394759 -7.884173 19.88417
3 vs 2 14.83333 4.75773 2.588644 27.07802
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We can use the equation() option to get pwcompare to perform comparisons in the y2 equation:

. pwcompare fracture, equation(y2) mcompare(bonferroni)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

y2
fracture 3

Bonferroni
Contrast Std. Err. [95% Conf. Interval]

y2
fracture
2 vs 1 -5.761905 3.008327 -13.50426 1.980449
3 vs 1 -3.053571 3.273705 -11.47891 5.371769
3 vs 2 2.708333 2.887136 -4.722119 10.13879

Because we are working with mvreg results, we can use the eqns pseudofactor to compare the
margins between the three dependent variables. The levels of eqns index the equations: 1 for the
first equation, 2 for the second, and 3 for the third.

. pwcompare _eqns, mcompare(bonferroni)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Number of
Comparisons

_eqns 3

Bonferroni
Contrast Std. Err. [95% Conf. Interval]

_eqns
2 vs 1 -.5654762 2.545923 -7.117768 5.986815
3 vs 1 24.24603 2.320677 18.27344 30.21862
3 vs 2 24.81151 2.368188 18.71664 30.90637

For the previous command, the only methods available are mcompare(bonferroni), mcom-
pare(sidak), or mcompare(scheffe). Methods that use the Studentized range are not appropriate
for making comparisons across equations.

Unbalanced data
pwcompare treats all factors as balanced when it computes the marginal means. By “balanced”,

we mean that the number of observations in each combination of factor levels (in each cell mean)
is equal. We can alternatively specify the asobserved option when we have unbalanced data to
obtain marginal means that are based on the observed cell frequencies from the model fit. For more
details on the difference in these two types of marginal means and a discussion of when each may
be appropriate, see [R] margins and [R] contrast.



1574 pwcompare — Pairwise comparisons

In addition, when our data are not balanced, some of the multiple-comparison adjustments are
no longer appropriate. Tukey’s method, Student–Newman–Keuls’ method, Duncan’s method, and
Dunnett’s method assume equal numbers of observations per group.

Here we use an unbalanced dataset and fit a two-way ANOVA model for cholesterol levels on race
and age group. Then we perform pairwise comparisons of the mean cholesterol levels for each race,
requesting Šidák’s adjustment as well as marginal means that are computed using the observed cell
frequencies.

. use http://www.stata-press.com/data/r12/cholesterol3
(Artificial cholesterol data, unbalanced)

. anova chol race##agegrp

Number of obs = 67 R-squared = 0.8179
Root MSE = 8.37496 Adj R-squared = 0.7689

Source Partial SS df MS F Prob > F

Model 16379.9926 14 1169.99947 16.68 0.0000

race 230.754396 2 115.377198 1.64 0.2029
agegrp 13857.9877 4 3464.49693 49.39 0.0000

race#agegrp 857.815209 8 107.226901 1.53 0.1701

Residual 3647.2774 52 70.13995

Total 20027.27 66 303.443485

. pwcompare race, asobserved mcompare(sidak)

Pairwise comparisons of marginal linear predictions

Margins : asobserved

Number of
Comparisons

race 3

Sidak
Contrast Std. Err. [95% Conf. Interval]

race
2 vs 1 -7.232433 2.686089 -13.85924 -.6056277
3 vs 1 -5.231198 2.651203 -11.77194 1.309541
3 vs 2 2.001235 2.414964 -3.956682 7.959152

Empty cells

An empty cell is a combination of the levels of factor variables that is not observed in the
estimation sample. When we have empty cells in our data, the marginal means involving those empty
cells are not estimable as described in [R] margins. In addition, all pairwise comparisons involving
a marginal mean that is not estimable are themselves not estimable. Here we use a dataset where
we do not have any observations for white individuals in the 20–29 age group. We can use the
emptycells(reweight) option to reweight the nonempty cells so that we can estimate the marginal
mean for whites and compute pairwise comparisons involving that marginal mean.
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. use http://www.stata-press.com/data/r12/cholesterol2
(Artificial cholesterol data, empty cells)

. tabulate race agegrp

agegrp
race 10-19 20-29 30-39 40-59 60-79 Total

black 5 5 5 5 5 25
white 5 0 5 5 5 20
other 5 5 5 5 5 25

Total 15 10 15 15 15 70

. anova chol race##agegrp

Number of obs = 70 R-squared = 0.7582
Root MSE = 9.47055 Adj R-squared = 0.7021

Source Partial SS df MS F Prob > F

Model 15751.6113 13 1211.66241 13.51 0.0000

race 305.49046 2 152.74523 1.70 0.1914
agegrp 14387.8559 4 3596.96397 40.10 0.0000

race#agegrp 795.807574 7 113.686796 1.27 0.2831

Residual 5022.71559 56 89.6913498

Total 20774.3269 69 301.077201

. pwcompare race, emptycells(reweight)

Pairwise comparisons of marginal linear predictions

Margins : asbalanced
Empty cells : reweight

Unadjusted
Contrast Std. Err. [95% Conf. Interval]

race
2 vs 1 2.922769 2.841166 -2.768769 8.614308
3 vs 1 -4.12621 2.678677 -9.492244 1.239824
3 vs 2 -7.048979 2.841166 -12.74052 -1.35744

For further details on the emptycells(reweight) option, see [R] margins and [R] contrast.
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Saved results
pwcompare saves the following in r():

Scalars
r(df r) variance degrees of freedom, from e(df r)
r(k terms) number of terms in marginlist
r(level) confidence level of confidence intervals
r(balanced) 1 if fully balanced data; 0 otherwise

Macros
r(cmd) pwcompare
r(cmdline) command as typed
r(est cmd) e(cmd) from original estimation results
r(est cmdline) e(cmdline) from original estimation results
r(title) title in output
r(emptycells) empspec from emptycells()
r(groups#) group codes for the #th margin in r(b)
r(mcmethod vs) method from mcompare()
r(mctitle vs) title for method from mcompare()
r(mcadjustall vs) adjustall or empty
r(margin method) asbalanced or asobserved
r(vce) vcetype specified in vce() in original estimation command

Matrices
r(b) margin estimates
r(V) variance–covariance matrix of the margin estimates
r(error) margin estimability codes;

0 means estimable,
8 means not estimable

r(table) matrix containing the margins with their standard errors, test statistics, p-values,
and confidence intervals

r(M) matrix that produces the margins from the model coefficients
r(b vs) margin difference estimates
r(V vs) variance–covariance matrix of the margin difference estimates
r(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

r(table vs) matrix containing the margin differences with their standard errors, test statistics,
p-values, and confidence intervals

r(L) matrix that produces the margin differences from the model coefficients
r(k groups) number of significance groups for each term
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pwcompare with the post option also saves the following in e():

Scalars
e(df r) variance degrees of freedom, from e(df r)
e(k terms) number of terms in marginlist
e(balanced) 1 if fully balanced data; 0 otherwise

Macros
e(cmd) pwcompare
e(cmdline) command as typed
e(est cmd) e(cmd) from original estimation results
e(est cmdline) e(cmdline) from original estimation results
e(title) title in output
e(emptycells) empspec from emptycells()
e(margin method) asbalanced or asobserved
e(vce) vcetype specified in vce() in original estimation command
e(properties) b V

Matrices
e(b) margin estimates
e(V) variance–covariance matrix of the margin estimates
e(error) margin estimability codes;

0 means estimable,
8 means not estimable

e(M) matrix that produces the margins from the model coefficients
e(b vs) margin difference estimates
e(V vs) variance–covariance matrix of the margin difference estimates
e(error vs) margin difference estimability codes;

0 means estimable,
8 means not estimable

e(L) matrix that produces the margin differences from the model coefficients
e(k groups) number of significance groups for each term

Methods and formulas
pwcompare is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Notation
Unadjusted comparisons
Bonferroni’s method
Šidák’s method
Scheffé’s method
Tukey’s method
Student–Newman–Keuls’ method
Duncan’s method
Dunnett’s method

Notation

pwcompare performs comparisons of margins; see Methods and formulas in [R] contrast.
If there are k margins for a given factor term, then there are

m =
(
k

2

)
=
k(k − 1)

2

unique pairwise comparisons. Let the ith pairwise comparison be denoted by
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δ̂i = l′ib

where b is a column vector of coefficients from the fitted model and li is a column vector that forms
the corresponding linear combination. If V̂ denotes the estimated variance matrix for b, then the
standard error for δ̂i is given by

ŝe(δ̂i) =
√
l′iV̂li

The corresponding test statistic is then

ti =
δ̂i

ŝe(δ̂i)

and the limits for a 100(1− α)% confidence interval for the expected value of δ̂i are

δ̂i ± ci(α) ŝe(δ̂i)

where ci(α) is the critical value corresponding to the chosen multiple-comparison method.

Unadjusted comparisons

pwcompare computes unadjusted p-values and confidence intervals by default. pwcompare uses
the t distribution with ν = e(df r) degrees of freedom when e(df r) is posted by the estimation
command. The unadjusted two-sided p-value is

upi = 2 Pr(tν > |ti|)

and the unadjusted critical value uci(α) satisfies the following probability statement:

α = 2 Pr {tν > uci(α)}

pwcompare uses the standard normal distribution when e(df r) is not posted.

Bonferroni’s method
For mcompare(bonferroni), the adjusted p-value is

bpi = min(1,m upi)

and the adjusted critical value is

bci(α) = uci(α/m)
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Šidák’s method
For mcompare(sidak), the adjusted p-value is

sipi = 1− (1− upi)m

and the adjusted critical value is

sici(α) = uci

{
1− (1− α)1/m

}

Scheffé’s method
For mcompare(scheffe), the adjusted p-value is

scpi = Pr
(
Fd,ν > t2i /d

)
where Fd,ν is distributed as an F with d numerator and ν denominator degrees of freedom and d
is the rank of the VCE for the term. The adjusted critical value satisfies the following probability
statement:

α = Pr
[
Fd,ν > {scci(α)}2/d

]
pwcompare uses the χ2 distribution when e(df r) is not posted.

Tukey’s method

For mcompare(tukey), the adjusted p-value is

tpi = Pr
(
qk,ν > |ti|

√
2
)

where qk,ν is distributed as the Studentized range statistic for k means and ν residual degrees of
freedom (Miller 1981). The adjusted critical value satisfies the following probability statement:

α = Pr
{
qk,ν > tci(α)

√
2
}

Student–Newman–Keuls’ method
For mcompare(snk), suppose ti is comparing two margins that have r other margins between

them. Then the adjusted p-value is

snkpi = Pr
(
qr+2,ν > |ti|

√
2
)

where r ranges from 0 to k−2. The adjusted critical value snkci(α) satisfies the following probability
statement:

α = Pr
{
qr+2,ν > snkci(α)

√
2
}
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Duncan’s method
For mcompare(duncan), the adjusted p-value is

duncpi = 1− (1− snkpi)1/(r+1)

and the adjusted critical value is

duncci(α) = snkci
{

1− (1− α)r+1
}

Dunnett’s method
For mcompare(dunnett), the margins are compared with a reference category, resulting in only

k − 1 pairwise comparisons. The adjusted p-value is

dunnpi = Pr(dk−1,ν > |ti|)

where dk−1,ν is distributed as the many-one t statistic (Miller 1981, 76). The adjusted critical value
dunnci(α) satisfies the following probability statement:

α = Pr {dk−1,ν > dunnci(α)}

The multiple-comparison methods for mcompare(tukey), mcompare(snk), mcompare(duncan),
and mcompare(dunnett) assume the normal distribution with equal variance and sample size for each
marginal mean; thus these methods are allowed only with results from anova, regress, manova, and
mvreg. These options will cause pwcompare to report a footnote if unbalanced factors are detected.
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Title

pwcompare postestimation — Postestimation tools for pwcompare

Description

The following postestimation commands are available after pwcompare, post:

Command Description

estat VCE; estat vce only
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks
When we use the post option with pwcompare, the marginal linear predictions are posted as

estimation results, and we can use postestimation commands to perform further analysis on them.

In Pairwise comparisons of means of [R] pwcompare, we fit a regression of wheat yield on types
of fertilizers.

. use http://www.stata-press.com/data/r12/yield
(Artificial wheat yield dataset)

. regress yield i.fertilizer
(output omitted )

We also used pwcompare with the cimargins option to obtain the marginal mean yield for each
fertilizer. We can add the post option to this command to post these marginal means and their VCEs
as estimation results.

. pwcompare fertilizer, cimargins post

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

Unadjusted
Margin Std. Err. [95% Conf. Interval]

fertilizer
1 41.36243 1.124298 39.14509 43.57977
2 44.98515 1.124298 42.7678 47.20249
3 41.85306 1.124298 39.63571 44.0704
4 46.28523 1.124298 44.06789 48.50258
5 40.1241 1.124298 37.90676 42.34145
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Now we can use nlcom to compute a percentage improvement in the mean yield for fertilizer 2
when compared with fertilizer 1.

. nlcom (pct_chg: 100*(_b[2.fertilizer] - _b[1.fertilizer])/_b[1.fertilizer])

pct_chg: 100*(_b[2.fertilizer] - _b[1.fertilizer])/_b[1.fertilizer]

Coef. Std. Err. t P>|t| [95% Conf. Interval]

pct_chg 8.758479 4.015932 2.18 0.030 .838243 16.67872

The mean yield for fertilizer 2 is about 9% higher than that of fertilizer 1, with a standard error
of 4%.

Also see
[R] pwcompare — Pairwise comparisons



Title

pwmean — Pairwise comparisons of means

Syntax
pwmean varname, over(varlist)

[
options

]
options Description

Main
∗over(varlist) compare means across each combination of the levels in varlist
mcompare(method) adjust for multiple comparisons; default is mcompare(noadjust)

Reporting

level(#) confidence level; default is level(95)

cieffects display a table of mean differences and confidence intervals; the default
pveffects display a table of mean differences and p-values
effects display a table of mean differences with p-values and confidence

intervals
cimeans display a table of means and confidence intervals
groups display a table of means with codes that group them with other means

that are not significantly different
sort sort results tables by displayed mean or difference
display options control column formats and line width

∗over(varlist) is required.

method Description

noadjust do not adjust for multiple comparisons; the default
bonferroni Bonferroni’s method
sidak Šidák’s method
scheffe Scheffé’s method
tukey Tukey’s method
snk Student–Newman–Keuls’ method
duncan Duncan’s method
dunnett Dunnett’s method

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Pairwise comparisons of means
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Description
pwmean performs pairwise comparisons of means. It computes all pairwise differences of the means

of varname over the combination of the levels of the variables in varlist. The tests and confidence
intervals for the pairwise comparisons assume equal variances across groups. pwmean also allows for
adjusting the confidence intervals and p-values to account for multiple comparisons using Bonferroni’s
method, Scheffé’s method, Tukey’s method, Dunnett’s method, and others.

See [R] pwcompare for performing pairwise comparisons of means, estimated marginal means,
and other types of marginal linear predictions after anova, regress, and most other estimation
commands.

See [R] margins, pwcompare for performing pairwise comparisons of marginal probabilities and
other linear and nonlinear predictions after estimation commands.

Options

� � �
Main �

over(varlist) is required and specifies that means are computed for each combination of the levels
of the variables in varlist.

mcompare(method) specifies the method for computing p-values and confidence intervals that account
for multiple comparisons.

Most methods adjust the comparisonwise error rate, αc, to achieve a prespecified experimentwise
error rate, αe.

mcompare(noadjust) is the default; it specifies no adjustment.
αc = αe

mcompare(bonferroni) adjusts the comparisonwise error rate based on the upper limit of the
Bonferroni inequality:

αe≤mαc
where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = αe/m

mcompare(sidak) adjusts the comparisonwise error rate based on the upper limit of the probability
inequality

αe≤1− (1− αc)m

where m is the number of comparisons within the term.

The adjusted comparisonwise error rate is
αc = 1− (1− αe)1/m

This adjustment is exact when the m comparisons are independent.

mcompare(scheffe) controls the experimentwise error rate using the F (or χ2) distribution with
degrees of freedom equal to k − 1 where k is the number of means being compared.

mcompare(tukey) uses what is commonly referred to as Tukey’s honestly significant difference.
This method uses the Studentized range distribution instead of the t distribution.
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mcompare(snk) is a variation on mcompare(tukey) that counts only the number of means
participating in the range for a given comparison instead of the full number of means.

mcompare(duncan) is a variation on mcompare(snk) with additional adjustment to the significance
probabilities.

mcompare(dunnett) uses Dunnett’s method for making comparisons with a reference category.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
The significance level used by the groups option is 100− #, expressed as a percentage.

cieffects specifies that a table of the pairwise comparisons of means with their standard errors and
confidence intervals be reported. This is the default.

pveffects specifies that a table of the pairwise comparisons of means with their standard errors,
test statistics, and p-values be reported.

effects specifies that a table of the pairwise comparisons of means with their standard errors, test
statistics, p-values, and confidence intervals be reported.

cimeans specifies that a table of the means with their standard errors and confidence intervals be
reported.

groups specifies that a table of the means with their standard errors and group codes be reported.
Means with the same letter in the group code are not significantly different at the specified
significance level.

sort specifies that the reported tables be sorted by the mean or difference that is displayed in the
table.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch.

cformat(% fmt) specifies how to format means, standard errors, and confidence limits in the table
of pairwise comparison of means.

pformat(% fmt) specifies how to format p-values in the table of pairwise comparison of means.

sformat(% fmt) specifies how to format test statistics in the table of pairwise comparison of
means.

nolstretch specifies that the width of the table of estimated comparisons not be automatically
widened to accommodate longer variable names. The default, lstretch, is to automatically
widen the table of estimated comparisons up to the width of the Results window. To change
the default, use set lstretch off. nolstretch is not shown in the dialog box.

Remarks
pwmean performs pairwise comparisons (differences) of means, assuming a common variance

among groups. It can easily adjust the p-values and confidence intervals for the differences to account
for the elevated type I error rate due to multiple comparisons. Adjustments for multiple comparisons
can be made using Bonferroni’s method, Scheffé’s method, Tukey’s method, Dunnett’s method, and
others.
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Remarks are presented under the following headings:

Group means
Pairwise differences of means
Group output
Adjusting for multiple comparisons

Tukey’s method
Dunnett’s method

Multiple over() variables
Equal variance assumption

Group means

Suppose we have data on the wheat yield of fields that were each randomly assigned an application
of one of five types of fertilizers. Let’s first look at the mean yield for each type of fertilizer.

. use http://www.stata-press.com/data/r12/yield
(Artificial wheat yield dataset)

. pwmean yield, over(fertilizer) cimeans

Pairwise comparisons of means with equal variances

over : fertilizer

Unadjusted
yield Mean Std. Err. [95% Conf. Interval]

fertilizer
1 41.36243 1.124298 39.14509 43.57977
2 44.98515 1.124298 42.7678 47.20249
3 41.85306 1.124298 39.63571 44.0704
4 46.28523 1.124298 44.06789 48.50258
5 40.1241 1.124298 37.90676 42.34145

Pairwise differences of means

We can compute all pairwise differences in mean wheat yields for the types of fertilizers.

. pwmean yield, over(fertilizer) effects

Pairwise comparisons of means with equal variances

over : fertilizer

Unadjusted Unadjusted
yield Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 vs 1 3.62272 1.589997 2.28 0.024 .4869212 6.758518
3 vs 1 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
4 vs 1 4.922803 1.589997 3.10 0.002 1.787005 8.058602
5 vs 1 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
3 vs 2 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
4 vs 2 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
5 vs 2 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
4 vs 3 4.432173 1.589997 2.79 0.006 1.296375 7.567972
5 vs 3 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
5 vs 4 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
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The contrast in the row labeled (2 vs 1) is the difference in the mean wheat yield for fertilizer 2
and fertilizer 1. At a 5% significance level, we conclude that there is a difference in the means for
these two fertilizers. Likewise, the rows labeled (4 vs 1), (5 vs 2), (4 vs 3) and (5 vs 4) show
differences in these pairs of means. In all, we find that 5 of the 10 mean differences are significantly
different from zero at a 5% significance level.

We can specify the sort option to order the differences from smallest to largest in the table.

. pwmean yield, over(fertilizer) effects sort

Pairwise comparisons of means with equal variances

over : fertilizer

Unadjusted Unadjusted
yield Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.589997 -3.87 0.000 -9.29693 -3.025333
5 vs 2 -4.861048 1.589997 -3.06 0.003 -7.996847 -1.725249
3 vs 2 -3.13209 1.589997 -1.97 0.050 -6.267889 .0037086
5 vs 3 -1.728958 1.589997 -1.09 0.278 -4.864757 1.406841
5 vs 1 -1.238328 1.589997 -0.78 0.437 -4.374127 1.89747
3 vs 1 .4906299 1.589997 0.31 0.758 -2.645169 3.626428
4 vs 2 1.300083 1.589997 0.82 0.415 -1.835715 4.435882
2 vs 1 3.62272 1.589997 2.28 0.024 .4869212 6.758518
4 vs 3 4.432173 1.589997 2.79 0.006 1.296375 7.567972
4 vs 1 4.922803 1.589997 3.10 0.002 1.787005 8.058602

Ordering the pairwise differences is particularly convenient when we are comparing means for a large
number of groups.

Group output

We can use the group option to see the mean of each group and a visual representation of the
tests for differences.

. pwmean yield, over(fertilizer) group sort

Pairwise comparisons of means with equal variances

over : fertilizer

Unadjusted
yield Mean Std. Err. Groups

fertilizer
5 40.1241 1.124298 A
1 41.36243 1.124298 A
3 41.85306 1.124298 AB
2 44.98515 1.124298 BC
4 46.28523 1.124298 C

Note: Means sharing a letter in the group label
are not significantly different at the 5%
level.

Fertilizers 5, 1, and 3 are all in group A. This means that at our 5% level of significance, we have
insufficient information to distinguish their means. Likewise, fertilizers 3 and 2 are in group B and
cannot be distinguished at the 5% level. The same is true for fertilizers 2 and 4 in group C.



1588 pwmean — Pairwise comparisons of means

Fertilizer 5 and fertilizer 2 have no letters in common, indicating that the mean yields of these two
groups are significantly different at the 5% level. We can conclude that any other fertilizers without
a letter in common have significantly different means as well.

Adjusting for multiple comparisons

The statistics in the examples above take no account that we are performing 10 comparisons.
With our 5% significance level and assuming the comparisons are independent, we expect 1 in 20
tests of comparisons to be significant, even if all the population means are truly the same. If we are
performing many comparisons, then we should account for the fact that some tests will be found
significant by chance alone. More formally, the test for each pairwise comparison is made without
adjusting for the elevated type I experimentwise error rate that is introduced when performing multiple
tests. We can use the mcompare() option to adjust the confidence intervals and p-values for multiple
comparisons.

Tukey’s method

Of the available adjustments for multiple comparisons, Tukey’s honestly significant difference,
Student–Newman–Keuls’ method, and Duncan’s method are most often used when performing all
pairwise comparisons of means. Of these, Tukey’s method is the most conservative and Duncan’s
method is the least conservative. For further discussion of each of the multiple-comparison adjustments,
see [R] pwcompare.

Here we use Tukey’s adjustment to compute p-values and confidence intervals for the pairwise
differences.

. pwmean yield, over(fertilizer) effects sort mcompare(tukey)

Pairwise comparisons of means with equal variances

over : fertilizer

Number of
Comparisons

fertilizer 10

Tukey Tukey
yield Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
5 vs 4 -6.161132 1.589997 -3.87 0.001 -10.53914 -1.78312
5 vs 2 -4.861048 1.589997 -3.06 0.021 -9.239059 -.4830368
3 vs 2 -3.13209 1.589997 -1.97 0.285 -7.510101 1.245921
5 vs 3 -1.728958 1.589997 -1.09 0.813 -6.106969 2.649053
5 vs 1 -1.238328 1.589997 -0.78 0.936 -5.616339 3.139683
3 vs 1 .4906299 1.589997 0.31 0.998 -3.887381 4.868641
4 vs 2 1.300083 1.589997 0.82 0.925 -3.077928 5.678095
2 vs 1 3.62272 1.589997 2.28 0.156 -.7552913 8.000731
4 vs 3 4.432173 1.589997 2.79 0.046 .0541623 8.810185
4 vs 1 4.922803 1.589997 3.10 0.019 .5447922 9.300815

When using a 5% significance level, Tukey’s adjustment indicates that four pairs of means are different.
With the adjustment, we no longer conclude that the difference in the mean yields for fertilizers 2
and 1 is significantly different from zero.
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Dunnett’s method

Now let’s suppose that fertilizer 1 actually represents fields on which no fertilizer was applied. In
this case, we can use Dunnett’s method for comparing each of the fertilizers to the control.

. pwmean yield, over(fertilizer) effects mcompare(dunnett)

Pairwise comparisons of means with equal variances

over : fertilizer

Number of
Comparisons

fertilizer 4

Dunnett Dunnett
yield Contrast Std. Err. t P>|t| [95% Conf. Interval]

fertilizer
2 vs 1 3.62272 1.589997 2.28 0.079 -.2918331 7.537273
3 vs 1 .4906299 1.589997 0.31 0.994 -3.423923 4.405183
4 vs 1 4.922803 1.589997 3.10 0.008 1.00825 8.837356
5 vs 1 -1.238328 1.589997 -0.78 0.852 -5.152881 2.676225

Using Dunnett’s adjustment, we conclude that only fertilizer 4 produces a mean yield that is significantly
different from the mean yield of the field with no fertilizer applied.

By default, pwmean treats the lowest level of the group variable as the control. If, for instance,
fertilizer 3 was our control group, we could type

. pwmean yield, over(b3.fertilizer) effects mcompare(dunnett)

using the b3. factor-variable operator to specify this level as the reference level.

Multiple over() variables

When we specify more than one variable in the over() option, pairwise comparisons are performed
for the means defined by each combination of levels of these variables.
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. pwmean yield, over(fertilizer irrigation) group

Pairwise comparisons of means with equal variances

over : fertilizer irrigation

Unadjusted
yield Mean Std. Err. Groups

fertilizer#irrigation
1 0 36.91257 1.116571 A
1 1 45.81229 1.116571 B
2 0 38.79482 1.116571 A C
2 1 51.17547 1.116571 E
3 0 36.34383 1.116571 A
3 1 47.36229 1.116571 B
4 0 41.81757 1.116571 CD
4 1 50.7529 1.116571 E
5 0 35.69507 1.116571 A
5 1 44.55313 1.116571 B D

Note: Means sharing a letter in the group label are not
significantly different at the 5% level.

Here the row labeled 1 0 is the mean for the fields treated with fertilizer 1 and without irrigation.
This mean is significantly different from the mean of all fertilizer/irrigation pairings that do not have
an A in the “Unadjusted Groups” column. These include all pairings where the fields were irrigated
as well as the fields treated with fertilizer 4 but without irrigation.

Equal variance assumption

pwmean performs multiple comparisons assuming that there is a common variance for all groups.
In the case of two groups, this is equivalent to performing the familiar two-sample t test when equal
variances are assumed.

. ttest yield, by(irrigation)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 100 37.91277 .5300607 5.300607 36.86102 38.96453
1 100 47.93122 .5630353 5.630353 46.81403 49.0484

combined 200 42.92199 .5242462 7.413961 41.8882 43.95579

diff -10.01844 .7732872 -11.54338 -8.493509

diff = mean(0) - mean(1) t = -12.9557
Ho: diff = 0 degrees of freedom = 198

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000
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. pwmean yield, over(irrigation) effects

Pairwise comparisons of means with equal variances

over : irrigation

Unadjusted Unadjusted
yield Contrast Std. Err. t P>|t| [95% Conf. Interval]

irrigation
1 vs 0 10.01844 .7732872 12.96 0.000 8.493509 11.54338

The signs for the difference, the test statistic, and the confidence intervals are reversed because
the difference is taken in the opposite direction. The p-value from pwmean is equivalent to the one
for the two-sided test in the ttest output.

pwmean extends the capabilities of ttest to allow for simultaneously comparing all pairs of means
and to allow for using one common variance estimate for all the tests instead of computing a separate
pooled variance for each pair of means when using multiple ttest commands. In addition, pwmean
allows adjustments for multiple comparisons, many of which rely on an assumption of equal variances
among groups.

Saved results
pwmean saves the following in e():

Scalars
e(df r) variance degrees of freedom
e(balanced) 1 if fully balanced data; 0 otherwise

Macros
e(cmd) pwmean
e(cmdline) command as typed
e(title) title in output
e(depvar) name of variable from which the means are computed
e(over) varlist from over()
e(properties) b V

Matrices
e(b) mean estimates
e(V) variance–covariance matrix of the mean estimates
e(error) mean estimability codes;

0 means estimable,
8 means not estimable

e(b vs) mean difference estimates
e(V vs) variance–covariance matrix of the mean difference estimates
e(error vs) mean difference estimability codes;

0 means estimable,
8 means not estimable

e(k groups) number of significance groups for each term

Methods and formulas
pwmean is implemented as an ado-file.

pwmean is a convenience command that uses pwcompare after fitting a fully factorial linear model.
See Methods and formulas described in [R] pwcompare.
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Reference
Searle, S. R. 1997. Linear Models for Unbalanced Data. New York: Wiley.

Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] pwcompare — Pairwise comparisons

[R] margins — Marginal means, predictive margins, and marginal effects

[R] margins, pwcompare — Pairwise comparisons of margins

[R] ttest — Mean-comparison tests
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pwmean postestimation — Postestimation tools for pwmean

Description

The following postestimation commands are available after pwmean:

Command Description

estat VCE; estat vce only
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

Remarks
In Pairwise differences of means of [R] pwmean, we computed all pairwise differences in mean

wheat yields for five fertilizers.

. use http://www.stata-press.com/data/r12/yield
(Artificial wheat yield dataset)

. pwmean yield, over(fertilizer)

Pairwise comparisons of means with equal variances

over : fertilizer

Unadjusted
yield Contrast Std. Err. [95% Conf. Interval]

fertilizer
2 vs 1 3.62272 1.589997 .4869212 6.758518
3 vs 1 .4906299 1.589997 -2.645169 3.626428
4 vs 1 4.922803 1.589997 1.787005 8.058602
5 vs 1 -1.238328 1.589997 -4.374127 1.89747
3 vs 2 -3.13209 1.589997 -6.267889 .0037086
4 vs 2 1.300083 1.589997 -1.835715 4.435882
5 vs 2 -4.861048 1.589997 -7.996847 -1.725249
4 vs 3 4.432173 1.589997 1.296375 7.567972
5 vs 3 -1.728958 1.589997 -4.864757 1.406841
5 vs 4 -6.161132 1.589997 -9.29693 -3.025333

After pwmean, we can use testnl to test whether the improvement in mean wheat yield when
using fertilizer 4 instead of fertilizer 5 is significantly different from 10%.
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. testnl (_b[4.fertilizer] - _b[5.fertilizer])/_b[5.fertilizer] = 0.1

(1) (_b[4.fertilizer] - _b[5.fertilizer])/_b[5.fertilizer] = 0.1

F(1, 195) = 1.57
Prob > F = 0.2121

The improvement is not significantly different from 10%.

Also see
[R] pwmean — Pairwise comparisons of means



Title

qc — Quality control charts

Syntax

Draw a c chart

cchart defect var unit var
[
, cchart options

]
Draw a p (fraction-defective) chart

pchart reject var unit var ssize var
[
, pchart options

]
Draw an R (range or dispersion) chart

rchart varlist
[

if
] [

in
] [

, rchart options
]

Draw an X (control line) chart

xchart varlist
[

if
] [

in
] [

, xchart options
]

Draw vertically aligned X and R charts

shewhart varlist
[

if
] [

in
] [

, shewhart options
]

cchart options Description

Main

nograph suppress graph

Plot

connect options affect rendition of the plotted points
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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pchart options Description

Main

stabilized stabilize the p chart when sample sizes are unequal
nograph suppress graph
generate(newvarf newvarlcl newvarucl) store the fractions of defective elements and the

lower and upper control limits

Plot

connect options affect rendition of the plotted points
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

rchart options Description

Main

std(#) user-specified standard deviation
nograph suppress graph

Plot

connect options affect rendition of the plotted points
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options
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xchart options Description

Main

std(#) user-specified standard deviation
mean(#) user-specified mean
lower(#) upper(#) lower and upper limits of the X-bar limits
nograph suppress graph

Plot

connect options affect rendition of the plotted points
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

shewhart options Description

Main

std(#) user-specified standard deviation
mean(#) user-specified mean
nograph suppress graph

Plot

connect options affect rendition of the plotted points
marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Control limits

clopts(cline options) affect rendition of the control limits

Y axis, X axis, Titles, Legend, Overall

combine options any options documented in [G-2] graph combine

Menu
cchart

Statistics > Other > Quality control > C chart

pchart

Statistics > Other > Quality control > P chart
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rchart

Statistics > Other > Quality control > R chart

xchart

Statistics > Other > Quality control > X-bar chart

shewhart

Statistics > Other > Quality control > Vertically aligned X-bar and R chart

Description
These commands provide standard quality-control charts. cchart draws a c chart; pchart, a p

(fraction-defective) chart; rchart, an R (range or dispersion) chart; xchart, an X (control line)
chart; and shewhart, vertically aligned X and R charts.

Options

� � �
Main �

stabilized stabilizes the p chart when sample sizes are unequal.

std(#) specifies the standard deviation of the process. The R chart is calculated (based on the range)
if this option is not specified.

mean(#) specifies the grand mean, which is calculated if not specified.

lower(#) and upper(#) must be specified together or not at all. They specify the lower and upper
limits of the X chart. Calculations based on the mean and standard deviation (whether specified
by option or calculated) are used otherwise.

nograph suppresses the graph.

generate(newvarf newvarlcl newvarucl) stores the plotted values in the p chart. newvarf will
contain the fractions of defective elements; newvarlcl and newvarucl will contain the lower and
upper control limits, respectively.

� � �
Plot �

connect options affect whether lines connect the plotted points and the rendition of those lines; see
[G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Control limits �

clopts(cline options) affects the rendition of the control limits; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

combine options (shewhart only) are any of the options documented in [G-2] graph combine. These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Control charts may be used to define the goal of a repetitive process, to control that process,

and to determine if the goal has been achieved. Walter A. Shewhart of Bell Telephone Laboratories
devised the first control chart in 1924. In 1931, Shewhart published Economic Control of Quality of
Manufactured Product. According to Burr, “Few fields of knowledge have ever been so completely
explored and charted in the first exposition” (1976, 29). Shewhart states that “a phenomenon will be
said to be controlled when, through the use of past experience, we can predict, at least within limits,
how the phenomenon may be expected to vary in the future. Here it is understood that prediction within
limits means that we can state, at least approximately, the probability that the observed phenomenon
will fall within given limits” (1931, 6).

For more information on quality-control charts, see Burr (1976), Duncan (1986), Harris (1999),
or Ryan (2000).

Example 1: cchart

cchart graphs a c chart showing the number of nonconformities in a unit, where defect var
records the number of defects in each inspection unit and unit var records the unit number. The unit
numbers need not be in order. For instance, consider the following example dataset from Ryan (2000,
156):

. use http://www.stata-press.com/data/r12/ncu

. describe

Contains data from http://www.stata-press.com/data/r12/ncu.dta
obs: 30

vars: 2 31 Mar 2011 03:56
size: 240

storage display value
variable name type format label variable label

day float %9.0g Days in April
defects float %9.0g Numbers of Nonconforming Units

Sorted by:

. list in 1/5

day defects

1. 1 7
2. 2 5
3. 3 11
4. 4 13
5. 5 9
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. cchart defects day, title(c Chart for Nonconforming Transistors)
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c Chart for Nonconforming Transistors

The expected number of defects is 10.6, with lower and upper control limits of 0.8327 and 20.37,
respectively. No units are out of control.

Example 2: pchart

pchart graphs a p chart, which shows the fraction of nonconforming items in a subgroup, where
reject var records the number rejected in each inspection unit, unit var records the inspection unit
number, and ssize var records the number inspected in each unit.

Consider the example dataset from Ryan (2000, 156) of the number of nonconforming transistors
out of 1,000 inspected each day during the month of April:

. use http://www.stata-press.com/data/r12/ncu2

. describe

Contains data from http://www.stata-press.com/data/r12/ncu2.dta
obs: 30

vars: 3 31 Mar 2011 14:13
size: 360

storage display value
variable name type format label variable label

day float %9.0g Days in April
rejects float %9.0g Numbers of Nonconforming Units
ssize float %9.0g Sample size

Sorted by:
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. list in 1/5

day rejects ssize

1. 1 7 1000
2. 2 5 1000
3. 3 11 1000
4. 4 13 1000
5. 5 9 1000

. pchart rejects day ssize
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pchart

All the points are within the control limits, which are 0.0009 for the lower limit and 0.0203 for the
upper limit.

Here the sample sizes are fixed at 1,000, so the ssize variable contains 1,000 for each observation.
Sample sizes need not be fixed, however. Say that our data were slightly different:

. use http://www.stata-press.com/data/r12/ncu3

. list in 1/5

day rejects ssize

1. 1 7 920
2. 2 5 920
3. 3 11 920
4. 4 13 950
5. 5 9 950
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. pchart rejects day ssize
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Here the control limits are, like the sample size, no longer constant. The stabilize option will
stabilize the control chart:

. pchart rejects day ssize, stabilize
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Stabilized p Chart, average number of defects = .0119
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Example 3: rchart

rchart displays an R chart showing the range for repeated measurements at various times.
Variables within observations record measurements. Observations represent different samples.

For instance, say that we take five samples of 5 observations each. In our first sample, our
measurements are 10, 11, 10, 11, and 12. The data are

. list

m1 m2 m3 m4 m5

1. 10 11 10 11 12
2. 12 10 9 10 9
3. 10 11 10 12 10
4. 9 9 9 10 11
5. 12 12 12 12 13

. rchart m1-m5, connect(l)
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The expected range in each sample is 2 with lower and upper control limits of 0 and 4.23, respectively.
If we know that the process standard deviation is 0.3, we could specify
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. rchart m1-m5, connect(l) std(.3)
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Example 4: xchart

xchart graphs an X chart for repeated measurements at various times. Variables within observations
record measurements, and observations represent different samples. Using the same data as in the
previous example, we type

. xchart m1-m5, connect(l)
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The average measurement in the sample is 10.64, and the lower and upper control limits are 9.486
and 11.794, respectively. Suppose that we knew from prior information that the mean of the process
is 11. Then we would type
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. xchart m1-m5, connect(l) mean(11)
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If we also know that the standard deviation of the process is 0.3, we could type

. xchart m1-m5, connect(l) mean(11) std(.3)

1
0

.5
9

7
5

1
1

1
1

1
.4

0
2

4
9

9
.5

1
0

1
0

.5
1

1
1

1
.5

1
2

A
v
e

ra
g

e

1 2 3 4 5
Sample

3 units are out of control

Finally, xchart allows us to specify our own control limits:
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. xchart m1-m5, connect(l) mean(11) lower(10) upper(12)

1
0

1
1

1
2

9
.5

1
0

1
0

.5
1

1
1

1
.5

1
2

A
v
e

ra
g

e

1 2 3 4 5
Sample

2 units are out of control

� �
Walter Andrew Shewhart (1891–1967) was born in Illinois and educated as a physicist, with
degrees from the Universities of Illinois and California. After a brief period teaching physics,
he worked for the Western Electric Company and (from 1925) the Bell Telephone Laboratories.
His name is most associated with control charts used in quality controls, but his many other
interests ranged generally from quality assurance to the philosophy of science.� �

Example 5: shewhart

shewhart displays a vertically aligned X and R chart in the same image. To produce the best-
looking combined image possible, you will want to use the xchart and rchart commands separately
and then combine the graphs. shewhart, however, is more convenient.

Using the same data as previously, but realizing that the standard deviation should have been 0.4,
we type
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. shewhart m1-m5, connect(l) mean(11) std(.4)
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Saved results
cchart saves the following in r():

Scalars
r(cbar) expected number of nonconformities
r(lcl c) lower control limit
r(ucl c) upper control limit
r(N) number of observations
r(out c) number of units out of control
r(below c) number of units below the lower limit
r(above c) number of units above the upper limit

pchart saves the following in r():

Scalars
r(pbar) average fraction of nonconformities
r(lcl p) lower control limit
r(ucl p) upper control limit
r(N) number of observations
r(out p) number of units out of control
r(below p) number of units below the lower limit
r(above p) number of units above the upper limit

rchart saves the following in r():

Scalars
r(central line) ordinate of the central line
r(lcl r) lower control limit
r(ucl r) upper control limit
r(N) number of observations
r(out r) number of units out of control
r(below r) number of units below the lower limit
r(above r) number of units above the upper limit
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xchart saves the following in r():

Scalars
r(xbar) grand mean
r(lcl x) lower control limit
r(ucl x) upper control limit
r(N) number of observations
r(out x) number of units out of control
r(below x) number of units below the lower limit

shewhart saves in r() the combination of saved results from xchart and rchart.

Methods and formulas
cchart, pchart, rchart, xchart, and shewhart are implemented as ado-files.

For the c chart, the number of defects per unit, C, is taken to be a value of a random variable
having a Poisson distribution. If k is the number of units available for estimating λ, the parameter
of the Poisson distribution, and if Ci is the number of defects in the ith unit, then λ is estimated by
C =

∑
i Ci/k. Then

central line = C

UCL = C + 3
√
C

LCL = C − 3
√
C

Control limits for the p chart are based on the sampling theory for proportions, using the normal
approximation to the binomial. If k samples are taken, the estimator of p is given by p =

∑
i p̂i/k,

where p̂i = xi/ni, and xi is the number of defects in the ith sample of size ni. The central line and
the control limits are given by

central line = p

UCL = p+ 3
√
p(1− p)/ni

LCL = p− 3
√
p(1− p)/ni

Control limits for the R chart are based on the distribution of the range of samples of size n from
a normal population. If the standard deviation of the process, σ, is known,

central line = d2σ

UCL = D2σ

LCL = D1σ

where d2, D1, and D2 are functions of the number of observations in the sample and are obtained
from the table published in Beyer (1976).

When σ is unknown,
central line = R

UCL = (D2/d2)R

LCL = (D1/d2)R

where R =
∑
iRi/k is the range of the k sample ranges Ri.
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Control limits for the X chart are given by

central line = x

UCL = x+ (3/
√
n)σ

LCL = x− (3/
√
n)σ

if σ is known. If σ is unknown,
central line = x

UCL = x+A2R

LCL = x−A2R

where R is the average range as defined above and A2 is a function (op. cit.) of the number of
observations in the sample.
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Also see
[R] serrbar — Graph standard error bar chart

http://www.stata.com/products/stb/journals/stb17.pdf
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qreg — Quantile regression

The documentation for [R] qreg has been updated. To see the latest PDF of [R] qreg, click here.

Syntax

Quantile regression

qreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, qreg options
]

Interquantile range regression

iqreg depvar
[

indepvars
] [

if
] [

in
] [

, iqreg options
]

Simultaneous-quantile regression

sqreg depvar
[

indepvars
] [

if
] [

in
] [

, sqreg options
]

Bootstrapped quantile regression

bsqreg depvar
[

indepvars
] [

if
] [

in
] [

, bsqreg options
]

Internal estimation command for quantile regression

qreg
[

depvar
[

indepvars
] [

if
] [

in
] [

weight
] ] [

, qreg options
]

qreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

Reporting

level(#) set confidence level; default is level(95)

display options control column formats and line width

Optimization

optimization options control the optimization process; seldom used
wlsiter(#) attempt # weighted least-squares iterations before doing linear

programming iterations

iqreg options Description

Model

quantiles(# #) interquantile range; default is quantiles(.25 .75)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

nodots suppress display of the replication dots
display options control column formats and line width

1610

http://www.stata.com/support/errata/i/stata12/qreg.pdf
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sqreg options Description

Model

quantiles(#
[
#
[
# . . .

] ]
) estimate # quantiles; default is quantiles(.5)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

nodots suppress display of the replication dots
display options control column formats and line width

bsqreg options Description

Model

quantile(#) estimate # quantile; default is quantile(.5)

reps(#) perform # bootstrap replications; default is reps(20)

Reporting

level(#) set confidence level; default is level(95)

display options control column formats and line width

qreg options Description

quantile(#) estimate # quantile; default is quantile(.5)

level(#) set confidence level; default is level(95)

accuracy(#) relative accuracy required for linear programming algorithm;
should not be specified

optimization options control the optimization process; seldom used

by, mi estimate, rolling, statsby, and xi are allowed by qreg, iqreg, sqreg, and bsqreg; fracpoly, mfp,
nestreg, and stepwise are allowed only with qreg; see [U] 11.1.10 Prefix commands.

qreg and qreg allow aweights and fweights; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
qreg

Statistics > Nonparametric analysis > Quantile regression

iqreg

Statistics > Nonparametric analysis > Interquantile regression

sqreg

Statistics > Nonparametric analysis > Simultaneous-quantile regression

bsqreg

Statistics > Nonparametric analysis > Bootstrapped quantile regression
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Description

qreg fits quantile (including median) regression models, also known as least–absolute-value models
(LAV or MAD) and minimum L1-norm models.

iqreg estimates interquantile range regressions, regressions of the difference in quantiles. The
estimated variance–covariance matrix of the estimators (VCE) is obtained via bootstrapping.

sqreg estimates simultaneous-quantile regression. It produces the same coefficients as qreg for
each quantile. Reported standard errors will be similar, but sqreg obtains an estimate of the VCE
via bootstrapping, and the VCE includes between-quantile blocks. Thus you can test and construct
confidence intervals comparing coefficients describing different quantiles.

bsqreg is equivalent to sqreg with one quantile.

qreg is the internal estimation command for quantile regression. qreg is not intended to be
used directly; see Methods and formulas below.

Options for qreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the
median.

� � �
Reporting �

level(#); see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

� � �
Optimization �

optimization options: iterate(#),
[
no
]
log, trace. iterate() specifies the maximum number of

iterations; log/nolog specifies whether to show the iteration log; and trace specifies that the
iteration log should include the current parameter vector. These options are seldom used.

wlsiter(#) specifies the number of weighted least-squares iterations that will be attempted before
the linear programming iterations are started. The default value is 1. If there are convergence
problems, increasing this number should help.

Options for iqreg

� � �
Model �

quantiles(# #) specifies the quantiles to be compared. The first number must be less than the
second, and both should be between 0 and 1, exclusive. Numbers larger than 1 are interpreted as
percentages. Not specifying this option is equivalent to specifying quantiles(.25 .75), meaning
the interquartile range.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.



qreg — Quantile regression 1613

� � �
Reporting �

level(#); see [R] estimation options.

nodots suppresses display of the replication dots.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Options for sqreg

� � �
Model �

quantiles(#
[
#
[
# . . .

] ]
) specifies the quantiles to be estimated and should contain numbers

between 0 and 1, exclusive. Numbers larger than 1 are interpreted as percentages. The default
value of 0.5 corresponds to the median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.

� � �
Reporting �

level(#); see [R] estimation options.

nodots suppresses display of the replication dots.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Options for bsqreg

� � �
Model �

quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1, exclusive.
Numbers larger than 1 are interpreted as percentages. The default value of 0.5 corresponds to the
median.

reps(#) specifies the number of bootstrap replications to be used to obtain an estimate of the
variance–covariance matrix of the estimators (standard errors). reps(20) is the default and is
arguably too small. reps(100) would perform 100 bootstrap replications. reps(1000) would
perform 1,000 replications.

� � �
Reporting �

level(#); see [R] estimation options.

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.

Options for qreg
quantile(#) specifies the quantile to be estimated and should be a number between 0 and 1,

exclusive. The default value of 0.5 corresponds to the median.
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level(#); see [R] estimation options.

accuracy(#) should not be specified; it specifies the relative accuracy required for the linear
programming algorithm. If the potential for improving the sum of weighted deviations by deleting
an observation from the basis is less than this on a percentage basis, the algorithm will be said to
have converged. The default value is 10−10.

optimization options: iterate(#),
[
no
]
log, trace. iterate() specifies the maximum number of

iterations; log/nolog specifies whether to show the iteration log; and trace specifies that the
iteration log should include the current parameter vector. These options are seldom used.

Remarks
Remarks are presented under the following headings:

Median regression
Generalized quantile regression
Estimated standard errors
Interquantile and simultaneous-quantile regression

Median regression

qreg without options fits quantile regression models. The most common form is median regression,
where the object is to estimate the median of the dependent variable, conditional on the values of
the independent variables. This method is similar to ordinary regression, where the objective is to
estimate the mean of the dependent variable. Simply put, median regression finds a line through
the data that minimizes the sum of the absolute residuals rather than the sum of the squares of the
residuals, as in ordinary regression. Cameron and Trivedi (2010, chap. 7) provide a nice introduction
to quantile regression using Stata.

Example 1

Consider a two-group experimental design with 5 observations per group:

. use http://www.stata-press.com/data/r12/twogrp

. list

x y

1. 0 0
2. 0 1
3. 0 3
4. 0 4
5. 0 95

6. 1 14
7. 1 19
8. 1 20
9. 1 22

10. 1 23
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. qreg y x
Iteration 1: WLS sum of weighted deviations = 121.88268

Iteration 1: sum of abs. weighted deviations = 111
Iteration 2: sum of abs. weighted deviations = 110

Median regression Number of obs = 10
Raw sum of deviations 157 (about 14)
Min sum of deviations 110 Pseudo R2 = 0.2994

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 17 3.924233 4.33 0.003 7.950702 26.0493
_cons 3 2.774852 1.08 0.311 -3.39882 9.39882

We have estimated the equation
ymedian = 3 + 17 x

We look back at our data. x takes on the values 0 and 1, so the median for the x = 0 group is 3,
whereas for x = 1 it is 3 + 17 = 20. The output reports that the raw sum of absolute deviations about
14 is 157; that is, the sum of |y − 14| is 157. Fourteen is the unconditional median of y, although
in these data, any value between 14 and 19 could also be considered an unconditional median (we
have an even number of observations, so the median is bracketed by those two values). In any case,
the raw sum of deviations of y about the median would be the same no matter what number we
choose between 14 and 19. (With a “median” of 14, the raw sum of deviations is 157. Now think
of choosing a slightly larger number for the median and recalculating the sum. Half the observations
will have larger negative residuals, but the other half will have smaller positive residuals, resulting in
no net change.)

We turn now to the actual estimated equation. The sum of the absolute deviations about the
solution ymedian = 3 + 17x is 110. The pseudo-R2 is calculated as 1 − 110/157 ≈ 0.2994. This
result is based on the idea that the median regression is the maximum likelihood estimate for the
double-exponential distribution.

Technical note
qreg is an alternative to regular regression or robust regression—see [R] regress and [R] rreg.

Let’s compare the results:
. regress y x

Source SS df MS Number of obs = 10
F( 1, 8) = 0.00

Model 2.5 1 2.5 Prob > F = 0.9586
Residual 6978.4 8 872.3 R-squared = 0.0004

Adj R-squared = -0.1246
Total 6980.9 9 775.655556 Root MSE = 29.535

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x -1 18.6794 -0.05 0.959 -44.07477 42.07477
_cons 20.6 13.20833 1.56 0.157 -9.858465 51.05847

Unlike qreg, regress fits ordinary linear regression and is concerned with predicting the mean rather
than the median, so both results are, in a technical sense, correct. Putting aside those technicalities,
however, we tend to use either regression to describe the central tendency of the data, of which the
mean is one measure and the median another. Thus we can ask, “which method better describes the
central tendency of these data?”
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Means—and therefore ordinary linear regression—are sensitive to outliers, and our data were
purposely designed to contain two such outliers: 95 for x = 0 and 14 for x = 1. These two outliers
dominated the ordinary regression and produced results that do not reflect the central tendency
well—you are invited to enter the data and graph y against x.

Robust regression attempts to correct the outlier-sensitivity deficiency in ordinary regression:

. rreg y x, genwt(wt)

Huber iteration 1: maximum difference in weights = .7311828
Huber iteration 2: maximum difference in weights = .17695779
Huber iteration 3: maximum difference in weights = .03149585

Biweight iteration 4: maximum difference in weights = .1979335
Biweight iteration 5: maximum difference in weights = .23332905
Biweight iteration 6: maximum difference in weights = .09960067
Biweight iteration 7: maximum difference in weights = .02691458
Biweight iteration 8: maximum difference in weights = .0009113

Robust regression Number of obs = 10
F( 1, 8) = 80.63
Prob > F = 0.0000

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 18.16597 2.023114 8.98 0.000 13.50066 22.83128
_cons 2.000003 1.430558 1.40 0.200 -1.298869 5.298875

Here rreg discarded the first outlier completely. (We know this because we included the genwt()
option on rreg and, after fitting the robust regression, examined the weights.) For the other “outlier”,
rreg produced a weight of 0.47.

In any case, the answers produced by qreg and rreg to describe the central tendency are similar,
but the standard errors are different. In general, robust regression will have smaller standard errors
because it is not as sensitive to the exact placement of observations near the median. Also, some
authors (Rousseeuw and Leroy 1987, 11) have noted that quantile regression, unlike the median, may
be sensitive to even one outlier, if its leverage is high enough.

Example 2

Let’s now consider a less artificial example using the automobile data described in [U] 1.2.2 Example
datasets. Using median regression, we will regress each car’s price on its weight and length and
whether it is of foreign manufacture:
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. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. qreg price weight length foreign
Iteration 1: WLS sum of weighted deviations = 112795.66

Iteration 1: sum of abs. weighted deviations = 111901
Iteration 2: sum of abs. weighted deviations = 110529.43

(output omitted )
Iteration 8: sum of abs. weighted deviations = 108822.59

Median regression Number of obs = 74
Raw sum of deviations 142205 (about 4934)
Min sum of deviations 108822.6 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 .8602183 4.57 0.000 2.217937 5.649239
length -41.25191 28.8693 -1.43 0.157 -98.82991 16.32609

foreign 3377.771 577.3391 5.85 0.000 2226.305 4529.237
_cons 344.6494 3260.244 0.11 0.916 -6157.702 6847.001

The estimated equation is

pricemedian = 3.93 weight− 41.25 length + 3377.8 foreign + 344.65

The output may be interpreted in the same way as linear regression output; see [R] regress. The
variables weight and foreign are significant, but length is not significant. The median price of
the cars in these data is $4,934. This value is a median (one of the two center observations), not the
median, which would typically be defined as the midpoint of the two center observations.

Generalized quantile regression

Generalized quantile regression is similar to median regression in that it estimates an equation
describing a quantile other than the 0.5 (median) quantile. For example, specifying quant(.25)
estimates the 25th percentile or the first quartile.

Example 3

Again we will begin with the 10-observation artificial dataset we used at the beginning of Median
regression above. We will estimate the 0.6667 quantile:

. use http://www.stata-press.com/data/r12/twogrp

. qreg y x, quant(0.6667)
Iteration 1: WLS sum of weighted deviations = 152.32472

Iteration 1: sum of abs. weighted deviations = 138.0054
Iteration 2: sum of abs. weighted deviations = 136.6714

.6667 Quantile regression Number of obs = 10
Raw sum of deviations 159.3334 (about 20)
Min sum of deviations 136.6714 Pseudo R2 = 0.1422

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 18 54.21918 0.33 0.748 -107.0297 143.0297
_cons 4 38.33875 0.10 0.919 -84.40932 92.40932
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The 0.6667 quantile in the data is 20. The estimated values are 4 for x = 0 and 22 for x = 1. These
values are appropriate because the usual convention is to “count in” (n+ 1)× quantile observations.

Example 4

Returning to real data, the equation for the 25th percentile of price based on weight, length,
and foreign in our automobile data is

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. qreg price weight length foreign, quant(.25)
Iteration 1: WLS sum of weighted deviations = 98938.466

Iteration 1: sum of abs. weighted deviations = 99457.766
Iteration 2: sum of abs. weighted deviations = 91339.779

(output omitted )
Iteration 10: sum of abs. weighted deviations = 69603.554

.25 Quantile regression Number of obs = 74
Raw sum of deviations 83825.5 (about 4187)
Min sum of deviations 69603.55 Pseudo R2 = 0.1697

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.831789 .668093 2.74 0.008 .4993194 3.164258
length 2.845558 24.78057 0.11 0.909 -46.57773 52.26885

foreign 2209.925 434.631 5.08 0.000 1343.081 3076.769
_cons -1879.775 2808.067 -0.67 0.505 -7480.287 3720.737

Compared with our previous median regression, the coefficient on length now has a positive sign,
and the coefficients on foreign and weight are reduced. The actual lower quantile is $4,187,
substantially less than the median $4,934. It appears that the factors are weaker in this part of the
distribution.

We can also estimate the upper quartile as a function of the same three variables:

. qreg price weight length foreign, quant(.75)
Iteration 1: WLS sum of weighted deviations = 110931.48

Iteration 1: sum of abs. weighted deviations = 111305.91
Iteration 2: sum of abs. weighted deviations = 105989.57

(output omitted )
Iteration 7: sum of abs. weighted deviations = 98395.935

.75 Quantile regression Number of obs = 74
Raw sum of deviations 159721.5 (about 6342)
Min sum of deviations 98395.94 Pseudo R2 = 0.3840

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 9.22291 2.653579 3.48 0.001 3.930515 14.51531
length -220.7833 80.13907 -2.76 0.007 -380.6156 -60.95096

foreign 3595.133 1727.704 2.08 0.041 149.3355 7040.931
_cons 20242.9 8534.529 2.37 0.020 3221.323 37264.49

This result tells a different story: weight is much more important, and length is now significant—with
a negative coefficient! The prices of high-priced cars seem to be determined by factors different from
those affecting the prices of low-priced cars.
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Technical note
One explanation for having substantially different regression functions for different quantiles is

that the data are heteroskedastic, as we will demonstrate below. The following statements create a
sharply heteroskedastic set of data:

. drop _all

. set obs 10000
obs was 0, now 10000

. set seed 50550

. gen x = .1 + .9 * runiform()

. gen y = x * runiform()^2

Let’s now fit the regressions for the 5th and 95th quantiles:

. qreg y x, quant(.05)
Iteration 1: WLS sum of weighted deviations = 1080.7273

Iteration 1: sum of abs. weighted deviations = 1078.3192
Iteration 2: sum of abs. weighted deviations = 282.73545

(output omitted )
Iteration 9: sum of abs. weighted deviations = 182.25244

.05 Quantile regression Number of obs = 10000
Raw sum of deviations 182.357 (about .0009234)
Min sum of deviations 182.2524 Pseudo R2 = 0.0006

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .002601 .0002737 9.50 0.000 .0020646 .0031374
_cons -.0001393 .0001666 -0.84 0.403 -.000466 .0001874

. qreg y x, quant(.95)
Iteration 1: WLS sum of weighted deviations = 1237.5569

Iteration 1: sum of abs. weighted deviations = 1238.0014
Iteration 2: sum of abs. weighted deviations = 456.65044

(output omitted )
Iteration 5: sum of abs. weighted deviations = 338.4389

.95 Quantile regression Number of obs = 10000
Raw sum of deviations 554.6889 (about .61326343)
Min sum of deviations 338.4389 Pseudo R2 = 0.3899

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .8898259 .0060398 147.33 0.000 .8779867 .901665
_cons .0021514 .0036623 0.59 0.557 -.0050275 .0093302

The coefficient on x, in particular, differs markedly between the two estimates. For the mathematically
inclined, it is not too difficult to show that the theoretical lines are y = 0.0025 x for the 5th percentile
and y = 0.9025 x for the 95th, numbers in close agreement with our numerical results.
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Estimated standard errors
qreg estimates the variance–covariance matrix of the coefficients by using a method of Koenker

and Bassett (1982) and Rogers (1993). This approach is described in Methods and formulas below.
Rogers (1992) reports that, although this method seems adequate for homoskedastic errors, it appears
to understate the standard errors for heteroskedastic errors. The irony is that exploring heteroskedastic
errors is one of the major benefits of quantile regression. Gould (1992, 1997b) introduced generalized
versions of qreg that obtain estimates of the standard errors by using bootstrap resampling (see Efron
and Tibshirani [1993] or Wu [1986] for an introduction to bootstrap standard errors). The iqreg,
sqreg, and bsqreg commands provide a bootstrapped estimate of the entire variance–covariance
matrix of the estimators.

Example 5

The first example of qreg on real data above was a median regression of price on weight,
length, and foreign using the automobile data. Here is the result of repeating the estimation using
bootstrap standard errors:

. set seed 1001

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. bsqreg price weight length foreign
(fitting base model)
(bootstrapping ....................)

Median regression, bootstrap(20) SEs Number of obs = 74
Raw sum of deviations 142205 (about 4934)
Min sum of deviations 108822.6 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 3.12446 1.26 0.212 -2.297951 10.16513
length -41.25191 83.71266 -0.49 0.624 -208.2116 125.7077

foreign 3377.771 1057.281 3.19 0.002 1269.09 5486.452
_cons 344.6494 7053.301 0.05 0.961 -13722.72 14412.01

The coefficient estimates are the same—indeed, they are obtained using the same technique. Only
the standard errors differ. Therefore, the t statistics, significance levels, and confidence intervals also
differ.

Because bsqreg (as well as sqreg and iqreg) obtains standard errors by randomly resampling
the data, the standard errors it produces will not be the same from run to run, unless we first set the
random-number seed to the same number; see [R] set seed.

By default, bsqreg, sqreg, and iqreg use 20 replications. We can control the number of
replications by specifying the reps() option:
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. bsqreg price weight length foreign, reps(1000)
(fitting base model)
(bootstrapping ...................(output omitted )...)
Median regression, bootstrap(1000) SEs Number of obs = 74

Raw sum of deviations 142205 (about 4934)
Min sum of deviations 108822.6 Pseudo R2 = 0.2347

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 3.933588 2.659381 1.48 0.144 -1.370379 9.237555
length -41.25191 69.29771 -0.60 0.554 -179.4618 96.95802

foreign 3377.771 1094.947 3.08 0.003 1193.967 5561.575
_cons 344.6494 5916.906 0.06 0.954 -11456.25 12145.55

A comparison of the standard errors is informative:

bsqreg bsqreg
Variable qreg reps(20) reps(1000)

weight .8602 3.124 2.670
length 28.87 83.71 69.65
foreign 577.3 1057. 1094.
cons 3260. 7053. 5945.

The results shown above are typical for models with heteroskedastic errors. (Our dependent variable
is price; if our model had been in terms of ln(price), the standard errors estimated by qreg and
bsqreg would have been nearly identical.) Also, even for heteroskedastic errors, 20 replications is
generally sufficient for hypothesis tests against 0.

Interquantile and simultaneous-quantile regression

Consider a quantile-regression model where the qth quantile is given by

Qq(y) = aq + bq,1x1 + bq,2x2

For instance, the 75th and 25th quantiles are given by

Q0.75(y) = a0.75 + b0.75,1x1 + b0.75,2x2

Q0.25(y) = a0.25 + b0.25,1x1 + b0.25,2x2

The difference in the quantiles is then

Q0.75(y)−Q0.25(y) = (a0.75 − a0.25) + (b0.75,1 − b0.25,1)x1 + (b0.75,2 − b0.25,2)x2

qreg fits models such as Q0.75(y) and Q0.25(y). iqreg fits interquantile models, such as Q0.75(y)−
Q0.25(y). The relationships of the coefficients estimated by qreg and iqreg are exactly as shown:
iqreg reports coefficients that are the difference in coefficients of two qreg models, and, of course,
iqreg reports the appropriate standard errors, which it obtains by bootstrapping.

sqreg is like qreg in that it estimates the equations for the quantiles

Q0.75(y) = a0.75 + b0.75,1x1 + b0.75,2x2

Q0.25(y) = a0.25 + b0.25,1x1 + b0.25,2x2
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The coefficients it obtains are the same that would be obtained by estimating each equation separately
using qreg. sqreg differs from qreg in that it estimates the equations simultaneously and obtains
an estimate of the entire variance–covariance matrix of the estimators by bootstrapping. Thus you
can perform hypothesis tests concerning coefficients both within and across equations.

For example, to fit the above model, you could type

. qreg y x1 x2, quantile(.25)

. qreg y x1 x2, quantile(.75)

Doing this, you would obtain estimates of the parameters, but you could not test whether b0.25,1 =
b0.75,1 or, equivalently, b0.75,1− b0.25,1 = 0. If your interest really is in the difference of coefficients,
you could type

. iqreg y x1 x2, quantiles(.25 .75)

The “coefficients” reported would be the difference in quantile coefficients. You could also estimate
both quantiles simultaneously and then test the equality of the coefficients:

. sqreg y x1 x2, quantiles(.25 .75)

. test [q25]x1 = [q75]x1

Whether you use iqreg or sqreg makes no difference for this test. sqreg, however, because it
estimates the quantiles simultaneously, allows you to test other hypotheses. iqreg, by focusing on
quantile differences, presents results in a way that is easier to read.

Finally, sqreg can estimate quantiles singly,

. sqreg y x1 x2, quantiles(.5)

and can thereby be used as a substitute for the slower bsqreg. (Gould [1997b] presents timings
demonstrating that sqreg is faster than bsqreg.) sqreg can also estimate more than two quantiles
simultaneously:

. sqreg y x1 x2, quantiles(.25 .5 .75)

Example 6

In demonstrating qreg, we performed quantile regressions using the automobile data. We discovered
that the regression of price on weight, length, and foreign produced vastly different coefficients
for the 0.25, 0.5, and 0.75 quantile regressions. Here are the coefficients that we obtained:

25th 50th 75th
Variable percentile percentile percentile

weight 1.83 3.93 9.22
length 2.85 −41.25 −220.8
foreign 2209.9 3377.8 3595.1
cons −1879.8 344.6 20242.9

All we can say, having estimated these equations separately, is that price seems to depend differently
on the weight, length, and foreign variables depending on the portion of the price distribution
we examine. We cannot be more precise because the estimates have been made separately. With
sqreg, however, we can estimate all the effects simultaneously:
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. sqreg price weight length foreign, q(.25 .5 .75) reps(100)
(fitting base model)
(bootstrapping ................. (output omitted ) .....)

Simultaneous quantile regression Number of obs = 74
bootstrap(100) SEs .25 Pseudo R2 = 0.1697

.50 Pseudo R2 = 0.2347

.75 Pseudo R2 = 0.3840

Bootstrap
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

q25
weight 1.831789 1.244947 1.47 0.146 -.6511803 4.314758
length 2.845558 27.91648 0.10 0.919 -52.8321 58.52322

foreign 2209.925 911.6566 2.42 0.018 391.6836 4028.167
_cons -1879.775 2756.871 -0.68 0.498 -7378.18 3618.63

q50
weight 3.933588 2.732408 1.44 0.154 -1.516029 9.383205
length -41.25191 75.8087 -0.54 0.588 -192.4476 109.9438

foreign 3377.771 921.578 3.67 0.000 1539.742 5215.8
_cons 344.6494 6810.32 0.05 0.960 -13238.1 13927.4

q75
weight 9.22291 2.732795 3.37 0.001 3.772523 14.6733
length -220.7833 87.38042 -2.53 0.014 -395.058 -46.50854

foreign 3595.133 1153.239 3.12 0.003 1295.07 5895.196
_cons 20242.9 9000.697 2.25 0.028 2291.579 38194.23

The coefficient estimates above are the same as those previously estimated, although the standard error
estimates are a little different. sqreg obtains estimates of variance by bootstrapping. Rogers (1992)
provides evidence that, for quantile regression, the bootstrap standard errors are better than those
calculated analytically by Stata.

The important thing here, however, is that the full covariance matrix of the estimators has been
estimated and stored, and thus it is now possible to perform hypothesis tests. Are the effects of
weight the same at the 25th and 75th percentiles?

. test [q25]weight = [q75]weight

( 1) [q25]weight - [q75]weight = 0

F( 1, 70) = 8.29
Prob > F = 0.0053

It appears that they are not. We can obtain a confidence interval for the difference by using lincom:

. lincom [q75]weight-[q25]weight

( 1) - [q25]weight + [q75]weight = 0

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) 7.391121 2.567684 2.88 0.005 2.270036 12.51221

Indeed, we could test whether the weight and length sets of coefficients are equal at the three
quantiles estimated:

. quietly test [q25]weight = [q50]weight

. quietly test [q25]weight = [q75]weight, accum
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. quietly test [q25]length = [q50]length, accum

. test [q25]length = [q75]length, accum

( 1) [q25]weight - [q50]weight = 0
( 2) [q25]weight - [q75]weight = 0
( 3) [q25]length - [q50]length = 0
( 4) [q25]length - [q75]length = 0

F( 4, 70) = 2.21
Prob > F = 0.0767

iqreg focuses on one quantile comparison but presents results that are more easily interpreted:

. set seed 1001

. iqreg price weight length foreign, q(.25 .75) reps(100) nodots

.75-.25 Interquantile regression Number of obs = 74
bootstrap(100) SEs .75 Pseudo R2 = 0.3840

.25 Pseudo R2 = 0.1697

Bootstrap
price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 7.391121 2.467548 3.00 0.004 2.469752 12.31249
length -223.6288 83.09868 -2.69 0.009 -389.3639 -57.89376

foreign 1385.208 1193.557 1.16 0.250 -995.2672 3765.683
_cons 22122.68 9009.159 2.46 0.017 4154.478 40090.88

Looking only at the 0.25 and 0.75 quantiles (the interquartile range), the iqreg command output
is easily interpreted. Increases in weight correspond significantly to increases in price dispersion.
Increases in length correspond to decreases in price dispersion. The foreign variable does not
significantly change price dispersion.

Do not make too much of these results; the purpose of this example is simply to illustrate the
sqreg and iqreg commands and to do so in a context that suggests why analyzing dispersion might
be of interest.

lincom after sqreg produced the same t statistic for the interquartile range of weight, as did
the iqreg command above. In general, they will not agree exactly because of the randomness of
bootstrapping, unless the random-number seed is set to the same value before estimation (as was
done here).

Gould (1997a) presents simulation results showing that the coverage—the actual percentage of
confidence intervals containing the true value—for iqreg is appropriate.
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Saved results
qreg saves the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(q) quantile requested
e(q v) value of the quantile
e(sum adev) sum of absolute deviations
e(sum rdev) sum of raw deviations
e(f r) residual density estimate
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) qreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

iqreg saves the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(q0) lower quantile requested
e(q1) upper quantile requested
e(reps) number of replications
e(sumrdev0) lower quantile sum of raw deviations
e(sumrdev1) upper quantile sum of raw deviations
e(sumadev0) lower quantile sum of absolute deviations
e(sumadev1) upper quantile sum of absolute deviations
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) iqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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sqreg saves the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(n q) number of quantiles requested
e(q#) the quantiles requested
e(reps) number of replications
e(sumrdv#) sum of raw deviations for q#
e(sumadv#) sum of absolute deviations for q#
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) sqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(eqnames) names of equations
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

bsqreg saves the following in e():

Scalars
e(N) number of observations
e(df r) residual degrees of freedom
e(q) quantile requested
e(q v) value of the quantile
e(reps) number of replications
e(sum adev) sum of absolute deviations
e(sum rdev) sum of raw deviations
e(rank) rank of e(V)
e(convcode) 0 if converged; otherwise, return code for why nonconvergence

Macros
e(cmd) bsqreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample



qreg — Quantile regression 1627

qreg saves the following in r():

Scalars
r(N) number of observations
r(df m) model degrees of freedom
r(q) quantile requested
r(q v) value of the quantile
r(sum w) sum of the weights
r(sum adev) sum of absolute deviations
r(sum rdev) sum of raw deviations
r(f r) residual density estimate
r(ic) number of iterations
r(convcode) 1 if converged, 0 otherwise

Methods and formulas
qreg, iqreg, sqreg, and bsqreg are implemented as ado-files.

According to Stuart and Ord (1991, 1084), the method of minimum absolute deviations was first
proposed by Boscovich in 1757 and was later developed by Laplace; Stigler (1986, 39–55) and
Hald (1998, 97–103, 112–116) provide historical details. According to Bloomfield and Steiger (1980),
Harris (1950) later observed that the problem of minimum absolute deviations could be turned into the
linear programming problem that was first implemented by Wagner (1959). Interest has grown in this
method because of interest in robust methods. Statistical and computational properties of minimum
absolute deviation estimators are surveyed by Narula and Wellington (1982). Hao and Naiman (2007)
provide an excellent introduction to quantile-regression methods.

Define q as the quantile to be estimated; the median is q = 0.5. For each observation i, let ri be
the residual

ri = yi −
∑
j

βjxij

Define the multiplier hi

hi =
{

2q if ri > 0
2(1− q) otherwise

The quantity being minimized with respect to βj is
∑
i |ri|hi, so quantiles other than the median

are estimated by weighting the residuals. For example, if we want to estimate the 75th percentile,
we weight the negative residuals by 0.50 and the positive residuals by 1.50. It can be shown that the
criterion is minimized when 75% of the residuals are negative.

This is set up as a linear programming problem and is solved via linear programming techniques,
as suggested by Armstrong, Frome, and Kung (1979) and used by courtesy of Marcel Dekker, Inc.
The definition of convergence is exact in the sense that no amount of added iterations could improve
the solution. Each step is described by a set of observations through which the regression plane
passes, called the basis. A step is taken by replacing a point in the basis if the sum of weighted
absolute deviations can be improved. If this occurs, a line is printed in the iteration log. The linear
programming method is started by doing a weighted least-squares (WLS) regression to identify a
good set of observations to use as a starting basis. The WLS algorithm for q = 0.5 is taken from
Schlossmacher (1973) with a generalization for 0 < q < 1 implied from Hunter and Lange (2000).

The variances are estimated using a method suggested by Koenker and Bassett (1982). This method
can be put into a form recommended by Huber (1967) for M estimates, where

cov(β) = R−1
2 R1R−1

2
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R1 = X′WW′X (in the Huber formulation), W is a diagonal matrix with elements

Wii =


q/fresiduals(0) if r > 0
(1− q)/fresiduals(0) if r < 0
0 otherwise

and R2 is the design matrix X′X. This is derived from formula 3.11 in Koenker and Bassett, although
their notation is much different. fresiduals() refers to the density of the true residuals. Koenker and
Bassett leave much unspecified, including how to obtain a density estimate for the errors in real data.
At this point, we offer our contribution (Rogers 1993).

We first sort the residuals and locate the observation in the residuals corresponding to the quantile
in question, taking into account weights if they are applied. We then calculate wn, the square root of
the sum of the weights. Unweighted data are equivalent to weighted data in which each observation
has weight 1, resulting in wn =

√
n. For analytically weighted data, the weights are rescaled so that

the sum of the weights is the number of observations, resulting in
√
n again. For frequency-weighted

data, wn literally is the square root of the sum of the weights.

We locate the closest observation in each direction, such that the sum of weights for all closer
observations is wn. If we run off the end of the dataset, we stop. We calculate ws, the sum of weights
for all observations in this middle space. Typically, ws is slightly greater than wn.

If there are k parameters, then exactly k of the residuals must be zero. Thus we calculate an
adjusted weight wa = ws − k. The density estimate is the distance spanned by these observations
divided by wa. Because the distance spanned by this mechanism converges toward zero, this estimate
of density converges in probability to the true density.

The pseudo-R2 is calculated as

1− sum of weighted deviations about estimated quantile
sum of weighted deviations about raw quantile

This is based on the likelihood for a double-exponential distribution ehi|ri|.
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qreg postestimation — Postestimation tools for qreg, iqreg, sqreg, and bsqreg

Description
The following postestimation commands are available after qreg, iqreg, bsqreg, and sqreg:

Command Description

estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
For qreg, iqreg, and bsqreg

predict
[

type
]

newvar
[

if
] [

in
] [

,
[
xb | stdp | residuals

] ]
For sqreg

predict
[

type
]

newvar
[

if
] [

in
] [

, equation(eqno
[
,eqno

]
) statistic

]
statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
stddp standard error of the difference in linear predictions
residuals residuals

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

stddp is allowed only after you have fit a model using sqreg. The standard error of the difference
in linear predictions (x1jb− x2jb) between equations 1 and 2 is calculated.

residuals calculates the residuals, that is, yj − xjb.

equation(eqno
[
,eqno

]
) specifies the equation to which you are making the calculation.

equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean that the calculation is to be made for the first equation, equation(#2) would mean
the second, and so on. You could also refer to the equations by their names. equation(income)
would refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), results are the same as if you had specified equation(#1).

To use stddp, you must specify two equations. You might specify equation(#1, #2) or
equation(q80, q20) to indicate the 80th and 20th quantiles.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] qreg — Quantile regression

[U] 20 Estimation and postestimation commands
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query — Display system parameters

Syntax
query

[
memory | output | interface | graphics | efficiency | network |

update | trace | mata | other
]

Description
query displays the settings of various Stata parameters.

Remarks
query provides more system information than you will ever want to know. You do not need to

understand every line of output that query produces if all you need is one piece of information. Here
is what happens when you type query:

. query

Memory settings
set maxvar 5000 2048-32767; max. vars allowed
set matsize 400 10-11000; max. # vars in models
set niceness 5 0-10
set min_memory 0 0-1600gc
set max_memory . 32mc-1600gc or .
set segmentsize 32mc 1mc-32gc

Output settings
set more on
set rmsg off
set dp period may be period or comma
set linesize 80 characters
set pagesize 27 lines

set level 95 percent confidence intervals

set showbaselevels may be empty, off, on, or all
set showemptycells may be empty, off, or on
set showomitted may be empty, off, or on
set lstretch may be empty, off, or on

set cformat may be empty or a numerical format
set pformat may be empty or a numerical format
set sformat may be empty or a numerical format

set logtype smcl may be smcl or text
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Interface settings
set dockable on
set dockingguides on
set floatresults off
set floatwindows off
set locksplitters off
set pinnable on
set doublebuffer on

set linegap 1 pixels
set scrollbufsize 204800 characters
set fastscroll on
set reventries 5000 lines

set maxdb 50 dialog boxes

Graphics settings
set graphics on
set autotabgraphs off
set scheme s2color
set printcolor automatic may be automatic, asis, gs1, gs2, gs3
set copycolor automatic may be automatic, asis, gs1, gs2, gs3

Efficiency settings
set adosize 1000 kilobytes

Network settings
set checksum off
set timeout1 30 seconds
set timeout2 180 seconds

set httpproxy off
set httpproxyhost
set httpproxyport 80

set httpproxyauth off
set httpproxyuser
set httpproxypw

Update settings
set update_query on
set update_interval 7
set update_prompt on

Trace (programming debugging) settings
set trace off
set tracedepth 32000
set traceexpand on
set tracesep on
set traceindent on
set tracenumber off
set tracehilite
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Mata settings
set matastrict off
set matalnum off
set mataoptimize on
set matafavor space may be space or speed
set matacache 400 kilobytes
set matalibs lmatabase;lmataado;lmataopt
set matamofirst off

Other settings
set type float may be float or double
set maxiter 16000 max iterations for estimation commands
set searchdefault local may be local, net, or all
set seed X075bcd151f123bb5159a55e50022865746ad
set varabbrev on
set emptycells keep may be keep or drop
set processors 1

The output is broken into several divisions: memory, output, interface, graphics, efficiency, network,
update, trace, mata, and other settings. We will discuss each one in turn.

We generated the output above using Stata/SE for Windows. Here is what happens when we type
query and we are running Stata/IC for Mac:

. query

Memory settings
set maxvar 2048 (not settable in this version of Stata)
set matsize 400 10-800; max. # vars in model
set niceness 5 0-10
set min_memory 0 0-1600g
set max_memory . 32m-1600g or .
set segmentsize 32m 1m-32g

Output settings
set more on
set rmsg off
set dp period may be period or comma
set linesize 80 characters
set pagesize 25 lines

set level 95 percent confidence intervals

set showbaselevels may be empty, off, on, or all
set showemptycells may be empty, off, or on
set showomitted may be empty, off, or on
set lstretch may be empty, off, or on

set cformat may be empty or a numerical format
set pformat may be empty or a numerical format
set sformat may be empty or a numerical format

set logtype smcl may be smcl or text

set eolchar unix may be max or unix
set notifyuser on
set playsnd off
set include_bitmap on
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Interface settings
set revkeyboard on
set varkeyboard on
set smoothfonts on

set linegap 1 pixels
set scrollbufsize 204800 characters
set reventries 5000 lines

set maxdb 50 dialog boxes

Graphics settings
set graphics on
set scheme s2color
set printcolor automatic may be automatic, asis, gs1, gs2, gs3
set copycolor automatic may be automatic, asis, gs1, gs2, gs3

Efficiency settings
set adosize 1000 kilobytes

Network settings
set checksum off
set timeout1 30 seconds
set timeout2 180 seconds

set httpproxy off
set httpproxyhost
set httpproxyport 80

set httpproxyauth off
set httpproxyuser
set httpproxypw

Update settings
set update_query on
set update_interval 7
set update_prompt on

Trace (programming debugging) settings
set trace off
set tracedepth 32000
set traceexpand on
set tracesep on
set traceindent on
set tracenumber off
set tracehilite

Mata settings
set matastrict off
set matalnum off
set mataoptimize on
set matafavor space may be space or speed
set matacache 400 kilobytes
set matalibs lmatabase;lmataado;lmataopt
set matamofirst off
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Other settings
set type float may be float or double
set maxiter 16000 max iterations for estimation commands
set searchdefault local may be local, net, or all
set seed X075bcd151f123bb5159a55e50022865746ad
set varabbrev on
set emptycells keep may be keep or drop
set processors 1

Memory settings

Memory settings indicate how memory is allocated, the maximum number of variables, and the
maximum size of a matrix.

For more information, see

maxvar [D] memory
matsize [R] matsize

niceness [D] memory
min memory [D] memory
max memory [D] memory
segmentsize [D] memory

Output settings

Output settings show how Stata displays output on the screen and in log files.

For more information, see

more [R] more
rmsg [P] rmsg

dp [D] format
linesize [R] log
pagesize [R] more

level [R] level
showbaselevels [R] set showbaselevels
showemptycells [R] set showbaselevels

showomitted [R] set showbaselevels
cformat [R] set cformat
pformat [R] set cformat
sformat [R] set cformat

lstretch [R] set
logtype [R] log
eolchar [R] set

notifyuser [R] set
playsnd [R] set

include bitmap [R] set
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Interface settings

Interface settings control how Stata’s interface works.

For more information, see

dockable [R] set
dockingguides [R] set
floatresults [R] set
floatwindows [R] set

locksplitters [R] set
pinnable [R] set

doublebuffer [R] set
revkeyboard [R] set
varkeyboard [R] set
smoothfonts [R] set

linegap [R] set
scrollbufsize [R] set

fastscroll [R] set
reventries [R] set

maxdb [R] db

Graphics settings

Graphics settings indicate how Stata’s graphics are displayed.

For more information, see

graphics [G-2] set graphics
autotabgraphs [R] set

scheme [G-2] set scheme
printcolor [G-2] set printcolor
copycolor [G-2] set printcolor

Efficiency settings

The efficiency settings set the maximum amount of memory allocated to automatically loaded
do-files, the maximum number of remembered-contents dialog boxes, and the use of virtual memory.

For more information, see

adosize [P] sysdir

Network settings

Network settings determine how Stata interacts with the Internet.

For more information, see [R] netio.



1638 query — Display system parameters

Update settings

Update settings determine how Stata performs updates.

For more information, see [R] update.

Trace settings

Trace settings adjust Stata’s behavior and are particularly useful in debugging code.

For more information, see [P] trace.

Mata settings

Mata settings affect Mata’s system parameters.

For more information, see [M-3] mata set.

Other settings

The other settings are a miscellaneous collection.

For more information, see

type [D] generate
maxiter [R] maximize

searchdefault [R] search
seed [R] set seed

varabbrev [R] set
emptycells [R] set
processors [R] set

odbcmgr [D] odbc

In general, the parameters displayed by query can be changed by set; see [R] set.

Also see
[R] set — Overview of system parameters

[P] creturn — Return c-class values

[M-3] mata set — Set and display Mata system parameters
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ranksum — Equality tests on unmatched data

Syntax

Wilcoxon rank-sum test

ranksum varname
[

if
] [

in
]
, by(groupvar)

[
porder

]
Nonparametric equality-of-medians test

median varname
[

if
] [

in
] [

weight
]
, by(groupvar)

[
median options

]
ranksum options Description

Main
∗by(groupvar) grouping variable
porder probability that variable for first group is larger than variable for

second group

median options Description

Main
∗by(groupvar) grouping variable
exact perform Fisher’s exact test
medianties(below) assign values equal to the median to below group
medianties(above) assign values equal to the median to above group
medianties(drop) drop values equal to the median from the analysis
medianties(split) split values equal to the median equally between the two groups

∗by(groupvar) is required.
by is allowed with ranksum and median; see [D] by.
fweights are allowed with median; see [U] 11.1.6 weight.

Menu
ranksum

Statistics > Nonparametric analysis > Tests of hypotheses > Wilcoxon rank-sum test

median

Statistics > Nonparametric analysis > Tests of hypotheses > K-sample equality-of-medians test

Description
ranksum tests the hypothesis that two independent samples (that is, unmatched data) are from

populations with the same distribution by using the Wilcoxon rank-sum test, which is also known as
the Mann–Whitney two-sample statistic (Wilcoxon 1945; Mann and Whitney 1947).
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median performs a nonparametric k-sample test on the equality of medians. It tests the null
hypothesis that the k samples were drawn from populations with the same median. For two samples,
the chi-squared test statistic is computed both with and without a continuity correction.

ranksum and median are for use with unmatched data. For equality tests on matched data, see
[R] signrank.

Options for ranksum

� � �
Main �

by(groupvar) is required. It specifies the name of the grouping variable.

porder displays an estimate of the probability that a random draw from the first population is larger
than a random draw from the second population.

Options for median

� � �
Main �

by(groupvar) is required. It specifies the name of the grouping variable.

exact displays the significance calculated by Fisher’s exact test. For two samples, both one- and
two-sided probabilities are displayed.

medianties(below | above | drop | split) specifies how values equal to the overall median are to
be handled. The median test computes the median for varname by using all observations and then
divides the observations into those falling above the median and those falling below the median.
When values for an observation are equal to the sample median, they can be dropped from the
analysis by specifying medianties(drop); added to the group above or below the median by
specifying medianties(above) or medianties(below), respectively; or if there is more than
1 observation with values equal to the median, they can be equally divided into the two groups by
specifying medianties(split). If this option is not specified, medianties(below) is assumed.

Remarks

Example 1

We are testing the effectiveness of a new fuel additive. We run an experiment with 24 cars: 12
cars with the fuel treatment and 12 cars without. We input these data by creating a dataset with 24
observations. mpg records the mileage rating, and treat records 0 if the mileage corresponds to
untreated fuel and 1 if it corresponds to treated fuel.

. use http://www.stata-press.com/data/r12/fuel2

. ranksum mpg, by(treat)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

treat obs rank sum expected

0 12 128 150
1 12 172 150

combined 24 300 300
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unadjusted variance 300.00
adjustment for ties -4.04

adjusted variance 295.96

Ho: mpg(treat==0) = mpg(treat==1)
z = -1.279

Prob > |z| = 0.2010

These results indicate that the medians are not statistically different at any level smaller than 20.1%.
Similarly, the median test,

. median mpg, by(treat) exact

Median test

Greater
than the treat

median 0 1 Total

no 7 5 12
yes 5 7 12

Total 12 12 24

Pearson chi2(1) = 0.6667 Pr = 0.414
Fisher’s exact = 0.684

1-sided Fisher’s exact = 0.342

Continuity corrected:
Pearson chi2(1) = 0.1667 Pr = 0.683

fails to reject the null hypothesis that there is no difference between the two fuel additives.

Compare these results from these two tests with those obtained from the signrank and signtest
where we found significant differences; see [R] signrank. An experiment run on 24 different cars is
not as powerful as a before-and-after comparison using the same 12 cars.

Saved results
ranksum saves the following in r():
Scalars

r(N 1) sample size n1

r(N 2) sample size n2

r(z) z statistic
r(Var a) adjusted variance
r(group1) value of variable for first group
r(sum obs) actual sum of ranks for first group
r(sum exp) expected sum of ranks for first group
r(porder) probability that draw from first population is larger than draw from second population

median saves the following in r():
Scalars

r(N) sample size
r(chi2) Pearson’s χ2

r(p) significance of Pearson’s χ2

r(p exact) Fisher’s exact p
r(groups) number of groups compared
r(chi2 cc) continuity-corrected Pearson’s χ2

r(p cc) continuity-corrected significance
r(p1 exact) one-sided Fisher’s exact p
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Methods and formulas
ranksum and median are implemented as ado-files.

For a practical introduction to these techniques with an emphasis on examples rather than theory,
see Acock (2010), Bland (2000), or Sprent and Smeeton (2007). For a summary of these tests, see
Snedecor and Cochran (1989).

Methods and formulas are presented under the following headings:
ranksum
median

ranksum

For the Wilcoxon rank-sum test, there are two independent random variables, X1 and X2, and we
test the null hypothesis that X1 ∼ X2. We have a sample of size n1 from X1 and another of size
n2 from X2.

The data are then ranked without regard to the sample to which they belong. If the data are tied,
averaged ranks are used. Wilcoxon’s test statistic (1945) is the sum of the ranks for the observations
in the first sample:

T =
n1∑
i=1

R1i

Mann and Whitney’s U statistic (1947) is the number of pairs (X1i, X2j) such that X1i > X2j .
These statistics differ only by a constant:

U = T − n1(n1 + 1)
2

Again Fisher’s principle of randomization provides a method for calculating the distribution of
the test statistic, ties or not. The randomization distribution consists of the

(
n
n1

)
ways to choose n1

ranks from the set of all n = n1 + n2 ranks and assign them to the first sample.

It is a straightforward exercise to verify that

E(T ) =
n1(n+ 1)

2
and Var(T ) =

n1n2s
2

n
where s is the standard deviation of the combined ranks, ri, for both groups:

s2 =
1

n− 1

n∑
i=1

(ri − r)2

This formula for the variance is exact and holds both when there are no ties and when there are
ties and we use averaged ranks. (Indeed, the variance formula holds for the randomization distribution
of choosing n1 numbers from any set of n numbers.)

Using a normal approximation, we calculate

z =
T − E(T )√

Var(T )

When the porder option is specified, the probability

p =
U

n1n2

is computed.
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median
The median test examines whether it is likely that two or more samples came from populations

with the same median. The null hypothesis is that the samples were drawn from populations with
the same median. The alternative hypothesis is that at least one sample was drawn from a population
with a different median. The test should be used only with ordinal or interval data.

Assume that there are score values for k independent samples to be compared. The median test
is performed by first computing the median score for all observations combined, regardless of the
sample group. Each score is compared with this computed grand median and is classified as being
above the grand median, below the grand median, or equal to the grand median. Observations with
scores equal to the grand median can be dropped, added to the “above” group, added to the “below”
group, or split between the two groups.

Once all observations are classified, the data are cast into a 2×k contingency table, and a Pearson’s
chi-squared test or Fisher’s exact test is performed.� �

Henry Berthold Mann (1905–2000) was born in Vienna, Austria, where he completed a doctorate
in algebraic number theory. He moved to the United States in 1938 and for several years made
his livelihood by tutoring in New York. During this time, he proved a celebrated conjecture in
number theory and studied statistics at Columbia with Abraham Wald, with whom he wrote three
papers. After the war, he taught at Ohio State and the Universities of Wisconsin and Arizona.
In addition to his work in number theory and statistics, he made major contributions to algebra
and combinatorics.

Donald Ransom Whitney (1915–2007) studied at Oberlin, Princeton, and Ohio State Universities
and worked at the latter throughout his career. His PhD thesis under Henry Mann was on
nonparametric statistics. It was this work that produced the test that bears their names.� �
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Title

ratio — Estimate ratios

Syntax
Basic syntax

ratio
[

name:
]

varname
[
/
]

varname

Full syntax

ratio (
[

name:
]

varname
[
/
]

varname)[
(
[

name:
]

varname
[
/
]

varname) . . .
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

stdize(varname) variable identifying strata for standardization
stdweight(varname) weight variable for standardization
nostdrescale do not rescale the standard weight variable

if/in/over

over(varlist
[
, nolabel

]
) group over subpopulations defined by varlist; optionally,

suppress group labels

SE/Cluster

vce(vcetype) vcetype may be linearized, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
display options control column formats and line width

coeflegend display legend instead of statistics

bootstrap, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Ratios
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Description
ratio produces estimates of ratios, along with standard errors.

Options

� � �
Model �

stdize(varname) specifies that the point estimates be adjusted by direct standardization across the
strata identified by varname. This option requires the stdweight() option.

stdweight(varname) specifies the weight variable associated with the standard strata identified in
the stdize() option. The standardization weights must be constant within the standard strata.

nostdrescale prevents the standardization weights from being rescaled within the over() groups.
This option requires stdize() but is ignored if the over() option is not specified.

� � �
if/in/over �

over(varlist
[
, nolabel

]
) specifies that estimates be computed for multiple subpopulations, which

are identified by the different values of the variables in varlist.

When this option is supplied with one variable name, such as over(varname), the value labels of
varname are used to identify the subpopulations. If varname does not have labeled values (or there
are unlabeled values), the values themselves are used, provided that they are nonnegative integers.
Noninteger values, negative values, and labels that are not valid Stata names are substituted with
a default identifier.

When over() is supplied with multiple variable names, each subpopulation is assigned a unique
default identifier.

nolabel requests that value labels attached to the variables identifying the subpopulations be
ignored.

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that allow for intragroup correlation, and that use bootstrap or jackknife
methods; see [R] vce option.

vce(linearized), the default, uses the linearized or sandwich estimator of variance.

� � �
Reporting �

level(#); see [R] estimation options.

noheader prevents the table header from being displayed. This option implies nolegend.

nolegend prevents the table legend identifying the subpopulations from being displayed.

display options: cformat(% fmt) and nolstretch; see [R] estimation options.

The following option is available with ratio but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks

Example 1

Using the fuel data from example 2 of [R] ttest, we estimate the ratio of mileage for the cars
without the fuel treatment (mpg1) to those with the fuel treatment (mpg2).

. use http://www.stata-press.com/data/r12/fuel

. ratio myratio: mpg1/mpg2

Ratio estimation Number of obs = 12

myratio: mpg1/mpg2

Linearized
Ratio Std. Err. [95% Conf. Interval]

myratio .9230769 .032493 .8515603 .9945936

Using these results, we can test to see if this ratio is significantly different from one.

. test _b[myratio] = 1

( 1) myratio = 1

F( 1, 11) = 5.60
Prob > F = 0.0373

We find that the ratio is different from one at the 5% significance level but not at the 1% significance
level.

Example 2

Using state-level census data, we want to test whether the marriage rate is equal to the death rate.

. use http://www.stata-press.com/data/r12/census2
(1980 Census data by state)

. ratio (deathrate: death/pop) (marrate: marriage/pop)

Ratio estimation Number of obs = 50

deathrate: death/pop
marrate: marriage/pop

Linearized
Ratio Std. Err. [95% Conf. Interval]

deathrate .0087368 .0002052 .0083244 .0091492
marrate .0105577 .0006184 .009315 .0118005

. test _b[deathrate] = _b[marrate]

( 1) deathrate - marrate = 0

F( 1, 49) = 6.93
Prob > F = 0.0113
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Saved results
ratio saves the following in e():

Scalars
e(N) number of observations
e(N over) number of subpopulations
e(N stdize) number of standard strata
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom
e(rank) rank of e(V)

Macros
e(cmd) ratio
e(cmdline) command as typed
e(varlist) varlist
e(stdize) varname from stdize()
e(stdweight) varname from stdweight()
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(cluster) name of cluster variable
e(over) varlist from over()
e(over labels) labels from over() variables
e(over namelist) names from e(over labels)
e(namelist) ratio identifiers
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) vector of mean estimates
e(V) (co)variance estimates
e( N) vector of numbers of nonmissing observations
e( N stdsum) number of nonmissing observations within the standard strata
e( p stdize) standardizing proportions
e(error) error code corresponding to e(b)

Functions
e(sample) marks estimation sample

Methods and formulas
ratio is implemented as an ado-file.

Methods and formulas are presented under the following headings:

The ratio estimator
Survey data
The survey ratio estimator
The standardized ratio estimator
The poststratified ratio estimator
The standardized poststratified ratio estimator
Subpopulation estimation
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The ratio estimator

Let R = Y/X be the ratio to be estimated, where Y and X are totals; see [R] total. The estimate
for R is R̂ = Ŷ /X̂ (the ratio of the sample totals). From the delta method (that is, a first-order
Taylor expansion), the approximate variance of the sampling distribution of the linearized R̂ is

V (R̂) ≈ 1
X2

{
V (Ŷ )− 2RCov(Ŷ , X̂) +R2V (X̂)

}
Direct substitution of X̂ , R̂, and the estimated variances and covariance of X̂ and Ŷ leads to the
following variance estimator:

V̂ (R̂) =
1

X̂2

{
V̂ (Ŷ )− 2R̂Ĉov(Ŷ , X̂) + R̂2V̂ (X̂)

}
(1)

Survey data

See [SVY] variance estimation, [SVY] direct standardization, and [SVY] poststratification for
discussions that provide background information for the following formulas.

The survey ratio estimator

Let Yj and Xj be survey items for the jth individual in the population, where j = 1, . . . ,M and
M is the size of the population. The associated population ratio for the items of interest is R = Y/X
where

Y =
M∑
j=1

Yj and X =
M∑
j=1

Xj

Let yj and xj be the corresponding survey items for the jth sampled individual from the population,
where j = 1, . . . ,m and m is the number of observations in the sample.

The estimator R̂ for the population ratio R is R̂ = Ŷ /X̂ , where

Ŷ =
m∑
j=1

wjyj and X̂ =
m∑
j=1

wjxj

and wj is a sampling weight. The score variable for the ratio estimator is

zj(R̂) =
yj − R̂xj

X̂
=
X̂yj − Ŷ xj

X̂2
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The standardized ratio estimator
Let Dg denote the set of sampled observations that belong to the gth standard stratum and define

IDg (j) to indicate if the jth observation is a member of the gth standard stratum; where g = 1,
. . . , LD and LD is the number of standard strata. Also, let πg denote the fraction of the population
that belongs to the gth standard stratum, thus π1 + · · ·+ πLD = 1. Note that πg is derived from the
stdweight() option.

The estimator for the standardized ratio is

R̂D =
LD∑
g=1

πg
Ŷg

X̂g

where

Ŷg =
m∑
j=1

IDg (j)wjyj

and X̂g is similarly defined. The score variable for the standardized ratio is

zj(R̂D) =
LD∑
g=1

πgIDg (j)
X̂gyj − Ŷgxj

X̂2
g

The poststratified ratio estimator

Let Pk denote the set of sampled observations that belong to poststratum k, and define IPk(j)
to indicate if the jth observation is a member of poststratum k, where k = 1, . . . , LP and LP is
the number of poststrata. Also, let Mk denote the population size for poststratum k. Pk and Mk are
identified by specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified ratio is

R̂P =
Ŷ P

X̂P

where

Ŷ P =
LP∑
k=1

Mk

M̂k

Ŷk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)wjyj

and X̂P is similarly defined. The score variable for the poststratified ratio is

zj(R̂P ) =
zj(Ŷ P )− R̂P zj(X̂P )

X̂P
=
X̂P zj(Ŷ P )− Ŷ P zj(X̂P )

(X̂P )2

where

zj(Ŷ P ) =
LP∑
k=1

IPk(j)
Mk

M̂k

(
yj −

Ŷk

M̂k

)

and zj(X̂P ) is similarly defined.
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The standardized poststratified ratio estimator

The estimator for the standardized poststratified ratio is

R̂DP =
LD∑
g=1

πg
Ŷ Pg

X̂P
g

where

Ŷ Pg =
Lp∑
k=1

Mk

M̂k

Ŷg,k =
Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)wjyj

and X̂P
g is similarly defined. The score variable for the standardized poststratified ratio is

zj(R̂DP ) =
LD∑
g=1

πg
X̂P
g zj(Ŷ

P
g )− Ŷ Pg zj(X̂P

g )

(X̂P
g )2

where

zj(Ŷ Pg ) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)yj −

Ŷg,k

M̂k

}
and zj(X̂P

g ) is similarly defined.

Subpopulation estimation
Let S denote the set of sampled observations that belong to the subpopulation of interest, and

define IS(j) to indicate if the jth observation falls within the subpopulation.

The estimator for the subpopulation ratio is R̂S = Ŷ S/X̂S , where

Ŷ S =
m∑
j=1

IS(j)wjyj and X̂S =
m∑
j=1

IS(j)wjxj

Its score variable is

zj(R̂S) = IS(j)
yj − R̂Sxj

X̂S
= IS(j)

X̂Syj − Ŷ Sxj
(X̂S)2

The estimator for the standardized subpopulation ratio is

R̂DS =
LD∑
g=1

πg
Ŷ Sg

X̂S
g

where

Ŷ Sg =
m∑
j=1

IDg (j)IS(j)wjyj

and X̂S
g is similarly defined. Its score variable is

zj(R̂DS) =
LD∑
g=1

πgIDg (j)IS(j)
X̂S
g yj − Ŷ Sg xj

(X̂S
g )2
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The estimator for the poststratified subpopulation ratio is

R̂PS =
Ŷ PS

X̂PS

where

Ŷ PS =
LP∑
k=1

Mk

M̂k

Ŷ Sk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)IS(j)wjyj

and X̂PS is similarly defined. Its score variable is

zj(R̂PS) =
X̂PSzj(Ŷ PS)− Ŷ PSzj(X̂PS)

(X̂PS)2

where

zj(Ŷ PS) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IS(j) yj −

Ŷ Sk

M̂k

}

and zj(X̂PS) is similarly defined.

The estimator for the standardized poststratified subpopulation ratio is

R̂DPS =
LD∑
g=1

πg
Ŷ PSg

X̂PS
g

where

Ŷ PSg =
Lp∑
k=1

Mk

M̂k

Ŷ Sg,k =
Lp∑
k=1

Mk

M̂k

m∑
j=1

IDg (j)IPk(j)IS(j)wjyj

and X̂PS
g is similarly defined. Its score variable is

zj(R̂DPS) =
LD∑
g=1

πg
X̂PS
g zj(Ŷ PSg )− Ŷ PSg zj(X̂PS

g )

(X̂PS
g )2

where

zj(Ŷ PSg ) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IDg (j)IS(j) yj −

Ŷ Sg,k

M̂k

}

and zj(X̂PS
g ) is similarly defined.
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Also see
[R] ratio postestimation — Postestimation tools for ratio

[R] mean — Estimate means

[R] proportion — Estimate proportions

[R] total — Estimate totals

[MI] estimation — Estimation commands for use with mi estimate

[SVY] direct standardization — Direct standardization of means, proportions, and ratios

[SVY] poststratification — Poststratification for survey data

[SVY] subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands



Title

ratio postestimation — Postestimation tools for ratio

Description
The following postestimation commands are available after ratio:

Command Description

estat VCE
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks
For examples of the use of test after ratio, see [R] ratio.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] ratio — Estimate ratios

[SVY] svy postestimation — Postestimation tools for svy

[U] 20 Estimation and postestimation commands
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Title

reg3 — Three-stage estimation for systems of simultaneous equations

Syntax
Basic syntax

reg3 (depvar1 varlist1) (depvar2 varlist2) . . . (depvarN varlistN)
[

if
] [

in
] [

weight
]

Full syntax

reg3 (
[
eqname1:

]
depvar1a

[
depvar1b . . . =

]
varlist1

[
, noconstant

]
)

(
[
eqname2:

]
depvar2a

[
depvar2b . . . =

]
varlist2

[
, noconstant

]
)

. . .

(
[
eqnameN:

]
depvarNa

[
depvarNb . . . =

]
varlistN

[
, noconstant

]
)[

if
] [

in
] [

weight
] [

, options
]

options Description

Model

ireg3 iterate until estimates converge
constraints(constraints) apply specified linear constraints

Model 2

exog(varlist) exogenous variables not specified in system equations
endog(varlist) additional right-hand-side endogenous variables
inst(varlist) full list of exogenous variables
allexog all right-hand-side variables are exogenous
noconstant suppress constant from instrument list

Est. method

3sls three-stage least squares; the default
2sls two-stage least squares
ols ordinary least squares (OLS)
sure seemingly unrelated regression estimation (SURE)
mvreg sure with OLS degrees-of-freedom adjustment
corr(correlation) unstructured or independent correlation structure; default is

unstructured

df adj.

small report small-sample statistics
dfk use small-sample adjustment
dfk2 use alternate adjustment
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Reporting

level(#) set confidence level; default is level(95)

first report first-stage regression
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimization options control the optimization process; seldom used

noheader suppress display of header
notable suppress display of coefficient table
nofooter suppress display of footer
coeflegend display legend instead of statistics

varlist1, . . . , varlistN and the exog() and the inst() varlist may contain factor variables; see
[U] 11.4.3 Factor variables. You must have the same levels of factor variables in all equations that have factor
variables.

depvar and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
noheader, notable, nofooter, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Explicit equation naming (eqname:) cannot be combined with multiple dependent variables in an
equation specification.

Menu
Statistics > Endogenous covariates > Three-stage least squares

Description
reg3 estimates a system of structural equations, where some equations contain endogenous variables

among the explanatory variables. Estimation is via three-stage least squares (3SLS); see Zellner and
Theil (1962). Typically, the endogenous explanatory variables are dependent variables from other
equations in the system. reg3 supports iterated GLS estimation and linear constraints.

reg3 can also estimate systems of equations by seemingly unrelated regression estimation (SURE),
multivariate regression (MVREG), and equation-by-equation ordinary least squares (OLS) or two-stage
least squares (2SLS).

Nomenclature
Under 3SLS or 2SLS estimation, a structural equation is defined as one of the equations specified

in the system. A dependent variable will have its usual interpretation as the left-hand-side variable
in an equation with an associated disturbance term. All dependent variables are explicitly taken to
be endogenous to the system and are treated as correlated with the disturbances in the system’s
equations. Unless specified in an endog() option, all other variables in the system are treated as
exogenous to the system and uncorrelated with the disturbances. The exogenous variables are taken
to be instruments for the endogenous variables.
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Options

� � �
Model �

ireg3 causes reg3 to iterate over the estimated disturbance covariance matrix and parameter estimates
until the parameter estimates converge. Although the iteration is usually successful, there is no
guarantee that it will converge to a stable point. Under SURE, this iteration converges to the
maximum likelihood estimates.

constraints(constraints); see [R] estimation options.

� � �
Model 2 �

exog(varlist) specifies additional exogenous variables that are included in none of the system equations.
This can occur when the system contains identities that are not estimated. If implicitly exogenous
variables from the equations are listed here, reg3 will just ignore the additional information.
Specified variables will be added to the exogenous variables in the system and used in the first
stage as instruments for the endogenous variables. By specifying dependent variables from the
structural equations, you can use exog() to override their endogeneity.

endog(varlist) identifies variables in the system that are not dependent variables but are endogenous
to the system. These variables must appear in the variable list of at least one equation in the
system. Again the need for this identification often occurs when the system contains identities.
For example, a variable that is the sum of an exogenous variable and a dependent variable may
appear as an explanatory variable in some equations.

inst(varlist) specifies a full list of all exogenous variables and may not be used with the endog() or
exog() options. It must contain a full list of variables to be used as instruments for the endogenous
regressors. Like exog(), the list may contain variables not specified in the system of equations.
This option can be used to achieve the same results as the endog() and exog() options, and the
choice is a matter of convenience. Any variable not specified in the varlist of the inst() option
is assumed to be endogenous to the system. As with exog(), including the dependent variables
from the structural equations will override their endogeneity.

allexog indicates that all right-hand-side variables are to be treated as exogenous—even if they
appear as the dependent variable of another equation in the system. This option can be used to
enforce a SURE or MVREG estimation even when some dependent variables appear as regressors.

noconstant; see [R] estimation options.

� � �
Est. method �

3sls specifies the full 3SLS estimation of the system and is the default for reg3.

2sls causes reg3 to perform equation-by-equation 2SLS on the full system of equations. This option
implies dfk, small, and corr(independent).

Cross-equation testing should not be performed after estimation with this option. With 2sls, no
covariance is estimated between the parameters of the equations. For cross-equation testing, use
3sls.

ols causes reg3 to perform equation-by-equation OLS on the system—even if dependent variables
appear as regressors or the regressors differ for each equation; see [R] mvreg. ols implies allexog,
dfk, small, and corr(independent); nodfk and nosmall may be specified to override dfk
and small.

The covariance of the coefficients between equations is not estimated under this option, and
cross-equation tests should not be performed after estimation with ols. For cross-equation testing,
use sure or 3sls (the default).
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sure causes reg3 to perform a SURE of the system—even if dependent variables from some equations
appear as regressors in other equations; see [R] sureg. sure is a synonym for allexog.

mvreg is identical to sure, except that the disturbance covariance matrix is estimated with an OLS
degrees-of-freedom adjustment—the dfk option. If the regressors are identical for all equations,
the parameter point estimates will be the standard MVREG results. If any of the regressors differ,
the point estimates are those for SURE with an OLS degrees-of-freedom adjustment in computing
the covariance matrix. nodfk and nosmall may be specified to override dfk and small.

corr(correlation) specifies the assumed form of the correlation structure of the equation disturbances
and is rarely requested explicitly. For the family of models fit by reg3, the only two allowable
correlation structures are unstructured and independent. The default is unstructured.

This option is used almost exclusively to estimate a system of equations by 2SLS or to perform OLS
regression with reg3 on multiple equations. In these cases, the correlation is set to independent,
forcing reg3 to treat the covariance matrix of equation disturbances as diagonal in estimating model
parameters. Thus a set of two-stage coefficient estimates can be obtained if the system contains
endogenous right-hand-side variables, or OLS regression can be imposed, even if the regressors
differ across equations. Without imposing independent disturbances, reg3 would estimate the
former by 3SLS and the latter by SURE.

Any tests performed after estimation with the independent option will treat coefficients in
different equations as having no covariance; cross-equation tests should not be used after specifying
corr(independent).

� � �
df adj. �

small specifies that small-sample statistics be computed. It shifts the test statistics from χ2 and
z statistics to F statistics and t statistics. This option is intended primarily to support MVREG.
Although the standard errors from each equation are computed using the degrees of freedom for
the equation, the degrees of freedom for the t statistics are all taken to be those for the first
equation. This approach poses no problem under MVREG because the regressors are the same
across equations.

dfk specifies the use of an alternative divisor in computing the covariance matrix for the equation
residuals. As an asymptotically justified estimator, reg3 by default uses the number of sample
observations n as a divisor. When the dfk option is set, a small-sample adjustment is made, and
the divisor is taken to be

√
(n− ki)(n− kj), where ki and kj are the numbers of parameters in

equations i and j, respectively.

dfk2 specifies the use of an alternative divisor in computing the covariance matrix for the equation
errors. When the dfk2 option is set, the divisor is taken to be the mean of the residual degrees
of freedom from the individual equations.

� � �
Reporting �

level(#); see [R] estimation options.

first requests that the first-stage regression results be displayed during estimation.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.
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� � �
Optimization �

optimization options control the iterative process that minimizes the sum of squared errors when
ireg3 is specified. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimizer stops and presents the current results, even if the convergence tolerance has not been
reached. The default value of iterate() is the current value of set maxiter (see [R] maximize),
which is iterate(16000) if maxiter has not been changed.

trace adds to the iteration log a display of the current parameter vector.

nolog suppresses the display of the iteration log.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

The following options are available with reg3 but are not shown in the dialog box:

noheader suppresses display of the header reporting the estimation method and the table of equation
summary statistics.

notable suppresses display of the coefficient table.

nofooter suppresses display of the footer reporting the list of endogenous and exogenous variables
in the model.

coeflegend; see [R] estimation options.

Remarks
reg3 estimates systems of structural equations where some equations contain endogenous variables

among the explanatory variables. Generally, these endogenous variables are the dependent variables of
other equations in the system, though not always. The disturbance is correlated with the endogenous
variables—violating the assumptions of OLS. Further, because some of the explanatory variables are the
dependent variables of other equations in the system, the error terms among the equations are expected
to be correlated. reg3 uses an instrumental-variables approach to produce consistent estimates and
generalized least squares (GLS) to account for the correlation structure in the disturbances across the
equations. Good general references on three-stage estimation include Davidson and MacKinnon (1993,
651–661) and Greene (2012, 331–334).

Three-stage least squares can be thought of as producing estimates from a three-step process.

Step 1. Develop instrumented values for all endogenous variables. These instrumented values can
simply be considered as the predicted values resulting from a regression of each endogenous
variable on all exogenous variables in the system. This stage is identical to the first step in 2SLS
and is critical for the consistency of the parameter estimates.

Step 2. Obtain a consistent estimate for the covariance matrix of the equation disturbances. These
estimates are based on the residuals from a 2SLS estimation of each structural equation.

Step 3. Perform a GLS-type estimation using the covariance matrix estimated in the second stage and
with the instrumented values in place of the right-hand-side endogenous variables.
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Technical note

The estimation and use of the covariance matrix of disturbances in three-stage estimation is almost
identical to the SURE method—sureg. As with SURE, using this covariance matrix improves the
efficiency of the three-stage estimator. Even without the covariance matrix, the estimates would be
consistent. (They would be 2SLS estimates.) This improvement in efficiency comes with a caveat. All
the parameter estimates now depend on the consistency of the covariance matrix estimates. If one
equation in the system is misspecified, the disturbance covariance estimates will be inconsistent, and
the resulting coefficients will be biased and inconsistent. Alternatively, if each equation is estimated
separately by 2SLS ([R] regress), only the coefficients in the misspecified equation are affected.

Technical note
If an equation is just identified, the 3SLS point estimates for that equation are identical to the 2SLS

estimates. However, as with sureg, even if all equations are just identified, fitting the model via
reg3 has at least one advantage over fitting each equation separately via ivregress; by using reg3,
tests involving coefficients in different equations can be performed easily using test or testnl.

Example 1

A simple macroeconomic model relates consumption (consump) to private and government wages
paid (wagepriv and wagegovt). Simultaneously, private wages depend on consumption, total gov-
ernment expenditures (govt), and the lagged stock of capital in the economy (capital1). Although
this is not a plausible model, it does meet the criterion of being simple. This model could be written
as

consump = β0 + β1 wagepriv + β2 wagegovt + ε1

wagepriv = β3 + β4 consump + β5 govt + β6 capital1 + ε2

If we assume that this is the full system, consump and wagepriv will be endogenous variables,
with wagegovt, govt, and capital1 exogenous. Data for the U.S. economy on these variables are
taken from Klein (1950). This model can be fit with reg3 by typing
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. use http://www.stata-press.com/data/r12/klein

. reg3 (consump wagepriv wagegovt) (wagepriv consump govt capital1)

Three-stage least-squares regression

Equation Obs Parms RMSE "R-sq" chi2 P

consump 22 2 1.776297 0.9388 208.02 0.0000
wagepriv 22 3 2.372443 0.8542 80.04 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
wagepriv .8012754 .1279329 6.26 0.000 .5505314 1.052019
wagegovt 1.029531 .3048424 3.38 0.001 .432051 1.627011

_cons 19.3559 3.583772 5.40 0.000 12.33184 26.37996

wagepriv
consump .4026076 .2567312 1.57 0.117 -.1005764 .9057916

govt 1.177792 .5421253 2.17 0.030 .1152461 2.240338
capital1 -.0281145 .0572111 -0.49 0.623 -.1402462 .0840173

_cons 14.63026 10.26693 1.42 0.154 -5.492552 34.75306

Endogenous variables: consump wagepriv
Exogenous variables: wagegovt govt capital1

Without showing the 2SLS results, we note that the consumption function in this system falls under
the conditions noted earlier. That is, the 2SLS and 3SLS coefficients for the equation are identical.

Example 2

Some of the most common simultaneous systems encountered are supply-and-demand models. A
simple system could be specified as

qDemand = β0 + β1 price + β2 pcompete + β3 income + ε1

qSupply = β4 + β5 price + β6 praw + ε2

Equilibrium condition: quantity = qDemand = qSupply

where
quantity is the quantity of a product produced and sold,
price is the price of the product,
pcompete is the price of a competing product,
income is the average income level of consumers, and
praw is the price of raw materials used to produce the product.

In this system, price is assumed to be determined simultaneously with demand. The important
statistical implications are that price is not a predetermined variable and that it is correlated with
the disturbances of both equations. The system is somewhat unusual: quantity is associated with
two disturbances. This fact really poses no problem because the disturbances are specified on the
behavioral demand and supply equations—two separate entities. Often one of the two equations is
rewritten to place price on the left-hand side, making this endogeneity explicit in the specification.
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To provide a concrete illustration of the effects of simultaneous equations, we can simulate data
for the above system by using known coefficients and disturbance properties. Specifically, we will
simulate the data as

qDemand = 40− 1.0 price + 0.25 pcompete + 0.5 income + ε1

qSupply = 0.5 price− 0.75 praw + ε2

where

ε1 ∼ N(0, 2.4)

ε2 ∼ N(0, 3.8)

For comparison, we can estimate the supply and demand equations separately by OLS. The estimates
for the demand equation are

. use http://www.stata-press.com/data/r12/supDem

. regress quantity price pcompete income

Source SS df MS Number of obs = 49
F( 3, 45) = 1.00

Model 23.1579302 3 7.71931008 Prob > F = 0.4004
Residual 346.459313 45 7.69909584 R-squared = 0.0627

Adj R-squared = 0.0002
Total 369.617243 48 7.70035923 Root MSE = 2.7747

quantity Coef. Std. Err. t P>|t| [95% Conf. Interval]

price .1186265 .1716014 0.69 0.493 -.2269965 .4642496
pcompete .0946416 .1200815 0.79 0.435 -.1472149 .3364981

income .0785339 .1159867 0.68 0.502 -.1550754 .3121432
_cons 7.563261 5.019479 1.51 0.139 -2.54649 17.67301

The OLS estimates for the supply equation are

. regress quantity price praw

Source SS df MS Number of obs = 49
F( 2, 46) = 35.71

Model 224.819549 2 112.409774 Prob > F = 0.0000
Residual 144.797694 46 3.14777596 R-squared = 0.6082

Adj R-squared = 0.5912
Total 369.617243 48 7.70035923 Root MSE = 1.7742

quantity Coef. Std. Err. t P>|t| [95% Conf. Interval]

price .724675 .1095657 6.61 0.000 .5041307 .9452192
praw -.8674796 .1066114 -8.14 0.000 -1.082077 -.652882

_cons -6.97291 3.323105 -2.10 0.041 -13.66197 -.283847

Examining the coefficients from these regressions, we note that they are not close to the known
parameters used to generate the simulated data. In particular, the positive coefficient on price in
the demand equation stands out. We constructed our simulated data to be consistent with economic
theory—people demand less of a product if its price rises and more if their personal income rises.
Although the price coefficient is statistically insignificant, the positive value contrasts starkly with
what is predicted from economic price theory and the −1.0 value that we used in the simulation.
Likewise, we are disappointed with the insignificance and level of the coefficient on average income.
The supply equation has correct signs on the two main parameters, but their levels are different
from the known values. In fact, the coefficient on price (0.724675) is different from the simulated
parameter (0.5) at the 5% level of significance.
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All these problems are to be expected. We explicitly constructed a simultaneous system of equations
that violated one of the assumptions of least squares. Specifically, the disturbances were correlated
with one of the regressors—price.

Two-stage least squares can be used to address the correlation between regressors and disturbances.
Using instruments for the endogenous variable, price, 2SLS will produce consistent estimates of the
parameters in the system. Let’s use ivregress (see [R] ivregress) to see how our simulated system
behaves when fit using 2SLS.

. ivregress 2sls quantity (price = praw) pcompete income

Instrumental variables (2SLS) regression Number of obs = 49
Wald chi2(3) = 8.77
Prob > chi2 = 0.0326
R-squared = .
Root MSE = 3.7333

quantity Coef. Std. Err. z P>|z| [95% Conf. Interval]

price -1.015817 .374209 -2.71 0.007 -1.749253 -.282381
pcompete .3319504 .172912 1.92 0.055 -.0069508 .6708517

income .5090607 .1919482 2.65 0.008 .1328491 .8852723
_cons 39.89988 10.77378 3.70 0.000 18.78366 61.01611

Instrumented: price
Instruments: pcompete income praw

. ivregress 2sls quantity (price = pcompete income) praw

Instrumental variables (2SLS) regression Number of obs = 49
Wald chi2(2) = 39.25
Prob > chi2 = 0.0000
R-squared = 0.5928
Root MSE = 1.7525

quantity Coef. Std. Err. z P>|z| [95% Conf. Interval]

price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213

_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Instrumented: price
Instruments: praw pcompete income

We are now much happier with the estimation results. All the coefficients from both equations are
close to the true parameter values for the system. In particular, the coefficients are all well within
95% confidence intervals for the parameters. The missing R-squared in the demand equation seems
unusual; we will discuss that more later.

Finally, this system could be estimated using 3SLS. To demonstrate how large systems might be
handled and to avoid multiline commands, we will use global macros (see [P] macro) to hold the
specifications for our equations.

. global demand "(qDemand: quantity price pcompete income)"

. global supply "(qSupply: quantity price praw)"

. reg3 $demand $supply, endog(price)

We must specify price as endogenous because it does not appear as a dependent variable in either
equation. Without this option, reg3 would assume that there are no endogenous variables in the
system and produce seemingly unrelated regression (sureg) estimates. The reg3 output from our
series of commands is
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Three-stage least-squares regression

Equation Obs Parms RMSE "R-sq" chi2 P

qDemand 49 3 3.739686 -0.8540 8.68 0.0338
qSupply 49 2 1.752501 0.5928 39.25 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

qDemand
price -1.014345 .3742036 -2.71 0.007 -1.74777 -.2809194

pcompete .2647206 .1464194 1.81 0.071 -.0222561 .5516973
income .5299146 .1898161 2.79 0.005 .1578819 .9019472
_cons 40.08749 10.77072 3.72 0.000 18.97726 61.19772

qSupply
price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213

_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Endogenous variables: quantity price
Exogenous variables: pcompete income praw

The use of 3SLS over 2SLS is essentially an efficiency issue. The coefficients of the demand equation
from 3SLS are close to the coefficients from two-stage least squares, and those of the supply equation
are identical. The latter case was mentioned earlier for systems with some exactly identified equations.
However, even for the demand equation, we do not expect the coefficients to change systematically.
What we do expect from three-stage least squares are more precise estimates of the parameters given
the validity of our specification and reg3’s use of the covariances among the disturbances.

Let’s summarize the results. With OLS, we got obviously biased estimates of the parameters. No
amount of data would have improved the OLS estimates—they are inconsistent in the face of the
violated OLS assumptions. With 2SLS, we obtained consistent estimates of the parameters, and these
would have improved with more data. With 3SLS, we obtained consistent estimates of the parameters
that are more efficient than those obtained by 2SLS.

Technical note
We noted earlier that the R-squared was missing from the two-stage estimates of the demand

equation. Now we see that the R-squared is negative for the three-stage estimates of the same equation.
How can we have a negative R-squared?

In most estimators, other than least squares, the R-squared is no more than a summary measure of
the overall in-sample predictive power of the estimator. The computational formula for R-squared is
R-squared = 1− RSS/TSS, where RSS is the residual sum of squares (sum of squared residuals) and
TSS is the total sum of squared deviations about the mean of the dependent variable. In a standard
linear model with a constant, the model from which the TSS is computed is nested within the full
model from which RSS is computed—they both have a constant term based on the same data. Thus
it must be that TSS ≥ RSS and R-squared is constrained between 0 and 1.

For 2SLS and 3SLS, some of the regressors enter the model as instruments when the parameters
are estimated. However, because our goal is to fit the structural model, the actual values, not the
instruments for the endogenous right-hand-side variables, are used to determine R-squared. The model
residuals are computed over a different set of regressors from those used to fit the model. The two-
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or three-stage estimates are no longer nested within a constant-only model of the dependent variable,
and the residual sum of squares is no longer constrained to be smaller than the total sum of squares.

A negative R-squared in 3SLS should be taken for exactly what it is—an indication that the
structural model predicts the dependent variable worse than a constant-only model. Is this a problem?
It depends on the application. Three-stage least squares applied to our contrived supply-and-demand
example produced good estimates of the known true parameters. Still, the demand equation produced
an R-squared of −0.854. How do we feel about our parameter estimates? This should be determined
by the estimates themselves, their associated standard errors, and the overall model significance. On
this basis, negative R-squared and all, we feel pretty good about all the parameter estimates for both
the supply and demand equations. Would we want to make predictions about equilibrium quantity by
using the demand equation alone? Probably not. Would we want to make these quantity predictions
by using the supply equation? Possibly, because based on in-sample predictions, they seem better
than those from the demand equations. However, both the supply and demand estimates are based on
limited information. If we are interested in predicting quantity, a reduced-form equation containing
all our independent variables would usually be preferred.

Technical note
As a matter of syntax, we could have specified the supply-and-demand model on one line without

using global macros.

. reg3 (quantity price pcompete income) (quantity price praw), endog(price)

Three-stage least-squares regression

Equation Obs Parms RMSE "R-sq" chi2 P

quantity 49 3 3.739686 -0.8540 8.68 0.0338
2quantity 49 2 1.752501 0.5928 39.25 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

quantity
price -1.014345 .3742036 -2.71 0.007 -1.74777 -.2809194

pcompete .2647206 .1464194 1.81 0.071 -.0222561 .5516973
income .5299146 .1898161 2.79 0.005 .1578819 .9019472
_cons 40.08749 10.77072 3.72 0.000 18.97726 61.19772

2quantity
price .5773133 .1749974 3.30 0.001 .2343247 .9203019
praw -.7835496 .1312414 -5.97 0.000 -1.040778 -.5263213

_cons -2.550694 5.273067 -0.48 0.629 -12.88571 7.784327

Endogenous variables: quantity price
Exogenous variables: pcompete income praw

However, here reg3 has been forced to create a unique equation name for the supply equation—
2quantity. Both the supply and demand equations could not be designated as quantity, so a
number was prefixed to the name for the supply equation.
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We could have specified

. reg3 (qDemand: quantity price pcompete income) (qSupply: quantity price praw),
> endog(price)

and obtained the same results and equation labeling as when we used global macros to hold the
equation specifications.

Without explicit equation names, reg3 always assumes that the dependent variable should be
used to name equations. When each equation has a different dependent variable, this rule causes
no problems and produces easily interpreted result tables. If the same dependent variable appears in
more than one equation, however, reg3 will create a unique equation name based on the dependent
variable name. Because equation names must be used for cross-equation tests, you have more control
in this situation if explicit names are placed on the equations.

Example 3: Using the full syntax of reg3

Klein’s (1950) model of the U.S. economy is often used to demonstrate system estimators. It
contains several common features that will serve to demonstrate the full syntax of reg3. The Klein
model is defined by the following seven relationships:

c = β0 + β1p + β2p1 + β3w + ε1 (1)
i = β4 + β5p + β6p1 + β7k1 + ε2 (2)
wp = β8 + β9y + β10y1 + β11yr + ε3 (3)
y = c + i + g (4)
p = y− t− wp (5)
k = k1 + i (6)
w = wg + wp (7)

The variables in the model are listed below. Two sets of variable names are shown. The concise
first name uses traditional economics mnemonics, whereas the second name provides more guidance
for everyone else. The concise names serve to keep the specification of the model small (and quite
understandable to economists).

Short name Long name Variable definition Type

c consump Consumption endogenous
p profits Private industry profits endogenous
p1 profits1 Last year’s private industry profits exogenous
wp wagepriv Private wage bill endogenous
wg wagegovt Government wage bill exogenous
w wagetot Total wage bill endogenous
i invest Investment endogenous
k1 capital1 Last year’s level of capital stock exogenous
y totinc Total income/demand endogenous
y1 totinc1 Last year’s total income exogenous
g govt Government spending exogenous
t taxnetx Indirect bus. taxes + net exports exogenous
yr year Year—1931 exogenous
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Equations (1)–(3) are behavioral and contain explicit disturbances (ε1, ε2, and ε3). The remaining
equations are identities that specify additional variables in the system and their accounting relationships
with the variables in the behavioral equations. Some variables are explicitly endogenous by appearing
as dependent variables in (1)–(3). Others are implicitly endogenous as linear combinations that contain
other endogenous variables (for example, w and p). Still other variables are implicitly exogenous by
appearing in the identities but not in the behavioral equations (for example, wg and g).

Using the concise names, we can fit Klein’s model with the following command:

. use http://www.stata-press.com/data/r12/kleinAbr

. reg3 (c p p1 w) (i p p1 k1) (wp y y1 yr), endog(w p y) exog(t wg g)

Three-stage least-squares regression

Equation Obs Parms RMSE "R-sq" chi2 P

c 21 3 .9443305 0.9801 864.59 0.0000
i 21 3 1.446736 0.8258 162.98 0.0000
wp 21 3 .7211282 0.9863 1594.75 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

c
p .1248904 .1081291 1.16 0.248 -.0870387 .3368194

p1 .1631439 .1004382 1.62 0.104 -.0337113 .3599992
w .790081 .0379379 20.83 0.000 .715724 .8644379

_cons 16.44079 1.304549 12.60 0.000 13.88392 18.99766

i
p -.0130791 .1618962 -0.08 0.936 -.3303898 .3042316

p1 .7557238 .1529331 4.94 0.000 .4559805 1.055467
k1 -.1948482 .0325307 -5.99 0.000 -.2586072 -.1310893

_cons 28.17785 6.793768 4.15 0.000 14.86231 41.49339

wp
y .4004919 .0318134 12.59 0.000 .3381388 .462845

y1 .181291 .0341588 5.31 0.000 .1143411 .2482409
yr .149674 .0279352 5.36 0.000 .094922 .2044261

_cons 1.797216 1.115854 1.61 0.107 -.3898181 3.984251

Endogenous variables: c i wp w p y
Exogenous variables: p1 k1 y1 yr t wg g

We used the exog() option to identify t, wg, and g as exogenous variables in the system. These
variables must be identified because they are part of the system but appear directly in none of the
behavioral equations. Without this option, reg3 would not know they were part of the system. The
endog() option specifying w, p, and y is also required. Without this information, reg3 would be
unaware that these variables are linear combinations that include endogenous variables.

Technical note

Rather than listing additional endogenous and exogenous variables, we could specify the full list
of exogenous variables in an inst() option,

. reg3 (c p p1 w) (i p p1 k1) (wp y y1 yr), inst(g t wg yr p1 k1 y1)
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or equivalently,

. global conseqn "(c p p1 w)"

. global inveqn "(i p p1 k1)"

. global wageqn "(wp y y1 yr)"

. global inlist "g t wg yr p1 k1 y1"

. reg3 $conseqn $inveqn $wageqn, inst($inlist)

Macros and explicit equations can also be mixed in the specification

. reg3 $conseqn (i p p1 k1) $wageqn, endog(w p y) exog(t wg g)

or

. reg3 (c p p1 w) $inveqn (wp y y1 yr), endog(w p y) exog(t wg g)

Placing the equation-binding parentheses in the global macros was also arbitrary. We could have
used

. global consump "c p p1 w"

. global invest "i p p1 k1"

. global wagepriv "wp y y1 yr"

. reg3 ($consump) ($invest) ($wagepriv), endog(w p y) exog(t wg g)

reg3 is tolerant of all combinations, and these commands will produce identical output.

Switching to the full variable names, we can fit Klein’s model with the commands below. We
will use global macros to store the lists of endogenous and exogenous variables. Again this is not
necessary: these lists could have been typed directly on the command line. However, assigning the
lists to local macros makes additional processing easier if alternative models are to be fit. We will
also use the ireg3 option to produce the iterated estimates.

. use http://www.stata-press.com/data/r12/klein

. global conseqn "(consump profits profits1 wagetot)"

. global inveqn "(invest profits profits1 capital1)"

. global wageqn "(wagepriv totinc totinc1 year)"

. global enlist "wagetot profits totinc"

. global exlist "taxnetx wagegovt govt"

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) ireg3
Iteration 1: tolerance = .3712549
Iteration 2: tolerance = .1894712
Iteration 3: tolerance = .1076401

(output omitted )
Iteration 24: tolerance = 7.049e-07

Three-stage least-squares regression, iterated

Equation Obs Parms RMSE "R-sq" chi2 P

consump 21 3 .9565088 0.9796 970.31 0.0000
invest 21 3 2.134327 0.6209 56.78 0.0000
wagepriv 21 3 .7782334 0.9840 1312.19 0.0000
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
profits .1645096 .0961979 1.71 0.087 -.0240348 .3530539

profits1 .1765639 .0901001 1.96 0.050 -.0000291 .3531569
wagetot .7658011 .0347599 22.03 0.000 .6976729 .8339294

_cons 16.55899 1.224401 13.52 0.000 14.15921 18.95877

invest
profits -.3565316 .2601568 -1.37 0.171 -.8664296 .1533664

profits1 1.011299 .2487745 4.07 0.000 .5237098 1.498888
capital1 -.2602 .0508694 -5.12 0.000 -.3599022 -.1604978

_cons 42.89629 10.59386 4.05 0.000 22.13271 63.65987

wagepriv
totinc .3747792 .0311027 12.05 0.000 .3138191 .4357394

totinc1 .1936506 .0324018 5.98 0.000 .1301443 .257157
year .1679262 .0289291 5.80 0.000 .1112263 .2246261

_cons 2.624766 1.195559 2.20 0.028 .2815124 4.968019

Endogenous variables: consump invest wagepriv wagetot profits totinc
Exogenous variables: profits1 capital1 totinc1 year taxnetx wagegovt govt

Example 4: Constraints with reg3

As a simple example of constraints, (1) above may be rewritten with both wages explicitly appearing
(rather than as a variable containing the sum). Using the longer variable names, we have

consump = β0 + β1 profits + β2 profits1 + β3 wagepriv + β12 wagegovt + ε1

To retain the effect of the identity in (7), we need β3 = β12 as a constraint on the system. We
obtain this result by defining the constraint in the usual way and then specifying its use in reg3.
Because reg3 is a system estimator, we will need to use the full equation syntax of constraint. The
assumption that the following commands are entered after the model above has been estimated. We
are simply changing the definition of the consumption equation (consump) and adding a constraint
on two of its parameters. The rest of the model definition is carried forward.

. global conseqn "(consump profits profits1 wagepriv wagegovt)"

. constraint 1 [consump]wagepriv = [consump]wagegovt

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) constr(1) ireg3

note: additional endogenous variables not in the system have no effect
and are ignored: wagetot

Iteration 1: tolerance = .3712547
Iteration 2: tolerance = .189471
Iteration 3: tolerance = .10764

(output omitted )
Iteration 24: tolerance = 7.049e-07
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Three-stage least-squares regression, iterated

Equation Obs Parms RMSE "R-sq" chi2 P

consump 21 3 .9565086 0.9796 970.31 0.0000
invest 21 3 2.134326 0.6209 56.78 0.0000
wagepriv 21 3 .7782334 0.9840 1312.19 0.0000

( 1) [consump]wagepriv - [consump]wagegovt = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
profits .1645097 .0961978 1.71 0.087 -.0240346 .353054

profits1 .1765639 .0901001 1.96 0.050 -.0000291 .3531568
wagepriv .7658012 .0347599 22.03 0.000 .6976729 .8339294
wagegovt .7658012 .0347599 22.03 0.000 .6976729 .8339294

_cons 16.55899 1.224401 13.52 0.000 14.1592 18.95877

invest
profits -.3565311 .2601567 -1.37 0.171 -.8664288 .1533666

profits1 1.011298 .2487744 4.07 0.000 .5237096 1.498887
capital1 -.2601999 .0508694 -5.12 0.000 -.359902 -.1604977

_cons 42.89626 10.59386 4.05 0.000 22.13269 63.65984

wagepriv
totinc .3747792 .0311027 12.05 0.000 .313819 .4357394

totinc1 .1936506 .0324018 5.98 0.000 .1301443 .257157
year .1679262 .0289291 5.80 0.000 .1112263 .2246261

_cons 2.624766 1.195559 2.20 0.028 .281512 4.968019

Endogenous variables: consump invest wagepriv wagetot profits totinc
Exogenous variables: profits1 wagegovt capital1 totinc1 year taxnetx govt

As expected, none of the parameter or standard error estimates has changed from the previous
estimates (before the seventh significant digit). We have simply decomposed the total wage variable
into its two parts and constrained the coefficients on these parts. The warning about additional
endogenous variables was just reg3’s way of letting us know that we had specified some information
that was irrelevant to the estimation of the system. We had left the wagetot variable in our endog
macro. It does not mean anything to the system to specify wagetot as endogenous because it is no
longer in the system. That’s fine with reg3 and fine for our current purposes.

We can also impose constraints across the equations. For example, the admittedly meaningless
constraint of requiring profits to have the same effect in both the consumption and investment
equations could be imposed. Retaining the constraint on the wage coefficients, we would estimate
this constrained system.

. constraint 2 [consump]profits = [invest]profits

. reg3 $conseqn $inveqn $wageqn, endog($enlist) exog($exlist) constr(1 2) ireg3
note: additional endogenous variables not in the system have no effect

and are ignored: wagetot

Iteration 1: tolerance = .1427927
Iteration 2: tolerance = .032539
Iteration 3: tolerance = .00307811
Iteration 4: tolerance = .00016903
Iteration 5: tolerance = .00003409
Iteration 6: tolerance = 7.763e-06
Iteration 7: tolerance = 9.240e-07
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Three-stage least-squares regression, iterated

Equation Obs Parms RMSE "R-sq" chi2 P

consump 21 3 .9504669 0.9798 1019.54 0.0000
invest 21 3 1.247066 0.8706 144.57 0.0000
wagepriv 21 3 .7225276 0.9862 1537.45 0.0000

( 1) [consump]wagepriv - [consump]wagegovt = 0
( 2) [consump]profits - [invest]profits = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

consump
profits .1075413 .0957767 1.12 0.262 -.0801777 .2952602

profits1 .1712756 .0912613 1.88 0.061 -.0075932 .3501444
wagepriv .798484 .0340876 23.42 0.000 .7316734 .8652946
wagegovt .798484 .0340876 23.42 0.000 .7316734 .8652946

_cons 16.2521 1.212157 13.41 0.000 13.87631 18.62788

invest
profits .1075413 .0957767 1.12 0.262 -.0801777 .2952602

profits1 .6443378 .1058682 6.09 0.000 .43684 .8518356
capital1 -.1766669 .0261889 -6.75 0.000 -.2279962 -.1253375

_cons 24.31931 5.284325 4.60 0.000 13.96222 34.6764

wagepriv
totinc .4014106 .0300552 13.36 0.000 .3425035 .4603177

totinc1 .1775359 .0321583 5.52 0.000 .1145068 .240565
year .1549211 .0282291 5.49 0.000 .099593 .2102492

_cons 1.959788 1.14467 1.71 0.087 -.2837242 4.203299

Endogenous variables: consump invest wagepriv wagetot profits totinc
Exogenous variables: profits1 wagegovt capital1 totinc1 year taxnetx govt

Technical note
Identification in a system of simultaneous equations involves the notion that there is enough

information to estimate the parameters of the model given the specified functional form. Under-
identification usually manifests itself as one matrix in the 3SLS computations. The most commonly
violated order condition for 2SLS or 3SLS involves the number of endogenous and exogenous variables.
There must be at least as many noncollinear exogenous variables in the remaining system as there
are endogenous right-hand-side variables in an equation. This condition must hold for each structural
equation in the system.

Put as a set of rules the following:

1. Count the number of right-hand-side endogenous variables in an equation and call this mi.

2. Count the number of exogenous variables in the same equation and call this ki.

3. Count the total number of exogenous variables in all the structural equations plus any additional
variables specified in an exog() or inst() option and call this K.

4. If mi > (K − ki) for any structural equation (i), then the system is underidentified and cannot
be estimated by 3SLS.

We are also possibly in trouble if any of the exogenous variables are linearly dependent. We must
have mi linearly independent variables among the exogenous variables represented by (K − ki).
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The complete conditions for identification involve rank-order conditions on several matrices. For
a full treatment, see Theil (1971) or Greene (2012, 331–334).

Saved results
reg3 saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(mss #) model sum of squares for equation #
e(df m#) model degrees of freedom for equation #
e(rss #) residual sum of squares for equation #
e(df r) residual degrees of freedom (small)
e(r2 #) R-squared for equation #
e(F #) F statistic for equation # (small)
e(rmse #) root mean squared error for equation #
e(dfk2 adj) divisor used with VCE when dfk2 specified
e(ll) log likelihood
e(chi2 #) χ2 for equation #
e(p #) significance for equation #
e(cons #) 1 when equation # has a constant, 0 otherwise
e(rank) rank of e(V)
e(ic) number of iterations

Macros
e(cmd) reg3
e(cmdline) command as typed
e(depvar) names of dependent variables
e(exog) names of exogenous variables
e(endog) names of endogenous variables
e(eqnames) names of equations
e(corr) correlation structure
e(wtype) weight type
e(wexp) weight expression
e(method) 3sls, 2sls, ols, sure, or mvreg
e(small) small
e(dfk) dfk, if specified
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
reg3 is implemented as an ado-file.

The most concise way to represent a system of equations for 3SLS requires thinking of the individual
equations and their associated data as being stacked. reg3 does not expect the data in this format,
but it is a convenient shorthand. The system could then be formulated as

y1

y2
...

yM

 =


Z1 0 . . . 0
0 Z2 . . . 0
...

...
. . .

...
0 0 . . . ZM



β1

β2
...
βM

+


ε1
ε2
...
εM


In full matrix notation, this is just

y = ZB + ε

The Z elements in these matrices represent both the endogenous and the exogenous right-hand-side
variables in the equations.

Also assume that there will be correlation between the disturbances of the equations so that

E(εε′) = Σ

where the disturbances are further assumed to have an expected value of 0; E(ε) = 0.

The first stage of 3SLS regression requires developing instrumented values for the endogenous
variables in the system. These values can be derived as the predictions from a linear regression
of each endogenous regressor on all exogenous variables in the system or, more succinctly, as
the projection of each regressor through the projection matrix of all exogenous variables onto the
regressors. Designating the set of all exogenous variables as X results in

ẑi = X(X′X)−1X′zi for each i

Taken collectively, these Ẑ contain the instrumented values for all the regressors. They take on
the actual values for the exogenous variables and first-stage predictions for the endogenous variables.
Given these instrumented variables, a generalized least squares (GLS) or Aitken (1935) estimator can
be formed for the parameters of the system

B̂ =
{

Ẑ′(Σ−1 ⊗ I)Ẑ
}−1

Ẑ′(Σ−1 ⊗ I)y

All that remains is to obtain a consistent estimator for Σ. This estimate can be formed from the
residuals of 2SLS estimates of each equation in the system. Alternately, and identically, the residuals
can be computed from the estimates formed by taking Σ to be an identity matrix. This maintains the
full system of coefficients and allows constraints to be applied when the residuals are computed.

If we take E to be the matrix of residuals from these estimates, a consistent estimate of Σ is

Σ̂ =
E′E
n

where n is the number of observations in the sample. An alternative divisor for this estimate can be
obtained with the dfk option as outlined under options.
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With the estimate of Σ̂ placed into the GLS estimating equation,

B̂ =
{

Ẑ′(Σ̂−1 ⊗ I)Ẑ
}−1

Ẑ′(Σ̂−1 ⊗ I)y

is the 3SLS estimates of the system parameters.

The asymptotic variance–covariance matrix of the estimator is just the standard formulation for a
GLS estimator

V
B̂

=
{

Ẑ′(Σ̂−1 ⊗ I)Ẑ
}−1

Iterated 3SLS estimates can be obtained by computing the residuals from the three-stage parameter
estimates, using these to formulate a new Σ̂, and recomputing the parameter estimates. This process
is repeated until the estimates B̂ converge—if they converge. Convergence is not guaranteed. When
estimating a system by SURE, these iterated estimates will be the maximum likelihood estimates for
the system. The iterated solution can also be used to produce estimates that are invariant to choice
of system and restriction parameterization for many linear systems under full 3SLS.

The exposition above follows the parallel developments in Greene (2012) and Davidson and
MacKinnon (1993).

� �
Henri Theil (1924–2000) was born in Amsterdam and awarded a PhD in 1951 by the Univer-
sity of Amsterdam. He researched and taught econometric theory, statistics, microeconomics,
macroeconomic modeling, and economic forecasting, and policy at (what is now) Erasmus
University Rotterdam, the University of Chicago, and the University of Florida. Theil’s many
specific contributions include work on 2SLS and 3SLS, inequality and concentration, and consumer
demand.� �
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Also see
[R] reg3 postestimation — Postestimation tools for reg3

[R] ivregress — Single-equation instrumental-variables regression

[R] mvreg — Multivariate regression

[R] nlsur — Estimation of nonlinear systems of equations

[R] regress — Linear regression

[R] sureg — Zellner’s seemingly unrelated regression

Stata Structural Equation Modeling Reference Manual

[U] 20 Estimation and postestimation commands



Title

reg3 postestimation — Postestimation tools for reg3

Description
The following postestimation commands are available after reg3:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
∗estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

∗estat ic is not appropriate after reg3, 2sls.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(eqno
[
,eqno

]
) statistic

]
statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals
difference difference between the linear predictions of two equations
stddp standard error of the difference in linear predictions

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

equation(eqno
[
,eqno

]
) specifies to which equation you are referring.

equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean the calculation is to be made for the first equation, equation(#2) would mean the
second, and so on. You could also refer to the equations by their names. equation(income)
would refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), results are the same as if you specified equation(#1).

difference and stddp refer to between-equation concepts. To use these options, you must
specify two equations, for example, equation(#1,#2) or equation(income,hours). When
two equations must be specified, equation() is required.

xb, the default, calculates the linear prediction (fitted values)—the prediction of xjb for the specified
equation.

stdp calculates the standard error of the prediction for the specified equation. It can be thought of as
the standard error of the predicted expected value or mean for the observation’s covariate pattern.
The standard error of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.

difference calculates the difference between the linear predictions of two equations in the system.
With equation(#1,#2), difference computes the prediction of equation(#1) minus the
prediction of equation(#2).

stddp is allowed only after you have previously fit a multiple-equation model. The standard error of
the difference in linear predictions (x1jb− x2jb) between equations 1 and 2 is calculated.

For more information on using predict after multiple-equation estimation commands, see [R] predict.

Remarks

Example 1

In example 2 of [R] reg3, we fit a simple supply-and-demand model. Here we obtain the fitted
supply and demand curves assuming that the exogenous regressors equal their sample means. We first
replace each of the three exogenous regressors with their sample means, then we call predict to
obtain the predictions.

. use http://www.stata-press.com/data/r12/supDem

. global demand "(qDemand: quantity price pcompete income)"

. global supply "(qSupply: quantity price praw)"

. reg3 $demand $supply, endog(price)
(output omitted )

. summarize pcompete, meanonly

. replace pcompete = r(mean)
(49 real changes made)
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. summarize income, meanonly

. replace income = r(mean)
(49 real changes made)

. summarize praw, meanonly

. replace praw = r(mean)
(49 real changes made)

. predict demand, equation(qDemand)
(option xb assumed; fitted values)

. predict supply, equation(qSupply)
(option xb assumed; fitted values)

. graph twoway line demand price, sort || line supply price

5
1

0
1

5
2

0

25 30 35 40
price

Fitted values: qDemand Fitted values: qSupply

As we would expect based on economic theory, the demand curve slopes downward while the
supply curve slopes upward. With the exogenous variables at their mean levels, the equilibrium price
and quantity are slightly less than 33 and 13, respectively.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

The computational formulas for the statistics produced by predict can be found in [R] predict
and [R] regress postestimation.

Also see
[R] reg3 — Three-stage estimation for systems of simultaneous equations

[U] 20 Estimation and postestimation commands



Title

regress — Linear regression

Syntax
regress depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
hascons has user-supplied constant
tsscons compute total sum of squares with constant; seldom used

SE/Robust

vce(vcetype) vcetype may be ols, robust, cluster clustvar, bootstrap,
jackknife, hc2, or hc3

Reporting

level(#) set confidence level; default is level(95)

beta report standardized beta coefficients
eform(string) report exponentiated coefficients and label as string
depname(varname) substitute dependent variable name; programmer’s option
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

noheader suppress output header
notable suppress coefficient table
plus make table extendable
mse1 force mean squared error to 1

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, fracpoly, jackknife, mfp, mi estimate, nestreg, rolling, statsby, stepwise, and svy

are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
hascons, tsscons, vce(), beta, noheader, notable, plus, depname(), mse1, and weights are not allowed with

the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
noheader, notable, plus, mse1, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Linear regression
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Description
regress fits a model of depvar on indepvars using linear regression.

Here is a short list of other regression commands that may be of interest. See [ I ] estimation
commands for a complete list.

Command Entry Description

areg [R] areg an easier way to fit regressions with many dummy variables

arch [TS] arch regression models with ARCH errors

arima [TS] arima ARIMA models

boxcox [R] boxcox Box–Cox regression models

cnsreg [R] cnsreg constrained linear regression

eivreg [R] eivreg errors-in-variables regression

frontier [R] frontier stochastic frontier models

gmm [R] gmm generalized method of moments estimation

heckman [R] heckman Heckman selection model

intreg [R] intreg interval regression

ivregress [R] ivregress single-equation instrumental-variables regression

ivtobit [R] ivtobit tobit regression with endogenous variables

newey [TS] newey regression with Newey–West standard errors

nl [R] nl nonlinear least-squares estimation

nlsur [R] nlsur estimation of nonlinear systems of equations

qreg [R] qreg quantile (including median) regression

reg3 [R] reg3 three-stage least-squares (3SLS) regression

rreg [R] rreg a type of robust regression

sureg [R] sureg seemingly unrelated regression

tobit [R] tobit tobit regression

treatreg [R] treatreg treatment-effects model

truncreg [R] truncreg truncated regression

xtabond [XT] xtabond Arellano–Bond linear dynamic panel-data estimation

xtdpd [XT] xtdpd linear dynamic panel-data estimation

xtfrontier [XT] xtfrontier panel-data stochastic frontier models

xtgls [XT] xtgls panel-data GLS models

xthtaylor [XT] xthtaylor Hausman–Taylor estimator for error-components models

xtintreg [XT] xtintreg panel-data interval regression models

xtivreg [XT] xtivreg panel-data instrumental-variables (2SLS) regression

xtpcse [XT] xtpcse linear regression with panel-corrected standard errors

xtreg [XT] xtreg fixed- and random-effects linear models

xtregar [XT] xtregar fixed- and random-effects linear models with an AR(1) disturbance

xttobit [XT] xttobit panel-data tobit models

[SEM] Stata Structural Equation Modeling Reference Manual
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Options

� � �
Model �

noconstant; see [R] estimation options.

hascons indicates that a user-defined constant or its equivalent is specified among the independent
variables in indepvars. Some caution is recommended when specifying this option, as resulting
estimates may not be as accurate as they otherwise would be. Use of this option requires “sweeping”
the constant last, so the moment matrix must be accumulated in absolute rather than deviation form.
This option may be safely specified when the means of the dependent and independent variables
are all reasonable and there is not much collinearity between the independent variables. The best
procedure is to view hascons as a reporting option—estimate with and without hascons and
verify that the coefficients and standard errors of the variables not affected by the identity of the
constant are unchanged.

tsscons forces the total sum of squares to be computed as though the model has a constant, that is,
as deviations from the mean of the dependent variable. This is a rarely used option that has an
effect only when specified with noconstant. It affects the total sum of squares and all results
derived from the total sum of squares.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

vce(ols), the default, uses the standard variance estimator for ordinary least-squares regression.

regress also allows the following:

vce(hc2) and vce(hc3) specify an alternative bias correction for the robust variance calculation.
vce(hc2) and vce(hc3) may not be specified with svy prefix. In the unclustered case,
vce(robust) uses σ̂2

j = {n/(n−k)}u2
j as an estimate of the variance of the jth observation,

where uj is the calculated residual and n/(n− k) is included to improve the overall estimate’s
small-sample properties.

vce(hc2) instead uses u2
j/(1 − hjj) as the observation’s variance estimate, where hjj is

the diagonal element of the hat (projection) matrix. This estimate is unbiased if the model
really is homoskedastic. vce(hc2) tends to produce slightly more conservative confidence
intervals.

vce(hc3) uses u2
j/(1−hjj)2 as suggested by Davidson and MacKinnon (1993), who report

that this method tends to produce better results when the model really is heteroskedastic.
vce(hc3) produces confidence intervals that tend to be even more conservative.

See Davidson and MacKinnon (1993, 554–556) and Angrist and Pischke (2009, 294–308)
for more discussion on these two bias corrections.

� � �
Reporting �

level(#); see [R] estimation options.

beta asks that standardized beta coefficients be reported instead of confidence intervals. The beta
coefficients are the regression coefficients obtained by first standardizing all variables to have a
mean of 0 and a standard deviation of 1. beta may not be specified with vce(cluster clustvar)
or the svy prefix.
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eform(string) is used only in programs and ado-files that use regress to fit models other than
linear regression. eform() specifies that the coefficient table be displayed in exponentiated form
as defined in [R] maximize and that string be used to label the exponentiated coefficients in the
table.

depname(varname) is used only in programs and ado-files that use regress to fit models other than
linear regression. depname() may be specified only at estimation time. varname is recorded as
the identity of the dependent variable, even though the estimates are calculated using depvar. This
method affects the labeling of the output—not the results calculated—but could affect subsequent
calculations made by predict, where the residual would be calculated as deviations from varname
rather than depvar. depname() is most typically used when depvar is a temporary variable (see
[P] macro) used as a proxy for varname.

depname() is not allowed with the svy prefix.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following options are available with regress but are not shown in the dialog box:

noheader suppresses the display of the ANOVA table and summary statistics at the top of the output;
only the coefficient table is displayed. This option is often used in programs and ado-files.

notable suppresses display of the coefficient table.

plus specifies that the output table be made extendable. This option is often used in programs and
ado-files.

mse1 is used only in programs and ado-files that use regress to fit models other than linear
regression and is not allowed with the svy prefix. mse1 sets the mean squared error to 1, forcing
the variance–covariance matrix of the estimators to be (X′DX)−1 (see Methods and formulas
below) and affecting calculated standard errors. Degrees of freedom for t statistics are calculated
as n rather than n− k.

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Ordinary least squares
Treatment of the constant
Robust standard errors
Weighted regression
Instrumental variables and two-stage least-squares regression

regress performs linear regression, including ordinary least squares and weighted least squares.
For a general discussion of linear regression, see Draper and Smith (1998), Greene (2012), or
Kmenta (1997).

See Wooldridge (2009) for an excellent treatment of estimation, inference, interpretation, and
specification testing in linear regression models. This presentation stands out for its clarification of
the statistical issues, as opposed to the algebraic issues. See Wooldridge (2010, chap. 4) for a more
advanced discussion along the same lines.

See Hamilton (2009, chap. 6) and Cameron and Trivedi (2010, chap. 3) for an introduction
to linear regression using Stata. Dohoo, Martin, and Stryhn (2010) discuss linear regression using
examples from epidemiology, and Stata datasets and do-files used in the text are available. Cameron
and Trivedi (2010) discuss linear regression using econometric examples with Stata.



regress — Linear regression 1683

Chatterjee and Hadi (2006) explain regression analysis by using examples containing typical
problems that you might encounter when performing exploratory data analysis. We also recommend
Weisberg (2005), who emphasizes the importance of the assumptions of linear regression and
problems resulting from these assumptions. Angrist and Pischke (2009) approach regression as a
tool for exploring relationships, estimating treatment effects, and providing answers to public policy
questions. For a discussion of model-selection techniques and exploratory data analysis, see Mosteller
and Tukey (1977). For a mathematically rigorous treatment, see Peracchi (2001, chap. 6). Finally,
see Plackett (1972) if you are interested in the history of regression. Least squares, which dates back
to the 1790s, was discovered independently by Legendre and Gauss.

Ordinary least squares

Example 1

Suppose that we have data on the mileage rating and weight of 74 automobiles. The variables in
our data are mpg, weight, and foreign. The last variable assumes the value 1 for foreign and 0 for
domestic automobiles. We wish to fit the model

mpg = β0 + β1weight + β2weight
2 + β3foreign + ε

We include c.weight#c.weight in our model for the weight-squared term (see [U] 11.4.3 Factor
variables):

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight c.weight#c.weight foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 52.25

Model 1689.15372 3 563.05124 Prob > F = 0.0000
Residual 754.30574 70 10.7757963 R-squared = 0.6913

Adj R-squared = 0.6781
Total 2443.45946 73 33.4720474 Root MSE = 3.2827

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0165729 .0039692 -4.18 0.000 -.0244892 -.0086567

c.weight#
c.weight 1.59e-06 6.25e-07 2.55 0.013 3.45e-07 2.84e-06

foreign -2.2035 1.059246 -2.08 0.041 -4.3161 -.0909002
_cons 56.53884 6.197383 9.12 0.000 44.17855 68.89913

regress produces a variety of summary statistics along with the table of regression coefficients.
At the upper left, regress reports an analysis-of-variance (ANOVA) table. The column headings SS,
df, and MS stand for “sum of squares”, “degrees of freedom”, and “mean square”, respectively. In
the previous example, the total sum of squares is 2,443.5: 1,689.2 accounted for by the model and
754.3 left unexplained. Because the regression included a constant, the total sum reflects the sum
after removal of means, as does the sum of squares due to the model. The table also reveals that
there are 73 total degrees of freedom (counted as 74 observations less 1 for the mean removal), of
which 3 are consumed by the model, leaving 70 for the residual.
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To the right of the ANOVA table are presented other summary statistics. The F statistic associated
with the ANOVA table is 52.25. The statistic has 3 numerator and 70 denominator degrees of freedom.
The F statistic tests the hypothesis that all coefficients excluding the constant are zero. The chance of
observing an F statistic that large or larger is reported as 0.0000, which is Stata’s way of indicating
a number smaller than 0.00005. The R-squared (R2) for the regression is 0.6913, and the R-squared
adjusted for degrees of freedom (R2

a) is 0.6781. The root mean squared error, labeled Root MSE, is
3.2827. It is the square root of the mean squared error reported for the residual in the ANOVA table.

Finally, Stata produces a table of the estimated coefficients. The first line of the table indicates
that the left-hand-side variable is mpg. Thereafter follow the four estimated coefficients. Our fitted
model is

mpg hat = 56.54− 0.0166 weight + 1.59× 10−6 c.weight#c.weight− 2.20 foreign

Reported to the right of the coefficients in the output are the standard errors. For instance, the
standard error for the coefficient on weight is 0.0039692. The corresponding t statistic is −4.18,
which has a two-sided significance level of 0.000. This number indicates that the significance is less
than 0.0005. The 95% confidence interval for the coefficient is [−0.024,−0.009 ].

Example 2

regress shares the features of all estimation commands. Among other things, this means that
after running a regression, we can use test to test hypotheses about the coefficients, estat vce to
examine the covariance matrix of the estimators, and predict to obtain predicted values, residuals,
and influence statistics. See [U] 20 Estimation and postestimation commands. Options that affect
how estimates are displayed, such as beta or level(), can be used when replaying results.

Suppose that we meant to specify the beta option to obtain beta coefficients (regression coefficients
normalized by the ratio of the standard deviation of the regressor to the standard deviation of the
dependent variable). Even though we forgot, we can specify the option now:

. regress, beta

Source SS df MS Number of obs = 74
F( 3, 70) = 52.25

Model 1689.15372 3 563.05124 Prob > F = 0.0000
Residual 754.30574 70 10.7757963 R-squared = 0.6913

Adj R-squared = 0.6781
Total 2443.45946 73 33.4720474 Root MSE = 3.2827

mpg Coef. Std. Err. t P>|t| Beta

weight -.0165729 .0039692 -4.18 0.000 -2.226321

c.weight#
c.weight 1.59e-06 6.25e-07 2.55 0.013 1.32654

foreign -2.2035 1.059246 -2.08 0.041 -.17527
_cons 56.53884 6.197383 9.12 0.000 .
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Treatment of the constant
By default, regress includes an intercept (constant) term in the model. The noconstant option

suppresses it, and the hascons option tells regress that the model already has one.

Example 3

We wish to fit a regression of the weight of an automobile against its length, and we wish to
impose the constraint that the weight is zero when the length is zero.

If we simply type regress weight length, we are fitting the model

weight = β0 + β1 length + ε

Here a length of zero corresponds to a weight of β0. We want to force β0 to be zero or, equivalently,
estimate an equation that does not include an intercept:

weight = β1 length + ε

We do this by specifying the noconstant option:

. regress weight length, noconstant

Source SS df MS Number of obs = 74
F( 1, 73) = 3450.13

Model 703869302 1 703869302 Prob > F = 0.0000
Residual 14892897.8 73 204012.299 R-squared = 0.9793

Adj R-squared = 0.9790
Total 718762200 74 9713002.7 Root MSE = 451.68

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 16.29829 .2774752 58.74 0.000 15.74528 16.8513

In our data, length is measured in inches and weight in pounds. We discover that each inch of
length adds 16 pounds to the weight.

Sometimes there is no need for Stata to include a constant term in the model. Most commonly,
this occurs when the model contains a set of mutually exclusive indicator variables. hascons is a
variation of the noconstant option—it tells Stata not to add a constant to the regression because
the regression specification already has one, either directly or indirectly.

For instance, we now refit our model of weight as a function of length and include separate
constants for foreign and domestic cars by specifying bn.foreign. bn.foreign is factor-variable
notation for “no base for foreign” or “include all levels of variable foreign in the model”; see
[U] 11.4.3 Factor variables.
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. regress weight length bn.foreign, hascons

Source SS df MS Number of obs = 74
F( 2, 71) = 316.54

Model 39647744.7 2 19823872.3 Prob > F = 0.0000
Residual 4446433.7 71 62625.8268 R-squared = 0.8992

Adj R-squared = 0.8963
Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
0 -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
1 -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Technical note

There is a subtle distinction between the hascons and noconstant options. We can most easily
reveal it by refitting the last regression, specifying noconstant rather than hascons:

. regress weight length bn.foreign, noconstant

Source SS df MS Number of obs = 74
F( 3, 71) = 3802.03

Model 714315766 3 238105255 Prob > F = 0.0000
Residual 4446433.7 71 62625.8268 R-squared = 0.9938

Adj R-squared = 0.9936
Total 718762200 74 9713002.7 Root MSE = 250.25

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
0 -2850.25 315.9691 -9.02 0.000 -3480.274 -2220.225
1 -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385

Comparing this output with that produced by the previous regress command, we see that they are
almost, but not quite, identical. The parameter estimates and their associated statistics—the second
half of the output—are identical. The overall summary statistics and the ANOVA table—the first half
of the output—are different, however.

In the first case, the R2 is shown as 0.8992; here it is shown as 0.9938. In the first case, the
F statistic is 316.54; now it is 3,802.03. The numerator degrees of freedom are different as well. In
the first case, the numerator degrees of freedom are 2; now they are 3. Which is correct?

Both are. Specifying the hascons option causes regress to adjust the ANOVA table and its
associated statistics for the explanatory power of the constant. The regression in effect has a constant;
it is just written in such a way that a separate constant is unnecessary. No such adjustment is made
with the noconstant option.
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Technical note
When the hascons option is specified, regress checks to make sure that the model does in fact

have a constant term. If regress cannot find a constant term, it automatically adds one. Fitting a
model of weight on length and specifying the hascons option, we obtain

. regress weight length, hascons
(note: hascons false)

Source SS df MS Number of obs = 74
F( 1, 72) = 613.27

Model 39461306.8 1 39461306.8 Prob > F = 0.0000
Residual 4632871.55 72 64345.4382 R-squared = 0.8949

Adj R-squared = 0.8935
Total 44094178.4 73 604029.841 Root MSE = 253.66

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 33.01988 1.333364 24.76 0.000 30.36187 35.67789
_cons -3186.047 252.3113 -12.63 0.000 -3689.02 -2683.073

Even though we specified hascons, regress included a constant, anyway. It also added a note to
our output: “note: hascons false”.

Technical note
Even if the model specification effectively includes a constant term, we need not specify the

hascons option. regress is always on the lookout for collinear variables and omits them from the
model. For instance,

. regress weight length bn.foreign
note: 1.foreign omitted because of collinearity

Source SS df MS Number of obs = 74
F( 2, 71) = 316.54

Model 39647744.7 2 19823872.3 Prob > F = 0.0000
Residual 4446433.7 71 62625.8268 R-squared = 0.8992

Adj R-squared = 0.8963
Total 44094178.4 73 604029.841 Root MSE = 250.25

weight Coef. Std. Err. t P>|t| [95% Conf. Interval]

length 31.44455 1.601234 19.64 0.000 28.25178 34.63732

foreign
0 133.6775 77.47615 1.73 0.089 -20.80555 288.1605
1 0 (omitted)

_cons -2983.927 275.1041 -10.85 0.000 -3532.469 -2435.385
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Robust standard errors
regress with the vce(robust) option substitutes a robust variance matrix calculation for the

conventional calculation, or if vce(cluster clustvar) is specified, allows relaxing the assumption
of independence within groups. How this method works is explained in [U] 20.20 Obtaining robust
variance estimates. Below we show how well this approach works.

Example 4

Specifying the vce(robust) option is equivalent to requesting White-corrected standard errors in
the presence of heteroskedasticity. We use the automobile data and, in the process of looking at the
energy efficiency of cars, analyze a variable with considerable heteroskedasticity.

We will examine the amount of energy—measured in gallons of gasoline—that the cars in the
data need to move 1,000 pounds of their weight 100 miles. We are going to examine the relative
efficiency of foreign and domestic cars.

. gen gpmw = ((1/mpg)/weight)*100*1000

. summarize gpmw

Variable Obs Mean Std. Dev. Min Max

gpmw 74 1.682184 .2426311 1.09553 2.30521

In these data, the engines consume between 1.10 and 2.31 gallons of gas to move 1,000 pounds
of the car’s weight 100 miles. If we ran a regression with conventional standard errors of gpmw on
foreign, we would obtain

. regress gpmw foreign

Source SS df MS Number of obs = 74
F( 1, 72) = 20.07

Model .936705572 1 .936705572 Prob > F = 0.0000
Residual 3.36079459 72 .046677703 R-squared = 0.2180

Adj R-squared = 0.2071
Total 4.29750017 73 .058869865 Root MSE = .21605

gpmw Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign .2461526 .0549487 4.48 0.000 .1366143 .3556909
_cons 1.609004 .0299608 53.70 0.000 1.549278 1.66873

regress with the vce(robust) option, on the other hand, reports

. regress gpmw foreign, vce(robust)

Linear regression Number of obs = 74
F( 1, 72) = 13.13
Prob > F = 0.0005
R-squared = 0.2180
Root MSE = .21605

Robust
gpmw Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign .2461526 .0679238 3.62 0.001 .1107489 .3815563
_cons 1.609004 .0234535 68.60 0.000 1.56225 1.655758
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The point estimates are the same (foreign cars need one-quarter gallon more gas), but the standard errors
differ by roughly 20%. Conventional regression reports the 95% confidence interval as [ 0.14, 0.36 ],
whereas the robust standard errors make the interval [ 0.11, 0.38 ].

Which is right? Notice that gpmw is a variable with considerable heteroskedasticity:

. tabulate foreign, summarize(gpmw)

Summary of gpmw
Car type Mean Std. Dev. Freq.

Domestic 1.6090039 .16845182 52
Foreign 1.8551565 .30186861 22

Total 1.6821844 .24263113 74

Thus here we favor the robust standard errors. In [U] 20.20 Obtaining robust variance estimates,
we show another example using linear regression where it makes little difference whether we specify
vce(robust). The linear-regression assumptions were true, and we obtained nearly linear-regression
results. The advantage of the robust estimate is that in neither case did we have to check assumptions.

Technical note
regress purposefully suppresses displaying the ANOVA table when vce(robust) is specified, as

it is no longer appropriate in a statistical sense, even though, mechanically, the numbers would be
unchanged. That is, sums of squares remain unchanged, but the meaning of those sums is no longer
relevant. The F statistic, for instance, is no longer based on sums of squares; it becomes a Wald test
based on the robustly estimated variance matrix. Nevertheless, regress continues to report the R2

and the root MSE even though both numbers are based on sums of squares and are, strictly speaking,
irrelevant. In this, the root MSE is more in violation of the spirit of the robust estimator than is R2.
As a goodness-of-fit statistic, R2 is still fine; just do not use it in formulas to obtain F statistics
because those formulas no longer apply. The root MSE is valid in a literal sense—it is the square
root of the mean squared error, but it is no longer an estimate of σ because there is no single σ; the
variance of the residual varies observation by observation.

Example 5

The vce(hc2) and vce(hc3) options modify the robust variance calculation. In the context of
linear regression without clustering, the idea behind the robust calculation is somehow to measure
σ2
j , the variance of the residual associated with the jth observation, and then to use that estimate

to improve the estimated variance of β̂. Because residuals have (theoretically and practically) mean
0, one estimate of σ2

j is the observation’s squared residual itself—u2
j . A finite-sample correction

could improve that by multiplying u2
j by n/(n − k), and, as a matter of fact, vce(robust) uses

{n/(n− k)}u2
j as its estimate of the residual’s variance.

vce(hc2) and vce(hc3) use alternative estimators of the observation-specific variances. For
instance, if the residuals are homoskedastic, we can show that the expected value of u2

j is σ2(1−hjj),
where hjj is the jth diagonal element of the projection (hat) matrix. hjj has average value k/n, so
1−hjj has average value 1−k/n = (n−k)/n. Thus the default robust estimator σ̂j = {n/(n−k)}u2

j

amounts to dividing u2
j by the average of the expectation.
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vce(hc2) divides u2
j by 1−hjj itself, so it should yield better estimates if the residuals really are

homoskedastic. vce(hc3) divides u2
j by (1− hjj)2 and has no such clean interpretation. Davidson

and MacKinnon (1993) show that u2
j/(1 − hjj)2 approximates a more complicated estimator that

they obtain by jackknifing (MacKinnon and White 1985). Angrist and Pischke (2009) also illustrate
the relative merits of these adjustments.

Here are the results of refitting our efficiency model using vce(hc2) and vce(hc3):

. regress gpmw foreign, vce(hc2)

Linear regression Number of obs = 74
F( 1, 72) = 12.93
Prob > F = 0.0006
R-squared = 0.2180
Root MSE = .21605

Robust HC2
gpmw Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign .2461526 .0684669 3.60 0.001 .1096662 .3826389
_cons 1.609004 .0233601 68.88 0.000 1.562437 1.655571

. regress gpmw foreign, vce(hc3)

Linear regression Number of obs = 74
F( 1, 72) = 12.38
Prob > F = 0.0008
R-squared = 0.2180
Root MSE = .21605

Robust HC3
gpmw Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign .2461526 .069969 3.52 0.001 .1066719 .3856332
_cons 1.609004 .023588 68.21 0.000 1.561982 1.656026

Example 6

The vce(cluster clustvar) option relaxes the assumption of independence. Below we have 28,534
observations on 4,711 women aged 14–46 years. Data were collected on these women between 1968
and 1988. We are going to fit a classic earnings model, and we begin by ignoring that each woman
appears an average of 6.056 times in the data.
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. use http://www.stata-press.com/data/r12/regsmpl, clear
(NLS Women 14-26 in 1968)

. regress ln_wage age c.age#c.age tenure

Source SS df MS Number of obs = 28101
F( 3, 28097) = 1842.45

Model 1054.52501 3 351.508335 Prob > F = 0.0000
Residual 5360.43962 28097 .190783344 R-squared = 0.1644

Adj R-squared = 0.1643
Total 6414.96462 28100 .228290556 Root MSE = .43679

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0752172 .0034736 21.65 0.000 .0684088 .0820257

c.age#c.age -.0010851 .0000575 -18.86 0.000 -.0011979 -.0009724

tenure .0390877 .0007743 50.48 0.000 .0375699 .0406054
_cons .3339821 .0504413 6.62 0.000 .2351148 .4328495

The number of observations in our model is 28,101 because Stata drops observations that have a
missing value for one or more of the variables in the model. We can be reasonably certain that the
standard errors reported above are meaningless. Without a doubt, a woman with higher-than-average
wages in one year typically has higher-than-average wages in other years, and so the residuals are
not independent. One way to deal with this would be to fit a random-effects model—and we are
going to do that—but first we fit the model using regress specifying vce(cluster id), which
treats only observations with different person ids as truly independent:

. regress ln_wage age c.age#c.age tenure, vce(cluster id)

Linear regression Number of obs = 28101
F( 3, 4698) = 748.82
Prob > F = 0.0000
R-squared = 0.1644
Root MSE = .43679

(Std. Err. adjusted for 4699 clusters in idcode)

Robust
ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0752172 .0045711 16.45 0.000 .0662557 .0841788

c.age#c.age -.0010851 .0000778 -13.94 0.000 -.0012377 -.0009325

tenure .0390877 .0014425 27.10 0.000 .0362596 .0419157
_cons .3339821 .0641918 5.20 0.000 .208136 .4598282

For comparison, we focus on the tenure coefficient, which in economics jargon can be interpreted as the
rate of return for keeping your job. The 95% confidence interval we previously estimated—an interval
we do not believe—is [ 0.038, 0.041 ]. The robust interval is twice as wide, being [ 0.036, 0.042 ].

As we said, one correct way to fit this model is by random-effects regression. Here is the
random-effects result:
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. xtreg ln_wage age c.age#c.age tenure, re

Random-effects GLS regression Number of obs = 28101
Group variable: idcode Number of groups = 4699

R-sq: within = 0.1370 Obs per group: min = 1
between = 0.2154 avg = 6.0
overall = 0.1608 max = 15

Random effects u_i ~ Gaussian Wald chi2(3) = 4717.05
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0568296 .0026958 21.08 0.000 .0515459 .0621132

c.age#c.age -.0007566 .0000447 -16.93 0.000 -.0008441 -.000669

tenure .0260135 .0007477 34.79 0.000 .0245481 .0274789
_cons .6136792 .0394611 15.55 0.000 .5363368 .6910216

sigma_u .33542449
sigma_e .29674679

rho .56095413 (fraction of variance due to u_i)

Robust regression estimated the 95% interval [ 0.036, 0.042 ], and xtreg (see [XT] xtreg) estimates
[ 0.025, 0.027 ]. Which is better? The random-effects regression estimator assumes a lot. We can check
some of these assumptions by performing a Hausman test. Using estimates (see [R] estimates store),
we save the random-effects estimation results, and then we run the required fixed-effects regression
to perform the test.

. estimates store random

. xtreg ln_wage age c.age#c.age tenure, fe

Fixed-effects (within) regression Number of obs = 28101
Group variable: idcode Number of groups = 4699

R-sq: within = 0.1375 Obs per group: min = 1
between = 0.2066 avg = 6.0
overall = 0.1568 max = 15

F(3,23399) = 1243.00
corr(u_i, Xb) = 0.1380 Prob > F = 0.0000

ln_wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0522751 .002783 18.78 0.000 .0468202 .05773

c.age#c.age -.0006717 .0000461 -14.56 0.000 -.0007621 -.0005813

tenure .021738 .000799 27.21 0.000 .020172 .023304
_cons .687178 .0405944 16.93 0.000 .6076103 .7667456

sigma_u .38743138
sigma_e .29674679

rho .6302569 (fraction of variance due to u_i)

F test that all u_i=0: F(4698, 23399) = 7.98 Prob > F = 0.0000
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. hausman . random

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
. random Difference S.E.

age .0522751 .0568296 -.0045545 .0006913
c.age#c.age -.0006717 -.0007566 .0000849 .0000115

tenure .021738 .0260135 -.0042756 .0002816

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 336.62

Prob>chi2 = 0.0000

The Hausman test casts grave suspicions on the random-effects model we just fit, so we should be
careful in interpreting those results.

Meanwhile, our robust regression results still stand, as long as we are careful about the interpretation.
The correct interpretation is that, if the data collection were repeated (on women sampled the same
way as in the original sample), and if we were to refit the model, 95% of the time we would expect
the estimated coefficient on tenure to be in the range [ 0.036, 0.042 ].

Even with robust regression, we must be careful about going beyond that statement. Here the
Hausman test is probably picking up something that differs within and between person, which would
cast doubt on our robust regression model in terms of interpreting [ 0.036, 0.042 ] to contain the rate
of return for keeping a job, economywide, for all women, without exception.

Weighted regression
regress can perform weighted and unweighted regression. We indicate the weight by specifying

the [weight] qualifier. By default, regress assumes analytic weights; see the technical note below.

Example 7

We have census data recording the death rate (drate) and median age (medage) for each state.
The data also record the region of the country in which each state is located and the overall population
of the state:

. use http://www.stata-press.com/data/r12/census9
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r12/census9.dta
obs: 50 1980 Census data by state

vars: 6 6 Apr 2011 15:43
size: 1,450

storage display value
variable name type format label variable label

state str14 %-14s State
state2 str2 %-2s Two-letter state abbreviation
drate float %9.0g Death Rate
pop long %12.0gc Population
medage float %9.2f Median age
region byte %-8.0g cenreg Census region

Sorted by:
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We can use factor variables to include dummy variables for region. Because the variables in the
regression reflect means rather than individual observations, the appropriate method of estimation is
analytically weighted least squares (Davidson and MacKinnon 2004, 261–262), where the weight is
total population:

. regress drate medage i.region [w=pop]
(analytic weights assumed)
(sum of wgt is 2.2591e+08)

Source SS df MS Number of obs = 50
F( 4, 45) = 37.21

Model 4096.6093 4 1024.15232 Prob > F = 0.0000
Residual 1238.40987 45 27.5202192 R-squared = 0.7679

Adj R-squared = 0.7472
Total 5335.01916 49 108.877942 Root MSE = 5.246

drate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage 4.283183 .5393329 7.94 0.000 3.196911 5.369455

region
2 .3138738 2.456431 0.13 0.899 -4.633632 5.26138
3 -1.438452 2.320244 -0.62 0.538 -6.111663 3.234758
4 -10.90629 2.681349 -4.07 0.000 -16.30681 -5.505777

_cons -39.14727 17.23613 -2.27 0.028 -73.86262 -4.431915

To weight the regression by population, we added the qualifier [w=pop] to the end of the regress
command. Our qualifier was vague (we did not say [aweight=pop]), but unless told otherwise, Stata
assumes analytic weights for regress. Stata informed us that the sum of the weight is 2.2591× 108;
there were approximately 226 million people residing in the United States according to our 1980 data.

Technical note
Once we fit a weighted regression, we can obtain the appropriately weighted variance–covariance

matrix of the estimators using estat vce and perform appropriately weighted hypothesis tests using
test.

In the weighted regression in the previous example, we see that 4.region is statistically significant
but that 2.region and 3.region are not. We use test to test the joint significance of the region
variables:

. test 2.region 3.region 4.region

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 45) = 9.84
Prob > F = 0.0000

The results indicate that the region variables are jointly significant.

regress also accepts frequency weights (fweights). Frequency weights are appropriate when the
data do not reflect cell means, but instead represent replicated observations. Specifying aweights or
fweights will not change the parameter estimates, but it will change the corresponding significance
levels.
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For instance, if we specified [fweight=pop] in the weighted regression example above—which
would be statistically incorrect—Stata would treat the data as if the data represented 226 million
independent observations on death rates and median age. The data most certainly do not represent
that—they represent 50 observations on state averages.

With aweights, Stata treats the number of observations on the process as the number of observations
in the data. When we specify fweights, Stata treats the number of observations as if it were equal
to the sum of the weights; see Methods and formulas below.

Technical note
A popular request on the help line is to describe the effect of specifying [aweight=exp] with

regress in terms of transformation of the dependent and independent variables. The mechanical
answer is that typing

. regress y x1 x2 [aweight=n]

is equivalent to fitting the model

yj
√
nj = β0

√
nj + β1x1j

√
nj + β2x2j

√
nj + uj

√
nj

This regression will reproduce the coefficients and covariance matrix produced by the aweighted
regression. The mean squared errors (estimates of the variance of the residuals) will, however,
be different. The transformed regression reports s2

t , an estimate of Var(uj
√
nj). The aweighted

regression reports s2
a, an estimate of Var(uj

√
nj
√
N/
∑
k nk), whereN is the number of observations.

Thus

s2
a =

N∑
k nk

s2
t =

s2
t

n
(1)

The logic for this adjustment is as follows: Consider the model

y = β0 + β1x1 + β2x2 + u

Assume that, were this model fit on individuals, Var(u) = σ2
u, a constant. Assume that individual

data are not available; what is available are averages (yj , x1j , x2j) for j = 1, . . . , N , and each
average is calculated over nj observations. Then it is still true that

yj = β0 + β1x1j + β2x2j + uj

where uj is the average of nj mean 0, variance σ2
u deviates and has variance σ2

u = σ2
u/nj . Thus

multiplying through by √nj produces

yj
√
nj = β0

√
nj + β1x1j

√
nj + β2x2j

√
nj + uj

√
nj

and Var(uj
√
nj) = σ2

u. The mean squared error, s2
t , reported by fitting this transformed regression

is an estimate of σ2
u. The coefficients and covariance matrix could also be obtained by aweighted

regress. The only difference would be in the reported mean squared error, which from (1) is
σ2
u/n. On average, each observation in the data reflects the averages calculated over n =

∑
k nk/N

individuals, and thus this reported mean squared error is the average variance of an observation in
the dataset. We can retrieve the estimate of σ2

u by multiplying the reported mean squared error by n.

More generally, aweights are used to solve general heteroskedasticity problems. In these cases,
we have the model

yj = β0 + β1x1j + β2x2j + uj
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and the variance of uj is thought to be proportional to aj . If the variance is proportional to aj , it is
also proportional to αaj , where α is any positive constant. Not quite arbitrarily, but with no loss of
generality, we could choose α =

∑
k(1/ak)/N , the average value of the inverse of aj . We can then

write Var(uj) = kαajσ
2, where k is the constant of proportionality that is no longer a function of

the scale of the weights.

Dividing this regression through by the √aj ,

yj/
√
aj = β0/

√
aj + β1x1j/

√
aj + β2x2j/

√
aj + uj/

√
aj

produces a model with Var(uj/
√
aj) = kασ2, which is the constant part of Var(uj). This variance

is a function of α, the average of the reciprocal weights; if the weights are scaled arbitrarily, then so
is this variance.

We can also fit this model by typing

. regress y x1 x2 [aweight=1/a]

This input will produce the same estimates of the coefficients and covariance matrix; the reported
mean squared error is, from (1),

{
N/
∑
k(1/ak)

}
kασ2 = kσ2. This variance is independent of the

scale of aj .

Instrumental variables and two-stage least-squares regression

An alternate syntax for regress can be used to produce instrumental-variables (two-stage least
squares) estimates.

regress depvar
[

varlist1
[
(varlist2)

] ] [
if
] [

in
] [

weight
] [

, regress options ]

This syntax is used mainly by programmers developing estimators using the instrumental-variables
estimates as intermediate results. ivregress is normally used to directly fit these models; see
[R] ivregress.

With this syntax, regress fits a structural equation of depvar on varlist1 using instrumental
variables regression; (varlist2) indicates the list of instrumental variables. With the exception of
vce(hc2) and vce(hc3), all standard regress options are allowed.
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Saved results
regress saves the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(F) F statistic
e(rmse) root mean squared error
e(ll) log likelihood under additional assumption of i.i.d. normal errors
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) regress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(model) ols or iv
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output when vce() is not ols
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
regress is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Coefficient estimation and ANOVA table
A general notation for the robust variance calculation
Robust calculation for regress

Coefficient estimation and ANOVA table

Variables printed in lowercase and not boldfaced (for example, x) are scalars. Variables printed
in lowercase and boldfaced (for example, x) are column vectors. Variables printed in uppercase and
boldfaced (for example, X) are matrices.
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Let v be a column vector of weights specified by the user. If no weights are specified, v = 1.
Let w be a column vector of normalized weights. If no weights are specified or if the user specified
fweights or iweights, w = v. Otherwise, w =

{
v/(1′v)

}
(1′1).

The number of observations, n, is defined as 1′w. For iweights, this is truncated to an integer.
The sum of the weights is 1′v. Define c = 1 if there is a constant in the regression and zero otherwise.
Define k as the number of right-hand-side variables (including the constant).

Let X denote the matrix of observations on the right-hand-side variables, y the vector of observations
on the left-hand-side variable, and Z the matrix of observations on the instruments. If the user specifies
no instruments, then Z = X. In the following formulas, if the user specifies weights, then X′X,
X′y, y′y, Z′Z, Z′X, and Z′y are replaced by X′DX, X′Dy, y′Dy, Z′DZ, Z′DX, and Z′Dy,
respectively, where D is a diagonal matrix whose diagonal elements are the elements of w. We
suppress the D below to simplify the notation.

If no instruments are specified, define A as X′X and a as X′y. Otherwise, define A as
X′Z(Z′Z)−1(X′Z)′ and a as X′Z(Z′Z)−1Z′y.

The coefficient vector b is defined as A−1a. Although not shown in the notation, unless hascons
is specified, A and a are accumulated in deviation form and the constant is calculated separately.
This comment applies to all statistics listed below.

The total sum of squares, TSS, equals y′y if there is no intercept and y′y−
{

(1′y)2/n
}

otherwise.
The degrees of freedom is n− c.

The error sum of squares, ESS, is defined as y′y − 2bX′y + b′X′Xb if there are instruments
and as y′y − b′X′y otherwise. The degrees of freedom is n− k.

The model sum of squares, MSS, equals TSS− ESS. The degrees of freedom is k − c.
The mean squared error, s2, is defined as ESS/(n − k). The root mean squared error is s, its

square root.

The F statistic with k − c and n− k degrees of freedom is defined as

F =
MSS

(k − c)s2

if no instruments are specified. If instruments are specified and c = 1, then F is defined as

F =
(b− c)′A(b− c)

(k − 1)s2

where c is a vector of k−1 zeros and kth element 1′y/n. Otherwise, F is defined as missing. (Here
you may use the test command to construct any F test that you wish.)

The R-squared, R2, is defined as R2 = 1− ESS/TSS.

The adjusted R-squared, R2
a, is 1− (1−R2)(n− c)/(n− k).

If vce(robust) is not specified, the conventional estimate of variance is s2A−1. The handling
of vce(robust) is described below.
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A general notation for the robust variance calculation

Put aside all context of linear regression and the notation that goes with it—we will return to it.
First, we are going to establish a notation for describing robust variance calculations.

The calculation formula for the robust variance calculation is

V̂ = qcV̂
( M∑
k=1

u(G)′
k u(G)

k

)
V̂

where
u(G)
k =

∑
j∈Gk

wjuj

G1, G2, . . . , GM are the clusters specified by vce(cluster clustvar), and wj are the user-specified
weights, normalized if aweights or pweights are specified and equal to 1 if no weights are specified.

For fweights without clusters, the variance formula is

V̂ = qcV̂
( N∑
j=1

wju′juj
)
V̂

which is the same as expanding the dataset and making the calculation on the unweighted data.

If vce(cluster clustvar) is not specified, M = N , and each cluster contains 1 observation. The
inputs into this calculation are

• V̂, which is typically a conventionally calculated variance matrix;

• uj , j = 1, . . . , N , a row vector of scores; and

• qc, a constant finite-sample adjustment.

Thus we can now describe how estimators apply the robust calculation formula by defining V̂, uj ,
and qc.

Two definitions are popular enough for qc to deserve a name. The regression-like formula for qc
(Fuller et al. 1986) is

qc =
N − 1
N − k

M

M − 1

where M is the number of clusters and N is the number of observations. For weights, N refers to
the sum of the weights if weights are frequency weights and the number of observations in the dataset
(ignoring weights) in all other cases. Also note that, weighted or not, M = N when vce(cluster
clustvar) is not specified, and then qc = N/(N − k).

The asymptotic-like formula for qc is

qc =
M

M − 1

where M = N if vce(cluster clustvar) is not specified.
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See [U] 20.20 Obtaining robust variance estimates and [P] robust for a discussion of the robust
variance estimator and a development of these formulas.

Robust calculation for regress

For regress, V̂ = A−1. The other terms are

No instruments, vce(robust), but not vce(hc2) or vce(hc3),

uj = (yj − xjb)xj

and qc is given by its regression-like definition.

No instruments, vce(hc2),

uj =
1√

1− hjj
(yj − xjb)xj

where qc = 1 and hjj = xj(X′X)−1xj ′.

No instruments, vce(hc3),

uj =
1

1− hjj
(yj − xjb)xj

where qc = 1 and hjj = xj(X′X)−1xj ′.

Instrumental variables,
uj = (yj − xjb)x̂j

where qc is given by its regression-like definition, and

x̂′j = Pzj ′

where P = (X′Z)(Z′Z)−1.
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The history of regression is long and complicated: the books by Stigler (1986) and Hald (1998) are
devoted largely to the story. Legendre published first on least squares in 1805. Gauss published
later in 1809, but he had the idea earlier. Gauss, and especially Laplace, tied least squares to a
normal errors assumption. The idea of the normal distribution can itself be traced back to De
Moivre in 1733. Laplace discussed a variety of other estimation methods and error assumptions
over his long career, while linear models long predate either innovation. Most of this work was
linked to problems in astronomy and geodesy.

A second wave of ideas started when Galton used graphical and descriptive methods on data bearing
on heredity to develop what he called regression. His term reflects the common phenomenon that
characteristics of offspring are positively correlated with those of parents but with regression slope
such that offspring “regress toward the mean”. Galton’s work was rather intuitive: contributions
from Pearson, Edgeworth, Yule, and others introduced more formal machinery, developed related
ideas on correlation, and extended application into the biological and social sciences. So most
of the elements of regression as we know it were in place by 1900.

Pierre-Simon Laplace (1749–1827) was born in Normandy and was early recognized as a
remarkable mathematician. He weathered a changing political climate well enough to rise to
Minister of the Interior under Napoleon in 1799 (although only for 6 weeks) and to be made
a Marquis by Louis XVIII in 1817. He made many contributions to mathematics and physics,
his two main interests being theoretical astronomy and probability theory (including statistics).
Laplace transforms are named for him.

Adrien-Marie Legendre (1752–1833) was born in Paris (or possibly in Toulouse) and educated in
mathematics and physics. He worked in number theory, geometry, differential equations, calculus,
function theory, applied mathematics, and geodesy. The Legendre polynomials are named for
him. His main contribution to statistics is as one of the discoverers of least squares. He died in
poverty, having refused to bow to political pressures.

Johann Carl Friedrich Gauss (1777–1855) was born in Braunschweig (Brunswick), now in
Germany. He studied there and at Göttingen. His doctoral dissertation at the University of
Helmstedt was a discussion of the fundamental theorem of algebra. He made many fundamental
contributions to geometry, number theory, algebra, real analysis, differential equations, numerical
analysis, statistics, astronomy, optics, geodesy, mechanics, and magnetism. An outstanding genius,
Gauss worked mostly in isolation in Göttingen.

Francis Galton (1822–1911) was born in Birmingham, England, into a well-to-do family with
many connections: he and Charles Darwin were first cousins. After an unsuccessful foray into
medicine, he became independently wealthy at the death of his father. Galton traveled widely
in Europe, the Middle East, and Africa, and became celebrated as an explorer and geographer.
His pioneering work on weather maps helped in the identification of anticyclones, which he
named. From about 1865, most of his work was centered on quantitative problems in biology,
anthropology, and psychology. In a sense, Galton (re)invented regression, and he certainly named
it. Galton also promoted the normal distribution, correlation approaches, and the use of median
and selected quantiles as descriptive statistics. He was knighted in 1909.� �
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regress postestimation — Postestimation tools for regress

Description
The following postestimation commands are of special interest after regress:

Command Description

dfbeta DFBETA influence statistics
estat hettest tests for heteroskedasticity
estat imtest information matrix test
estat ovtest Ramsey regression specification-error test for omitted variables
estat szroeter Szroeter’s rank test for heteroskedasticity
estat vif variance inflation factors for the independent variables
acprplot augmented component-plus-residual plot
avplot added-variable plot
avplots all added-variables plots in one image
cprplot component-plus-residual plot
lvr2plot leverage-versus-squared-residual plot
rvfplot residual-versus-fitted plot
rvpplot residual-versus-predictor plot

These commands are not appropriate after the svy prefix.

For information about these commands, see below.
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The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized

predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

For postestimation tests specific to time series, see [R] regress postestimation time series.

Special-interest postestimation commands

These commands provide tools for diagnosing sensitivity to individual observations, analyzing
residuals, and assessing specification.

dfbeta will calculate one, more than one, or all the DFBETAs after regress. Although predict
will also calculate DFBETAs, predict can do this for only one variable at a time. dfbeta is a
convenience tool for those who want to calculate DFBETAs for multiple variables. The names for the
new variables created are chosen automatically and begin with the letters dfbeta .

estat hettest performs three versions of the Breusch–Pagan (1979) and Cook–Weisberg (1983)
test for heteroskedasticity. All three versions of this test present evidence against the null hypothesis
that t = 0 in Var(e) = σ2exp(zt). In the normal version, performed by default, the null hypothesis
also includes the assumption that the regression disturbances are independent-normal draws with
variance σ2. The normality assumption is dropped from the null hypothesis in the iid and fstat
versions, which respectively produce the score and F tests discussed in Methods and formulas. If
varlist is not specified, the fitted values are used for z. If varlist or the rhs option is specified, the
variables specified are used for z.

estat imtest performs an information matrix test for the regression model and an orthogonal de-
composition into tests for heteroskedasticity, skewness, and kurtosis due to Cameron and Trivedi (1990);



1706 regress postestimation — Postestimation tools for regress

White’s test for homoskedasticity against unrestricted forms of heteroskedasticity (1980) is available
as an option. White’s test is usually similar to the first term of the Cameron–Trivedi decomposition.

estat ovtest performs two versions of the Ramsey (1969) regression specification-error test
(RESET) for omitted variables. This test amounts to fitting y = xb + zt + u and then testing t = 0.
If the rhs option is not specified, powers of the fitted values are used for z. If rhs is specified,
powers of the individual elements of x are used.

estat szroeter performs Szroeter’s rank test for heteroskedasticity for each of the variables in
varlist or for the explanatory variables of the regression if rhs is specified.

estat vif calculates the centered or uncentered variance inflation factors (VIFs) for the independent
variables specified in a linear regression model.

acprplot graphs an augmented component-plus-residual plot (a.k.a. augmented partial residual
plot) as described by Mallows (1986). This seems to work better than the component-plus-residual
plot for identifying nonlinearities in the data.

avplot graphs an added-variable plot (a.k.a. partial-regression leverage plot, partial regression
plot, or adjusted partial residual plot) after regress. indepvar may be an independent variable (a.k.a.
predictor, carrier, or covariate) that is currently in the model or not.

avplots graphs all the added-variable plots in one image.

cprplot graphs a component-plus-residual plot (a.k.a. partial residual plot) after regress. indepvar
must be an independent variable that is currently in the model.

lvr2plot graphs a leverage-versus-squared-residual plot (a.k.a. L-R plot).

rvfplot graphs a residual-versus-fitted plot, a graph of the residuals against the fitted values.

rvpplot graphs a residual-versus-predictor plot (a.k.a. independent variable plot or carrier plot),
a graph of the residuals against the specified predictor.
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
residuals residuals
score score; equivalent to residuals

rstandard standardized residuals
rstudent Studentized (jackknifed) residuals
cooksd Cook’s distance
leverage | hat leverage (diagonal elements of hat matrix)
pr(a,b) Pr(yj | a < yj < b)

e(a,b) E(yj | a < yj < b)

ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}
∗dfbeta(varname) DFBETA for varname
stdp standard error of the linear prediction
stdf standard error of the forecast
stdr standard error of the residual
∗covratio COVRATIO
∗dfits DFITS
∗welsch Welsch distance

Unstarred statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample. Starred statistics are calculated only for the estimation sample, even when if e(sample)
is not specified.

rstandard, rstudent, cooksd, leverage, dfbeta(), stdf, stdr, covratio, dfits, and welsch are not available
if any vce() other than vce(ols) was specified with regress.

xb, residuals, score, and stdp are the only options allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .) means +∞; see
[U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

residuals calculates the residuals.

score is equivalent to residuals in linear regression.

rstandard calculates the standardized residuals.

rstudent calculates the Studentized (jackknifed) residuals.

cooksd calculates the Cook’s D influence statistic (Cook 1977).
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leverage or hat calculates the diagonal elements of the projection hat matrix.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.

b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

dfbeta(varname) calculates the DFBETA for varname, the difference between the regression coefficient
when the jth observation is included and excluded, said difference being scaled by the estimated
standard error of the coefficient. varname must have been included among the regressors in the
previously fitted model. The calculation is automatically restricted to the estimation subsample.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas.

stdr calculates the standard error of the residuals.

covratio calculates COVRATIO (Belsley, Kuh, and Welsch 1980), a measure of the influence of the
jth observation based on considering the effect on the variance–covariance matrix of the estimates.
The calculation is automatically restricted to the estimation subsample.

dfits calculates DFITS (Welsch and Kuh 1977) and attempts to summarize the information in the
leverage versus residual-squared plot into one statistic. The calculation is automatically restricted
to the estimation subsample.

welsch calculates Welsch distance (Welsch 1982) and is a variation on dfits. The calculation is
automatically restricted to the estimation subsample.

Syntax for dfbeta
dfbeta

[
indepvar

[
indepvar

[
. . .
] ] ] [

, stub(name)
]
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Menu
Statistics > Linear models and related > Regression diagnostics > DFBETAs

Option for dfbeta
stub(name) specifies the leading characters dfbeta uses to name the new variables to be generated.

The default is stub( dfbeta ).

Syntax for estat hettest

estat hettest
[

varlist
] [

, rhs
[
normal | iid | fstat

]
mtest

[
(spec)

] ]
Menu

Statistics > Postestimation > Reports and statistics

Options for estat hettest
rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory)

variables of the fitted regression model. The rhs option may be combined with a varlist.

normal, the default, causes estat hettest to compute the original Breusch–Pagan/Cook–Weisberg
test, which assumes that the regression disturbances are normally distributed.

iid causes estat hettest to compute the N ∗R2 version of the score test that drops the normality
assumption.

fstat causes estat hettest to compute the F -statistic version that drops the normality assumption.

mtest
[
(spec)

]
specifies that multiple testing be performed. The argument specifies how p-values

are adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment
holm Holm’s multiple testing adjustment
sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

mtest may be specified without an argument. This is equivalent to specifying mtest(noadjust);
that is, tests for the individual variables should be performed with unadjusted p-values. By default,
estat hettest does not perform multiple testing. mtest may not be specified with iid or
fstat.

Syntax for estat imtest

estat imtest
[
, preserve white

]
Menu

Statistics > Postestimation > Reports and statistics
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Options for estat imtest
preserve specifies that the data in memory be preserved, all variables and cases that are not needed

in the calculations be dropped, and at the conclusion the original data be restored. This option is
costly for large datasets. However, because estat imtest has to perform an auxiliary regression
on k(k + 1)/2 temporary variables, where k is the number of regressors, it may not be able to
perform the test otherwise.

white specifies that White’s original heteroskedasticity test also be performed.

Syntax for estat ovtest

estat ovtest
[
, rhs

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat ovtest
rhs specifies that powers of the right-hand-side (explanatory) variables be used in the test rather than

powers of the fitted values.

Syntax for estat szroeter

estat szroeter
[

varlist
] [

, rhs mtest(spec)
]

Either varlist or rhs must be specified.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat szroeter
rhs specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory)

variables of the fitted regression model. Option rhs may be combined with a varlist.

mtest(spec) specifies that multiple testing be performed. The argument specifies how p-values are
adjusted. The following specifications, spec, are supported:

bonferroni Bonferroni’s multiple testing adjustment
holm Holm’s multiple testing adjustment
sidak Šidák’s multiple testing adjustment

noadjust no adjustment is made for multiple testing

estat szroeter always performs multiple testing. By default, it does not adjust the p-values.



regress postestimation — Postestimation tools for regress 1711

Syntax for estat vif

estat vif
[
, uncentered

]
Menu

Statistics > Postestimation > Reports and statistics

Option for estat vif
uncentered requests that the computation of the uncentered variance inflation factors. This option is

often used to detect the collinearity of the regressors with the constant. estat vif, uncentered
may be used after regression models fit without the constant term.

Syntax for acprplot

acprplot indepvar
[
, acprplot options

]
acprplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Options

lowess add a lowess smooth of the plotted points
lsopts(lowess options) affect rendition of the lowess smooth
mspline add median spline of the plotted points
msopts(mspline options) affect rendition of the spline

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Linear models and related > Regression diagnostics > Augmented component-plus-residual plot
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Options for acprplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Options �

lowess adds a lowess smooth of the plotted points to assist in detecting nonlinearities.

lsopts(lowess options) affects the rendition of the lowess smooth. For an explanation of these
options, especially the bwidth() option, see [R] lowess. Specifying lsopts() implies the lowess
option.

mspline adds a median spline of the plotted points to assist in detecting nonlinearities.

msopts(mspline options) affects the rendition of the spline. For an explanation of these options,
especially the bands() option, see [G-2] graph twoway mspline. Specifying msopts() implies
the mspline option.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for avplot

avplot indepvar
[
, avplot options

]
avplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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Menu
Statistics > Linear models and related > Regression diagnostics > Added-variable plot

Options for avplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for avplots

avplots
[
, avplots options

]
avplots options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
combine options any of the options documented in [G-2] graph combine

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Linear models and related > Regression diagnostics > Added-variable plot
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Options for avplots

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

combine options are any of the options documented in [G-2] graph combine. These include options for
titling the graph (see [G-3] title options) and for saving the graph to disk (see [G-3] saving option).

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for cprplot

cprplot indepvar
[
, cprplot options

]
cprplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Reference line

rlopts(cline options) affect rendition of the reference line

Options

lowess add a lowess smooth of the plotted points
lsopts(lowess options) affect rendition of the lowess smooth
mspline add median spline of the plotted points
msopts(mspline options) affect rendition of the spline

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Linear models and related > Regression diagnostics > Component-plus-residual plot
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Options for cprplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line. See [G-3] cline options.

� � �
Options �

lowess adds a lowess smooth of the plotted points to assist in detecting nonlinearities.

lsopts(lowess options) affects the rendition of the lowess smooth. For an explanation of these
options, especially the bwidth() option, see [R] lowess. Specifying lsopts() implies the lowess
option.

mspline adds a median spline of the plotted points to assist in detecting nonlinearities.

msopts(mspline options) affects the rendition of the spline. For an explanation of these options,
especially the bands() option, see [G-2] graph twoway mspline. Specifying msopts() implies
the mspline option.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for lvr2plot

lvr2plot
[
, lvr2plot options

]
lvr2plot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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Menu
Statistics > Linear models and related > Regression diagnostics > Leverage-versus-squared-residual plot

Options for lvr2plot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for rvfplot

rvfplot
[
, rvfplot options

]
rvfplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Linear models and related > Regression diagnostics > Residual-versus-fitted plot

Options for rvfplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.
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� � �
Add plots �

addplot(plot) provides a way to add plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Syntax for rvpplot

rvpplot indepvar
[
, rvpplot options

]
rvpplot options Description

Plot

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Linear models and related > Regression diagnostics > Residual-versus-predictor plot

Options for rvpplot

� � �
Plot �

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

marker label options specify if and how the markers are to be labeled; see [G-3] marker label options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).
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Remarks
Remarks are presented under the following headings:

Fitted values and residuals
Prediction standard errors
Prediction with weighted data
Residual-versus-fitted plots
Added-variable plots
Component-plus-residual plots
Residual-versus-predictor plots
Leverage statistics
L-R plots
Standardized and Studentized residuals
DFITS, Cook’s Distance, and Welsch Distance
COVRATIO
DFBETAs
Formal tests for violations of assumptions
Variance inflation factors

Many of these commands concern identifying influential data in linear regression. This is, un-
fortunately, a field that is dominated by jargon, codified and partially begun by Belsley, Kuh, and
Welsch (1980). In the words of Chatterjee and Hadi (1986, 416), “Belsley, Kuh, and Welsch’s book,
Regression Diagnostics, was a very valuable contribution to the statistical literature, but it unleashed
on an unsuspecting statistical community a computer speak (à la Orwell), the likes of which we
have never seen.” Things have only gotten worse since then. Chatterjee and Hadi’s (1986, 1988)
own attempts to clean up the jargon did not improve matters (see Hoaglin and Kempthorne [1986],
Velleman [1986], and Welsch [1986]). We apologize for the jargon, and for our contribution to the
jargon in the form of inelegant command names, we apologize most of all.

Model sensitivity refers to how estimates are affected by subsets of our data. Imagine data on y
and x, and assume that the data are to be fit by the regression yi = α + βxi + εi. The regression
estimates of α and β are a and b, respectively. Now imagine that the estimated a and b would be
different if a small portion of the dataset, perhaps even one observation, were deleted. As a data
analyst, you would like to think that you are summarizing tendencies that apply to all the data, but
you have just been told that the model you fit is unduly influenced by one point or just a few points
and that, as a matter of fact, there is another model that applies to the rest of the data—a model
that you have ignored. The search for subsets of the data that, if deleted, would change the results
markedly is a predominant theme of this entry.

There are three key issues in identifying model sensitivity to individual observations, which go by
the names residuals, leverage, and influence. In our yi = a+ bxi + ei regression, the residuals are,
of course, ei—they reveal how much our fitted value ŷi = a+ bxi differs from the observed yi. A
point (xi, yi) with a corresponding large residual is called an outlier. Say that you are interested in
outliers because you somehow think that such points will exert undue influence on your estimates.
Your feelings are generally right, but there are exceptions. A point might have a huge residual and
yet not affect the estimated b at all. Nevertheless, studying observations with large residuals almost
always pays off.

(xi, yi) can be an outlier in another way—just as yi can be far from ŷi, xi can be far from
the center of mass of the other x’s. Such an “outlier” should interest you just as much as the more
traditional outliers. Picture a scatterplot of y against x with thousands of points in some sort of mass
at the lower left of the graph and one point at the upper right of the graph. Now run a regression
line through the points—the regression line will come close to the point at the upper right of the
graph and may in fact, go through it. That is, this isolated point will not appear as an outlier as
measured by residuals because its residual will be small. Yet this point might have a dramatic effect
on our resulting estimates in the sense that, were you to delete the point, the estimates would change
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markedly. Such a point is said to have high leverage. Just as with traditional outliers, a high leverage
point does not necessarily have an undue effect on regression estimates, but if it does not, it is more
the exception than the rule.

Now all this is a most unsatisfactory state of affairs. Points with large residuals may, but need
not, have a large effect on our results, and points with small residuals may still have a large effect.
Points with high leverage may, but need not, have a large effect on our results, and points with low
leverage may still have a large effect. Can you not identify the influential points and simply have the
computer list them for you? You can, but you will have to define what you mean by “influential”.

“Influential” is defined with respect to some statistic. For instance, you might ask which points in
your data have a large effect on your estimated a, which points have a large effect on your estimated
b, which points have a large effect on your estimated standard error of b, and so on, but do not be
surprised when the answers to these questions are different. In any case, obtaining such measures
is not difficult—all you have to do is fit the regression excluding each observation one at a time
and record the statistic of interest which, in the day of the modern computer, is not too onerous.
Moreover, you can save considerable computer time by doing algebra ahead of time and working
out formulas that will calculate the same answers as if you ran each of the regressions. (Ignore the
question of pairs of observations that, together, exert undue influence, and triples, and so on, which
remains largely unsolved and for which the brute force fit-every-possible-regression procedure is not
a viable alternative.)

Fitted values and residuals

Typing predict newvar with no options creates newvar containing the fitted values. Typing
predict newvar, resid creates newvar containing the residuals.

Example 1

Continuing with example 1 from [R] regress, we wish to fit the following model:

mpg = β0 + β1weight + β2weight
2 + β3foreign + ε

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight c.weight#c.weight foreign

Source SS df MS Number of obs = 74
F( 3, 70) = 52.25

Model 1689.15372 3 563.05124 Prob > F = 0.0000
Residual 754.30574 70 10.7757963 R-squared = 0.6913

Adj R-squared = 0.6781
Total 2443.45946 73 33.4720474 Root MSE = 3.2827

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0165729 .0039692 -4.18 0.000 -.0244892 -.0086567

c.weight#
c.weight 1.59e-06 6.25e-07 2.55 0.013 3.45e-07 2.84e-06

foreign -2.2035 1.059246 -2.08 0.041 -4.3161 -.0909002
_cons 56.53884 6.197383 9.12 0.000 44.17855 68.89913
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That done, we can now obtain the predicted values from the regression. We will store them in a new
variable called pmpg by typing predict pmpg. Because predict produces no output, we will follow
that by summarizing our predicted and observed values.

. predict pmpg
(option xb assumed; fitted values)

. summarize pmpg mpg

Variable Obs Mean Std. Dev. Min Max

pmpg 74 21.2973 4.810311 13.59953 31.86288
mpg 74 21.2973 5.785503 12 41

Example 2: Out-of-sample predictions

We can just as easily obtain predicted values from the model by using a wholly different dataset
from the one on which the model was fit. The only requirement is that the data have the necessary
variables, which here are weight and foreign.

Using the data on two new cars (the Pontiac Sunbird and the Volvo 260) from the newautos.dta
dataset, we can obtain out-of-sample predictions (or forecasts) by typing

. use http://www.stata-press.com/data/r12/newautos, clear
(New Automobile Models)

. predict pmpg
(option xb assumed; fitted values)

. list, divider

make weight foreign pmpg

1. Pont. Sunbird 2690 Domestic 23.47137
2. Volvo 260 3170 Foreign 17.78846

The Pontiac Sunbird has a predicted mileage rating of 23.5 mpg, whereas the Volvo 260 has a
predicted rating of 17.8 mpg. In comparison, the actual mileage ratings are 24 for the Pontiac and
17 for the Volvo.

Prediction standard errors
predict can calculate the standard error of the forecast (stdf option), the standard error of the

prediction (stdp option), and the standard error of the residual (stdr option). It is easy to confuse
stdf and stdp because both are often called the prediction error. Consider the prediction ŷj = xjb,
where b is the estimated coefficient (column) vector and xj is a (row) vector of independent variables
for which you want the prediction. First, ŷj has a variance due to the variance of the estimated
coefficient vector b,

Var(ŷj) = Var(xjb) = s2hj

where hj = xj(X′X)−1x′j and s2 is the mean squared error of the regression. Do not panic over the
algebra—just remember that Var(ŷj) = s2hj , whatever s2 and hj are. stdp calculates this quantity.
This is the error in the prediction due to the uncertainty about b.
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If you are about to hand this number out as your forecast, however, there is another error. According
to your model, the true value of yj is given by

yj = xjb + εj = ŷj + εj

and thus the Var(yj) = Var(ŷj) + Var(εj) = s2hj + s2, which is the square of stdf. stdf, then,
is the sum of the error in the prediction plus the residual error.

stdr has to do with an analysis-of-variance decomposition of s2, the estimated variance of y.
The standard error of the prediction is s2hj , and therefore s2hj + s2(1− hj) = s2 decomposes s2

into the prediction and residual variances.

Example 3: standard error of the forecast

Returning to our model of mpg on weight, weight2, and foreign, we previously predicted the
mileage rating for the Pontiac Sunbird and Volvo 260 as 23.5 and 17.8 mpg, respectively. We now
want to put a standard error around our forecast. Remember, the data for these two cars were in
newautos.dta:

. use http://www.stata-press.com/data/r12/newautos, clear
(New Automobile Models)

. predict pmpg
(option xb assumed; fitted values)

. predict se_pmpg, stdf

. list, divider

make weight foreign pmpg se_pmpg

1. Pont. Sunbird 2690 Domestic 23.47137 3.341823
2. Volvo 260 3170 Foreign 17.78846 3.438714

Thus an approximate 95% confidence interval for the mileage rating of the Volvo 260 is 17.8±2·3.44 =
[ 10.92, 24.68 ].

Prediction with weighted data

predict can be used after frequency-weighted (fweight) estimation, just as it is used after
unweighted estimation. The technical note below concerns the use of predict after analytically
weighted (aweight) estimation.

Technical note
After analytically weighted estimation, predict is willing to calculate only the prediction (no

options), residual (residual option), standard error of the prediction (stdp option), and diagonal
elements of the projection matrix (hat option). Moreover, the results produced by hat need to
be adjusted, as will be described. For analytically weighted estimation, the standard error of the
forecast and residuals, the standardized and Studentized residuals, and Cook’s D are not statistically
well-defined concepts.

To obtain the correct values of the diagonal elements of the hat matrix, you can use predict
with the hat option to make a first, partially adjusted calculation, and then follow that by completing
the adjustment. Assume that you are fitting a linear regression model weighting the data with the
variable w ([aweight=w]). Begin by creating a new variable, w0:
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. predict resid if e(sample), resid

. summarize w if resid < . & e(sample)

. gen w0=w/r(mean)

Some caution is necessary at this step—the summarize w must be performed on the same sample that
was used to fit the model, which means that you must include if e(sample) to restrict the prediction
to the estimation sample. You created the residual and then included the modifier ‘if resid < .’
so that if the dependent variable or any of the independent variables is missing, the corresponding
observations will be excluded from the calculation of the average value of the original weight.

To correct predict’s hat calculation, multiply the result by w0:

. predict myhat, hat

. replace myhat = w0 * myhat

Residual-versus-fitted plots

Example 4: rvfplot

Using the automobile dataset described in [U] 1.2.2 Example datasets, we will use regress to fit
a model of price on weight, mpg, foreign, and the interaction of foreign with mpg. We specify
foreign##c.mpg to obtain the interaction of foreign with mpg; see [U] 11.4.3 Factor variables.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. regress price weight foreign##c.mpg

Source SS df MS Number of obs = 74
F( 4, 69) = 21.22

Model 350319665 4 87579916.3 Prob > F = 0.0000
Residual 284745731 69 4126749.72 R-squared = 0.5516

Adj R-squared = 0.5256
Total 635065396 73 8699525.97 Root MSE = 2031.4

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 4.613589 .7254961 6.36 0.000 3.166263 6.060914
1.foreign 11240.33 2751.681 4.08 0.000 5750.878 16729.78

mpg 263.1875 110.7961 2.38 0.020 42.15527 484.2197

foreign#
c.mpg

1 -307.2166 108.5307 -2.83 0.006 -523.7294 -90.70368

_cons -14449.58 4425.72 -3.26 0.002 -23278.65 -5620.51

Once we have fit a model, we may use any of the regression diagnostics commands. rvfplot
(read residual-versus-fitted plot) graphs the residuals against the fitted values:
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. rvfplot, yline(0)
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All the diagnostic plot commands allow the graph twoway and graph twoway scatter options;
we specified a yline(0) to draw a line across the graph at y = 0; see [G-2] graph twoway scatter.

In a well-fitted model, there should be no pattern to the residuals plotted against the fitted
values—something not true of our model. Ignoring the two outliers at the top center of the graph,
we see curvature in the pattern of the residuals, suggesting a violation of the assumption that price
is linear in our independent variables. We might also have seen increasing or decreasing variation in
the residuals—heteroskedasticity. Any pattern whatsoever indicates a violation of the least-squares
assumptions.

Added-variable plots

Example 5: avplot

We continue with our price model, and another diagnostic graph is provided by avplot (read
added-variable plot, also known as the partial-regression leverage plot).

One of the wonderful features of one-regressor regressions (regressions of y on one x) is that we
can graph the data and the regression line. There is no easier way to understand the regression than
to examine such a graph. Unfortunately, we cannot do this when we have more than one regressor.
With two regressors, it is still theoretically possible—the graph must be drawn in three dimensions,
but with three or more regressors no graph is possible.

The added-variable plot is an attempt to project multidimensional data back to the two-dimensional
world for each of the original regressors. This is, of course, impossible without making some
concessions. Call the coordinates on an added-variable plot y and x. The added-variable plot has the
following properties:

• There is a one-to-one correspondence between (xi, yi) and the ith observation used in the original
regression.

• A regression of y on x has the same coefficient and standard error (up to a degree-of-freedom
adjustment) as the estimated coefficient and standard error for the regressor in the original regression.
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• The “outlierness” of each observation in determining the slope is in some sense preserved.

It is equally important to note the properties that are not listed. The y and x coordinates of the
added-variable plot cannot be used to identify functional form, or, at least, not well (see Mallows
[1986]). In the construction of the added-variable plot, the relationship between y and x is forced to
be linear.

Let’s examine the added-variable plot for mpg in our regression of price on weight and
foreign##c.mpg:

. avplot mpg
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coef = 263.18749, se = 110.79612, t = 2.38

This graph suggests a problem in determining the coefficient on mpg. Were this a one-regressor
regression, the two points at the top-left corner and the one at the top right would cause us concern,
and so it does in our more complicated multiple-regressor case. To identify the problem points, we
retyped our command, modifying it to read avplot mpg, mlabel(make), and discovered that the
two cars at the top left are the Cadillac Eldorado and the Lincoln Versailles; the point at the top right
is the Cadillac Seville. These three cars account for 100% of the luxury cars in our data, suggesting
that our model is misspecified. By the way, the point at the lower right of the graph, also cause for
concern, is the Plymouth Arrow, our data-entry error.

Technical note
Stata’s avplot command can be used with regressors already in the model, as we just did, or

with potential regressors not yet in the model. In either case, avplot will produce the correct graph.
The name “added-variable plot” is unfortunate in the case when the variable is already among the list
of regressors but is, we think, still preferable to the name “partial-regression leverage plot” assigned
by Belsley, Kuh, and Welsch (1980, 30) and more in the spirit of the original use of such plots by
Mosteller and Tukey (1977, 271–279). Welsch (1986, 403), however, disagrees: “I am sorry to see
that Chatterjee and Hadi [1986] endorse the term ‘added-variable plot’ when Xj is part of the original
model” and goes on to suggest the name “adjusted partial residual plot”.
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Example 6: avplots

Added-variable plots are so useful that we should look at them for every regressor in the data.
avplots makes this easy:

. avplots
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coef = −307.21656, se = 108.53072, t = −2.83

Component-plus-residual plots

Added-variable plots are successful at identifying outliers, but they cannot be used to identify
functional form. The component-plus-residual plot (Ezekiel 1924; Larsen and McCleary 1972) is
another attempt at projecting multidimensional data into a two-dimensional form, but with different
properties. Although the added-variable plot can identify outliers, the component-plus-residual plot
cannot. It can, however, be used to examine the functional-form assumptions of the model. Both plots
have the property that a regression line through the coordinates has a slope equal to the estimated
coefficient in the regression model.

Example 7: cprplot and acprplot

To illustrate these plots, we begin with a different model:
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. use http://www.stata-press.com/data/r12/auto1, clear
(Automobile Models)

. regress price mpg weight

Source SS df MS Number of obs = 74
F( 2, 71) = 14.90

Model 187716578 2 93858289 Prob > F = 0.0000
Residual 447348818 71 6300687.58 R-squared = 0.2956

Adj R-squared = 0.2757
Total 635065396 73 8699525.97 Root MSE = 2510.1

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -55.9393 75.24136 -0.74 0.460 -205.9663 94.08771
weight 1.710992 .5861682 2.92 0.005 .5422063 2.879779
_cons 2197.9 3190.768 0.69 0.493 -4164.311 8560.11

In fact, we know that the effects of mpg in this model are nonlinear—if we added mpg squared
to the model, its coefficient would have a t statistic of 2.38, the t statistic on mpg would become
−2.48, and weight’s effect would become about one-third of its current value and become statistically
insignificant. Pretend that we do not know this.

The component-plus-residual plot for mpg is

. cprplot mpg, mspline msopts(bands(13))
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We are supposed to examine the above graph for nonlinearities or, equivalently, ask if the regression
line, which has slope equal to the estimated effect of mpg in the original model, fits the data adequately.
To assist our eyes, we added a median spline. Perhaps some people may detect nonlinearity from this
graph, but we assert that if we had not previously revealed the nonlinearity of mpg and if we had not
added the median spline, the graph would not overly bother us.

Mallows (1986) proposed an augmented component-plus-residual plot that is often more sensitive
to detecting nonlinearity:



regress postestimation — Postestimation tools for regress 1727

. acprplot mpg, mspline msopts(bands(13))
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It does do somewhat better.

Residual-versus-predictor plots

Example 8: rvpplot

The residual-versus-predictor plot is a simple way to look for violations of the regression assumptions.
If the assumptions are correct, there should be no pattern in the graph. Using our price on mpg and
weight model, we type

. rvpplot mpg, yline(0)
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Remember, any pattern counts as a problem, and in this graph, we see that the variation in the
residuals decreases as mpg increases.
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Leverage statistics

In addition to providing fitted values and the associated standard errors, the predict command can
also be used to generate various statistics used to detect the influence of individual observations. This
section provides a brief introduction to leverage (hat) statistics, and some of the following subsections
discuss other influence statistics produced by predict.

Example 9: diagonal elements of projection matrix

The diagonal elements of the projection matrix, obtained by the hat option, are a measure of
distance in explanatory variable space. leverage is a synonym for hat.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight c.weight#c.weight foreign

(output omitted )
. predict xdist, hat

. summarize xdist, detail

Leverage

Percentiles Smallest
1% .0251334 .0251334
5% .0255623 .0251334

10% .0259213 .0253883 Obs 74
25% .0278442 .0255623 Sum of Wgt. 74

50% .04103 Mean .0540541
Largest Std. Dev. .0459218

75% .0631279 .1593606
90% .0854584 .1593606 Variance .0021088
95% .1593606 .2326124 Skewness 3.440809
99% .3075759 .3075759 Kurtosis 16.95135

Some 5% of our sample has an xdist measure in excess of 0.15. Let’s force them to reveal their
identities:

. list foreign make mpg if xdist>.15, divider

foreign make mpg

24. Domestic Ford Fiesta 28
26. Domestic Linc. Continental 12
27. Domestic Linc. Mark V 12
43. Domestic Plym. Champ 34

To understand why these cars are on this list, we must remember that the explanatory variables in our
model are weight and foreign and that xdist measures distance in this metric. The Ford Fiesta
and the Plymouth Champ are the two lightest domestic cars in our data. The Lincolns are the two
heaviest domestic cars.
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L-R plots

Example 10: lvr2plot

One of the most useful diagnostic graphs is provided by lvr2plot (leverage-versus-residual-squared
plot), a graph of leverage against the (normalized) residuals squared.

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. regress price weight foreign##c.mpg

(output omitted )
. lvr2plot
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The lines on the chart show the average values of leverage and the (normalized) residuals squared.
Points above the horizontal line have higher-than-average leverage; points to the right of the vertical
line have larger-than-average residuals.

One point immediately catches our eye, and four more make us pause. The point at the top of the
graph has high leverage and a smaller-than-average residual. The other points that bother us all have
higher-than-average leverage, two with smaller-than-average residuals and two with larger-than-average
residuals.

A less pretty but more useful version of the above graph specifies that make be used as the symbol
(see [G-3] marker label options):
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. lvr2plot, mlabel(make) mlabp(0) m(none) mlabsize(small)
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The VW Diesel, Plymouth Champ, Plymouth Arrow, and Peugeot 604 are the points that cause us the
most concern. When we further examine our data, we discover that the VW Diesel is the only diesel
in our data and that the data for the Plymouth Arrow were entered incorrectly into the computer. No
such simple explanations were found for the Plymouth Champ and Peugeot 604.

Standardized and Studentized residuals
The terms standardized and Studentized residuals have meant different things to different authors.

In Stata, predict defines the standardized residual as êi = ei/(s
√

1− hi) and the Studentized
residual as ri = ei/(s(i)

√
1− hi), where s(i) is the root mean squared error of a regression with the

ith observation removed. Stata’s definition of the Studentized residual is the same as the one given
in Bollen and Jackman (1990, 264) and is what Chatterjee and Hadi (1988, 74) call the “externally
Studentized” residual. Stata’s “standardized” residual is the same as what Chatterjee and Hadi (1988,
74) call the “internally Studentized” residual.

Standardized and Studentized residuals are attempts to adjust residuals for their standard errors.
Although the εi theoretical residuals are homoskedastic by assumption (that is, they all have the same
variance), the calculated ei are not. In fact,

Var(ei) = σ2(1− hi)
where hi are the leverage measures obtained from the diagonal elements of hat matrix. Thus
observations with the greatest leverage have corresponding residuals with the smallest variance.

Standardized residuals use the root mean squared error of the regression for σ. Studentized residuals
use the root mean squared error of a regression omitting the observation in question for σ. In general,
Studentized residuals are preferable to standardized residuals for purposes of outlier identification.
Studentized residuals can be interpreted as the t statistic for testing the significance of a dummy
variable equal to 1 in the observation in question and 0 elsewhere (Belsley, Kuh, and Welsch 1980).
Such a dummy variable would effectively absorb the observation and so remove its influence in
determining the other coefficients in the model. Caution must be exercised here, however, because
of the simultaneous testing problem. You cannot simply list the residuals that would be individually
significant at the 5% level—their joint significance would be far less (their joint significance level
would be far greater).



regress postestimation — Postestimation tools for regress 1731

Example 11: standardized and Studentized residuals

In the opening remarks for this entry, we distinguished residuals from leverage and speculated
on the impact of an observation with a small residual but large leverage. If we had adjusted the
residuals for their standard errors, however, the adjusted residual would have been (relatively) larger
and perhaps large enough so that we could simply examine the adjusted residuals. Taking our price
on weight and foreign##c.mpg model, we can obtain the in-sample standardized and Studentized
residuals by typing

. predict esta if e(sample), rstandard

. predict estu if e(sample), rstudent

In L-R plots, we discovered that the VW Diesel has the highest leverage in our data, but a corresponding
small residual. The standardized and Studentized residuals for the VW Diesel are

. list make price esta estu if make=="VW Diesel"

make price esta estu

74. VW Diesel 5,397 .6142691 .6114758

The Studentized residual of 0.611 can be interpreted as the t statistic for including a dummy variable
for VW Diesel in our regression. Such a variable would not be significant.

DFITS, Cook’s Distance, and Welsch Distance

DFITS (Welsch and Kuh 1977), Cook’s Distance (Cook 1977), and Welsch Distance (Welsch 1982)
are three attempts to summarize the information in the leverage versus residual-squared plot into one
statistic. That is, the goal is to create an index that is affected by the size of the residuals—outliers—and
the size of hi—leverage. Viewed mechanically, one way to write DFITS (Bollen and Jackman 1990,
265) is

DFITSi = ri

√
hi

1− hi
where ri are the Studentized residuals. Thus large residuals increase the value of DFITS, as do large
values of hi. Viewed more traditionally, DFITS is a scaled difference between predicted values for
the ith case when the regression is fit with and without the ith observation, hence the name.

The mechanical relationship between DFITS and Cook’s Distance, Di (Bollen and Jackman 1990,
266), is

Di =
1
k

s2
(i)

s2
DFITS2

i

where k is the number of variables (including the constant) in the regression, s is the root mean
squared error of the regression, and s(i) is the root mean squared error when the ith observation is
omitted. Viewed more traditionally, Di is a scaled measure of the distance between the coefficient
vectors when the ith observation is omitted.

The mechanical relationship between DFITS and Welsch’s Distance, Wi (Chatterjee and Hadi 1988,
123), is

Wi = DFITSi

√
n− 1
1− hi
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The interpretation of Wi is more difficult, as it is based on the empirical influence curve. Although
DFITS and Cook’s distance are similar, the Welsch distance measure includes another normalization
by leverage.

Belsley, Kuh, and Welsch (1980, 28) suggest that DFITS values greater than 2
√
k/n deserve more

investigation, and so values of Cook’s distance greater than 4/n should also be examined (Bollen
and Jackman 1990, 265–266). Through similar logic, the cutoff for Welsch distance is approximately
3
√
k (Chatterjee and Hadi 1988, 124).

Example 12: DFITS influence measure

Using our model of price on weight and foreign##c.mpg, we can obtain the DFITS influence
measure:

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. regress price weight foreign##c.mpg

(output omitted )
. predict e if e(sample), resid

. predict dfits, dfits

We did not specify if e(sample) in computing the DFITS statistic. DFITS is available only over the
estimation sample, so specifying if e(sample) would have been redundant. It would have done no
harm, but it would not have changed the results.

Our model has k = 5 independent variables (k includes the constant) and n = 74 observations;
following the 2

√
k/n cutoff advice, we type

. list make price e dfits if abs(dfits) > 2*sqrt(5/74), divider

make price e dfits

12. Cad. Eldorado 14,500 7271.96 .9564455
13. Cad. Seville 15,906 5036.348 1.356619
24. Ford Fiesta 4,389 3164.872 .5724172
27. Linc. Mark V 13,594 3109.193 .5200413
28. Linc. Versailles 13,466 6560.912 .8760136

42. Plym. Arrow 4,647 -3312.968 -.9384231

We calculate Cook’s distance and list the observations greater than the suggested 4/n cutoff:
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. predict cooksd if e(sample), cooksd

. list make price e cooksd if cooksd > 4/74, divider

make price e cooksd

12. Cad. Eldorado 14,500 7271.96 .1492676
13. Cad. Seville 15,906 5036.348 .3328515
24. Ford Fiesta 4,389 3164.872 .0638815
28. Linc. Versailles 13,466 6560.912 .1308004
42. Plym. Arrow 4,647 -3312.968 .1700736

Here we used if e(sample) because Cook’s distance is not restricted to the estimation sample by
default. It is worth comparing this list with the preceding one.

Finally, we use Welsch distance and the suggested 3
√
k cutoff:

. predict wd, welsch

. list make price e wd if abs(wd) > 3*sqrt(5), divider

make price e wd

12. Cad. Eldorado 14,500 7271.96 8.394372
13. Cad. Seville 15,906 5036.348 12.81125
28. Linc. Versailles 13,466 6560.912 7.703005
42. Plym. Arrow 4,647 -3312.968 -8.981481

Here we did not need to specify if e(sample) because welsch automatically restricts the prediction
to the estimation sample.

COVRATIO
COVRATIO (Belsley, Kuh, and Welsch 1980) measures the influence of the ith observation by

considering the effect on the variance–covariance matrix of the estimates. The measure is the ratio
of the determinants of the covariances matrix, with and without the ith observation. The resulting
formula is

COVRATIOi =
1

1− hi

(
n− k − ê2

i

n− k − 1

)k
where êi is the standardized residual.

For noninfluential observations, the value of COVRATIO is approximately 1. Large values of the
residuals or large values of leverage will cause deviations from 1, although if both are large, COVRATIO
may tend back toward 1 and therefore not identify such observations (Chatterjee and Hadi 1988, 139).

Belsley, Kuh, and Welsch (1980) suggest that observations for which

|COVRATIOi − 1| ≥ 3k
n

are worthy of further examination.
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Example 13: COVRATIO influence measure

Using our model of price on weight and foreign##c.mpg, we can obtain the COVRATIO
measure and list the observations outside the suggested cutoff by typing

. predict covr, covratio

. list make price e covr if abs(covr-1) >= 3*5/74, divider

make price e covr

12. Cad. Eldorado 14,500 7271.96 .3814242
13. Cad. Seville 15,906 5036.348 .7386969
28. Linc. Versailles 13,466 6560.912 .4761695
43. Plym. Champ 4,425 1621.747 1.27782
53. Audi 5000 9,690 591.2883 1.206842

57. Datsun 210 4,589 19.81829 1.284801
64. Peugeot 604 12,990 1037.184 1.348219
66. Subaru 3,798 -909.5894 1.264677
71. VW Diesel 5,397 999.7209 1.630653
74. Volvo 260 11,995 1327.668 1.211888

The covratio option automatically restricts the prediction to the estimation sample.

DFBETAs
DFBETAs are perhaps the most direct influence measure of interest to model builders. DFBETAs

focus on one coefficient and measure the difference between the regression coefficient when the ith
observation is included and excluded, the difference being scaled by the estimated standard error of
the coefficient. Belsley, Kuh, and Welsch (1980, 28) suggest observations with |DFBETAi| > 2/

√
n

as deserving special attention, but it is also common practice to use 1 (Bollen and Jackman 1990,
267), meaning that the observation shifted the estimate at least one standard error.

Example 14: DFBETAs influence measure; the dfbeta() option

Using our model of price on weight and foreign##c.mpg, let’s first ask which observations
have the greatest impact on the determination of the coefficient on 1.foreign. We will use the
suggested 2/

√
n cutoff:

. sort foreign make

. predict dfor, dfbeta(1.foreign)

. list make price foreign dfor if abs(dfor) > 2/sqrt(74), divider

make price foreign dfor

12. Cad. Eldorado 14,500 Domestic -.5290519
13. Cad. Seville 15,906 Domestic .8243419
28. Linc. Versailles 13,466 Domestic -.5283729
42. Plym. Arrow 4,647 Domestic -.6622424
43. Plym. Champ 4,425 Domestic .2371104

64. Peugeot 604 12,990 Foreign .2552032
69. Toyota Corona 5,719 Foreign -.256431

The Cadillac Seville shifted the coefficient on 1.foreign 0.82 standard deviations!
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Now let us ask which observations have the greatest effect on the mpg coefficient:

. predict dmpg, dfbeta(mpg)

. list make price mpg dmpg if abs(dmpg) > 2/sqrt(74), divider

make price mpg dmpg

12. Cad. Eldorado 14,500 14 -.5970351
13. Cad. Seville 15,906 21 1.134269
28. Linc. Versailles 13,466 14 -.6069287
42. Plym. Arrow 4,647 28 -.8925859
43. Plym. Champ 4,425 34 .3186909

Once again we see the Cadillac Seville heading the list, indicating that our regression results may be
dominated by this one car.

Example 15: DFBETAs influence measure; the dfbeta command

We can use predict, dfbeta() or the dfbeta command to generate the DFBETAs. dfbeta
makes up names for the new variables automatically and, without arguments, generates the DFBETAs
for all the variables in the regression:

. dfbeta
_dfbeta_1: dfbeta(weight)
_dfbeta_2: dfbeta(1.foreign)
_dfbeta_3: dfbeta(mpg)
_dfbeta_4: dfbeta(1.foreign#c.mpg)

dfbeta created four new variables in our dataset: dfbeta 1, containing the DFBETAs for weight;
dfbeta 2, containing the DFBETAs for mpg; and so on. Had we wanted only the DFBETAs for mpg

and weight, we might have typed

. dfbeta mpg weight
_dfbeta_5: dfbeta(weight)
_dfbeta_6: dfbeta(mpg)

In the example above, we typed dfbeta mpg weight instead of dfbeta; if we had typed dfbeta
followed by dfbeta mpg weight, here is what would have happened:

. dfbeta
_dfbeta_7: dfbeta(weight)
_dfbeta_8: dfbeta(1.foreign)
_dfbeta_9: dfbeta(mpg)

_dfbeta_10: dfbeta(1.foreign#c.mpg)

. dfbeta mpg weight
_dfbeta_11: dfbeta(weight)
_dfbeta_12: dfbeta(mpg)

dfbeta would have made up different names for the new variables. dfbeta never replaces existing
variables—it instead makes up a different name, so we need to pay attention to dfbeta’s output.
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Formal tests for violations of assumptions

This section introduces some regression diagnostic commands that are designed to test for certain vio-
lations that rvfplot less formally attempts to detect. estat ovtest provides Ramsey’s test for omitted
variables—a pattern in the residuals. estat hettest provides a test for heteroskedasticity—the
increasing or decreasing variation in the residuals with fitted values, with respect to the explanatory
variables, or with respect to yet other variables. The score test implemented in estat hettest
(Breusch and Pagan 1979; Cook and Weisberg 1983) performs a score test of the null hypothesis
that b = 0 against the alternative hypothesis of multiplicative heteroskedasticity. estat szroeter
provides a rank test for heteroskedasticity, which is an alternative to the score test computed by estat
hettest. Finally, estat imtest computes an information matrix test, including an orthogonal de-
composition into tests for heteroskedasticity, skewness, and kurtosis (Cameron and Trivedi 1990). The
heteroskedasticity test computed by estat imtest is similar to the general test for heteroskedasticity
that was proposed by White (1980). Cameron and Trivedi (2010, chap. 3) discuss most of these tests
and provides more examples.

Example 16: estat ovtest, estat hettest, estat szroeter, and estat imtest

We run these commands just mentioned on our model:

. estat ovtest

Ramsey RESET test using powers of the fitted values of price
Ho: model has no omitted variables

F(3, 66) = 7.77
Prob > F = 0.0002

. estat hettest

Breusch-Pagan / Cook-Weisberg tests for heteroskedasticity
Ho: Constant variance
variables: fitted values of price

chi2(1) = 6.50
Prob > chi2 = 0.0108

Testing for heteroskedasticity in the right-hand-side variables is requested by specifying the rhs
option. By specifying the mtest(bonferroni) option, we request that tests be conducted for each
of the variables, with a Bonferroni adjustment for the p-values to accommodate our testing multiple
hypotheses.

. estat hettest, rhs mtest(bonf)

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance

Variable chi2 df p

weight 15.24 1 0.0004 #
1.foreign 6.15 1 0.0525 #

mpg 9.04 1 0.0106 #
foreign#

c.mpg
1 6.02 1 0.0566 #

simultaneous 15.60 4 0.0036

# Bonferroni-adjusted p-values
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. estat szroeter, rhs mtest(holm)

Szroeter’s test for homoskedasticity

Ho: variance constant
Ha: variance monotonic in variable

Variable chi2 df p

weight 17.07 1 0.0001 #
1.foreign 6.15 1 0.0131 #

mpg 11.45 1 0.0021 #
foreign#

c.mpg
1 6.17 1 0.0260 #

# Holm adjusted p-values

Finally, we request the information matrix test, which is a conditional moments test with second-,
third-, and fourth-order moment conditions.

. estat imtest

Cameron & Trivedi’s decomposition of IM-test

Source chi2 df p

Heteroskedasticity 18.86 10 0.0420
Skewness 11.69 4 0.0198
Kurtosis 2.33 1 0.1273

Total 32.87 15 0.0049

We find evidence for omitted variables, heteroskedasticity, and nonnormal skewness.

So, why bother with the various graphical commands when the tests seem so much easier to
interpret? In part, it is a matter of taste: both are designed to uncover the same problem, and both
are, in fact, going about it in similar ways. One is based on a formal calculation, whereas the other is
based on personal judgment in evaluating a graph. On the other hand, the tests are seeking evidence
of specific problems, whereas judgment is more general. The careful analyst will use both.

We performed the omitted-variable test first. Omitted variables are a more serious problem than
heteroskedasticity or the violations of higher moment conditions tested by estat imtest. If this
were not a manual, having found evidence of omitted variables, we would never have run the
estat hettest, estat szroeter, and estat imtest commands, at least not until we solved the
omitted-variable problem.

Technical note

estat ovtest and estat hettest both perform two flavors of their respective tests. By default,
estat ovtest looks for evidence of omitted variables by fitting the original model augmented by
ŷ2, ŷ3, and ŷ4, which are the fitted values from the original model. Under the assumption of no
misspecification, the coefficients on the powers of the fitted values will be zero. With the rhs option,
estat ovtest instead augments the original model with powers (second through fourth) of the
explanatory variables (except for dummy variables).
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estat hettest, by default, looks for heteroskedasticity by modeling the variance as a function
of the fitted values. If, however, we specify a variable or variables, the variance will be modeled as
a function of the specified variables. In our example, if we had, a priori, some reason to suspect
heteroskedasticity and that the heteroskedasticity is a function of a car’s weight, then using a test that
focuses on weight would be more powerful than the more general tests such as White’s test or the
first term in the Cameron–Trivedi decomposition test.

estat hettest, by default, computes the original Breusch–Pagan/Cook–Weisberg test, which
includes the assumption of normally distributed errors. Koenker (1981) derived an N ∗ R2 version
of this test that drops the normality assumption. Wooldridge (2009) gives an F -statistic version that
does not require the normality assumption.

Variance inflation factors
Problems arise in regression when the predictors are highly correlated. In this situation, there may

be a significant change in the regression coefficients if you add or delete an independent variable.
The estimated standard errors of the fitted coefficients are inflated, or the estimated coefficients may
not be statistically significant even though a statistical relation exists between the dependent and
independent variables.

Data analysts rely on these facts to check informally for the presence of multicollinearity. estat
vif, another command for use after regress, calculates the variance inflation factors and tolerances
for each of the independent variables.

The output shows the variance inflation factors together with their reciprocals. Some analysts
compare the reciprocals with a predetermined tolerance. In the comparison, if the reciprocal of the
VIF is smaller than the tolerance, the associated predictor variable is removed from the regression
model. However, most analysts rely on informal rules of thumb applied to the VIF; see Chatterjee
and Hadi (2006). According to these rules, there is evidence of multicollinearity if

1. The largest VIF is greater than 10 (some choose a more conservative threshold value of 30).

2. The mean of all the VIFs is considerably larger than 1.

Example 17: estat vif

We examine a regression model fit using the ubiquitous automobile dataset:

. regress price mpg rep78 trunk headroom length turn displ gear_ratio

Source SS df MS Number of obs = 69
F( 8, 60) = 6.33

Model 264102049 8 33012756.2 Prob > F = 0.0000
Residual 312694909 60 5211581.82 R-squared = 0.4579

Adj R-squared = 0.3856
Total 576796959 68 8482308.22 Root MSE = 2282.9

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

mpg -144.84 82.12751 -1.76 0.083 -309.1195 19.43948
rep78 727.5783 337.6107 2.16 0.035 52.25638 1402.9
trunk 44.02061 108.141 0.41 0.685 -172.2935 260.3347

headroom -807.0996 435.5802 -1.85 0.069 -1678.39 64.19061
length -8.688914 34.89848 -0.25 0.804 -78.49626 61.11843

turn -177.9064 137.3455 -1.30 0.200 -452.6383 96.82551
displacement 30.73146 7.576952 4.06 0.000 15.5753 45.88762

gear_ratio 1500.119 1110.959 1.35 0.182 -722.1303 3722.368
_cons 6691.976 7457.906 0.90 0.373 -8226.057 21610.01
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. estat vif

Variable VIF 1/VIF

length 8.22 0.121614
displacement 6.50 0.153860

turn 4.85 0.205997
gear_ratio 3.45 0.290068

mpg 3.03 0.330171
trunk 2.88 0.347444

headroom 1.80 0.554917
rep78 1.46 0.686147

Mean VIF 4.02

The results are mixed. Although we have no VIFs greater than 10, the mean VIF is greater than 1,
though not considerably so. We could continue the investigation of collinearity, but given that other
authors advise that collinearity is a problem only when VIFs exist that are greater than 30 (contradicting
our rule above), we will not do so here.

Example 18: estat vif, with strong evidence of multicollinearity

This example comes from a dataset described in Kutner, Nachtsheim, and Neter (2004, 257) that
examines body fat as modeled by caliper measurements on the triceps, midarm, and thigh.

. use http://www.stata-press.com/data/r12/bodyfat, clear
(Body Fat)

. regress bodyfat tricep thigh midarm

Source SS df MS Number of obs = 20
F( 3, 16) = 21.52

Model 396.984607 3 132.328202 Prob > F = 0.0000
Residual 98.4049068 16 6.15030667 R-squared = 0.8014

Adj R-squared = 0.7641
Total 495.389513 19 26.0731323 Root MSE = 2.48

bodyfat Coef. Std. Err. t P>|t| [95% Conf. Interval]

triceps 4.334085 3.015511 1.44 0.170 -2.058512 10.72668
thigh -2.856842 2.582015 -1.11 0.285 -8.330468 2.616785

midarm -2.186056 1.595499 -1.37 0.190 -5.568362 1.19625
_cons 117.0844 99.78238 1.17 0.258 -94.44474 328.6136

. estat vif

Variable VIF 1/VIF

triceps 708.84 0.001411
thigh 564.34 0.001772

midarm 104.61 0.009560

Mean VIF 459.26

Here we see strong evidence of multicollinearity in our model. More investigation reveals that the
measurements on the thigh and the triceps are highly correlated:
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. corr triceps thigh midarm
(obs=20)

triceps thigh midarm

triceps 1.0000
thigh 0.9238 1.0000

midarm 0.4578 0.0847 1.0000

If we remove the predictor tricep from the model (because it had the highest VIF), we get

. regress bodyfat thigh midarm

Source SS df MS Number of obs = 20
F( 2, 17) = 29.40

Model 384.279748 2 192.139874 Prob > F = 0.0000
Residual 111.109765 17 6.53586854 R-squared = 0.7757

Adj R-squared = 0.7493
Total 495.389513 19 26.0731323 Root MSE = 2.5565

bodyfat Coef. Std. Err. t P>|t| [95% Conf. Interval]

thigh .8508818 .1124482 7.57 0.000 .6136367 1.088127
midarm .0960295 .1613927 0.60 0.560 -.2444792 .4365383
_cons -25.99696 6.99732 -3.72 0.002 -40.76001 -11.2339

. estat vif

Variable VIF 1/VIF

midarm 1.01 0.992831
thigh 1.01 0.992831

Mean VIF 1.01

Note how the coefficients change and how the estimated standard errors for each of the regression
coefficients become much smaller. The calculated value of R2 for the overall regression for the
subset model does not appreciably decline when we remove the correlated predictor. Removing an
independent variable from the model is one way to deal with multicollinearity. Other methods include
ridge regression, weighted least squares, and restricting the use of the fitted model to data that follow
the same pattern of multicollinearity. In economic studies, it is sometimes possible to estimate the
regression coefficients from different subsets of the data by using cross-section and time series.

All examples above demonstrated the use of centered VIFs. As pointed out by Belsley (1991), the
centered VIFs may fail to discover collinearity involving the constant term. One solution is to use the
uncentered VIFs instead. According to the definition of the uncentered VIFs, the constant is viewed
as a legitimate explanatory variable in a regression model, which allows one to obtain the VIF value
for the constant term.

Example 19: estat vif, with strong evidence of collinearity with the constant term

Consider the extreme example in which one of the regressors is highly correlated with the constant.
We simulate the data and examine both centered and uncentered VIF diagnostics after fitted regression
model as follows.
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. use http://www.stata-press.com/data/r12/extreme_collin

. summarize

(output omitted )
. regress y one x z

Source SS df MS Number of obs = 100
F( 3, 96) = 2710.27

Model 223801.985 3 74600.6617 Prob > F = 0.0000
Residual 2642.42124 96 27.5252213 R-squared = 0.9883

Adj R-squared = 0.9880
Total 226444.406 99 2287.31723 Root MSE = 5.2464

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

one -3.278582 10.5621 -0.31 0.757 -24.24419 17.68702
x 2.038696 .0242673 84.01 0.000 1.990526 2.086866
z 4.863137 .2681036 18.14 0.000 4.330956 5.395319

_cons 9.760075 10.50935 0.93 0.355 -11.10082 30.62097

. estat vif

Variable VIF 1/VIF

z 1.03 0.968488
x 1.03 0.971307

one 1.00 0.995425

Mean VIF 1.02

. estat vif, uncentered

Variable VIF 1/VIF

one 402.94 0.002482
intercept 401.26 0.002492

z 2.93 0.341609
x 1.13 0.888705

Mean VIF 202.06

According to the values of the centered VIFs (1.03, 1.03, 1.00), no harmful collinearity is detected
in the model. However, by the construction of these simulated data, we know that one is highly
collinear with the constant term. As such, the large values of uncentered VIFs for one (402.94) and
intercept (401.26) reveal high collinearity of the variable one with the constant term.

Saved results
estat hettest saves the following results for the (multivariate) score test in r():

Scalars
r(chi2) χ2 test statistic
r(df) #df for the asymptotic χ2 distribution under H0

r(p) p-value
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estat hettest, fstat saves results for the (multivariate) score test in r():

Scalars
r(F) test statistic
r(df m) #df of the test for the F distribution under H0

r(df r) #df of the residuals for the F distribution under H0

r(p) p-value

estat hettest (if mtest is specified) and estat szroeter save the following in r():

Matrices
r(mtest) a matrix of test results, with rows corresponding to the univariate tests

mtest[.,1] χ2 test statistic
mtest[.,2] #df
mtest[.,3] unadjusted p-value
mtest[.,4] adjusted p-value (if an mtest() adjustment method is specified)

Macros
r(mtmethod) adjustment method for p-values

estat imtest saves the following in r():

Scalars
r(chi2 t) IM-test statistic (= r(chi2 h) + r(chi2 s) + r(chi2 k))
r(df t) df for limiting χ2 distribution under H0 (= r(df h) + r(df s) + r(df k))
r(chi2 h) heteroskedasticity test statistic
r(df h) df for limiting χ2 distribution under H0

r(chi2 s) skewness test statistic
r(df s) df for limiting χ2 distribution under H0

r(chi2 k) kurtosis test statistic
r(df k) df for limiting χ2 distribution under H0

r(chi2 w) White’s heteroskedasticity test (if white specified)
r(df w) df for limiting χ2 distribution under H0

estat ovtest saves the following in r():

Scalars
r(p) two-sided p-value
r(F) F statistic
r(df) degrees of freedom
r(df r) residual degrees of freedom

Methods and formulas
All regression fit and diagnostic commands are implemented as ado-files.

See Hamilton (2009, chap. 7), Kohler and Kreuter (2009, sec. 8.3), or Baum (2006, chap. 5) for
an overview of using Stata to perform regression diagnostics. See Peracchi (2001, chap. 8) for a
mathematically rigorous discussion of diagnostics.

Methods and formulas are presented under the following headings:

predict
Special-interest postestimation commands
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predict

Assume that you have already fit the regression model

y = Xb + e

where X is n× k.

Denote the previously estimated coefficient vector by b and its estimated variance matrix by V.
predict works by recalling various aspects of the model, such as b, and combining that information
with the data currently in memory. Let xj be the jth observation currently in memory, and let s2 be
the mean squared error of the regression.

Let V = s2(X′X)−1. Let k be the number of independent variables including the intercept, if
any, and let yj be the observed value of the dependent variable.

The predicted value (xb option) is defined as ŷj = xjb.

Let `j represent a lower bound for an observation j and uj represent an upper bound. The
probability that yj |xj would be observed in the interval (`j , uj)—the pr(`, u) option—is

P (`j , uj) = Pr(`j < xjb + ej < uj) = Φ
(
uj − ŷj

s

)
− Φ

(
`j − ŷj
s

)
where for the pr(`, u), e(`, u), and ystar(`, u) options, `j and uj can be anywhere in the
range (−∞,+∞).

The option e(`, u) computes the expected value of yj |xj conditional on yj |xj being in the
interval (`j , uj), that is, when yj |xj is truncated. It can be expressed as

E(`j , uj) = E(xjb + ej | `j < xjb + ej < uj) = ŷj − s
φ
(
uj−ŷj
s

)
− φ

(
`j−ŷj
s

)
Φ
(
uj−ŷj
s

)
− Φ

(
`j−ŷj
s

)
where φ is the normal density and Φ is the cumulative normal.

You can also compute ystar(`, u)—the expected value of yj |xj , where yj is assumed censored
at `j and uj :

y∗j =


`j if xjb + ej ≤ `j
xjb + u if `j < xjb + ej < uj
uj if xjb + ej ≥ uj

This computation can be expressed in several ways, but the most intuitive formulation involves a
combination of the two statistics just defined:

y∗j = P (−∞, `j)`j + P (`j , uj)E(`j , uj) + P (uj ,+∞)uj

A diagonal element of the projection matrix (hat) or (leverage) is given by

hj = xj(X′X)−1x′j

The standard error of the prediction (the stdp option) is defined as spj =
√

xjVx′j

and can also be written as spj = s
√
hj .
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The standard error of the forecast (stdf) is defined as sfj = s
√

1 + hj .

The standard error of the residual (stdr) is defined as srj = s
√

1− hj .
The residuals (residuals) are defined as êj = yj − ŷj .
The standardized residuals (rstandard) are defined as êsj = êj/srj .

The Studentized residuals (rstudent) are defined as

rj =
êj

s(j)

√
1− hj

where s(j) represents the root mean squared error with the jth observation removed, which is given
by

s2
(j) =

s2(T − k)
T − k − 1

−
ê 2
j

(T − k − 1)(1− hj)

Cook’s D (cooksd) is given by

Dj =
ê 2
sj (spj/srj )

2

k
=

hj ê
2
j

ks2(1− hj)2

DFITS (dfits) is given by

DFITSj = rj

√
hj

1− hj

Welsch distance (welsch) is given by

Wj =
rj
√
hj(n− 1)
1− hj

COVRATIO (covratio) is given by

COVRATIOj =
1

1− hj

(
n− k − ê2

j

n− k − 1

)k
The DFBETAs (dfbeta) for a particular regressor xi are given by

DFBETAj =
rjuj√

U2(1− hj)

where uj are the residuals obtained from a regression of xi on the remaining x’s and U2 =
∑
j

u2
j .
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Special-interest postestimation commands

The lvr2plot command plots leverage against the squares of the normalized residuals. The
normalized residuals are defined as ênj = êj/(

∑
i ê

2
i )1/2.

The omitted-variable test (Ramsey 1969) reported by estat ovtest fits the regression yi =
xib+zit+ui and then performs a standard F test of t = 0. The default test uses zi = (ŷ2

i , ŷ
3
i , ŷ

4
i ).

If rhs is specified, zi = (x2
1i, x

3
1i, x

4
1i, x

2
2i, . . . , x

4
mi). In either case, the variables are normalized to

have minimum 0 and maximum 1 before powers are calculated.

The test for heteroskedasticity (Breusch and Pagan 1979; Cook and Weisberg 1983) models
Var(ei) = σ2 exp(zt), where z is a variable list specified by the user, the list of right-hand-side
variables, or the fitted values xβ̂. The test is of t = 0. Mechanically, estat hettest fits the
augmented regression ê2

i /σ̂
2 = a+ zit + vi.

The original Breusch–Pagan/Cook–Weisberg version of the test assumes that the ei are normally
distributed under the null hypothesis which implies that the score test statistic S is equal to the model
sum of squares from the augmented regression divided by 2. Under the null hypothesis, S has the
χ2 distribution with m degrees of freedom, where m is the number of columns of z.

Koenker (1981) derived a score test of the null hypothesis that t = 0 under the assumption that
the ei are independent and identically distributed (i.i.d.). Koenker showed that S = N ∗ R2 has a
large-sample χ2 distribution with m degrees of freedom, where N is the number of observations
and R2 is the R-squared in the augmented regression and m is the number of columns of z. estat
hettest, iid produces this version of the test.

Wooldridge (2009) showed that an F test of t = 0 in the augmented regression can also be used
under the assumption that the ei are i.i.d. estat hettest, fstat produces this version of the test.

Szroeter’s class of tests for homoskedasticity against the alternative that the residual variance
increases in some variable x is defined in terms of

H =
∑n
i=1 h(xi)e2

i∑n
i=1 e

2
i

where h(x) is some weight function that increases in x (Szroeter 1978). H is a weighted average
of the h(x), with the squared residuals serving as weights. Under homoskedasticity, H should be
approximately equal to the unweighted average of h(x). Large values of H suggest that e2

i tends to be
large where h(x) is large; that is, the variance indeed increases in x, whereas small values of H suggest
that the variance actually decreases in x. estat szroeter uses h(xi) = rank(xi in x1 . . . xn); see
Judge et al. [1985, 452] for details. estat szroeter displays a normalized version of H ,

Q =

√
6n

n2 − 1
H

which is approximately N(0, 1) distributed under the null (homoskedasticity).

estat hettest and estat szroeter provide adjustments of p-values for multiple testing. The
supported methods are described in [R] test.

estat imtest performs the information matrix test for the regression model, as well as an
orthogonal decomposition into tests for heteroskedasticity δ1, nonnormal skewness δ2, and nonnormal
kurtosis δ3 (Cameron and Trivedi 1990; Long and Trivedi 1993). The decomposition is obtained via
three auxiliary regressions. Let e be the regression residuals, σ̂2 be the maximum likelihood estimate
of σ2 in the regression, n be the number of observations, X be the set of k variables specified with
estat imtest, and R2

un be the uncentered R2 from a regression. δ1 is obtained as nR2
un from a
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regression of e2 − σ̂2 on the cross-products of the variables in X . δ2 is computed as nR2
un from a

regression of e3−3σ̂2e on X . Finally, δ3 is obtained as nR2
un from a regression of e4−6σ̂2e2−3σ̂4

on X . δ1, δ2, and δ3 are asymptotically χ2 distributed with 1/2k(k+1), K, and 1 degree of freedom.
The information test statistic δ = δ1 + δ2 + δ3 is asymptotically χ2 distributed with 1/2k(k + 3)
degrees of freedom. White’s test for heteroskedasticity is computed as nR2 from a regression of û2

on X and the cross-products of the variables in X . This test statistic is usually close to δ1.

estat vif calculates the centered variance inflation factor (VIFc) (Chatterjee and Hadi 2006,
235–239) for xj , given by

VIFc(xj) =
1

1− R̂2
j

where R̂2
j is the square of the centered multiple correlation coefficient that results when xj is regressed

with intercept against all the other explanatory variables.

The uncentered variance inflation factor (VIFuc) (Belsley 1991, 28–29) for xj is given by

VIFuc(xj) =
1

1− R̃2
j

where R̃2
j is the square of the uncentered multiple correlation coefficient that results when xj is

regressed without intercept against all the other explanatory variables including the constant term.
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regress postestimation time series — Postestimation tools for regress with time series

Description
The following postestimation commands for time series are available for regress:

Command Description

estat archlm test for ARCH effects in the residuals
estat bgodfrey Breusch–Godfrey test for higher-order serial correlation
estat durbinalt Durbin’s alternative test for serial correlation
estat dwatson Durbin–Watson d statistic to test for first-order serial correlation

These commands provide regression diagnostic tools specific to time series. You must tsset your
data before using these commands; see [TS] tsset.

estat archlm tests for time-dependent volatility. estat bgodfrey, estat durbinalt, and
estat dwatson test for serial correlation in the residuals of a linear regression. For non–time-series
regression diagnostic tools, see [R] regress postestimation.

estat archlm performs Engle’s Lagrange multiplier (LM) test for the presence of autoregressive
conditional heteroskedasticity.

estat bgodfrey performs the Breusch–Godfrey test for higher-order serial correlation in the
disturbance. This test does not require that all the regressors be strictly exogenous.

estat durbinalt performs Durbin’s alternative test for serial correlation in the disturbance. This
test does not require that all the regressors be strictly exogenous.

estat dwatson computes the Durbin–Watson d statistic (Durbin and Watson 1950) to test for
first-order serial correlation in the disturbance when all the regressors are strictly exogenous.

Syntax for estat archlm

estat archlm
[
, archlm options

]
archlm options Description

lags(numlist) test numlist lag orders
force allow test after regress, vce(robust)

Options for estat archlm

lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be
performed separately for each order. The default is order one.

force allows the test to be run after regress, vce(robust). The command will not work if the
vce(cluster clustvar) option is specified with regress; see [R] regress.

1749
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Syntax for estat bgodfrey

estat bgodfrey
[
, bgodfrey options

]
bgodfrey options Description

lags(numlist) test numlist lag orders
nomiss0 do not use Davidson and MacKinnon’s approach
small obtain p-values using the F or t distribution

Options for estat bgodfrey

lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be
performed separately for each order. The default is order one.

nomiss0 specifies that Davidson and MacKinnon’s approach (1993, 358), which replaces the missing
values in the initial observations on the lagged residuals in the auxiliary regression with zeros, not
be used.

small specifies that the p-values of the test statistics be obtained using the F or t distribution instead
of the default chi-squared or normal distribution.

Syntax for estat durbinalt

estat durbinalt
[
, durbinalt options

]
durbinalt options Description

lags(numlist) test numlist lag orders
nomiss0 do not use Davidson and MacKinnon’s approach
robust compute standard errors using the robust/sandwich estimator
small obtain p-values using the F or t distribution
force allow test after regress, vce(robust) or after newey

Options for estat durbinalt

lags(numlist) specifies a list of numbers, indicating the lag orders to be tested. The test will be
performed separately for each order. The default is order one.

nomiss0 specifies that Davidson and MacKinnon’s approach (1993, 358), which replaces the missing
values in the initial observations on the lagged residuals in the auxiliary regression with zeros, not
be used.

robust specifies that the Huber/White/sandwich robust estimator of the variance–covariance matrix
be used in Durbin’s alternative test.

small specifies that the p-values of the test statistics be obtained using the F or t distribution instead
of the default chi-squared or normal distribution. This option may not be specified with robust,
which always uses an F or t distribution.
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force allows the test to be run after regress, vce(robust) and after newey (see [R] regress and
[TS] newey). The command will not work if the vce(cluster clustvar) option is specified with
regress.

Syntax for estat dwatson

estat dwatson

Remarks
The Durbin–Watson test is used to determine whether the error term in a linear regression model

follows an AR(1) process. For the linear model

yt = xtβ+ ut

the AR(1) process can be written as
ut = ρut−1 + εt

In general, an AR(1) process requires only that εt be independent and identically distributed (i.i.d.).
The Durbin–Watson test, however, requires εt to be distributed N(0, σ2) for the statistic to have an
exact distribution. Also, the Durbin–Watson test can be applied only when the regressors are strictly
exogenous. A regressor x is strictly exogenous if Corr(xs, ut) = 0 for all s and t, which precludes
the use of the Durbin–Watson statistic with models where lagged values of the dependent variable
are included as regressors.

The null hypothesis of the test is that there is no first-order autocorrelation. The Durbin–Watson
d statistic can take on values between 0 and 4 and under the null d is equal to 2. Values of d less
than 2 suggest positive autocorrelation (ρ > 0), whereas values of d greater than 2 suggest negative
autocorrelation (ρ < 0). Calculating the exact distribution of the d statistic is difficult, but empirical
upper and lower bounds have been established based on the sample size and the number of regressors.
Extended tables for the d statistic have been published by Savin and White (1977). For example,
suppose you have a model with 30 observations and three regressors (including the constant term).
For a test of the null hypothesis of no autocorrelation versus the alternative of positive autocorrelation,
the lower bound of the d statistic is 1.284, and the upper bound is 1.567 at the 5% significance
level. You would reject the null if d < 1.284, and you would fail to reject if d > 1.567. A value
falling within the range (1.284, 1.567) leads to no conclusion about whether or not to reject the null
hypothesis.

When lagged dependent variables are included among the regressors, the past values of the error
term are correlated with those lagged variables at time t, implying that they are not strictly exogenous
regressors. The inclusion of covariates that are not strictly exogenous causes the d statistic to be biased
toward the acceptance of the null hypothesis. Durbin (1970) suggested an alternative test for models
with lagged dependent variables and extended that test to the more general AR(p) serial correlation
process

ut = ρ1ut−1 + · · ·+ ρput−p + εt

where εt is i.i.d. with variance σ2 but is not assumed or required to be normal for the test.

The null hypothesis of Durbin’s alternative test is

H0 : ρ1 = 0, . . . , ρp = 0



1752 regress postestimation time series — Postestimation tools for regress with time series

and the alternative is that at least one of the ρ’s is nonzero. Although the null hypothesis was originally
derived for an AR(p) process, this test turns out to have power against MA(p) processes as well. Hence,
the actual null of this test is that there is no serial correlation up to order p because the MA(p) and
the AR(p) models are locally equivalent alternatives under the null. See Godfrey (1988, 113–115) for
a discussion of this result.

Durbin’s alternative test is in fact a LM test, but it is most easily computed with a Wald test on
the coefficients of the lagged residuals in an auxiliary OLS regression of the residuals on their lags
and all the covariates in the original regression. Consider the linear regression model

yt = β1x1t + · · ·+ βkxkt + ut (1)

in which the covariates x1 through xk are not assumed to be strictly exogenous and ut is assumed to
be i.i.d. and to have finite variance. The process is also assumed to be stationary. (See Wooldridge
[2009] for a discussion of stationarity.) Estimating the parameters in (1) by OLS obtains the residuals
ût. Next another OLS regression is performed of ût on ût−1, . . . , ût−p and the other regressors,

ût = γ1ût−1 + · · ·+ γpût−p + β1x1t + · · ·+ βkxkt + εt (2)

where εt stands for the random-error term in this auxiliary OLS regression. Durbin’s alternative test
is then obtained by performing a Wald test that γ1, . . . , γp are jointly zero. The test can be made
robust to an unknown form of heteroskedasticity by using a robust VCE estimator when estimating
the regression in (2). When there are only strictly exogenous regressors and p = 1, this test is
asymptotically equivalent to the Durbin–Watson test.

The Breusch–Godfrey test is also an LM test of the null hypothesis of no autocorrelation versus the
alternative that ut follows an AR(p) or MA(p) process. Like Durbin’s alternative test, it is based on the
auxiliary regression (2), and it is computed as NR2, where N is the number of observations and R2 is
the simple R2 from the regression. This test and Durbin’s alternative test are asymptotically equivalent.
The test statistic NR2 has an asymptotic χ2 distribution with p degrees of freedom. It is valid with
or without the strict exogeneity assumption but is not robust to conditional heteroskedasticity, even
if a robust VCE is used when fitting (2).

In fitting (2), the values of the lagged residuals will be missing in the initial periods. As noted by
Davidson and MacKinnon (1993), the residuals will not be orthogonal to the other covariates in the
model in this restricted sample, which implies that the R2 from the auxiliary regression will not be zero
when the lagged residuals are left out. Hence, Breusch and Godfrey’s NR2 version of the test may
overreject in small samples. To correct this problem, Davidson and MacKinnon (1993) recommend
setting the missing values of the lagged residuals to zero and running the auxiliary regression in (2)
over the full sample used in (1). This small-sample correction has become conventional for both the
Breusch–Godfrey and Durbin’s alternative test, and it is the default for both commands. Specifying
the nomiss0 option overrides this default behavior and treats the initial missing values generated by
regressing on the lagged residuals as missing. Hence, nomiss0 causes these initial observations to
be dropped from the sample of the auxiliary regression.

Durbin’s alternative test and the Breusch–Godfrey test were originally derived for the case covered
by regress without the vce(robust) option. However, after regress, vce(robust) and newey,
Durbin’s alternative test is still valid and can be invoked if the robust and force options are
specified.
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Example 1: tests for serial correlation

Using data from Klein (1950), we first fit an OLS regression of consumption on the government
wage bill:

. use http://www.stata-press.com/data/r12/klein

. tsset yr
time variable: yr, 1920 to 1941

delta: 1 unit

. regress consump wagegovt

Source SS df MS Number of obs = 22
F( 1, 20) = 17.72

Model 532.567711 1 532.567711 Prob > F = 0.0004
Residual 601.207167 20 30.0603584 R-squared = 0.4697

Adj R-squared = 0.4432
Total 1133.77488 21 53.9892799 Root MSE = 5.4827

consump Coef. Std. Err. t P>|t| [95% Conf. Interval]

wagegovt 2.50744 .5957173 4.21 0.000 1.264796 3.750085
_cons 40.84699 3.192183 12.80 0.000 34.18821 47.50577

If we assume that wagegov is a strictly exogenous variable, we can use the Durbin–Watson test
to check for first-order serial correlation in the errors.

. estat dwatson

Durbin-Watson d-statistic( 2, 22) = .3217998

The Durbin–Watson d statistic, 0.32, is far from the center of its distribution (d = 2.0). Given 22
observations and two regressors (including the constant term) in the model, the lower 5% bound is about
0.997, much greater than the computed d statistic. Assuming that wagegov is strictly exogenous, we
can reject the null of no first-order serial correlation. Rejecting the null hypothesis does not necessarily
mean an AR process; other forms of misspecification may also lead to a significant test statistic. If we
are willing to assume that the errors follow an AR(1) process and that wagegov is strictly exogenous,
we could refit the model using arima or prais and model the error process explicitly; see [TS] arima
and [TS] prais.

If we are not willing to assume that wagegov is strictly exogenous, we could instead use Durbin’s
alternative test or the Breusch–Godfrey to test for first-order serial correlation. Because we have only
22 observations, we will use the small option.

. estat durbinalt, small

Durbin’s alternative test for autocorrelation

lags(p) F df Prob > F

1 35.035 ( 1, 19 ) 0.0000

H0: no serial correlation

. estat bgodfrey, small

Breusch-Godfrey LM test for autocorrelation

lags(p) F df Prob > F

1 14.264 ( 1, 19 ) 0.0013

H0: no serial correlation
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Both tests strongly reject the null of no first-order serial correlation, so we decide to refit the
model with two lags of consump included as regressors and then rerun estat durbinalt and
estat bgodfrey. Because the revised model includes lagged values of the dependent variable, the
Durbin–Watson test is not applicable.

. regress consump wagegovt L.consump L2.consump

Source SS df MS Number of obs = 20
F( 3, 16) = 44.01

Model 702.660311 3 234.220104 Prob > F = 0.0000
Residual 85.1596011 16 5.32247507 R-squared = 0.8919

Adj R-squared = 0.8716
Total 787.819912 19 41.4642059 Root MSE = 2.307

consump Coef. Std. Err. t P>|t| [95% Conf. Interval]

wagegovt .6904282 .3295485 2.10 0.052 -.0081835 1.38904

consump
L1. 1.420536 .197024 7.21 0.000 1.002864 1.838208
L2. -.650888 .1933351 -3.37 0.004 -1.06074 -.241036

_cons 9.209073 5.006701 1.84 0.084 -1.404659 19.82281

. estat durbinalt, small lags(1/2)

Durbin’s alternative test for autocorrelation

lags(p) F df Prob > F

1 0.080 ( 1, 15 ) 0.7805
2 0.260 ( 2, 14 ) 0.7750

H0: no serial correlation

. estat bgodfrey, small lags(1/2)

Breusch-Godfrey LM test for autocorrelation

lags(p) F df Prob > F

1 0.107 ( 1, 15 ) 0.7484
2 0.358 ( 2, 14 ) 0.7056

H0: no serial correlation

Although wagegov and the constant term are no longer statistically different from zero at the 5%
level, the output from estat durbinalt and estat bgodfrey indicates that including the two lags
of consump has removed any serial correlation from the errors.

Engle (1982) suggests an LM test for checking for autoregressive conditional heteroskedasticity
(ARCH) in the errors. The pth-order ARCH model can be written as

σ2
t = E(u2

t |ut−1, . . . , ut−p)

= γ0 + γ1u
2
t−1 + · · ·+ γpu

2
t−p

To test the null hypothesis of no autoregressive conditional heteroskedasticity (that is, γ1 = · · · =
γp = 0), we first fit the OLS model (1), obtain the residuals ût, and run another OLS regression on
the lagged residuals:

û2
t = γ0 + γ1û

2
t−1 + · · ·+ γpû

2
t−p + ε (3)
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The test statistic is NR2, where N is the number of observations in the sample and R2 is the R2

from the regression in (3). Under the null hypothesis, the test statistic follows a χ2
p distribution.

Example 2: estat archlm

We refit the original model that does not include the two lags of consump and then use estat
archlm to see if there is any evidence that the errors are autoregressive conditional heteroskedastic.

. regress consump wagegovt

Source SS df MS Number of obs = 22
F( 1, 20) = 17.72

Model 532.567711 1 532.567711 Prob > F = 0.0004
Residual 601.207167 20 30.0603584 R-squared = 0.4697

Adj R-squared = 0.4432
Total 1133.77488 21 53.9892799 Root MSE = 5.4827

consump Coef. Std. Err. t P>|t| [95% Conf. Interval]

wagegovt 2.50744 .5957173 4.21 0.000 1.264796 3.750085
_cons 40.84699 3.192183 12.80 0.000 34.18821 47.50577

. estat archlm, lags(1 2 3)

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p) chi2 df Prob > chi2

1 5.543 1 0.0186
2 9.431 2 0.0090
3 9.039 3 0.0288

H0: no ARCH effects vs. H1: ARCH(p) disturbance

estat archlm shows the results for tests of ARCH(1), ARCH(2), and ARCH(3) effects, respectively. At
the 5% significance level, all three tests reject the null hypothesis that the errors are not autoregressive
conditional heteroskedastic. See [TS] arch for information on fitting ARCH models.

Saved results
estat archlm saves the following in r():

Scalars
r(N) number of observations r(N gaps) number of gaps
r(k) number of regressors

Macros
r(lags) lag order

Matrices
r(arch) test statistic for each lag order r(p) two-sided p-values
r(df) degrees of freedom
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estat bgodfrey saves the following in r():
Scalars

r(N) number of observations r(N gaps) number of gaps
r(k) number of regressors

Macros
r(lags) lag order

Matrices
r(chi2) χ2 statistic for each lag order r(p) two-sided p-values
r(F) F statistic for each lag order (small

only)
r(df) degrees of freedom

r(df r) residual degrees of freedom (small
only)

estat durbinalt saves the following in r():
Scalars

r(N) number of observations r(N gaps) number of gaps
r(k) number of regressors

Macros
r(lags) lag order

Matrices
r(chi2) χ2 statistic for each lag order r(p) two-sided p-values
r(F) F statistic for each lag order (small

only)
r(df) degrees of freedom

r(df r) residual degrees of freedom (small
only)

estat dwatson saves the following in r():
Scalars

r(N) number of observations r(N gaps) number of gaps
r(k) number of regressors r(dw) Durbin–Watson statistic

Methods and formulas
estat archlm, estat bgodfrey, estat durbinalt, and estat dwatson are implemented as

ado-files.

Consider the regression
yt = β1x1t + · · ·+ βkxkt + ut (4)

in which some of the covariates are not strictly exogenous. In particular, some of the xit may be
lags of the dependent variable. We are interested in whether the ut are serially correlated.

The Durbin–Watson d statistic reported by estat dwatson is

d =

n−1∑
t=1

(ût+1 − ût)2

n∑
t=1

û2
t

where ût represents the residual of the tth observation.

To compute Durbin’s alternative test and the Breusch–Godfrey test against the null hypothesis that
there is no pth order serial correlation, we fit the regression in (4), compute the residuals, and then
fit the following auxiliary regression of the residuals ût on p lags of ût and on all the covariates in
the original regression in (4):

ût = γ1ût−1 + · · ·+ γpût−p + β1x1t + · · ·+ βkxkt + ε (5)
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Durbin’s alternative test is computed by performing a Wald test to determine whether the coefficients
of ût−1, . . . , ût−p are jointly different from zero. By default, the statistic is assumed to be distributed
χ2(p). When small is specified, the statistic is assumed to follow an F (p, N − p− k) distribution.
The reported p-value is a two-sided p-value. When robust is specified, the Wald test is performed
using the Huber/White/sandwich estimator of the variance–covariance matrix, and the test is robust
to an unspecified form of heteroskedasticity.

The Breusch–Godfrey test is computed as NR2, where N is the number of observations in the
auxiliary regression (5) and R2 is the R2 from the same regression (5). Like Durbin’s alternative
test, the Breusch–Godfrey test is asymptotically distributed χ2(p), but specifying small causes the
p-value to be computed using an F (p,N − p− k).

By default, the initial missing values of the lagged residuals are replaced with zeros, and the
auxiliary regression is run over the full sample used in the original regression of (4). Specifying the
nomiss0 option causes these missing values to be treated as missing values, and the observations are
dropped from the sample.

Engle’s LM test for ARCH(p) effects fits an OLS regression of û2
t on û2

t−1, . . . , û
2
t−p:

û2
t = γ0 + γ1û

2
t−1 + · · ·+ γpû

2
t−p + ε

The test statistic is nR2 and is asymptotically distributed χ2(p).
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Title

#review — Review previous commands

Syntax
#review

[
#1

[
#2

] ]
Description

The #review command displays the last few lines typed at the terminal.

Remarks
#review (pronounced pound-review) is a Stata preprocessor command. #commands do not generate

a return code or generate ordinary Stata errors. The only error message associated with #commands
is “unrecognized #command”.

The #review command displays the last few lines typed at the terminal. If no arguments follow
#review, the last five lines typed at the terminal are displayed. The first argument specifies the
number of lines to be reviewed, so #review 10 displays the last 10 lines typed. The second argument
specifies the number of lines to be displayed, so #review 10 5 displays five lines, starting at the
10th previous line.

Stata reserves a buffer for #review lines and stores as many previous lines in the buffer as
will fit, rolling out the oldest line to make room for the newest. Requests to #review lines no
longer stored will be ignored. Only lines typed at the terminal are placed in the #review buffer. See
[U] 10.5 Editing previous lines in Stata.

Example 1

Typing #review by itself will show the last five lines you typed at the terminal:

. #review
5 use mydata
4 * comments go into the #review buffer, too
3 describe
2 tabulate marriage educ [freq=number]
1 tabulate marriage educ [freq=number], chi2
.

Typing #review 15 2 shows the 15th and 14th previous lines:

. #review 15 2
15 replace x=. if x<200
14 summarize x
.
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Title

roc — Receiver operating characteristic (ROC) analysis

Description
ROC analysis quantifies the accuracy of diagnostic tests or other evaluation modalities used to

discriminate between two states or conditions, which are here referred to as normal and abnormal or
control and case. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly
classify known normal and abnormal subjects. For this reason, we often refer to the diagnostic test
as a classifier. The analysis uses the ROC curve, a graph of the sensitivity versus 1 − specificity of
the diagnostic test. The sensitivity is the fraction of positive cases that are correctly classified by the
diagnostic test, whereas the specificity is the fraction of negative cases that are correctly classified.
Thus the sensitivity is the true-positive rate, and the specificity is the true-negative rate.

There are six ROC commands:

Command Entry Description

roccomp [R] roccomp Tests of equality of ROC areas
rocgold [R] roccomp Tests of equality of ROC areas against a standard ROC curve
rocfit [R] rocfit Parametric ROC models
rocreg [R] rocreg Nonparametric and parametric ROC regression models
rocregplot [R] rocregplot Plot marginal and covariate-specific ROC curves
roctab [R] roctab Nonparametric ROC analysis

Postestimation commands are available after rocfit and rocreg; see [R] rocfit postestimation and
[R] rocreg postestimation.

Both nonparametric and parametric (semiparametric) methods have been suggested for generating
the ROC curve. The roctab command performs nonparametric ROC analysis for a single classifier.
roccomp extends the nonparametric ROC analysis function of roctab to situations where we have
multiple diagnostic tests of interest to be compared and tested. The rocgold command also provides
ROC analysis for multiple classifiers. rocgold compares each classifier’s ROC curve to a “gold
standard” ROC curve and makes adjustments for multiple comparisons in the analysis. Both rocgold
and roccomp also allow parametric estimation of the ROC curve through a binormal fit. In a binormal
fit, both the control and the case populations are normal.

The rocfit command also estimates the ROC curve of a classifier through a binormal fit. Unlike
roctab, roccomp, and rocgold, rocfit is an estimation command. In postestimation, graphs of
the ROC curve and confidence bands can be produced. Additional tests on the parameters can also be
conducted.

ROC analysis can be interpreted as a two-stage process. First, the control distribution of the classifier
is estimated, assuming a normal model or using a distribution-free estimation technique. The classifier
is standardized using the control distribution to 1− percentile value, the false-positive rate. Second,
the ROC curve is estimated as the case distribution of the standardized classifier values.

Covariates may affect both stages of ROC analysis. The first stage may be affected, yielding a
covariate-adjusted ROC curve. The second stage may also be affected, producing multiple covariate-
specific ROC curves.
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The rocreg command performs ROC analysis under both types of covariate effects. Both parametric
(semiparametric) and nonparametric methods may be used by rocreg. Like rocfit, rocreg is an
estimation command and provides many postestimation capabilities.

The global performance of a diagnostic test is commonly summarized by the area under the ROC
curve (AUC). This area can be interpreted as the probability that the result of a diagnostic test of a
randomly selected abnormal subject will be greater than the result of the same diagnostic test from
a randomly selected normal subject. The greater the AUC, the better the global performance of the
diagnostic test. Each of the ROC commands provides computation of the AUC.

Citing a lack of clinical relevance for the AUC, other ROC summary measures have been suggested.
These include the partial area under the ROC curve for a given false-positive rate t [pAUC(t)]. This
is the area under the ROC curve from the false-positive rate of 0 to t. The ROC value at a particular
false-positive rate and the false-positive rate for a particular ROC value are also useful summary
measures for the ROC curve. These three measures are directly estimated by rocreg during the model
fit or postestimation stages. Point estimates of ROC value are computed by the other ROC commands,
but no standard errors are reported.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs
used to reproduce results presented in the book (http://www.stata.com/bookstore/pepe.html).

Reference
Pepe, M. S. 2003. The Statistical Evaluation of Medical Tests for Classification and Prediction. New York: Oxford

University Press.
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roccomp — Tests of equality of ROC areas

Syntax

Test equality of ROC areas

roccomp refvar classvar
[
classvars

] [
if
] [

in
] [

weight
] [

, roccomp options
]

Test equality of ROC area against a standard ROC curve

rocgold refvar goldvar classvar
[
classvars

] [
if
] [

in
] [

weight
] [

, rocgold options
]

roccomp options Description

Main

by(varname) split into groups by variable
test(matname) use contrast matrix for comparing ROC areas
graph graph the ROC curve
norefline suppress plotting the 45-degree reference line
separate place each ROC curve on its own graph
summary report the area under the ROC curve
binormal estimate areas by using binormal distribution assumption
line#opts(cline options) affect rendition of the #th binormal fit line
level(#) set confidence level; default is level(95)

Plot

plot#opts(plot options) affect rendition of the #th ROC curve

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.
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rocgold options Description

Main

sidak adjust the significance probability by using Šidák’s method
test(matname) use contrast matrix for comparing ROC areas
graph graph the ROC curve
norefline suppress plotting the 45-degree reference line
separate place each ROC curve on its own graph
summary report the area under the ROC curve
binormal estimate areas by using binormal distribution assumption
line#opts(cline options) affect rendition of the #th binormal fit line
level(#) set confidence level; default is level(95)

Plot

plot#opts(plot options) affect rendition of the #th ROC curve; plot 1 is the “gold standard”

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change the look of the line

Menu
roccomp

Statistics > Epidemiology and related > ROC analysis > Test equality of two or more ROC areas

rocgold

Statistics > Epidemiology and related > ROC analysis > Test equality of ROC area against gold standard

Description
The above commands are used to perform receiver operating characteristic (ROC) analyses with

rating and discrete classification data.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation, such as diseased and nondiseased or normal and abnormal, and must be
coded as 0 and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar,
which must be at least ordinal, with higher values indicating higher risk.
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roccomp tests the equality of two or more ROC areas obtained from applying two or more test
modalities to the same sample or to independent samples. roccomp expects the data to be in wide
form when comparing areas estimated from the same sample and in long form for areas estimated
from independent samples.

rocgold independently tests the equality of the ROC area of each of several test modalities,
specified by classvar, against a “gold standard” ROC curve, goldvar. For each comparison, rocgold
reports the raw and the Bonferroni-adjusted significance probability. Optionally, Šidák’s adjustment
for multiple comparisons can be obtained.

See [R] rocfit and [R] rocreg for commands that fit maximum-likelihood ROC models.

Options

� � �
Main �

by(varname) (roccomp only) is required when comparing independent ROC areas. The by() variable
identifies the groups to be compared.

sidak (rocgold only) requests that the significance probability be adjusted for the effect of multiple
comparisons by using Šidák’s method. Bonferroni’s adjustment is reported by default.

test(matname) specifies the contrast matrix to be used when comparing ROC areas. By default, the
null hypothesis that all areas are equal is tested.

graph produces graphical output of the ROC curve.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC
curve.

separate is meaningful only with roccomp and specifies that each ROC curve be placed on its own
graph rather than one curve on top of the other.

summary reports the area under the ROC curve, its standard error, and its confidence interval. This
option is needed only when also specifying graph.

binormal specifies that the areas under the ROC curves to be compared should be estimated using
the binormal distribution assumption. By default, areas to be compared are computed using the
trapezoidal rule.

line#opts(cline options) affects the rendition of the line representing the #th ROC curve drawn
using the binormal distribution assumption; see [G-3] cline options. These lines are drawn only if
the binormal option is specified.

level(#) specifies the confidence level, as a percentage, for the confidence intervals. The default is
level(95) or as set by set level; see [R] level.

� � �
Plot �

plot#opts(plot options) affects the rendition of the #th ROC curve—the curve’s plotted points
connected by lines. The plot options can affect the size and color of markers, whether and how
the markers are labeled, and whether and how the points are connected; see [G-3] marker options,
[G-3] marker label options, and [G-3] cline options.

For rocgold, plot1opts() are applied to the ROC for the gold standard.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.



roccomp — Tests of equality of ROC areas 1765

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options. These include op-
tions for titling the graph (see [G-3] title options), options for saving the graph to disk (see
[G-3] saving option), and the by() option (see [G-3] by option).

Remarks
Remarks are presented under the following headings:

Introduction
Comparing areas under the ROC curve
Correlated data
Independent data
Comparing areas with a gold standard

Introduction

roccomp provides comparison of the ROC curves of multiple classifiers. rocgold compares the
ROC curves of multiple classifiers with a single “gold standard” classifier. Adjustment of inference
for multiple comparisons is also provided by rocgold.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs
used to reproduce results presented in the book (http://www.stata.com/bookstore/pepe.html).

Comparing areas under the ROC curve

The area under multiple ROC curves can be compared by using roccomp. The command syntax
is slightly different if the ROC curves are correlated (that is, different diagnostic tests are applied to
the same sample) or independent (that is, diagnostic tests are applied to different samples).

Correlated data

Example 1

Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed
to reconstruct CT images from phantoms. We will call these two algorithms’ modalities 1 and 2. A
sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54
were abnormal. Each of the two modalities was applied to each phantom, and the resulting images
were rated by a reviewer using a six-point scale: 1 = definitely normal, 2 = probably normal, 3
= possibly normal, 4 = possibly abnormal, 5 = probably abnormal, and 6 = definitely abnormal.
Because each modality was applied to the same sample of phantoms, the two sets of outcomes are
correlated.

http://www.stata.com/bookstore/pepe.html
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We list the first 7 observations:

. use http://www.stata-press.com/data/r12/ct

. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

The data are in wide form, which is required when dealing with correlated data. Each observation
corresponds to one phantom. The variable mod1 identifies the rating assigned for the first modality,
and mod2 identifies the rating assigned for the second modality. The true status of the phantoms is
given by status=0 if they are normal and status=1 if they are abnormal. The observations with
at least one missing rating were dropped from the analysis.

We plot the two ROC curves and compare their areas.

. roccomp status mod1 mod2, graph summary
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mod1 ROC area: 0.8828 mod2 ROC area: 0.9302

Reference

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042

Ho: area(mod1) = area(mod2)
chi2(1) = 2.31 Prob>chi2 = 0.1282

By default, roccomp, with the graph option specified, plots the ROC curves on the same graph.
Optionally the curves can be plotted side by side, each on its own graph, by also specifying separate.

For each curve, roccomp reports summary statistics and provides a test for the equality of the area
under the curves, using an algorithm suggested by DeLong, DeLong, and Clarke-Pearson (1988).
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Although the area under the ROC curve for modality 2 is larger than that of modality 1, the
chi-squared test yielded a significance probability of 0.1282, suggesting that there is no significant
difference between these two areas.

The roccomp command can also be used to compare more than two ROC areas. To illustrate this,
we modified the previous dataset by including a fictitious third modality.

. use http://www.stata-press.com/data/r12/ct2

. roccomp status mod1 mod2 mod3, graph summary
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mod1 ROC area: 0.8828 mod2 ROC area: 0.9302

mod3 ROC area: 0.924 Reference

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381

By default, roccomp tests whether the areas under the ROC curves are all equal. Other comparisons
can be tested by creating a contrast matrix and specifying test(matname), where matname is the
name of the contrast matrix.

For example, assume that we are interested in testing whether the area under the ROC for mod1 is
equal to that of mod3. To do this, we can first create an appropriate contrast matrix and then specify
its name with the test() option.

Of course, this is a trivial example because we could have just specified

. roccomp status mod1 mod3

without including mod2 to obtain the same test results. However, for illustration, we will continue
with this example.

The contrast matrix must have its number of columns equal to the number of classvars (that is,
the total number of ROC curves) and a number of rows less than or equal to the number of classvars,
and the elements of each row must add to zero.
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. matrix C=(1,0,-1)

. roccomp status mod1 mod2 mod3, test(C)

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: Comparison as defined by contrast matrix: C
chi2(1) = 5.25 Prob>chi2 = 0.0220

Although all three areas are reported, the comparison is made using the specified contrast matrix.

Perhaps more interesting would be a comparison of the area from mod1 and the average area of
mod2 and mod3.

. matrix C=(1,-.5,-.5)

. roccomp status mod1 mod2 mod3, test(C)

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: Comparison as defined by contrast matrix: C
chi2(1) = 3.43 Prob>chi2 = 0.0642

Other contrasts could be made. For example, we could test if mod3 is different from at least one
of the other two by first creating the following contrast matrix:

. matrix C=(-1, 0, 1 \ 0, -1, 1)

. matrix list C

C[2,3]
c1 c2 c3

r1 -1 0 1
r2 0 -1 1

Independent data

Example 2

In example 1, we noted that because each test modality was applied to the same sample of
phantoms, the classification outcomes were correlated. Now assume that we have collected the same
data presented by Hanley and McNeil (1983), except that we applied the first test modality to one
sample of phantoms and the second test modality to a different sample of phantoms. The resulting
measurements are now considered independent.
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Here are a few of the observations.

. use http://www.stata-press.com/data/r12/ct3

. list in 1/7, sep(0)

pop status rating mod

1. 12 0 1 1
2. 31 0 1 2
3. 1 1 1 1
4. 3 1 1 2
5. 28 0 2 1
6. 19 0 2 2
7. 3 1 2 1

The data are in long form, which is required when dealing with independent data. The data consist
of 24 observations: 6 observations corresponding to abnormal phantoms and 6 to normal phantoms
evaluated using the first modality, and similarly 6 observations corresponding to abnormal phantoms
and 6 to normal phantoms evaluated using the second modality. The number of phantoms corresponding
to each observation is given by the pop variable. Once again we have frequency-weighted data. The
variable mod identifies the modality, and rating is the assigned classification.

We can better view our data by using the table command.

. table status rating [fw=pop], by(mod) row col

mod and rating
status 1 2 3 4 5 6 Total

1
0 12 28 8 6 4 58
1 1 3 6 13 22 9 54

Total 13 31 14 19 26 9 112

2
0 31 19 5 3 58
1 3 2 5 19 15 10 54

Total 34 21 10 22 15 10 112

The status variable indicates the true status of the phantoms: status = 0 if they are normal and
status = 1 if they are abnormal.

We now compare the areas under the two ROC curves.
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. roccomp status rating [fw=pop], by(mod) graph summary
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1 ROC area: 0.8828 2 ROC area: 0.9302

Reference

ROC -Asymptotic Normal
mod Obs Area Std. Err. [95% Conf. Interval]

1 112 0.8828 0.0317 0.82067 0.94498
2 112 0.9302 0.0256 0.88005 0.98042

Ho: area(1) = area(2)
chi2(1) = 1.35 Prob>chi2 = 0.2447

Comparing areas with a gold standard

The area under multiple ROC curves can be compared with a gold standard using rocgold. The
command syntax is similar to that of roccomp. The tests are corrected for the effect of multiple
comparisons.

Example 3

We will use the same data (presented by Hanley and McNeil [1983]) as in the roccomp examples.
Let’s assume that the first modality is considered to be the standard against which both the second
and third modalities are compared.

We want to plot and compare both the areas of the ROC curves of mod2 and mod3 with mod1.
Because we consider mod1 to be the gold standard, it is listed first after the reference variable in the
rocgold command line.
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. use http://www.stata-press.com/data/r12/ct2

. rocgold status mod1 mod2 mod3, graph summary
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mod1 ROC area: 0.8828 mod2 ROC area: 0.9302

mod3 ROC area: 0.924 Reference

ROC Bonferroni
Area Std. Err. chi2 df Pr>chi2 Pr>chi2

mod1 (standard) 0.8828 0.0317
mod2 0.9302 0.0256 2.3146 1 0.1282 0.2563
mod3 0.9240 0.0241 5.2480 1 0.0220 0.0439

Equivalently, we could have done this in two steps by using the roccomp command.

. roccomp status mod1 mod2, graph summary

. roccomp status mod1 mod3, graph summary

Saved results
roccomp saves the following in r():

Scalars
r(N g) number of groups r(df) χ2 degrees of freedom
r(p) significance probability r(chi2) χ2

Matrices
r(V) variance–covariance matrix

rocgold saves the following in r():

Scalars
r(N g) number of groups

Matrices
r(V) variance–covariance matrix r(p) significance-probability vector
r(chi2) χ2 vector r(p adj) adjusted significance-probability vector
r(df) χ2 degrees-of-freedom vector
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Methods and formulas
roccomp and rocgold are implemented as ado-files.

Assume that we applied a diagnostic test to each of Nn normal and Na abnormal subjects.
Further assume that the higher the outcome value of the diagnostic test, the higher the risk of the
subject being abnormal. Let θ̂ be the estimated area under the curve, and let Xi, i = 1, 2, . . . , Na
and Yj , j = 1, 2, . . . , Nn be the values of the diagnostic test for the abnormal and normal subjects,
respectively.

Areas under ROC curves are compared using an algorithm suggested by DeLong, DeLong, and
Clarke-Pearson (1988). Let θ̂ = (θ̂1, θ̂2, . . . , θ̂k) be a vector representing the areas under k ROC
curves. See Methods and formulas in [R] roctab for the definition of these area estimates.

For the rth area, define

V r10(Xi) =
1
Nn

Nn∑
j=1

ψ(Xr
i , Y

r
j )

and for each normal subject, j, define

V r01(Yj) =
1
Na

Na∑
i=1

ψ(Xr
i , Y

r
j )

where

ψ(Xr, Y r) =

{ 1 Y r < Xr

1
2 Y r = Xr

0 Y r > Xr

Define the k × k matrix S10 such that the (r, s)th element is

Sr,s10 =
1

Na − 1

Na∑
i=1

{V r10(Xi)− θ̂r}{V s10(Xi)− θ̂s}

and S01 such that the (r, s)th element is

Sr,s01 =
1

Nn − 1

Nn∑
j=1

{V r01(Yi)− θ̂r}{V s01(Yi)− θ̂s}

Then the covariance matrix is
S =

1
Na

S10 +
1
Nn

S01

Let L be a contrast matrix defining the comparison, so that

(θ̂ − θ)′L′
(
LSL′

)−1
L(θ̂ − θ)

has a chi-squared distribution with degrees of freedom equal to the rank of LSL′.
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Title

rocfit — Parametric ROC models

Syntax
rocfit refvar classvar

[
if
] [

in
] [

weight
] [

, rocfit options
]

rocfit options Description

Model

continuous(#) divide classvar into # groups of approximately equal length
generate(newvar) create newvar containing classification groups

SE

vce(vcetype) vcetype may be oim or opg

Reporting

level(#) set confidence level; default is level(95)

Maximization

maximize options control the maximization process; seldom used

fweights are allowed; see [U] 11.1.6 weight.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Epidemiology and related > ROC analysis > Parametric ROC analysis without covariates

Description
rocfit fits maximum-likelihood ROC models assuming a binormal distribution of the latent variable.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation, such as diseased and nondiseased or normal and abnormal, and must be
coded as 0 and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar,
which must be at least ordinal, with higher values indicating higher risk.

See [R] roc for other commands designed to perform receiver operating characteristic (ROC) analyses
with rating and discrete classification data.

Options

� � �
Model �

continuous(#) specifies that the continuous classvar be divided into # groups of approximately
equal length. This option is required when classvar takes on more than 20 distinct values.
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continuous(.) may be specified to indicate that classvar be used as it is, even though it could
have more than 20 distinct values.

generate(newvar) specifies the new variable that is to contain the values indicating the groups
produced by continuous(#). generate() may be specified only with continuous().

� � �
SE �

vce(vcetype) specifies the type of standard error reported. vcetype may be either oim or opg; see
[R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

Remarks
Dorfman and Alf (1969) developed a generalized approach for obtaining maximum likelihood

estimates of the parameters for a smooth fitting ROC curve. The most commonly used method for
ordinal data, and the one implemented here, is based upon the binormal model; see Pepe (2003),
Pepe, Longton, and Janes (2009), and Janes, Longton, and Pepe (2009) for methods of ROC analysis
for continuous data, including methods for adjusting for covariates.

The model assumes the existence of an unobserved, continuous, latent variable that is normally
distributed (perhaps after a monotonic transformation) in both the normal and abnormal populations
with means µn and µa and variances σ2

n and σ2
a, respectively. The model further assumes that the

K categories of the rating variable result from partitioning the unobserved latent variable by K − 1
fixed boundaries. The method fits a straight line to the empirical ROC points plotted using normal
probability scales on both axes. Maximum likelihood estimates of the line’s slope and intercept and
the K − 1 boundaries are obtained simultaneously. See Methods and formulas for details.

The intercept from the fitted line is a measurement of (µa − µn)/σa, and the slope measures
σn/σa.

Thus the intercept is the standardized difference between the two latent population means, and the
slope is the ratio of the two standard deviations. The null hypothesis that there is no difference between
the two population means is evaluated by testing that the intercept = 0, and the null hypothesis that
the variances in the two populations are equal is evaluated by testing that the slope = 1.

Example 1

We use Hanley and McNeil’s (1982) dataset, described in example 1 of [R] roctab, to fit a smooth
ROC curve assuming a binormal model.
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. use http://www.stata-press.com/data/r12/hanley

. rocfit disease rating

Fitting binormal model:

Iteration 0: log likelihood = -123.68069
Iteration 1: log likelihood = -123.64867
Iteration 2: log likelihood = -123.64855
Iteration 3: log likelihood = -123.64855

Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.092 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.152 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.003 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1

rocfit outputs the MLE for the intercept and slope of the fitted regression line along with, here, four
boundaries (because there are five ratings) labeled /cut1 through /cut4. Also rocfit computes
and reports four indices based on the fitted ROC curve: the area under the curve (labeled ROC area),
δ(m) (labeled delta(m)), de (labeled d(e)), and da (labeled d(a)). More information about these
indices can be found in Methods and formulas and in Erdreich and Lee (1981).
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Saved results
rocfit saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(chi2 gf) goodness-of-fit χ2

e(df gf) goodness-of-fit degrees of freedom
e(p gf) χ2 goodness-of-fit significance probability
e(area) area under the ROC curve
e(se area) standard error for the area under the ROC curve
e(deltam) delta(m)
e(se delm) standard area for delta(m)
e(de) d(e) index
e(se de) standard error for d(e) index
e(da) d(a) index
e(se da) standard error for d(a) index
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) rocfit
e(cmdline) command as typed
e(depvar) refvar and classvar
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(chi2type) GOF; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V

Matrices
e(b) coefficient vector
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample
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Methods and formulas
rocfit is implemented as an ado-file.

Dorfman and Alf (1969) developed a general procedure for obtaining maximum likelihood estimates
of the parameters of a smooth-fitting ROC curve. The most common method, and the one implemented
in Stata, is based upon the binormal model.

The model assumes that there is an unobserved continuous latent variable that is normally distributed
in both the normal and abnormal populations. The idea is better explained with the following illustration:

54321
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Abnorma lNorma l

The latent variable is assumed to be normally distributed for both the normal and abnormal subjects,
perhaps after a monotonic transformation, with means µn and µa and variances σ2

n and σ2
a, respectively.

This latent variable is assumed to be partitioned into the k categories of the rating variable by
k − 1 fixed boundaries. In the above figure, the k = 5 categories of the rating variable identified on
the bottom result from the partition of the four boundaries Z1 through Z4.

Let Rj for j = 1, 2, . . . , k indicate the categories of the rating variable, let i = 1 if the subject
belongs to the normal group, and let i = 2 if the subject belongs to the abnormal group.

Then
p(Rj |i = 1) = F (Zj)− F (Zj−1)

where Zk = (xk − µn)/σn, F is the cumulative normal distribution, F (Z0) = 0, and F (Zk) = 1.
Also,

p(Rj |i = 2) = F (bZj − a)− F (bZj−1 − a)

where b = σn/σa and a = (µa − µn)/σa.

The parameters a, b and the k−1 fixed boundaries Zj are simultaneously estimated by maximizing
the log-likelihood function

logL =
2∑
i=1

k∑
j=1

rij log
{
p(Rj |i)

}
where rij is the number of Rjs in group i.
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The area under the fitted ROC curve is computed as

Φ
(

a√
1 + b2

)
where Φ is the standard normal cumulative distribution function.

Point estimates for the ROC curve indices are as follows:

δ(m) =
a

b
de =

2a
b+ 1

da =
a
√

2√
1 + b2

Variances for these indices are computed using the delta method.

The δ(m) estimates (µa − µn)/σn, de estimates 2(µa − µn)/(σa − σn), and da estimates√
2(µa − µn)/(σ2

a − σ2
n)2.

Simultaneous confidence bands for the entire curve are obtained, as suggested by Ma and Hall (1993),
by first obtaining Working–Hotelling (1929) confidence bands for the fitted straight line in normal
probability coordinates and then transforming them back to ROC coordinates.
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Also see
[R] rocfit postestimation — Postestimation tools for rocfit

[R] roc — Receiver operating characteristic (ROC) analysis

[R] rocreg — Receiver operating characteristic (ROC) regression

[U] 20 Estimation and postestimation commands



Title

rocfit postestimation — Postestimation tools for rocfit

Description
The following command is of special interest after rocfit:

Command Description

rocplot plot the fitted ROC curve and simultaneous confidence bands

For information about rocplot, see below.

The following standard postestimation commands are also available:

Command Description

estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
∗lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
∗test Wald tests of simple and composite linear hypotheses

∗See Using lincom and test below.

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation command

rocplot plots the fitted ROC curve and simultaneous confidence bands.
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Syntax for rocplot

rocplot
[
, rocplot options

]
rocplot options Description

Main

confband display confidence bands
norefline suppress plotting the reference line
level(#) set confidence level; default is level(95)

Plot

plotopts(plot options) affect rendition of the ROC points

Fit line

lineopts(cline options) affect rendition of the fitted ROC line

CI plot

ciopts(area options) affect rendition of the confidence bands

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change the look of the line

Menu
Statistics > Epidemiology and related > ROC analysis > ROC curves after rocfit

Options for rocplot

� � �
Main �

confband specifies that simultaneous confidence bands be plotted around the ROC curve.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC
curve.

level(#) specifies the confidence level, as a percentage, for the confidence bands. The default is
level(95) or as set by set level; see [R] level.
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� � �
Plot �

plotopts(plot options) affects the rendition of the plotted ROC points, including the size and color of
markers, whether and how the markers are labeled, and whether and how the points are connected.
For the full list of available plot options, see [G-3] marker options, [G-3] marker label options,
and [G-3] cline options.

� � �
Fit line �

lineopts(cline options) affects the rendition of the fitted ROC line; see [G-3] cline options.

� � �
CI plot �

ciopts(area options) affects the rendition of the confidence bands; see [G-3] area options.

� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

Using lincom and test
Using rocplot

Using lincom and test

intercept, slope, and cut#, shown in example 1 of [R] rocfit, are equation names and not
variable names, so they need to be referenced as described in Special syntaxes after multiple-equation
estimation of [R] test. For example, instead of typing

. test intercept
intercept not found
r(111);

you should type

. test [intercept]_cons

( 1) [intercept]_cons = 0

chi2( 1) = 28.48
Prob > chi2 = 0.0000
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Using rocplot

Example 1

In example 1 of [R] rocfit, we fit a ROC curve by typing rocfit disease rating.

In the output table for our model, we are testing whether the variances of the two latent populations
are equal by testing that the slope = 1.

We plot the fitted ROC curve.

. rocplot, confband

0
.2

5
.5

.7
5

1
S

e
n

s
it
iv

it
y

0 .25 .5 .75 1
1 − Specificity

Area under curve = 0.9113  se(area) = 0.0295

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] rocfit — Parametric ROC models

[U] 20 Estimation and postestimation commands



Title

rocreg — Receiver operating characteristic (ROC) regression

Syntax

Perform nonparametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar
[

classvars
] [

if
] [

in
] [

, np options boot options
]

Perform parametric analysis of ROC curve under covariates, using bootstrap

rocreg refvar classvar
[

classvars
] [

if
] [

in
]
, probit[

probit options boot options
]

Perform parametric analysis of ROC curve under covariates, using maximum likelihood

rocreg refvar classvar
[

classvars
] [

if
] [

in
] [

weight
]
, probit ml[

probit ml options
]

np options Description

Model

auc estimate total area under the ROC curve; the default
roc(numlist) estimate ROC for given false-positive rates
invroc(numlist) estimate false-positive rates for given ROC values
pauc(numlist) estimate partial area under the ROC curve (pAUC) up to each

false-positive rate
cluster(varname) variable identifying resampling clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist
ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)

pvc(empirical | normal) use empirical or normal distribution percentile value estimates;
default is pvc(empirical)

tiecorrected adjust for tied observations; not allowed with pvc(normal)

Reporting

level(#) set confidence level; default is level(95)

1785



1786 rocreg — Receiver operating characteristic (ROC) regression

probit options Description

Model
∗probit fit the probit model
roccov(varlist) covariates affecting ROC curve
fprpts(#) number of false-positive rate points to use in fitting ROC

curve; default is fprpts(10)

ctrlfprall fit ROC curve at each false-positive rate in control population
cluster(varname) variable identifying resampling clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist
ctrlmodel(strata | linear) stratify or regress on covariates; default is ctrlmodel(strata)

pvc(empirical | normal) use empirical or normal distribution percentile value estimates;
default is pvc(empirical)

tiecorrected adjust for tied observations; not allowed with pvc(normal)

Reporting

level(#) set confidence level; default is level(95)

∗probit is required.

probit ml options Description

Model
∗probit fit the probit model
∗ml fit the probit model by maximum likelihood estimation
roccov(varlist) covariates affecting ROC curve
cluster(varname) variable identifying clusters
ctrlcov(varlist) adjust control distribution for covariates in varlist

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, line width, and display of omitted variables

Maximization

maximize options control the maximization process; seldom used

∗probit and ml are required.
fweights, iweights, and pweights are allowed with maximum likelihood estimation; see [U] 11.1.6 weight.
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boot options Description

Bootstrap

nobootstrap do not perform bootstrap, just output point estimates
bseed(#) random-number seed for bootstrap
breps(#) number of bootstrap replications; default is breps(1000)

bootcc perform case–control (stratified on refvar) sampling rather than
cohort sampling in bootstrap

nobstrata ignore covariate stratification in bootstrap sampling
nodots suppress bootstrap replication dots
∗bsave(filename, . . . ) save bootstrap replicates from parametric estimation
∗bfile(filename) use bootstrap replicates dataset for estimation replay

∗ bsave() and bfile() are allowed only when the probit option is also specified.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Epidemiology and related > ROC analysis > ROC regression models

Description
The rocreg command is used to perform receiver operating characteristic (ROC) analyses with

rating and discrete classification data under the presence of covariates.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation—such as diseased and nondiseased or normal and abnormal—and must be
coded as 0 and 1. The refvar coded as 0 can also be called the control population, while the refvar
coded as 1 comprises the case population. The rating or outcome of the diagnostic test or test modality
is recorded in classvar, which must be ordinal, with higher values indicating higher risk.

rocreg can fit three models: a nonparametric model, a parametric probit model that uses the
bootstrap for inference, and a parametric probit model fit using maximum likelihood.

Options for nonparametric ROC estimation, using bootstrap

� � �
Model �

auc estimates the total area under the ROC curve. This is the default summary statistic.

roc(numlist) estimates the ROC corresponding to each of the false-positive rates in numlist. The
values of numlist must be in the range (0,1).

invroc(numlist) estimates the false-positive rates corresponding to each of the ROC values in numlist.
The values of numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.
The values of numlist must in the range (0,1].

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.
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ctrlmodel(strata | linear) specifies how to model the control population of classifiers on
ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is
ctrlmodel(strata); that is, the control population of classifiers is stratified on the control
variables.

pvc(empirical | normal) determines how the percentile values of the control population will be
calculated. When pvc(normal) is specified, the standard normal cumulative distribution function
(CDF) is used for calculation. Specifying pvc(empirical) will use the empirical CDFs of the
control population classifiers for calculation. The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the
probability that the classifier equals that value under the control population is added to the percentile
value. tiecorrected is not allowed with pvc(normal).

� � �
Reporting �

level(#); see [R] estimation options.

Also see Options for rocreg, using bootstrap.

Options for parametric ROC estimation, using bootstrap

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

roccov(varlist) specifies the covariates that will affect the ROC curve.

fprpts(#) sets the number of false-positive rate points to use in modeling the ROC curve. These
points form an equispaced grid on (0,1). The default is fprpts(10).

ctrlfprall models the ROC curve at each false-positive rate in the control population.

cluster(varname) specifies the variable identifying resampling clusters.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

ctrlmodel(strata | linear) specifies how to model the control population of classifiers on
ctrlcov(). When ctrlmodel(linear) is specified, linear regression is used. The default is
ctrlmodel(strata); that is, the control population of classifiers is stratified on the control
variables.

pvc(empirical | normal) determines how the percentile values of the control population will be
calculated. When pvc(normal) is specified, the standard normal CDF is used for calculation.
Specifying pvc(empirical) will use the empirical CDFs of the control population classifiers for
calculation. The default is pvc(empirical).

tiecorrected adjusts the percentile values for ties. For each value of the classifier, one half the
probability that the classifier equals that value under the control population is added to the percentile
value. tiecorrected is not allowed with pvc(normal).

� � �
Reporting �

level(#); see [R] estimation options.

Also see Options for rocreg, using bootstrap.
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Options for parametric ROC estimation, using maximum likelihood

� � �
Model �

probit fits the probit model. This option is required and implies parametric estimation.

ml fits the probit model by maximum likelihood estimation. This option is required and must be
specified with probit.

roccov(varlist) specifies the covariates that will affect the ROC curve.

cluster(varname) specifies the variable used for clustering.

ctrlcov(varlist) specifies the covariates to be used to adjust the control population.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch;
see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used. The technique(bhhh) option is not allowed.

Options for rocreg, using bootstrap

� � �
Bootstrap �

nobootstrap specifies that bootstrap standard errors not be calculated.

bseed(#) specifies the random-number seed to be used in the bootstrap.

breps(#) sets the number of bootstrap replications. The default is breps(1000).

bootcc performs case–control (stratified on refvar) sampling rather than cohort bootstrap sampling.

nobstrata ignores covariate stratification in bootstrap sampling.

nodots suppresses bootstrap replicate dots.

bsave(filename, . . . ) saves bootstrap replicates from parametric estimation in the given filename
with specified options (that is, replace). bsave() is only allowed with parametric analysis using
bootstrap.

bfile(filename) specifies to use the bootstrap replicates dataset for estimation replay. bfile() is
only allowed with parametric analysis using bootstrap.

Remarks
Remarks are presented under the following headings:

Introduction
ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood
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Introduction

Receiver operating characteristic (ROC) analysis provides a quantitative measure of the accuracy of
diagnostic tests to discriminate between two states or conditions. These conditions may be referred
to as normal and abnormal, nondiseased and diseased, or control and case. We will use these terms
interchangeably. The discriminatory accuracy of a diagnostic test is measured by its ability to correctly
classify known control and case subjects.

The analysis uses the ROC curve, a graph of the sensitivity versus 1− specificity of the diagnostic
test. The sensitivity is the fraction of positive cases that are correctly classified by the diagnostic test,
whereas the specificity is the fraction of negative cases that are correctly classified. Thus the sensitivity
is the true-positive rate, and the specificity is the true-negative rate. We also call 1− specificity the
false-positive rate.

These rates are functions of the possible outcomes of the diagnostic test. At each outcome, a
decision will be made by the user of the diagnostic test to classify the tested subject as either normal
or abnormal. The true-positive and false-positive rates measure the probability of correct classification
or incorrect classification of the subject as abnormal. Given the classification role of the diagnostic
test, we will refer to it as the classifier.

Using this basic definition of the ROC curve, Pepe (2000) and Pepe (2003) describe how ROC
analysis can be performed as a two-stage process. In the first stage, the control distribution of the
classifier is estimated. The specificity is then determined as the percentiles of the classifier values
calculated based on the control population. The false-positive rates are calculated as 1− specificity.
In the second stage, the ROC curve is estimated as the cumulative distribution of the case population’s
“false-positive” rates, also known as the survival function under the case population of the previously
calculated percentiles. We use the terms ROC value and true-positive value interchangeably.

This formulation of ROC curve analysis provides simple, nonparametric estimates of several ROC
curve summary parameters: area under the ROC curve, partial area under the ROC curve, ROC value
for a given false-positive rate, and false-positive rate (also known as invROC) for a given ROC value.
In the next section, we will show how to use rocreg to compute these estimates with bootstrap
inference. There we will also show how rocreg complements the other nonparametric Stata ROC
commands roctab and roccomp.

Other factors beyond condition status and the diagnostic test may affect both stages of ROC analysis.
For example, a test center may affect the control distribution of the diagnostic test. Disease severity
may affect the distribution of the standardized diagnostic test under the case population. Our analysis
of the ROC curve in these situations will be more accurate if we take these covariates into account.

In a nonparametric ROC analysis, covariates may only affect the first stage of estimation; that is,
they may be used to adjust the control distribution of the classifier. In a parametric ROC analysis,
it is assumed that ROC follows a normal distribution, and thus covariates may enter the model at
both stages; they may be used to adjust the control distribution and to model ROC as a function of
these covariates and the false-positive rate. In parametric models, both sets of covariates need not be
distinct but, in fact, they are often the same.

To model covariate effects on the first stage of ROC analysis, Janes and Pepe (2009) propose a
covariate-adjusted ROC curve. We will demonstrate the covariate adjustment capabilities of rocreg
in Covariate-adjusted ROC curves.

To account for covariate effects at the second stage, we assume a parametric model. Particularly,
the ROC curve is a generalized linear model of the covariates. We will thus have a separate ROC curve
for each combination of the relevant covariates. In Parametric ROC curves: Estimating equations,
we show how to fit the model with estimating equations and bootstrap inference using rocreg.
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This method, documented as the “pdf” approach in Alonzo and Pepe (2002), works well with weak
assumptions about the control distribution.

Also in Parametric ROC curves: Estimating equations, we show how to fit a constant-only parametric
model (involving no covariates) of the ROC curve with weak assumptions about the control distribution.
The constant-only model capabilities of rocreg in this context will be compared with those of rocfit.
roccomp has the binormal option, which will allow it to compute area under the ROC curve according
to a normal ROC curve, equivalent to that obtained by rocfit. We will compare this functionality
with that of rocreg.

In Parametric ROC curves: Maximum likelihood, we demonstrate maximum likelihood estimation
of the ROC curve model with rocreg. There we assume a normal linear model for the classifier
on the covariates and case–control status. This method is documented in Pepe (2003). We will also
demonstrate how to use this method with no covariates, and we will compare rocreg under the
constant-only model with rocfit and roccomp.

The rocregplot command is used repeatedly in this entry. This command provides graphical
output for rocreg and is documented in [R] rocregplot.

ROC statistics

roctab computes the ROC curve by calculating the false-positive rate and true-positive rate
empirically at every value of the input classifier. It makes no distributional assumptions about the
case or control distributions. We can get identical behavior from rocreg by using the default option
settings.

Example 1: Nonparametric ROC, AUC

Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to
classify, using a five-point scale, a random sample of 109 tomographic images from patients with
neurological problems. The rating scale was as follows: 1 is definitely normal, 2 is probably normal,
3 is questionable, 4 is probably abnormal, and 5 is definitely abnormal. The true disease status was
normal for 58 of the patients and abnormal for the remaining 51 patients.

Here we list 9 of the 109 observations:

. use http://www.stata-press.com/data/r12/hanley

. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0 is normal, 1 is
abnormal), and rating contains the classification value assigned by the reviewer.
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We run roctab on these data, specifying the graph option so that the ROC curve is rendered.
We then calculate the false-positive and true-positive rates of the ROC curve by using rocreg. We
graph the rates with rocregplot. Because we focus on rocreg output later, for now we use the
quietly prefix to omit the output of rocreg. Both graphs are combined using graph combine (see
[G-2] graph combine) for comparison. To ease the comparison, we specify the aspectratio(1)
option in roctab; this is the default aspect ratio in rocregplot.

. roctab disease rating, graph aspectratio(1) name(a) nodraw title("roctab")

. quietly rocreg disease rating

. rocregplot, name(b) nodraw legend(off) title("rocreg")

. graph combine a b
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Both roctab and rocreg compute the same false-positive rate and ROC values. The stairstep
line connection style of the graph on the right emphasizes the empirical nature of its estimates. The
control distribution of the classifier is estimated using the empirical CDF estimate. Similarly, the ROC
curve, the distribution of the resulting case observation false-positive rate values, is estimated using
the empirical CDF. Note the footnote in the roctab plot. By default, roctab will estimate the area
under the ROC curve (AUC) using a trapezoidal approximation to the estimated false-positive rate and
true-positive rate points.

The AUC can be interpreted as the probability that a randomly selected member of the case population
will have a larger classifier value than a randomly selected member of the control population. It can
also be viewed as the average ROC value, averaged uniformly over the (0,1) false-positive rate domain
(Pepe 2003).

The nonparametric estimator of the AUC (DeLong, DeLong, and Clarke-Pearson 1988; Hanley and
Hajian-Tilaki 1997) used by rocreg is equivalent to the sample mean of the percentile values of the
case observations. Thus to calculate the nonparametric AUC estimate, we only need to calculate the
percentile values of the case observations with respect to the control distribution.

This estimate can differ from the trapezoidal approximation estimate. Under discrete classification
data, like we have here, there may be ties between classifier values from case to control. The trapezoidal
approximation uses linear interpolation between the classifier values to correct for ties. Correcting
the nonparametric estimator involves adding a correction term to each observation’s percentile value,
which measures the probability that the classifier is equal to (instead of less than) the observation’s
classifier value.
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The tie-corrected nonparametric estimate (trapezoidal approximation) is used when we think the
true ROC curve is smooth. This means that the classifier we measure is a discretized approximation
of a true latent and a continuous classifier.

We now recompute the ROC curve of rating for classifying disease and calculate the AUC.
Specifying the tiecorrected option allows tie correction to be used in the rocreg calculation.
Under nonparametric estimation, rocreg bootstraps to obtain standard errors and confidence intervals
for requested statistics. We use the default 1,000 bootstrap replications to obtain confidence intervals
for our parameters. This is a reasonable lower bound to the number of replications (Mooney and
Duval 1993) required for estimating percentile confidence intervals. By specifying the summary option
in roctab, we will obtain output showing the trapezoidal approximation of the AUC estimate, along
with standard error and confidence-interval estimates for the trapezoidal approximation suggested by
DeLong, DeLong, and Clarke-Pearson (1988).

. roctab disease rating, summary

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0307 0.83295 0.95339

. rocreg disease rating, auc tiecorrected bseed(29092)
(running rocregstat on estimation sample)

Bootstrap replications (1000)
1 2 3 4 5

.................................................. 50

.................................................. 100
(output omitted )

.................................................. 950

.................................................. 1000

Bootstrap results Number of obs = 109
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical, corrected for ties
ROC method : empirical

Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8931711 .000108 .0292028 .8359347 .9504075 (N)
.8290958 .9457951 (P)
.8280714 .9450642 (BC)

The estimates of AUC match well. The standard error from roctab is close to the bootstrap
standard error calculated by rocreg. The bootstrap standard error generalizes to the more complex
models that we consider later, whereas the roctab standard-error calculation does not.

The AUC can be used to compare different classifiers. It is the most popular summary statistic for
comparisons (Pepe, Longton, and Janes 2009). roccomp will compute the trapezoidal approximation
of the AUC and graph the ROC curves of multiple classifiers. Using the DeLong, DeLong, and Clarke-
Pearson (1988) covariance estimates for the AUC estimate, roccomp performs a Wald test of the null
hypothesis that all classifier AUC values are equal. rocreg has similar capabilities.
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Example 2: Nonparametric ROC, AUC, multiple classifiers

Hanley and McNeil (1983) presented data from an evaluation of two computer algorithms designed
to reconstruct CT images from phantoms. We will call these two algorithms modalities 1 and 2. A
sample of 112 phantoms was selected; 58 phantoms were considered normal, and the remaining 54
were abnormal. Each of the two modalities was applied to each phantom, and the resulting images
were rated by a reviewer using a six-point scale: 1 is definitely normal, 2 is probably normal, 3
is possibly normal, 4 is possibly abnormal, 5 is probably abnormal, and 6 is definitely abnormal.
Because each modality was applied to the same sample of phantoms, the two sets of outcomes are
correlated.

We list the first seven observations:

. use http://www.stata-press.com/data/r12/ct, clear

. list in 1/7, sep(0)

mod1 mod2 status

1. 2 1 0
2. 5 5 1
3. 2 1 0
4. 2 3 0
5. 5 6 1
6. 2 2 0
7. 3 2 0

Each observation corresponds to one phantom. The mod1 variable identifies the rating assigned
for the first modality, and the mod2 variable identifies the rating assigned for the second modality.
The true status of the phantoms is given by status==0 if they are normal and status==1 if they
are abnormal. The observations with at least one missing rating were dropped from the analysis.

A fictitious dataset was created from this true dataset, adding a third test modality. We will use
roccomp to compute the AUC statistic for each modality in these data and compare the AUC of the
three modalities. We obtain the same behavior from rocreg. As before, the tiecorrected option
is specified so that the AUC is calculated with the trapezoidal approximation.

. use http://www.stata-press.com/data/r12/ct2

. roccomp status mod1 mod2 mod3, summary

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8828 0.0317 0.82067 0.94498
mod2 112 0.9302 0.0256 0.88005 0.98042
mod3 112 0.9240 0.0241 0.87670 0.97132

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 6.54 Prob>chi2 = 0.0381
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. rocreg status mod1 mod2 mod3, tiecorrected bseed(38038) nodots

Bootstrap results Number of obs = 112
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical, corrected for ties
ROC method : empirical

Area under the ROC curve

Status : status
Classifier: mod1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8828225 -.0006367 .0322291 .8196546 .9459903 (N)
.8147518 .9421572 (P)
.8124397 .9394085 (BC)

Status : status
Classifier: mod2

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9302363 -.0015402 .0259593 .8793569 .9811156 (N)
.8737522 .9737432 (P)
.8739467 .9737768 (BC)

Status : status
Classifier: mod3

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9240102 -.0003528 .0247037 .8755919 .9724286 (N)
.8720036 .9674485 (P)
.8693548 .965 (BC)

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0389797 Test based on bootstrap (N) assumptions.

We see that the AUC estimates are equivalent, and the standard errors are quite close as well.
The p-value for the tests of equal AUC under rocreg leads to similar inference as the p-value from
roccomp. The Wald test performed by rocreg uses the joint bootstrap estimate variance matrix of the
three AUC estimators rather than the DeLong, DeLong, and Clarke-Pearson (1988) variance estimate
used by roccomp.

roccomp is used here on potentially correlated classifiers that are recorded in wide-format data.
It can also be used on long-format data to compare independent classifiers. Further details can be
found in [R] roccomp.

Citing the AUC’s lack of clinical relevance, there is argument against using it as a key summary
statistic of the ROC curve (Pepe 2003; Cook 2007). Pepe, Longton, and Janes (2009) suggest using
the estimate of the ROC curve itself at a particular point, or the estimate of the false-positive rate at
a given ROC value, also known as invROC.



1796 rocreg — Receiver operating characteristic (ROC) regression

Recall from example 1 how nonparametric rocreg graphs look, with the stairstep pattern in the
ROC curve. In an ideal world, the graph would be a smooth one-to-one function, and it would be
trivial to map a false-positive rate to its corresponding true-positive rate and vice versa.

However, smooth ROC curves can only be obtained by assuming a parametric model that uses
linear interpolation between observed false-positive rates and between observed true-positive rates, and
rocreg is certainly capable of that; see example 1 of [R] rocregplot. However, under nonparametric
estimation, the mapping between false-positive rates and true-positive rates is not one to one, and
estimates tend to be less reliable the further you are from an observed data point. This is somewhat
mitigated by using tie-corrected rates (the tiecorrected option).

When we examine continuous data, the difference between the tie-corrected estimates and the
standard estimates becomes negligible, and the empirical estimate of the ROC curve becomes close
to the smooth ROC curve obtained by linear interpolation. So the nonparametric ROC and invROC
estimates work well.

Fixing one rate value of interest can be difficult and subjective (Pepe 2003). A compromise measure
is the partial area under the ROC curve (pAUC) (McClish 1989; Thompson and Zucchini 1989). This
is the integral of the ROC curve from 0 and above to a given false-positive rate (perhaps the largest
clinically acceptable value). Like the AUC estimate, the nonparametric estimate of the pAUC can be
written as a sample average of the case observation percentiles, but with an adjustment based on the
prescribed maximum false-positive rate (Dodd and Pepe 2003). A tie correction may also be applied
so that it reflects the trapezoidal approximation.

We cannot compare rocreg with roctab or roccomp on the estimation of pAUC, because pAUC
is not computed by the latter two.

Example 3: Nonparametric ROC, other statistics

To see how rocreg estimates ROC, invROC, and pAUC, we will examine a new study. Wieand et al.
(1989) examined a pancreatic cancer study with two continuous classifiers, here called y1 (CA 19-9)
and y2 (CA 125). This study was also examined in Pepe, Longton, and Janes (2009). The indicator
of cancer in a subject is recorded as d. The study was a case–control study, stratifying participants
on disease status.

We list the first five observations:

. use http://labs.fhcrc.org/pepe/book/data/wiedat2b.dta, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)

. list in 1/5

y1 y2 d

1. 28 13.3 no
2. 15.5 11.1 no
3. 8.2 16.7 no
4. 3.4 12.6 no
5. 17.3 7.4 no

We will estimate the ROC curves at a large value (0.7) and a small value (0.2) of the false-positive
rate. These values are specified in roc(). The false-positive rate for ROC or sensitivity value of 0.6 will
also be estimated by specifying invroc(). Percentile confidence intervals for these parameters are
displayed in the graph obtained by rocregplot after rocreg. The pAUC statistic will be calculated
for the false-positive rate of 0.5, which is specified as an argument to the pauc() option. Following
Pepe, Longton, and Janes (2009), we use a stratified bootstrap, sampling separately from the case
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and control populations by specifying the bootcc option. This reflects the case–control nature of the
study.

All four statistics can be estimated simultaneously by rocreg. For clarity, however, we will estimate
each statistic with a separate call to rocreg. rocregplot is used after estimation to graph the ROC
and false-positive rate estimates. The display of the individual, observation-specific false-positive rate
and ROC values will be omitted in the plot. This is accomplished by specifying msymbol(i) in our
plot1opts() and plot2opts() options to rocregplot.

. rocreg d y1 y2, roc(.7) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .9222222 -.0021889 .0323879 .8587432 .9857013 (N)
.8444445 .9777778 (P)
.8555555 .9777778 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .8888889 -.0035556 .0414215 .8077043 .9700735 (N)
.8 .9611111 (P)

.7888889 .9555556 (BC)

Ho: All classifiers have equal ROC values.
Ha: At least one classifier has a different ROC value.

Test based on bootstrap (N) assumptions.

ROC P-value

.7 .5423044
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. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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In this study, we see that classifier y1 (CA 19-9) is a uniformly better test than is classifier y2
(CA 125) until high levels of false-positive rate and sensitivity or ROC value are reached. At the high
level of false-positive rate, 0.7, the ROC value does not significantly differ between the two classifiers.
This can be seen in the plot by the overlapping confidence intervals.
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. rocreg d y1 y2, roc(.2) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

ROC curve

Status : d
Classifier: y1

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .7777778 .0011778 .0483655 .6829831 .8725725 (N)
.6888889 .8777778 (P)
.6777778 .8666667 (BC)

Status : d
Classifier: y2

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .4888889 -.0091667 .1339863 .2262806 .7514971 (N)
.2222222 .7 (P)
.2111111 .7 (BC)

Ho: All classifiers have equal ROC values.
Ha: At least one classifier has a different ROC value.

Test based on bootstrap (N) assumptions.

ROC P-value

.2 .043234

. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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The sensitivity for the false-positive rate of 0.2 is found to be higher under y1 than under y2, and
this difference is significant at the 0.05 level. In the plot, this is shown by the vertical confidence
intervals.

. rocreg d y1 y2, invroc(.6) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 0 .0158039 .0267288 -.0523874 .0523874 (N)
0 .0784314 (P)
0 .1372549 (BC)

Status : d
Classifier: y2

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 .254902 .0101961 .0757902 .1063559 .403448 (N)
.1372549 .4313726 (P)
.1176471 .3921569 (BC)

Ho: All classifiers have equal invROC values.
Ha: At least one classifier has a different invROC value.

Test based on bootstrap (N) assumptions.

invROC P-value

.6 .0016562

. rocregplot, plot1opts(msymbol(i)) plot2opts(msymbol(i))
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We find significant evidence that false-positive rates corresponding to a sensitivity of 0.6 are
different from y1 to y2. This is visually indicated by the horizontal confidence intervals, which are
separated from each other.

. rocreg d y1 y2, pauc(.5) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

Partial area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
pAUC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .3932462 -.0000769 .021332 .3514362 .4350562 (N)
.3492375 .435512 (P)
.3492375 .435403 (BC)

Status : d
Classifier: y2

Observed Bootstrap
pAUC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .2496732 .0019168 .0374973 .1761798 .3231666 (N)
.177451 .3253268 (P)

.1738562 .3233115 (BC)

Ho: All classifiers have equal pAUC values.
Ha: At least one classifier has a different pAUC value.

Test based on bootstrap (N) assumptions.

pAUC P-value

.5 .0011201

We also find significant evidence supporting the hypothesis that the pAUC for y1 up to a false-positive
rate of 0.5 differs from the area of the same region under the ROC curve of y2.

Covariate-adjusted ROC curves

When covariates affect the control distribution of the diagnostic test, thresholds for the test being
classified as abnormal may be chosen that vary with the covariate values. These conditional thresholds
will be more accurate than the marginal thresholds that would normally be used, because they take
into account the specific distribution of the diagnostic test under the given covariate values as opposed
to the marginal distribution over all covariate values.

By using these covariate-specific thresholds, we are essentially creating new classifiers for each
covariate-value combination, and thus we are creating multiple ROC curves. As explained in Pepe (2003),
when the case and control distributions of the covariates are the same, the marginal ROC curve will
always be bound above by these covariate-specific ROC curves. So using conditional thresholds will
never provide a less powerful test diagnostic in this case.
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In the marginal ROC curve calculation, the classifiers are standardized to percentiles according
to the control distribution, marginalized over the covariates. Thus the ROC curve is the CDF of
the standardized case observations. The covariate-adjusted ROC curve is the CDF of one minus the
conditional control percentiles for the case observations, and the marginal ROC curve is the CDF of
one minus the marginal control percentiles for the case observations (Pepe and Cai 2004). Thus the
standardization of classifier to false-positive rate value is conditioned on the specific covariate values
under the covariate-adjusted ROC curve.

The covariate-adjusted ROC curve (Janes and Pepe 2009) at a given false-positive rate t is equivalent
to the expected value of the covariate-specific ROC at t over all covariate combinations. When the
covariates in question do not affect the case distribution of the classifier, the covariate-specific ROC will
have the same value at each covariate combination. So here the covariate-adjusted ROC is equivalent
to the covariate-specific ROC, regardless of covariate values.

When covariates do affect the case distribution of the classifier, users of the diagnostic test would
likely want to model the covariate-specific ROC curves separately. Tools to do this can be found in
the parametric modeling discussion in the following two sections. Regardless, the covariate-adjusted
ROC curve can serve as a meaningful summary of covariate-adjusted accuracy.

Also note that the ROC summary statistics defined in the previous section have covariate-adjusted
analogs. These analogs are estimated in a similar manner as under the marginal ROC curve (Janes,
Longton, and Pepe 2009). The options for their calculation in rocreg are identical to those given in
the previous section. Further details can be found in Methods and formulas.

Example 4: Nonparametric ROC, linear covariate adjustment

Norton et al. (2000) studied data from a neonatal audiology study on three tests to identify hearing
impairment in newborns. These data were also studied in Janes, Longton, and Pepe (2009). Here we
list 5 of the 5,058 observations.

. use http://www.stata-press.com/data/r12/nnhs, clear
(Norton - neonatal audiology data)

. list in 1/5

id ear male currage d y1 y2 y3

1. B0157 R M 42.42 0 -3.1 -9 -1.5
2. B0157 L M 42.42 0 -4.5 -8.7 -2.71
3. B0158 R M 40.14 1 -3.2 -13.2 -2.64
4. B0161 L F 38.14 0 -22.1 -7.8 -2.59
5. B0167 R F 37 0 -10.9 -6.6 -1.42

The classifiers y1 (DPOAE 65 at 2 kHz), y2 (TEOAE 80 at 2 kHz), and y3 (ABR) and the hearing
impairment indicator d are recorded along with some relevant covariates. The infant’s age is recorded
in months as currage, and the infant’s gender is indicated by male. Over 90% of the newborns
were tested in each ear (ear), so we will cluster on infant ID (id).

Following the strategy of Janes, Longton, and Pepe (2009), we will first perform ROC analysis for
the classifiers while adjusting for the covariate effects of the infant’s gender and age. This is done
by specifying these variables in the ctrlcov() option. We adjust using a linear regression rule,
by specifying ctrlmodel(linear). This means that when a user of the diagnostic test chooses a
threshold conditional on the age and gender covariates, they assume that the diagnostic test classifier
has some linear dependence on age and gender and equal variance as their levels vary. Our cluster
adjustment is made by specifying the cluster() option.
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We will focus on the first classifier. The percentile, or specificity, values are calculated empirically
by default, and thus so are the false-positive rates, (1− specificity). Also by default, the ROC curve
values are empirically defined by the false-positive rates. To draw the ROC curve, we again use
rocregplot.

The AUC is calculated by default. For brevity, we specify the nobootstrap option so that bootstrap
sampling is not performed. The AUC point estimate will be sufficient for our purposes.

. rocreg d y1, ctrlcov(male currage) ctrlmodel(linear) cluster(id) nobootstrap

Nonparametric ROC estimation

Covariate control : linear regression
Control variables : male currage
Control standardization: empirical
ROC method : empirical

Status : d
Classifier: y1
Covariate control adjustment model:

Linear regression Number of obs = 4907
F( 2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. Err. adjusted for 2686 clusters in id)

Robust
y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

male .2471744 .2603598 0.95 0.343 -.2633516 .7577005
currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.6293994 . . . . (N)
. . (P)
. . (BC)
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. rocregplot
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Our covariate control adjustment model shows that currage has a negative effect on y1 (DPOAE 65
at 2 kHz) under the control population. At the 0.001 significance level, we reject that its contribution
to y1 is zero, and the point estimate has a negative sign. This result does not directly tell us about
the effect of currage on the ROC curve of y1 as a classifier of d. None of the case observations are
used in the linear regression, so information on currage for abnormal cases is not used in the model.
This result does show us how to calculate false-positive rates for tests that use thresholds conditional
on a child’s sex and current age. We will see how currage affects the ROC curve when y1 is used as
a classifier and conditional thresholds are used based on male and currage in the following section,
Parametric ROC curves: Estimating equations.

Technical note

Under this nonparametric estimation, rocreg saved the false-positive rate for each observation’s
y1 values in the utility variable fpr y1. The true-positive rates are stored in the utility variable
roc y1. For other models, say with classifier yname, these variables would be named fpr yname

and roc yname. They will also be overwritten with each call of rocreg. The variables roc * and
fpr * are usually for internal rocreg use only and are overwritten with each call of rocreg. They

are only created for nonparametric models or parametric models that do not involve ROC covariates.
In these models, covariates may only affect the first stage of estimation, the control distribution, and
not the ROC curve itself. In parametric models that allow ROC covariates, different covariate values
would lead to different ROC curves.

To see how the covariate-adjusted ROC curve estimate differs from the standard marginal estimate,
we will reestimate the ROC curve for classifier y1 without covariate adjustment. We rename these
variables before the new estimation and then draw an overlaid twoway line (see [G-2] graph twoway
line) plot to compare the two.
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. rename _fpr_y1 o_fpr_y1

. rename _roc_y1 o_roc_y1

. label variable o_roc_y1 "covariate_adjusted"

. rocreg d y1, cluster(id) nobootstrap

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.6279645 . . . . (N)
. . (P)
. . (BC)

. label variable _roc_y1 "marginal"

. twoway line _roc_y1 _fpr_y1, sort(_fpr_y1 _roc_y1) connect(J) ||
line o_roc_y1 o_fpr_y1, sort(o_fpr_y1 o_roc_y1)
connect(J) lpattern(dash) aspectratio(1) legend(cols(1))
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Though they are close, particularly in AUC, there are clearly some points of difference between
the estimates. So the covariate-adjusted ROC curve may be useful here.

In our examples thus far, we have used the empirical CDF estimator to estimate the control
distribution. rocreg allows some flexibility here. The pvc(normal) option may be specified to
calculate the percentile values according to a Gaussian distribution of the control.

Covariate adjustment in rocreg may also be performed with stratification instead of linear
regression. Under the stratification method, the unique values of the stratified covariates each define
separate parameters for the control distribution of the classifier. A user of the diagnostic test chooses
a threshold based on the control distribution conditioned on the unique covariate value parameters.

We will demonstrate the use of normal percentile values and covariate stratification in our next
example.
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Example 5: Nonparametric ROC, covariate stratification

The hearing test study of Stover et al. (1996) examined the effectiveness of negative signal-to-noise
ratio, nsnr, as a classifier of hearing loss. The test was administered under nine different settings,
corresponding to different frequency, xf, and intensity, xl, combinations. Here we list 10 of the 1,848
observations.

. use http://www.stata-press.com/data/r12/dp, clear
(Stover - DPOAE test data)

. list in 1/10

id d nsnr xf xl xd

1. 101 1 18 10.01 5.5 3.5
2. 101 1 19 20.02 5.5 3
3. 101 1 7.6 10.01 6 3.5
4. 101 1 15 20.02 6 3
5. 101 1 16 10.01 6.5 3.5

6. 101 1 5.8 20.02 6.5 3
7. 102 0 -2.6 10.01 5.5 .
8. 102 0 -3 14.16 5.5 .
9. 102 1 10 20.02 5.5 1

10. 102 0 -5.8 10.01 6 .

Hearing loss is represented by d. The covariate xd is a measure of the degree of hearing loss. We
will use this covariate in later analysis, because it only affects the case distribution of the classifier.
Multiple measurements are taken for each individual, id, so we will cluster by individual.

We evaluate the effectiveness of nsnr using xf and xl as stratification covariates with rocreg;
the default method of covariate adjustment.

As mentioned before, the default false-positive rate calculation method in rocreg estimates the
conditional control distribution of the classifiers empirically. For comparison, we will also estimate a
separate ROC curve using false-positive rates assuming the conditional control distribution is normal.
This behavior is requested by specifying the pvc(normal) option. Using the rocregplot option
name() to store the ROC plots and using the graph combine command, we are able to compare the
Gaussian and empirical ROC curves side by side. As before, for brevity we specify the nobootstrap
option to suppress bootstrap sampling.

. rocreg d nsnr, ctrlcov(xf xl) cluster(id) nobootstrap

Nonparametric ROC estimation

Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9264192 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Empirical FPR) name(a) nodraw
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. rocreg d nsnr, pvc(normal) ctrlcov(xf xl) cluster(id) nobootstrap

Nonparametric ROC estimation

Covariate control : stratification
Control variables : xf xl
Control standardization: normal
ROC method : empirical

Area under the ROC curve

Status : d
Classifier: nsnr

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9309901 . . . . (N)
. . (P)
. . (BC)

. rocregplot, title(Normal FPR) name(b) nodraw

. graph combine a b, xsize(5)
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On cursory visual inspection, we see little difference between the two curves. The AUC values are close
as well. So it is sensible to assume that we have Gaussian percentile values for control standardization.

Parametric ROC curves: Estimating equations

We now assume a parametric model for covariate effects on the second stage of ROC analysis.
Particularly, the ROC curve is a probit model of the covariates. We will thus have a separate ROC
curve for each combination of the relevant covariates.

Under weak assumptions about the control distribution of the classifier, we can fit this model by
using estimating equations as described in Alonzo and Pepe (2002). This method can be also be used
without covariate effects in the second stage, assuming a parametric model for the single (constant
only) ROC curve. Covariates may still affect the first stage of estimation, so we parametrically model
the single covariate-adjusted ROC curve (from the previous section). The marginal ROC curve, involving
no covariates in either stage of estimation, can be fit parametrically as well.
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In addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton,
and Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The parametric models that we consider assume that the ROC curve is a cumulative distribution
function g invoked with input of a linear polynomial in the corresponding quantile function invoked
on the false-positive rate u. In this context, we assume that g corresponds to a standard normal
cumulative distribution function, Φ. So the corresponding quantile function is Φ−1. The constant
intercept of the polynomial may depend on covariates, but the slope term α (the quantile coefficient)
may not.

ROC (u) = g{x′β+ αg−1 (u)}

The first step of the algorithm involves the choice of false-positive rates to use in the parametric
fit. These are typically a set of equispaced points spanning the interval (0,1). Alonzo and Pepe (2002)
examined the effect of fitting large and small sets of points, finding that relatively small sets could
be used with little loss of efficiency. Alternatively, the set can be formed by using the observed
false-positive rates in the data (Pepe 2003). Further details on the algorithm are provided in Methods
and formulas.

Under parametric estimation, all the summary measures we defined earlier, except the AUC, are not
calculated until postestimation. In models with covariates, each covariate combination would yield a
different ROC curve and thus different summary parameters, so no summary parameters are initially
estimated. In marginal parametric models (where there are no ROC covariates, but there are potentially
control covariates), we will calculate the AUC and leave the other measures for postestimation;
see [R] rocreg postestimation. As with the other parameters, we bootstrap for standard errors and
inference.

We will now demonstrate how rocreg performs the Alonzo and Pepe (2002) algorithm using the
previous section’s examples and others.

Example 6: Parametric ROC, linear covariate adjustment

We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000),
which we discussed in example 4. Janes, Longton, and Pepe (2009) suspected the current age of
the infant would play a role in the case distribution of the classifier y1 (DPOAE 65 at 2 kHz). They
postulated a probit link between the ROC curve and the covariate-adjusted false-positive rates. We
follow their investigation and reach similar results.

In example 4, we saw the results of adjusting for the currage and male variables in the control
population for classifier y1. Now we see how currage affects the ROC curve when y1 is used with
thresholds conditioned on male and currage.

We specify the covariates that should affect the ROC curve in the roccov() option. By default,
rocreg will choose 10 equally spaced false-positive rates in the (0,1) interval as fitting points. The
fprpts() option allows the user to specify more or fewer points. We specify the bsave() option
with the nnhs2y1 dataset so that we can use the bootstrap resamples in postestimation.
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. use http://www.stata-press.com/data/r12/nnhs, clear
(Norton - neonatal audiology data)

. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1) nodots

Bootstrap results Number of obs = 5056
Replications = 1000

Parametric ROC estimation

Covariate control : linear regression
Control variables : currage male
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: y1
Covariate control adjustment model:

Linear regression Number of obs = 4907
F( 2, 2685) = 13.80
Prob > F = 0.0000
R-squared = 0.0081
Root MSE = 7.7515

(Std. Err. adjusted for 2686 clusters in id)

Robust
y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

currage -.2032456 .0389032 -5.22 0.000 -.2795288 -.1269624
male .2471744 .2603598 0.95 0.343 -.2633516 .7577005

_cons -1.239484 1.487855 -0.83 0.405 -4.156942 1.677973

Status : d
Classifier: y1
ROC Model :

(Replications based on 2741 clusters in id)

Observed Bootstrap
y1 Coef. Bias Std. Err. [95% Conf. Interval]

_cons -1.272505 -.0566737 1.076706 -3.38281 .8377993 (N)
-3.509356 .7178385 (P)
-3.487457 .7813575 (BC)

currage .0448228 .0015878 .0280384 -.0101316 .0997771 (N)
-.007932 .1033131 (P)

-.0102905 .101021 (BC)

probit

_cons .9372393 .0128376 .0747228 .7907853 1.083693 (N)
.8079087 1.101941 (P)
.7928988 1.083399 (BC)

Note how the number of clusters—here infants—changes from the covariate control adjustment
model fit to the ROC model. The control fit is limited to control cases and thus fewer infants. The
ROC is fit on all the data, so the variance is adjusted for all clustering on all infants.

With a 0.05 level of statistical significance, we cannot reject the null hypothesis that currage has
no effect on the ROC curve at a given false-positive rate. This is because each of our 95% bootstrap
confidence intervals contains 0. This corresponds with the finding in Janes, Longton, and Pepe (2009)
where the reported 95% intervals each contained 0. We cannot reject that the intercept parameter β0,
reported as cons in the main table, is 0 at the 0.05 level either. The slope parameter α, reported
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as cons in the probit table, is close to 1 and cannot be rejected as being 1 at the 0.05 level.
Under the assumption that the ROC coefficients except α are 0 and that α = 1, the ROC curve at
false-positive rate u is equal to u. In other words, we cannot reject that the false-positive rate is
equal to the true-positive rate, and so the test is noninformative. Further investigation of the results
requires postestimation; see [R] rocreg postestimation.

The fitting point set can be formed by using the observed false-positive rates (Pepe 2003). Our
next example will illustrate this.

Example 7: Parametric ROC, covariate stratification

We return to the hearing test study of Stover et al. (1996), which we discussed in example 5.
Pepe (2003) suspected that intensity, xd, would play a role in the case distribution of the negative
signal-to-noise ratio (nsnr) classifier. A ROC regression was fit with covariate adjustment for xf and
xl with stratification, and for ROC covariates xf, xl, and xd. There is no prohibition against the
same covariate being used in the first and second stages of ROC calculation. The false-positive rate
fitting point set was composed of all observed false-positive rates in the control data.

We fit the model with rocreg here. Using observed false-positive rates as the fitting point set can
make the dataset very large, so fitting the model is computationally intensive. We demonstrate the
fitting algorithm without precise confidence intervals, focusing instead on the coefficient estimates and
standard errors. We will thus perform only 50 bootstrap replications, a reasonable number to obtain
accurate standard error estimates (Mooney and Duval 1993). The number of replications is specified
in the breps() option.

The ROC covariates are specified in roccov(). We specify that all observed false-positive rates
in the control observations be used as fitting points with the ctrlfprall option. The nobstrata
option specifies that the bootstrap is not stratified. The covariate stratification in the first stage of
estimation does not affect the resampling. We will return to this example in postestimation, so we
save the bootstrap results in the nsnrf dataset with the bsave() option.
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. use http://www.stata-press.com/data/r12/dp
(Stover - DPOAE test data)

. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ctrlfprall cluster(id)
> nobstrata bseed(156385) breps(50) bsave(nsnrf)
(running rocregstat on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 1848
Replications = 50

Parametric ROC estimation

Covariate control : stratification
Control variables : xf xl
Control standardization: empirical
ROC method : parametric Link: probit

Status : d
Classifier: nsnr
ROC Model :

(Replications based on 208 clusters in id)

Observed Bootstrap
nsnr Coef. Bias Std. Err. [95% Conf. Interval]

_cons 3.247872 -.0846178 .8490006 1.583862 4.911883 (N)
1.598022 4.690076 (P)
1.346904 4.690076 (BC)

xf .0502557 .014478 .0329044 -.0142357 .1147471 (N)
-.0031814 .1186107 (P)
-.0053095 .1132185 (BC)

xl -.4327223 -.0194846 .1116309 -.6515149 -.2139298 (N)
-.6570321 -.2499706 (P)
-.6570321 -.231854 (BC)

xd .4431764 .0086147 .0936319 .2596612 .6266916 (N)
.330258 .6672749 (P)

.3487118 .7674865 (BC)

probit

_cons 1.032657 -.0188887 .1224993 .7925628 1.272751 (N)
.7815666 1.236179 (P)
.7815666 1.237131 (BC)

We obtain results similar to those reported in Pepe (2003, 159). Unlike in our previous example,
we find that the coefficients for xl and xd differ from 0 at the 0.05 level of significance. So over
certain covariate combinations, we can have a variety of informative tests using nsnr as a classifier.

As mentioned before, when there are no covariates, rocreg can still fit a parametric model for the
ROC curve of a classifier by using the Alonzo and Pepe (2002) method. roccomp and rocfit can
fit marginal probit models as well. We will compare the behavior of rocreg with that of roccomp
and rocfit for probit models without covariates.

When the binormal option is specified, roccomp calculates the AUC for input classifiers according
to the maximum likelihood algorithm of rocfit. The rocfit algorithm expects discrete classifiers
but can slice continuous classifiers into discrete partitions. Further, the case and control distributions
are both assumed normal. Actually, the observed classification values are taken as discrete indicators
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of the latent normally distributed classification values. This method is documented in Dorfman and
Alf (1969).

Alonzo and Pepe (2002) compared their estimating equations probability density function method
(with empirical estimation of the false-positive rates) to the maximum likelihood approach of Dorfman
and Alf (1969) and found that they had similar efficiency and mean squared error. So we should
expect rocfit and rocreg to give similar results when fitting a simple probit model.

Example 8: Parametric ROC, marginal model

We return to the Hanley and McNeil (1982) data. We will fit a probit model to the ROC curve,
assuming that the rating variable is a discrete indicator of an underlying latent normal random
variable in both the case and control populations of disease. We invoke rocfit with the default
options. rocreg is invoked with the probit option. The percentile values are calculated empirically.
Because there are fewer categories than 10, there will be fewer than 10 false-positive rates that trigger
a different true-positive rate value. So for efficiency, we invoke rocreg with the ctrlfprall option.

. use http://www.stata-press.com/data/r12/hanley

. rocfit disease rating, nolog

Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1
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. rocreg disease rating, probit ctrlfprall bseed(8574309) nodots

Bootstrap results Number of obs = 109
Replications = 1000

Parametric ROC estimation

Control standardization: empirical
ROC method : parametric Link: probit

Status : disease
Classifier: rating
ROC Model :

Observed Bootstrap
rating Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.635041 .0588548 .3609651 .9275621 2.342519 (N)
1.162363 2.556508 (P)
1.164204 2.566174 (BC)

probit

_cons .6951252 .0572146 .3241451 .0598125 1.330438 (N)
.3500569 1.430441 (P)
.3372983 1.411953 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9102903 -.0051749 .0314546 .8486405 .9719402 (N)
.837113 .9605498 (P)

.8468336 .9630486 (BC)

We see that the intercept and slope parameter estimates are close. The intercept ( cons in the main
table) is clearly nonzero. Under rocreg, the slope ( cons in the probit table) and its percentile
and bias-corrected confidence intervals are close to those of rocfit. The area under the ROC curve
for each of the rocreg and rocfit estimators also matches closely.

Now we will compare the parametric fit of rocreg under the constant probit model with roccomp.

Example 9: Parametric ROC, marginal model, multiple classifiers

We now use the fictitious dataset generated from Hanley and McNeil (1983). To fit a probit model
using roccomp, we specify the binormal option. Our specification of rocreg remains the same as
before.

rocregplot is used to render the model produced by rocreg. We specify several graph options
to both roccomp and rocregplot to ease comparison. When the binormal option is specified along
with graph, roccomp will draw the binormal fitted lines in addition to connected line plots of the
empirical false-positive and true-positive rates.

In this plot, we overlay scatterplots of the empirical false-positive rates (because percentile value
calculation defaulted to pvc(empirical)) and the parametric true-positive rates.
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. use http://www.stata-press.com/data/r12/ct2, clear

. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 "mod1") label(3 "mod2") label(5 "mod3")
> label(2 "mod1 fit") label(4 "mod2 fit")
> label(6 "mod3 fit") order(1 3 5 2 4 6) cols(1))
> title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160

. rocreg status mod1 mod2 mod3, probit ctrlfprall bseed(867340912) nodots

Bootstrap results Number of obs = 112
Replications = 1000

Parametric ROC estimation

Control standardization: empirical
ROC method : parametric Link: probit

Status : status
Classifier: mod1
ROC Model :

Observed Bootstrap
mod1 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.726034 .1363112 .5636358 .6213277 2.83074 (N)
1.162477 3.277376 (P)
1.152112 3.187595 (BC)

probit

_cons .9666323 .0872018 .4469166 .0906919 1.842573 (N)
.518082 2.219548 (P)

.5568404 2.394036 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8927007 -.0011794 .0313951 .8311675 .954234 (N)
.8245637 .9466904 (P)
.8210562 .9432855 (BC)
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Status : status
Classifier: mod2
ROC Model :

Observed Bootstrap
mod2 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 1.696811 .0918364 .5133386 .6906858 2.702936 (N)
1.21812 2.973929 (P)
1.22064 3.068454 (BC)

probit

_cons .4553828 .047228 .3345303 -.2002845 1.11105 (N)
.1054933 1.18013 (P)
.1267796 1.272523 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.938734 -.0037989 .0261066 .8875659 .9899021 (N)
.8777664 .9778214 (P)
.8823555 .9792451 (BC)

Status : status
Classifier: mod3
ROC Model :

Observed Bootstrap
mod3 Coef. Bias Std. Err. [95% Conf. Interval]

_cons 2.281359 .1062846 .6615031 .9848363 3.577881 (N)
1.637764 4.157873 (P)
1.666076 4.474779 (BC)

probit

_cons 1.107736 .0514693 .4554427 .2150843 2.000387 (N)
.58586 2.28547 (P)

.6385949 2.671192 (BC)

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.9368321 -.0023853 .0231363 .8914859 .9821784 (N)
.8844096 .9722485 (P)
.8836259 .9718463 (BC)

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0778556 Test based on bootstrap (N) assumptions.

. rocregplot, title(rocreg) nodraw name(b) plot1opts(msymbol(o))
> plot2opts(msymbol(s)) plot3opts(msymbol(t))
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We see differing true-positive rate values in the scattered points, which is expected because roccomp
gives the empirical estimate and rocreg gives the parametric estimate. However, the estimated curves
and areas under the ROC curve look similar. Using the Wald test based on the bootstrap covariance,
rocreg rejects the null hypothesis that each test has the same AUC at the 0.1 significance level.
roccomp formulates the asymptotic covariance using the rocfit estimates of AUC. Examination of
its output leads to rejection of the null hypothesis that the AUCs are equal across each test at the 0.05
significance level.

Parametric ROC curves: Maximum likelihood
The Alonzo and Pepe (2002) method of fitting a parametric model to the ROC curve is powerful

because it can be generally applied, but that can be a limitation as well. Whenever we invoke the
method and want anything other than point estimates of the parameters, we must perform bootstrap
resampling.

An alternative is to use maximum likelihood inference to fit the ROC curve. This method can save
computational time by avoiding the bootstrap.

rocreg implements maximum likelihood estimation for ROC curve analysis when both the case
and control populations are normal. Particularly, the classifier is a normal linear model on certain
covariates, and the covariate effect and variance of the classifier may change between the case and
control populations. This model is defined in Pepe (2003, 145).

y = z′β0 +Dx′β1 + σ (D) ε

Our error term, ε, is a standard normal random variable. The variable D is our true status variable,
being 1 for the case population observations and 0 for the control population observations. The
variance function σ is defined as

σ (D) = σ0 (D = 0) + σ1 (D = 1)

This provides two variance parameters in the model and does not depend on covariate values.
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Suppose a covariate xi is present in z and x. The coefficient β1i represents the interaction effect
of the xi and D. It is the extra effect that xi has on classifier y under the case population, D = 1,
beyond the main effect β0i. These β1 coefficients are directly related to the ROC curve of y.

Under this model, the ROC curve is derived to be

ROC (u) = Φ
[

1
σ1
{x′β1 + σ0Φ−1 (u)}

]
For convenience, we reparameterize the model at this point, creating the parameters βi = σ−1

1 β1i

and α = σ−1
1 σ0. We refer to β0 as the constant intercept, i cons. The parameter α is referred to

as the constant slope, s cons.

ROC (u) = Φ{x′β+ αΦ−1 (u)}

We may interpret the final coefficients as the standardized linear effect of the ROC covariate on
the classifier under the case population. The marginal effect of the covariate on the classifier in the
control population is removed, and it is rescaled by the case population standard deviation of the
classifier when all ROC covariate effects are removed. An appreciable effect on the classifier by a
ROC covariate in this measure leads to an appreciable effect on the classifier’s ROC curve by the ROC
covariate.

The advantage of estimating the control coefficients β0 is similar to the gains of estimating the
covariate control models in the estimating equations ROC method and nonparametric ROC estimation.
This model would similarly apply when evaluating a test that is conditioned on control covariates.

Again we note that under parametric estimation, all the summary measures we defined earlier except
the AUC are not calculated until postestimation. In models with covariates, each covariate combination
would yield a different ROC curve and thus different summary parameters, so no summary parameters
are estimated initially. In marginal parametric models, we will calculate the AUC and leave the other
measures for postestimation. There is a simple closed-form formula for the AUC under the probit
model. Using this formula, the delta method can be invoked for inference on the AUC. Details on
AUC estimation for probit marginal models are found in Methods and formulas.

We will demonstrate the maximum likelihood method of rocreg by revisiting the models of the
previous section.

Example 10: Maximum likelihood ROC, single classifier

Returning to the hearing test study of Stover et al. (1996), we use a similar covariate grouping
as before. The frequency xf and intensity xl are control covariates (z), while all three covariates
xf, xl, and hearing loss degree xd are case covariates (x). In example 7, we fit this model using
the Alonzo and Pepe (2002) method. Earlier we stratified on the control covariates and estimated
the conditioned control distribution of nsnr empirically. Now we assume a normal linear model for
nsnr on xf and xl under the control population.

We fit the model by specifying the control covariates in the ctrlcov() option and the case
covariates in the roccov() option. The ml option tells rocreg to perform maximum likelihood
estimation.
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. use http://www.stata-press.com/data/r12/dp, clear
(Stover - DPOAE test data)

. rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit ml cluster(id) nolog

Parametric ROC estimation

Covariate control : linear regression
Control variables : xf xl
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: nsnr

Classifier : nsnr
Covariate control adjustment model:

(Std. Err. adjusted for 208 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
xf .4690907 .1408683 3.33 0.001 .192994 .7451874
xl -3.187785 .8976521 -3.55 0.000 -4.947151 -1.42842
xd 3.042998 .3569756 8.52 0.000 2.343339 3.742657

_cons 23.48064 5.692069 4.13 0.000 12.32439 34.63689

casesd
_cons 7.979708 .354936 22.48 0.000 7.284047 8.67537

ctrlcov
xf -.1447499 .0615286 -2.35 0.019 -.2653438 -.0241561
xl -.8631348 .2871976 -3.01 0.003 -1.426032 -.3002378

_cons 1.109477 1.964004 0.56 0.572 -2.7399 4.958854

ctrlsd
_cons 7.731203 .3406654 22.69 0.000 7.063511 8.398894

Status : d
ROC Model :

(Std. Err. adjusted for 208 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

nsnr
i_cons 2.942543 .7569821 3.89 0.000 1.458885 4.426201

xf .0587854 .0175654 3.35 0.001 .024358 .0932129
xl -.3994865 .1171914 -3.41 0.001 -.6291775 -.1697955
xd .381342 .0449319 8.49 0.000 .2932771 .4694068

s_cons .9688578 .0623476 15.54 0.000 .8466587 1.091057

We find the results are similar to those of example 7. Frequency (xf) and intensity (xl) have a
negative effect on the classifier nsnr in the control population.

The negative control effect is mitigated for xf in the case population, but the effect for xl is even
more negative there. Hearing loss severity, xd, has a positive effect on nsnr in the case population,
and it is undefined in the control population.

The ROC coefficients are shown in the ROC Model table. Each are different from 0 at the 0.05
level. At this level, we also cannot conclude that the variances differ from case to control populations,
because 1 is in the 95% confidence interval for s cons, the ratio of the case to control standard
deviation parameters.
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Both frequency (xf) and hearing loss severity (xd) make a positive contribution to the ROC curve
and thus make the test more powerful. Intensity (xl) has a negative effect on the ROC curve and
weakens the test. We previously saw in example 5 that the control distribution appears to be normal,
so using maximum likelihood to fit this model is a reasonable approach.

This model was also fit in Pepe (2003, 147). Pepe used separate least-squares estimates for the
case and control samples. We obtain similar results for the coefficients, but the maximum likelihood
fitting yields slightly different standard deviations by considering both case and control observations
concurrently. In addition, a misprint in Pepe (2003, 147) reports a coefficient of −4.91 for xl in the
case population instead of −3.19 as reported by Stata.

Inference on multiple classifiers using the Alonzo and Pepe (2002) estimating equation method
is performed by fitting each model separately and bootstrapping to determine the dependence of the
estimates. Using the maximum likelihood method, we also fit each model separately. We use suest
(see [R] suest) to estimate the joint variance–covariance of our parameter estimates.

For our models, we can view the score equation for each model as an estimating equation. The
estimate that solves the estimating equation (that makes the score 0) is asymptotically normal with a
variance matrix that can be estimated using the inverse of the squared scores. By stacking the score
equations of the separate models, we can estimate the variance matrix for all the parameter estimates
by using this rule. This is an informal explanation; further details can be found in [R] suest and in
the references Rogers (1993); White (1982 and 1996).

Now we will examine a case with multiple classification variables.

Example 11: Maximum likelihood ROC, multiple classifiers

We return to the neonatal audiology study with gender and age covariates (Norton et al. 2000).
In example 6, we fit a model with male and currage as control covariates, and currage as a ROC
covariate for the classifier y1 (DPOAE 65 at 2 kHz). We will refit this model, extending it to include
the classifier y2 (TEOAE 80 at 2 kHz).
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. use http://www.stata-press.com/data/r12/nnhs
(Norton - neonatal audiology data)

. rocreg d y1 y2, probit ml ctrlcov(currage male) roccov(currage) cluster(id) nolog

Parametric ROC estimation

Covariate control : linear regression
Control variables : currage male
Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: y1 y2

Classifier : y1
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
currage .494211 .2126672 2.32 0.020 .077391 .9110311

_cons -15.00403 8.238094 -1.82 0.069 -31.1504 1.142338

casesd
_cons 8.49794 .4922792 17.26 0.000 7.533091 9.46279

ctrlcov
currage -.2032048 .0323803 -6.28 0.000 -.266669 -.1397406

male .2369359 .2201391 1.08 0.282 -.1945288 .6684006
_cons -1.23534 1.252775 -0.99 0.324 -3.690734 1.220055

ctrlsd
_cons 7.749156 .0782225 99.07 0.000 7.595843 7.902469

Classifier : y2
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
currage .5729861 .2422662 2.37 0.018 .0981532 1.047819

_cons -18.2597 9.384968 -1.95 0.052 -36.6539 .1344949

casesd
_cons 9.723858 .5632985 17.26 0.000 8.619813 10.8279

ctrlcov
currage -.1694575 .0291922 -5.80 0.000 -.2266732 -.1122419

male .7122587 .1993805 3.57 0.000 .3214802 1.103037
_cons -5.651728 1.129452 -5.00 0.000 -7.865415 -3.438042

ctrlsd
_cons 6.986167 .0705206 99.07 0.000 6.84795 7.124385
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Status : d
ROC Model :

(Std. Err. adjusted for 2741 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y1
i_cons -1.765608 1.105393 -1.60 0.110 -3.932138 .4009225

currage .0581566 .0290177 2.00 0.045 .0012828 .1150303
s_cons .9118864 .0586884 15.54 0.000 .7968593 1.026913

y2
i_cons -1.877825 .905174 -2.07 0.038 -3.651933 -.1037167

currage .0589258 .0235849 2.50 0.012 .0127002 .1051514
s_cons .7184563 .0565517 12.70 0.000 .607617 .8292957

Both classifiers have similar results. The results for y1 show the same direction as the estimating
equation results in example 6. However, we can now reject the null hypothesis that the ROC currage
coefficient is 0 at the 0.05 level.

In example 6, we could not reject that the slope parameter s cons was 1 and that the constant
intercept or ROC coefficient for current age was 0. The resulting ROC curve implied a noninformative
test using y1 as a classifier. This is not the case with our current results. As currage increases, we
expect a steeper ROC curve and thus a more powerful test, for both classifiers y1 (DPOAE 65 at 2 kHz)
and y2 (TEOAE 80 at 2 kHz).

In example 10, the clustering of observations within infant id was adjusted in the individual fit of
nsnr. In our current example, the adjustment for the clustering of observations within id is performed
during concurrent estimation, as opposed to during the individual classifier fits (as in example 10).
This adjustment, performed by suest, is still accurate.

Now we will fit constant probit models and compare rocreg with rocfit and roccomp with the
binormal option. Our first applications of rocfit and roccomp are taken directly from examples 8
and 9. The Dorfman and Alf (1969) algorithm that rocfit works with uses discrete classifiers or
uses slicing to make a classifier discrete. So we are applying the maximum likelihood method of
rocreg on discrete classification data here, where it expects continuous data. We expect to see some
discrepancies, but we do not find great divergence in the estimates. After revisiting examples 8 and
9, we will fit a probit model with a continuous classifier and no covariates using rocreg, and we
will compare the results with those from rocfit.

Example 12: Maximum likelihood ROC, marginal model

Using the Hanley and McNeil (1982) data, discussed in example 1 and in example 8, we fit a
constant probit model of the classifier rating with true status disease. rocreg is invoked with the
ml option and compared with rocfit.
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. use http://www.stata-press.com/data/r12/hanley, clear

. rocfit disease rating, nolog

Binormal model of disease on rating Number of obs = 109
Goodness-of-fit chi2(2) = 0.21
Prob > chi2 = 0.9006
Log likelihood = -123.64855

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 1.656782 0.310456 5.34 0.000 1.048300 2.265265
slope (*) 0.713002 0.215882 -1.33 0.184 0.289881 1.136123

/cut1 0.169768 0.165307 1.03 0.304 -0.154227 0.493764
/cut2 0.463215 0.167235 2.77 0.006 0.135441 0.790990
/cut3 0.766860 0.174808 4.39 0.000 0.424243 1.109477
/cut4 1.797938 0.299581 6.00 0.000 1.210770 2.385106

Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.911331 0.029506 0.853501 0.969161
delta(m) 2.323671 0.502370 1.339044 3.308298

d(e) 1.934361 0.257187 1.430284 2.438438
d(a) 1.907771 0.259822 1.398530 2.417012

(*) z test for slope==1

. rocreg disease rating, probit ml nolog

Parametric ROC estimation

Control standardization: normal
ROC method : parametric Link: probit

Status : disease
Classifiers: rating

Classifier : rating
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.3357 .2334285 10.01 0.000 1.878188 2.793211

casesd
_cons 1.117131 .1106124 10.10 0.000 .9003344 1.333927

ctrlcov
_cons 2.017241 .1732589 11.64 0.000 1.67766 2.356823

ctrlsd
_cons 1.319501 .1225125 10.77 0.000 1.07938 1.559621

Status : disease
ROC Model :

Coef. Std. Err. z P>|z| [95% Conf. Interval]

rating
i_cons 2.090802 .2941411 7.11 0.000 1.514297 2.667308
s_cons 1.181151 .1603263 7.37 0.000 .8669177 1.495385

auc .9116494 .0261658 34.84 0.000 .8603654 .9629333
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We compare the estimates for these models:

rocfit rocreg, ml

slope 0.7130 1.1812
SE of slope 0.2159 0.1603
intercept 1.6568 2.0908
SE of intercept 0.3105 0.2941
AUC 0.9113 0.9116
SE of AUC 0.0295 0.0262

We find that both the intercept and the slope are estimated as higher with the maximum likelihood
method under rocreg than with rocfit. The AUC (ROC area in rocfit) is close for both commands.
We find that the standard errors of each of these estimates is slightly lower under rocreg than rocfit
as well.

Both rocfit and rocreg suggest that the slope parameter of the ROC curve (slope in rocfit
and s cons in rocreg) is not significantly different from 1. Thus we cannot reject that the classifier
has the same variance in both case and control populations. There is, however, significant evidence
that the intercepts (i cons in rocreg and intercept in rocfit) differ from 0. Because of the
positive direction of the intercept estimates, the ROC curve for rating as a classifier of disease
suggests that rating provides an informative test. This is also suggested by the high AUC, which is
significantly different from 0.5, that is, a flip of a coin.

Example 13: Maximum likelihood ROC, marginal model, multiple classifiers

We use the fictitious dataset generated from Hanley and McNeil (1983), which we previously used
in example 2 and in example 9. To fit a probit model using roccomp, we specify the binormal option.
We perform parametric, maximum likelihood ROC analysis using rocreg. We use rocregplot to
plot the ROC curves created by rocreg.

. use http://www.stata-press.com/data/r12/ct2, clear

. roccomp status mod1 mod2 mod3, summary binormal graph aspectratio(1)
> plot1opts(connect(i) msymbol(o))
> plot2opts(connect(i) msymbol(s))
> plot3opts(connect(i) msymbol(t))
> legend(label(1 "mod1") label(3 "mod2") label(5 "mod3")
> label(2 "mod1 fit") label(4 "mod2 fit") label(6 "mod3 fit")
> order(1 3 5 2 4 6) cols(1)) title(roccomp) name(a) nodraw
Fitting binormal model for: mod1
Fitting binormal model for: mod2
Fitting binormal model for: mod3

ROC
Obs Area Std. Err. [95% Conf. Interval]

mod1 112 0.8945 0.0305 0.83482 0.95422
mod2 112 0.9382 0.0264 0.88647 0.99001
mod3 112 0.9376 0.0223 0.89382 0.98139

Ho: area(mod1) = area(mod2) = area(mod3)
chi2(2) = 8.27 Prob>chi2 = 0.0160
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. rocreg status mod1 mod2 mod3, probit ml nolog

Parametric ROC estimation

Control standardization: normal
ROC method : parametric Link: probit

Status : status
Classifiers: mod1 mod2 mod3

Classifier : mod1
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.118135 .2165905 9.78 0.000 1.693626 2.542645

casesd
_cons 1.166078 .1122059 10.39 0.000 .9461589 1.385998

ctrlcov
_cons 2.344828 .1474147 15.91 0.000 2.0559 2.633755

ctrlsd
_cons 1.122677 .1042379 10.77 0.000 .9183746 1.32698

Classifier : mod2
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.659642 .2072731 12.83 0.000 2.253395 3.06589

casesd
_cons 1.288468 .1239829 10.39 0.000 1.045466 1.53147

ctrlcov
_cons 1.655172 .1105379 14.97 0.000 1.438522 1.871823

ctrlsd
_cons .8418313 .0781621 10.77 0.000 .6886365 .9950262

Classifier : mod3
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 2.353768 .1973549 11.93 0.000 1.966959 2.740576

casesd
_cons 1.143359 .1100198 10.39 0.000 .9277243 1.358994

ctrlcov
_cons 2.275862 .1214094 18.75 0.000 2.037904 2.51382

ctrlsd
_cons .9246267 .0858494 10.77 0.000 .7563649 1.092888
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Status : status
ROC Model :

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mod1
i_cons 1.81646 .3144804 5.78 0.000 1.20009 2.432831
s_cons .9627801 .1364084 7.06 0.000 .6954245 1.230136

auc .904657 .0343518 26.34 0.000 .8373287 .9719853

mod2
i_cons 2.064189 .3267274 6.32 0.000 1.423815 2.704563
s_cons .6533582 .1015043 6.44 0.000 .4544135 .8523029

auc .9580104 .0219713 43.60 0.000 .9149473 1.001073

mod3
i_cons 2.058643 .2890211 7.12 0.000 1.492172 2.625113
s_cons .8086932 .1163628 6.95 0.000 .5806262 1.03676

auc .9452805 .0236266 40.01 0.000 .8989732 .9915877

Ho: All classifiers have equal AUC values.
Ha: At least one classifier has a different AUC value.

P-value: .0808808

. rocregplot, title(rocreg) nodraw name(b)
> plot1opts(msymbol(o)) plot2opts(msymbol(s)) plot3opts(msymbol(t))

. graph combine a b, xsize(5)
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We compare the AUC estimates for these models:
roccomp rocreg, ml

mod1 0.8945 0.9047
mod2 0.9382 0.9580
mod3 0.9376 0.9453

Each classifier has a higher estimated AUC under rocreg than roccomp. Each curve appears to
be raised and smoothed in the rocreg fit as compared with roccomp. They are different, but not
drastically different. The inference on whether the curve areas are the same is similar to example 9.
We reject equality at the 0.10 level under rocreg and at the 0.05 level under roccomp.
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Each intercept is significantly different from 0 at the 0.05 level and is estimated in a positive
direction. Though all but classifier mod2 has 1 in their slope confidence intervals, the high intercepts
suggest steep ROC curves and powerful tests.

Also note that the false-positive and true-positive rate points are calculated empirically in the
roccomp graph and parametrically in rocreg. In example 9, the false-positive rates calculated by
rocreg were calculated empirically, similar to roccomp. But in this example, the rates are calculated
based on normal percentiles.

Now we will generate an example to compare rocfit and rocreg under maximum likelihood
estimation of a continuous classifier.

Example 14: Maximum likelihood ROC, graphical comparison with rocfit

We generate 500 realizations of a population under threat of disease. One quarter of the population
has the disease. A classifier x is measured, which has a control distribution of N(1, 3) and a case
distribution of N(1 + 5, 2). We will invoke rocreg with the ml option on this generated data. We
specify the continuous() option for rocfit and invoke it on the data as well. The continuous()
option tells rocfit how many discrete slices to partition the data into before fitting.

For comparison of the two curves, we will use the rocfit postestimation command, rocplot;
see [R] rocfit postestimation. This command graphs the empirical false-positive and true-positive
rates with an overlaid fit of the binormal curve estimated by rocfit. rocplot also supports an
addplot() option. We use the saved variables from rocreg in this option to overlay a line plot of
the rocreg fit.

. clear

. set seed 8675309

. set obs 500
obs was 0, now 500

. generate d = runiform() < .25

. quietly generate double epsilon = 3*invnormal(runiform()) if d == 0

. quietly replace epsilon = 2*invnormal(runiform()) if d == 1

. quietly generate double x = 1 + d*5 + epsilon
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. rocreg d x, probit ml nolog

Parametric ROC estimation

Control standardization: normal
ROC method : parametric Link: probit

Status : d
Classifiers: x

Classifier : x
Covariate control adjustment model:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

casecov
_cons 4.905612 .2411624 20.34 0.000 4.432943 5.378282

casesd
_cons 2.038278 .1299559 15.68 0.000 1.783569 2.292987

ctrlcov
_cons 1.010382 .1561482 6.47 0.000 .7043377 1.316427

ctrlsd
_cons 3.031849 .1104134 27.46 0.000 2.815443 3.248255

Status : d
ROC Model :

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x
i_cons 2.406743 .193766 12.42 0.000 2.026969 2.786518
s_cons 1.487456 .1092172 13.62 0.000 1.273394 1.701518

auc .9103292 .012754 71.38 0.000 .8853318 .9353266

. rocfit d x, continuous(10) nolog

Binormal model of d on x Number of obs = 500
Goodness-of-fit chi2(7) = 1.69
Prob > chi2 = 0.9751
Log likelihood = -911.91338

Coef. Std. Err. z P>|z| [95% Conf. Interval]

intercept 2.207250 0.232983 9.47 0.000 1.750611 2.663888
slope (*) 1.281443 0.158767 1.77 0.076 0.970265 1.592620

/cut1 -1.895707 0.130255 -14.55 0.000 -2.151001 -1.640412
/cut2 -1.326900 0.089856 -14.77 0.000 -1.503015 -1.150784
/cut3 -0.723677 0.070929 -10.20 0.000 -0.862695 -0.584660
/cut4 -0.116960 0.064666 -1.81 0.070 -0.243702 0.009782
/cut5 0.442769 0.066505 6.66 0.000 0.312422 0.573116
/cut6 1.065183 0.075744 14.06 0.000 0.916728 1.213637
/cut7 1.689570 0.102495 16.48 0.000 1.488683 1.890457
/cut8 2.495841 0.185197 13.48 0.000 2.132861 2.858821
/cut9 3.417994 0.348485 9.81 0.000 2.734976 4.101012
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Indices from binormal fit
Index Estimate Std. Err. [95% Conf. Interval]

ROC area 0.912757 0.013666 0.885972 0.939542
delta(m) 1.722473 0.127716 1.472153 1.972792

d(e) 1.934960 0.125285 1.689405 2.180515
d(a) 1.920402 0.121804 1.681670 2.159135

(*) z test for slope==1

. rocplot, plotopts(msymbol(i)) lineopts(lpattern(dash))
> norefline addplot(line _roc_x _fpr_x, sort(_fpr_x _roc_x)
> lpattern(solid)) aspectratio(1) legend(off)
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Area under curve = 0.9128  se(area) = 0.0137

We find that the curves are close. As before, the rocfit estimates are lower for the slope and
intercept than under rocreg. The AUC estimates are close. Though the slope confidence interval
contains 1, a high ROC intercept suggests a steep ROC curve and thus a powerful test.
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Saved results
Nonparametric rocreg saves the following in e():

Scalars
e(N) number of observations
e(N strata) number of covariate strata
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(classvars) classification variable list
e(refvar) status variable, reference variable
e(ctrlmodel) covariate-adjustment specification
e(ctrlcov) covariate-adjustment variables
e(pvc) percentile value calculation method
e(title) title in estimation output
e(tiecorrected) indicates whether tie correction was used
e(nobootstrap) indicates that bootstrap was performed
e(bseed) seed used in bootstrap, if bootstrap performed
e(breps) number of bootstrap resamples, if bootstrap performed
e(cc) indicates whether case–control groups were used as resampling strata
e(nobstrata) indicates whether resampling should stratify based on control covariates
e(clustvar) name of cluster variable
e(roc) false-positive rates where ROC was estimated
e(invroc) ROC values where false-positive rates were estimated
e(pauc) false-positive rates where pAUC was estimated
e(auc) indicates that AUC was calculated
e(vce) bootstrap
e(properties) b V (or b if bootstrap not performed)

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(b bs) bootstrap estimates
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(ci normal) normal-approximation confidence intervals
e(ci percentile) percentile confidence intervals
e(ci bc) bias-corrected confidence intervals

Functions
e(sample) marks estimation sample
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Parametric, bootstrap rocreg saves the following in e():

Scalars
e(N) number of observations
e(N strata) number of covariate strata
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(title) title in estimation output
e(classvars) classification variable list
e(refvar) status variable, reference variable
e(ctrlmodel) covariate-adjustment specification
e(ctrlcov) covariate-adjustment variables
e(pvc) percentile value calculation method
e(title) title in estimation output
e(tiecorrected) indicates whether tie correction was used
e(probit) probit
e(roccov) ROC covariates
e(fprpts) number of points used as false-positive rate fit points
e(ctrlfprall) indicates whether all observed false-positive rates were used as fit points
e(nobootstrap) indicates that bootstrap was performed
e(bseed) seed used in bootstrap
e(breps) number of bootstrap resamples
e(cc) indicates whether case–control groups were used as resampling strata
e(nobstrata) indicates whether resampling should stratify based on control covariates
e(clustvar) name of cluster variable
e(vce) bootstrap
e(properties) b V (or b if nobootstrap is specified)
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(b bs) bootstrap estimates
e(reps) number of nonmissing results
e(bias) estimated biases
e(se) estimated standard errors
e(z0) median biases
e(ci normal) normal-approximation confidence intervals
e(ci percentile) percentile confidence intervals
e(ci bc) bias-corrected confidence intervals

Functions
e(sample) marks estimation sample
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Parametric, maximum likelihood rocreg saves the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rocreg
e(cmdline) command as typed
e(classvars) classification variable list
e(refvar) status variable
e(ctrlmodel) linear
e(ctrlcov) control population covariates
e(roccov) ROC covariates
e(probit) probit
e(pvc) normal
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(vce) cluster if clustering used
e(vcetype) robust if multiple classifiers or clustering used
e(ml) indicates that maximum likelihood estimation was used
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
rocreg is implemented as an ado-file.

Assume that we applied a diagnostic test to each of N0 control and N1 case subjects. Further
assume that the higher the outcome value of the diagnostic test, the higher the risk of the subject
being abnormal. Let y1i, i = 1, 2, . . . , N1, and y0j , j = 1, 2, . . . , N0, be the values of the diagnostic
test for the case and control subjects, respectively. The true status variable D identifies an observation
as case D = 1 or control D = 0. The CDF of the classifier Y is F . Conditional on D, we write the
CDF as FD.

Methods and formulas are presented under the following headings:

ROC statistics
Covariate-adjusted ROC curves
Parametric ROC curves: Estimating equations
Parametric ROC curves: Maximum likelihood



1832 rocreg — Receiver operating characteristic (ROC) regression

ROC statistics

We obtain these definitions and their estimates from Pepe (2003) and Pepe, Longton, and
Janes (2009). The false-positive and true-positive rates at cutoff c are defined as

FPR (y) = P
(
Y ≥ y

∣∣D = 0
)

TPR (y) = P
(
Y ≥ y

∣∣D = 1
)

The true-positive rate, or ROC value at false-positive rate u, is given by

ROC (u) = P
(
1− F0 (Y ) ≤ u

∣∣D = 1
)

When Y is continuous, the false-positive rate can be written as

FPR (y) = 1− F0 (y)

The empirical CDF for the sample z1, . . . , zn is given by

F̂ (z) =
n∑
i=1

I (z < zi)
n

The empirical estimates F̂PR and R̂OC both use this empirical CDF estimator.

The area under the ROC curve is defined as

AUC =
∫ 1

0

ROC (u) du

The partial area under the ROC curve for false-positive rate a is defined as

pAUC (a) =
∫ a

0

ROC (u) du

The nonparametric estimate for the AUC is given by

ÂUC =
N1∑
i=1

1− F̂PR (y1i)
N1

The nonparametric estimate of pAUC is given by

p̂AUC (a) =
N1∑
i=1

max
{

1− F̂PR (y1i)− (1− a), 0
}

N1

For discrete classifiers, a correction term is subtracted from the false-positive rate estimate so that
the ÂUC and p̂AUC estimates correspond with a trapezoidal approximation to the area of the ROC
curve.

FPRc (y) = 1− F̂0 (y)− 1
2

N0∑
j=1

I (y = y0j)
N0

In the nonparametric estimation of the ROC curve, all inference is performed using the bootstrap
command (see [R] bootstrap). rocreg also allows users to calculate the ROC curve and related
statistics by assuming a normal control distribution. So these formulas are updated by replacing F0

by Φ (with adjustment of the marginal mean and variance of the control distribution).
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Covariate-adjusted ROC curves

Suppose we observe covariate vector Z in addition to the classifier Y . Let Z1i, i = 1, 2, . . . , N1,
and Z0j , j = 1, 2, . . . , N0, be the values of the covariates for the case and control subjects, respectively.

The covariate-adjusted ROC curve is defined by Janes and Pepe (2009) as

AROC (t) = E
{

ROC
(
t
∣∣Z0

)}
It is calculated by replacing the marginal control CDF estimate, F̂0, with the conditional control CDF

estimate, F̂0Z . If we used a normal control CDF, then we would replace the marginal control mean
and variance with the conditional control mean and variance. The formulas of the previous section
can be updated for covariate-adjustment by making this substitution of the conditional CDF for the
marginal CDF in the false-positive rate calculation.

Because the calculation of the ROC value is now performed based on the conditionally calculated
false-positive rate, no further conditioning is made in its calculation under nonparametric estimation.

rocreg supports covariate adjustment with stratification and linear regression. Under stratification,
separate parameters are estimated for the control distribution at each level of the covariates. Under
linear regression, the classifier is regressed on the covariates over the control distribution, and the
resulting coefficients serve as parameters for F̂0Z .

Parametric ROC curves: Estimating equations

Under nonparametric estimation of the ROC curve with covariate adjustment, no further conditioning
occurs in the ROC curve calculation beyond the use of covariate-adjusted false-positive rates as inputs.

Under parametric estimation of the ROC curve, we can relax this restriction. We model the ROC
curve as a cumulative distribution function g (standard normal Φ) invoked with input of a linear
polynomial in the corresponding quantile function (here Φ−1) invoked on the false-positive rate u. The
constant intercept of the polynomial may depend on covariates; the slope term α (quantile coefficient)
may not.

ROC (u) = g{x′β+ αg−1 (u)}

Pepe (2003) notes that having a binormal ROC (g = Φ) is equivalent to specifying that some
monotone transformation of the data exists to make the case and control classifiers normally distributed.
This specification applies to the marginal case and control.

Under weak assumptions about the control distribution of the classifier, we can fit this model
by using estimating equations (Alonzo and Pepe 2002). The method can be used without covariate
effects in the second stage, assuming a parametric model for the single ROC curve. Using the Alonzo
and Pepe (2002) method, the covariate-adjusted ROC curve may be fit parametrically. The marginal
ROC curve, involving no covariates in either stage of estimation, can be fit parametrically as well. In
addition to the Alonzo and Pepe (2002) explanation, further details are given in Pepe, Longton, and
Janes (2009); Janes, Longton, and Pepe (2009); Pepe (2003); and Janes and Pepe (2009).

The algorithm can be described as follows:

1. Estimate the false-positive rates of the classifier fpr. These may be computed in any fashion
outlined so far: covariate-adjusted, empirically, etc.

2. Determine a set of np false-positive rates to use as fitting points f1, . . . , fnp . These may be an
equispaced grid on (0, 1) or the set of observed false-positive rates from part 1.
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3. Expand the case observation portion of the data to include a subobservation for each fitting point.
So there are now N1(np − 1) additional observations in the data.

4. Generate a new dummy variable u. For subobservation j, u = I (fpr ≤ fj).

5. Generate a new variable quant containing the quantiles of the false-positive rate fitting points.
For subobservation j, quant = g−1 (fj).

6. Perform a binary regression (probit, g = Φ) of fpr on the covariates x and quantile variable
quant.

The coefficients of part 6 are the coefficients of the ROC model. The coefficients of the covariates
coincide naturally with estimates of β, and the α parameter is estimated by the coefficient on quant.
Because the method is so general and makes few distributional assumptions, bootstrapping must be
performed for inference. If multiple classifiers are to be fit, the algorithm is performed separately for
each in each bootstrap, and the bootstrap is used to estimate covariances.

We mentioned earlier that in parametric estimation, the AUC was the only summary parameter that
could be estimated initially. This is true when we fit the marginal probit model because there are no
covariates in part 6 of the algorithm.

To calculate the AUC statistic under a marginal probit model, we use the formula

AUC = Φ
(

β0√
1 + α2

)
Alternatively, the AUC for the probit model can be calculated as pAUC(1) in postestimation. Under
both models, bootstrapping is performed for inference on the AUC.

Parametric ROC curves: Maximum likelihood
rocreg supports another form of parametric ROC estimation: maximum likelihood with a normally

distributed classifier. This method assumes that the classifier is a normal linear model on certain
covariates, and the covariate effect and variance of the classifier may change between the case and
control populations. The model is defined in Pepe (2003, 145).

y = z′β0 +Dx′β1 + σ (D) ε

Our error term, ε, is a standard normal random variable. The variable D is our true status variable,
being 1 for the case population observations and 0 for the control population observations. The
variance function σ is defined as

σ (D) = σ0 (D = 0) + σ1 (D = 1)

This provides two variance parameters in the model and does not depend on covariate values.

Under this model, the ROC curve is easily derived to be

ROC (u) = Φ
[

1
σ1

{
x′β1 + σ0Φ−1 (u)

}]
We reparameterize the model, creating the parameters βi = σ−1

1 β1i and α = σ−1
1 σ0. We refer to β0

as the constant intercept, i cons. The parameter α is referred to as the constant slope, s cons.

ROC (u) = Φ{x′β+ αΦ−1 (u)}
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The original model defining the classifier y leads to the following single observation likelihoods
for D = 0 and D = 1:

L(β0,β1, σ1, σ0,
∣∣D = 0, y, z,x) =

1√
2πσ0

exp
−(y − z′β0)2

2σ2
0

L(β0,β1, σ1, σ0,
∣∣D = 1, y, z,x) =

1√
2πσ1

exp
−(y − z′β0 − x′β1)2

2σ2
1

These can be combined to yield the observation-level log likelihood:

lnL(β0,β1, σ1, σ0,
∣∣D, y, z,x) = − ln2π

2

− I (D = 0)
{

lnσ0 +
(y − z′β0)2

2σ2
0

}

− I (D = 1)
{

lnσ1 +
(y − z′β0 − x′β1)2

2σ2
1

}

When there are multiple classifiers, each classifier is fit separately with maximum likelihood. Then
the results are combined by stacking the scores and using the sandwich variance estimator. For more
information, see [R] suest and the references White (1982); Rogers (1993); and White (1996).
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rocreg postestimation — Postestimation tools for rocreg

Description
The following commands are of special interest after rocreg:

Command Description

estat nproc nonparametric ROC curve estimation, keeping fit information from rocreg

rocregplot plot marginal and covariate-specific ROC curves

For information about estat nproc, see below.
For information about rocregplot, see [R] rocregplot.

The following standard postestimation commands are also available:

Command Description

estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions for parametric ROC curve estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Special-interest postestimation command

The estat nproc command allows calculation of all the ROC curve summary statistics for
covariate-specific ROC curves, as well as for a nonparametric ROC estimation. Under nonparametric
estimation, a single ROC curve is estimated by rocreg. Covariates can affect this estimation, but
there are no separate covariate-specific ROC curves. Thus the input arguments for estat nproc are
taken in the command line rather than from the data as variable values.

1837
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic options
]

statistic Description

Main

at(varname) input variable for statistic
auc total area under the ROC curve; the default
roc ROC values for given false-positive rates in at()

invroc false-positive rate for given ROC values in at()

pauc partial area under the ROC curve up to each false-positive
rate in at()

classvar(varname) statistic for given classifier

options Description

Options

intpts(#) points in numeric integration of pAUC calculation
se(newvar) predict standard errors
ci(stubname) produce confidence intervals, stored as variables with prefix

stubname and suffixes l and u

level(#) set confidence level; default is level(95)
∗bfile(filename, . . . ) load dataset containing bootstrap replicates from rocreg
∗btype(n | p | bc) produce normal-based (n), percentile (p), or bias-corrected (bc)

confidence intervals; default is btype(n)

∗ bfile() and btype() are only allowed with parametric analysis using bootstrap inference.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

at(varname) records the variable to be used as input for the above predictions.

auc predicts the total area under the ROC curve defined by the covariate values in the data. This is
the default statistic.

roc predicts the ROC values for false-positive rates stored in varname specified in at().

invroc predicts the false-positive rates for given ROC values stored in varname specified in at().

pauc predicts the partial area under the ROC curve up to each false-positive rate stored in varname
specified in at().

classvar(varname) performs the prediction for the specified classifier.
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� � �
Options �

intpts(#) specifies that # points be used in the pAUC calculation.

se(newvar) specifies that standard errors be produced and stored in newvar.

ci(stubname) requests that confidence intervals be produced and the lower and upper bounds be
stored in stubname l and stubname u, respectively.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

bfile(filename, . . . ) uses bootstrap replicates of parameters from rocreg stored in filename to
estimate standard errors and confidence intervals of predictions.

btype(n | p | bc) specifies whether to produce normal-based (n), percentile (p), or bias-corrected (bc)
confidence intervals. The default is btype(n).

Syntax for estat nproc
estat nproc

[
, estat nproc options

]
estat nproc options Description

Main

auc estimate total area under the ROC curve
roc(numlist) estimate ROC values for given false-positive rates
invroc(numlist) estimate false-positive rate for given ROC values
pauc(numlist) estimate partial area under the ROC curve up to each false-positive rate

At least one option must be specified.

Menu
Statistics > Postestimation > Reports and statistics

Options for estat nproc

� � �
Main �

auc estimates the total area under the ROC curve.

roc(numlist) estimates the ROC for each of the false-positive rates in numlist. The values in numlist
must be in the range (0,1).

invroc(numlist) estimates the false-positive rate for each of the ROC values in numlist. The values
in numlist must be in the range (0,1).

pauc(numlist) estimates the partial area under the ROC curve up to each false-positive rate in numlist.
The values in numlist must be in the range (0,1].
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Remarks
Remarks are presented under the following headings:

Using predict after rocreg
Using estat nproc

Using predict after rocreg

predict, after parametric rocreg, predicts the AUC, the ROC value, the false-positive rate (invROC),
or the pAUC value. The default is auc.

We begin by estimating the area under the ROC curve for each of the three age-specific ROC curves
in example 1 of [R] rocregplot: 30, 40, and 50 months.

Example 1

In example 6 of [R] rocreg, a probit ROC model was fit to audiology test data from Norton et al.
(2000). The estimating equations method of Alonzo and Pepe (2002) was used to fit the model.
Gender and age were covariates that affected the control distribution of the classifier y1 (DPOAE 65
at 2 kHz). Age was a ROC covariate for the model, so we fit separate ROC curves at each age.

Following Janes, Longton, and Pepe (2009), we drew the ROC curves for ages 30, 40, and 50
months in example 1 of [R] rocregplot. Now we use predict to estimate the AUC for the ROC curve
at each of those ages.

The bootstrap dataset saved by rocreg in example 6 of [R] rocreg, nnhs2y1.dta, is used in the
bfile() option.

We will store the AUC prediction in the new variable predAUC. We specify the se() option with
the new variable name seAUC to produce an estimate of the prediction’s standard error. By specifying
the stubname cin in ci(), we tell predict to create normal-based confidence intervals (the default)
as new variables cin l and cin u.

. use http://www.stata-press.com/data/r12/nnhs
(Norton - neonatal audiology data)

. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
> cluster(id) bseed(56930) bsave(nnhs2y1)

(output omitted )

. set obs 5061
obs was 5058, now 5061

. quietly replace currage = 30 in 5059

. quietly replace currage = 40 in 5060

. quietly replace currage = 50 in 5061

. predict predAUC in 5059/5061, auc se(seAUC) ci(cin) bfile(nnhs2y1)

. list currage predAUC seAUC cin* in 5059/5061

currage predAUC seAUC cin_l cin_u

5059. 30 .5209999 .0712928 .3812686 .6607312
5060. 40 .6479176 .0286078 .5918474 .7039879
5061. 50 .7601378 .0746157 .6138937 .9063819
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As expected, we find the AUC to increase with age.

Essentially, we have a stored bootstrap sample of ROC covariate coefficient estimates in
nnhs2y1.dta. We calculate the AUC using each set of coefficient estimates, resulting in a sam-
ple of AUC estimates. Then the bootstrap standard error and confidence intervals are calculated based
on this AUC sample. Further details of the computation of the standard error and percentile confidence
intervals can be found in Methods and formulas and in [R] bootstrap.

We can also produce percentile or bias-corrected confidence intervals by specifying btype(p) or
btype(bc), which we now demonstrate.

. drop *AUC*

. predict predAUC in 5059/5061, auc se(seAUC) ci(cip) bfile(nnhs2y1) btype(p)

. list currage predAUC cip* in 5059/5061

currage predAUC cip_l cip_u

5059. 30 .5209999 .3760555 .6513149
5060. 40 .6479176 .5893397 .7032645
5061. 50 .7601378 .5881404 .8836223

. drop *AUC*

. predict predAUC in 5059/5061, auc se(seAUC) ci(cibc) bfile(nnhs2y1) btype(bc)

. list currage predAUC cibc* in 5059/5061

currage predAUC cibc_l cibc_u

5059. 30 .5209999 .3736968 .6500064
5060. 40 .6479176 .588947 .7010052
5061. 50 .7601378 .5812373 .8807758

predict can also estimate the ROC value and the false-positive rate (invROC).

Example 2

In example 7 of [R] rocreg, we fit the ROC curve for status variable hearing loss (d) and classifier
negative signal-to-noise ratio nsnr with ROC covariates frequency (xf), intensity (xl), and hearing
loss severity (xd). The data were obtained from Stover et al. (1996). The model fit was probit with
bootstrap resampling. We saved 50 bootstrap replications in the dataset nsnrf.dta.

The covariate value combinations xf = 10.01, xl = 5.5, and xd = .5, and xf = 10.01, xl =
6.5, and xd = 4 are of interest. In example 3 of [R] rocregplot, we estimated the ROC values for
false-positive rates 0.2 and 0.7 and the false-positive rate for a ROC value of 0.5 by using rocregplot.
We will use predict to replicate the estimation.

We begin by appending observations with our desired covariate combinations to the data. We also
create two new variables: rocinp, which contains the ROC values for which we wish to predict the
corresponding invROC values, and invrocinp, which contains the invROC values corresponding to
the ROC values we wish to predict.
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. clear

. input xf xl xd rocinp invrocinp

xf xl xd rocinp invrocinp
1. 10.01 5.5 .5 .2 .
2. 10.01 6.5 4 .2 .
3. 10.01 5.5 .5 .7 .5
4. 10.01 6.5 4 .7 .5
5. end

. save newdata
file newdata.dta saved

. use http://www.stata-press.com/data/r12/dp
(Stover - DPOAE test data)

. quietly rocreg d nsnr, ctrlcov(xf xl) roccov(xf xl xd) probit cluster(id)
> nobstrata ctrlfprall bseed(156385) breps(50) ctrlmodel(strata) bsave(nsnrf)

. append using newdata

. list xf xl xd invrocinp rocinp in 1849/1852

xf xl xd invroc~p rocinp

1849. 10.01 5.5 .5 . .2
1850. 10.01 6.5 4 . .2
1851. 10.01 5.5 .5 .5 .7
1852. 10.01 6.5 4 .5 .7

Now we will use predict to estimate the ROC value for the false-positive rates stored in rocinp.
We specify the roc option, and we specify rocinp in the at() option. The other options, se()
and ci(), are used to obtain standard errors and confidence intervals, respectively. The dataset of
bootstrap samples, nsnrf.dta, is specified in bfile(). After prediction, we list the point estimates
and standard errors.

. predict rocit in 1849/1852, roc at(rocinp) se(seroc) ci(cin) bfile(nsnrf)

. list xf xl xd rocinp rocit seroc if !missing(rocit)

xf xl xd rocinp rocit seroc

1849. 10.01 5.5 .5 .2 .7652956 .0735506
1850. 10.01 6.5 4 .2 .9672505 .0227977
1851. 10.01 5.5 .5 .7 .9835816 .0204353
1852. 10.01 6.5 4 .7 .999428 .0011309

These results match example 3 of [R] rocregplot. We list the confidence intervals next. These also
conform to the rocregplot results from example 3 in [R] rocregplot. We begin with the confidence
intervals for ROC under the covariate values xf=10.01, xl=5.5, and xd=.5.
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. list xf xl xd rocinp rocit cin* if inlist(_n, 1849, 1851)

xf xl xd rocinp rocit cin_l cin_u

1849. 10.01 5.5 .5 .2 .7652956 .6211391 .9094521
1851. 10.01 5.5 .5 .7 .9835816 .9435292 1.023634

Now we list the ROC confidence intervals under the covariate values xf=10.01, xl=6.5, and
xd=4.

. list xf xl xd rocinp rocit cin* if inlist(_n, 1850, 1852)

xf xl xd rocinp rocit cin_l cin_u

1850. 10.01 6.5 4 .2 .9672505 .9225678 1.011933
1852. 10.01 6.5 4 .7 .999428 .9972115 1.001644

Now we will predict the false-positive rate for a ROC value by specifying the invroc option. We
pass the invrocinp variable as an argument to the at() option. Again we list the point estimates
and standard errors first.

. drop ci*

. predict invrocit in 1849/1852, invroc at(invrocinp) se(serocinv) ci(cin)
> bfile(nsnrf)

. list xf xl xd invrocinp invrocit serocinv if !missing(invrocit)

xf xl xd invroc~p invrocit serocinv

1851. 10.01 5.5 .5 .5 .0615144 .0254042
1852. 10.01 6.5 4 .5 .0043298 .0045938

These also match those of example 3 of [R] rocregplot. Listing the confidence intervals shows
identical results as well. First we list the confidence intervals under the covariate values xf=10.01,
xl=5.5, and xd=.5.

. list xf xl xd invrocinp invrocit cin* in 1851

xf xl xd invroc~p invrocit cin_l cin_u

1851. 10.01 5.5 .5 .5 .0615144 .0117231 .1113057

Now we list the confidence intervals for false-positive rate under the covariate values xf=10.01,
xl=6.5, and xd=4.

. list xf xl xd invrocinp invrocit cin* in 1852

xf xl xd invroc~p invrocit cin_l cin_u

1852. 10.01 6.5 4 .5 .0043298 -.004674 .0133335

The predict command can also be used after a maximum-likelihood ROC model is fit.
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Example 3

In the previous example, we revisited the estimating equations fit of a probit model with ROC
covariates frequency (xf), intensity (xl), and hearing loss severity (xd) to the Stover et al. (1996)
audiology study data. A maximum likelihood fit of the same model was performed in example 10
of [R] rocreg. In example 2 of [R] rocregplot, we used rocregplot to estimate ROC values and
false-positive rates for this model under two covariate configurations. We will use predict to obtain
the same estimates. We will also estimate the partial area under the ROC curve.

We append the data as in the previous example. This leads to the following four final observations
in the data.

. use http://www.stata-press.com/data/r12/dp, clear
(Stover - DPOAE test data)

. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ml cluster(id)
(output omitted )

. append using newdata

. list xf xl xd invrocinp rocinp in 1849/1852

xf xl xd invroc~p rocinp

1849. 10.01 5.5 .5 . .2
1850. 10.01 6.5 4 . .2
1851. 10.01 5.5 .5 .5 .7
1852. 10.01 6.5 4 .5 .7

Now we predict the ROC value for false-positive rates of 0.2 and 0.7. Under maximum likelihood
prediction, only Wald-type confidence intervals are produced. We specify a new variable name for the
standard error in the se() option and a stubname for the confidence-interval variables in the ci()
option.

. predict rocit in 1849/1852, roc at(rocinp) se(seroc) ci(ci)

. list xf xl xd rocinp rocit seroc ci_l ci_u if !missing(rocit), noobs

xf xl xd rocinp rocit seroc ci_l ci_u

10.01 5.5 .5 .2 .7608593 .0510501 .660803 .8609157
10.01 6.5 4 .2 .9499408 .0179824 .914696 .9851856
10.01 5.5 .5 .7 .978951 .0097382 .9598644 .9980376
10.01 6.5 4 .7 .9985001 .0009657 .9966073 1.000393

These results match our estimates in example 2 of [R] rocregplot. We also match example 2 of
[R] rocregplot when we estimate the false-positive rate for a ROC value of 0.5.

. drop ci*

. predict invrocit in 1851/1852, invroc at(invrocinp) se(serocinv) ci(ci)

. list xf xl xd invrocinp invrocit serocinv ci_l ci_u if !missing(invrocit), noobs

xf xl xd invroc~p invrocit serocinv ci_l ci_u

10.01 5.5 .5 .5 .0578036 .0198626 .0188736 .0967336
10.01 6.5 4 .5 .0055624 .0032645 -.0008359 .0119607
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Example 4

In example 13 of [R] rocreg, we fit a maximum-likelihood marginal probit model to each classifier
of the fictitious dataset generated from Hanley and McNeil (1983). In example 5 of [R] rocregplot,
rocregplot was used to draw the ROC for the mod1 and mod3 classifiers. Estimates of the ROC
value and false-positive rate were also obtained with Wald-type confidence intervals.

We return to this example, this time using predict to estimate the ROC value and false-positive
rate. We will also estimate the pAUC for the false-positive rates of 0.3 and 0.8.

First, we add the input variables to the data. The variable paucinp will hold the 0.3 and 0.8
false-positive rates that we will input to pAUC. The variable invrocinp holds the ROC value of 0.8
for which we will estimate the false-positive rate. Finally, the variable rocinp holds the false-positive
rates of 0.15 and 0.75 for which we will estimate the ROC value.

. use http://www.stata-press.com/data/r12/ct2, clear

. rocreg status mod1 mod2 mod3, probit ml
(output omitted )

. quietly generate paucinp = .3 in 111

. quietly replace paucinp = .8 in 112

. quietly generate invrocinp = .8 in 112

. quietly generate rocinp = .15 in 111

. quietly replace rocinp = .75 in 112

Then, we estimate the ROC value for false-positive rates 0.15 and 0.75 under classifier mod1. The
point estimate is stored in roc1. Wald confidence intervals and standard errors are also estimated.
We find that these results match those of example 5 of [R] rocregplot.

. predict roc1 in 111/112, classvar(mod1) roc at(rocinp) se(sr1) ci(cir1)

. list rocinp roc1 sr1 cir1* in 111/112

rocinp roc1 sr1 cir1_l cir1_u

111. .15 .7934935 .0801363 .6364293 .9505578
112. .75 .9931655 .0069689 .9795067 1.006824

Now we perform the same estimation under the classifier mod3.

. predict roc3 in 111/112, classvar(mod3) roc at(roci) se(sr3) ci(cir3)

. list rocinp roc3 sr3 cir3* in 111/112

rocinp roc3 sr3 cir3_l cir3_u

111. .15 .8888596 .0520118 .7869184 .9908009
112. .75 .9953942 .0043435 .9868811 1.003907

Next we estimate the false-positive rate for the ROC value of 0.8. These results also match example 5
of [R] rocregplot.

. predict invroc1 in 112, classvar(mod1) invroc at(invrocinp) se(sir1) ci(ciir1)

. list invrocinp invroc1 sir1 ciir1* in 112

invroc~p invroc1 sir1 ciir1_l ciir1_u

112. .8 .1556435 .069699 .0190361 .292251
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. predict invroc3 in 112, classvar(mod3) invroc at(invrocinp) se(sir3) ci(ciir3)

. list invrocinp invroc3 sir3 ciir3* in 112

invroc~p invroc3 sir3 ciir3_l ciir3_u

112. .8 .0661719 .045316 -.0226458 .1549896

Finally, we estimate the pAUC for false-positive rates of 0.3 and 0.8. The point estimate is calculated
by numeric integration. Wald confidence intervals are obtained with the delta method. Further details
are presented in Methods and formulas.

. predict pauc1 in 111/112, classvar(mod1) pauc at(paucinp) se(sp1) ci(cip1)

. list paucinp pauc1 sp1 cip1* in 111/112

paucinp pauc1 sp1 cip1_l cip1_u

111. .3 .221409 .0240351 .174301 .268517
112. .8 .7033338 .0334766 .6377209 .7689466

. predict pauc3 in 111/112, classvar(mod3) pauc at(paucinp) se(sp3) ci(cip3)

. list paucinp pauc3 sp3 cip3* in 111/112

paucinp pauc3 sp3 cip3_l cip3_u

111. .3 .2540215 .0173474 .2200213 .2880217
112. .8 .7420408 .0225192 .6979041 .7861776

Using estat nproc

When you initially use rocreg to fit a nonparametric ROC curve, you can obtain bootstrap estimates
of a ROC value, false-positive rate, area under the ROC curve, and partial area under the ROC curve.
The estat nproc command allows the user to estimate these parameters after rocreg has originally
been used.

The seed and resampling settings used by rocreg are used by estat nproc. So the results for
these new statistics are identical to what they would be if they had been initially estimated in the
rocreg command. These new statistics, together with those previously estimated in rocreg, are
returned in r().

We demonstrate with an example.

Example 5

In example 3 of [R] rocreg, we examined data from a pancreatic cancer study (Wieand et al. 1989).
Two continuous classifiers, y1 (CA 19-9) and y2 (CA 125), were used for the true status variable d.
In that example, we estimated various quantities including the false-positive rate for a ROC value of
0.6 and the pAUC for a false-positive rate of 0.5. Here we replicate that estimation with a call to
rocreg to estimate the former and follow that with a call to estat nproc to estimate the latter. For
simplicity, we restrict estimation to classifier y1 (CA 19-9).

We start by executing rocreg, estimating the false-positive rate for a ROC value of 0.6. This value
is specified in invroc(). Case–control resampling is used by specifying the bootcc option.
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. use http://labs.fhcrc.org/pepe/book/data/wiedat2b, clear
(S. Wieand - Pancreatic cancer diagnostic marker data)

. rocreg d y1, invroc(.6) bseed(8378923) bootcc nodots

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 0 .0158039 .0267288 -.0523874 .0523874 (N)
0 .0784314 (P)
0 .1372549 (BC)

Now we will estimate the pAUC for the false-positive rate of 0.5 using estat nproc and the
pauc() option.

. matrix list e(b)

symmetric e(b)[1,1]
y1:

invroc_1
y1 0

. estat nproc, pauc(.5)

Bootstrap results

Number of strata = 2 Number of obs = 141
Replications = 1000

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

False-positive rate

Status : d
Classifier: y1

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.6 0 .0158039 .0267288 -.0523874 .0523874 (N)
0 .0784314 (P)
0 .1372549 (BC)

Partial area under the ROC curve

Status : d
Classifier: y1

Observed Bootstrap
pAUC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .3932462 -.0000769 .021332 .3514362 .4350562 (N)
.3492375 .435512 (P)
.3492375 .435403 (BC)
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. matrix list r(b)

r(b)[1,2]
y1: y1:

invroc_1 pauc_1
y1 0 .39324619

. matrix list e(b)

symmetric e(b)[1,1]
y1:

invroc_1
y1 0

. matrix list r(V)

symmetric r(V)[2,2]
y1: y1:

invroc_1 pauc_1
y1:invroc_1 .00071443

y1:pauc_1 -.000326 .00045506

. matrix list e(V)

symmetric e(V)[1,1]
y1:

invroc_1
y1:invroc_1 .00071443

The advantages of using estat nproc are twofold. First, you can estimate additional parameters
of interest without having to respecify the bootstrap settings you did with rocreg; instead estat
nproc uses the bootstrap settings that were stored by rocreg. Second, parameters estimated with
estat nproc are added to those parameters estimated by rocreg and returned in the matrices r(b)
(parameter estimates) and r(V) (variance–covariance matrix). Thus you can also obtain correlations
between any quantities you wish to estimate.

Saved results
estat nproc saves the following in r():

r(b) coefficient vector
r(V) variance–covariance matrix of the estimators
r(ci normal) normal-approximation confidence intervals
r(ci percentile) percentile confidence intervals
r(ci bc) bias-corrected confidence intervals

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Details on computation of the nonparametric ROC curve and the estimation of the parametric ROC
curve model coefficients can be found in [R] rocreg. Here we describe how to estimate the ROC
curve summary statistics for a parametric model. The cumulative distribution function, g, can be the
standard normal cumulative distribution function, Φ.

Methods and formulas are presented under the following headings:

Parametric model: Summary parameter definition
Maximum likelihood estimation
Estimating equations estimation
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Parametric model: Summary parameter definition

Conditioning on covariates x, we have the following ROC curve model:

ROC (u) = g{x′β+ αg−1 (u)}

x can be constant, and β = β0, the constant intercept.

We can solve this equation to obtain the false-positive rate value u for a ROC value of r:

u = g
[
{g−1 (r)− x′β}α−1

]
The partial area under the ROC curve for the false-positive rate u is defined by

pAUC (u) =
∫ u

o

g{x′β+ αg−1 (t)}dt

The area under the ROC curve is defined by

AUC =
∫ 1

o

g{x′β+ αg−1 (t)}dt

When g is the standard normal cumulative distribution function Φ, we can express the AUC as

AUC = Φ
(

x′β√
1 + α2

)

Maximum likelihood estimation
We allow maximum likelihood estimation under probit parametric models, so g = Φ. The ROC

value, false-positive rate, and AUC parameters all have closed-form expressions in terms of the covariate
values x, coefficient vector β, and slope parameter α. So to estimate these three types of summary
parameters, we use the delta method (Oehlert 1992; Phillips and Park 1988). Particularly, we use the
nlcom command (see [R] nlcom) to implement the delta method.

To estimate the partial area under the ROC curve for false-positive rate u, we use numeric integration.
A trapezoidal approximation is used in calculating the integrals. A numeric integral of the ROC(t)
function conditioned on the covariate values x, coefficient vector estimate β̂, and slope parameter
estimate α̂ is computed over the range t = [0, u]. This gives us the point estimate of pAUC(u).

To calculate the standard error and confidence intervals for the point estimate of pAUC(u), we
again use the delta method. Details on the delta method algorithm can be found in Methods and
formulas of [R] nlcom and the earlier mentioned references.

Under maximum likelihood estimation, the coefficient estimates β̂ and slope estimate α̂ are
asymptotically normal with variance matrix V. For convenience, we rename the parameter vector
[β′, α] to the k-parameter vector θ = [θ1, . . . , θk]. We will also explicitly refer to the conditioning
of the ROC curve by θ in its mention as ROC(t, θ).

Under the delta method, the continuous scalar function of the estimate θ̂, f(θ̂) has asymptotic
mean f(θ) and asymptotic covariance

V̂ar
{
f(θ̂)

}
= fVf ′
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where f is the 1× k matrix of derivatives for which

f1j =
∂f(θ)
∂θj

j = 1, . . . , k

The asymptotic covariance of f(θ̂) is estimated and then used in conjunction with f(θ̂) for further
inference, including Wald confidence intervals, standard errors, and hypothesis testing.

In the case of pAUC(u) estimation, our f(θ̂) is the aforementioned numeric integral of the ROC
curve. It estimates f(θ), the true integral of the ROC curve on the [0, u] range. The V variance matrix
is estimated using the likelihood information that rocreg calculated, and the estimation is performed
by rocreg itself.

The partial derivatives of f(θ) can be determined by using Leibnitz’s rule (Weisstein 2011):

f1j =
∂

∂θj

∫ u

0

ROC(t, θ)dt =
∫ u

0

∂

∂θj
ROC(t, θ)dt j = 1, . . . , k

When θj corresponds with the slope parameter α, we obtain the following partial derivative:

∂

∂α
pAUC(u) =

∫ u

0

φ{x′β+ αΦ−1 (t)}Φ−1 (t) dt

The partial derivative of f(θ) [pAUC(u)] for β0 is the following:

∂

∂β0
pAUC(u) =

∫ u

0

φ{x′β+ αΦ−1 (t)}dt

For a nonintercept coefficient, we obtain the following:

∂

∂βi
pAUC(u) =

∫ u

0

xiφ{x′β+ αΦ−1 (t)}dt

We can estimate each of these integrals by numeric integration, plugging in the estimates β̂ and α̂
for the parameters. This, together with the previously calculated estimate V̂, provides an estimate of
the asymptotic covariance of f(θ̂) = p̂AUC(u), which allows us to perform further statistical inference
on pAUC(u).

Estimating equations estimation

When we fit a model using the Alonzo and Pepe (2002) estimating equations method, we use
the bootstrap to perform inference on the ROC curve summary parameters. Each bootstrap sample
provides a sample of the coefficient estimates β and the slope estimates α. Using the formulas in
Parametric model: Summary parameter definition under Methods and formulas, we can obtain an
estimate of the ROC, false-positive rate, or AUC for each resample. Using numeric integration (with
the trapezoidal approximation), we can also estimate the pAUC of the resample.
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By making these calculations, we obtain a bootstrap sample of our summary parameter estimate. We
then obtain bootstrap standard errors, normal approximation confidence intervals, percentile confidence
intervals, and bias-corrected confidence intervals using this bootstrap sample. Further details can be
found in [R] bootstrap.
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rocregplot — Plot marginal and covariate-specific ROC curves after rocreg

Syntax

Plot ROC curve after nonparametric analysis

rocregplot
[
, boot options common options

]
Plot ROC curve after parametric analysis using bootstrap

rocregplot
[
, probit options boot options common options

]
Plot ROC curve after parametric analysis using maximum likelihood

rocregplot
[
, probit options common options

]
probit options Description

Main

at(varname=#
[
varname=# . . .

]
) value of specified covariates/mean of unspecified covariates[

at1(varname=#
[
varname=# . . .

]
)[

at2(varname=#
[
varname=# . . .

]
)[

. . .
]]]

∗roc(numlist) show estimated ROC values for given false-positive rates
∗invroc(numlist) show estimated false-positive rates for given ROC values
level(#) set confidence level; default is level(95)

Curve

line#opts(cline options) affect rendition of ROC curve #

∗ Only one of roc() or invroc() may be specified.

common options Description

Main

classvars(varlist) restrict plotting of ROC curves to specified classifiers
norefline suppress plotting the reference line

Scatter

plot#opts(scatter options) affect rendition of classifier #s false-positive rate
and ROC scatter points; not allowed with at()

Reference line

rlopts(cline options) affect rendition of the reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in
[G-3] twoway options

1852
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boot options Description

Bootstrap
†bfile(filename) load dataset containing bootstrap replicates from rocreg

btype(n | p | bc) plot normal-based (n), percentile (p), or bias-corrected (bc)
confidence intervals; default is btype(n)

† bfile() is only allowed with parametric analysis using bootstrap inference; in which case this option is
required with roc() or invroc().

Menu
Statistics > Epidemiology and related > ROC analysis > ROC curves after rocreg

Description
Under parametric estimation, rocregplot plots the fitted ROC curves for specified covariate values

and classifiers. If rocreg, probit or rocreg, probit ml were previously used, the false-positive
rates (for specified ROC values) and ROC values (for specified false-positive rates) for each curve may
also be plotted, along with confidence intervals.

Under nonparametric estimation, rocregplot will plot the fitted ROC curves using the fpr *
and roc * variables produced by rocreg. Point estimates and confidence intervals for false-positive
rates and ROC values that were computed in rocreg may be plotted as well.

probit options

� � �
Main �

at(varname=# . . . ) requests that the covariates specified by varname be set to #. By default, rocreg
evaluates the function by setting each covariate to its mean value. This option causes the ROC
curve to be evaluated at the value of the covariates listed in at() and at the mean of all unlisted
covariates.

at1(varname=# . . . ), at2(varname=# . . . ), . . . , at10(varname=# . . . ) specify that ROC curves
(up to 10) be plotted on the same graph. at1(), at2(), . . . , at10() work like the at() option.
They request that the function be evaluated at the value of the covariates specified and at the mean
of all unlisted covariates. at1() specifies the values of the covariates for the first curve, at2()
specifies the values of the covariates for the second curve, and so on.

roc(numlist) specifies that estimated ROC values for given false-positive rates be graphed.

invroc(numlist) specifies that estimated false-positive rates for given ROC values be graphed.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
level() may be specified with either roc() or invroc().

� � �
Curve �

line#opts(cline options) affects the rendition of ROC curve #. See [G-3] cline options.
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common options

� � �
Main �

classvars(varlist) restricts plotting ROC curves to specified classification variables.

norefline suppresses plotting the reference line.

� � �
Scatter �

plot#opts(scatter options) affects the rendition of classifier #’s false-positive rate and ROC scatter
points. This option applies only to non-ROC covariate estimation graphing. See [G-2] graph twoway
scatter.

� � �
Reference line �

rlopts(cline options) affects rendition of the reference line. See [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and options for saving the graph to
disk (see [G-3] saving option).

boot options

� � �
Bootstrap �

bfile(filename) uses bootstrap replicates of parameters from rocreg stored in filename to estimate
standard errors and confidence intervals of predictions. bfile() must be specified with either
roc() or invroc() if parametric estimation with bootstrapping was used.

btype(n | p | bc) indicates the desired type of confidence-interval rendering. n draws normal-based,
p draws percentile, and bc draws bias-corrected confidence intervals for specified false-positive
rates and ROC values in roc() and invroc(). The default is btype(n).

Remarks
Remarks are presented under the following headings:

Plotting covariate-specific ROC curves
Plotting marginal ROC curves

Plotting covariate-specific ROC curves

The rocregplot command is also demonstrated in [R] rocreg. We will further demonstrate its
use with several examples. Particularly, we will show how rocregplot can draw the ROC curves of
covariate models that have been fit using rocreg.
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Example 1

In example 6 of [R] rocreg, we fit a probit ROC model to audiology test data from Norton et al.
(2000). The estimating equation method of Alonzo and Pepe (2002) was used to the fit the model.
Gender and age were covariates that affected the control distribution of the classifier y1 (DPOAE 65
at 2 kHz). Age was a ROC covariate for the model, so we fit separate ROC curves at each age.

Following Janes, Longton, and Pepe (2009), we draw the ROC curves for ages 30, 40, and 50
months. The at1(), at2(), and at3() options are used to specify the age covariates.

. use http://www.stata-press.com/data/r12/nnhs
(Norton - neonatal audiology data)

. rocreg d y1, probit ctrlcov(currage male) ctrlmodel(linear) roccov(currage)
cluster(id) bseed(56930) bsave(nnhs2y1, replace)

(output omitted )
. rocregplot, at1(currage=30) at2(currage=40) at3(currage=50)
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DPOAE 65 at 2kHz At 1
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 At 3

Here we use the default entries of the legend, which indicate the “at #” within the specified
at* options and the classifier to which the curve corresponds. ROC curve one corresponds with
currage=30, two with currage=40, and three with currage=50. The positive effect of age on the
ROC curve is evident. At an age of 30 months (currage=30), the ROC curve of y1 (DPOAE 65 at
2 kHz) is nearly equivalent to that of a noninformative test that gives equal probability to hearing loss.
At age 50 months (currage=50), corresponding to some of the oldest children in the study, the ROC
curve shows that test y1 (DPOAE 65 at 2 kHz) is considerably more powerful than the noninformative
test.

You may create your own legend by specifying the legend() option. The default legend is designed
for the possibility of multiple covariates. Here we could change the legend entries to currage values
and gain some extra clarity. However, this may not be feasible when there are many covariates
present.

We can also use rocregplot after maximum likelihood estimation.
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Example 2

We return to the audiology study with frequency (xf), intensity (xl), and hearing loss severity
(xd) covariates from Stover et al. (1996) that we examined in example 10 of [R] rocreg. Negative
signal-to-noise ratio is again used as a classifier. Using maximum likelihood, we fit a probit model
to these data with the indicated ROC covariates.

After fitting the model, we wish to compare the ROC curves of two covariate combinations. The
first has an intensity value of 5.5 (the lowest intensity, corresponding to 55 decibels) and a frequency
of 10.01 (the lowest frequency, corresponding to 1001 hertz). We give the first combination a hearing
loss severity value of 0.5 (the lowest). The second covariate combination has the same frequency, but
the highest intensity value of 6.5 (65 decibels). We give this second covariate set a higher severity
value of 4. We will visually compare the two ROC curves resulting from these two covariate value
combinations.

We specify false-positive rates of 0.7 first followed by 0.2 in the roc() option to visually compare
the size of the ROC curve at large and small false-positive rates. Because maximum likelihood
estimation was used to fit the model, a Wald confidence interval is produced for the estimated ROC
value and false-positive rate parameters. Further details are found in Methods and formulas.

. use http://www.stata-press.com/data/r12/dp
(Stover - DPOAE test data)

. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) ml cluster(id)
(output omitted )

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) roc(.7)

ROC curve

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

ROC Coef. Std. Err. [95% Conf. Interval]

.7 .978951 .0097382 .9598645 .9980376

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

ROC Coef. Std. Err. [95% Conf. Interval]

.7 .9985001 .0009657 .9966073 1.000393
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At the higher false-positive rate value of 0.7, we see little difference in the ROC values and note that
the confidence intervals nearly overlap. Now we view the same curves with the lower false-positive
rate compared.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) roc(.2)

ROC curve

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

ROC Coef. Std. Err. [95% Conf. Interval]

.2 .7608593 .0510501 .660803 .8609157

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

ROC Coef. Std. Err. [95% Conf. Interval]

.2 .9499408 .0179824 .914696 .9851856
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The lower false-positive rate of 0.2 shows clearly distinguishable ROC values. Now we specify
option invroc(.5) to view how the false-positive rates vary at a ROC value of 0.5.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4) invroc(.5)

False-positive rate

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

invROC Coef. Std. Err. [95% Conf. Interval]

.5 .0578036 .0198626 .0188736 .0967336

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

invROC Coef. Std. Err. [95% Conf. Interval]

.5 .0055624 .0032645 -.0008359 .0119607
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At a ROC value of 0.5, the false-positive rates for both curves are small and close to one another.

Technical note
We can use the testnl command to support our visual observations with statistical inference. We

use it to perform a Wald test of the null hypothesis that the two ROC curves just rendered are equal
at a false-positive rate of 0.7.

. testnl normal(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]
> + .5*_b[xd]+_b[s_cons]*invnormal(.7)) =
> normal(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]
> + 4*_b[xd]+_b[s_cons]*invnormal(.7))

(1) normal(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl] +.5*_b[xd]+_b[s_cons]*invnormal(.7))=
normal(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl] + 4*_b[xd]+_b[s_cons]*invnormal(.7))

chi2(1) = 4.53
Prob > chi2 = 0.0332

The test is significant at the 0.05 level, and thus we find that the two curves are significantly
different. Now we will use testnl again to test equality of the false-positive rates for each curve
with a ROC value of 0.5. The inverse ROC formula used is derived in Methods and formulas.

. testnl normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]+.5*_b[xd]))
> /_b[s_cons]) =
> normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]+4*_b[xd]))
> /_b[s_cons])

(1) normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+5.5*_b[xl]+.5*_b[xd]))
/_b[s_cons]) =

normal((invnormal(.5)-(_b[i_cons]+10.01*_b[xf]+6.5*_b[xl]+4*_b[xd]))
/_b[s_cons])

chi2(1) = 8.01
Prob > chi2 = 0.0046

We again reject the null hypothesis that the two curves are equal at the 0.05 level.

The model of our last example was also fit using the estimating equations method in example 7
of [R] rocreg. We will demonstrate rocregplot after that model fit as well.
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Example 3

In example 2, we used rocregplot after a maximum likelihood model fit of the ROC curve
for classifier nsnr and covariates frequency (xf), intensity (xl), and hearing loss severity (xd). The
data were obtained from the audiology study described in Stover et al. (1996). In example 7 of
[R] rocreg, we fit the model using the estimating equations method of Alonzo and Pepe (2002). Under
this method, bootstrap resampling is used to make inferences. We saved 50 bootstrap replications in
nsnrf.dta, which we re-create below.

We use rocregplot to draw the ROC curves for nsnr under the covariate values xf = 10.01,
xl = 5.5, and xd = .5, and xf = 10.01, xl = 6.5, and xd = 4. The at#() options are used to
specify the covariate values. The previous bootstrap results are made available to rocregplot with
the bfile() option. As before, we will specify 0.2 and 0.7 as false-positive rates in the roc() option
and 0.5 as a ROC value in the invroc() option. We do not specify btype() and thus our graph will
contain normal-based bootstrap confidence bands, the default.

. use http://www.stata-press.com/data/r12/dp
(Stover - DPOAE test data)

. rocreg d nsnr, probit ctrlcov(xf xl) roccov(xf xl xd) cluster(id)
> nobstrata ctrlfprall bseed(156385) breps(50) bsave(nsnrf, replace)

(output omitted )
. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> roc(.7) bfile(nsnrf)

ROC curve

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .9835816 .0087339 .0204353 .9435292 1.023634 (N)
.9155462 .9974037 (P)
.9392258 .9976629 (BC)

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.7 .999428 .0006059 .0011309 .9972115 1.001644 (N)
.9958003 .9999675 (P)
.9968304 .9999901 (BC)
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As shown in the graph, we find that the ROC values at a false-positive rate of 0.7 are close together,
as they were in the maximum likelihood estimation in example 2. We now repeat this process for the
lower false-positive rate of 0.2 by using the roc(.2) option.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> roc(.2) bfile(nsnrf)

ROC curve

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .7652956 .0145111 .0735506 .6211391 .9094522 (N)
.6054495 .878052 (P)
.6394838 .9033081 (BC)

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
ROC Coef. Bias Std. Err. [95% Conf. Interval]

.2 .9672505 .0072429 .0227977 .9225679 1.011933 (N)
.9025254 .9931714 (P)
.9235289 .9979637 (BC)
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The ROC values are slightly higher at the false-positive rate of 0.2 than they were in the maximum
likelihood estimation in example 2. To see if the false-positive rates differ at a ROC value of 0.5, we
specify the invroc(.5) option.

. rocregplot, at1(xf=10.01, xl=5.5, xd=.5) at2(xf=10.01, xl=6.5, xd=4)
> invroc(.5) bfile(nsnrf)

False-positive rate

Status : d
Classifier: nsnr

Under covariates:

at1

xf 10.01
xl 5.5
xd .5

(Replications based on 208 clusters in id)

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .0615144 -.0063531 .0254042 .0117231 .1113057 (N)
.0225159 .1265046 (P)
.0224352 .1265046 (BC)

Under covariates:

at2

xf 10.01
xl 6.5
xd 4

(Replications based on 208 clusters in id)

Observed Bootstrap
invROC Coef. Bias Std. Err. [95% Conf. Interval]

.5 .0043298 -.0012579 .0045938 -.004674 .0133335 (N)
.0002773 .0189199 (P)
.0001292 .0134801 (BC)
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The point estimates of the ROC value and false-positive rate are both computed directly using the
point estimates of the ROC coefficients. Calculation of the standard errors and confidence intervals
is slightly more complicated. Essentially, we have stored a sample of our ROC covariate coefficient
estimates in nsnrf.dta. We then calculate the ROC value or false-positive rate estimates using each
set of coefficient estimates, resulting in a sample of point estimates. Then the bootstrap standard error
and confidence intervals are calculated based on these bootstrap samples. Details of the computation
of the standard error and percentile confidence intervals can be found in Methods and formulas and
in [R] bootstrap.

As mentioned in [R] rocreg, 50 resamples is a reasonable lower bound for obtaining bootstrap
standard errors (Mooney and Duval 1993). However, it may be too low for obtaining percentile and
bias-corrected confidence intervals. Normal-based confidence intervals are valid when the bootstrap
distribution exhibits normality. See [R] bootstrap postestimation for more details.

We can assess the normality of the bootstrap distribution by using a normal probability plot. Stata
provides this in the pnorm command (see [R] diagnostic plots). We will use nsnrf.dta to draw a
normal probability plot for the ROC estimate corresponding to a false-positive rate of 0.2. We use the
covariate values xf = 10.01, xl = 6.5, and xd = 4.

. use nsnrf
(bootstrap: rocregnewstat)

. generate double rocp2 = nsnr_b_i_cons + 10.01*nsnr_b_xf + 6.5*nsnr_b_xl +
> 4*nsnr_b_xd+nsnr_b_s_cons*invnormal(.2)

. replace rocp2 = normal(rocp2)
(50 real changes made)
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The closeness of the points to the horizontal line on the normal probability plot shows us that the
bootstrap distribution is approximately normal. So it is reasonable to use the normal-based confidence
intervals for ROC at a false-positive rate of 0.2 under covariate values xf = 10.01, xl = 6.5, and
xd = 4.

Plotting marginal ROC curves

The rocregplot command can also be used after fitting models with no covariates. We will
demonstrate this with an empirical ROC model fit in [R] rocreg.

Example 4

We run rocregplot after fitting the single-classifier, empirical ROC model shown in example 1 of
[R] rocreg. There we empirically predicted the ROC curve of the classifier rating for the true status
variable disease from the Hanley and McNeil (1982) data. The rocreg command saves variables
roc rating and fpr rating, which give the ROC values and false-positive rates, respectively,

for every value of rating. These variables are used by rocregplot to render the ROC curve.
. use http://www.stata-press.com/data/r12/hanley, clear

. rocreg disease rating, noboot

Nonparametric ROC estimation

Control standardization: empirical
ROC method : empirical

Area under the ROC curve

Status : disease
Classifier: rating

Observed Bootstrap
AUC Coef. Bias Std. Err. [95% Conf. Interval]

.8407708 . . . . (N)
. . (P)
. . (BC)
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We end our discussion of rocregplot by showing its use after a marginal probit model.

Example 5

In example 13 of [R] rocreg, we fit a maximum-likelihood probit model to each classifier of the
fictitious dataset generated from Hanley and McNeil (1983).

We use rocregplot after the original rocreg command to draw the ROC curves for classifiers
mod1 and mod3. This is accomplished by specifying the two variables in the classvars() option.
We will use the roc() option to obtain confidence intervals for ROC values at false-positive rates of
0.15 and 0.75. We will specify the invroc() option to obtain false-positive rate confidence intervals
for a ROC value of 0.8. As mentioned previously, these are Wald confidence intervals.

First, we will view results for a false-positive rate of 0.75.

. use http://www.stata-press.com/data/r12/ct2, clear

. rocreg status mod1 mod2 mod3, probit ml
(output omitted )

. rocregplot, classvars(mod1 mod3) roc(.75)

ROC curve

Status : status
Classifier: mod1

ROC Coef. Std. Err. [95% Conf. Interval]

.75 .9931655 .0069689 .9795067 1.006824

Status : status
Classifier: mod3

ROC Coef. Std. Err. [95% Conf. Interval]

.75 .9953942 .0043435 .9868811 1.003907
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We see that the estimates for each of the two ROC curves are close. Because this is a marginal
model, the actual false-positive rate and the true-positive rate for each observation are plotted in
the graph. The added point estimates of the ROC value at false-positive rate 0.75 are shown as
diamond (mod3) and circle (mod1) symbols in the upper-right-hand corner of the graph at FPR = 0.75.
Confidence bands are also plotted at FPR = 0.75 but are so narrow that they are barely noticeable.
Under both classifiers, the ROC value at 0.75 is very high. Now we will compare these results to
those with a lower false-positive rate of 0.15.

. rocregplot, classvars(mod1 mod3) roc(.15)

ROC curve

Status : status
Classifier: mod1

ROC Coef. Std. Err. [95% Conf. Interval]

.15 .7934935 .0801363 .6364292 .9505578

Status : status
Classifier: mod3

ROC Coef. Std. Err. [95% Conf. Interval]

.15 .8888596 .0520118 .7869184 .9908008
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The ROC value for the false-positive rate of 0.15 is more separated in the two classifiers. Here
we see that mod3 has a larger ROC value than mod1 for this false-positive rate, but the confidence
intervals of the estimates overlap.

By specifying invroc(.8), we obtain invROC confidence intervals corresponding to a ROC value
of 0.8.

. rocregplot, classvars(mod1 mod3) invroc(.8)

False-positive rate

Status : status
Classifier: mod1

invROC Coef. Std. Err. [95% Conf. Interval]

.8 .1556435 .069699 .019036 .2922509

Status : status
Classifier: mod3

invROC Coef. Std. Err. [95% Conf. Interval]

.8 .0661719 .045316 -.0226458 .1549896
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For estimation of the false-positive rate at a ROC value of 0.8, the confidence intervals overlap.
Both classifiers require only a small false-positive rate to achieve a ROC value of 0.8.

Methods and formulas
rocregplot is implemented as an ado-file.

Details on computation of the nonparametric ROC curve and the estimation of the parametric ROC
curve model coefficients can be found in [R] rocreg. Here we describe how to estimate the ROC
values and false-positive rates of a parametric model. The cumulative distribution function g can be
the standard normal cumulative distribution function.

Methods and formulas are presented under the following headings:

Parametric model: Summary parameter definition
Maximum likelihood estimation
Estimating equations estimation

Parametric model: Summary parameter definition

Conditioning on covariates x, we have the following ROC curve model:

ROC (u) = g{x′β+ αg−1 (u)}

x can be constant, and β = β0, the constant intercept.

With simple algebra, we can solve this equation to obtain the false-positive rate value u for a ROC
value of r:

u = g
[
{g−1 (r)− x′β}α−1

]



rocregplot — Plot marginal and covariate-specific ROC curves after rocreg 1869

Maximum likelihood estimation
We allow maximum likelihood estimation under probit parametric models, so g = Φ. The ROC

value and false-positive rate parameters all have closed-form expressions in terms of the covariate
values x, coefficient vector β, and slope parameter α. Thus to estimate these two types of summary
parameters, we use the delta method (Oehlert 1992; Phillips and Park 1988). Particularly, we use the
nlcom command (see [R] nlcom) to implement the delta method.

Under maximum likelihood estimation, the coefficient estimates β̂ and slope estimate α̂ are
asymptotically normal with variance matrix V. For convenience, we rename the parameter vector
[β′, α] to the k-parameter vector θ = [θ1, . . . , θk]. We will also explicitly refer to the conditioning
of the ROC curve by θ in its mention as ROC(t, θ).

Under the delta method, the continuous scalar function of the estimate θ̂, f(θ̂) has asymptotic
mean f(θ) and asymptotic covariance

V̂ar
{
f(θ̂)

}
= fVf ′

where f is the 1× k matrix of derivatives for which

f1j =
∂f(θ)
∂θj

j = 1, . . . , k

The asymptotic covariance of f(θ̂) is estimated and then used in conjunction with f(θ̂) for further
inference, including Wald confidence intervals, standard errors, and hypothesis testing.

Estimating equations estimation

When we fit a model using the Alonzo and Pepe (2002) estimating equations method, we use
the bootstrap to perform inference on the ROC curve summary parameters. Each bootstrap sample
provides a sample of the coefficient estimates β and the slope estimates α. Using the formulas above,
we can obtain an estimate of the ROC value or false-positive rate for each resample.

By making these calculations, we obtain a bootstrap sample of our summary parameter estimate. We
then obtain bootstrap standard errors, normal approximation confidence intervals, percentile confidence
intervals, and bias-corrected confidence intervals using this bootstrap sample. Further details can be
found in [R] bootstrap.
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Title

roctab — Nonparametric ROC analysis

Syntax
roctab refvar classvar

[
if
] [

in
] [

weight
] [

, options
]

roctab options Description

Main

lorenz report Gini and Pietra indices
binomial calculate exact binomial confidence intervals
detail show details on sensitivity/specificity for each cutpoint
table display the raw data in a 2× k contingency table
bamber calculate standard errors by using the Bamber method
hanley calculate standard errors by using the Hanley method
graph graph the ROC curve
norefline suppress plotting the 45-degree reference line
summary report the area under the ROC curve
specificity graph sensitivity versus specificity
level(#) set confidence level; default is level(95)

Plot

plotopts(plot options) affect rendition of the ROC curve

Reference line

rlopts(cline options) affect rendition of the reference line

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

fweights are allowed; see [U] 11.1.6 weight.

plot options Description

marker options change look of markers (color, size, etc.)
marker label options add marker labels; change look or position
cline options change the look of the line

Menu
Statistics > Epidemiology and related > ROC analysis > Nonparametric ROC analysis without covariates

1871
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Description
The above command is used to perform receiver operating characteristic (ROC) analyses with rating

and discrete classification data.

The two variables refvar and classvar must be numeric. The reference variable indicates the true
state of the observation, such as diseased and nondiseased or normal and abnormal, and must be
coded as 0 and 1. The rating or outcome of the diagnostic test or test modality is recorded in classvar,
which must be at least ordinal, with higher values indicating higher risk.

roctab performs nonparametric ROC analyses. By default, roctab calculates the area under the
ROC curve. Optionally, roctab can plot the ROC curve, display the data in tabular form, and produce
Lorenz-like plots.

See [R] rocfit for a command that fits maximum-likelihood ROC models.

Options

� � �
Main �

lorenz specifies that Gini and Pietra indices be reported. Optionally, graph will plot the Lorenz-like
curve.

binomial specifies that exact binomial confidence intervals be calculated.

detail outputs a table displaying the sensitivity, specificity, the percentage of subjects correctly
classified, and two likelihood ratios for each possible cutpoint of classvar.

table outputs a 2× k contingency table displaying the raw data.

bamber specifies that the standard error for the area under the ROC curve be calculated using the
method suggested by Bamber (1975). Otherwise, standard errors are obtained as suggested by
DeLong, DeLong, and Clarke-Pearson (1988).

hanley specifies that the standard error for the area under the ROC curve be calculated using the method
suggested by Hanley and McNeil (1982). Otherwise, standard errors are obtained as suggested by
DeLong, DeLong, and Clarke-Pearson (1988).

graph produces graphical output of the ROC curve. If lorenz is specified, graphical output of a
Lorenz-like curve will be produced.

norefline suppresses plotting the 45-degree reference line from the graphical output of the ROC
curve.

summary reports the area under the ROC curve, its standard error, and its confidence interval. If
lorenz is specified, Lorenz indices are reported. This option is needed only when also specifying
graph.

specificity produces a graph of sensitivity versus specificity instead of sensitivity versus
(1− specificity). specificity implies graph.

level(#) specifies the confidence level, as a percentage, for the confidence intervals. The default is
level(95) or as set by set level; see [R] level.

� � �
Plot �

plotopts(plot options) affects the rendition of the plotted ROC curve—the curve’s plotted points
connected by lines. The plot options can affect the size and color of markers, whether and how
the markers are labeled, and whether and how the points are connected; see [G-3] marker options,
[G-3] marker label options, and [G-3] cline options.
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� � �
Reference line �

rlopts(cline options) affects the rendition of the reference line; see [G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks
Remarks are presented under the following headings:

Introduction
Nonparametric ROC curves
Lorenz-like curves

Introduction

The roctab command provides nonparametric estimation of the ROC for a given classifier and
true-status reference variable. The Lorenz curve functionality of roctab, which provides an alternative
to standard ROC analysis, is discussed in Lorenz-like curves.

See Pepe (2003) for a discussion of ROC analysis. Pepe has posted Stata datasets and programs
used to reproduce results presented in the book (http://www.stata.com/bookstore/pepe.html).

Nonparametric ROC curves

The points on the nonparametric ROC curve are generated using each possible outcome of the
diagnostic test as a classification cutpoint and computing the corresponding sensitivity and 1−specificity.
These points are then connected by straight lines, and the area under the resulting ROC curve is
computed using the trapezoidal rule.

Example 1

Hanley and McNeil (1982) presented data from a study in which a reviewer was asked to classify,
using a five-point scale, a random sample of 109 tomographic images from patients with neurological
problems. The rating scale was as follows: 1 = definitely normal, 2 = probably normal, 3 =
questionable, 4 = probably abnormal, and 5 = definitely abnormal. The true disease status was
normal for 58 of the patients and abnormal for the remaining 51 patients.

http://www.stata.com/bookstore/pepe.html


1874 roctab — Nonparametric ROC analysis

Here we list 9 of the 109 observations:

. use http://www.stata-press.com/data/r12/hanley

. list disease rating in 1/9

disease rating

1. 1 5
2. 0 1
3. 1 5
4. 0 4
5. 0 1

6. 0 3
7. 1 5
8. 0 5
9. 0 1

For each observation, disease identifies the true disease status of the subject (0 = normal, 1 =
abnormal), and rating contains the classification value assigned by the reviewer.

We can use roctab to calculate and plot the nonparametric ROC curve by specifying both the
summary and graph options. By also specifying the table option, we obtain a contingency table
summarizing our dataset.

. roctab disease rating, table graph summary
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Area under ROC curve = 0.8932

rating
disease 1 2 3 4 5 Total

0 33 6 6 11 2 58
1 3 2 2 11 33 51

Total 36 8 8 22 35 109

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0307 0.83295 0.95339
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By default, roctab reports the area under the curve, its standard error, and its confidence interval.
The graph option can be used to plot the ROC curve.

The ROC curve is plotted by computing the sensitivity and specificity using each value of the
rating variable as a possible cutpoint. A point is plotted on the graph for each of the cutpoints. These
plotted points are joined by straight lines to form the ROC curve, and the area under the ROC curve
is computed using the trapezoidal rule.

We can tabulate the computed sensitivities and specificities for each of the possible cutpoints by
specifying detail.

. roctab disease rating, detail

Detailed report of sensitivity and specificity

Correctly
Cutpoint Sensitivity Specificity Classified LR+ LR-

( >= 1 ) 100.00% 0.00% 46.79% 1.0000
( >= 2 ) 94.12% 56.90% 74.31% 2.1835 0.1034
( >= 3 ) 90.20% 67.24% 77.98% 2.7534 0.1458
( >= 4 ) 86.27% 77.59% 81.65% 3.8492 0.1769
( >= 5 ) 64.71% 96.55% 81.65% 18.7647 0.3655
( > 5 ) 0.00% 100.00% 53.21% 1.0000

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0307 0.83295 0.95339

Each cutpoint in the table indicates the ratings used to classify tomographs as being from an abnormal
subject. For example, the first cutpoint (>= 1) indicates that all tomographs rated as 1 or greater are
classified as coming from abnormal subjects. Because all tomographs have a rating of 1 or greater, all
are considered abnormal. Consequently, all abnormal cases are correctly classified (sensitivity = 100%),
but none of the normal patients is classified correctly (specificity = 0%). For the second cutpoint
(>=2), tomographs with ratings of 1 are classified as normal, and those with ratings of 2 or greater are
classified as abnormal. The resulting sensitivity and specificity are 94.12% and 56.90%, respectively.
Using this cutpoint, we correctly classified 74.31% of the 109 tomographs. Similar interpretations
can be used on the remaining cutpoints. As mentioned, each cutpoint corresponds to a point on the
nonparametric ROC curve. The first cutpoint (>=1) corresponds to the point at (1,1), and the last
cutpoint (> 5) corresponds to the point at (0,0).

detail also reports two likelihood ratios suggested by Choi (1998): the likelihood ratio for a
positive test result (LR+) and the likelihood ratio for a negative test result (LR–). The LR+ is the
ratio of the probability of a positive test among the truly positive subjects to the probability of a
positive test among the truly negative subjects. The LR– is the ratio of the probability of a negative
test among the truly positive subjects to the probability of a negative test among the truly negative
subjects. Choi points out that LR+ corresponds to the slope of the line from the origin to the point
on the ROC curve determined by the cutpoint. Similarly, LR– corresponds to the slope from the point
(1,1) to the point on the ROC curve determined by the cutpoint.

By default, roctab calculates the standard error for the area under the curve by using an algorithm
suggested by DeLong, DeLong, and Clarke-Pearson (1988) and asymptotic normal confidence intervals.
Optionally, standard errors based on methods suggested by Bamber (1975) or Hanley and McNeil (1982)
can be computed by specifying bamber or hanley, respectively, and an exact binomial confidence
interval can be obtained by specifying binomial.
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. roctab disease rating, bamber

ROC Bamber Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0306 0.83317 0.95317

. roctab disease rating, hanley binomial

ROC Hanley Binomial Exact
Obs Area Std. Err. [95% Conf. Interval]

109 0.8932 0.0320 0.81559 0.94180

Lorenz-like curves
For applications where it is known that the risk status increases or decreases monotonically with

increasing values of the diagnostic test, the ROC curve and associated indices are useful in assessing
the overall performance of a diagnostic test. When the risk status does not vary monotonically with
increasing values of the diagnostic test, however, the resulting ROC curve can be nonconvex and its
indices can be unreliable. For these situations, Lee (1999) proposed an alternative to the ROC analysis
based on Lorenz-like curves and the associated Pietra and Gini indices.

Lee (1999) mentions at least three specific situations where results from Lorenz curves are superior
to those obtained from ROC curves: 1) a diagnostic test with similar means but very different standard
deviations in the abnormal and normal populations, 2) a diagnostic test with bimodal distributions in
either the normal or abnormal population, and 3) a diagnostic test distributed symmetrically in the
normal population and skewed in the abnormal.

When the risk status increases or decreases monotonically with increasing values of the diagnostic
test, the ROC and Lorenz curves yield interchangeable results.

Example 2

To illustrate the use of the lorenz option, we constructed a fictitious dataset that yields results
similar to those presented in Table III of Lee (1999). The data assume that a 12-point rating scale
was used to classify 442 diseased and 442 healthy subjects. We list a few of the observations.

. use http://www.stata-press.com/data/r12/lorenz, clear

. list in 1/7, noobs sep(0)

disease class pop

0 5 66
1 11 17
0 6 85
0 3 19
0 10 19
0 2 7
1 4 16

The data consist of 24 observations: 12 observations from diseased individuals and 12 from nondiseased
individuals. Each observation corresponds to one of the 12 classification values of the rating-scale
variable, class. The number of subjects represented by each observation is given by the pop variable,
making this a frequency-weighted dataset. The data were generated assuming a binormal distribution
of the latent variable with similar means for the normal and abnormal populations but with the standard
deviation for the abnormal population five times greater than that of the normal population.
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. roctab disease class [fweight=pop], graph summary
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Area under ROC curve = 0.5774

ROC Asymptotic Normal
Obs Area Std. Err. [95% Conf. Interval]

884 0.5774 0.0215 0.53517 0.61959

The resulting ROC curve is nonconvex or, as termed by Lee, “wiggly”. Lee argues that for this
and similar situations, the Lorenz curve and indices are preferred.

. roctab disease class [fweight=pop], lorenz graph summary
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Pietra index = 0.6493
Gini index = 0.7441

Like ROC curves, a more bowed Lorenz curve suggests a better diagnostic test. This bowedness
is quantified by the Pietra index, which is geometrically equivalent to twice the largest triangle that
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can be inscribed in the area between the curve and the diagonal line, and the Gini index, which is
equivalent to twice the area between the Lorenz curve and the diagonal. Lee (1999) provides several
additional interpretations for the Pietra and Gini indices.

Saved results
roctab saves the following in r():

Scalars
r(N) number of observations
r(se) standard error for the area under the ROC curve
r(lb) lower bound of CI for the area under the ROC curve
r(ub) upper bound of CI for the area under the ROC curve
r(area) area under the ROC curve
r(pietra) Pietra index
r(gini) Gini index

Methods and formulas
roctab is implemented as ado-files.

Assume that we applied a diagnostic test to each of Nn normal and Na abnormal subjects.
Further assume that the higher the outcome value of the diagnostic test, the higher the risk of the
subject being abnormal. Let θ̂ be the estimated area under the curve, and let Xi, i = 1, 2, . . . , Na
and Yj , j = 1, 2, . . . , Nn be the values of the diagnostic test for the abnormal and normal subjects,
respectively.

The points on the nonparametric ROC curve are generated using each possible outcome of the
diagnostic test as a classification cutpoint and computing the corresponding sensitivity and 1−specificity.
These points are then connected by straight lines, and the area under the resulting ROC curve is
computed using the trapezoidal rule.

The default standard error for the area under the ROC curve is computed using the algorithm
described by DeLong, DeLong, and Clarke-Pearson (1988). For each abnormal subject, i, define

V10(Xi) =
1
Nn

Nn∑
j=1

ψ(Xi, Yj)

and for each normal subject, j, define

V01(Yj) =
1
Na

Na∑
i=1

ψ(Xi, Yj)

where

ψ(X,Y ) =

{ 1 Y < X
1
2 Y = X
0 Y > X
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Define

S10 =
1

Na − 1

Na∑
i=1

{V10(Xi)− θ̂}2

and

S01 =
1

Nn − 1

Nn∑
j=1

{V01(Yj)− θ̂}2

The variance of the estimated area under the ROC curve is given by

var(θ̂) =
1
Na

S10 +
1
Nn

S01

The hanley standard error for the area under the ROC curve is computed using the algorithm
described by Hanley and McNeil (1982). It requires the calculation of two quantities: Q1 is Pr(two
randomly selected abnormal subjects will both have a higher score than a randomly selected normal
subject), and Q2 is Pr(one randomly selected abnormal subject will have a higher score than any two
randomly selected normal subjects). The Hanley and McNeil variance of the estimated area under the
ROC curve is

var(θ̂) =
θ̂(1− θ̂) + (Na − 1)(Q1 − θ̂2) + (Nn − 1)(Q2 − θ̂2)

NaNn

The bamber standard error for the area under the ROC curve is computed using the algorithm
described by Bamber (1975). For any two Y values, Yj and Yk, and any Xi value, define

byyx = p(Yj , Yk < Xi) + p(Xi < Yj , Yk)− 2p(Yj < Xi < Yk)

and similarly, for any two X values, Xi and Xl, and any Yj value, define

bxxy = p(Xi, Xl < Yj) + p(Yj < Xi, Xl)− 2p(Xi < Yj < Xl)

Bamber’s unbiased estimate of the variance for the area under the ROC curve is

var(θ̂) =
1
4

(Na−1)(Nn−1){p(X 6= Y )+(Na−1)bxxy+(Nn−1)byyx−4(Na+Nn−1)(θ̂−0.5)2}

Asymptotic confidence intervals are constructed and reported by default, assuming a normal
distribution for the area under the ROC curve.

Exact binomial confidence intervals are calculated as described in [R] ci, with p equal to the area
under the ROC curve.
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rologit — Rank-ordered logistic regression

Syntax

rologit depvar indepvars
[

if
] [

in
] [

weight
]
, group(varname)

[
options

]
options Description

Model
∗group(varname) identifier variable that links the alternatives
offset(varname) include varname in model with coefficient constrained to 1
incomplete(#) use # to code unranked alternatives; default is incomplete(0)

reverse reverse the preference order
notestrhs keep right-hand-side variables that do not vary within group
ties(spec) method to handle ties: exactm, breslow, efron, or none

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗group(varname) is required.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed, except with ties(efron); see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Ordinal outcomes > Rank-ordered logistic regression

Description

rologit fits the rank-ordered logistic regression model by maximum likelihood (Beggs, Cardell,
and Hausman 1981). This model is also known as the Plackett–Luce model (Marden 1995), as the
exploded logit model (Punj and Staelin 1978), and as the choice-based method of conjoint analysis
(Hair et al. 2010).

1881
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rologit expects the data to be in long form, similar to clogit (see [R] clogit), in which each
of the ranked alternatives forms an observation; all observations related to an individual are linked
together by the variable that you specify in the group() option. The distinction from clogit is
that depvar in rologit records the rankings of the alternatives, whereas for clogit, depvar marks
only the best alternative by a value not equal to zero. rologit interprets equal scores of depvar as
ties. The ranking information may be incomplete “at the bottom” (least preferred alternatives). That
is, unranked alternatives may be coded as 0 or as a common value that may be specified with the
incomplete() option.

If your data record only the unique best alternative, rologit fits the same model as clogit.

Options

� � �
Model �

group(varname) is required, and it specifies the identifier variable (numeric or string) that links the
alternatives for an individual, which have been compared and rank ordered with respect to one
another.

offset(varname); see [R] estimation options.

incomplete(#) specifies the numeric value used to code alternatives that are not ranked. It is
assumed that unranked alternatives are less preferred than the ranked alternatives (that is, the data
record the ranking of the most preferred alternatives). It is not assumed that subjects are indifferent
between the unranked alternatives. # defaults to 0.

reverse specifies that in the preference order, a higher number means a less attractive alternative.
The default is that higher values indicate more attractive alternatives. The rank-ordered logit model
is not symmetric in the sense that reversing the ordering simply leads to a change in the signs of
the coefficients.

notestrhs suppresses the test that the independent variables vary within (at least some of) the groups.
Effects of variables that are always constant are not identified. For instance, a rater’s gender cannot
directly affect his or her rankings; it could affect the rankings only via an interaction with a
variable that does vary over alternatives.

ties(spec) specifies the method for handling ties (indifference between alternatives) (see [ST] stcox
for details):

exactm exact marginal likelihood (default)
breslow Breslow’s method (default if pweights specified)
efron Efron’s method (default if robust VCE)
none no ties allowed

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If ties(exactm) is specified, vcetype may be only oim, bootstrap, or jackknife.

� � �
Reporting �

level(#); see [R] estimation options.
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display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#), trace,
[
no
]
log, tolerance(#), ltolerance(#),

nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

The following option is available with rologit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The rank-ordered logit model can be applied to analyze how decision makers combine attributes of

alternatives into overall evaluations of the attractiveness of these alternatives. The model generalizes
a version of McFadden’s choice model without alternative-specific covariates, as fit by the clogit
command. It uses richer information about the comparison of alternatives, namely, how decision-makers
rank the alternatives rather than just specifying the alternative that they like best.

Remarks are presented under the following headings:

Examples
Comparing respondents
Incomplete rankings and ties
Clustered choice data
Comparison of rologit and clogit
On reversals of rankings

Examples

A popular way to study employer preferences for characteristics of employees is the quasi-
experimental “vignette method”. As an example, we consider the research by de Wolf on the labor
market position of social science graduates (de Wolf 2000). This study addresses how the educational
portfolio (for example, general skills versus specific knowledge) affects short-term and long-term
labor-market opportunities. De Wolf asked 22 human resource managers (the respondents) to rank
order the six most suitable candidates of 20 fictitious applicants and to rank order these six candidates
for three jobs, namely, 1) researcher, 2) management trainee, and 3) policy adviser. Applicants
were described by 10 attributes, including their age, gender, details of their portfolio, and work
experience. In this example, we analyze a subset of the data. Also, to simplify the output, we drop, at
random, 10 nonselected applicants per case. The resulting dataset includes 29 cases, consisting of 10
applicants each. The data are in long form: observations correspond to alternatives (the applications),
and alternatives that figured in one decision task are identified by the variable caseid. We list
the observations for caseid==7, in which the respondent considered applicants for a social-science
research position.
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. use http://www.stata-press.com/data/r12/evignet
(Vignet study employer prefs (Inge de Wolf 2000))

. list pref female age grades edufit workexp boardexp if caseid==7, noobs

pref female age grades edufit workexp boardexp

0 yes 28 A/B no none no
0 no 25 C/D yes one year no
0 no 25 C/D yes none yes
0 yes 25 C/D no internship yes
1 no 25 C/D yes one year yes

2 no 25 A/B yes none no
3 yes 25 A/B yes one year no
4 yes 25 A/B yes none yes
5 no 25 A/B yes internship no
6 yes 28 A/B yes one year yes

Here six applicants were selected. The rankings are stored in the variable pref, where a value
of 6 corresponds to “best among the candidates”, a value of 5 corresponds to “second-best among
the candidates”, etc. The applicants with a ranking of 0 were not among the best six candidates for
the job. The respondent was not asked to express his preferences among these four applicants, but
by the elicitation procedure, it is known that he ranks these four applicants below the six selected
applicants. The best candidate was a female, 28 years old, with education fitting the job, with good
grades (A/B), with 1 year of work experience, and with experience being a board member of a
fraternity, a sports club, etc. The profiles of the other candidates read similarly. Here the respondent
completed the task; that is, he selected and rank ordered the six most suitable applicants. Sometimes
the respondent performed only part of the task.

. list pref female age grades edufit workexp boardexp if caseid==18, noobs

pref female age grades edufit workexp boardexp

0 no 25 C/D yes none yes
0 no 25 C/D no internship yes
0 no 28 C/D no internship yes
0 yes 25 A/B no one year no
2 yes 25 A/B no none yes

2 no 25 A/B no none yes
2 no 25 A/B no one year yes
5 no 25 A/B no none yes
5 no 25 A/B no none yes
5 yes 25 A/B no none no

The respondent selected the six best candidates and segmented these six candidates into two groups:
one group with the three best candidates, and a second group of three candidates that were “still
acceptable”. The numbers 2 and 5, indicating these two groups, are arbitrary apart from the implied
ranking of the groups. The ties between the candidates in a group indicate that the respondent was
not able to rank the candidates within the group.

The purpose of the vignette experiment was to explore and test hypotheses about which of the
employees’ attributes are valued by employers, how these attributes are weighted depending on the type
of job (described by variable job in these data), etc. In the psychometric tradition of Thurstone (1927),
value is assumed to be linear in the attributes, with the coefficients expressing the direction and weight
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of the attributes. In addition, it is assumed that valuation is to some extent a random procedure,
captured by an additive random term. For instance, if value depends only on an applicant’s age and
gender, we would have

value(femalei, agei) = β1femalei + β2agei + εi

where the random residual, εi, captures all omitted attributes. Thus β1 > 0 means that the em-
ployer assigns higher value to a woman than to a man. Given this conceptualization of value, it is
straightforward to model the decision (selection) among alternatives or the ranking of alternatives:
the alternative with the highest value is selected (chosen), or the alternatives are ranked according to
their value. To complete the specification of a model of choice and of ranking, we assume that the
random residual εi follows an “extreme value distribution of type I”, introduced in this context by
Luce (1959). This specific assumption is made mostly for computational convenience.

This model is known by many names. Among others, it is known as the rank-ordered logit model
in economics (Beggs, Cardell, and Hausman 1981), as the exploded logit model in marketing research
(Punj and Staelin 1978), as the choice-based conjoint analysis model (Hair et al. 2010), and as
the Plackett–Luce model (Marden 1995). The model coefficients are estimated using the method of
maximum likelihood. The implementation in rologit uses an analogy between the rank-ordered
logit model and the Cox regression model observed by Allison and Christakis (1994); see Methods
and formulas. The rologit command implements this method for rankings, whereas clogit deals
with the variant of choices, that is, only the most highly valued alternative is recorded. In the latter
case, the model is also known as the Luce–McFadden choice model. In fact, when the data record
the most preferred (unique) alternative and no additional ranking information about preferences is
available, rologit and clogit return the same information, though formatted somewhat differently.

. rologit pref female age grades edufit workexp boardexp if job==1, group(caseid)

Iteration 0: log likelihood = -95.41087
Iteration 1: log likelihood = -71.180903
Iteration 2: log likelihood = -68.47734
Iteration 3: log likelihood = -68.345918
Iteration 4: log likelihood = -68.345389
Refining estimates:
Iteration 0: log likelihood = -68.345389

Rank-ordered logistic regression Number of obs = 80
Group variable: caseid Number of groups = 8

No ties in data Obs per group: min = 10
avg = 10.00
max = 10

LR chi2(6) = 54.13
Log likelihood = -68.34539 Prob > chi2 = 0.0000

pref Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.4487287 .3671307 -1.22 0.222 -1.168292 .2708343
age -.0984926 .0820473 -1.20 0.230 -.2593024 .0623172

grades 3.064534 .6148245 4.98 0.000 1.8595 4.269568
edufit .7658064 .3602366 2.13 0.034 .0597556 1.471857

workexp 1.386427 .292553 4.74 0.000 .8130341 1.959821
boardexp .6944377 .3762596 1.85 0.065 -.0430176 1.431893

Focusing only on the variables whose coefficients are significant at the 10% level (we are analyzing
8 respondents only!), the estimated value of an applicant for a job of type 1 (research positions) can
be written as

value = 3.06*grades + 0.77*edufit + 1.39*workexp + 0.69*boardexp
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Thus employers prefer applicants for a research position (job==1) whose educational portfolio fits
the job, who have better grades, who have more relevant work experience, and who have (extracurricular)
board experience. They do not seem to care much about the sex and age of applicants, which is
comforting.

Given these estimates of the valuation by employers, we consider the probabilities that each of the
applications is ranked first. Under the assumption that the εi are independent and follow an extreme
value type I distribution, Luce (1959) showed that the probability, πi, that alternative i is valued
higher than alternatives 2, . . . , k can be written in the multinomial logit form

πi = Pr {value1 > max(value2, . . . , valuem)} =
exp(valuei)∑k
j=1 exp(valuei)

The probability of observing a specific ranking can be written as the product of such terms, representing
a sequential decision interpretation in which the rater first chooses the most preferred alternative, and
then the most preferred alternative among the rest, etc.

The probabilities for alternatives to be ranked first are conveniently computed by predict.

. predict p if e(sample)
(option pr assumed; conditional probability that alternative is ranked first)
(210 missing values generated)

. sort caseid pref p

. list pref p grades edufit workexp boardexp if caseid==7, noobs

pref p grades edufit workexp boardexp

0 .0027178 C/D yes none yes
0 .0032275 C/D no internship yes
0 .0064231 A/B no none no
0 .0217202 C/D yes one year no
1 .0434964 C/D yes one year yes

2 .0290762 A/B yes none no
3 .2970933 A/B yes one year no
4 .0371747 A/B yes none yes
5 .1163203 A/B yes internship no
6 .4427504 A/B yes one year yes

There clearly is a positive relation between the stated ranking and the predicted probabilities for
alternatives to be ranked first, but the association is not perfect. In fact, we would not have expected a
perfect association, as the model specifies a (nondegenerate) probability distribution over the possible
rankings of the alternatives. These predictions for sets of 10 candidates can also be used to make
predictions for subsets of the alternatives. For instance, suppose that only the last three candidates listed
in this table would be available. According to parameter estimates of the rank-ordered logit model, the
probability that the last of these candidates is selected equals 0.443/(0.037 + 0.116 + 0.443) = 0.743.

Comparing respondents

The rologit model assumes that all respondents, HR managers in large public-sector organizations
in The Netherlands, use the same valuation function; that is, they apply the same decision weights. This
is the substantive interpretation of the assumption that the β’s are constant between the respondents.
To probe this assumption, we could test whether the coefficients vary between different groups of
respondents. For a metric characteristic of the HR manager, such as firmsize, we can consider a
trend-model in the valuation weights,
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βij = αi0 + αi1firmsizej

and we can test that the slopes αi1 of firmsize are zero.

. generate firmsize = employer

. rologit pref edufit grades workexp c.firmsize#c.(edufit grades workexp boardexp)
> if job==1, group(caseid) nolog

Rank-ordered logistic regression Number of obs = 80
Group variable: caseid Number of groups = 8

No ties in data Obs per group: min = 10
avg = 10.00
max = 10

LR chi2(7) = 57.17
Log likelihood = -66.82346 Prob > chi2 = 0.0000

pref Coef. Std. Err. z P>|z| [95% Conf. Interval]

edufit 1.29122 1.13764 1.13 0.256 -.9385127 3.520953
grades 6.439776 2.288056 2.81 0.005 1.955267 10.92428

workexp 1.23342 .8065067 1.53 0.126 -.347304 2.814144

c.firmsize#
c.edufit -.0173333 .0711942 -0.24 0.808 -.1568714 .1222048

c.firmsize#
c.grades -.2099279 .1218251 -1.72 0.085 -.4487008 .028845

c.firmsize#
c.workexp .0097508 .0525081 0.19 0.853 -.0931632 .1126649

c.firmsize#
c.boardexp .0382304 .0227545 1.68 0.093 -.0063676 .0828284

. testparm c.firmsize#c.(edufit grades workexp boardexp)

( 1) c.firmsize#c.edufit = 0
( 2) c.firmsize#c.grades = 0
( 3) c.firmsize#c.workexp = 0
( 4) c.firmsize#c.boardexp = 0

chi2( 4) = 7.14
Prob > chi2 = 0.1288

The Wald test that the slopes of the interacted firmsize variables are jointly zero provides no
evidence upon which we would reject the null hypothesis; that is, we do not find evidence against the
assumption of constant valuation weights of the attributes by firms of different size. We did not enter
firmsize as a predictor variable. Characteristics of the decision-making agent do not vary between
alternatives. Thus an additive effect of these characteristics on the valuation of alternatives does not
affect the agent’s ranking of alternatives and his choice. Consequently the coefficient of firmsize is
not identified. rologit would in fact have diagnosed the problem and dropped firmsize from the
analysis. Diagnosing this problem can slow the estimation considerably; the test may be suppressed
by specifying the notestrhs option.
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Incomplete rankings and ties

rologit allows incomplete rankings and ties in the rankings as proposed by Allison and Chris-
takis (1994). rologit permits rankings to be incomplete only “at the bottom”; namely, that the
ranking of the least attractive alternatives for subjects may not be known—do not confuse this with
the situation that a subject is indifferent between these alternatives. This form of incompleteness
occurred in the example discussed here, because the respondents were instructed to select and rank
only the top six alternatives. It may also be that respondents refused to rank the alternatives that are
very unattractive. rologit does not allow other forms of incompleteness, for instance, data in which
respondents indicate which of four cars they like best, and which one they like least, but not how
they rank the two intermediate cars. Another example of incompleteness that cannot be analyzed with
rologit is data in which respondents select the three alternatives they like best but are not requested
to express their preferences among the three selected alternatives.

rologit also permits ties in rankings. rologit assumes that if a subject expresses a tie between
two or more alternatives, he or she actually holds one particular strict preference ordering, but with all
possibilities of a strict ordering consistent with the expressed weak ordering being equally probable.
For instance, suppose that a respondent ranks alternative 1 highest. He prefers alternatives 2 and 3
over alternative 4, and he is indifferent between alternatives 2 and 3. We assume that this respondent
either has the strict preference ordering 1 > 2 > 3 > 4 or 1 > 3 > 2 > 4, with both possibilities
being equally likely. From a psychometric perspective, it may actually be more appropriate to also
assume that the alternatives 2 and 3 are close; for instance, the difference between the associated
valuations (utilities) is less than some threshold or minimally discernible difference. Computationally,
however, this is a more demanding model.

Clustered choice data
We have seen that applicants with work experience are in a relatively favorable position. To test

whether the effects of work experience vary between the jobs, we can include interactions between the
type of job and the attributes of applicants. Such interactions can be obtained using factor variables.

Because some HR managers contributed data for more than one job, we cannot assume that
their selection decisions for different jobs are independent. We can account for this by specifying
the vce(cluster clustvar) option. By treating choice data as incomplete ranking data with only
the most preferred alternative marked, rologit may be used to estimate the model parameters for
clustered choice data.
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. rologit pref job##c.(female grades edufit workexp), group(caseid)
> vce(cluster employer) nolog
2.job 3.job omitted because of no within-caseid variance

Rank-ordered logistic regression Number of obs = 290
Group variable: caseid Number of groups = 29

Ties handled via the Efron method Obs per group: min = 10
avg = 10.00
max = 10

Wald chi2(12) = 79.57
Log pseudolikelihood = -296.3855 Prob > chi2 = 0.0000

(Std. Err. adjusted for 22 clusters in employer)

Robust
pref Coef. Std. Err. z P>|z| [95% Conf. Interval]

job
2 0 (omitted)
3 0 (omitted)

female -.2286609 .2519883 -0.91 0.364 -.7225489 .2652272
grades 2.812555 .8517878 3.30 0.001 1.143081 4.482028
edufit .7027757 .2398396 2.93 0.003 .2326987 1.172853

workexp 1.224453 .3396773 3.60 0.000 .5586978 1.890208

job#c.female
2 .0293815 .4829166 0.06 0.951 -.9171177 .9758808
3 .1195538 .3688844 0.32 0.746 -.6034463 .8425538

job#c.grades
2 -2.364247 1.005963 -2.35 0.019 -4.335898 -.3925961
3 -1.88232 .8995277 -2.09 0.036 -3.645362 -.1192782

job#c.edufit
2 -.267475 .4244964 -0.63 0.529 -1.099473 .5645226
3 -.3182995 .3689972 -0.86 0.388 -1.041521 .4049217

job#c.workexp
2 -.6870077 .3692946 -1.86 0.063 -1.410812 .0367964
3 -.4656993 .4515712 -1.03 0.302 -1.350763 .4193639

The parameter estimates for the first job type are very similar to those that would have been
obtained from an analysis isolated to these data. Differences are due only to an implied change in
the method of handling ties. With clustered observations, rologit uses Efron’s method. If we had
specified the ties(efron) option with the separate analyses, then the parameter estimates would
have been identical to the simultaneous results. Another difference is that rologit now reports robust
standard errors, adjusted for clustering within respondents. These could have been obtained for the
separate analyses, as well by specifying the vce(robust) option. In fact, this option would also
have forced rologit to switch to Efron’s method as well.

Given the combined results for the three types of jobs, we can test easily whether the weights for
the attributes of applicants vary between the jobs, in other words, whether employers are looking for
different qualifications in applicants for different jobs. A Wald test for the equality hypothesis of no
difference can be obtained with the testparm command:
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. testparm job#c.(female grades edufit workexp)

( 1) 2.job#c.female = 0
( 2) 3.job#c.female = 0
( 3) 2.job#c.grades = 0
( 4) 3.job#c.grades = 0
( 5) 2.job#c.edufit = 0
( 6) 3.job#c.edufit = 0
( 7) 2.job#c.workexp = 0
( 8) 3.job#c.workexp = 0

chi2( 8) = 14.96
Prob > chi2 = 0.0599

We find only mild evidence that employers look for different qualities in candidates according to
the job for which they are being considered.

Technical note

Allison (1999) stressed that the comparison between groups of the coefficients of logistic regression
is problematic, especially in its latent-variable interpretation. In many common latent-variable models,
only the regression coefficients divided by the scale of the latent variable are identified. Thus a
comparison of logit regression coefficients between, say, men and women is meaningful only if one
is willing to argue that the standard deviation of the latent residual does not differ between the sexes.
The rank-ordered logit model is also affected by this problem. While we formulated the model with a
scale-free residual, we can actually think of the model for the value of an alternative as being scaled
by the standard deviation of the random term, representing other relevant attributes of alternatives.
Again comparing attribute weights between jobs is meaningful to the extent that we are willing to
defend the proposition that “all omitted attributes” are equally important for different kinds of jobs.

Comparison of rologit and clogit

The rank-ordered logit model also has a sequential interpretation. A subject first chooses the best
among the alternatives. Next he or she selects the best alternative among the remaining alternatives,
etc. The decisions at each of the subsequent stages are described by a conditional logit model,
and a subject is assumed to apply the same decision weights at each stage. Some authors have
expressed concern that later choices may well be made more randomly than the first few decisions.
A formalization of this idea is a heteroskedastic version of the rank-ordered logit model in which the
scale of the random term increases with the number of decisions made (for example, Hausman and
Ruud [1987]). This extended model is currently not supported by rologit. However, the hypothesis
that the same decision weights are applied at the first stage and at later stages can be tested by
applying a Hausman test.
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First, we fit the rank-ordered logit model on the full ranking data for the first type of job,

. rologit pref age female edufit grades workexp boardexp if job==1, group(caseid)
> nolog

Rank-ordered logistic regression Number of obs = 80
Group variable: caseid Number of groups = 8

No ties in data Obs per group: min = 10
avg = 10.00
max = 10

LR chi2(6) = 54.13
Log likelihood = -68.34539 Prob > chi2 = 0.0000

pref Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0984926 .0820473 -1.20 0.230 -.2593024 .0623172
female -.4487287 .3671307 -1.22 0.222 -1.168292 .2708343
edufit .7658064 .3602366 2.13 0.034 .0597556 1.471857
grades 3.064534 .6148245 4.98 0.000 1.8595 4.269568

workexp 1.386427 .292553 4.74 0.000 .8130341 1.959821
boardexp .6944377 .3762596 1.85 0.065 -.0430176 1.431893

and we save the estimates for later use with the estimates command.

. estimates store Ranking

To estimate the decision weights on the basis of the most preferred alternatives only, we create a
variable, best, that is 1 for the best alternatives, and 0 otherwise. The by prefix is useful here.

. by caseid (pref), sort: gen best = pref == pref[_N] if job==1
(210 missing values generated)

By specifying (pref) with by caseid, we ensured that the data were sorted in increasing order on
pref within caseid. Hence, the most preferred alternatives are last in the sort order. The expression
pref == pref[ N] is true (1) for the most preferred alternatives, even if the alternative is not unique,
and false (0) otherwise. If the most preferred alternatives were sometimes tied, we could still fit the
model for the based-alternatives-only data via rologit, but clogit would yield different results
because it deals with ties in a less appropriate way for continuous valuations. To ascertain whether
there are ties in the selected data regarding applicants for research positions, we can combine by with
assert:

. by caseid (pref), sort: assert pref[_N-1] != pref[_N] if job==1

There are no ties. We can now fit the model on the choice data by using either clogit or rologit.



1892 rologit — Rank-ordered logistic regression

. rologit best age edufit grades workexp boardexp if job==1, group(caseid) nolog

Rank-ordered logistic regression Number of obs = 80
Group variable: caseid Number of groups = 8

No ties in data Obs per group: min = 10
avg = 10.00
max = 10

LR chi2(5) = 17.27
Log likelihood = -9.783205 Prob > chi2 = 0.0040

best Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1048959 .2017068 -0.52 0.603 -.5002339 .2904421
edufit .4558387 .9336775 0.49 0.625 -1.374136 2.285813
grades 3.443851 1.969002 1.75 0.080 -.4153223 7.303025

workexp 2.545648 1.099513 2.32 0.021 .3906422 4.700655
boardexp 1.765176 1.112763 1.59 0.113 -.4157988 3.946152

. estimates store Choice

The same results, though with a slightly different formatted header, would have been obtained by
using clogit on these data.

. clogit best age edufit grades workexp boardexp if job==1, group(caseid) nolog

Conditional (fixed-effects) logistic regression Number of obs = 80
LR chi2(5) = 17.27
Prob > chi2 = 0.0040

Log likelihood = -9.7832046 Pseudo R2 = 0.4689

best Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1048959 .2017068 -0.52 0.603 -.5002339 .2904421
edufit .4558387 .9336775 0.49 0.625 -1.374136 2.285813
grades 3.443851 1.969002 1.75 0.080 -.4153223 7.303025

workexp 2.545648 1.099513 2.32 0.021 .3906422 4.700655
boardexp 1.765176 1.112763 1.59 0.113 -.4157988 3.946152

The parameters of the ranking and choice models look different, but the standard errors based
on the choice data are much larger. Are we estimating parameters with the ranking data that are
different from those with the choice data? A Hausman test compares two estimators of a parameter.
One of the estimators should be efficient under the null hypothesis, namely, that choosing the
second-best alternative is determined with the same decision weights as the best, etc. In our case, the
efficient estimator of the decision weights uses the ranking information. The other estimator should
be consistent, even if the null hypothesis is false. In our application, this is the estimator that uses
the first-choice data only.
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. hausman Choice Ranking

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))

Choice Ranking Difference S.E.

age -.1048959 -.0984926 -.0064033 .1842657
edufit .4558387 .7658064 -.3099676 .8613846
grades 3.443851 3.064534 .3793169 1.870551

workexp 2.545648 1.386427 1.159221 1.059878
boardexp 1.765176 .6944377 1.070739 1.04722

b = consistent under Ho and Ha; obtained from rologit
B = inconsistent under Ha, efficient under Ho; obtained from rologit

Test: Ho: difference in coefficients not systematic

chi2(5) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 3.05

Prob>chi2 = 0.6918

We do not find evidence for misspecification. We have to be cautious, though, because Hausman-
type tests are often not powerful, and the number of observations in our example is very small, which
makes the quality of the method of the null distribution by a chi-squared test rather uncertain.

On reversals of rankings

The rank-ordered logit model has a property that you may find unexpected and even unfortunate.
Compare two analyses with the rank-ordered logit model, one in which alternatives are ranked
from “most attractive” to “least attractive”, the other a reversed analysis in which these alternatives
are ranked from “most unattractive” to “least unattractive”. By unattractiveness, you probably mean
just the opposite of attractiveness, and you expect that the weights of the attributes in predicting
“attractiveness” to be minus the weights in predicting “unattractiveness”. This is, however, not true
for the rank-ordered logit model. The assumed distribution of the random residual takes the form
F (ε) = 1 − exp{exp(−ε)}. This distribution is right-skewed. Therefore, slightly different models
result from adding and subtracting the random residual, corresponding with high-to-low and low-
to-high rankings. Thus the estimated coefficients will differ between the two specifications, though
usually not in an important way. You may observe the difference by specifying the reverse option
of rologit. Reversing the rank order makes rankings that are incomplete at the bottom become
incomplete at the top. Only the first kind of incompleteness is supported by rologit. Thus, for this
comparison, we exclude the alternatives that are not ranked, omitting the information that ranked
alternatives are preferred over excluded ones.

. rologit pref grades edufit workexp boardexp if job==1 & pref!=0, group(caseid)

(output omitted )
. estimates store Original

. rologit pref grades edufit workexp boardexp if job==1 & pref!=0, group(caseid)
> reverse

(output omitted )
. estimates store Reversed
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. estimates table Original Reversed, stats(aic bic)

Variable Original Reversed

grades 2.0032332 -1.0955335
edufit -.13111006 -.05710681

workexp 1.2805373 -1.2096383
boardexp .46213212 -.27200317

aic 96.750452 99.665642
bic 104.23526 107.15045

Thus, although the weights of the attributes for reversed rankings are indeed mostly of opposite
signs, the magnitudes of the weights and their standard errors differ. Which one is more appropriate?
We have no advice to offer here. The specific science of the problem will determine what is appropriate,
though we would be surprised indeed if this helps here. Formal testing does not help much either, as
the models for the original and reversed rankings are not nested. The model-selection indices, such
as the AIC and BIC, however, suggest that you stick to the rank-ordered logit model applied to the
original ranking rather than to the reversed ranking.
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Saved results
rologit saves the following in e():
Scalars

e(N) number of observations
e(ll 0) log likelihood of the null model (“all rankings are equiprobable”)
e(ll) log likelihood
e(df m) model degrees of freedom
e(chi2) χ2

e(p) significance
e(r2 p) pseudo-R2

e(N g) number of groups
e(g min) minimum group size
e(g avg) average group size
e(g max) maximum group size
e(code inc) value for incomplete preferences
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) rologit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(group) name of group() variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(reverse) reverse, if specified
e(ties) breslow, efron, exactm
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
rologit is implemented as an ado-file.

Allison and Christakis (1994) demonstrate that maximum likelihood estimates for the rank-ordered
logit model can be obtained as the maximum partial-likelihood estimates of an appropriately specified
Cox regression model for waiting time ([ST] stcox). In this analogy, a higher value for an alternative
is formally equivalent to a higher hazard rate of failure. rologit uses stcox to fit the rank-ordered
logit model based on such a specification of the data in Cox terms. A higher stated preference is
represented by a shorter waiting time until failure. Incomplete rankings are dealt with via censoring.
Moreover, decision situations (subjects) are to be treated as strata. Finally, as proposed by Allison
and Christakis, ties in rankings are handled by the marginal-likelihood method, specifying that all
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strict preference orderings consistent with the stated weak preference ordering are equally likely.
The marginal-likelihood estimator is available in stcox via the exactm option. The methods of the
marginal likelihood due to Breslow and Efron are also appropriate for the analysis of rank-ordered
logit models. Because in most applications the number of ranked alternatives by one subject will be
fairly small (at most, say, 20), the number of ties is small as well, and so you rarely will need to
turn to methods to restrict computer time. Because the marginal-likelihood estimator in stcox does
not support the cluster adjustment or pweights, you should use the Efron method in such cases.

This command supports the clustered version of the Huber/White/sandwich estimator of the
variance using vce(robust) and vce(cluster clustvar). See [P] robust, particularly Maximum
likelihood estimators and Methods and formulas. Specifying vce(robust) is equivalent to specifying
vce(cluster groupvar), where groupvar is the identifier variable that links the alternatives.
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Also see
[R] rologit postestimation — Postestimation tools for rologit

[R] clogit — Conditional (fixed-effects) logistic regression

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] nlogit — Nested logit regression

[R] slogit — Stereotype logistic regression

[U] 20 Estimation and postestimation commands



Title

rologit postestimation — Postestimation tools for rologit

Description
The following postestimation commands are available after rologit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
linktest link test for model specification
lrtest likelihood-ratio test
margins1 marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 The default prediction statistic pr cannot be correctly handled by margins; however, margins can be used after
rologit with the predict(xb) option.

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

pr probability that alternatives are ranked first; the default
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if esample() . . . if wanted
only for the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability that alternatives are ranked first.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset(varname) for rologit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

Remarks
See Comparing respondents and Clustered choice data in [R] rologit for examples of the use of

testparm, an alternative to the test command.

See Comparison of rologit and clogit and On reversals of rankings in [R] rologit for examples of
the use of estimates.

See Comparison of rologit and clogit in [R] rologit for an example of the use of hausman.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] rologit — Rank-ordered logistic regression

[U] 20 Estimation and postestimation commands



Title

rreg — Robust regression

Syntax
rreg depvar

[
indepvars

] [
if
] [

in
] [

, options
]

options Description

Model

tune(#) use # as the biweight tuning constant; default is tune(7)

Reporting

level(#) set confidence level; default is level(95)

genwt(newvar) create newvar containing the weights assigned to each observation
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimization options control the optimization process; seldom used
graph graph weights during convergence

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, fracpoly, mfp, mi estimate, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Other > Robust regression

Description
rreg performs one version of robust regression of depvar on indepvars.

Also see Robust standard errors in [R] regress for standard regression with robust variance estimates
and [R] qreg for quantile (including median or least-absolute-residual) regression.

Options

� � �
Model �

tune(#) is the biweight tuning constant. The default is 7, meaning seven times the median absolute
deviation (MAD) from the median residual; see Methods and formulas. Lower tuning constants
downweight outliers rapidly but may lead to unstable estimates (less than 6 is not recommended).
Higher tuning constants produce milder downweighting.

1900



rreg — Robust regression 1901

� � �
Reporting �

level(#); see [R] estimation options.

genwt(newvar) creates the new variable newvar containing the weights assigned to each observation.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options: iterate(#), tolerance(#),
[
no
]
log. iterate() specifies the maximum

number of iterations; iterations stop when the maximum change in weights drops below toler-
ance(); and log/nolog specifies whether to show the iteration log. These options are seldom
used.

graph allows you to graphically watch the convergence of the iterative technique. The weights
obtained from the most recent round of estimation are graphed against the weights obtained from
the previous round.

The following option is available with rreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
rreg first performs an initial screening based on Cook’s distance> 1 to eliminate gross outliers

before calculating starting values and then performs Huber iterations followed by biweight iterations,
as suggested by Li (1985).

Example 1

We wish to examine the relationship between mileage rating, weight, and location of manufacture
for the 74 cars in our automobile data. As a point of comparison, we begin by fitting an ordinary
regression:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight foreign

Source SS df MS Number of obs = 74
F( 2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768
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We now compare this with the results from rreg:

. rreg mpg weight foreign

Huber iteration 1: maximum difference in weights = .80280176
Huber iteration 2: maximum difference in weights = .2915438
Huber iteration 3: maximum difference in weights = .08911171
Huber iteration 4: maximum difference in weights = .02697328

Biweight iteration 5: maximum difference in weights = .29186818
Biweight iteration 6: maximum difference in weights = .11988101
Biweight iteration 7: maximum difference in weights = .03315872
Biweight iteration 8: maximum difference in weights = .00721325

Robust regression Number of obs = 74
F( 2, 71) = 168.32
Prob > F = 0.0000

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0063976 .0003718 -17.21 0.000 -.007139 -.0056562
foreign -3.182639 .627964 -5.07 0.000 -4.434763 -1.930514

_cons 40.64022 1.263841 32.16 0.000 38.1202 43.16025

Note the large change in the foreign coefficient.

Technical note
It would have been better if we had fit the previous robust regression by typing rreg mpg weight

foreign, genwt(w). The new variable, w, would then contain the estimated weights. Let’s pretend
that we did this:

. rreg mpg weight foreign, genwt(w)
(output omitted )

. summarize w, detail

Robust Regression Weight

Percentiles Smallest
1% 0 0
5% .0442957 0

10% .4674935 0 Obs 74
25% .8894815 .0442957 Sum of Wgt. 74

50% .9690193 Mean .8509966
Largest Std. Dev. .2746451

75% .9949395 .9996715
90% .9989245 .9996953 Variance .0754299
95% .9996715 .9997343 Skewness -2.287952
99% .9998585 .9998585 Kurtosis 6.874605
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We discover that 3 observations in our data were dropped altogether (they have weight 0). We could
further explore our data:

. sort w

. list make mpg weight w if w<.467, sep(0)

make mpg weight w

1. Datsun 210 35 2,020 0
2. Subaru 35 2,050 0
3. VW Diesel 41 2,040 0
4. Plym. Arrow 28 3,260 .04429567
5. Cad. Seville 21 4,290 .08241943
6. Toyota Corolla 31 2,200 .10443129
7. Olds 98 21 4,060 .28141296

Being familiar with the automobile data, we immediately spotted two things: the VW is the only
diesel car in our data, and the weight recorded for the Plymouth Arrow is incorrect.

Example 2

If we specify no explanatory variables, rreg produces a robust estimate of the mean:

. rreg mpg

Huber iteration 1: maximum difference in weights = .64471879
Huber iteration 2: maximum difference in weights = .05098336
Huber iteration 3: maximum difference in weights = .0099887

Biweight iteration 4: maximum difference in weights = .25197391
Biweight iteration 5: maximum difference in weights = .00358606

Robust regression Number of obs = 74
F( 0, 73) = 0.00
Prob > F = .

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 20.68825 .641813 32.23 0.000 19.40912 21.96738

The estimate is given by the coefficient on cons. The mean is 20.69 with an estimated standard
error of 0.6418. The 95% confidence interval is [ 19.4, 22.0 ]. By comparison, ci (see [R] ci) gives
us the standard calculation:

. ci mpg

Variable Obs Mean Std. Err. [95% Conf. Interval]

mpg 74 21.2973 .6725511 19.9569 22.63769
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Saved results
rreg saves the following in e():

Scalars
e(N) number of observations
e(mss) model sum of squares
e(df m) model degrees of freedom
e(rss) residual sum of squares
e(df r) residual degrees of freedom
e(r2) R-squared
e(r2 a) adjusted R-squared
e(F) F statistic
e(rmse) root mean squared error
e(rank) rank of e(V)

Macros
e(cmd) rreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(genwt) variable containing the weights
e(title) title in estimation output
e(model) ols
e(vce) ols
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
rreg is implemented as an ado-file.

See Berk (1990), Goodall (1983), and Rousseeuw and Leroy (1987) for a general description of
the issues and methods. Hamilton (1991a, 1992) provides a more detailed description of rreg and
some Monte Carlo evaluations.

rreg begins by fitting the regression (see [R] regress), calculating Cook’s D (see [R] predict and
[R] regress postestimation), and excluding any observation for which D > 1.

Thereafter rreg works iteratively: it performs a regression, calculates case weights from absolute
residuals, and regresses again using those weights. Iterations stop when the maximum change in
weights drops below tolerance(). Weights derive from one of two weight functions, Huber weights
and biweights. Huber weights (Huber 1964) are used until convergence, and then, from that result,
biweights are used until convergence. The biweight was proposed by Beaton and Tukey (1974, 151–
152) after the Princeton robustness study (Andrews et al. 1972) had compared various estimators.
Both weighting functions are used because Huber weights have problems dealing with severe outliers,
whereas biweights sometimes fail to converge or have multiple solutions. The initial Huber weighting
should improve the behavior of the biweight estimator.

In Huber weighting, cases with small residuals receive weights of 1; cases with larger residuals
receive gradually smaller weights. Let ei = yi − Xib represent the ith-case residual. The ith
scaled residual ui = ei/s is calculated, where s = M/0.6745 is the residual scale estimate and
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M = med(|ei−med(ei)|) is the median absolute deviation from the median residual. Huber estimation
obtains case weights:

wi =
{

1 if |ui| ≤ ch
ch/|ui| otherwise

rreg defines ch = 1.345, so downweighting begins with cases whose absolute residual exceeds
(1.345/0.6745)M ≈ 2M .

With biweights, all cases with nonzero residuals receive some downweighting, according to the
smoothly decreasing biweight function

wi =
{
{1− (ui/cb)2}2 if |ui| ≤ cb
0 otherwise

where cb = 4.685× tune()/7. Thus when tune() = 7, cases with absolute residuals of
(4.685/0.6745)M ≈ 7M or more are assigned 0 weight and thus are effectively dropped.
Goodall (1983, 377) suggests using a value between 6 and 9, inclusive, for tune() in the bi-
weight case and states that performance is good between 6 and 12, inclusive.

The tuning constants ch = 1.345 and cb = 4.685 (assuming tune() is set at the default 7)
give rreg about 95% of the efficiency of OLS when applied to data with normally distributed errors
(Hamilton 1991b). Lower tuning constants downweight outliers more drastically (but give up Gaussian
efficiency); higher tuning constants make the estimator more like OLS.

Standard errors are calculated using the pseudovalues approach described in Street, Carroll, and
Ruppert (1988).

Acknowledgment
The current version of rreg is due to the work of Lawrence Hamilton, Department of Sociology,

University of New Hampshire.
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Title

rreg postestimation — Postestimation tools for rreg

Description
The following postestimation commands are available after rreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals
hat diagonal elements of the hat matrix

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

residuals calculates the residuals.

hat calculates the diagonal elements of the hat matrix. You must have run the rreg command with
the genwt() option.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] rreg — Robust regression

[U] 20 Estimation and postestimation commands



Title

runtest — Test for random order

Syntax

runtest varname
[

in
] [

, options
]

options Description

continuity continuity correction
drop ignore values equal to the threshold
split randomly split values equal to the threshold as above or below the

threshold; default is to count as below
mean use mean as threshold; default is median
threshold(#) assign arbitrary threshold; default is median

Menu
Statistics > Nonparametric analysis > Tests of hypotheses > Test for random order

Description

runtest tests whether the observations of varname are serially independent—that is, whether
they occur in a random order—by counting how many runs there are above and below a threshold.
By default, the median is used as the threshold. A small number of runs indicates positive serial
correlation; a large number indicates negative serial correlation.

Options
continuity specifies a continuity correction that may be helpful in small samples. If there are

fewer than 10 observations either above or below the threshold, however, the tables in Swed and
Eisenhart (1943) provide more reliable critical values. By default, no continuity correction is used.

drop directs runtest to ignore any values of varname that are equal to the threshold value when
counting runs and tabulating observations. By default, runtest counts a value as being above the
threshold when it is strictly above the threshold and as being below the threshold when it is less
than or equal to the threshold.

split directs runtest to randomly split values of varname that are equal to the threshold. In other
words, when varname is equal to threshold, a “coin” is flipped. If it comes up heads, the value is
counted as above the threshold. If it comes up tails, the value is counted as below the threshold.

mean directs runtest to tabulate runs above and below the mean rather than the median.

threshold(#) specifies an arbitrary threshold to use in counting runs. For example, if varname has
already been coded as a 0/1 variable, the median generally will not be a meaningful separating
value.
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Remarks
runtest performs a nonparametric test of the hypothesis that the observations of varname occur

in a random order by counting how many runs there are above and below a threshold. If varname is
positively serially correlated, it will tend to remain above or below its median for several observations
in a row; that is, there will be relatively few runs. If, on the other hand, varname is negatively serially
correlated, observations above the median will tend to be followed by observations below the median
and vice versa; that is, there will be relatively many runs.

By default, runtest uses the median for the threshold, and this is not necessarily the best choice.
If mean is specified, the mean is used instead of the median. If threshold(#) is specified, # is used.
Because runtest divides the data into two states—above and below the threshold—it is appropriate
for data that are already binary; for example, win or lose, live or die, rich or poor, etc. Such variables
are often coded as 0 for one state and 1 for the other. Here you should specify threshold(0)
because, by default, runtest separates the observations into those that are greater than the threshold
and those that are less than or equal to the threshold.

As with most nonparametric procedures, the treatment of ties complicates the test. Observations
equal to the threshold value are ties and can be treated in one of three ways. By default, they are
treated as if they were below the threshold. If drop is specified, they are omitted from the calculation
and the total number of observations is adjusted. If split is specified, each is randomly assigned to
the above- and below-threshold groups. The random assignment is different each time the procedure
is run unless you specify the random-number seed; see [R] set seed.

Example 1

We can use runtest to check regression residuals for serial correlation.

. use http://www.stata-press.com/data/r12/run1

. scatter resid year, connect(l) yline(0) title(Regression residuals)

−
4

−
2

0
2

4
R

e
s
id

u
a

l

1975 1980 1985 1990
Year

Regression residuals

The graph gives the impression that these residuals are positively correlated. Excursions above or
below zero—the natural threshold for regression residuals—tend to last for several observations.
runtest can evaluate the statistical significance of this impression.
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. runtest resid, thresh(0)
N(resid <= 0) = 8
N(resid > 0) = 8

obs = 16
N(runs) = 5

z = -2.07
Prob>|z| = .04

There are five runs in these 16 observations. Using the normal approximation to the true distribution of
the number of runs, the five runs in this series are fewer than would be expected if the residuals were
serially independent. The p-value is 0.04, indicating a two-sided significant result at the 5% level. If the
alternative hypothesis is positive serial correlation, rather than any deviation from randomness, then the
one-sided p-value is 0.04/2 = 0.015. With so few observations, however, the normal approximation
may be inaccurate. (Tables compiled by Swed and Eisenhart list five runs as the 5% critical value
for a one-sided test.)

runtest is a nonparametric test. It ignores the magnitudes of the observations and notes only
whether the values are above or below the threshold. We can demonstrate this feature by reducing
the information about the regression residuals in this example to a 0/1 variable that indicates only
whether a residual is positive or negative.

. generate byte sign = resid>0

. runtest sign, thresh(0)
N(sign <= 0) = 8
N(sign > 0) = 8

obs = 16
N(runs) = 5

z = -2.07
Prob>|z| = .04

As expected, runtest produces the same answer as before.

Technical note
The run test can also be used to test the null hypothesis that two samples are drawn from the same

underlying distribution. The run test is sensitive to differences in the shapes, as well as the locations,
of the empirical distributions.

Suppose, for example, that two different additives are added to the oil in 10 different cars during
an oil change. The cars are run until a viscosity test determines that another oil change is needed,
and the number of miles traveled between oil changes is recorded. The data are
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. use http://www.stata-press.com/data/r12/additive, clear

. list

additive miles

1. 1 4024
2. 1 4756
3. 1 7993
4. 1 5025
5. 1 4188

6. 2 3007
7. 2 1988
8. 2 1051
9. 2 4478

10. 2 4232

To test whether the additives generate different distributions of miles between oil changes, we sort the
data by miles and then use runtest to see whether the marker for each additive occurs in random
order:

. sort miles

. runtest additive, thresh(1)
N(additive <= 1) = 5
N(additive > 1) = 5

obs = 10
N(runs) = 4

z = -1.34
Prob>|z| = .18

Here the additives do not produce statistically different results.

Technical note

A test that is related to the run test is the runs up-and-down test. In the latter test, the data
are classified not by whether they lie above or below a threshold but by whether they are steadily
increasing or decreasing. Thus an unbroken string of increases in the variable of interest is counted
as one run, as is an unbroken string of decreases. According to Madansky (1988), the run test is
superior to the runs up-and-down test for detecting trends in the data, but the runs up-and-down test
is superior for detecting autocorrelation.

runtest can be used to perform a runs up-and-down test. Using the regression residuals from
the example above, we can perform a runtest on their first differences:

. use http://www.stata-press.com/data/r12/run1

. generate resid_D = resid - resid[_n-1]
(1 missing value generated)

. runtest resid_D, thresh(0)
N(resid_D <= 0) = 7
N(resid_D > 0) = 8

obs = 15
N(runs) = 6

z = -1.33
Prob>|z| = .18
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Edgington (1961) has compiled a table of the small sample distribution of the runs up-and-down
statistic, and this table is reprinted in Madansky (1988). For large samples, the z statistic reported by
runtest is incorrect for the runs up-and-down test. Let N be the number of observations (15 here),
and let r be the number of runs (6). The expected number of runs in the runs up-and-down test is

µr =
2N − 1

3

the variance is

σ2
r =

16N − 29
90

and the correct z statistic is
ẑ =

r − µr
σr

Technical note
runtest will tolerate missing values at the beginning or end of a series, as occurred in the

technical note above (generating first differences resulted in a missing value for the first observation).
runtest, however, will issue an error message if there are any missing observations in the interior
of the series (in the portion covered by the in range modifier). To perform the test anyway, simply
drop the missing observations before using runtest.

Saved results
runtest saves the following in r():

Scalars
r(N) number of observations r(p) p-value of z
r(N below) number below the threshold r(z) z statistic
r(N above) number above the threshold r(n runs) number of runs
r(mean) expected number of runs r(Var) variance of the number of runs

Methods and formulas
runtest is implemented as an ado-file.

runtest begins by calculating the number of observations below the threshold, n0; the number
of observations above the threshold, n1; the total number of observations, N = n0 + n1; and the
number of runs, r. These statistics are always reported, so the exact tables of critical values in Swed
and Eisenhart (1943) may be consulted if necessary.

The expected number of runs under the null is

µr =
2n0n1

N
+ 1
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the variance is

σ2
r =

2n0n1 (2n0n1 −N)
N2 (N − 1)

and the normal approximation test statistic is

ẑ =
r − µr
σr

Acknowledgment
runtest was written by Sean Becketti, a past editor of the Stata Technical Bulletin.
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sampsi — Sample size and power for means and proportions

Syntax

sampsi #1 #2

[
, options

]
options Description

Main

onesample one-sample test; default is two-sample
sd1(#) standard deviation of sample 1
sd2(#) standard deviation of sample 2

Options

alpha(#) significance level of test; default is alpha(0.05)

power(#) power of test; default is power(0.90)

n1(#) size of sample 1
n2(#) size of sample 2
ratio(#) ratio of sample sizes; default is ratio(1)

pre(#) number of baseline measurements; default is pre(0)

post(#) number of follow-up measurements; default is post(1)

nocontinuity do not use continuity correction for two-sample test on proportions
r0(#) correlation between baseline measurements; default is r0()=r1()

r1(#) correlation between follow-up measurements
r01(#) correlation between baseline and follow-up measurements
onesided one-sided test; default is two-sided
method(method) analysis method where method is post, change, ancova, or all;

default is method(all)

Menu
sampsi

Statistics > Power and sample size > Tests of means and proportions

sampsi with repeated measures

Statistics > Power and sample size > Tests of means with repeated measures

Description

sampsi estimates require sample size or power of tests for studies comparing two groups. sampsi
can be used when comparing means or proportions for simple studies where only one measurement of
the outcome is planned and for comparing mean summary statistics for more complex studies where
repeated measurements of the outcome on each experimental unit are planned.

1915
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If n1(#) or n2(#) is specified, sampsi computes power; otherwise, it computes sample size. For
simple studies, if sd1(#) or sd2(#) is specified, sampsi assumes a comparison of means; otherwise,
it assumes a comparison of proportions. For repeated measurements, sd1(#) or sd2(#) must be
specified. sampsi is an immediate command; all its arguments are numbers; see [U] 19 Immediate
commands.

Options

� � �
Main �

onesample indicates a one-sample test. The default is two-sample.

sd1(#) and sd2(#) are the standard deviations of population 1 and population 2, respectively. One or
both must be specified when doing a comparison of means. When the onesample option is used,
sd1(#) is the standard deviation of the single sample (it can be abbreviated as sd(#)). If only one
of sd1(#) or sd2(#) is specified, sampsi assumes that sd1()= sd2(). If neither sd1(#) nor
sd2(#) is specified, sampsi assumes a test of proportions. For repeated measurements, sd1(#)
or sd2(#) must be specified.

� � �
Options �

alpha(#) is the significance level of the test. The default is alpha(0.05) unless set level has
been used to reset the default significance level for confidence intervals. If a set level #lev

command has been issued, the default value is alpha(1−#lev/100). See [R] level.

power(#)= 1− β is the power of the test. The default is power(0.90).

n1(#) and n2(#) are the sizes of sample 1 and sample 2, respectively. One or both must be specified
when computing power. If neither n1(#) nor n2(#) is specified, sampsi computes sample size.
When the onesample option is used, n1(#) is the size of the single sample (it can be abbreviated
as n(#)). If only one of n1(#) or n2(#) is specified, the unspecified one is computed using the
formula ratio= n2()/n1().

ratio(#) is the ratio of sample sizes for two-sample tests: ratio= n2()/n1(). The default is
ratio(1).

pre(#) specifies the number of baseline measurements (prerandomization) planned in a repeated-
measure study. The default is pre(0).

post(#) specifies the number of follow-up measurements (postrandomization) planned in a repeated-
measure study. The default is post(1).

nocontinuity requests power and sample size calculations without the continuity correction for the
two-sample test on proportions. If not specified, the continuity correction is used.

r0(#) specifies the correlation between baseline measurements in a repeated-measure study. If r0(#)
is not specified, sampsi assumes that r0()= r1().

r1(#) specifies the correlation between follow-up measurements in a repeated-measure study. For
a repeated-measure study, either r1(#) or r01(#) must be specified. If r1(#) is not specified,
sampsi assumes that r1()= r01().

r01(#) specifies the correlation between baseline and follow-up measurements in a repeated-measure
study. For a repeated-measure study, either r01(#) or r1(#) must be specified. If r01(#) is not
specified, sampsi assumes that r01()= r1().

onesided indicates a one-sided test. The default is two-sided.
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method(post | change | ancova | all) specifies the analysis method to be used with repeated mea-
sures. change and ancova can be used only if baseline measurements are planned. The default is
method(all), which means to use all three methods. Each method is described in Methods and
formulas.

Remarks
Remarks are presented under the following headings:

Studies with one measurement of the outcome
Two-sample test of equality of means
One-sample test of mean
Two-sample test of equality of proportions
One-sample test of proportion
Clinical trials with repeated measures

Studies with one measurement of the outcome

For simple studies, where only one measurement of the outcome is planned, sampsi computes
sample size or power for four types of tests:

1. Two-sample comparison of mean µ1 of population 1 with mean µ2 of population 2. The null
hypothesis is µ1 = µ2, and normality is assumed. The postulated values of the means are µ1 = #1

and µ2 = #2, and the postulated standard deviations are sd1(#) and sd2(#).

2. One-sample comparison of the mean µ of a population with a hypothesized value µ0. The null
hypothesis is µ = µ0, and normality is assumed. The first argument, #1, to sampsi is µ0. The
second argument, #2, is the postulated value of µ, that is, the alternative hypothesis is µ = #2. The
postulated standard deviation is sd1(#). To get this test, the onesample option must be specified.

3. Two-sample comparison of proportion p1 with proportion p2. The null hypothesis is p1 = p2, and
the postulated values are p1 = #1 and p2 = #2.

4. One-sample comparison of a proportion p with a hypothesized value p0. The null hypothesis is
p = p0, where p0 = #1. The alternative hypothesis is p = #2. To get this test, the onesample
option must be specified.

Examples of these follow.

Two-sample test of equality of means

Example 1

We are doing a study of the relationship of oral contraceptives (OC) and blood pressure (BP) level
for women ages 35–39 (Rosner 2006, 331–333). From a pilot study, it was determined that the mean
and standard deviation of BP of OC users were 132.86 and 15.34, respectively. The mean and standard
deviation of OC nonusers in the pilot study were found to be 127.44 and 18.23. Because it is easier
to find OC nonusers than users, we decide that n2, the size of the sample of OC nonusers, should be
twice n1, the size of the sample of OC users; that is, r = n2/n1 = 2. To compute the sample sizes
for α = 0.05 (two-sided) and the power of 0.80, we issue the following command:
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. sampsi 132.86 127.44, p(0.8) r(2) sd1(15.34) sd2(18.23)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 132.86
m2 = 127.44

sd1 = 15.34
sd2 = 18.23

n2/n1 = 2.00

Estimated required sample sizes:

n1 = 108
n2 = 216

We now find out that we have only enough money to study 100 subjects from each group. We
can compute the power for n1 = n2 = 100 by typing

. sampsi 132.86 127.44, n1(100) sd1(15.34) sd2(18.23)

Estimated power for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
m1 = 132.86
m2 = 127.44

sd1 = 15.34
sd2 = 18.23

sample size n1 = 100
n2 = 100

n2/n1 = 1.00

Estimated power:

power = 0.6236

We did not have to specify n2(#) or ratio(#) because ratio(1) is the default.

One-sample test of mean

Example 2

Suppose that we wish to test the effects of a low-fat diet on serum cholesterol levels. We will
measure the difference in cholesterol levels for each subject before and after being on the diet. Because
there is only one group of subjects, all on the diet, this is a one-sample test, and we must use the
onesample option with sampsi.

Our null hypothesis is that the mean of individual differences in cholesterol level will be zero; that
is, µ = 0 mg/100 mL. If the effect of the diet is as large as a mean difference of −10 mg/100 mL,
then we wish to have power of 0.95 for rejecting the null hypothesis. Because we expect a reduction
in level, we want to use a one-sided test with α = 0.025. From past studies, we estimate that the
standard deviation of the difference in cholesterol levels will be about 20 mg/100 mL. To compute
the required sample size, we type
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. sampsi 0 -10, sd(20) onesam a(0.025) onesided p(0.95)

Estimated sample size for one-sample comparison of mean
to hypothesized value

Test Ho: m = 0, where m is the mean in the population

Assumptions:

alpha = 0.0250 (one-sided)
power = 0.9500

alternative m = -10
sd = 20

Estimated required sample size:

n = 52

We decide to conduct the study with n = 60 subjects, and we wonder what the power will be at
a one-sided significance level of α = 0.01:

. sampsi 0 -10, sd(20) onesam a(0.01) onesided n(60)

Estimated power for one-sample comparison of mean
to hypothesized value

Test Ho: m = 0, where m is the mean in the population

Assumptions:

alpha = 0.0100 (one-sided)
alternative m = -10

sd = 20
sample size n = 60

Estimated power:

power = 0.9390

Two-sample test of equality of proportions

Example 3

We want to conduct a survey on people’s opinions of the president’s performance. Specifically,
we want to determine whether members of the president’s party have a different opinion from people
with another party affiliation. Using past surveys as a guide, we estimate that only 25% of members
of the president’s party will say that the president is doing a poor job, whereas 40% of members of
other parties will rate the president’s performance as poor. We compute the required sample sizes for
α = 0.05 (two-sided) and the power of 0.90 by typing

. sampsi 0.25 0.4

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1
and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.9000

p1 = 0.2500
p2 = 0.4000

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 216
n2 = 216
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To compute the power for a survey with a sample of n1 = 300 members of the president’s party
and a sample of n2 = 150 members of other parties, we type

. sampsi 0.25 0.4, n1(300) r(0.5)

Estimated power for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1
and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
p1 = 0.2500
p2 = 0.4000

sample size n1 = 300
n2 = 150

n2/n1 = 0.50

Estimated power:

power = 0.8790

One-sample test of proportion

Example 4

Someone claims that females are more likely than males to study French. Our null hypothesis is
that the proportion of female French students is 0.5. We wish to compute the sample size that will
give us 80% power to reject the null hypothesis if the true proportion of female French students is
0.75:

. sampsi 0.5 0.75, power(0.8) onesample

Estimated sample size for one-sample comparison of proportion
to hypothesized value

Test Ho: p = 0.5000, where p is the proportion in the population

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

alternative p = 0.7500

Estimated required sample size:

n = 29

What is the power if the true proportion of female French students is only 0.6 and the biggest
sample of French students we can survey is n = 200?

. sampsi 0.5 0.6, n(200) onesample

Estimated power for one-sample comparison of proportion
to hypothesized value

Test Ho: p = 0.5000, where p is the proportion in the population

Assumptions:

alpha = 0.0500 (two-sided)
alternative p = 0.6000
sample size n = 200

Estimated power:

power = 0.8123
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Technical note
r(warning) is saved only for power calculations for one- and two-sample tests on proportions.

If sample sizes are not large enough (Tamhane and Dunlop 2000, 300, 307) for sample proportions
to be approximately normally distributed, r(warning) is set to 1. Otherwise, a note is displayed in
the output, and r(warning) is set to 0.

Clinical trials with repeated measures

In randomized controlled trials (RCTs), when comparing a standard treatment with an experimental
therapy, it is not unusual for the study design to allow for repeated measurements of the outcome.
Typically, one or more measurements are taken at baseline immediately before randomization, and
additional measurements are taken at regular intervals during follow-up. Depending on the analysis
method planned and the correlations between measurements at different time points, there can be a
great increase in efficiency (variance reduction) from such designs over a simple study with only one
measurement of the outcome.

Frison and Pocock (1992) discuss three methods used in RCTs to compare two treatments by using
a continuous outcome measured at different times on each patient.

Posttreatment means (POST) uses the mean of each patient’s follow-up measurements as the
summary measurement. It compares the two groups by using a simple t test. This method ignores
any baseline measurements.

Mean changes (CHANGE) uses each patient’s difference between the mean of the follow-up
measurements and the mean of baseline measurements as the summary measurement. It compares
the two groups by using a simple t test.

Analysis of covariance (ANCOVA) uses the mean baseline measurement for each patient as a
covariate in a linear model for treatment comparisons of follow-up means.

method() specifies which of these three analyses is planned to be used. sampsi will calculate
the decrease in variance of the estimate of treatment effect from the number of measurements at
baseline, the number of measurements during follow-up, and the correlations between measurements
at different times, and use the calculation to estimate power or sample size, or both.

Example 5

We are designing a clinical trial comparing a new medication for the treatment of angina to a
placebo. We are planning on performing an exercise stress test on each patient four times during
the study: once at time of treatment randomization and three more times at 4, 6, and 8 weeks after
randomization. From each test, we will measure the time in seconds from the beginning of the
test until the patient is unable to continue because of angina pain. From a previous pilot study, we
estimated the means (sd#s) for the new drug and the placebo group to be 498 seconds (20.2) and
485 seconds (19.5), respectively, and an overall correlation at follow-up of 0.7. We will analyze these
data by comparing each patient’s difference between the mean of posttreatment measurements and
the mean of baseline measurements, that is, the change method. To compute the number of subjects
needed for allocation to each treatment group for α = 0.05 (two-sided) and power of 90%, we issue
the following command:
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. sampsi 498 485, sd1(20.2) sd2(19.5) method(change) pre(1) post(3) r1(.7)

Estimated sample size for two samples with repeated measures

Assumptions:
alpha = 0.0500 (two-sided)
power = 0.9000

m1 = 498
m2 = 485

sd1 = 20.2
sd2 = 19.5

n2/n1 = 1.00
number of follow-up measurements = 3

correlation between follow-up measurements = 0.700
number of baseline measurements = 1

correlation between baseline & follow-up = 0.700

Method: CHANGE
relative efficiency = 2.500

adjustment to sd = 0.632
adjusted sd1 = 12.776
adjusted sd2 = 12.333

Estimated required sample sizes:
n1 = 20
n2 = 20

The output from sampsi for repeated measurements includes the specified parameters used to
estimate the sample sizes or power, the relative efficiency of the design, and the adjustment to the
standard deviation. These last two are the inverse and the square root of the calculated improvement
in the variance compared with a similar study where only one measurement is planned.

We see that we need to allocate 20 subjects to each treatment group. Assume that we have funds
to enroll only 30 patients into our study. If we randomly assigned 15 patients to each treatment group,
what would be the expected power of our study, assuming that all other parameters remain the same?

. sampsi 498 485, sd1(20.2) sd2(19.5) meth(change) pre(1) post(3) r1(.7) n1(15)
> n2(15)

Estimated power for two samples with repeated measures

Assumptions:
alpha = 0.0500 (two-sided)

m1 = 498
m2 = 485

sd1 = 20.2
sd2 = 19.5

sample size n1 = 15
n2 = 15

n2/n1 = 1.00
number of follow-up measurements = 3

correlation between follow-up measurements = 0.700
number of baseline measurements = 1

correlation between baseline & follow-up = 0.700

Method: CHANGE
relative efficiency = 2.500

adjustment to sd = 0.632
adjusted sd1 = 12.776
adjusted sd2 = 12.333

Estimated power:
power = 0.809

If we enroll 30 patients into our study instead of the recommended 40, the power of the study
decreases from 90% to approximately 81%.
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Saved results
sampsi saves the following in r():
Scalars

r(N 1) sample size n1

r(N 2) sample size n2

r(power) power
r(adj) adjustment to the SE
r(warning) 0 if assumptions are satisfied and 1 otherwise

Methods and formulas
sampsi is implemented as an ado-file.

In the following formulas, α is the significance level, 1−β is the power, z1−α/2 is the (1−α/2)
quantile of the normal distribution, and r = n2/n1 is the ratio of sample sizes. The formulas below
are for two-sided tests. The formulas for one-sided tests can be obtained by replacing z1−α/2 with
z1−α.

1. The required sample sizes for a two-sample test of equality of means (assuming normality) are

n1 =
(σ2

1 + σ2
2/r)(z1−α/2 + z1−β)2

(µ1 − µ2)2

and n2 = rn1 (Rosner 2006, 332).

2. For a one-sample test of a mean where the null hypothesis is µ = µ0 and the alternative hypothesis
is µ = µA, the required sample size (assuming normality) is

n =

{
(z1−α/2 + z1−β)σ

µA − µ0

}2

(Pagano and Gauvreau 2000, 247–248).

3. The required sample sizes for a two-sample test of equality of proportions (using a normal
approximation with a continuity correction) are

n1 =
n′

4

[
1 +

{
1 +

2(r + 1)
n′r | p1 − p2|

}1/2
]2

n2 = rn1

where

n′ =

[
z1−α/2

{
(r + 1)pq

}1/2 + z1−β
(
rp1q1 + p2q2

)1/2 ]2

r(p1 − p2)2

and p = (p1 + rp2)/(r + 1) and q = 1− p (Fleiss, Levin, and Paik 2003, 76).

Without a continuity correction, the sample sizes are

n1 = n′

n2 = rn1

where n′ is defined above.
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4. For a one-sample test of proportion where the null hypothesis is p = p0 and the alternative
hypothesis is p = pA, the required sample size (using a normal approximation) is

n =

[
z1−α/2

{
p0(1− p0)

}1/2 + z1−β
{
pA(1− pA)

}1/2

pA − p0

]2

(Pagano and Gauvreau 2000, 332).

5. For repeated measurements, Frison and Pocock (1992) discuss three methods for use in randomized
clinical trials to compare two treatments using a continuous outcome measured at different times on
each patient. Each uses the average of baseline measurements, x0, and follow-up measurements,
x1:

POST outcome is x1, where the analysis is by simple t test.

CHANGE outcome is x1 − x0, where the analysis is by simple t test.

ANCOVA outcome is x1 − βx0, where the β is estimated by analysis of covariance, correcting for
the average at baseline.

ANCOVA will always be the most efficient of the three approaches. β is set so that βx0 accounts
for the largest possible variation of x1.

For a study with one measurement each at baseline and follow-up, CHANGE will be more efficient
than POST, provided that the correlation between measurements at baseline and measurements
at follow-up is more than 0.5. POST ignores all baseline measurements, which tends to make it
unpopular. CHANGE is the method most commonly used. With more than one baseline measurement,
CHANGE and ANCOVA tend to produce similar sample sizes and power.

The improvements in variance of the estimate of treatment effect over a study with only one
measurement depend on the number of measurements p at baseline; the number of measurements
during follow-up; and the correlations between measurements at baseline ρpre, between measure-
ments at follow-up ρpost, and between measurements at baseline and measurements at follow-up
ρmix. The improvements in variance for the POST method are given by

1 + (r − 1)ρpost

r

for the CHANGE method by

1 + (r − 1)ρpost

r
+

1 + (p− 1)ρpre

p
− 2ρmix

and for the ANCOVA method by

1 + (r − 1)ρpost

r
− ρ2

mixp

1 + (p− 1)ρpre

Often the three correlations are assumed equal. In data from several trials, Frison and Pocock
found that ρpre and ρpost typically had values around 0.7, whereas ρmix was nearer 0.5. This
finding is consistent with the common finding that measurements closer in time are more strongly
correlated.

Power calculations are based on estimates of one variance at all time points.
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saved results — Saved results

Syntax

List results from general commands, stored in r()

return list
[
, all

]
List results from estimation commands, stored in e()

ereturn list
[
, all

]
List results from parsing commands, stored in s()

sreturn list

Description
Results of calculations are saved by many Stata commands so that they can be easily accessed

and substituted into later commands.

return list lists results stored in r().

ereturn list lists results stored in e().

sreturn list lists results stored in s().

This entry discusses using saved results. Programmers wishing to save results should see [P] return
and [P] ereturn.

Option
all is for use with return list and ereturn list. all specifies that hidden and historical saved

results be listed along with the usual saved results. This option is seldom used. See Using hidden
and historical saved results and Programming hidden and historical saved results under Remarks
of [P] return for more information. These sections are written in terms of return list, but
everything said there applies equally to ereturn list.

all is not allowed with sreturn list because s() does not allow hidden or historical results.

Remarks
Stata commands are classified as being

r-class general commands that save results in r()
e-class estimation commands that save results in e()
s-class parsing commands that save results in s()
n-class commands that do not save in r(), e(), or s()

There is also a c-class, c(), containing the values of system parameters and settings, along with
certain constants, such as the value of pi; see [P] creturn. A program, however, cannot be c-class.
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You can look at the Saved results section of the manual entry of a command to determine whether
it is r-, e-, s-, or n-class, but it is easy enough to guess.

Commands producing statistical results are either r-class or e-class. They are e-class if they present
estimation results and r-class otherwise. s-class is a class used by programmers and is primarily used
in subprograms performing parsing. n-class commands explicitly state where the result is to go. For
instance, generate and replace are n-class because their syntax is generate varname = . . . and
replace varname = . . . .

After executing a command, you can type return list, ereturn list, or sreturn list to
see what has been saved.

Example 1

. use http://www.stata-press.com/data/r12/auto4
(1978 Automobile Data)

. describe

Contains data from http://www.stata-press.com/data/r12/auto4.dta
obs: 74 1978 Automobile Data

vars: 6 6 Apr 2011 00:20
size: 2,072

storage display value
variable name type format label variable label

price int %8.0gc Price
weight int %8.0gc Weight (lbs.)
mpg int %8.0g Mileage (mpg)
make str18 %-18s Make and Model
length int %8.0g Length (in.)
rep78 int %8.0g Repair Record 1978

Sorted by:

. return list

scalars:
r(changed) = 0

r(width) = 28
r(k) = 6
r(N) = 74

To view all saved results, including those that are historical or hidden, specify the all option.

. return list, all

scalars:
r(changed) = 0

r(width) = 28
r(k) = 6
r(N) = 74

Historical; used before Stata 12, may exist only under version control

scalars:
r(widthmax) = 1048576

r(k_max) = 2048
r(N_max) = 2147483647

r(widthmax), r(k max), and r(N max) are historical saved results. They are no longer relevant
because Stata dynamically adjusts memory beginning with Stata 12.
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Technical note
In the above example, we stated that r(widthmax) and r(N max) are no longer relevant. In

fact, they are not useful. Stata no longer has a fixed memory size, so the methods used to calculate
r(widthmax) and r(N max) are no longer appropriate.

Example 2

You can use saved results in expressions.
. summarize mpg

Variable Obs Mean Std. Dev. Min Max

mpg 74 21.2973 5.785503 12 41

. return list

scalars:
r(N) = 74

r(sum_w) = 74
r(mean) = 21.2972972972973
r(Var) = 33.47204738985561
r(sd) = 5.785503209735141

r(min) = 12
r(max) = 41
r(sum) = 1576

. generate double mpgstd = (mpg-r(mean))/r(sd)

. summarize mpgstd

Variable Obs Mean Std. Dev. Min Max

mpgstd 74 -1.64e-16 1 -1.606999 3.40553

Be careful to use results stored in r() soon because they will be replaced the next time you execute
another r-class command. For instance, although r(mean) was 21.3 (approximately) after summarize
mpg, it is −1.64e–16 now because you just ran summarize with mpgstd.

Example 3

e-class is really no different from r-class, except for where results are stored and that, when an
estimation command stores results, it tends to store a lot of them:

. regress mpg weight length
(output omitted )

. ereturn list

scalars:
e(N) = 74

e(df_m) = 2
e(df_r) = 71

e(F) = 69.34050004300227
e(r2) = .6613903979336323

e(rmse) = 3.413681741382589
e(mss) = 1616.08062422659
e(rss) = 827.3788352328695

e(r2_a) = .6518520992838754
e(ll) = -194.3267619410807

e(ll_0) = -234.3943376482347
e(rank) = 3



saved results — Saved results 1929

macros:
e(cmdline) : "regress mpg weight length"

e(title) : "Linear regression"
e(marginsok) : "XB default"

e(vce) : "ols"
e(depvar) : "mpg"

e(cmd) : "regress"
e(properties) : "b V"

e(predict) : "regres_p"
e(model) : "ols"

e(estat_cmd) : "regress_estat"

matrices:
e(b) : 1 x 3
e(V) : 3 x 3

functions:
e(sample)

These e-class results will stick around until you run another estimation command. Typing return
list and ereturn list is the easy way to find out what a command stores.

Both r- and e-class results come in four flavors: scalars, macros, matrices, and functions. (s-class
results come in only one flavor—macros—and as earlier noted, s-class is used solely by programmers,
so ignore it.)

Scalars are just that—numbers by any other name. You can subsequently refer to r(mean) or
e(rmse) in numeric expressions and obtain the result to full precision.

Macros are strings. For instance, e(depvar) contains “mpg”. You can refer to it, too, in subsequent
expressions, but really that would be of most use to programmers, who will refer to it using constructs
like "‘e(depvar)’". In any case, macros are macros, and you obtain their contents just as you
would a local macro, by enclosing their name in single quotes. The name here is the full name, so
‘e(depvar)’ is mpg.

Matrices are matrices, and all estimation commands store e(b) and e(V) containing the coefficient
vector and variance–covariance matrix of the estimates (VCE).

Functions are saved by e-class commands only, and the only function existing is e(sample).
e(sample) evaluates to 1 (meaning true) if the observation was used in the previous estimation and
to 0 (meaning false) otherwise.

Technical note

Say that some command set r(scalar) and r(macro), the first being stored as a scalar and
the second as a macro. In theory, in subsequent use you are supposed to refer to r(scalar) and
‘r(macro)’. In fact, however, you can refer to either one with or without quotes, so you could refer
to ‘r(scalar)’ and r(macro). Programmers sometimes do this.

When you refer to r(scalar), you are referring to the full double-precision saved result. Think
of r(scalar) without quotes as a function returning the value of the saved result scalar. When you
refer to r(scalar) in quotes, Stata understands ‘r(scalar)’ to mean “substitute the printed result
of evaluating r(scalar)”. Pretend that r(scalar) equals the number 23. Then ‘r(scalar)’ is
23, the character 2 followed by 3.

Referring to r(scalar) in quotes is sometimes useful. Say that you want to use the immediate
command ci with r(scalar). The immediate command ci requires its arguments to be numbers—
numeric literals in programmer’s jargon—and it will not take an expression. Thus you could not type
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‘ci r(scalar) . . .’. You could, however, type ‘ci ‘r(scalar)’ . . .’ because ‘r(scalar)’ is just
a numeric literal.

For r(macro), you are supposed to refer to it in quotes: ‘r(macro)’. If, however, you omit the
quotes in an expression context, Stata evaluates the macro and then pretends that it is the result of
function-returning-string. There are side effects of this, the most important being that the result is
trimmed to 80 characters.

Referring to r(macro) without quotes is never a good idea; the feature was included merely for
completeness.

You can even refer to r(matrix) in quotes (assume that r(matrix) is a matrix). ‘r(matrix)’
does not result in the matrix being substituted; it returns the word matrix. Programmers sometimes
find that useful.

References
Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–308.

. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

Also see
[P] ereturn — Post the estimation results

[P] return — Return saved results

[U] 18.8 Accessing results calculated by other programs
[U] 18.9 Accessing results calculated by estimation commands

http://www.stata-journal.com/sjpdf.html?articlenum=st0085
http://www.stata-journal.com/sjpdf.html?articlenum=st0085_1


Title

scobit — Skewed logistic regression

Syntax
scobit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
offset(varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

or report odds ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, nestreg, rolling, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Binary outcomes > Skewed logit regression
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Description
scobit fits a maximum-likelihood skewed logit model.

See [R] logistic for a list of related estimation commands.

Options

� � �
Model �

noconstant, offset(varname), constraints(constraints), collinear; see [R] estimation op-
tions.

asis forces retention of perfect predictor variables and their associated perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

or reports the estimated coefficients transformed to odds ratios, that is, eb rather than b. Standard errors
and confidence intervals are similarly transformed. This option affects how results are displayed,
not how they are estimated. or may be specified at estimation or when replaying previously
estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with scobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Skewed logistic model
Robust standard errors
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Skewed logistic model

scobit fits maximum likelihood models with dichotomous dependent variables coded as 0/1 (or,
more precisely, coded as 0 and not 0).

Example 1

We have data on the make, weight, and mileage rating of 22 foreign and 52 domestic automobiles.
We wish to fit a model explaining whether a car is foreign based on its mileage. Here is an overview
of our data:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign

. describe

Contains data from http://www.stata-press.com/data/r12/auto.dta
obs: 74 1978 Automobile Data

vars: 4 13 Apr 2011 17:45
size: 1,702 (_dta has notes)

storage display value
variable name type format label variable label

make str18 %-18s Make and Model
mpg int %8.0g Mileage (mpg)
weight int %8.0gc Weight (lbs.)
foreign byte %8.0g origin Car type

Sorted by: foreign
Note: dataset has changed since last saved

. inspect foreign

foreign: Car type Number of Observations

Total Integers Nonintegers
# Negative - - -
# Zero 52 52 -
# Positive 22 22 -
#
# # Total 74 74 -
# # Missing -

0 1 74
(2 unique values)

foreign is labeled and all values are documented in the label.

The variable foreign takes on two unique values, 0 and 1. The value 0 denotes a domestic car,
and 1 denotes a foreign car.

The model that we wish to fit is

Pr(foreign = 1) = F (β0 + β1mpg)

where F (z) = 1− 1/{1 + exp(z)}α.
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To fit this model, we type

. scobit foreign mpg

Fitting logistic model:

Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -39.380959
Iteration 2: log likelihood = -39.288802
Iteration 3: log likelihood = -39.28864
Iteration 4: log likelihood = -39.28864

Fitting full model:

Iteration 0: log likelihood = -39.28864
Iteration 1: log likelihood = -39.286393
Iteration 2: log likelihood = -39.284415
Iteration 3: log likelihood = -39.284234
Iteration 4: log likelihood = -39.284197
Iteration 5: log likelihood = -39.284196

Skewed logistic regression Number of obs = 74
Zero outcomes = 52

Log likelihood = -39.2842 Nonzero outcomes = 22

foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .1813879 .2407362 0.75 0.451 -.2904463 .6532222
_cons -4.274883 1.399305 -3.06 0.002 -7.017471 -1.532295

/lnalpha -.4450405 3.879885 -0.11 0.909 -8.049476 7.159395

alpha .6407983 2.486224 .0003193 1286.133

Likelihood-ratio test of alpha=1: chi2(1) = 0.01 Prob > chi2 = 0.9249

Note: likelihood-ratio tests are recommended for inference with scobit models.

We find that cars yielding better gas mileage are less likely to be foreign. The likelihood-ratio test
at the bottom of the output indicates that the model is not significantly different from a logit model.
Therefore, we should use the more parsimonious model.

Technical note
Stata interprets a value of 0 as a negative outcome (failure) and treats all other values (except

missing) as positive outcomes (successes). Thus if the dependent variable takes on the values 0 and
1, then 0 is interpreted as failure and 1 as success. If the dependent variable takes on the values 0,
1, and 2, then 0 is still interpreted as failure, but both 1 and 2 are treated as successes.

Formally, when we type scobit y x, Stata fits the model

Pr(yj 6= 0 | xj) = 1− 1
/{

1 + exp(xjβ)
}α
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Robust standard errors
If you specify the vce(robust) option, scobit reports robust standard errors as described in

[U] 20.20 Obtaining robust variance estimates. For the model of foreign on mpg, the robust
calculation increases the standard error of the coefficient on mpg by around 25%:

. scobit foreign mpg, vce(robust) nolog

Skewed logistic regression Number of obs = 74
Zero outcomes = 52

Log pseudolikelihood = -39.2842 Nonzero outcomes = 22

Robust
foreign Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .1813879 .3028487 0.60 0.549 -.4121847 .7749606
_cons -4.274883 1.335521 -3.20 0.001 -6.892455 -1.657311

/lnalpha -.4450405 4.71561 -0.09 0.925 -9.687466 8.797385

alpha .6407983 3.021755 .0000621 6616.919

Without vce(robust), the standard error for the coefficient on mpg was reported to be 0.241, with
a resulting confidence interval of [−0.29, 0.65 ].

Specifying the vce(cluster clustvar) option relaxes the independence assumption required by
the skewed logit estimator to being just independence between clusters. To demonstrate this, we will
switch to a different dataset.

Example 2

We are studying the unionization of women in the United States and have a dataset with 26,200
observations on 4,434 women between 1970 and 1988. For our purposes, we will use the variables
age (the women were 14–26 in 1968 and the data thus span the age range of 16–46), grade (years
of schooling completed, ranging from 0 to 18), not smsa (28% of the person-time was spent living
outside an SMSA—standard metropolitan statistical area), south (41% of the person-time was in the
South), and year. Each of these variables is included in the regression as a covariate along with the
interaction between south and year. This interaction, along with the south and year variables, is
specified in the scobit command using factor-variables notation, south##c.year. We also have
variable union. Overall, 22% of the person-time is marked as time under union membership and
44% of these women have belonged to a union.

We fit the following model, ignoring that women are observed an average of 5.9 times each in
these data:
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. use http://www.stata-press.com/data/r12/union, clear
(NLS Women 14-24 in 1968)

. scobit union age grade not_smsa south##c.year, nrtol(1e-3)

(output omitted )
Skewed logistic regression Number of obs = 26200

Zero outcomes = 20389
Log likelihood = -13540.61 Nonzero outcomes = 5811

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0185365 .0043615 4.25 0.000 .0099881 .0270849
grade .0452803 .0057124 7.93 0.000 .0340842 .0564764

not_smsa -.1886849 .0317802 -5.94 0.000 -.250973 -.1263968
1.south -1.422381 .3949298 -3.60 0.000 -2.196429 -.6483327

year -.0133017 .0049575 -2.68 0.007 -.0230182 -.0035853

south#c.year
1 .0105663 .0049233 2.15 0.032 .0009168 .0202158

_cons -10.19247 63.69015 -0.16 0.873 -135.0229 114.6379

/lnalpha 8.972796 63.68825 0.14 0.888 -115.8539 133.7995

alpha 7885.616 502221.1 4.85e-51 1.28e+58

Likelihood-ratio test of alpha=1: chi2(1) = 3.76 Prob > chi2 = 0.0524

Note: likelihood-ratio tests are recommended for inference with scobit models.

The reported standard errors in this model are probably meaningless. Women are observed repeatedly,
so the observations are not independent. Looking at the coefficients, we find a large southern effect
against unionization and a different time trend for the south. The vce(cluster clustvar) option
provides a way to fit this model and obtains correct standard errors:

. scobit union age grade not_smsa south##c.year, vce(cluster id) nrtol(1e-3)

(output omitted )
Skewed logistic regression Number of obs = 26200

Zero outcomes = 20389
Log pseudolikelihood = -13540.61 Nonzero outcomes = 5811

(Std. Err. adjusted for 4434 clusters in idcode)

Robust
union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0185365 .0084867 2.18 0.029 .0019029 .0351701
grade .0452803 .0125764 3.60 0.000 .0206311 .0699296

not_smsa -.1886849 .0642035 -2.94 0.003 -.3145214 -.0628484
1.south -1.422381 .5064916 -2.81 0.005 -2.415086 -.4296756

year -.0133017 .0090621 -1.47 0.142 -.0310632 .0044597

south#c.year
1 .0105663 .0063172 1.67 0.094 -.0018152 .0229478

_cons -10.19247 .9458356 -10.78 0.000 -12.04627 -8.338666

/lnalpha 8.972796 .7483321 11.99 0.000 7.506092 10.4395

alpha 7885.616 5901.06 1819.09 34183.54
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scobit, vce(cluster clustvar) is robust to assumptions about within-cluster correlation. That
is, it inefficiently sums within cluster for the standard error calculation rather than attempting to exploit
what might be assumed about the within-cluster correlation (as do the xtgee population-averaged
models; see [XT] xtgee).

Technical note
The scobit model can be difficult to fit because of the functional form. Often it requires many

iterations, or the optimizer prints out warning and informative messages during the optimization. For
example, without the nrtol(1e-3) option, the model using the union dataset will not converge.
See [R] maximize for details about the optimizer.

Technical note
The main reason for using scobit rather that logit is that the effects of the regressors on the

probability of success are not constrained to be the largest when the probability is 0.5. Rather, the
independent variables might show their largest impact when the probability of success is 0.3 or 0.6.
This added flexibility results because the scobit function, unlike the logit function, can be skewed
and is not constrained to be mirror symmetric about the 0.5 probability of success.

As Nagler (1994) pointed out, the point of maximum impact is constrained under the scobit model
to fall within the interval (0, 1 − e(−1)) or approximately (0, 0.63). Achen (2002) notes that if we
believe the maximum impact to be outside that range, we can instead estimate the “power logit”
model by simply reversing the 0s and 1s of our outcome variable and estimating a scobit model on
failure, rather than success. We would need to reverse the signs of the coefficients if we wanted to
interpret them in terms of impact on success, or we could leave them as they are and interpret them
in terms of impact on failure. The important thing to remember is that the scobit model, unlike the
logit model, is not invariant to the choice of which result is assigned to success.
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Saved results
scobit saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(ll) log likelihood
e(ll c) log likelihood, comparison model
e(N f) number of failures (zero outcomes)
e(N s) number of successes (nonzero outcomes)
e(alpha) alpha
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) scobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
scobit is implemented as an ado-file.

Skewed logit analysis is an alternative to logit that relaxes the assumption that individuals with
initial probability of 0.5 are most sensitive to changes in independent variables.

The log-likelihood function for skewed logit is

lnL =
∑
j∈S

wj lnF (xjb) +
∑
j 6∈S

wj ln
{

1− F (xjb)
}

where S is the set of all observations j such that yj 6= 0, F (z) = 1 − 1/
{

1 + exp(z)
}α

, and wj
denotes the optional weights. lnL is maximized as described in [R] maximize.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

scobit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

References
Achen, C. H. 2002. Toward a new political methodology: Microfoundations and ART. Annual Review of Political

Science 5: 423–450.

Nagler, J. 1994. Scobit: An alternative estimator to logit and probit. American Journal of Political Science 38:
230–255.

Also see
[R] scobit postestimation — Postestimation tools for scobit

[R] cloglog — Complementary log-log regression

[R] glm — Generalized linear models

[R] logistic — Logistic regression, reporting odds ratios

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

scobit postestimation — Postestimation tools for scobit

Description
The following postestimation commands are available after scobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarlnalpha

} [
if
] [

in
]
, scores

statistic Description

Main

pr probability of a positive outcome; the default
xb xjb, linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

1940
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of a positive outcome.

xb calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset(varname) for scobit. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as xjb
rather than as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂ lnα.

Remarks
Once you have fit a model, you can obtain the predicted probabilities by using the predict

command for both the estimation sample and other samples; see [U] 20 Estimation and postestimation
commands and [R] predict. Here we will make only a few additional comments.

predict without arguments calculates the predicted probability of a positive outcome. With the
xb option, it calculates the linear combination xjb, where xj are the independent variables in the
jth observation and b is the estimated parameter vector.

With the stdp option, predict calculates the standard error of the prediction, which is not
adjusted for replicated covariate patterns in the data.

Example 1

In example 1 of [R] scobit, we fit the model scobit foreign mpg. To obtain predicted probabilities,
we type

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. keep make mpg weight foreign

. scobit foreign mpg
(output omitted )

. predict p
(option pr assumed; Pr(foreign))

. summarize foreign p

Variable Obs Mean Std. Dev. Min Max

foreign 74 .2972973 .4601885 0 1
p 74 .2974049 .182352 .0714664 .871624
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] scobit — Skewed logistic regression

[U] 20 Estimation and postestimation commands



Title

sdtest — Variance-comparison tests

Syntax

One-sample variance-comparison test

sdtest varname == #
[

if
] [

in
] [

, level(#)
]

Two-sample variance-comparison test

sdtest varname1 == varname2

[
if
] [

in
] [

, level(#)
]

Two-group variance-comparison test

sdtest varname
[

if
] [

in
]
, by(groupvar)

[
level(#)

]
Immediate form of one-sample variance-comparison test

sdtesti #obs
{

#mean | .
}

#sd #val
[
, level(#)

]
Immediate form of two-sample variance-comparison test

sdtesti #obs,1
{

#mean,1 | .
}

#sd,1 #obs,2
{

#mean,2 | .
}

#sd,2
[
, level(#)

]
Robust tests for equality of variances

robvar varname
[

if
] [

in
]
, by(groupvar)

by is allowed with sdtest and robvar; see [D] by.

Menu
one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample variance-comparison test

two-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample variance-comparison test

two-group

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-group variance-comparison test

immediate command: one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample variance-comparison
calculator

1943
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immediate command: two-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample variance-comparison
calculator

robvar

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Robust equal-variance test

Description
sdtest performs tests on the equality of standard deviations (variances). In the first form, sdtest

tests that the standard deviation of varname is #. In the second form, sdtest tests that varname1

and varname2 have the same standard deviation. In the third form, sdtest performs the same test,
using the standard deviations of the two groups defined by groupvar.

sdtesti is the immediate form of sdtest; see [U] 19 Immediate commands.

Both the traditional F test for the homogeneity of variances and Bartlett’s generalization of this
test to K samples are sensitive to the assumption that the data are drawn from an underlying Gaussian
distribution. See, for example, the cautionary results discussed by Markowski and Markowski (1990).
Levene (1960) proposed a test statistic for equality of variance that was found to be robust under
nonnormality. Then Brown and Forsythe (1974) proposed alternative formulations of Levene’s test
statistic that use more robust estimators of central tendency in place of the mean. These reformulations
were demonstrated to be more robust than Levene’s test when dealing with skewed populations.

robvar reports Levene’s robust test statistic (W0) for the equality of variances between the groups
defined by groupvar and the two statistics proposed by Brown and Forsythe that replace the mean in
Levene’s formula with alternative location estimators. The first alternative (W50) replaces the mean
with the median. The second alternative replaces the mean with the 10% trimmed mean (W10).

Options
level(#) specifies the confidence level, as a percentage, for confidence intervals of the means. The

default is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence
intervals.

by(groupvar) specifies the groupvar that defines the groups to be compared. For sdtest, there
should be two groups, but for robvar there may be more than two groups. Do not confuse the
by() option with the by prefix; both may be specified.

Remarks
Remarks are presented under the following headings:

Basic form
Immediate form
Robust test



sdtest — Variance-comparison tests 1945

Basic form

sdtest performs two different statistical tests: one testing equality of variances and the other
testing that the standard deviation is equal to a known constant. Which test it performs is determined
by whether you type a variable name or a number to the right of the equal sign.

Example 1: One-sample test of variance

We have a sample of 74 automobiles. For each automobile, we know the mileage rating. We wish
to test whether the overall standard deviation is 5 mpg:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sdtest mpg == 5

One-sample test of variance

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

sd = sd(mpg) c = chi2 = 97.7384
Ho: sd = 5 degrees of freedom = 73

Ha: sd < 5 Ha: sd != 5 Ha: sd > 5
Pr(C < c) = 0.9717 2*Pr(C > c) = 0.0565 Pr(C > c) = 0.0283

Example 2: Variance ratio test

We are testing the effectiveness of a new fuel additive. We run an experiment on 12 cars, running
each without and with the additive. The data can be found in [R] ttest. The results for each car are
stored in the variables mpg1 and mpg2:

. use http://www.stata-press.com/data/r12/fuel

. sdtest mpg1==mpg2

Variance ratio test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

ratio = sd(mpg1) / sd(mpg2) f = 0.7054
Ho: ratio = 1 degrees of freedom = 11, 11

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.2862 2*Pr(F < f) = 0.5725 Pr(F > f) = 0.7138

We cannot reject the hypothesis that the standard deviations are the same.

In [R] ttest, we draw an important distinction between paired and unpaired data, which, in this
example, means whether there are 12 cars in a before-and-after experiment or 24 different cars. For
sdtest, on the other hand, there is no distinction. If the data had been unpaired and stored as
described in [R] ttest, we could have typed sdtest mpg, by(treated), and the results would have
been the same.
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Immediate form

Example 3: sdtesti

Immediate commands are used not with data, but with reported summary statistics. For instance,
to test whether a variable on which we have 75 observations and a reported standard deviation of 6.5
comes from a population with underlying standard deviation 6, we would type

. sdtesti 75 . 6.5 6

One-sample test of variance

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x 75 . .7505553 6.5 . .

sd = sd(x) c = chi2 = 86.8472
Ho: sd = 6 degrees of freedom = 74

Ha: sd < 6 Ha: sd != 6 Ha: sd > 6
Pr(C < c) = 0.8542 2*Pr(C > c) = 0.2916 Pr(C > c) = 0.1458

The mean plays no role in the calculation, so it may be omitted.

To test whether the variable comes from a population with the same standard deviation as another
for which we have a calculated standard deviation of 7.5 over 65 observations, we would type

. sdtesti 75 . 6.5 65 . 7.5

Variance ratio test

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x 75 . .7505553 6.5 . .
y 65 . .9302605 7.5 . .

combined 140 . . . . .

ratio = sd(x) / sd(y) f = 0.7511
Ho: ratio = 1 degrees of freedom = 74, 64

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1
Pr(F < f) = 0.1172 2*Pr(F < f) = 0.2344 Pr(F > f) = 0.8828

Robust test

Example 4: robvar

We wish to test whether the standard deviation of the length of stay for patients hospitalized for a
given medical procedure differs by gender. Our data consist of observations on the length of hospital
stay for 1778 patients: 884 males and 894 females. Length of stay, lengthstay, is highly skewed
(skewness coefficient = 4.912591) and thus violates Bartlett’s normality assumption. Therefore, we
use robvar to compare the variances.
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. use http://www.stata-press.com/data/r12/stay

. robvar lengthstay, by(sex)

Summary of Length of stay in days
sex Mean Std. Dev. Freq.

male 9.0874434 9.7884747 884
female 8.800671 9.1081478 894

Total 8.9432508 9.4509466 1778

W0 = .55505315 df(1, 1776) Pr > F = .45635888

W50 = .42714734 df(1, 1776) Pr > F = .51347664

W10 = .44577674 df(1, 1776) Pr > F = .50443411

For these data, we cannot reject the null hypothesis that the variances are equal. However, Bartlett’s
test yields a significance probability of 0.0319 because of the pronounced skewness of the data.

Technical note
robvar implements both the conventional Levene’s test centered at the mean and a median-centered

test. In a simulation study, Conover, Johnson, and Johnson (1981) compare the properties of the two
tests and recommend using the median test for asymmetric data, although for small sample sizes
the test is somewhat conservative. See Carroll and Schneider (1985) for an explanation of why both
mean- and median-centered tests have approximately the same level for symmetric distributions, but
for asymmetric distributions the median test is closer to the correct level.

Saved results
sdtest and sdtesti save the following in r():

Scalars
r(N) number of observations
r(p l) lower one-sided p-value
r(p u) upper one-sided p-value
r(p) two-sided p-value
r(F) F statistic
r(sd) standard deviation
r(sd 1) standard deviation for first variable
r(sd 2) standard deviation for second variable
r(df) degrees of freedom
r(df 1) numerator degrees of freedom
r(df 2) denominator degrees of freedom
r(chi2) χ2

robvar saves the following in r():

Scalars
r(N) number of observations
r(w50) Brown and Forsythe’s F statistic (median)
r(p w50) Brown and Forsythe’s p-value
r(w0) Levene’s F statistic
r(p w0) Levene’s p-value
r(w10) Brown and Forsythe’s F statistic (trimmed mean)
r(p w10) Brown and Forsythe’s p-value (trimmed mean)
r(df 1) numerator degrees of freedom
r(df 2) denominator degrees of freedom
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Methods and formulas
sdtest, sdtesti, and robvar are implemented as ado-files.

See Armitage et al. (2002, 149–153) or Bland (2000, 171–172) for an introduction and explanation
of the calculation of these tests.

The test for σ = σ0 is given by

χ2 =
(n− 1)s2

σ2
0

which is distributed as χ2 with n− 1 degrees of freedom.

The test for σ2
x = σ2

y is given by

F =
s2
x

s2
y

which is distributed as F with nx − 1 and ny − 1 degrees of freedom.

robvar is also implemented as an ado-file.

Let Xij be the jth observation of X for the ith group. Let Zij = |Xij −Xi|, where Xi is the
mean of X in the ith group. Levene’s test statistic is

W0 =
∑
i ni(Zi − Z)2/(g − 1)∑

i

∑
j(Zij − Zi)2/

∑
i(ni − 1)

where ni is the number of observations in group i and g is the number of groups. W50 is obtained
by replacing Xi with the ith group median of Xij , whereas W10 is obtained by replacing Xi with
the 10% trimmed mean for group i.
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Title

search — Search Stata documentation

Syntax
search word

[
word . . .

] [
, search options

]
set searchdefault

{
local | net | all

} [
, permanently

]
findit word

[
word . . .

]
search options Description

local search using Stata’s keyword database; the default
net search across materials available via Stata’s net command
all search across both the local keyword database and the net material

author search by author’s name
entry search by entry ID
exact search across both the local keyword database and the net materials; prevents

matching on abbreviations
faq search the FAQs posted to the Stata website
historical search entries that are of historical interest only
or list an entry if any of the words typed after search are associated with the entry
manual search the entries in the Stata Documentation
sj search the entries in the Stata Journal and the STB

Menu
Help > Search...

Description
search searches a keyword database and the Internet.

Capitalization of the words following search is irrelevant, as is the inclusion or exclusion of
special characters such as commas and hyphens.

set searchdefault affects the default behavior of the search command. local is the default.

findit is equivalent to search word
[
word . . .

]
, all. findit results are displayed in the

Viewer. findit is the best way to search for information on a topic across all sources, including
the online help, the FAQs at the Stata website, the Stata Journal, and all Stata-related Internet sources
including user-written additions. From findit, you can click to go to a source or to install additions.

See [R] hsearch for a command that searches help files.

1950
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Options for search
local, the default (unless changed by set searchdefault), specifies that the search be performed

using only Stata’s keyword database.

net specifies that the search be performed across the materials available via Stata’s net command.
Using search word

[
word . . .

]
, net is equivalent to typing net search word

[
word . . .

]
(without options); see [R] net search.

all specifies that the search be performed across both the local keyword database and the net
materials.

author specifies that the search be performed on the basis of author’s name rather than keywords.
A search with the author option is performed on the local keyword database only.

entry specifies that the search be performed on the basis of entry IDs rather than keywords. A search
with the entry option is performed on the local keyword database only.

exact prevents matching on abbreviations. A search with the exact option is performed across both
the local keyword database and the net materials.

faq limits the search to the FAQs posted on the Stata website: http://www.stata.com. A search with
the faq option is performed on the local keyword database only.

historical adds to the search entries that are of historical interest only. By default, such entries
are not listed. Past entries are classified as historical if they discuss a feature that later became an
official part of Stata. Updates to historical entries will always be found, even if historical is
not specified. A search with the historical option is performed on the local keyword database
only.

or specifies that an entry be listed if any of the words typed after search are associated with the
entry. The default is to list the entry only if all the words specified are associated with the entry.
A search with the or option is performed on the local keyword database only.

manual limits the search to entries in the Stata Documentation; that is, the search is limited to the
User’s Guide and all the reference manuals. A search with the manual option is performed on the
local keyword database only.

sj limits the search to entries in the Stata Journal and its predecessor, the Stata Technical Bulletin;
see [R] sj. A search with the sj option is performed on the local keyword database only.

Option for set searchdefault
permanently specifies that, in addition to making the change right now, the searchdefault setting

be remembered and become the default setting when you invoke Stata.

Remarks
Remarks are presented under the following headings:

Introduction
Internet searches
Author searches
Entry ID searches
Return codes

http://www.stata.com
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Introduction

See [U] 4 Stata’s help and search facilities for a tutorial introduction to search. search is one
of Stata’s most useful commands. To understand the advanced features of search, you need to know
how it works.

search has a database—files—containing the titles, etc., of every entry in the User’s Guide, the
Base Reference Manual, the Data-Management Reference Manual, the Graphics Reference Manual,
the Longitudinal-Data/Panel-Data Reference Manual, the Multiple-Imputation Reference Manual,
the Multivariate Statistics Reference Manual, the Programming Reference Manual, the Structural
Equation Modeling Reference Manual, the Survey Data Reference Manual, the Survival Analysis and
Epidemiological Tables Reference Manual, the Time-Series Reference Manual, the Mata Reference
Manual, undocumented help files, NetCourses, Stata Press books, FAQs posted on the Stata website,
selected articles on StataCorp’s official blog, selected user-written FAQs and examples, and the articles
in the Stata Journal and the Stata Technical Bulletin. In these files is a list of words, called keywords,
associated with each entry.

When you type search xyz, search reads the database and compares the list of keywords with
xyz. If it finds xyz in the list or a keyword that allows an abbreviation of xyz, it displays the entry.

When you type search xyz abc, search does the same thing but displays an entry only if it
contains both keywords. The order does not matter, so you can search linear regression or
search regression linear.

Obviously, how many entries search finds depends on how the search database was constructed.
We have included a plethora of keywords under the theory that, for a given request, it is better to
list too much rather than risk listing nothing at all. Still, you are in the position of guessing the
keywords. Do you look up normality test, normality tests, or tests of normality? Well, normality test
would be best, but all would work. In general, use the singular, and strike the unnecessary words.
For guidelines for specifying keywords, see [U] 4.6 More on search.

set searchdefault allows you to specify where search searches. set searchdefault local,
the default, restricts search to using only Stata’s keyword database. set searchdefault net
restricts search to searching only the Internet. set searchdefault all indicates that both the
keyword database and the Internet are to be searched.

Internet searches
search with the net option searches the Internet for user-written additions to Stata, including,

but not limited to, user-written additions published in the Stata Journal (SJ) and the Stata Technical
Bulletin (STB). search keywords, net performs the same search as the command net search (with
no options); see [R] net search.

. search random effect, net

Keyword search

Keywords: random effect
Search: (1) Web resources from Stata and from other users

Web resources from Stata and other users

(contacting http://www.stata.com)

135 packages found (Stata Journal and STB listed first)
------------------------------------------------------

st0201 from http://www.stata-journal.com/software/sj10-3
SJ10-3 st0201. metaan: Random-effects meta-analysis / metaan:
Random-effects meta-analysis / by Evangelos Kontopantelis, / National
Primary Care Research and Development Centre (NPCRDC), / University of
Manchester, Manchester, UK / David Reeves, / National Primary Care
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st0175 from http://www.stata-journal.com/software/sj9-4
SJ9-4 st0175. A menu-driven facility for sample-size... / A menu-driven
facility for sample-size calculation in / novel multiarm, multistage
randomized controlled / trials with a time-to-event outcome / by
Friederike M.-S. Barthel, GlaxoSmithKline / Patrick Royston, UK Medical

sbe24_3 from http://www.stata-journal.com/software/sj9-2
SJ9-2 sbe24_3. Update: metan: fixed- and random-effects... / Update:
metan: fixed- and random-effects meta-analysis / by Ross J. Harris, Roger
M. Harbord, and Jonathan A. C. Sterne, / Department of Social Medicine,
University of Bristol / Jonathan J. Deeks, Department of Primary Care

st0156 from http://www.stata-journal.com/software/sj9-1
SJ9-1 st0156. Multivariate random-effects meta-analysis / Multivariate
random-effects meta-analysis / by Ian R. White, MRC Biostatistics Unit, /
Institute of Public Health, UK / Support: ian.white@mrc-bsu.cam.ac.uk /
After installation, type help mvmeta and mvmeta_make

(output omitted )

(end of search)

Author searches

search ordinarily compares the words following search with the keywords for the entry. If you
specify the author option, however, it compares the words with the author’s name. In the search
database, we have filled in author names for all SJ and STB inserts.

For instance, in [R] kdensity in this manual you will discover that Isaı́as H. Salgado-Ugarte wrote
the first version of Stata’s kdensity command and published it in the STB. Assume that you read
his original insert and found the discussion useful. You might now wonder what else he has written
in the SJ or STB. To find out, you type

. search Salgado-Ugarte, author
(output omitted )

Names like Salgado-Ugarte are confusing to many people. search does not require you to specify
the entire name; what you type is compared with each “word” of the name and, if any part matches,
the entry is listed. The hyphen is a special character, and you can omit it. Thus you can obtain the
same list by looking up Salgado, Ugarte, or Salgado Ugarte without the hyphen.

Actually, to find all entries written by Salgado-Ugarte, you need to type

. search Salgado-Ugarte, author historical
(output omitted )

Prior inserts in the SJ or STB that provide a feature that later was superseded by a built-in feature of
Stata are marked as historical in the search database and, by default, are not listed. The historical
option ensures that all entries are listed.

Entry ID searches

If you specify the entry option, search compares what you have typed with the entry ID. The
entry ID is not the title—it is the reference listed to the left of the title that tells you where to look.
For instance, in

[R] regress . . . . . . . . . . . . . . . . . . . . . . Linear regression
(help regress)
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[R] regress is the entry ID. This is a reference, of course, to this manual. In

FAQ . . . . . . . . . . . Analysis of multiple failure-time survival data
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cleves
11/99 How do I analyze multiple failure-time data using Stata?

http://www.stata.com/support/faqs/stat/stmfail.html

“FAQ” is the entry ID. In

SJ-7-1 st0118 . . A survey on survey stat.: What is and can be done in Stata
. . . . . . . . . . . . . . . . . . . . . . F. Kreuter and R. Valliant
Q1/07 SJ7(1):1--21 (no commands)
discusses survey issues in analyzing complex survey
data and describes some of Stata’s capabilities for
such analyses

“SJ-7-1” is the entry ID.

search with the entry option searches these entry IDs.

Thus you could generate a table of contents for the User’s Guide by typing

. search [U], entry
(output omitted )

You could generate a table of contents for Stata Journal, Volume 1, Issue 1, by typing

. search sj-1-1, entry
(output omitted )

To generate a table of contents for the 26th issue of the STB, you would type

. search STB-26, entry historical
(output omitted )

The historical option here is possibly important. STB-26 was published in July 1995, and perhaps
some of its inserts have already been marked historical.

You could obtain a list of all inserts associated with sg53 by typing

. search sg53, entry historical
(output omitted )

Again we include the historical option in case any of the relevant inserts have been marked
historical.

Return codes

In addition to indexing the entries in the User’s Guide and all the Reference manuals, search
also can be used to search return codes.

To see information on return code 131, type

. search rc 131

[P] error . . . . . . . . . . . . . . . . . . . . . . . . Return code 131
not possible with test;
You requested a test of a hypothesis that is nonlinear in the
variables. test tests only linear hypotheses. Use testnl.

If you want a list of all Stata return codes, type

. search error, entry
(output omitted )
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Methods and formulas
findit is implemented as an ado-file.

Acknowledgment
findit grew from a suggestion by Nicholas J. Cox, Durham University.

Also see
[R] hsearch — Search help files

[R] help — Display online help

[R] net search — Search the Internet for installable packages

[U] 4 Stata’s help and search facilities



Title

serrbar — Graph standard error bar chart

Syntax
serrbar mvar svar xvar

[
if
] [

in
] [

, options
]

options Description

Main

scale(#) scale length of graph bars; default is scale(1)

Error bars

rcap options affect rendition of capped spikes

Plotted points

mvopts(scatter options) affect rendition of plotted points

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Menu
Statistics > Other > Quality control > Standard error bar chart

Description
serrbar graphs mvar±scale()× svar against xvar. Usually, but not necessarily, mvar and svar

will contain means and standard errors or standard deviations of some variable so that a standard
error bar chart is produced.

Options

� � �
Main �

scale(#) controls the length of the bars. The upper and lower limits of the bars will be mvar +
scale()× svar and mvar− scale()× svar. The default is scale(1).

� � �
Error bars �

rcap options affect the rendition of the plotted error bars (the capped spikes). See [G-2] graph twoway
rcap.

1956
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� � �
Plotted points �

mvopts(scatter options) affects the rendition of the plotted points (mvar versus xvar). See [G-2] graph
twoway scatter.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see
[G-3] saving option).

Remarks

Example 1

In quality-control applications, the three most commonly used variables with this command are
the process mean, process standard deviation, and time. For instance, we have data on the average
weights and standard deviations from an assembly line in San Francisco for the period January 8 to
January 16. Our data are

. use http://www.stata-press.com/data/r12/assembly

. list, sep(0) divider

date mean std

1. 108 192.22 3.94
2. 109 192.64 2.83
3. 110 192.37 4.58
4. 113 194.76 3.25
5. 114 192.69 2.89
6. 115 195.02 1.73
7. 116 193.40 2.62

We type serrbar mean std date, scale(2) but, after seeing the result, decide to make it fancier:
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. serrbar mean std date, scale(2) title("Observed Weight Variation")
> sub("San Francisco plant, 1/8 to 1/16") yline(195) yaxis(1 2)
> ylab(195, axis(2)) ytitle("", axis(2))
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Methods and formulas
serrbar is implemented as an ado-file.

Acknowledgment
serrbar was written by Nicholas J. Cox of Durham University.

Also see
[R] qc — Quality control charts



Title

set — Overview of system parameters

Syntax

set
[

setcommand . . .
]

set typed without arguments is equivalent to query typed without arguments.

Description

This entry provides a reference to Stata’s set commands. For many entries, more thorough
information is provided elsewhere; see the Reference field in each entry below for the location of
this information.

To reset system parameters to factory defaults, see [R] set defaults.

Remarks

set adosize
Syntax: set adosize #

[
, permanently

]
Default: 1,000
Description: sets the maximum amount of memory that automatically loaded do-files

may consume. 10 ≤ # ≤ 10000.
Reference: [P] sysdir

set autotabgraphs (Windows only)
Syntax: set autotabgraphs

{
on | off

} [
, permanently

]
Default: off
Description: determines whether graphs are created as tabs within one window or as separate

windows.

set cformat
Syntax: set cformat

[
fmt
] [

, permanently
]

Description: specifies the output format of coefficients, standard errors, and confidence limits
in coefficient tables. fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set checksum
Syntax: set checksum

{
on | off

} [
, permanently

]
Default: off
Description: determines whether files should be prevented from being downloaded from the

Internet if checksums do not match.
Reference: [D] checksum

1959
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set conren (Unix console only)
Syntax 1: set conren
Syntax 2: set conren clear
Syntax 3: set conren

[
sf | bf | it

]{
result |

[
txt | text

]
| input | error | link | hilite

}[
char

[
char. . .

]]
Syntax 4: set conren {ulon | uloff}

[
char

[
char . . .

]]
Syntax 5: set conren reset

[
char

[
char . . .

]]
Description: can possibly make the output on your screen appear prettier.

set conren displays a list of the currently defined display codes.
set conren clear clears all codes.
set conren followed by a font type (bf, sf, or it) and display context (result,
error, link, or hilite) and then followed by a series of space-separated
characters sets the code for the specified font type and display context. If the font
type is omitted, the code is set to the same specified code for all three font types.
set conren ulon and set conren uloff set the codes for turning on and off
underlining.
set conren reset sets the code that will turn off all display and underlining codes.

Reference: [GSU] conren

set copycolor (Mac and Windows only)
Syntax: set copycolor

{
automatic | asis | gs1 | gs2 | gs3

} [
, permanently

]
Default: automatic
Description: determines how colors are handled when graphs are copied to the Clipboard.
Reference: [G-2] set printcolor

set dockable (Windows only)
Syntax: set dockable

{
on | off

} [
, permanently

]
Default: on
Description: determines whether to enable the use of dockable window characteristics,

including the ability to dock or tab a window into another window.

set dockingguides (Windows only)
Syntax: set dockingguides

{
on | off

} [
, permanently

]
Default: on
Description: determines whether to enable the use of dockable guides when repositioning

a dockable window.

set doublebuffer (Windows only)
Syntax: set doublebuffer

{
on | off

} [
, permanently

]
Default: on
Description: enables or disables double buffering of the Results, Viewer, and Data Editor

windows. Double buffering prevents the windows from flickering when redrawn
or resized. Users who encounter performance problems such as the Results window
outputting very slowly should disable double buffering.
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set dp
Syntax: set dp

{
comma | period

} [
, permanently

]
Default: period
Description: determines whether a period or a comma is to be used as the decimal point.
Reference: [D] format

set emptycells
Syntax: set emptycells

{
keep | drop

} [
, permanently

]
Default: keep
Description: sets what to do with empty cells in interactions.
Reference: [R] set emptycells

set eolchar (Mac only)
Syntax: set eolchar

{
mac | unix

} [
, permanently

]
Default: unix
Description: sets the default end-of-line delimiter for text files created in Stata.

set fastscroll (Unix and Windows only)
Syntax: set fastscroll

{
on | off

} [
, permanently

]
Default: on
Description: sets the scrolling method for new output in the Results window. Setting

fastscroll to on is faster but can be jumpy. Setting fastscroll to off
is slower but smoother.

set floatresults (Windows only)
Syntax: set floatresults

{
on | off

}
Default: off
Description: determines whether to enable floating window behavior for the Results window. The

term “float” in this context means the Results window will always float over the
main Stata window; the Results window can never be placed behind the main Stata
window. There is no permanently option because permanently is implied.

set floatwindows (Windows only)
Syntax: set floatwindows

{
on | off

}
Default: off
Description: determines whether to enable floating window behavior for dialog boxes and dockable

window. The term “float” in this context means that a window will always float
over the main Stata window; these windows cannot be placed behind the main Stata
window. There is no permanently option because permanently is implied.

set graphics
Syntax: set graphics

{
on | off

}
Default: on; default is off for console Stata
Description: determines whether graphs are displayed on your monitor.
Reference: [G-2] set graphics
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set httpproxy
Syntax: set httpproxy

{
on | off

} [
, init

]
Default: off
Description: turns on/off the use of a proxy server. There is no permanently option because

permanently is implied.
Reference: [R] netio

set httpproxyauth
Syntax: set httpproxyauth

{
on | off

}
Default: off
Description: determines whether authorization is required for the proxy server.

There is no permanently option because permanently is implied.
Reference: [R] netio

set httpproxyhost
Syntax: set httpproxyhost

[
"
]
name

[
"
]

Description: sets the name of a host to be used as a proxy server. There is no permanently
option because permanently is implied.

Reference: [R] netio

set httpproxyport
Syntax: set httpproxyport #
Default: 8080 if Stata cannot autodetect the proper setting for your computer.
Description: sets the port number for a proxy server. There is no permanently option

because permanently is implied.
Reference: [R] netio

set httpproxypw
Syntax: set httpproxypw

[
"
]
password

[
"
]

Description: sets the appropriate password. There is no permanently option because
permanently is implied.

Reference: [R] netio

set httpproxyuser
Syntax: set httpproxyuser

[
"
]
name

[
"
]

Description: sets the appropriate user ID. There is no permanently option because
permanently is implied.

Reference: [R] netio

set include bitmap (Mac only)
Syntax: set include bitmap

{
on | off

} [
, permanently

]
Default: on
Description: sets the output behavior when copying an image to the Clipboard.
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set level
Syntax: set level #

[
, permanently

]
Default: 95
Description: sets the default significance level for confidence intervals for all commands

that report confidence intervals. 10.00 ≤ # ≤ 99.99, and # can have at
most two digits after the decimal point.

Reference: [R] level

set linegap
Syntax: set linegap #
Default: 1
Description: sets the space between lines, in pixels, in the Results window. There is no

permanently option because permanently is implied.

set linesize
Syntax: set linesize #
Default: 1 less than the full width of the screen
Description: sets the line width, in characters, for both the screen and the log file.
Reference: [R] log

set locksplitters (Windows only)
Syntax: set locksplitters

{
on | off

} [
, permanently

]
Default: off
Description: determines whether splitters should be locked so that docked windows

cannot be resized.

set logtype
Syntax: set logtype

{
text | smcl

} [
, permanently

]
Default: smcl
Description: sets the default log filetype.
Reference: [R] log

set lstretch
Syntax: set lstretch

{
on | off

} [
, permanently

]
Description: specifies whether to automatically widen the coefficient table up to the width of

the Results window to accommodate longer variable names.

set matacache, set matafavor, set matalibs, set matalnum, set matamofirst,
set mataoptimize, and set matastrict; see [M-3] mata set.

set matsize
Syntax: set matsize #

[
, permanently

]
Default: 400 for Stata/MP, Stata/SE, and Stata/IC; 40 for Small Stata
Description: sets the maximum number of variables that can be included in any estimation

command. This setting cannot be changed in Small Stata.
10 ≤ # ≤ 11000 for Stata/MP and Stata/SE; 10 ≤ # ≤ 800 for Stata/IC.

Reference: [R] matsize



1964 set — Overview of system parameters

set max memory
Syntax: set max memory #

[
b | k | m | g

] [
, permanently

]
Default: . (all the memory the operating system will supply)
Description: specifies the maximum amount of memory Stata can use to store your data.

2× segmentsize ≤ # ≤ .
Reference: [D] memory

set maxdb
Syntax: set maxdb #

[
, permanently

]
Default: 50
Description: sets the maximum number of dialog boxes whose contents are remembered

from one invocation to the next during a session. 5 ≤ # ≤ 1000
Reference: [R] db

set maxiter
Syntax: set maxiter #

[
, permanently

]
Default: 16000
Description: sets the default maximum number of iterations for estimation commands.

0 ≤ # ≤ 16000
Reference: [R] maximize

set maxvar
Syntax: set maxvar #

[
, permanently

]
Default: 5000 for Stata/MP and Stata/SE, 2048 for Stata/IC, and 99 for Small Stata
Description: sets the maximum number of variables. This can be changed only in Stata/MP and

Stata/SE. 2048 ≤ # ≤ 32767
Reference: [D] memory

set min memory
Syntax: set min memory #

[
b | k | m | g

] [
, permanently

]
Default: 0
Description: specifies an amount of memory Stata will not fall below. This setting affects

efficiency, not the size of datasets you can analyze. 0 ≤ # ≤ max memory
Reference: [D] memory

set more
Syntax: set more

{
on | off

} [
, permanently

]
Default: on
Description: pauses when more is displayed, continuing only when the user presses a key.
Reference: [R] more

set niceness
Syntax: set niceness #

[
, permanently

]
Default: 5
Description: affects how soon Stata gives back unused segments to the operating system.

0 ≤ # ≤ 10
Reference: [D] memory
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set notifyuser (Mac only)
Syntax: set notifyuser

{
on | off

} [
, permanently

]
Default: on
Description: sets the default Notification Manager behavior in Stata.

set obs
Syntax: set obs #
Default: current number of observations
Description: changes the number of observations in the current dataset. # must be at least

as large as the current number of observations. If there are variables in memory,
the values of all new observations are set to missing.

Reference: [D] obs

set odbcmgr (Unix only)
Syntax: set odbcmgr

{
iodbc | unixodbc

} [
, permanently

]
Default: iodbc
Description: determines whether iODBC or unixODBC is your ODBC driver manager.
Reference: [D] odbc

set output
Syntax: set output

{
proc | inform | error

}
Default: proc
Description: specifies the output to be displayed. proc means display all output; inform

suppresses procedure output but displays informative messages and error messages;
error suppresses all output except error messages. set output is seldom used.

Reference: [P] quietly

set pagesize
Syntax: set pagesize #
Default: 2 less than the physical number of lines on the screen
Description: sets the number of lines between more messages.
Reference: [R] more

set pformat
Syntax: set pformat

[
fmt
] [

, permanently
]

Description: specifies the output format of p-values in coefficient tables.
fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set pinnable (Windows only)
Syntax: set pinnable

{
on | off

} [
, permanently

]
Default: on
Description: determines whether to enable the use of pinnable window characteristics for certain

windows in Stata.
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set playsnd (Mac only)
Syntax: set playsnd

{
on | off

} [
, permanently

]
Default: on
Description: sets the sound behavior for the Notification Manager behavior in Stata.

set printcolor
Syntax: set printcolor

{
automatic | asis | gs1 | gs2 | gs3

} [
, permanently

]
Default: automatic
Description: determines how colors are handled when graphs are printed.
Reference: [G-2] set printcolor

set processors
Syntax: set processors #
Description: sets the number of processors or cores that Stata/MP will use. The default

is the number of processors available on the computer, or the number of
processors allowed by Stata/MP’s license, whichever is less.

set reventries
Syntax: set reventries #

[
, permanently

]
Default: 5000
Description: sets the number of scrollback lines available in the Review window.

5 ≤ # ≤ 32000.

set revkeyboard (Mac only)
Syntax: set revkeyboard

{
on | off

} [
, permanently

]
Default: on
Description: sets the keyboard navigation behavior for the Review window. on indicates

that you can use the keyboard to navigate and enter items from the Review
window into the Command window. off indicates that all keyboard input be
directed at the Command window; items can be entered from the Review
window only by using the mouse.

set rmsg
Syntax: set rmsg

{
on | off

} [
, permanently

]
Default: off
Description: indicates whether a return message telling the execution time is to be displayed at

the completion of each command.
Reference: [P] rmsg

set scheme
Syntax: set scheme schemename

[
, permanently

]
Default: s2color
Description: determines the overall look for graphs.
Reference: [G-2] set scheme
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set scrollbufsize
Syntax: set scrollbufsize #
Default: 200000
Description: sets the scrollback buffer size, in bytes, for the Results window;

may be set between 10,000 and 2,000,000.

set searchdefault
Syntax: set searchdefault

{
local | net | all

} [
, permanently

]
Default: local
Description: sets the default behavior of the search command. set searchdefault local

restricts search to use only Stata’s keyword database. set searchdefault net
restricts search to searching only the Internet. set searchdefault all
indicates that both the keyword database and the Internet are to be searched.

Reference: [R] search

set seed
Syntax: set seed

{
# | code

}
Default: 123456789
Description: specifies initial value of the random-number seed used by the runiform() function.
Reference: [R] set seed

set segmentsize
Syntax: set segmentsize #

[
b | k | m | g

] [
, permanently

]
Default: 32m for 64-bit machines; 16m for 32-bit machines
Description: Stata allocates memory for data in units of segmentsize. This setting changes the

amount of memory in a single segment.
1m ≤ # ≤ 32g for 64-bit machines; 1m ≤ # ≤ 1g for 32-bit machines

Reference: [D] memory

set sformat
Syntax: set sformat

[
fmt
] [

, permanently
]

Description: specifies the output format of test statistics in coefficient tables.
fmt is a numerical format; see [D] format.

Reference: [R] set cformat

set showbaselevels
Syntax: set showbaselevels

[
on | off | all

] [
, permanently

]
Description: specifies whether to display base levels of factor variables and their interactions

in coefficient tables.
Reference: [R] set showbaselevels

set showemptycells
Syntax: set showemptycells

[
on | off

] [
, permanently

]
Description: specifies whether to display empty cells in coefficient tables.
Reference: [R] set showbaselevels
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set showomitted
Syntax: set showomitted

[
on | off

] [
, permanently

]
Description: specifies whether to display omitted coefficients in coefficient tables.
Reference: [R] set showbaselevels

set smoothfonts (Mac only)
Syntax: set smoothfonts

{
on | off

}
Default: on
Description: determines whether to use font smoothing (antialiased text) in the Results, Viewer,

and Data Editor windows.

set timeout1
Syntax: set timeout1 #seconds

[
, permanently

]
Default: 30
Description: sets the number of seconds Stata will wait for a remote host to respond to an initial

contact before giving up. In general, users should not modify this value unless
instructed to do so by Stata Technical Services.

Reference: [R] netio

set timeout2
Syntax: set timeout2 #seconds

[
, permanently

]
Default: 180
Description: sets the number of seconds Stata will keep trying to get information from a remote

host after initial contact before giving up. In general, users should not modify this
value unless instructed to do so by Stata Technical Services.

Reference: [R] netio

set trace
Syntax: set trace

{
on | off

}
Default: off
Description: determines whether to trace the execution of programs for debugging.
Reference: [P] trace

set tracedepth
Syntax: set tracedepth #
Default: 32000 (equivalent to ∞)
Description: if trace is set on, traces execution of programs and nested programs up to

tracedepth. For example, if tracedepth is 2, the current program and any
subroutine called would be traced, but subroutines of subroutines would not
be traced.

Reference: [P] trace

set traceexpand
Syntax: set traceexpand

{
on | off

} [
, permanently

]
Default: on
Description: if trace is set on, shows lines both before and after macro expansion. If

traceexpand is set off, only the line before macro expansion is shown.
Reference: [P] trace
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set tracehilite
Syntax: set tracehilite "pattern"

[
, word

]
Default: ""
Description: highlights pattern in the trace output.
Reference: [P] trace

set traceindent
Syntax: set traceindent

{
on | off

} [
, permanently

]
Default: on
Description: if trace is set on, indents displayed lines according to their nesting level. The

lines of the main program are not indented. Two spaces of indentation are used for
each level of nested subroutine.

Reference: [P] trace

set tracenumber
Syntax: set tracenumber

{
on | off

} [
, permanently

]
Default: off
Description: if trace is set on, shows the nesting level numerically in front of the line.

Lines of the main program are preceded by 01, lines of subroutines called by the
main program are preceded by 02, etc.

Reference: [P] trace

set tracesep
Syntax: set tracesep

{
on | off

} [
, permanently

]
Default: on
Description: if trace is set on, displays a horizontal separator line that displays the name

of the subroutine whenever a subroutine is called or exits.
Reference: [P] trace

set type
Syntax: set type

{
float | double

} [
, permanently

]
Default: float
Description: specifies the default storage type assigned to new variables.
Reference: [D] generate

set update interval (Mac and Windows only)
Syntax: set update interval #
Default: 7
Description: sets the number of days to elapse before performing the next automatic

update query.
Reference: [R] update

set update prompt (Mac and Windows only)
Syntax: set update prompt

{
on | off

}
Default: on
Description: determines wheter a dialog is to be displayed before performing an automatic

update query. There is no permanently option because permanently is implied.
Reference: [R] update
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set update query (Mac and Windows only)
Syntax: set update query

{
on | off

}
Default: on
Description: determines whether update query is to be automatically performed when Stata

is launched. There is no permanently option because permanently is implied.
Reference: [R] update

set varabbrev
Syntax: set varabbrev

{
on | off

} [
, permanently

]
Default: on
Description: indicates whether Stata should allow variable abbreviations.
Reference: [P] varabbrev

set varkeyboard (Mac only)
Syntax: set varkeyboard

{
on | off

} [
, permanently

]
Default: on
Description: sets the keyboard navigation behavior for the Variables window. on indicates

that you can use the keyboard to navigate and enter items from the Variables
window into the Command window. off indicates that all keyboard input be
directed at the Command window; items can be entered from the Variables
window only by using the mouse.

Also see
[R] query — Display system parameters

[R] set defaults — Reset system parameters to original Stata defaults

[M-3] mata set — Set and display Mata system parameters



Title

set cformat — Format settings for coefficient tables

Syntax
set cformat

[
fmt
] [

, permanently
]

set pformat
[

fmt
] [

, permanently
]

set sformat
[

fmt
] [

, permanently
]

where fmt is a numerical format.

Description
set cformat specifies the output format of coefficients, standard errors, and confidence limits in

coefficient tables.

set pformat specifies the output format of p-values in coefficient tables.

set sformat specifies the output format of test statistics in coefficient tables.

Option
permanently specifies that, in addition to making the change right now, the setting be remembered

and become the default setting when you invoke Stata.

Remarks
The formatting of the numbers in the coefficient table can be controlled by using the set cformat,

set pformat, and set sformat commands or by using the cformat(% fmt), pformat(% fmt), and
sformat(% fmt) options at the time of estimation or on replay of the estimation command. See
[R] estimation options.
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Example 1

We use auto.dta to illustrate.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg weight displacement

Source SS df MS Number of obs = 74
F( 2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

. set cformat %9.2f

. regress mpg weight displacement

Source SS df MS Number of obs = 74
F( 2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -0.01 0.00 -5.63 0.000 -0.01 -0.00
displacement 0.01 0.01 0.54 0.594 -0.01 0.02

_cons 40.08 2.02 19.84 0.000 36.06 44.11

. regress mpg weight displacement, cformat(%9.3f)

Source SS df MS Number of obs = 74
F( 2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -0.007 0.001 -5.63 0.000 -0.009 -0.004
displacement 0.005 0.010 0.54 0.594 -0.014 0.025

_cons 40.085 2.020 19.84 0.000 36.057 44.113
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To reset the cformat setting to its command-specific default, type

. set cformat

. regress mpg weight displacement

Source SS df MS Number of obs = 74
F( 2, 71) = 66.79

Model 1595.40969 2 797.704846 Prob > F = 0.0000
Residual 848.049768 71 11.9443629 R-squared = 0.6529

Adj R-squared = 0.6432
Total 2443.45946 73 33.4720474 Root MSE = 3.4561

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0065671 .0011662 -5.63 0.000 -.0088925 -.0042417
displacement .0052808 .0098696 0.54 0.594 -.0143986 .0249602

_cons 40.08452 2.02011 19.84 0.000 36.05654 44.11251

Also see
[R] estimation options — Estimation options

[R] set — Overview of system parameters

[R] query — Display system parameters

[U] 20.8 Formatting the coefficient table



Title

set defaults — Reset system parameters to original Stata defaults

Syntax
set defaults

{
category | all

} [
, permanently

]
where category is one of memory | output | interface | graphics | efficiency |

network | update | trace | mata | other

Description
set defaults resets settings made by set to the original default settings that were shipped with

Stata.

set defaults all resets all the categories, whereas set defaults category resets only the
settings for the specified category.

Option
permanently specifies that, in addition to making the change right now, the settings be remembered

and become the default settings when you invoke Stata.

Remarks

Example 1

To assist us in debugging a new command, we modified some of the trace settings. To return
them to their original values, we type

. set_defaults trace
-> set trace off
-> set tracedepth 32000
-> set traceexpand on
-> set tracesep on
-> set traceindent on
-> set tracenumber off
-> set tracehilite ""
(preferences reset)

Methods and formulas
set defaults is implemented as an ado-file.

1974
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Also see
[R] query — Display system parameters

[R] set — Overview of system parameters

[M-3] mata set — Set and display Mata system parameters



Title

set emptycells — Set what to do with empty cells in interactions

Syntax
set emptycells { keep | drop }

[
, permanently

]
Description

set emptycells allows you to control how Stata handles interaction terms with empty cells.
Stata can keep empty cells or drop them. The default is to keep empty cells.

Option
permanently specifies that, in addition to making the change right now, the setting be remembered

and become the default setting when you invoke Stata.

Remarks
By default, Stata keeps empty cells so they can be reported in the coefficient table. For example,

type

. use http://www.stata-press.com/data/r12/auto

. regress mpg rep78#foreign, baselevels

and you will see a regression of mpg on 10 indicator variables because rep78 takes on 5 values and
foreign takes on 2 values in the auto dataset. Two of those cells will be reported as empty because
the data contain no observations of foreign cars with a rep78 value of 1 or 2.

Many real datasets contain a large number of empty cells, and this could cause the “matsize too
small” error, r(908). In that case, type

. set emptycells drop

to get Stata to drop empty cells from the list of coefficients. If you commonly fit models with empty
cells, you can permanently set Stata to drop empty cells by typing the following:

. set emptycells drop, permanently

Also see
[R] set — Overview of system parameters
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Title

set seed — Specify initial value of random-number seed

Syntax
set seed #

set seed statecode

where

# is any number between 0 and 231 − 1 (2,147,483,647), and

statecode is a random-number state previously obtained from creturn value c(seed).

Description
set seed # specifies the initial value of the random-number seed used by the random-number

functions, such as runiform() and rnormal().

set seed statecode resets the state of the random-number functions to the value specified, which
is a state previously obtained from creturn value c(seed).

Remarks
Remarks are presented under the following headings:

Examples
Setting the seed
How to choose a seed
Do not set the seed too often
Preserving and restoring the random-number generator state

Examples

1. Specify initial value of random-number seed
. set seed 339487731

2. Create variable u containing uniformly distributed pseudorandom numbers on the interval [0, 1)
. generate u = runiform()

3. Create variable z containing normally distributed random numbers with mean 0 and standard
deviation 1

. generate z = rnormal()

4. Obtain state of pseudorandom-number generator and store it in a local macro named state

. local state = c(seed)

5. Restore pseudorandom-number generator state to that previously stored in local macro named
state

. set seed ‘state’

1977
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Setting the seed

Stata’s random-number generation functions, such as runiform() and rnormal(), do not really
produce random numbers. These functions are deterministic algorithms that produce numbers that
can pass for random. runiform() produces numbers that can pass for independent draws from a
rectangular distribution over [0, 1); rnormal() produces numbers that can pass for independent draws
from N(0, 1). Stata’s random-number functions are formally called pseudorandom-number functions.

The sequences these functions produce are determined by the seed, which is just a number and
which is set to 123456789 every time Stata is launched. This means that runiform() produces
the same sequence each time you start Stata. The first time you use runiform() after Stata is
launched, runiform() returns 0.136984078446403146. The second time you use it, runiform()
returns 0.643220667960122228. The third time you use it, . . . .

To obtain different sequences, you must specify different seeds using the set seed command.
You might specify the seed 472195:

. set seed 472195

If you were now to use runiform(), the first call would return 0.247166610788553953, the second
call would return 0.593119932804256678, and so on. Whenever you set seed 472195, runiform()
will return those numbers the first two times you use it.

Thus you set the seed to obtain different pseudorandom sequences from the pseudorandom-number
functions.

If you record the seed you set, pseudorandom results such as results from a simulation or imputed
values from mi impute can be reproduced later. Whatever you do after setting the seed, if you set
the seed to the same value and repeat what you did, you will obtain the same results.

How to choose a seed
Your best choice for the seed is an element chosen randomly from the set {0, 1, . . . , 2,147,483,647}.

We recommend that, but that is difficult to achieve because finding easy-to-access, truly random sources
is difficult.

One person we know uses digits from the serial numbers from dollar bills he finds in his wallet.
Of course, the numbers he obtains are not really random, but they are good enough, and they are
probably a good deal more random than the seeds most people choose. Some people use dates and
times, although we recommend against that because, over the day, it just gets later and later, and
that is a pattern. Others try to make up a random number, figuring if they include enough digits, the
result just has to be random. This is a variation on the five-second rule for dropped food, and we
admit to using both of these rules.

It does not really matter how you set the seed, as long as there is no obvious pattern in the seeds
that you set and as long as you do not set the seed too often during a session.

Nonetheless, here are two methods that we have seen used but you should not use:

1. The first time you set the seed, you set the number 1. The next time, you set 2, and then 3,
and so on. Variations on this included setting 1001, 1002, 1003, . . . , or setting 1001, 2001,
3001, and so on.

Do not follow any of these procedures. The seeds you set must not exhibit a pattern.
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2. To set the seed, you obtain a pseudorandom number from runiform() and then use the
digits from that to form the seed.

This is a bad idea because the pseudorandom-number generator can converge to a cycle.
If you obtained the pseudorandom-number generator unrelated to those in Stata, this would
work well, but then you would have to find a rule to set the first generator’s seed. In any
case, the pseudorandom-number generators in Stata are all closely related, and so you must
not follow this procedure.

Choosing seeds that do not exhibit a pattern is of great importance. That the seeds satisfy the
other properties of randomness is minor by comparison.

Do not set the seed too often
We cannot emphasize this enough: Do not set the seed too often.

To see why this is such a bad idea, consider the limiting case: You set the seed, draw one
pseudorandom number, reset the seed, draw again, and so continue. The pseudorandom numbers you
obtain will be nothing more than the seeds you run through a mathematical function. The results you
obtain will not pass for random unless the seeds you choose pass for random. If you already had
such numbers, why are you even bothering to use the pseudorandom-number generator?

The definition of too often is more than once per problem.

If you are running a simulation of 10,000 replications, set the seed at the start of the simulation
and do not reset it until the 10,000th replication is finished. The pseudorandom-number generators
provided by Stata have long periods. The longer you go between setting the seed, the more random-like
are the numbers produced.

It is sometimes useful later to be able to reproduce in isolation any one of the replications, and so
you might be tempted to set the seed to a known value for each of the replications. We negatively
mentioned setting the seed to 1, 2, . . . , and it is in exactly such situations that we have seen this done.
The advantage, however, is that you could reproduce the fifth replication merely by setting the seed
to 5 and then repeating whatever it is that is to be replicated. If this is your goal, you do not need
to reset the seed. You can record the state of the random-number generator, save the state with your
replication results, and then use the recorded states later to reproduce whichever of the replications
that you wish. This will be discussed in Preserving and restoring the random-number generator state.

There is another reason you might be tempted to set the seed more than once per problem. It
sometimes happens that you run a simulation, let’s say for 5,000 replications, and then you decide
you should have run it for 10,000 replications. Instead of running all 10,000 replications afresh, you
decide to save time by running another 5,000 replications and then combining those results with
your previous 5,000 results. That is okay. We at StataCorp do this kind of thing. If you do this, it
is important that you set the seed especially well, particularly if you repeat this process to add yet
another 5,000 replications. It is also important that in each run there be a large enough number of
replications, which is say thousands of them.

Even so, do not do this: You want 500,000 replications. To obtain them, you run in batches of
1,000, setting the seed 500 times. Unless you have a truly random source for the seeds, it is unlikely
you can produce a patternless sequence of 500 seeds. The fact that you ran 1,000 replications in
between choosing the seeds does not mitigate the requirement that there be no pattern to the seeds
you set.

In all cases, the best solution is to set the seed only once and then use the method we suggest in
the next section.
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Preserving and restoring the random-number generator state

In the previous section, we discussed the case in which you might be tempted to set the seed
more frequently than otherwise necessary, either to save time or to be able to rerun any one of the
replications. In such cases, there is an alternative to setting a new seed: recording the state of the
pseudorandom-number generator and then restoring the state later should the need arise.

The state of the random-number generator is a string that looks like this:
Xb5804563c43f462544a474abacbdd93d00021fb3

You can obtain the state from c(seed):
. display c(seed)
Xb5804563c43f462544a474abacbdd93d00021fb3

The name c(seed) is unfortunate because it suggests that
Xb5804563c43f462544a474abacbdd93d00021fb3 is nothing more than a seed such as 1073741823 in
a different guise. It is not. A better name for c(seed) would have been c(rng state). The state
string specifies an entry point into the sequence produced by the pseudorandom-number generator.
Let us explain.

The best way to use a pseudorandom-number generator would be to choose a seed once, draw
random numbers until you use up the generator, and then get a new generator and choose a new key.
Pseudorandom-number generators have a period, after which they repeat the original sequence. That
is what we mean by using up a generator. The period of the pseudorandom-number generator that
Stata is currently using is over 2123. Stata uses the KISS generator. It is difficult to imagine that you
could ever use up KISS.

The string reported by c(seed) reports an encoded form of the information necessary for Stata
to reestablish exactly where it is located in the pseudorandom-number generator’s sequence.

We are not seriously suggesting you choose only one seed over your entire lifetime, but let’s look
at how you might do that. Sometime after birth, when you needed your first random number, you
would set your seed,

. set seed 1073741823

On that day, you would draw, say, 10,000 pseudorandom numbers, perhaps to impute some missing
values. Being done for the day, you type

. display c(seed)
X15b512f3b2143ab434f1c92f4e7058e400023bc3

The next day, after launching Stata, you type
. set seed X15b512f3b2143ab434f1c92f4e7058e400023bc3

When you type set seed followed by a state string rather than a number, instead of setting the
seed, Stata reestablishes the previous state. Thus the next time you draw a pseudorandom number,
Stata will produce the 10,001st result after setting seed 1073741823. Let’s assume that you draw
100,000 numbers this day. Done for the day, you display c(seed).

. display c(seed)
X5d13d693a72ad0602b093cc4f61e07a500020381

On the third day, after setting the seed to the string above, you will be in a position to draw the
110,001st pseudorandom number.

In this way, you would eat your way though the 2123 random numbers, but you would be unlikely
ever to make it to the end. Assuming you did this every day for 100 years, to arrive at the end of
the sequence you would need to consume 2.9e+32 pseudorandom numbers per day.
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We do not expect you to set the seed just once in your life, but using the state string makes it
easy to set the seed just once for a problem.

When we do simulations at StataCorp, we record c(seed) for each replication. Just like everybody
else, we record results from replications as observations in datasets; we just happen to have an extra
variable in the dataset, namely, a string variable named state. That string is filled in observation by
observation from the then-current values of c(seed), which is a function and so can be used in any
context that a function can be used in Stata.

Anytime we want to reproduce a particular replication, we thus have the information we need to
reset the pseudorandom-number generator, and having it in the dataset is convenient because we had
to go there anyway to determine which replication we wanted to reproduce.

In addition to recording each of the state strings for each replication, we record the closing value
of c(seed) as a note, which is easy enough to do:

. note: closing state ‘c(seed)’

If we want to add more replications later, we have a state string that we can use to continue from
where we left off.

Also see
[R] set — Overview of system parameters

[D] functions — Functions
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set showbaselevels — Display settings for coefficient tables

Syntax
set showbaselevels

[
on | off | all

] [
, permanently

]
set showemptycells

[
on | off

] [
, permanently

]
set showomitted

[
on | off

] [
, permanently

]
Description

set showbaselevels specifies whether to display base levels of factor variables and their
interactions in coefficient tables. set showbaselevels on specifies that base levels be reported for
factor variables and for interactions whose bases cannot be inferred from their component factor
variables. set showbaselevels all specifies that all base levels of factor variables and interactions
be reported.

set showemptycells specifies whether to display empty cells in coefficient tables.

set showomitted specifies whether to display omitted coefficients in coefficient tables.

Option
permanently specifies that, in addition to making the change right now, the setting be remembered

and become the default setting when you invoke Stata.

1982
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Remarks

Example 1

We illustrate these three set commands using cholesterol2.dta.

. use http://www.stata-press.com/data/r12/cholesterol2
(Artificial cholesterol data, empty cells)

. generate x = race

. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample
note: x omitted because of collinearity

Source SS df MS Number of obs = 70
F( 13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coef. Std. Err. t P>|t| [95% Conf. Interval]

race
2 12.84185 5.989703 2.14 0.036 .8430383 24.84067
3 -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
2 17.24681 5.989703 2.88 0.006 5.247991 29.24562
3 31.43847 5.989703 5.25 0.000 19.43966 43.43729
4 34.86613 5.989703 5.82 0.000 22.86732 46.86495
5 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
2 2 0 (empty)
2 3 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
2 4 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
2 5 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
3 2 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
3 3 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
3 4 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
3 5 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

x 0 (omitted)
_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153

. set showemptycells off

. set showomitted off

. set showbaselevels all
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. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample
note: x omitted because of collinearity

Source SS df MS Number of obs = 70
F( 13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coef. Std. Err. t P>|t| [95% Conf. Interval]

race
1 0 (base)
2 12.84185 5.989703 2.14 0.036 .8430383 24.84067
3 -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
1 0 (base)
2 17.24681 5.989703 2.88 0.006 5.247991 29.24562
3 31.43847 5.989703 5.25 0.000 19.43966 43.43729
4 34.86613 5.989703 5.82 0.000 22.86732 46.86495
5 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
1 1 0 (base)
1 2 0 (base)
1 3 0 (base)
1 4 0 (base)
1 5 0 (base)
2 1 0 (base)
2 3 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
2 4 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
2 5 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
3 1 0 (base)
3 2 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
3 3 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
3 4 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
3 5 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153
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To restore the display of empty cells, omitted predictors, and baselevels to their command-specific
default behavior, type

. set showemptycells

. set showomitted

. set showbaselevels

. regress chol race##agegrp x
note: 2.race#2.agegrp identifies no observations in the sample
note: x omitted because of collinearity

Source SS df MS Number of obs = 70
F( 13, 56) = 13.51

Model 15751.6113 13 1211.66241 Prob > F = 0.0000
Residual 5022.71559 56 89.6913498 R-squared = 0.7582

Adj R-squared = 0.7021
Total 20774.3269 69 301.077201 Root MSE = 9.4706

chol Coef. Std. Err. t P>|t| [95% Conf. Interval]

race
2 12.84185 5.989703 2.14 0.036 .8430383 24.84067
3 -.167627 5.989703 -0.03 0.978 -12.16644 11.83119

agegrp
2 17.24681 5.989703 2.88 0.006 5.247991 29.24562
3 31.43847 5.989703 5.25 0.000 19.43966 43.43729
4 34.86613 5.989703 5.82 0.000 22.86732 46.86495
5 44.43374 5.989703 7.42 0.000 32.43492 56.43256

race#agegrp
2 2 0 (empty)
2 3 -22.83983 8.470719 -2.70 0.009 -39.80872 -5.870939
2 4 -14.67558 8.470719 -1.73 0.089 -31.64447 2.293306
2 5 -10.51115 8.470719 -1.24 0.220 -27.48004 6.457735
3 2 -6.054425 8.470719 -0.71 0.478 -23.02331 10.91446
3 3 -11.48083 8.470719 -1.36 0.181 -28.44971 5.488063
3 4 -.6796112 8.470719 -0.08 0.936 -17.6485 16.28928
3 5 -1.578052 8.470719 -0.19 0.853 -18.54694 15.39084

x 0 (omitted)
_cons 175.2309 4.235359 41.37 0.000 166.7464 183.7153

Also see
[R] set — Overview of system parameters

[R] query — Display system parameters
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signrank — Equality tests on matched data

Syntax

Wilcoxon matched-pairs signed-ranks test

signrank varname = exp
[

if
] [

in
]

Sign test of matched pairs

signtest varname = exp
[

if
] [

in
]

by is allowed with signrank and signtest; see [D] by.

Menu
signrank

Statistics > Nonparametric analysis > Tests of hypotheses > Wilcoxon matched-pairs signed-rank test

signtest

Statistics > Nonparametric analysis > Tests of hypotheses > Test equality of matched pairs

Description

signrank tests the equality of matched pairs of observations by using the Wilcoxon matched-pairs
signed-ranks test (Wilcoxon 1945). The null hypothesis is that both distributions are the same.

signtest also tests the equality of matched pairs of observations (Arbuthnott [1710], but better
explained by Snedecor and Cochran [1989]) by calculating the differences between varname and the
expression. The null hypothesis is that the median of the differences is zero; no further assumptions
are made about the distributions. This, in turn, is equivalent to the hypothesis that the true proportion
of positive (negative) signs is one-half.

For equality tests on unmatched data, see [R] ranksum.

Remarks

Example 1: signrank

We are testing the effectiveness of a new fuel additive. We run an experiment with 12 cars. We
first run each car without the fuel treatment and measure the mileage. We then add the fuel treatment
and repeat the experiment. The results of the experiment are

1986
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Without With Without With
treatment treatment treatment treatment

20 24 18 17
23 25 24 28
21 21 20 24
25 22 24 27
18 23 23 21
17 18 19 23

We create two variables called mpg1 and mpg2, representing mileage without and with the treatment,
respectively. We can test the null hypothesis that the treatment had no effect by typing

. use http://www.stata-press.com/data/r12/fuel

. signrank mpg1=mpg2

Wilcoxon signed-rank test

sign obs sum ranks expected

positive 3 13.5 38.5
negative 8 63.5 38.5

zero 1 1 1

all 12 78 78

unadjusted variance 162.50
adjustment for ties -1.62
adjustment for zeros -0.25

adjusted variance 160.62

Ho: mpg1 = mpg2
z = -1.973

Prob > |z| = 0.0485

The output indicates that we can reject the null hypothesis at any level above 4.85%.

Example 2: signtest

signtest tests that the median of the differences is zero, making no further assumptions, whereas
signrank assumed that the distributions are equal as well. Using the data above, we type

. signtest mpg1=mpg2

Sign test

sign observed expected

positive 3 5.5
negative 8 5.5

zero 1 1

all 12 12

One-sided tests:
Ho: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 > 0

Pr(#positive >= 3) =
Binomial(n = 11, x >= 3, p = 0.5) = 0.9673

Ho: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 < 0

Pr(#negative >= 8) =
Binomial(n = 11, x >= 8, p = 0.5) = 0.1133
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Two-sided test:
Ho: median of mpg1 - mpg2 = 0 vs.
Ha: median of mpg1 - mpg2 != 0

Pr(#positive >= 8 or #negative >= 8) =
min(1, 2*Binomial(n = 11, x >= 8, p = 0.5)) = 0.2266

The summary table indicates that there were three comparisons for which mpg1 exceeded mpg2, eight
comparisons for which mpg2 exceeded mpg1, and one comparison for which they were the same.

The output below the summary table is based on the binomial distribution. The significance of the
one-sided test, where the alternative hypothesis is that the median of mpg2 − mpg1 is greater than
zero, is 0.1133. The significance of the two-sided test, where the alternative hypothesis is simply that
the median of the differences is different from zero, is 0.2266 = 2× 0.1133.

Saved results
signrank saves the following in r():

Scalars
r(N neg) number of negative comparisons r(sum neg) sum of the negative ranks
r(N pos) number of positive comparisons r(z) z statistic
r(N tie) number of tied comparisons r(Var a) adjusted variance
r(sum pos) sum of the positive ranks

signtest saves the following in r():

Scalars
r(N neg) number of negative comparisons r(p 2) two-sided probability
r(N pos) number of positive comparisons r(p neg) one-sided probability of negative

comparison
r(N tie) number of tied comparisons r(p pos) one-sided probability of positive

comparison

Methods and formulas
signrank and signtest are implemented as ado-files.

For a practical introduction to these techniques with an emphasis on examples rather than theory,
see Bland (2000) or Sprent and Smeeton (2007). For a summary of these tests, see Snedecor and
Cochran (1989).

Methods and formulas are presented under the following headings:

signrank
signtest

signrank

Both the sign test and Wilcoxon signed-rank tests test the null hypothesis that the distribution
of a random variable D = varname − exp has median zero. The sign test makes no additional
assumptions, but the Wilcoxon signed-rank test makes the additional assumption that the distribution
of D is symmetric. If D = X1 −X2, where X1 and X2 have the same distribution, then it follows
that the distribution of D is symmetric about zero. Thus the Wilcoxon signed-rank test is often
described as a test of the hypothesis that two distributions are the same, that is, X1 ∼ X2.
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Let dj denote the difference for any matched pair of observations,

dj = x1j − x2j = varname− exp

for j = 1, 2, . . . , n.

Rank the absolute values of the differences, |dj |, and assign any tied values the average rank.
Consider the signs of dj , and let

rj = sign(dj) rank(|dj |)
be the signed ranks. The test statistic is

Tobs =
n∑
j=1

rj = (sum of ranks for + signs)− (sum of ranks for − signs)

The null hypothesis is that the distribution of dj is symmetric about 0. Hence the likelihood is
unchanged if we flip signs on the dj , and thus the randomization datasets are the 2n possible sign
changes for the dj . Thus the randomization distribution of our test statistic T can be computed by
considering all the 2n possible values of

T =
n∑
j=1

Sjrj

where the rj are the observed signed ranks (considered fixed) and Sj is either +1 or −1.

With this distribution, the mean and variance of T are given by

E(T ) = 0 and Varadj(T ) =
n∑
j=1

r2
j

The test statistic for the Wilcoxon signed-rank test is often expressed (equivalently) as the sum of
the positive signed-ranks, T+, where

E(T+) =
n(n+ 1)

4
and Varadj(T+) =

1
4

n∑
j=1

r2
j

Zeros and ties do not affect the theory above, and the exact variance is still given by the above
formula for Varadj(T+). When dj = 0 is observed, dj will always be zero in each of the randomization
datasets (using sign(0) = 0). When there are ties, you can assign averaged ranks for each group of
ties and then treat them the same as the other ranks.

The “unadjusted variance” reported by signrank is the variance that the randomization distribution
would have had if there had been no ties or zeros:

Varunadj(T+) =
1
4

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

24

The adjustment for zeros is the change in the variance when the ranks for the zeros are signed to
make rj = 0,

∆Varzero adj(T+) = −1
4

n0∑
j=1

j2 = −n0(n0 + 1)(2n0 + 1)
24
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where n0 is the number of zeros. The adjustment for ties is the change in the variance when the
ranks (for nonzero observations) are replaced by averaged ranks:

∆Varties adj(T+) = Varadj(T+)−Varunadj(T+)−∆Varzero adj(T+)

A normal approximation is used to calculate

z =
T+ − E(T+)√

Varadj(T+)

signtest

The test statistic for the sign test is the number n+ of differences

dj = x1j − x2j = varname− exp

greater than zero. Assuming that the probability of a difference being equal to zero is exactly zero, then,
under the null hypothesis, n+ ∼ binomial(n, p = 1/2), where n is the total number of observations.

But what if some differences are zero? This question has a ready answer if you view the test
from the perspective of Fisher’s Principle of Randomization (Fisher 1935). Fisher’s idea (stated in a
modern way) was to look at a family of transformations of the observed data such that the a priori
likelihood (under the null hypothesis) of the transformed data is the same as the likelihood of the
observed data. The distribution of the test statistic is then produced by calculating its value for each
of the transformed “randomization” datasets, assuming that each dataset is equally likely.

For the sign test, the “data” are simply the set of signs of the differences. Under the null hypothesis
of the sign test, the probability that dj is less than zero is equal to the probability that dj is greater
than zero. Thus you can transform the observed signs by flipping any number of them, and the set of
signs will have the same likelihood. The 2n possible sign changes form the family of randomization
datasets. If you have no zeros, this procedure again leads to n+ ∼ binomial(n, p = 1/2).

If you do have zeros, changing their signs leaves them as zeros. So, if you observe n0 zeros,
each of the 2n sign-change datasets will also have n0 zeros. Hence, the values of n+ calculated
over the sign-change datasets range from 0 to n− n0, and the “randomization” distribution of n+ is
binomial(n− n0, p = 1/2).

The work of Arbuthnott (1710) and later eighteenth-century contributions is discussed by Hald (2003,
chap. 17).

� �
Frank Wilcoxon (1892–1965) was born in Ireland to American parents. After working in various
occupations (including merchant seaman, oil-well pump attendant, and tree surgeon), he settled in
chemistry, gaining degrees from Rutgers and Cornell and employment from various companies.
Working mainly on the development of fungicides and insecticides, Wilcoxon became interested
in statistics in 1925 and made several key contributions to nonparametric methods. After retiring
from industry, he taught statistics at Florida State until his death.� �
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Title

simulate — Monte Carlo simulations

Syntax
simulate

[
exp list

]
, reps(#)

[
options

]
: command

options Description

nodots suppress replication dots
noisily display any output from command
trace trace command
saving( filename, . . .) save results to filename
nolegend suppress table legend
verbose display the full table legend
seed(#) set random-number seed to #

All weight types supported by command are allowed; see [U] 11.1.6 weight.

exp list contains (name: elist)
elist
eexp

elist contains newvar = (exp)
(exp)

eexp is specname
[eqno]specname

specname is b

b[]

se

se[]

eqno is # #
name

exp is a standard Stata expression; see [U] 13 Functions and expressions.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Description
simulate eases the programming task of performing Monte Carlo–type simulations. Typing

. simulate exp list, reps(#): command

runs command for # replications and collects the results in exp list.

command defines the command that performs one simulation. Most Stata commands and user-
written programs can be used with simulate, as long as they follow standard Stata syntax; see
[U] 11 Language syntax. The by prefix may not be part of command.

1992
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exp list specifies the expression to be calculated from the execution of command. If no expressions
are given, exp list assumes a default, depending upon whether command changes results in e() or
r(). If command changes results in e(), the default is b. If command changes results in r() (but
not e()), the default is all the scalars posted to r(). It is an error not to specify an expression in
exp list otherwise.

Options
reps(#) is required—it specifies the number of replications to be performed.

nodots suppresses display of the replication dots. By default, one dot character is displayed for each
successful replication. A red ‘x’ is displayed if command returns an error or if one of the values
in exp list is missing.

noisily requests that any output from command be displayed. This option implies the nodots
option.

trace causes a trace of the execution of command to be displayed. This option implies the noisily
option.

saving( filename
[
, suboptions

]
) creates a Stata data file (.dta file) consisting of (for each statistic

in exp list) a variable containing the simulated values.

double specifies that the results for each replication be stored as doubles, meaning 8-byte reals.
By default, they are stored as floats, meaning 4-byte reals.

every(#) specifies that results be written to disk every #th replication. every() should be specified
only in conjunction with saving() when command takes a long time for each replication.
This will allow recovery of partial results should some other software crash your computer.
See [P] postfile.

replace specifies that filename be overwritten if it exists.

nolegend suppresses display of the table legend. The table legend identifies the rows of the table
with the expressions they represent.

verbose requests that the full table legend be displayed. By default, coefficients and standard errors
are not displayed.

seed(#) sets the random-number seed. Specifying this option is equivalent to typing the following
command before calling simulate:

. set seed #

Remarks
For an introduction to Monte Carlo methods, see Cameron and Trivedi (2010, chap. 4). White (2010)

provides a command for analyzing results of simulation studies.

Example 1

We have a dataset containing means and variances of 100-observation samples from a lognormal
distribution (as a first step in evaluating, say, the coverage of a 95%, t-based confidence interval).
Then we perform the experiment 1,000 times.

The following command definition will generate 100 independent observations from a lognormal
distribution and compute the summary statistics for this sample.
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program lnsim, rclass
version 12
drop _all
set obs 100
gen z = exp(rnormal())
summarize z
return scalar mean = r(mean)
return scalar Var = r(Var)

end

We can save 1,000 simulated means and variances from lnsim by typing

. set seed 1234

. simulate mean=r(mean) var=r(Var), reps(1000) nodots: lnsim

command: lnsim
mean: r(mean)
var: r(Var)

. describe *

storage display value
variable name type format label variable label

mean float %9.0g r(mean)
var float %9.0g r(Var)

. summarize

Variable Obs Mean Std. Dev. Min Max

mean 1000 1.638466 .214371 1.095099 2.887392
var 1000 4.63856 6.428406 .8626 175.3746

Technical note
Before executing our lnsim simulator, we can verify that it works by executing it interactively.

. set seed 1234

. lnsim
obs was 0, now 100

Variable Obs Mean Std. Dev. Min Max

z 100 1.597757 1.734328 .0625807 12.71548

. return list

scalars:
r(Var) = 3.007893773683719

r(mean) = 1.59775722913444

Example 2

Consider a more complicated problem. Let’s experiment with fitting yj = a+ bxj + uj when the
true model has a = 1, b = 2, uj = zj + cxj , and when zj is N(0, 1). We will save the parameter
estimates and standard errors and experiment with varying c. xj will be fixed across experiments but
will originally be generated as N(0, 1). We begin by interactively making the true data:
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. drop _all

. set obs 100
obs was 0, now 100

. set seed 54321

. gen x = rnormal()

. gen true_y = 1+2*x

. save truth
file truth.dta saved

Our program is

program hetero1
version 12
args c
use truth, clear
gen y = true_y + (rnormal() + ‘c’*x)
regress y x

end

Note the use of ‘c’ in our statement for generating y. c is a local macro generated from args c and
thus refers to the first argument supplied to hetero1. If we want c = 3 for our experiment, we type

. simulate _b _se, reps(10000): hetero1 3

(output omitted )

Our program hetero1 could, however, be more efficient because it rereads the file truth once
every replication. It would be better if we could read the data just once. In fact, if we read in the data
right before running simulate, we really should not have to reread for each subsequent replication.
A faster version reads

program hetero2
version 12
args c
capture drop y
gen y = true_y + (rnormal() + ‘c’*x)
regress y x

end

Requiring that the current dataset has the variables true y and x may become inconvenient.
Another improvement would be to require that the user supply variable names, such as in

program hetero3
version 12
args truey x c
capture drop y
gen y = ‘truey’ + (rnormal() + ‘c’*‘x’)
regress y x

end

Thus we can type

. simulate _b _se, reps(10000): hetero3 true_y x 3

(output omitted )
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Example 3

Now let’s consider the problem of simulating the ratio of two medians. Suppose that each sample
of size ni comes from a normal population with a mean µi and standard deviation σi, where i = 1, 2.
We write the program below and save it as a text file called myratio.ado (see [U] 17 Ado-files).
Our program is an rclass command that requires six arguments as input, identified by the local
macros n1, mu1, sigma1, n2, mu2, and sigma2, which correspond to n1, µ1, σ1, n2, µ2, and
σ2, respectively. With these arguments, myratio will generate the data for the two samples, use
summarize to compute the two medians and save the ratio of the medians in r(ratio).

program myratio, rclass
version 12
args n1 mu1 sigma1 n2 mu2 sigma2
// generate the data
drop _all
local N = ‘n1’+‘n2’
set obs ‘N’
tempvar y
generate ‘y’ = rnormal()
replace ‘y’ = cond(_n<=‘n1’,‘mu1’+‘y’*‘sigma1’,‘mu2’+‘y’*‘sigma2’)
// calculate the medians
tempname m1
summarize ‘y’ if _n<=‘n1’, detail
scalar ‘m1’ = r(p50)
summarize ‘y’ if _n>‘n1’, detail
// save the results
return scalar ratio = ‘m1’ / r(p50)

end

The result of running our simulation is

. set seed 19192

. simulate ratio=r(ratio), reps(1000) nodots: myratio 5 3 1 10 3 2

command: myratio 5 3 1 10 3 2
ratio: r(ratio)

. summarize

Variable Obs Mean Std. Dev. Min Max

ratio 1000 1.08571 .4427828 .3834799 6.742217

Technical note
Stata lets us do simulations of simulations and simulations of bootstraps. Stata’s bootstrap

command (see [R] bootstrap) works much like simulate, except that it feeds the user-written
program a bootstrap sample. Say that we want to evaluate the bootstrap estimator of the standard
error of the median when applied to lognormally distributed data. We want to perform a simulation,
resulting in a dataset of medians and bootstrap estimated standard errors.

As background, summarize (see [R] summarize) calculates summary statistics, leaving the mean
in r(mean) and the standard deviation in r(sd). summarize with the detail option also calculates
summary statistics, but more of them, and leaves the median in r(p50).

Thus our plan is to perform simulations by randomly drawing a dataset: we calculate the median
of our random sample, we use bootstrap to obtain a dataset of medians calculated from bootstrap
samples of our random sample, the standard deviation of those medians is our estimate of the standard
error, and the summary statistics are saved in the results of summarize.
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Our simulator is

program define bsse, rclass
version 12
drop _all
set obs 100
gen x = rnormal()
tempfile bsfile
bootstrap midp=r(p50), rep(100) saving(‘bsfile’): summarize x, detail
use ‘bsfile’, clear
summarize midp
return scalar mean = r(mean)
return scalar sd = r(sd)

end

We can obtain final results, running our simulation 1,000 times, by typing

. set seed 48901

. simulate med=r(mean) bs_se=r(sd), reps(1000): bsse

command: bsse
med: r(mean)

bs_se: r(sd)

Simulations (1000)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

.................................................. 350

.................................................. 400

.................................................. 450

.................................................. 500

.................................................. 550

.................................................. 600

.................................................. 650

.................................................. 700

.................................................. 750

.................................................. 800

.................................................. 850

.................................................. 900

.................................................. 950

.................................................. 1000

. summarize

Variable Obs Mean Std. Dev. Min Max

med 1000 -.0008696 .1210451 -.3132536 .4058724
bs_se 1000 .126236 .029646 .0326791 .2596813

This is a case where the simulation dots (drawn by default, unless the nodots option is specified)
will give us an idea of how long this simulation will take to finish as it runs.

Methods and formulas
simulate is implemented as an ado-file.
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Title

sj — Stata Journal and STB installation instructions

Description
The Stata Journal (SJ) is a quarterly journal containing articles about statistics, data analysis,

teaching methods, and effective use of Stata’s language. The SJ publishes reviewed papers together
with shorter notes and comments, regular columns, tips, book reviews, and other material of interest
to researchers applying statistics in a variety of disciplines. You can read all about the Stata Journal
at http://www.stata-journal.com.

The Stata Journal is a printed and electronic journal with corresponding software. If you want
the journal, you must subscribe, but the software is available for no charge from our website at
http://www.stata-journal.com. PDF copies of SJ articles that are older than three years are available
for download for no charge at http://www.stata-journal.com/archives.html. More recent articles may
be individually purchased.

The predecessor to the Stata Journal was the Stata Technical Bulletin (STB). The STB was
also a printed and electronic journal with corresponding software. PDF copies of all STB journals
are available for download for no charge at http://www.stata-press.com/journals/stbj.html. The STB
software is available for no charge from our website at http://www.stata.com.

Below are instructions for installing the Stata Journal and the Stata Technical Bulletin software
from our website.

Remarks
Remarks are presented under the following headings:

Installing the Stata Journal software
Obtaining from the Internet by pointing and clicking
Obtaining from the Internet via command mode

Installing the STB software
Obtaining from the Internet by pointing and clicking
Obtaining from the Internet via command mode

Installing the Stata Journal software

Each issue of the Stata Journal is labeled Volume #, Number #. Volume 1 refers to the first year
of publication, Volume 2 to the second, and so on. Issues are numbered 1, 2, 3, and 4 within each
year. The first issue of the Journal was published in the fourth quarter of 2001, and that issue is
numbered Volume 1, Number 1. For installation purposes, we refer to this issue as sj1-1.

The articles, columns, notes, and comments that make up the Stata Journal are assigned a letter-
and-number code, called an insert tag, such as st0001, an0034, or ds0011. The letters represent a
category: st is the statistics category, an is the announcements category, etc. The numbers are assigned
sequentially, so st0001 is the first article in the statistics category.

Sometimes inserts are subsequently updated, either to fix bugs or to add new features. A number
such as st0001 1 indicates that this article, column, note, or comment is an update to the original
st0001 article. Updates are complete; that is, installing st0001 1 provides all the features of the
original article and more.

The Stata Journal software may be obtained by pointing and clicking or by using command mode.

1999

http://www.stata-journal.com
http://www.stata-journal.com
http://www.stata-journal.com/archives.html
http://www.stata-press.com/journals/stbj.html
http://www.stata.com
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The sections below detail how to install an insert. In all cases, pretend that you wish to install
insert st0001 1 from sj2-2.

Obtaining from the Internet by pointing and clicking

1. Select Help > SJ and User-written Programs.

2. Click on Stata Journal.

3. Click on sj2-2.

4. Click on st0001 1.

5. Click on (click here to install).

Obtaining from the Internet via command mode

Type the following:

. net from http://www.stata-journal.com/software

. net cd sj2-2

. net describe st0001_1

. net install st0001_1

The above could be shortened to

. net from http://www.stata-journal.com/software/sj2-2

. net describe st0001_1

. net install st0001_1

Alternatively, you could type

. net sj 2-2

. net describe st0001_1

. net install st0001_1

but going about it the long way is more entertaining, at least the first time.

Installing the STB software

Each issue of the STB is numbered. STB-1 refers to the first issue (published May 1991), STB-2
refers to the second (published July 1991), and so on.

An issue of the STB consists of inserts—articles—and these are assigned letter-and-number
combinations, such as sg84, dm80, sbe26.1, etc. The letters represent a category; for example, sg
is the general statistics category and dm the data-management category. The numbers are assigned
sequentially, so sbe39 is the 39th insert in the biostatistics and epidemiology series.

Insert sbe39, it turns out, provides a method of accounting for publication bias in meta-analysis; it
adds a new command called metatrim to Stata. If you installed sbe39, you would have that command
and its online help. Insert sbe39 was published in STB-57 (September 2000). Obtaining metatrim
simply requires going to STB-57 and getting sbe39.

Sometimes inserts were subsequently updated, either to fix bugs or to add new features. sbe39 was
updated: the first update is sbe39.1 and the second is sbe39.2. You could install insert sbe39.2, and
it would not matter whether you had previously installed sbe39.1. Updates are complete: installing
sbe39.2 provides all the features of the original insert and more.
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For computer naming purposes, insert sbe39.2 is referred to as sbe39 2. When referred to in
normal text, however, the insert is still called sbe39.2 because that looks nicer.

Inserts are easily available from the Internet. Inserts may be obtained by pointing and clicking or
by using command mode.

The sections below detail how to install an insert. In all cases, pretend that you wish to install
insert sbe39.2 from STB-61.

Obtaining from the Internet by pointing and clicking

1. Select Help > SJ and User-written Programs.

2. Click on STB.

3. Click on stb61.

4. Click on sbe39 2.

5. Click on (click here to install).

Obtaining from the Internet via command mode

Type the following:

. net from http://www.stata.com

. net cd stb

. net cd stb61

. net describe sbe39_2

. net install sbe39_2

The above could be shortened to

. net from http://www.stata.com/stb/stb61

. net describe sbe39_2

. net install sbe39_2

but going about it the long way is more entertaining, at least the first time.

Also see
[R] search — Search Stata documentation

[R] net — Install and manage user-written additions from the Internet

[R] net search — Search the Internet for installable packages

[R] update — Update Stata

[U] 3.5 The Stata Journal
[U] 28 Using the Internet to keep up to date
[GSM] 19 Updating and extending Stata—Internet functionality
[GSU] 19 Updating and extending Stata—Internet functionality
[GSW] 19 Updating and extending Stata—Internet functionality



Title

sktest — Skewness and kurtosis test for normality

Syntax
sktest varlist

[
if
] [

in
] [

weight
] [

, noadjust
]

aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Skewness and kurtosis normality test

Description
For each variable in varlist, sktest presents a test for normality based on skewness and another

based on kurtosis and then combines the two tests into an overall test statistic. sktest requires a
minimum of 8 observations to make its calculations. See [MV] mvtest normality for multivariate
tests of normality.

Option

� � �
Main �

noadjust suppresses the empirical adjustment made by Royston (1991c) to the overall χ2 and
its significance level and presents the unaltered test as described by D’Agostino, Belanger, and
D’Agostino (1990).

Remarks
Also see [R] swilk for the Shapiro–Wilk and Shapiro–Francia tests for normality. Those tests are,

in general, preferred for nonaggregated data (Gould and Rogers 1991; Gould 1992; Royston 1991c).
Moreover, a normal quantile plot should be used with any test for normality; see [R] diagnostic plots
for more information.

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally
distributed:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sktest mpg trunk

Skewness/Kurtosis tests for Normality
joint

Variable Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

mpg 74 0.0015 0.0804 10.95 0.0042
trunk 74 0.9115 0.0445 4.19 0.1228

2002
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We can reject the hypothesis that mpg is normally distributed, but we cannot reject the hypothesis
that trunk is normally distributed, at least at the 12% level. The kurtosis for trunk is 2.19, as can
be verified by issuing the command

. summarize trunk, detail

(output omitted )

and the p-value of 0.0445 shown in the table above indicates that it is significantly different from
the kurtosis of a normal distribution at the 5% significance level. However, on the basis of skewness
alone, we cannot reject the hypothesis that trunk is normally distributed.

Technical note
sktest implements the test as described by D’Agostino, Belanger, and D’Agostino (1990) but with

the adjustment made by Royston (1991c). In the above example, if we had specified the noadjust
option, the χ2 values would have been 13.13 for mpg and 4.05 for trunk. With the adjustment, the
χ2 value might show as ‘.’. This result should be interpreted as an absurdly large number; the data
are most certainly not normal.

Saved results
sktest saves the following in r():

Scalars
r(chi2) χ2

r(P skew) Pr(skewness)
r(P kurt) Pr(kurtosis)
r(P chi2) Prob > chi2

Matrices
r(N) matrix of observations
r(Utest) matrix of test results, one row per variable

Methods and formulas
sktest is implemented as an ado-file.

sktest implements the test described by D’Agostino, Belanger, and D’Agostino (1990) with the
empirical correction developed by Royston (1991c).

Let g1 denote the coefficient of skewness and b2 denote the coefficient of kurtosis as calculated
by summarize, and let n denote the sample size. If weights are specified, then g1, b2, and n
denote the weighted coefficients of skewness and kurtosis and weighted sample size, respectively.
See [R] summarize for the formulas for skewness and kurtosis.
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To perform the test of skewness, we compute

Y = g1

{
(n+ 1)(n+ 3)

6(n− 2)

}1/2

β2(g1) =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)

W 2 = −1 + [2 {β2(g1)− 1}]1/2

α =
{

2/(W 2 − 1)
}1/2

and

Then the distribution of the test statistic

Z1 =
1√
lnW

ln
[
Y/α+

{
(Y/α)2 + 1

}1/2
]

is approximately standard normal under the null hypothesis that the data are distributed normally.

To perform the test of kurtosis, we compute

E(b2) =
3(n− 1)
n+ 1

var(b2) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)

X = {b2 − E(b2)} /
√

var(b2)√
β1(b2) =

6(n2 − 5n+ 2)
(n+ 7)(n+ 9)

{
6(n+ 3)(n+ 5)
n(n− 2)(n− 3)

}1/2

A = 6 +
8√
β1(b2)

[
2√
β1(b2)

+
{

1 +
4

β1(b2)

}1/2
]

and

Then the distribution of the test statistic

Z2 =
1√

2/(9A)

(1− 2
9A

)
−

{
1− 2/A

1 +X
√

2/(A− 4)

}1/3


is approximately standard normal under the null hypothesis that the data are distributed normally.

D’Agostino, Balanger, and D’Agostino Jr.’s omnibus test of normality uses the statistic

K2 = Z2
1 + Z2

2

which has approximately a χ2 distribution with 2 degrees of freedom under the null of normality.

Royston (1991c) proposed the following adjustment to the test of normality, which sktest uses
by default. Let Φ(x) denote the cumulative standard normal distribution function for x, and let
Φ−1(p) denote the inverse cumulative standard normal function [that is, x = Φ−1 {Φ(x)}]. Define
the following terms:
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Zc = −Φ−1

{
exp

(
−1

2
K2

)}
Zt = 0.55n0.2 − 0.21
a1 = (−5 + 3.46 lnn) exp(−1.37 lnn)
b1 = 1 + (0.854− 0.148 lnn) exp(−0.55 lnn)
a2 = a1 − {2.13/(1− 2.37 lnn)}Zt
b2 = 2.13/(1− 2.37 lnn) + b1and

If Zc < −1 set Z = Zc; else if Zc < Zt set Z = a1 + b1Zc; else set Z = a2 + b2Zc. Define
P = 1− Φ(Z). Then K2 = −2 lnP is approximately distributed χ2 with 2 degrees of freedom.

The relative merits of the skewness and kurtosis test versus the Shapiro–Wilk and Shapiro–Francia
tests have been a subject of debate. The interested reader is directed to the articles in the Stata Technical
Bulletin. Our recommendation is to use the Shapiro–Francia test whenever possible, that is, whenever
dealing with nonaggregated or ungrouped data (Gould and Rogers 1991; Gould 1992); see [R] swilk.
If normality is rejected, use sktest to determine the source of the problem.

As both D’Agostino, Belanger, and D’Agostino (1990) and Royston (1991d) mention, researchers
should also examine the normal quantile plot to determine normality rather than blindly relying on a
few test statistics. See the qnorm command documented in [R] diagnostic plots for more information
on normal quantile plots.

sktest is similar in spirit to the Jarque–Bera (1987) test of normality. The Jarque–Bera test
statistic is also calculated from the sample skewness and kurtosis, though it is based on asymptotic
standard errors with no corrections for sample size. In effect, sktest offers two adjustments for
sample size, that of Royston (1991c) and that of D’Agostino, Belanger, and D’Agostino (1990).

Acknowledgments
sktest has benefited greatly by the comments and work of Patrick Royston of the MRC Clinical

Trials Unit, London; at this point, the program should be viewed as due as much to Royston as to
us, except, of course, for any errors. We are also indebted to Nicholas J. Cox, Durham University,
for helpful comments.
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slogit — Stereotype logistic regression

Syntax
slogit depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

dimension(#) dimension of the model; default is dimension(1)

baseoutcome(# | lbl) set the base outcome to # or lbl; default is the last outcome
constraints(numlist) apply specified linear constraints
collinear keep collinear variables
nocorner do not generate the corner constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used
initialize(initype) method of initializing scale parameters; initype can be constant,

random, or svd; see Options for details
nonormalize do not normalize the numeric variables

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Categorical outcomes > Stereotype logistic regression

2007
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Description
slogit fits maximum-likelihood stereotype logistic regression models as developed by Ander-

son (1984). Like multinomial logistic and ordered logistic models, stereotype logistic models are for
use with categorical dependent variables. In a multinomial logistic model, the categories cannot be
ranked, whereas in an ordered logistic model the categories follow a natural ranking scheme. You
can view stereotype logistic models as a compromise between those two models. You can use them
when you are unsure of the relevance of the ordering, as is often the case when subjects are asked to
assess or judge something. You can also use them in place of multinomial logistic models when you
suspect that some of the alternatives are similar. Unlike ordered logistic models, stereotype logistic
models do not impose the proportional-odds assumption.

Options

� � �
Model �

dimension(#) specifies the dimension of the model, which is the number of equations required
to describe the relationship between the dependent variable and the independent variables. The
maximum dimension is min(m − 1, p), where m is the number of categories of the dependent
variable and p is the number of independent variables in the model. The stereotype model with
maximum dimension is a reparameterization of the multinomial logistic model.

baseoutcome(# | lbl) specifies the outcome level whose scale parameters and intercept are constrained
to be zero. The base outcome may be specified as a number of a label. By default, slogit assumes
that the outcome levels are ordered and uses the largest level of the dependent variable as the base
outcome.

constraints(numlist), collinear; see [R] estimation options.

By default, the linear equality constraints suggested by Anderson (1984), termed the corner
constraints, are generated for you. You can add constraints to these as needed, or you can turn off
the corner constraints by specifying nocorner. These constraints are in addition to the constraints
placed on the φ parameters corresponding to baseoutcome(#).

nocorner specifies that slogit not generate the corner constraints. If you specify nocorner, you
must specify at least dimension()× dimension() constraints for the model to be identified.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

If specifying vce(bootstrap) or vce(jackknife), you must also specify baseoutcome().

� � �
Reporting �

level(#); see [R] estimation options.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.



slogit — Stereotype logistic regression 2009

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

initialize(constant | random | svd) specifies how initial estimates are computed. The default,
initialize(constant), is to set the scale parameters to the constant min(1/2, 1/d), where d
is the dimension specified in dimension().

initialize(random) requests that uniformly distributed random numbers between 0 and 1 be
used as initial values for the scale parameters. If you specify this option, you should also use
set seed to ensure that you can replicate your results; see [R] set seed.

initialize(svd) requests that a singular value decomposition (SVD) be performed on the
matrix of regression estimates from mlogit to reduce its rank to the dimension specified in
dimension(). slogit uses the reduced-rank components of the SVD as initial estimates for
the scale and regression coefficients. For details, see Methods and formulas.

nonormalize specifies that the numeric variables not be normalized. Normalization of the numeric
variables improves numerical stability but consumes more memory in generating temporary double-
precision variables. Variables that are of type byte are not normalized, and if initial estimates are
specified using the from() option, normalization of variables is not performed. See Methods and
formulas for more information.

The following option is available with slogit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Introduction
One-dimensional model
Higher-dimension models

Introduction
Stereotype logistic models are often used when subjects are requested to assess or judge something.

For example, consider a survey in which consumers may be asked to rate the quality of a product on
a scale from 1 to 5, with 1 indicating poor quality and 5 indicating excellent quality. If the categories
are monotonically related to an underlying latent variable, the ordered logistic model is appropriate.
However, suppose that consumers assess quality not just along one dimension, but rather weigh
two or three latent factors. Stereotype logistic regression allows you to specify multiple equations
to capture the effects of those latent variables, which you then parameterize in terms of observable
characteristics. Unlike with multinomial logit, the number of equations you specify could be less than
m− 1, where m is the number of categories of the dependent variable.

Stereotype logistic models are also used when categories may be indistinguishable. Suppose that
a consumer must choose among A, B, C, or D. Multinomial logistic modeling assumes that the
four choices are distinct in the sense that a consumer choosing one of the goods can distinguish its
characteristics from the others. If goods A and B are in fact similar, consumers may be randomly
picking between the two. One alternative is to combine the two categories and fit a three-category
multinomial logistic model. A more flexible alternative is to use a stereotype logistic model.
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In the multinomial logistic model, you estimate m− 1 parameter vectors β̃k, k = 1, . . . ,m− 1,
where m is the number of categories of the dependent variable. The stereotype logistic model is
a restriction on the multinomial model in the sense that there are d parameter vectors, where d
is between one and min(m − 1, p), and p is the number of regressors. The relationship between
the stereotype model’s coefficients βj , j = 1, . . . , d, and the multinomial model’s coefficients is

β̃k = −
∑d
j=1 φjkβj . The φs are scale parameters to be estimated along with the βjs.

Given a row vector of covariates x, let ηk = θk −
∑d
j=1 φjkxβj . The probability of observing

outcome k is

Pr(Yi = k) =


exp (ηk)

1 +
∑m−1
l=1 exp (ηl)

k < m

1
1 +

∑m−1
l=1 exp (ηl)

k = m

This model includes a set of θ parameters so that each equation has an unrestricted constant term.
If d = m − 1, the stereotype model is just a reparameterization of the multinomial logistic model.
To identify the φs and the βs, you must place at least d2 restrictions on the parameters. By default,
slogit uses the “corner constraints” φjj = 1 and φjk = 0 for j 6= k, k ≤ d, and j ≤ d.

For a discussion of the stereotype logistic model, see Lunt (2005).

One-dimensional model

Example 1

We have 2 years of repair rating data on the make, price, mileage rating, and gear ratio of 104
foreign and 44 domestic automobiles (with 13 missing values on repair rating). We wish to fit a
stereotype logistic model to discriminate between the levels of repair rating using mileage, price, gear
ratio, and origin of the manufacturer. Here is an overview of our data:

. use http://www.stata-press.com/data/r12/auto2yr
(Automobile Models)

. tabulate repair

repair Freq. Percent Cum.

Poor 5 3.70 3.70
Fair 19 14.07 17.78

Average 57 42.22 60.00
Good 38 28.15 88.15

Excellent 16 11.85 100.00

Total 135 100.00

The variable repair can take five values, 1, . . . , 5, which represent the subjective rating of the car
model’s repair record as Poor, Fair, Average, Good, and Excellent.

We wish to fit the one-dimensional stereotype logistic model

ηk = θk − φk (β1foreign + β2mpg + β3price + β4gratio)

for k < 5 and η5 = 0. To fit this model, we type
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. slogit repair foreign mpg price gratio

Iteration 0: log likelihood = -173.78178 (not concave)
Iteration 1: log likelihood = -164.77316
Iteration 2: log likelihood = -161.7069
Iteration 3: log likelihood = -159.76138
Iteration 4: log likelihood = -159.34327
Iteration 5: log likelihood = -159.25914
Iteration 6: log likelihood = -159.25691
Iteration 7: log likelihood = -159.25691

Stereotype logistic regression Number of obs = 135
Wald chi2(4) = 9.33

Log likelihood = -159.25691 Prob > chi2 = 0.0535

( 1) [phi1_1]_cons = 1

repair Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 5.947382 2.094126 2.84 0.005 1.84297 10.05179
mpg .1911968 .08554 2.24 0.025 .0235414 .3588521

price -.0000576 .0001357 -0.42 0.671 -.0003236 .0002083
gratio -4.307571 1.884713 -2.29 0.022 -8.00154 -.6136017

/phi1_1 1 (constrained)
/phi1_2 1.262268 .3530565 3.58 0.000 .5702904 1.954247
/phi1_3 1.17593 .3169397 3.71 0.000 .5547394 1.79712
/phi1_4 .8657195 .2411228 3.59 0.000 .3931275 1.338311
/phi1_5 0 (base outcome)

/theta1 -6.864749 4.21252 -1.63 0.103 -15.12114 1.391639
/theta2 -7.613977 4.861803 -1.57 0.117 -17.14294 1.914981
/theta3 -5.80655 4.987508 -1.16 0.244 -15.58189 3.968786
/theta4 -3.85724 3.824132 -1.01 0.313 -11.3524 3.637922
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The coefficient associated with the first scale parameter, φ11, is 1, and its standard error and other
statistics are missing. This is the corner constraint applied to the one-dimensional model; in the header,
this constraint is listed as [phi1 1] cons = 1. Also, the φ and θ parameters that are associated
with the base outcome are identified. Keep in mind, though, that there are no coefficient estimates
for [phi1 5] cons or [theta5] cons in the ereturn matrix e(b). The Wald statistic is for a
test of the joint significance of the regression coefficients on foreign, mpg, price, and gratio.

The one-dimensional stereotype model restricts the multinomial logistic regression coefficients
β̃k, k = 1, . . . , m − 1 to be parallel; that is, β̃k = −φkβ. As Lunt (2001) discusses, in the
one-dimensional stereotype model, one linear combination xiβ best discriminates the outcomes of
the dependent variable, and the scale parameters φk measure the distance between the outcome levels
and the linear predictor. If φ1 ≥ φ2 ≥ · · ·φm−1 ≥ φm ≡ 0, the model suggests that the subjective
assessment of the dependent variable is indeed ordered. Here the maximum likelihood estimates of
the φs are not monotonic, as would be assumed in an ordered logit model.

We test that φ1 = φ2 by typing

. test [phi1_2]_cons = [phi1_1]_cons

( 1) - [phi1_1]_cons + [phi1_2]_cons = 0

chi2( 1) = 0.55
Prob > chi2 = 0.4576
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Because the two parameters are not statistically different, we decide to add a constraint to force
φ1 = φ2:

. constraint 1 [phi1_2]_cons = [phi1_1]_cons

. slogit repair foreign mpg price gratio, constraint(1) nolog

Stereotype logistic regression Number of obs = 135
Wald chi2(4) = 21.28

Log likelihood = -159.65769 Prob > chi2 = 0.0003

( 1) [phi1_1]_cons = 1
( 2) - [phi1_1]_cons + [phi1_2]_cons = 0

repair Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 7.166515 1.690177 4.24 0.000 3.853829 10.4792
mpg .2340043 .0807042 2.90 0.004 .0758271 .3921816

price -.000041 .0001618 -0.25 0.800 -.0003581 .000276
gratio -5.218107 1.798717 -2.90 0.004 -8.743528 -1.692686

/phi1_1 1 (constrained)
/phi1_2 1 (constrained)
/phi1_3 .9751096 .1286563 7.58 0.000 .7229478 1.227271
/phi1_4 .7209343 .1220353 5.91 0.000 .4817494 .9601191
/phi1_5 0 (base outcome)

/theta1 -8.293452 4.645182 -1.79 0.074 -17.39784 .8109368
/theta2 -6.958451 4.629292 -1.50 0.133 -16.0317 2.114795
/theta3 -5.620232 4.953981 -1.13 0.257 -15.32986 4.089392
/theta4 -3.745624 3.809189 -0.98 0.325 -11.2115 3.720249
/theta5 0 (base outcome)

(repair=Excellent is the base outcome)

The φ estimates are now monotonically decreasing and the standard errors of the φs are small relative
to the size of the estimates, so we conclude that, with the exception of outcomes Poor and Fair,
the groups are distinguishable for the one-dimensional model and that the quality assessment can be
ordered.

Higher-dimension models

The stereotype logistic model is not limited to ordered categorical dependent variables; you can
use it on nominal data to reduce the dimension of the regressions. Recall that a multinomial model
fit to a categorical dependent variable with m levels will have m− 1 sets of regression coefficients.
However, a model with fewer dimensions may fit the data equally well, suggesting that some of the
categories are indistinguishable.

Example 2

As discussed in [R] mlogit, we have data on the type of health insurance available to 616
psychologically depressed subjects in the United States (Tarlov et al. 1989; Wells et al. 1989).
Patients may have either an indemnity (fee-for-service) plan or a prepaid plan, such as an HMO, or
may be uninsured. Demographic variables include age, gender, race, and site.

First, we fit the saturated, two-dimensional model that is equivalent to a multinomial logistic model.
We choose the base outcome to be 1 (indemnity insurance) because that is the default for mlogit.
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. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. slogit insure age male nonwhite i.site, dim(2) base(1)

Iteration 0: log likelihood = -534.36165
Iteration 1: log likelihood = -534.36165

Stereotype logistic regression Number of obs = 615
Wald chi2(10) = 38.17

Log likelihood = -534.36165 Prob > chi2 = 0.0000

( 1) [phi1_2]_cons = 1
( 2) [phi1_3]_cons = 0
( 3) [phi2_2]_cons = 0
( 4) [phi2_3]_cons = 1

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

dim1
age .011745 .0061946 1.90 0.058 -.0003962 .0238862

male -.5616934 .2027465 -2.77 0.006 -.9590693 -.1643175
nonwhite -.9747768 .2363213 -4.12 0.000 -1.437958 -.5115955

site
2 -.1130359 .2101903 -0.54 0.591 -.5250013 .2989296
3 .5879879 .2279351 2.58 0.010 .1412433 1.034733

dim2
age .0077961 .0114418 0.68 0.496 -.0146294 .0302217

male -.4518496 .3674867 -1.23 0.219 -1.17211 .268411
nonwhite -.2170589 .4256361 -0.51 0.610 -1.05129 .6171725

site
2 1.211563 .4705127 2.57 0.010 .2893747 2.133751
3 .2078123 .3662926 0.57 0.570 -.510108 .9257327

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 0 (omitted)

/phi2_1 0 (base outcome)
/phi2_2 0 (omitted)
/phi2_3 1 (constrained)

/theta1 0 (base outcome)
/theta2 .2697127 .3284422 0.82 0.412 -.3740222 .9134476
/theta3 -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

(insure=Indemnity is the base outcome)
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For comparison, we also fit the model by using mlogit:

. mlogit insure age male nonwhite i.site, nolog

Multinomial logistic regression Number of obs = 615
LR chi2(10) = 42.99
Prob > chi2 = 0.0000

Log likelihood = -534.36165 Pseudo R2 = 0.0387

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.011745 .0061946 -1.90 0.058 -.0238862 .0003962

male .5616934 .2027465 2.77 0.006 .1643175 .9590693
nonwhite .9747768 .2363213 4.12 0.000 .5115955 1.437958

site
2 .1130359 .2101903 0.54 0.591 -.2989296 .5250013
3 -.5879879 .2279351 -2.58 0.010 -1.034733 -.1412433

_cons .2697127 .3284422 0.82 0.412 -.3740222 .9134476

Uninsure
age -.0077961 .0114418 -0.68 0.496 -.0302217 .0146294

male .4518496 .3674867 1.23 0.219 -.268411 1.17211
nonwhite .2170589 .4256361 0.51 0.610 -.6171725 1.05129

site
2 -1.211563 .4705127 -2.57 0.010 -2.133751 -.2893747
3 -.2078123 .3662926 -0.57 0.570 -.9257327 .510108

_cons -1.286943 .5923219 -2.17 0.030 -2.447872 -.1260134

Apart from having opposite signs, the coefficients from the stereotype logistic model are identical to
those from the multinomial logit model. Recall the definition of ηk given in the Remarks, particularly
the minus sign in front of the summation. One other difference in the output is that the constant
estimates labeled /theta in the slogit output are the constants labeled cons in the mlogit output.
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Next we examine the one-dimensional model.

. slogit insure age male nonwhite i.site, dim(1) base(1) nolog

Stereotype logistic regression Number of obs = 615
Wald chi2(5) = 28.20

Log likelihood = -539.75205 Prob > chi2 = 0.0000

( 1) [phi1_2]_cons = 1

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0108366 .0061918 1.75 0.080 -.0012992 .0229723
male -.5032537 .2078171 -2.42 0.015 -.9105678 -.0959396

nonwhite -.9480351 .2340604 -4.05 0.000 -1.406785 -.489285

site
2 -.2444316 .2246366 -1.09 0.277 -.6847113 .1958481
3 .556665 .2243799 2.48 0.013 .1168886 .9964415

/phi1_1 0 (base outcome)
/phi1_2 1 (constrained)
/phi1_3 .0383539 .4079705 0.09 0.925 -.7612535 .8379613

/theta1 0 (base outcome)
/theta2 .187542 .3303847 0.57 0.570 -.4600001 .835084
/theta3 -1.860134 .2158898 -8.62 0.000 -2.28327 -1.436997

(insure=Indemnity is the base outcome)

We have reduced a two-dimensional multinomial model to one dimension, reducing the number of
estimated parameters by four and decreasing the model likelihood by ≈ 5.4.

slogit does not report a model likelihood-ratio test. The test of d = 1 (a one-dimensional model)
versus d = 0 (the null model) does not have an asymptotic χ2 distribution because the unconstrained
φ parameters (/phi1 3 in the previous example) cannot be identified if β = 0. More generally,
this problem precludes testing any hierarchical model of dimension d versus d − 1. Of course, the
likelihood-ratio test of a full-dimension model versus d = 0 is valid because the full model is just
multinomial logistic, and all the φ parameters are fixed at 0 or 1.

Technical note
The stereotype model is a special case of the reduced-rank vector generalized linear model discussed

by Yee and Hastie (2003). If we define ηik = θk −
∑d
j=1 φjkxiβj , for k = 1, . . . ,m− 1, we can

write the expression in matrix notation as

ηi = θ+ Φ (xiB)′

where Φ is a (m − 1) × d matrix containing the φjk parameters and B is a p × d matrix with
columns containing the βj parameters, j = 1, . . . , d. The factorization ΦB′ is not unique because
ΦB′ = ΦMM−1B′ for any nonsingular d× d matrix M. To avoid this identifiability problem, we
choose M = Φ−1

1 , where

Φ =
(

Φ1

Φ2

)
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and Φ1 is d× d of rank d so that

ΦM =
(

Id
Φ2Φ−1

1

)
and Id is a d × d identity matrix. Thus the corner constraints used by slogit are φjj ≡ 1 and
φjk ≡ 0 for j 6= k and k, j ≤ d.

Saved results
slogit saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k indvars) number of independent variables
e(k out) number of outcomes
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(df m) Wald test degrees of freedom
e(df 0) null model degrees of freedom
e(k dim) model dimension
e(i base) base outcome index
e(ll) log likelihood
e(ll 0) null model log likelihood
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(ic) number of iterations
e(rank) rank of e(V)
e(rc) return code
e(converged) 1 if converged, 0 otherwise



slogit — Stereotype logistic regression 2017

Macros
e(cmd) slogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indvars) independent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(out#) outcome labels, # = 1,..., e(k out)
e(chi2type) Wald; type of model χ2 test
e(labels) outcome labels or numeric levels
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(footnote) program used to implement the footnote display
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(outcomes) outcome values
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
slogit is implemented as an ado-file.

slogit obtains the maximum likelihood estimates for the stereotype logistic model by using ml;
see [R] ml. Each set of regression estimates, one set of βjs for each dimension, constitutes one ml

model equation. The d× (m− 1) φs and the (m− 1) θs are ml ancillary parameters.

Without loss of generality, let the base outcome level be the mth level of the dependent variable.
Define the row vector φk = (φ1k, . . . , φdk) for k = 1, . . . , m − 1, and define the p × d matrix
B = (β1, . . . ,βd). For observation i, the log odds of outcome level k relative to level m, k = 1,
. . . , m− 1 is the index

ln
{

Pr(Yi = k)
Pr(Yi = m)

}
= ηik = θk − φk (xiB)′

= θk − φkν′i

The row vector νi can be interpreted as a latent variable reducing the p-dimensional vector of
covariates to a more interpretable d < p dimension.
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The probability of the ith observation having outcome level k is then

Pr(Yi = k) = pik =


eηik

1 +
∑m−1
j=1 eηij

, if k < m

1
1 +

∑m−1
j=1 eηij

, if k = m

from which the log-likelihood function is computed as

L =
n∑
i=1

wi

m∑
k=1

Ik(yi) ln(pik) (1)

Here wi is the weight for observation i and

Ik(yi) =

{
1, if observation yi has outcome k

0, otherwise

Numeric variables are normalized for numerical stability during optimization where a new double-
precision variable x̃j is created from variable xj , j = 1, . . . , p, such that x̃j = (xj − x̄j)/sj . This
feature is turned off if you specify nonormalize, or if you use the from() option for initial estimates.
Normalization is not performed on byte variables, including the indicator variables generated by [R] xi.
The linear equality constraints for regression parameters, if specified, must be scaled also. Assume
that a constraint is applied to the regression parameter associated with variable j and dimension i,
βji, and the corresponding element of the constraint matrix (see [P] makecns) is divided by sj .

After convergence, the parameter estimates for variable j and dimension i—β̃ji, say—are trans-
formed back to their original scale, βji = β̃ji/sj . For the intercepts, you compute

θk = θ̃k +
d∑
i=1

φik

p∑
j=1

β̃jix̄j
sj

Initial values are computed using estimates obtained using mlogit to fit a multinomial logistic model.
Let the p× (m− 1) matrix B̃ contain the multinomial logistic regression parameters less the m− 1
intercepts. Each φ is initialized with constant values min (1/2, 1/d), the initialize(constant)
option (the default), or, with uniform random numbers, the initialize(random) option. Constraints
are then applied to the starting values so that the structure of the (m− 1)× d matrix Φ is

Φ =


φ1

φ2
...

φm−1

 =
 Id

Φ̃


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where Id is a d × d identity matrix. Assume that only the corner constraints are used, but any
constraints you place on the scale parameters are also applied to the initial scale estimates, so the
structure of Φ will change accordingly. The φ parameters are invariant to the scale of the covariates,
so initial estimates in [ 0, 1 ] are reasonable. The constraints guarantee that the rank of Φ is at least d,
so the initial estimates for the stereotype regression parameters are obtained from B = B̃Φ(Φ′Φ)−1.

One other approach for initial estimates is provided: initialize(svd). It starts with the mlogit

estimates and computes B̃′ = UDV′, where Um−1×p and Vp×p are orthonormal matrices and
Dp×p is a diagonal matrix containing the singular values of B̃. The estimates for Φ and B are the
first d columns of U and VD, respectively (Yee and Hastie 2003).

The score for regression coefficients is

ui(βj) =
∂Lik
∂βj

= xi

(
m−1∑
l=1

φjlpil − φjk

)

the score for the scale parameters is

ui(φjl) =
∂Lik
∂φjl

=

{
xiβj(pik − 1), if l = k

xiβjpil, if l 6= k

for l = 1, . . . , m− 1; and the score for the intercepts is

ui(θl) =
∂Lik
∂θl

=

{
1− pik, if l = k

− pil, if l 6= k

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

slogit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] slogit postestimation — Postestimation tools for slogit

[R] roc — Receiver operating characteristic (ROC) analysis

[R] logistic — Logistic regression, reporting odds ratios

[R] mlogit — Multinomial (polytomous) logistic regression

[R] ologit — Ordered logistic regression

[R] oprobit — Ordered probit regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands



Title

slogit postestimation — Postestimation tools for slogit

Description
The following postestimation commands are available after slogit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predicted probabilities, estimated index and its approximate standard error
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

] {
stub* | newvar | newvarlist

} [
if
] [

in
] [

, statistic outcome(outcome)
]

predict
[

type
] {

stub* | newvarlist
} [

if
] [

in
]
, scores

statistic Description

Main

pr probability of one or all of the dependent variable outcomes; the default
xb index for the kth outcome
stdp standard error of the index for the kth outcome

2021
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If you do not specify outcome(), pr (with one new variable specified), xb, and stdp assume outcome(#1).
You specify one or k new variables with pr, where k is the number of outcomes.
You specify one new variable with xb and stdp.
These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for

the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

pr, the default, calculates the probability of each of the categories of the dependent variable or the
probability of the level specified in outcome(outcome). If you specify the outcome(outcome)
option, you need to specify only one new variable; otherwise, you must specify a new variable
for each category of the dependent variable.

xb calculates the index, θk −
∑d
j=1 φjkxiβj , for outcome level k 6= e(i base) and dimension

d = e(k dim). It returns a vector of zeros if k = e(i base). A synonym for xb is index. If
outcome() is not specified, outcome(#1) is assumed.

stdp calculates the standard error of the index. A synonym for stdp is seindex. If outcome() is
not specified, outcome(#1) is assumed.

outcome(outcome) specifies the outcome for which the statistic is to be calculated. equation() is
a synonym for outcome(): it does not matter which you use. outcome() or equation() can
be specified using

#1, #2, . . . , where #1 means the first category of the dependent variable, #2 means the
second category, etc.;

the values of the dependent variable; or

the value labels of the dependent variable if they exist.

scores calculates the equation-level score variables. For models with d dimensions and m levels,
d+ (d+ 1)(m− 1) new variables are created. Assume j = 1, . . . , d and k = 1, . . . , m in the
following.

The first d new variables will contain ∂ lnL/∂(xβj).

The next d(m− 1) new variables will contain ∂ lnL/∂φjk.

The last m− 1 new variables will contain ∂ lnL/∂θk.

Remarks
Once you have fit a stereotype logistic model, you can obtain the predicted probabilities by using

the predict command for both the estimation sample and other samples; see [U] 20 Estimation and
postestimation commands and [R] predict.

predict without arguments (or with the pr option) calculates the predicted probability of each
outcome of the dependent variable. You must therefore give a new variable name for each of the
outcomes. To compute the estimated probability of one outcome, you use the outcome(outcome)
option where outcome is the level encoding the outcome. If the dependent variable’s levels are labeled,
the outcomes can also be identified by the label values (see [D] label).



slogit postestimation — Postestimation tools for slogit 2023

The xb option in conjunction with outcome(outcome) specifies that the index be computed for
the outcome encoded by level outcome. Its approximate standard error is computed if the stdp option
is specified. Only one of the pr, xb, or stdp options can be specified with a call to predict.

Example 1

In example 2 of [R] slogit, we fit the one-dimensional stereotype model, where the depvar is
insure with levels k = 1 for outcome Indemnity, k = 2 for Prepaid, and k = 3 for Uninsure. The
base outcome for the model is Indemnity, so for k 6= 1 the vector of indices for the kth level is

ηk = θk − φk (β1age + β2male + β3nonwhite + β42.site + β53.site)

We estimate the group probabilities by calling predict after slogit.

. use http://www.stata-press.com/data/r12/sysdsn1
(Health insurance data)

. slogit insure age male nonwhite i.site, dim(1) base(1) nolog
(output omitted )

. predict pIndemnity pPrepaid pUninsure, p

. list pIndemnity pPrepaid pUninsure insure in 1/10

pIndem~y pPrepaid pUnins~e insure

1. .5419344 .3754875 .0825782 Indemnity
2. .4359638 .496328 .0677081 Prepaid
3. .5111583 .4105107 .0783309 Indemnity
4. .3941132 .5442234 .0616633 Prepaid
5. .4655651 .4625064 .0719285 .

6. .4401779 .4915102 .0683118 Prepaid
7. .4632122 .4651931 .0715948 Prepaid
8. .3772302 .5635696 .0592002 .
9. .4867758 .4383018 .0749225 Uninsure

10. .5823668 .3295802 .0880531 Prepaid

Observations 5 and 8 are not used to fit the model because insure is missing at these points, but
predict estimates the probabilities for these observations since none of the independent variables is
missing. You can use if e(sample) in the call to predict to use only those observations that are
used to fit the model.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

predict

Let level b be the base outcome that is used to fit the stereotype logistic regression model of
dimension d. The index for observation i and level k 6= b is ηik = θk −

∑d
j=1 φjkxiβj . This

is the log odds of outcome encoded as level k relative to that of b so that we define ηib ≡ 0.
The outcome probabilities for this model are defined as Pr(Yi = k) = eηik/

∑m
j=1 e

ηij . Unlike in
mlogit, ologit, and oprobit, the index is no longer a linear function of the parameters. The
standard error of index ηik is thus computed using the delta method (see also [R] predictnl).
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The equation-level score for regression coefficients is

∂ lnLik
∂xiβj

=

(
m−1∑
l=1

φjlpil − φjk

)

the equation-level score for the scale parameters is

∂ lnLik
∂φjl

=

{
xiβj(pik − 1), if l = k

xiβjpil, if l 6= k

for l = 1, . . . , m− 1; and the equation-level score for the intercepts is

∂ lnLik
∂θl

=

{
1− pik, if l = k

− pil, if l 6= k

Also see
[R] slogit — Stereotype logistic regression

[U] 20 Estimation and postestimation commands



Title

smooth — Robust nonlinear smoother

Syntax
smooth smoother

[
, twice

]
varname

[
if
] [

in
]
, generate(newvar)

where smoother is specified as Sm
[

Sm
[
. . .
] ]

and Sm is one of{
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

}[
R
]

3
[
R
]
S
[
S | R

][
S | R

]
. . .

E

H

Letters may be specified in lowercase if preferred. Examples of smoother
[
,twice

]
include

3RSSH 3RSSH,twice 4253H 4253H,twice 43RSR2H,twice
3rssh 3rssh,twice 4253h 4253h,twice 43rsr2h,twice

Menu
Statistics > Nonparametric analysis > Robust nonlinear smoother

Description
smooth applies the specified resistant, nonlinear smoother to varname and stores the smoothed

series in newvar.

Option

generate(newvar) is required; it specifies the name of the new variable that will contain the
smoothed values.

Remarks
Smoothing is an exploratory data-analysis technique for making the general shape of a series

apparent. In this approach (Tukey 1977), the observed data series is assumed to be the sum of an
underlying process that evolves smoothly (the smooth) and of an unsystematic noise component (the
rough); that is,

data = smooth + rough

Smoothed values zt are obtained by taking medians (or some other location estimate) of each point
in the original data yt and a few of the points around it. The number of points used is called the span
of the smoother. Thus a span-3 smoother produces zt by taking the median of yt−1, yt, and yt+1.
smooth provides running median smoothers of spans 1 to 9—indicated by the digit that specifies
their span. Median smoothers are resistant to isolated outliers, so they provide robustness to spikes
in the data. Because the median is also a nonlinear operator, such smoothers are known as robust (or
resistant) nonlinear smoothers.

2025
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smooth also provides the Hanning linear, nonrobust smoother, indicated by the letter H. Hanning
is a span-3 smoother with binomial weights. Repeated applications of H—HH, HHH, etc.— provide
binomial smoothers of span 5, 7, etc. See Cox (1997, 2004) for a graphical application of this fact.

Because one smoother usually cannot adequately separate the smooth from the rough, compound
smoothers—multiple smoothers applied in sequence—are used. The smoother 35H, for instance, then
smooths the data with a span-3 median smoother, smooths the result with a span-5 median smoother,
and finally smooths that result with the Hanning smoother. smooth allows you to specify any number
of smoothers in any sequence.

Three refinements can be combined with the running median and Hanning smoothers. First, the
endpoints of a smooth can be given special treatment. This is specified by the E operator. Second,
smoothing by 3, the span-3 running median, tends to produce flat-topped hills and valleys. The
splitting operator, S, “splits” these repeated values, applies the endpoint operator to them, and then
“rejoins” the series. Finally, it is sometimes useful to repeat an odd-span median smoother or the
splitting operator until the smooth no longer changes. Following a digit or an S with an R specifies
this type of repetition.

Even the best smoother may fail to separate the smooth from the rough adequately. To guard
against losing any systematic components of the data series, after smoothing, the smoother can be
reapplied to the resulting rough, and any recovered signal can be added back to the original smooth.
The twice operator specifies this procedure. More generally, an arbitrary smoother can be applied
to the rough (using a second smooth command), and the recovered signal can be added back to the
smooth. This more general procedure is called reroughing (Tukey 1977).

The details of each of the smoothers and operators are explained in Methods and formulas below.

Example 1

smooth is designed to recover the general features of a series that has been contaminated with
noise. To demonstrate this, we construct a series, add noise to it, and then smooth the noisy version
to recover an estimate of the original data. First, we construct and display the data:

. drop _all

. set obs 10

. set seed 123456789

. generate time = _n

. label variable time "Time"

. generate x = _n^3 - 10*_n^2 + 5*_n

. label variable x "Signal"

. generate z = x + 50*rnormal()

. label variable z "Observed series"
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. scatter x z time, c(l .) m(i o) ytitle("")

−
2

0
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−
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0
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0
1

0
0

0 2 4 6 8 10
Time

Signal Observed series

Now we smooth the noisy series, z, assumed to be the only data we would observe:

. smooth 4253eh,twice z, gen(sz)

. label variable sz "Smoothed series"

. scatter x z sz time, c(l . l) m(i o i) ytitle("") || scatter sz time,
> c(l . l) m(i o i) ytitle("") clpattern(dash_dot)
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−
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0
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0
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0
0

0 2 4 6 8 10
Time

Signal Observed series

Smoothed series

Example 2

Salgado-Ugarte and Curts-Garcı́a (1993) provide data on the frequencies of observed fish lengths.
In this example, the series to be smoothed—the frequencies—is ordered by fish length rather than
by time.

. use http://www.stata-press.com/data/r12/fishdata, clear

. smooth 4253eh,twice freq, gen(sfreq)

. label var sfreq "4253EH,twice of frequencies"
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. scatter sfreq freq length, c(l .) m(i o)
> title("Smoothed frequencies of fish lengths") ytitle("") xlabel(#4)

0
5

1
0

1
5

40 50 60 70
Standard body length

4253EH,twice of frequencies Frequency of indiv counts

Smoothed frequencies of fish lengths

Technical note
smooth allows missing values at the beginning and end of the series, but missing values in the

middle are not allowed. Leading and trailing missing values are ignored. If you wish to ignore missing
values in the middle of the series, you must drop the missing observations before using smooth.
Doing so, of course, would violate smooth’s assumption that observations are equally spaced—each
observation represents a year, a quarter, or a month (or a 1-year birth-rate category). In practice,
smooth produces good results as long as the spaces between adjacent observations do not vary too
much.

Smoothing is usually applied to time series, but any variable with a natural order can be smoothed.
For example, a smoother might be applied to the birth rate recorded by the age of the mothers (birth
rate for 17-year-olds, birth rate for 18-year-olds, and so on).

Methods and formulas
smooth is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Running median smoothers of odd span
Running median smoothers of even span
Repeat operator
Endpoint rule
Splitting operator
Hanning smoother
Twicing
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Running median smoothers of odd span

The smoother 3 defines
zt = median(yt−1, yt, yt+1)

The smoother 5 defines
zt = median(yt−2, yt−1, yt, yt+1, yt+2)

and so on. The smoother 1 defines zt = median(yt), so it does nothing.

Endpoints are handled by using smoothers of shorter, odd span. Thus for 3,

z1 = y1

z2 = median(y1, y2, y3)
...

zN−1 = median(yN−2, yN−1, yN )

ZN = yN

For 5,
z1 = y1

z2 = median(y1, y2, y3)

z3 = median(y1, y2, y3, y4, y5)

z4 = median(y2, y3, y4, y5, y6)
...

zN−2 = median(yN−4, yN−3, yN−2, yN−1, yN )

zN−1 = median(yN−2, yN−1, yN )

ZN = yN

and so on.

Running median smoothers of even span

Define the median() function as returning the linearly interpolated value when given an even
number of arguments. Thus the smoother 2 defines

zt+0.5 = (yt + yt+1)/2

The smoother 4 defines zt+0.5 as the linearly interpolated median of (yt−1, yt, yt+1, yt+2), and so
on. Endpoints are always handled using smoothers of shorter, even span. Thus for 4,
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z0.5 = y1

z1.5 = median(y1, y2) = (y1 + y2)/2

z2.5 = median(y1, y2, y3, y4)
...

zN−2.5 = median(yN−4, yN−3, yN−2, yN )

zN−1.5 = median(yN−2, yN−1)

zN−0.5 = median(yN−1, yN )

zN+0.5 = yN

As defined above, an even-span smoother increases the length of the series by 1 observation. However,
the series can be recentered on the original observation numbers, and the “extra” observation can be
eliminated by smoothing the series again with another even-span smoother. For instance, the smooth
of 4 illustrated above could be followed by a smooth of 2 to obtain

z∗1 = (z0.5 + z1.5)/2

z∗2 = (z1.5 + z2.5)/2

z∗3 = (z2.5 + z3.5)/2
...

z∗N−2 = (z
N−2.5 + z

N−1.5)/2

z∗N−1 = (z
N−1.5 + z

N−0.5)/2

z∗N = (z
N−0.5 + z

N+0.5)/2

smooth keeps track of the number of even smoothers applied to the data and expands and shrinks the
length of the series accordingly. To ensure that the final smooth has the same number of observations
as varname, smooth requires you to specify an even number of even-span smoothers. However, the
pairs of even-span smoothers need not be contiguous; for instance, 4253 and 4523 are both allowed.

Repeat operator

R indicates that a smoother is to be repeated until convergence, that is, until repeated applications
of the smoother produce the same series. Thus 3 applies the smoother of running medians of span
3. 33 applies the smoother twice. 3R produces the result of repeating 3 an infinite number of times.
R should be used only with odd-span smoothers because even-span smoothers are not guaranteed to
converge.

The smoother 453R2 applies a span-4 smoother, followed by a span-5 smoother, followed by
repeated applications of a span-3 smoother, followed by a span-2 smoother.
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Endpoint rule

The endpoint rule E modifies the values z1 and zN according to the following formulas:

z1 = median(3z2 − 2z3, z1, z2)

zN = median(3zN−2 − 2zN−1, zN , zN−1)

When the endpoint rule is not applied, endpoints are typically “copied in”; that is, z1 = y1 and
zN = yN .

Splitting operator

The smoothers 3 and 3R can produce flat-topped hills and valleys. The split operator attempts to
eliminate such hills and valleys by splitting the sequence, applying the endpoint rule E, rejoining the
series, and then resmoothing by 3R.

The S operator may be applied only after 3, 3R, or S.

We recommend that the S operator be repeated once (SS) or until no further changes take place
(SR).

Hanning smoother

H is the Hanning linear smoother:

zt = (yt−1 + 2yt + yt+1)/4

Endpoints are copied in: z1 = y1 and zN = yN . H should be applied only after all nonlinear
smoothers.

Twicing

A smoother divides the data into a smooth and a rough:

data = smooth + rough

If the smoothing is successful, the rough should exhibit no pattern. Twicing refers to applying the
smoother to the observed, calculating the rough, and then applying the smoother to the rough. The
resulting “smoothed rough” is then added back to the smooth from the first step.

Acknowledgments
smooth was originally written by William Gould (1992)—at which time it was named nlsm—and

was inspired by Salgado-Ugarte and Curts-Garcı́a (1992). Salgado-Ugarte and Curts-Garcı́a (1993)
subsequently reported anomalies in nlsm’s treatment of even-span median smoothers. smooth corrects
these problems and incorporates other improvements but otherwise is essentially the same as originally
published.
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Also see
[R] lowess — Lowess smoothing

[R] lpoly — Kernel-weighted local polynomial smoothing

[TS] tssmooth — Smooth and forecast univariate time-series data
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Title

spearman — Spearman’s and Kendall’s correlations

Syntax

Spearman’s rank correlation coefficients

spearman
[

varlist
] [

if
] [

in
] [

, spearman options
]

Kendall’s rank correlation coefficients

ktau
[

varlist
] [

if
] [

in
] [

, ktau options
]

spearman options Description

Main

stats(spearman list) list of statistics; select up to three statistics; default is stats(rho)

print(#) significance level for displaying coefficients
star(#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Šidák-adjusted significance level
pw calculate all pairwise correlation coefficients by using all available data
matrix display output in matrix form

ktau options Description

Main

stats(ktau list) list of statistics; select up to six statistics; default is stats(taua)

print(#) significance level for displaying coefficients
star(#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Šidák-adjusted significance level
pw calculate all pairwise correlation coefficients by using all available data
matrix display output in matrix form

by is allowed with spearman and ktau; see [D] by.

where the elements of spearman list may be
rho correlation coefficient
obs number of observations
p significance level

and the elements of ktau list may be
taua correlation coefficient τa
taub correlation coefficient τb
score score
se standard error of score
obs number of observations
p significance level
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Menu
spearman

Statistics > Nonparametric analysis > Tests of hypotheses > Spearman’s rank correlation

ktau

Statistics > Nonparametric analysis > Tests of hypotheses > Kendall’s rank correlation

Description
spearman displays Spearman’s rank correlation coefficients for all pairs of variables in varlist or,

if varlist is not specified, for all the variables in the dataset.

ktau displays Kendall’s rank correlation coefficients between the variables in varlist or, if varlist is
not specified, for all the variables in the dataset. ktau is intended for use on small- and moderate-sized
datasets; it requires considerable computation time for larger datasets.

Options for spearman

� � �
Main �

stats(spearman list) specifies the statistics to be displayed in the matrix of output. stats(rho)
is the default. Up to three statistics may be specified; stats(rho obs p) would display the
correlation coefficient, number of observations, and significance level. If varlist contains only two
variables, all statistics are shown in tabular form, and stats(), print(), and star() have no
effect unless the matrix option is specified.

print(#) specifies the significance level of correlation coefficients to be printed. Correlation coeffi-
cients with larger significance levels are left blank in the matrix. Typing spearman, print(.10)
would list only those correlation coefficients that are significant at the 10% level or lower.

star(#) specifies the significance level of correlation coefficients to be marked with a star. Typing
spearman, star(.05) would “star” all correlation coefficients significant at the 5% level or
lower.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This adjustment affects
printed significance levels and the print() and star() options. Thus spearman, print(.05)
bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.

sidak makes the Šidák adjustment to calculated significance levels. This adjustment affects printed
significance levels and the print() and star() options. Thus spearman, print(.05) sidak
prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

pw specifies that correlations be calculated using pairwise deletion of observations with missing
values. By default, spearman uses casewise deletion, where observations are ignored if any of
the variables in varlist are missing.

matrix forces spearman to display the statistics as a matrix, even if varlist contains only two
variables. matrix is implied if more than two variables are specified.
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Options for ktau

� � �
Main �

stats(ktau list) specifies the statistics to be displayed in the matrix of output. stats(taua) is
the default. Up to six statistics may be specified; stats(taua taub score se obs p) would
display the correlation coefficients τa, τb, score, standard error of score, number of observations,
and significance level. If varlist contains only two variables, all statistics are shown in tabular
form and stats(), print(), and star() have no effect unless the matrix option is specified.

print(#) specifies the significance level of correlation coefficients to be printed. Correlation coef-
ficients with larger significance levels are left blank in the matrix. Typing ktau, print(.10)
would list only those correlation coefficients that are significant at the 10% level or lower.

star(#) specifies the significance level of correlation coefficients to be marked with a star. Typing
ktau, star(.05) would “star” all correlation coefficients significant at the 5% level or lower.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This adjustment
affects printed significance levels and the print() and star() options. Thus ktau, print(.05)
bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05 or less.

sidak makes the Šidák adjustment to calculated significance levels. This adjustment affects printed
significance levels and the print() and star() options. Thus ktau, print(.05) sidak prints
coefficients with Šidák-adjusted significance levels of 0.05 or less.

pw specifies that correlations be calculated using pairwise deletion of observations with missing values.
By default, ktau uses casewise deletion, where observations are ignored if any of the variables in
varlist are missing.

matrix forces ktau to display the statistics as a matrix, even if varlist contains only two variables.
matrix is implied if more than two variables are specified.

Remarks

Example 1

We wish to calculate the correlation coefficients among marriage rate (mrgrate), divorce rate
(divorce rate), and median age (medage) in state data. We can calculate the standard Pearson
correlation coefficients and significance by typing

.use http://www.stata-press.com/data/r12/states2
(State data)

. pwcorr mrgrate divorce_rate medage, sig

mrgrate divorc~e medage

mrgrate 1.0000

divorce_rate 0.7895 1.0000
0.0000

medage 0.0011 -0.1526 1.0000
0.9941 0.2900
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We can calculate Spearman’s rank correlation coefficients by typing

. spearman mrgrate divorce_rate medage, stats(rho p)
(obs=50)

Key

rho
Sig. level

mrgrate divorc~e medage

mrgrate 1.0000

divorce_rate 0.6933 1.0000
0.0000

medage -0.4869 -0.2455 1.0000
0.0003 0.0857

The large difference in the results is caused by one observation. Nevada’s marriage rate is almost 10
times higher than the state with the next-highest marriage rate. An important feature of the Spearman
rank correlation coefficient is its reduced sensitivity to extreme values compared with the Pearson
correlation coefficient.

We can calculate Kendall’s rank correlations by typing

. ktau mrgrate divorce_rate medage, stats(taua taub p)
(obs=50)

Key

tau_a
tau_b
Sig. level

mrgrate divorc~e medage

mrgrate 0.9829
1.0000

divorce_rate 0.5110 0.9804
0.5206 1.0000
0.0000

medage -0.3486 -0.1698 0.9845
-0.3544 -0.1728 1.0000
0.0004 0.0828

There are tied values for variables mrgrate, divorce rate, and medage, so tied ranks are used.
As a result, τa < 1 on the diagonal (see Methods and formulas for the definition of τa).
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Technical note
According to Conover (1999, 323), “Spearman’s ρ tends to be larger than Kendall’s τ in absolute

value. However, as a test of significance, there is no strong reason to prefer one over the other because
both will produce nearly identical results in most cases.”

Example 2

We illustrate spearman and ktau with the auto data, which contains some missing values.

.use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. spearman mpg rep78

Number of obs = 69
Spearman’s rho = 0.3098

Test of Ho: mpg and rep78 are independent
Prob > |t| = 0.0096

Because we specified two variables, spearman displayed the sample size, correlation, and p-value in
tabular form. To obtain just the correlation coefficient displayed in matrix form, we type

. spearman mpg rep78, stats(rho) matrix
(obs=69)

mpg rep78

mpg 1.0000
rep78 0.3098 1.0000

The pw option instructs spearman and ktau to use all nonmissing observations between a pair
of variables when calculating their correlation coefficient. In the output below, some correlations are
based on 74 observations, whereas others are based on 69 because 5 observations contain a missing
value for rep78.

. spearman mpg price rep78, pw stats(rho obs p) star(0.01)

Key

rho
Number of obs
Sig. level

mpg price rep78

mpg 1.0000
74

price -0.5419* 1.0000
74 74

0.0000

rep78 0.3098* 0.1028 1.0000
69 69 69

0.0096 0.4008
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Finally, the bonferroni and sidak options provide adjusted significance levels:

. ktau mpg price rep78, stats(taua taub score se p) bonferroni
(obs=69)

Key

tau_a
tau_b
score
se of score
Sig. level

mpg price rep78

mpg 0.9471
1.0000

2222.0000
191.8600

price -0.3973 1.0000
-0.4082 1.0000

-932.0000 2346.0000
192.4561 193.0682

0.0000

rep78 0.2076 0.0648 0.7136
0.2525 0.0767 1.0000

487.0000 152.0000 1674.0000
181.7024 182.2233 172.2161

0.0224 1.0000

� �
Charles Edward Spearman (1863–1945) was a British psychologist who made contributions
to correlation, factor analysis, test reliability, and psychometrics. After several years’ military
service, he obtained a PhD in experimental psychology at Leipzig and became a professor at
University College London, where he sustained a long program of work on the interpretation of
intelligence tests. Ironically, the rank correlation version bearing his name is not the formula he
advocated.

Maurice George Kendall (1907–1983) was a British statistician who contributed to rank correlation,
time series, multivariate analysis, among other topics, and wrote many statistical texts. Most
notably, perhaps, his advanced survey of the theory of statistics went through several editions,
later ones with Alan Stuart; the baton has since passed to others. Kendall was employed in turn
as a government and business statistician, as a professor at the London School of Economics, as
a consultant, and as director of the World Fertility Survey. He was knighted in 1974.� �
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Saved results
spearman saves the following in r():

Scalars
r(N) number of observations (last variable pair)
r(rho) ρ (last variable pair)
r(p) two-sided p-value (last variable pair)

Matrices
r(Nobs) number of observations
r(Rho) ρ

r(P) two-sided p-value

ktau saves the following in r():

Scalars
r(N) number of observations (last variable pair)
r(tau a) τa (last variable pair)
r(tau b) τb (last variable pair)
r(score) Kendall’s score (last variable pair)
r(se score) se of score (last variable pair)
r(p) two-sided p-value (last variable pair)

Matrices
r(Nobs) number of observations
r(Tau a) τa
r(Tau b) τb
r(Score) Kendall’s score
r(Se Score) standard error of score
r(P) two-sided p-value

Methods and formulas
spearman and ktau are implemented as ado-files.

Spearman’s (1904) rank correlation is calculated as Pearson’s correlation computed on the ranks
and average ranks (Conover 1999, 314–315). Ranks are as calculated by egen; see [D] egen. The
significance is calculated using the approximation

p = 2× ttail(n− 2, |ρ̂|
√
n− 2 /

√
1− ρ̂2 )

For any two pairs of ranks (xi, yi) and (xj , yj) of one variable pair (varname1, varname2),
1 ≤ i, j ≤ n, where n is the number of observations, define them as concordant if

(xi − xj)(yi − yj) > 0

and discordant if this product is less than zero.

Kendall’s (1938; also see Kendall and Gibbons [1990] or Bland [2000], 222–225) score S is
defined as C−D, where C (D) is the number of concordant (discordant) pairs. Let N = n(n−1)/2
be the total number of pairs, so τa is given by

τa = S/N

and τb is given by

τb =
S√

N − U
√
N − V
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where

U =
N1∑
i=1

ui(ui − 1)/2

V =
N2∑
j=1

vj(vj − 1)/2

and where N1 is the number of sets of tied x values, ui is the number of tied x values in the ith
set, N2 is the number of sets of tied y values, and vj is the number of tied y values in the jth set.
Under the null hypothesis of independence between varname1 and varname2, the variance of S is
exactly (Kendall and Gibbons 1990, 66)

Var(S) =
1
18

{
n(n− 1)(2n+ 5)−

N1∑
i=1

ui(ui − 1)(2ui + 5)−
N2∑
j=1

vj(vj − 1)(2vj + 5)
}

+
1

9n(n− 1)(n− 2)

{ N1∑
i=1

ui(ui − 1)(ui − 2)
}{ N2∑

j=1

vj(vj − 1)(vj − 2)
}

+
1

2n(n− 1)

{ N1∑
i=1

ui(ui − 1)
}{ N2∑

j=1

vj(vj − 1)
}

Using a normal approximation with a continuity correction,

z =
|S| − 1√
Var(S)

For the hypothesis of independence, the statistics S, τa, and τb produce equivalent tests and give the
same significance.

For Kendall’s τ , the normal approximation is surprisingly accurate for sample sizes as small as 8,
at least for calculating p-values under the null hypothesis for continuous variables. (See Kendall and
Gibbons [1990, chap. 4], who also present some tables for calculating exact p-values for n < 10.)
For Spearman’s ρ, the normal approximation requires larger samples to be valid.

Let v be the number of variables specified so that k = v(v − 1)/2 correlation coefficients are
to be estimated. If bonferroni is specified, the adjusted significance level is p′ = min(1, kp). If
sidak is specified, p′ = min

{
1, 1 − (1 − p)n

}
. See Methods and formulas in [R] oneway for a

more complete description of the logic behind these adjustments.

Early work on rank correlation is surveyed by Kruskal (1958).

Acknowledgment
The original version of ktau was written by Sean Becketti, a past editor of the Stata Technical
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Title

spikeplot — Spike plots and rootograms

Syntax
spikeplot varname

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

round(#) round varname to nearest multiple of # (bin width)
fraction make vertical scale the proportion of total values; default is frequencies
root make vertical scale show square roots of frequencies

Plot

spike options affect rendition of plotted spikes

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Menu
Graphics > Distributional graphs > Spike plot and rootogram

Description
spikeplot produces a frequency plot for a variable in which the frequencies are depicted as

vertical lines from zero. The frequency may be a count, a fraction, or the square root of the count
(Tukey’s rootogram, circa 1965). The vertical lines may also originate from a baseline other than
zero at the user’s option.

Options

� � �
Main �

round(#) rounds the values of varname to the nearest multiple of #. This action effectively specifies
the bin width.

fraction specifies that the vertical scale be the proportion of total values (percentage) rather than
the count.

root specifies that the vertical scale show square roots. This option may not be specified if fraction
is specified.

� � �
Plot �

spike options affect the rendition of the plotted spikes; see [G-2] graph twoway spike.
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� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include op-
tions for titling the graph (see [G-3] title options), options for saving the graph to disk (see
[G-3] saving option), and the by() option (see [G-3] by option).

Remarks

Example 1

Cox and Brady (1997a) present an illustrative example using the age structure of the population
of Ghana from the 1960 census (rounded to the nearest 1,000). The dataset has ages from 0 (less
than 1 year) to 90. To view the distribution of ages, we would like to use each integer from 0 to 90
as the bins for the dataset.

. use http://www.stata-press.com/data/r12/ghanaage

. spikeplot age [fw=pop], ytitle("Population in 1000s") xlab(0(10)90)
> xmtick(5(10)85)
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The resulting graph shows a “heaping” of ages at the multiples of 5. Also, ages ending in even
numbers are more frequent than ages ending in odd numbers (except for 5). This preference for
reporting ages is well known in demography and other social sciences.

Note also that we used the ytitle() option to override the default title of “Frequency” and that
we used the xlab() and xmtick() options with numlists to further customize the resulting graph.
See [U] 11.1.8 numlist for details on specifying numlists.
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Example 2

The rootogram is a plot of the square-root transformation of the frequency counts. The square root
of a normal distribution is a multiple of another normal distribution.

. clear

. set seed 1234567

. set obs 5000
obs was 0, now 5000

. generate normal = rnormal()

. label variable normal "Gaussian(0,1) random numbers"

. spikeplot normal, round(.10) xlab(-4(1)4)
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. spikeplot normal, round(.10) xlab(-4(1)4) root
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Interpreting a histogram in terms of normality is thus similar to interpreting the rootogram for
normality.

This example also shows how the round() option is used to bin the values for a spike plot of a
continuous variable.
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Example 3

spikeplot can also be used to produce time-series plots. varname should be the time variable,
and weights should be specified as the values for those times. To get a plot of daily rainfalls, we type

. spikeplot day [w=rain] if rain, ytitle("Daily rainfall in mm")

The base() option of graph twoway spike may be used to set a different baseline, such as
when we want to show variations relative to an average or to some other measure of level.

Methods and formulas
spikeplot is implemented as an ado-file.

Acknowledgments
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Also see
[R] histogram — Histograms for continuous and categorical variables
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Title

ssc — Install and uninstall packages from SSC

Syntax
Summary of packages most recently added or updated at SSC

ssc new
[
, saving(filename

[
, replace

]
) type

]
Summary of most popular packages at SSC

ssc hot
[
, n(#) author(name)

]
Describe a specified package at SSC

ssc describe
{

pkgname | letter
} [

, saving(filename
[
, replace

]
)
]

Install a specified package from SSC

ssc install pkgname
[
, all replace

]
Uninstall from your computer a previously installed package from SSC

ssc uninstall pkgname

Type a specific file stored at SSC

ssc type filename
[
, asis

]
Copy a specific file from SSC to your computer

ssc copy filename
[
, plus personal replace public binary

]
where letter in ssc describe is a–z or .

Description

ssc works with packages (and files) from the Statistical Software Components (SSC) archive,
which is often called the Boston College Archive and is provided by http://repec.org.

The SSC has become the premier Stata download site for user-written software on the web.
ssc provides a convenient interface to the resources available there. For example, on Statalist (see
http://www.stata.com/statalist/), users will often write

The program can be found by typing ssc install newprogramname.

Typing that would load everything associated with newprogramname, including the help files.

If you are searching for what is available, type ssc new and ssc hot, and see [R] search. search
searches the SSC and other places, too. search provides a GUI interface from which programs can
be installed, including the programs at the SSC archive.

You can uninstall particular packages by using ssc uninstall. For the packages that you keep,
see [R] adoupdate for an automated way of keeping those packages up to date.
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Command overview
ssc new summarizes the packages made available or updated recently. Output is presented in the

Stata Viewer, and from there you may click to find out more about individual packages or to
install them.

ssc hot lists the most popular packages—popular based on a moving average of the number of
downloads in the past three months. By default, 10 packages are listed.

ssc describe pkgname describes, but does not install, the specified package. Use search to find
packages; see [R] search. If you know the package name but do not know the exact spelling, type
ssc describe followed by one letter, a–z or (underscore), to list all the packages starting with
that letter.

ssc install pkgname installs the specified package. You do not have to describe a package before
installing it. (You may also install a package by using net install; see [R] net.)

ssc uninstall pkgname removes the previously installed package from your computer. It does not
matter how the package was installed. (ssc uninstall is a synonym for ado uninstall, so
either may be used to installed any package.)

ssc type filename types a specific file stored at SSC. ssc cat is a synonym for ssc type, which
may appeal to those familiar with Unix.

ssc copy filename copies a specific file stored at SSC to your computer. By default, the file is
copied to the current directory, but you can use options to change this. ssc copy is a rarely used
alternative to ssc install . . . , all. ssc cp is a synonym for ssc copy.

Options for use with ssc new
saving(filename

[
, replace

]
) specifies that the “what’s new” summary be saved in filename. If

filename is specified without a suffix, filename.smcl is assumed. If saving() is not specified,
saving(ssc results.smcl) is assumed.

type specifies that the “what’s new” results be displayed in the Results window rather than in the
Viewer.

Options for use with ssc hot

n(#) specifies the number of packages to list; n(10) is the default. Specify n(.) to list all packages
in order of popularity.

author(name) lists the 10 most popular packages by the specified author. If n(#) is also specified,
the top # packages are listed.

Option for use with ssc describe
saving(filename

[
, replace

]
) specifies that, in addition to the descriptions being displayed on

your screen, it be saved in the specified file.

If filename is specified without an extension, .smcl will be assumed, and the file will be saved
as a SMCL file.

If filename is specified with an extension, no default extension is added. If the extension is .log,
the file will be stored as a text file.

If replace is specified, filename is replaced if it already exists.
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Options for use with ssc install
all specifies that any ancillary files associated with the package be downloaded to your current

directory, in addition to the program and help files being installed. Ancillary files are files that
do not end in .ado or .sthlp and typically contain datasets or examples of the use of the new
command.

You can find out which files are associated with the package by typing ssc describe pkgname
before or after installing. If you install without using the all option and then want the ancillary
files, you can ssc install again.

replace specifies that any files being downloaded that already exist on your computer be replaced
by the downloaded files. If replace is not specified and any files already exist, none of the files
from the package is downloaded or installed.

It is better not to specify the replace option and wait to see if there is a problem. If there
is a problem, it is usually better to uninstall the old package by using ssc uninstall or ado
uninstall (which are, in fact, the same command).

Option for use with ssc type

asis affects how files with the suffixes .smcl and .sthlp are displayed. The default is to interpret
SMCL directives the file might contain. asis specifies that the file be displayed in raw, uninterpreted
form.

Options for use with ssc copy

plus specifies that the file be copied to the PLUS directory, the directory where user-written additions
are installed. Typing sysdir will display the identity of the PLUS directory on your computer;
see [P] sysdir.

personal specifies that the file be copied to your PERSONAL directory as reported by sysdir; see
[P] sysdir.

If neither plus nor personal is specified, the default is to copy the file to the current directory.

replace specifies that, if the file already exists on your computer, the new file replace it.

public specifies that the new file be made readable by everyone; otherwise, the file will be created
according to the default permission you have set with your operating system.

binary specifies that the file being copied is a binary file and that it is to be copied as is. The default
is to assume that the file is a text file and change the end-of-line characters to those appropriate
for your computer/operating system.

Remarks
Users can add new features to Stata, and some users choose to make new features that they have

written available to others via the web. The files that comprise a new feature are called a package, and
a package usually consists of one or more ado-files and help files. The net command (see [R] net)
makes it reasonably easy to install and uninstall packages regardless of where they are on the web.
One site, the SSC, has become particularly popular as a repository for additions to Stata. Command
ssc is an easier to use version of net designed especially for the SSC.
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Many packages are available at the SSC. Packages have names, such as oaxaca, estout, or
egenmore. At SSC, capitalization is not significant, so Oaxaca, ESTOUT, and EGENmore are ways of
writing the same package names.

When you type

. ssc install oaxaca

the files associated with the package are downloaded and installed on your computer. Package names
usually correspond to the names of the command being added to Stata, so one would expect that
installing the package oaxaca will add command oaxaca to Stata on your computer, and expect
that typing help oaxaca will provide the documentation. That is the situation here, but that is not
always so. Before or after installing a package, type ssc describe pkgname to obtain the details.

Example 1

ssc new summarizes the packages most recently made available or updated. Output is presented in
the Viewer, from which you may click on a package name to find out more or install it. For example,

. ssc new
(contacting http://repec.org)

(output omitted )
KHB
module to decompose total effects into direct and indirect via KHB-method
Authors: Ulrich Kohler Kristian Karlson Req: Stata version 11
Revised: 2011-05-02

(output omitted )
TODUMMY
module to create dummy variables
Authors: Daniel Klein Req: Stata version 11
Revised: 2011-05-07

(output omitted )

End of recent additions and updates

ssc hot provides a list of the most popular packages at SSC.

. ssc hot

Top 10 packages at SSC

Apr2011
Rank # hits Package Author(s)

1 5267.5 outreg2 Roy Wada
2 4226.8 estout Ben Jann
3 2102.7 psmatch2 Barbara Sianesi, Edwin Leuven
4 2006.2 ivreg2 Mark E Schaffer, Christopher F Baum

Steven Stillman
5 1224.0 ranktest Mark E Schaffer, Frank Kleibergen
6 1126.5 gllamm Sophia Rabe-Hesketh
7 1067.8 xtabond2 David Roodman
8 928.3 tabout Ian Watson
9 895.5 xtivreg2 Mark E Schaffer

10 789.3 outreg John Luke Gallup

(Click on package name for description)
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Use the n(#) option to change the number of packages listed:

. ssc hot, n(20)

Top 20 packages at SSC

Apr2011
Rank # hits Package Author(s)

1 5267.5 outreg2 Roy Wada
2 4226.8 estout Ben Jann
3 2102.7 psmatch2 Barbara Sianesi, Edwin Leuven
4 2006.2 ivreg2 Mark E Schaffer, Christopher F Baum,

Steven Stillman
5 1224.0 ranktest Mark E Schaffer, Frank Kleibergen
6 1126.5 gllamm Sophia Rabe-Hesketh
7 1067.8 xtabond2 David Roodman
8 928.3 tabout Ian Watson
9 895.5 xtivreg2 Mark E Schaffer

10 789.3 outreg John Luke Gallup
11 782.8 usespss Sergiy Radyakin
12 736.5 winsor Nicholas J. Cox
13 734.0 hprescott Christopher F Baum
14 571.5 overid Vince Wiggins, Steven Stillman, Mark E

Schaffer, Christopher F Baum
15 565.5 fre Ben Jann
16 477.0 whitetst Nicholas J. Cox, Christopher F Baum
17 420.1 spmap Maurizio Pisati
18 419.5 shp2dta Kevin Crow
19 416.3 egenmore Nicholas J. Cox
20 405.2 ice Patrick Royston

(Click on package name for description)

The author(name) option allows you to list the most popular packages by a specific person:

. ssc hot, author(baum)

Top 10 packages at SSC by author Baum

Apr2011
Rank # hits Package Author(s)

4 2006.2 ivreg2 Mark E Schaffer, Christopher F Baum,
Steven Stillman

13 734.0 hprescott Christopher F Baum
14 571.5 overid Vince Wiggins, Steven Stillman, Mark E

Schaffer, Christopher F Baum
16 477.0 whitetst Nicholas J. Cox, Christopher F Baum
31 360.5 xttest3 Christopher F Baum
35 342.0 ivendog Mark E Schaffer, Christopher F Baum,

Steven Stillman
44 289.5 xttest2 Christopher F Baum
49 275.0 tsmktim Christopher F Baum, Vince Wiggins
62 223.8 outtable Joao Pedro Azevedo, Christopher F Baum
65 217.0 ipshin Fabian Bornhorst, Christopher F Baum

(Click on package name for description)

ssc describe pkgname describes, but does not install, the specified package. You must already
know the name of the package. See [R] search for assistance in searching for packages. Sometimes
you know the package name, but you do not know the exact spelling. Then you can type ssc
describe followed by one letter, a–z or , to list all the packages starting with that letter; even so,
using search is better.
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. ssc describe khb

package khb from http://fmwww.bc.edu/repec/bocode/k

TITLE
’KHB’: module to decompose total effects into direct and indirect via KHB

> -method

DESCRIPTION/AUTHOR(S)
decomposes the total effect of a variable into direct and

indirect effects using the KHB-method developed by Karlson, Holm,
and Breen (2011). The method is developed for binary and logit
probit models, but this command also includes other nonlinear
probability models (ordered and multinomial) and linear
regression. Contrary to other decomposition methods, the
KHB-method gives unbiased decompositions, decomposes effects of
both discrete and continuous variables, and provides analytically
derived statistical tests for many models of the GLM family.
KW: decomposition
KW: effects
KW: probit
KW: nonlinear probability model
Requires: Stata version 11
Distribution-Date: 20110502
Author: Ulrich Kohler, WZB
Support: email kohler@wz-berlin.de
Author: Kristian Karlson
Support: email kbk@dpu.dk

INSTALLATION FILES (type net install khb)
khb.ado
khb.sthlp

(type -ssc install khb- to install)

The default setting for the saving() option is for the output to be saved with the .smcl extension.
You could also save the file with a log extension, and in this case, the file would be stored as a text
file.

. ssc describe k, saving(k.index)
(output omitted )

. ssc describe khb, saving(khb.log)
(output omitted )

ssc install pkgname installs the specified package. You do not have to describe a package
before installing it. There are ways of installing packages other than ssc install, such as net; see
[R] net. It does not matter how a package is installed. For instance, a package can be installed using
net and still be uninstalled using ssc.

. ssc install khb
checking khb consistency and verifying not already installed...
installing into C:\ado\plus\...
installation complete.

ssc uninstall pkgname removes the specified, previously installed package from your computer.
You can uninstall immediately after installation or at any time in the future. (Technical note: ssc
uninstall is a synonym for ado uninstall, so it can uninstall any installed package, not just
packages obtained from the SSC.)
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. ssc uninstall khb

package khb from http://fmwww.bc.edu/repec/bocode/k
'KHB': module to decompose total effects into direct and indirect via KHB-method

(package uninstalled)

ssc type filename types a specific file stored at the SSC. Although not shown in the syntax
diagram, ssc cat is a synonym for ssc type, which may appeal to those familiar with Unix. To
view only the khb help file for the khb package, you would type

Title

khb Decomposition of total effects into direct and indirect effects using
the KHB-method

(output omitted )

ssc copy filename copies a specific file stored at the SSC to your computer. By default, the file
is copied to the current directory, but you can use options to change this. ssc copy is a rarely used
alternative to ssc install . . . , all. ssc cp is a synonym for ssc copy.

. ssc copy khb.ado
(file khb.ado copied to current directory)

For more details on the SSC archive and for information on how to submit your own programs to
the SSC, see http://repec.org/bocode/s/sscsubmit.html.

Methods and formulas
ssc is implemented as an ado-file.
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Title

stem — Stem-and-leaf displays

Syntax
stem varname

[
if
] [

in
] [

, options
]

options Description

Main

prune do not print stems that have no leaves
round(#) round data to this value; default is round(1)

digits(#) digits per leaf; default is digits(1)

lines(#) number of stems per interval of 10digits

width(#) stem width; equal to 10digits/width

by is allowed; see [D] by.

Menu
Statistics > Summaries, tables, and tests > Distributional plots and tests > Stem-and-leaf display

Description
stem displays stem-and-leaf plots.

Options

� � �
Main �

prune prevents printing any stems that have no leaves.

round(#) rounds the data to this value and displays the plot in these units. If round() is not
specified, noninteger data will be rounded automatically.

digits(#) sets the number of digits per leaf. The default is 1.

lines(#) sets the number of stems per every data interval of 10digits. The value of lines() must
divide 10digits; that is, if digits(1) is specified, then lines() must divide 10. If digits(2) is
specified, then lines() must divide 100, etc. Only one of lines() or width() may be specified.
If neither is specified, an appropriate value will be set automatically.

width(#) sets the width of a stem. lines() is equal to 10digits/width, and this option is merely
an alternative way of setting lines(). The value of width() must divide 10digits. Only one of
width() or lines() may be specified. If neither is specified, an appropriate value will be set
automatically.

Note: If lines() or width() is not specified, digits() may be decreased in some circumstances
to make a better-looking plot. If lines() or width() is set, the user-specified value of digits()
will not be altered.
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Remarks

Example 1

Stem-and-leaf displays are a compact way to present considerable information about a batch of
data. For instance, using our automobile data (described in [U] 1.2.2 Example datasets):

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. stem mpg

Stem-and-leaf plot for mpg (Mileage (mpg))

1t 22
1f 44444455
1s 66667777
1. 88888888899999999
2* 00011111
2t 22222333
2f 444455555
2s 666
2. 8889
3* 001
3t
3f 455
3s
3.
4* 1

The stem-and-leaf display provides a way to list our data. The expression to the left of the vertical
bar is called the stem; the digits to the right are called the leaves. All the stems that begin with the
same digit and the corresponding leaves, written beside each other, reconstruct an observation of the
data. Thus, if we look at the four stems that begin with the digit 1 and their corresponding leaves,
we see that we have two cars rated at 12 mpg, 6 cars at 14, 2 at 15, and so on. The car with the
highest mileage rating in our data is rated at 41 mpg.

The above plot is a five-line plot with lines() equal to 5 (five lines per interval of 10) and
width() equal to 2 (two leaves per stem).

Instead, we could specify lines(2):

. stem mpg, lines(2)

Stem-and-leaf plot for mpg (Mileage (mpg))

1* 22444444
1. 556666777788888888899999999
2* 00011111222223334444
2. 555556668889
3* 0014
3. 55
4* 1

stem mpg, width(5) would produce the same plot as above.

The stem-and-leaf display provides a crude histogram of our data, one not so pretty as that produced
by histogram (see [R] histogram), but one that is nonetheless informative.
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Example 2

The miles per gallon rating fits easily into a stem-and-leaf display because, in our data, it has two
digits. However, stem does not require two digits.

. stem price, lines(1) digits(3)

Stem-and-leaf plot for price (Price)

3*** 291,299,667,748,798,799,829,895,955,984,995
4*** 010,060,082,099,172,181,187,195,296,389,424,425,453,482,499, ... (26)
5*** 079,104,172,189,222,379,397,705,719,788,798,799,886,899
6*** 165,229,295,303,342,486,850
7*** 140,827
8*** 129,814
9*** 690,735

10*** 371,372
11*** 385,497,995
12*** 990
13*** 466,594
14*** 500
15*** 906

The (26) at the right of the second stem shows that there were 26 leaves on this stem—too many
to display on one line.

We can make a more compact stem-and-leaf plot by rounding. To display stem in units of 100,
we could type

. stem price, round(100)

Stem-and-leaf plot for price (Price)

price rounded to nearest multiple of 100
plot in units of 100

3* 33778889
4* 00001112222344455555667777899
5* 11222447788899
6* 2233359
7* 18
8* 18
9* 77

10* 44
11* 45
12* 0
13* 056
14* 5
15* 9

price, in our data, has four or five digits. stem presented the display in terms of units of 100, so a
car that cost $3,291 was treated for display purposes as $3,300.

Technical note
Stem-and-leaf diagrams have been used in Japanese railway timetables, as shown in Tufte (1990,

46–47).
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Saved results
stem saves the following in r():

Scalars
r(width) width of a stem
r(digits) number of digits per leaf; default is 1

Macros
r(round) number specified in round()

Methods and formulas
stem is implemented as an ado-file.
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Title

stepwise — Stepwise estimation

Syntax
stepwise

[
, options

]
: command

options Description

Model
∗pr(#) significance level for removal from the model
∗pe(#) significance level for addition to the model

Model2

forward perform forward-stepwise selection
hierarchical perform hierarchical selection
lockterm1 keep the first term
lr perform likelihood-ratio test instead of Wald test

Reporting

display options control column formats and line width

∗ At least one of pr(#) or pe(#) must be specified.
by and xi are allowed; see [U] 11.1.10 Prefix commands.
Weights are allowed if command allows them; see [U] 11.1.6 weight.
All postestimation commands behave as they would after command without the stepwise prefix; see the postestimation

manual entry for command.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Other > Stepwise estimation

Description
stepwise performs stepwise estimation. Typing

. stepwise, pr(#): command

performs backward-selection estimation for command. The stepwise selection method is determined
by the following option combinations:

options Description

pr(#) backward selection
pr(#) hierarchical backward hierarchical selection
pr(#) pe(#) backward stepwise
pe(#) forward selection
pe(#) hierarchical forward hierarchical selection
pr(#) pe(#) forward forward stepwise
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command defines the estimation command to be executed. The following Stata commands are
supported by stepwise:

clogit nbreg regress
cloglog ologit scobit
glm oprobit stcox
intreg poisson stcrreg
logistic probit streg
logit qreg tobit

stepwise expects command to have the following form:

command name
[

depvar
]

term
[

term . . .
] [

if
] [

in
] [

weight
] [

, command options
]

where term is either varname or (varlist) (a varlist in parentheses indicates that this group of
variables is to be included or excluded together). depvar is not present when command name is
stcox, stcrreg, or streg; otherwise, depvar is assumed to be present. For intreg, depvar is
actually two dependent variable names (depvar1 and depvar2).

sw is a synonym for stepwise.

Options

� � �
Model �

pr(#) specifies the significance level for removal from the model; terms with p ≥ pr() are eligible
for removal.

pe(#) specifies the significance level for addition to the model; terms with p < pe() are eligible
for addition.

� � �
Model 2 �

forward specifies the forward-stepwise method and may be specified only when both pr() and pe()
are also specified. Specifying both pr() and pe() without forward results in backward-stepwise
selection. Specifying only pr() results in backward selection, and specifying only pe() results
in forward selection.

hierarchical specifies hierarchical selection.

lockterm1 specifies that the first term be included in the model and not be subjected to the selection
criteria.

lr specifies that the test of term significance be the likelihood-ratio test. The default is the less
computationally expensive Wald test; that is, the test is based on the estimated variance–covariance
matrix of the estimators.

� � �
Reporting �

display options: cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] es-
timation options.
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Remarks
Remarks are presented under the following headings:

Introduction
Search logic for a step
Full search logic
Examples
Estimation sample considerations
Messages
Programming for stepwise

Introduction

Typing

. stepwise, pr(.10): regress y1 x1 x2 d1 d2 d3 x4 x5

performs a backward-selection search for the regression model y1 on x1, x2, d1, d2, d3, x4, and
x5. In this search, each explanatory variable is said to be a term. Typing

. stepwise, pr(.10): regress y1 x1 x2 (d1 d2 d3) (x4 x5)

performs a similar backward-selection search, but the variables d1, d2, and d3 are treated as one
term, as are x4 and x5. That is, d1, d2, and d3 may or may not appear in the final model, but they
appear or do not appear together.

Example 1

Using the automobile dataset, we fit a backward-selection model of mpg:

. use http://www.stata-press.com/data/r12/auto

. gen weight2 = weight*weight

. stepwise, pr(.2): regress mpg weight weight2 displ gear turn headroom
> foreign price

begin with full model
p = 0.7116 >= 0.2000 removing headroom
p = 0.6138 >= 0.2000 removing displacement
p = 0.3278 >= 0.2000 removing price

Source SS df MS Number of obs = 74
F( 5, 68) = 33.39

Model 1736.31455 5 347.262911 Prob > F = 0.0000
Residual 707.144906 68 10.3991898 R-squared = 0.7106

Adj R-squared = 0.6893
Total 2443.45946 73 33.4720474 Root MSE = 3.2248

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0158002 .0039169 -4.03 0.000 -.0236162 -.0079842
weight2 1.77e-06 6.20e-07 2.86 0.006 5.37e-07 3.01e-06
foreign -3.615107 1.260844 -2.87 0.006 -6.131082 -1.099131

gear_ratio 2.011674 1.468831 1.37 0.175 -.9193321 4.94268
turn -.3087038 .1763099 -1.75 0.084 -.6605248 .0431172

_cons 59.02133 9.3903 6.29 0.000 40.28327 77.75938

This estimation treated each variable as its own term and thus considered each one separately. The
engine displacement and gear ratio should really be considered together:
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. stepwise, pr(.2): regress mpg weight weight2 (displ gear) turn headroom
> foreign price

begin with full model
p = 0.7116 >= 0.2000 removing headroom
p = 0.3944 >= 0.2000 removing displacement gear_ratio
p = 0.2798 >= 0.2000 removing price

Source SS df MS Number of obs = 74
F( 4, 69) = 40.76

Model 1716.80842 4 429.202105 Prob > F = 0.0000
Residual 726.651041 69 10.5311745 R-squared = 0.7026

Adj R-squared = 0.6854
Total 2443.45946 73 33.4720474 Root MSE = 3.2452

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight -.0160341 .0039379 -4.07 0.000 -.0238901 -.0081782
weight2 1.70e-06 6.21e-07 2.73 0.008 4.58e-07 2.94e-06
foreign -2.758668 1.101772 -2.50 0.015 -4.956643 -.5606925

turn -.2862724 .176658 -1.62 0.110 -.6386955 .0661508
_cons 65.39216 8.208778 7.97 0.000 49.0161 81.76823

Search logic for a step

Before discussing the complete search logic, consider the logic for a step—the first step—in
detail. The other steps follow the same logic. If you type

. stepwise, pr(.20): regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the logic is
1. Fit the model y on x1 x2 d1 d2 d3 x4 x5.
2. Consider dropping x1.
3. Consider dropping x2.
4. Consider dropping d1 d2 d3.
5. Consider dropping x4 x5.
6. Find the term above that is least significant. If its significance

level is ≥ 0.20, remove that term.

If you type

. stepwise, pr(.20) hierarchical: regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the logic would be different because the hierarchical option states that the terms are ordered. The
initial logic would become

1. Fit the model y on x1 x2 d1 d2 d3 x4 x5.
2. Consider dropping x4 x5—the last term.
3. If the significance of this last term is ≥ 0.20, remove the term.

The process would then stop or continue. It would stop if x4 x5 were not dropped, and otherwise,
stepwise would continue to consider the significance of the next-to-last term, d1 d2 d3.

Specifying pe() rather than pr() switches to forward estimation. If you type

. stepwise, pe(.20): regress y1 x1 x2 (d1 d2 d3) (x4 x5)
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stepwise performs forward-selection search. The logic for the first step is

1. Fit a model of y on nothing (meaning a constant).
2. Consider adding x1.
3. Consider adding x2.
4. Consider adding d1 d2 d3.
5. Consider adding x4 x5.
6. Find the term above that is most significant. If its significance

level is < 0.20, add that term.

As with backward estimation, if you specify hierarchical,

. stepwise, pe(.20) hierarchical: regress y1 x1 x2 (d1 d2 d3) (x4 x5)

the search for the most significant term is restricted to the next term:

1. Fit a model of y on nothing (meaning a constant).
2. Consider adding x1—the first term.
3. If the significance is < 0.20, add the term.

If x1 were added, stepwise would next consider x2; otherwise, the search process would stop.

stepwise can also use a stepwise selection logic that alternates between adding and removing
terms. The full logic for all the possibilities is given below.
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Full search logic

Option Logic

pr() Fit the full model on all explanatory variables.
(backward selection) While the least-significant term is “insignificant”, remove it

and reestimate.

pr() hierarchical Fit full model on all explanatory variables.
(backward hierarchical selection) While the last term is “insignificant”, remove it

and reestimate.

pr() pe() Fit full model on all explanatory variables.
(backward stepwise) If the least-significant term is “insignificant”, remove it and

reestimate; otherwise, stop.
Do that again: if the least-significant term is “insignificant”,

remove it and reestimate; otherwise, stop.
Repeatedly,

if the most-significant excluded term is “significant”, add
it and reestimate;

if the least-significant included term is “insignificant”,
remove it and reestimate;

until neither is possible.

pe() Fit “empty” model.
(forward selection) While the most-significant excluded term is “significant”,

add it and reestimate.

pe() hierarchical Fit “empty” model.
(forward hierarchical selection) While the next term is “significant”, add it

and reestimate.

pr() pe() forward Fit “empty” model.
(forward stepwise) If the most-significant excluded term is “significant”,

add it and reestimate; otherwise, stop.
Do that again: if the most-significant excluded term is

“significant”, add it and reestimate; otherwise, stop.
Repeatedly,

if the least-significant included term is “insignificant”,
remove it and reestimate;

if the most-significant excluded term is “significant”,
add it and reestimate;

until neither is possible.
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Examples

The following two statements are equivalent; both include solely single-variable terms:

. stepwise, pr(.2): regress price mpg weight displ

. stepwise, pr(.2): regress price (mpg) (weight) (displ)

The following two statements are equivalent; the last term in each is r1, . . . , r4:

. stepwise, pr(.2) hierarchical: regress price mpg weight displ (r1-r4)

. stepwise, pr(.2) hierarchical: regress price (mpg) (weight) (displ) (r1-r4)

To group variables weight and displ into one term, type

. stepwise, pr(.2) hierarchical: regress price mpg (weight displ) (r1-r4)

stepwise can be used with commands other than regress; for instance,

. stepwise, pr(.2): logit outcome (sex weight) treated1 treated2

. stepwise, pr(.2): logistic outcome (sex weight) treated1 treated2

Either statement would fit the same model because logistic and logit both perform logistic
regression; they differ only in how they report results; see [R] logit and [R] logistic.

We use the lockterm1 option to force the first term to be included in the model. To keep treated1
and treated2 in the model no matter what, we type

. stepwise, pr(.2) lockterm1: logistic outcome (treated1 treated2) ...

After stepwise estimation, we can type stepwise without arguments to redisplay results,

. stepwise
(output from logistic appears )

or type the underlying estimation command:

. logistic
(output from logistic appears )

At estimation time, we can specify options unique to the command being stepped:

. stepwise, pr(.2): logit outcome (sex weight) treated1 treated2, or

or is logit’s option to report odds ratios rather than coefficients; see [R] logit.

Estimation sample considerations

Whether you use backward or forward estimation, stepwise forms an estimation sample by taking
observations with nonmissing values of all the variables specified (except for depvar1 and depvar2

for intreg). The estimation sample is held constant throughout the stepping. Thus if you type

. stepwise, pr(.2) hierarchical: regress amount sk edul sval

and variable sval is missing in half the data, that half of the data will not be used in the reported
model, even if sval is not included in the final model.

The function e(sample) identifies the sample that was used. e(sample) contains 1 for observations
used and 0 otherwise. For instance, if you type

. stepwise, pr(.2) pe(.10): logistic outcome x1 x2 (x3 x4) (x5 x6 x7)
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and the final model is outcome on x1, x5, x6, and x7, you could re-create the final regression by
typing

. logistic outcome x1 x5 x6 x7 if e(sample)

You could obtain summary statistics within the estimation sample of the independent variables by
typing

. summarize x1 x5 x6 x7 if e(sample)

If you fit another model, e(sample) will automatically be redefined. Typing

. stepwise, lock pr(.2): logistic outcome (x1 x2) (x3 x4) (x5 x6 x7)

would automatically drop e(sample) and re-create it.

Messages

note: dropped because of collinearity

Each term is checked for collinearity, and variables within the term are dropped if collinearity is
found. For instance, say that you type

. stepwise, pr(.2): regress y x1 x2 (r1-r4) (x3 x4)

and assume that variables r1 through r4 are mutually exclusive and exhaustive dummy
variables—perhaps r1, . . . , r4 indicate in which of four regions the subject resides. One of the r1,
. . . , r4 variables will be automatically dropped to identify the model.

This message should cause you no concern.

Error message: between-term collinearity, variable

After removing any within-term collinearity, if stepwise still finds collinearity between terms, it
refuses to continue. For instance, assume that you type

. stepwise, pr(.2): regress y1 x1 x2 (d1-d8) (r1-r4)

Assume that r1, . . . , r4 identify in which of four regions the subject resides, and that d1, . . . , d8
identify the same sort of information, but more finely. r1, say, amounts to d1 and d2; r2 to d3, d4,
and d5; r3 to d6 and d7; and r4 to d8. You can estimate the d* variables or the r* variables, but
not both.

It is your responsibility to specify noncollinear terms.

note: dropped because of estimability
note: obs. dropped because of estimability

You probably received this message in fitting a logistic or probit model. Regardless of estimation
strategy, stepwise checks that the full model can be fit. The indicated variable had a 0 or infinite
standard error.

For logistic, logit, and probit, this message is typically caused by one-way causation. Assume that
you type

. stepwise, pr(.2): logistic outcome (x1 x2 x3) d1
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and assume that variable d1 is an indicator (dummy) variable. Further assume that whenever d1 = 1,
outcome = 1 in the data. Then the coefficient on d1 is infinite. One (conservative) solution to this
problem is to drop the d1 variable and the d1==1 observations. The underlying estimation commands
probit, logit, and logistic report the details of the difficulty and solution; stepwise simply
accumulates such problems and reports the above summary messages. Thus if you see this message,
you could type

. logistic outcome x1 x2 x3 d1

to see the details. Although you should think carefully about such situations, Stata’s solution of
dropping the offending variables and observations is, in general, appropriate.

Programming for stepwise

stepwise requires that command name follow standard Stata syntax and allow the if qualifier;
see [U] 11 Language syntax. Furthermore, command name must have sw or swml as a program
property; see [P] program properties. If command name has swml as a property, command name
must save the log-likelihood value in e(ll) and model degrees of freedom in e(df m).

Saved results
stepwise saves whatever is saved by the underlying estimation command.

Also, stepwise saves stepwise in e(stepwise).

Methods and formulas
stepwise is implemented as an ado-file.

Some statisticians do not recommend stepwise procedures; see Sribney (1998) for a summary.
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suest — Seemingly unrelated estimation

Syntax
suest namelist

[
, options

]
where namelist is a list of one or more names under which estimation results were saved via estimates
store; see [R] estimates store. Wildcards may be used. * and all refer to all stored results. A
period (.) may be used to refer to the last estimation results, even if they have not (yet) been stored.

options Description

SE/Robust

svy survey data estimation
vce(vcetype) vcetype may be robust or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)

dir display a table describing the models
eform(string) report exponentiated coefficients and label as string
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

coeflegend does not appear in the dialog box.

Menu
Statistics > Postestimation > Tests > Seemingly unrelated estimation

Description
suest is a postestimation command; see [U] 20 Estimation and postestimation commands.

suest combines the estimation results—parameter estimates and associated (co)variance matrices—
stored under namelist into one parameter vector and simultaneous (co)variance matrix of the sand-
wich/robust type. This (co)variance matrix is appropriate even if the estimates were obtained on the
same or on overlapping data.

Typical applications of suest are tests for intramodel and cross-model hypotheses using test
or testnl, for example, a generalized Hausman specification test. lincom and nlcom may be used
after suest to estimate linear combinations and nonlinear functions of coefficients. suest may also
be used to adjust a standard VCE for clustering or survey design effects.

Different estimators are allowed, for example, a regress model and a probit model; the only
requirement is that predict produce equation-level scores with the score option after an estimation
command. The models may be estimated on different samples, due either to explicit if or in selection
or to missing values. If weights are applied, the same weights (type and values) should be applied to

2067
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all models in namelist. The estimators should be estimated without vce(robust) or vce(cluster
clustvar) options. suest returns the robust VCE, allows the vce(cluster clustvar) option, and
automatically works with results from the svy prefix command (only for vce(linearized)). See
example 7 in [SVY] svy postestimation for an example using suest with svy: ologit.

Because suest posts its results like a proper estimation command, its results can be stored
via estimates store. Moreover, like other estimation commands, suest typed without arguments
replays the results.

Options

� � �
SE/Robust �

svy specifies that estimation results should be modified to reflect the survey design effects according
to the svyset specifications, see [SVY] svyset.
The svy option is implied when suest encounters survey estimation results from the svy prefix;
see [SVY] svy. Poststratification is allowed only with survey estimation results from the svy prefix.

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification and that allow for intragroup correlation; see [R] vce option.

The vce() option may not be combined with the svy option or estimation results from the svy
prefix.

� � �
Reporting �

level(#) specifies the confidence level, as a percentage, for confidence intervals of the coefficients;
see [R] level.

dir displays a table describing the models in namelist just like estimates dir namelist.

eform(string) displays the coefficient table in exponentiated form: for each coefficient, exp(b) rather
than b is displayed, and standard errors and confidence intervals are transformed. string is the
table header that will be displayed above the transformed coefficients and must be 11 characters
or fewer, for example, eform("Odds ratio").

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with suest but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Remarks are presented under the following headings:

Using suest
Remarks on regress
Testing the assumption of the independence of irrelevant alternatives
Testing proportionality
Testing cross-model hypotheses
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Using suest

If you plan to use suest, you must take precautions when fitting the original models. These
restrictions are relaxed when using svy commands; see [SVY] svy postestimation.

1. suest works with estimation commands that allow predict to generate equation-level score
variables when supplied with the score (or scores) option. For example, equation-level
score variables are generated after running mlogit by typing

. predict sc*, scores

2. Estimation should take place without the vce(robust) or vce(cluster clustvar) op-
tion. suest always computes the robust estimator of the (co)variance, and suest has a
vce(cluster clustvar) option.

The within-model covariance matrices computed by suest are identical to those obtained
by specifying a vce(robust) or vce(cluster clustvar) option during estimation. suest,
however, also estimates the between-model covariances of parameter estimates.

3. Finally, the estimation results to be combined should be stored by estimates store; see
[R] estimates store.

After estimating and storing a series of estimation results, you are ready to combine the estimation
results with suest,

. suest name1
[

name2 . . .
] [

, vce(cluster clustvar)
]

and you can subsequently use postestimation commands, such as test, to test hypotheses. Here an
important issue is how suest assigns names to the equations. If you specify one model name, the
original equation names are left unchanged; otherwise, suest constructs new equation names. The
coefficients of a single-equation model (such as logit and poisson) that was estimate stored
under name X are collected under equation X. With a multiequation model stored under name X,
suest prefixes X to an original equation name eq, forming equation name, X eq.

Technical note

Earlier we said that standard errors from suest are identical to those obtained by specifying the
vce(robust) option with each command individually. Thus if you fit a logistic model using logit
with the vce(robust) option, you will get the same standard errors when you type

. suest .

directly after logit using the same data without the vce(robust) option.

This is not true for multiple estimation results when the estimation samples are not all the same.
The standard errors from suest will be slightly smaller than those from individual model fits using the
vce(robust) option because suest uses a larger number of observations to estimate the simultaneous
(co)variance matrix.

Technical note
In rare circumstances, suest may have to truncate equation names to 32 characters. When

equation names are not unique because of truncation, suest numbers the equations within models,
using equations named X #.
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Remarks on regress

regress (see [R] regress) does not include its ancillary parameter, the residual variance, in its
coefficient vector and (co)variance matrix. Moreover, while the score option is allowed with predict
after regress, a score variable is generated for the mean but not for the variance parameter. suest
contains special code that assigns the equation name mean to the coefficients for the mean, adds the
equation lnvar for the log variance, and computes the appropriate two score variables itself.

Testing the assumption of the independence of irrelevant alternatives

The multinomial logit model and the closely related conditional logit model satisfy a probabilistic
version of the assumption of the independence of irrelevant alternatives (IIA), implying that the ratio
of the probabilities for two alternatives does not depend on what other alternatives are available.
Hausman and McFadden (1984) proposed a test for this assumption that is implemented in the
hausman command. The standard Hausman test has several limitations. First, the test statistic may be
undefined because the estimated VCE does not satisfy the required asymptotic properties of the test.
Second, the classic Hausman test applies only to the test of the equality of two estimators. Third, the
test requires access to a fully efficient estimator; such an estimator may not be available, for example,
if you are analyzing complex survey data. Using suest can overcome these three limitations.

Example 1

In our first example, we follow the analysis of the type of health insurance reported in [R] mlogit
and demonstrate the hausman command with the suest/test combination. We fit the full multinomial
logit model for all three alternatives and two restricted multinomial models in which one alternative
is excluded. After fitting each of these models, we store the results by using the store subcommand
of estimates. title() simply documents the models.

. use http://www.stata-press.com/data/r12/sysdsn4
(Health insurance data)

. mlogit insure age male

Iteration 0: log likelihood = -555.85446
Iteration 1: log likelihood = -551.32973
Iteration 2: log likelihood = -551.32802
Iteration 3: log likelihood = -551.32802

Multinomial logistic regression Number of obs = 615
LR chi2(4) = 9.05
Prob > chi2 = 0.0598

Log likelihood = -551.32802 Pseudo R2 = 0.0081

insure Coef. Std. Err. z P>|z| [95% Conf. Interval]

Indemnity (base outcome)

Prepaid
age -.0100251 .0060181 -1.67 0.096 -.0218204 .0017702

male .5095747 .1977893 2.58 0.010 .1219147 .8972346
_cons .2633838 .2787575 0.94 0.345 -.2829708 .8097383

Uninsure
age -.0051925 .0113821 -0.46 0.648 -.0275011 .0171161

male .4748547 .3618462 1.31 0.189 -.2343508 1.18406
_cons -1.756843 .5309602 -3.31 0.001 -2.797506 -.7161803

. estimates store m1, title(all three insurance forms)
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. quietly mlogit insure age male if insure != "Uninsure":insure

. estimates store m2, title(insure != "Uninsure":insure)

. quietly mlogit insure age male if insure != "Prepaid":insure

. estimates store m3, title(insure != "Prepaid":insure)

Having performed the three estimations, we inspect the results. estimates dir provides short
descriptions of the models that were stored using estimates store. Typing estimates table lists
the coefficients, displaying blanks for a coefficient not contained in a model.

. estimates dir

name command depvar npar title

m1 mlogit insure 9 all three insurance forms
m2 mlogit insure 6 insure != Uninsure :insure
m3 mlogit insure 6 insure != Prepaid :insure

. estimates table m1 m2 m3, star stats(N ll) keep(Prepaid: Uninsure:)

Variable m1 m2 m3

Prepaid
age -.01002511 -.01015205

male .50957468** .51440033**
_cons .26338378 .26780432

Uninsure
age -.00519249 -.00410547

male .47485472 .45910738
_cons -1.7568431*** -1.8017743***

Statistics
N 615 570 338

ll -551.32802 -390.48643 -131.76807

legend: * p<0.05; ** p<0.01; *** p<0.001

Comparing the coefficients between models does not suggest substantial differences. We can
formally test that coefficients are the same for the full model m1 and the restricted models m2 and m3
by using the hausman command. hausman expects the models to be specified in the order “always
consistent” first and “efficient under H0” second.

. hausman m2 m1, alleqs constant

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
m2 m1 Difference S.E.

age -.0101521 -.0100251 -.0001269 .
male .5144003 .5095747 .0048256 .0123338

_cons .2678043 .2633838 .0044205 .

b = consistent under Ho and Ha; obtained from mlogit
B = inconsistent under Ha, efficient under Ho; obtained from mlogit

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= 0.08

Prob>chi2 = 0.9944
(V_b-V_B is not positive definite)
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. hausman m3 m1, alleqs constant

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))
m3 m1 Difference S.E.

age -.0041055 -.0051925 .001087 .0021355
male .4591074 .4748547 -.0157473 .

_cons -1.801774 -1.756843 -.0449311 .1333421

b = consistent under Ho and Ha; obtained from mlogit
B = inconsistent under Ha, efficient under Ho; obtained from mlogit

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)’[(V_b-V_B)^(-1)](b-B)
= -0.18 chi2<0 ==> model fitted on these

data fails to meet the asymptotic
assumptions of the Hausman test;
see suest for a generalized test

According to the test of m1 against m2, we cannot reject the hypothesis that the coefficients of m1
and m2 are the same. The second Hausman test is not well defined—something that happens fairly
often. The problem is due to the estimator of the variance V(b-B) as V(b)-V(B), which is a feasible
estimator only asymptotically. Here it simply is not a proper variance matrix, and the Hausman test
becomes undefined.

suest m1 m2 estimates the simultaneous (co)variance of the coefficients of models m1 and m2.
Although suest is technically a postestimation command, it acts like an estimation command in that
it stores the simultaneous coefficients in e(b) and the full (co)variance matrix in e(V). We could have
used the estat vce command to display the full (co)variance matrix to show that the cross-model
covariances were indeed estimated. Typically, we would not have a direct interest in e(V).

. suest m1 m2, noomitted

Simultaneous results for m1, m2

Number of obs = 615

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m2_Indemnity

m2_Prepaid
age -.0101521 .0058988 -1.72 0.085 -.0217135 .0014094

male .5144003 .1996133 2.58 0.010 .1231654 .9056352
_cons .2678043 .2744019 0.98 0.329 -.2700134 .8056221
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suest created equation names by combining the name under which we stored the results using
estimates store with the original equation names. Thus, in the simultaneous estimation result,
equation Prepaid originating in model m1 is named m1 Prepaid. According to the McFadden–
Hausman specification of a test for IIA, the coefficients of the equations m1 PrePaid and m2 PrePaid
should be equal. This equality can be tested easily with the test command. The cons option specifies
that the intercept cons be included in the test.

. test [m1_Prepaid = m2_Prepaid], cons

( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0

chi2( 3) = 0.89
Prob > chi2 = 0.8266

The Hausman test via suest is comparable to that computed by hausman, but they use different
estimators of the variance of the difference of the estimates. The hausman command estimates V (b−B)
by V (b)− V (B), whereas suest estimates V (b−B) by V (b)− cov(b, B)− cov(B, b) + V (B).
One advantage of the second estimator is that it is always admissible, so the resulting test is always
well defined. This quality is illustrated in the Hausman-type test of IIA comparing models m1 and m3.

. suest m1 m3, noomitted

Simultaneous results for m1, m3

Number of obs = 615

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m3_Indemnity

m3_Uninsure
age -.0041055 .0111185 -0.37 0.712 -.0258974 .0176865

male .4591074 .3601307 1.27 0.202 -.2467357 1.164951
_cons -1.801774 .5226351 -3.45 0.001 -2.82612 -.7774283

. test [m1_Uninsure = m3_Uninsure], cons

( 1) [m1_Uninsure]age - [m3_Uninsure]age = 0
( 2) [m1_Uninsure]male - [m3_Uninsure]male = 0
( 3) [m1_Uninsure]_cons - [m3_Uninsure]_cons = 0

chi2( 3) = 1.49
Prob > chi2 = 0.6845

Although the classic Hausman test computed by hausman is not defined here, the suest-based
test is just fine. We cannot reject the equality of the common coefficients across m1 and m3.

A second advantage of the suest approach is that we can estimate the (co)variance matrix of the
multivariate normal distribution of the estimators of the three models m1, m2, and m3 and test that
the common coefficients are equal.
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. suest m*, noomitted

Simultaneous results for m1, m2, m3

Number of obs = 615

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .0059403 -1.69 0.091 -.0216679 .0016176

male .5095747 .1988159 2.56 0.010 .1199027 .8992467
_cons .2633838 .277307 0.95 0.342 -.280128 .8068956

m1_Uninsure
age -.0051925 .0109005 -0.48 0.634 -.0265571 .0161721

male .4748547 .3677326 1.29 0.197 -.2458879 1.195597
_cons -1.756843 .4971383 -3.53 0.000 -2.731216 -.78247

m2_Indemnity

m2_Prepaid
age -.0101521 .0058988 -1.72 0.085 -.0217135 .0014094

male .5144003 .1996133 2.58 0.010 .1231654 .9056352
_cons .2678043 .2744019 0.98 0.329 -.2700134 .8056221

m3_Indemnity

m3_Uninsure
age -.0041055 .0111185 -0.37 0.712 -.0258974 .0176865

male .4591074 .3601307 1.27 0.202 -.2467357 1.164951
_cons -1.801774 .5226351 -3.45 0.001 -2.82612 -.7774283

. test [m1_Prepaid = m2_Prepaid], cons notest

( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0

. test [m1_Uninsure = m3_Uninsure], cons acc

( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0
( 4) [m1_Uninsure]age - [m3_Uninsure]age = 0
( 5) [m1_Uninsure]male - [m3_Uninsure]male = 0
( 6) [m1_Uninsure]_cons - [m3_Uninsure]_cons = 0

chi2( 6) = 1.95
Prob > chi2 = 0.9240

Again we do not find evidence against the correct specification of the multinomial logit for type
of insurance. The classic Hausman test assumes that one of the estimators (named B in hausman) is
efficient, that is, it has minimal (asymptotic) variance. This assumption ensures that V (b) − V (B)
is an admissible, viable estimator for V (b−B). The assumption that we have an efficient estimator
is a restrictive one. It is violated, for instance, if our data are clustered. We want to adjust for
clustering via a vce(cluster clustvar) option by requesting the cluster-adjusted sandwich estimator
of variance. Consequently, in such a case, hausman cannot be used. This problem does not exist
with the suest version of the Hausman test. To illustrate this feature, we suppose that the data are
clustered by city—we constructed an imaginary variable cityid for this illustration. If we plan to
apply suest, we would not specify the vce(cluster clustvar) option at the time of estimation.
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suest has a vce(cluster clustvar) option. Thus we do not need to refit the models; we can call
suest and test right away.

. suest m1 m2, vce(cluster cityid) noomitted

Simultaneous results for m1, m2

Number of obs = 615

(Std. Err. adjusted for 260 clusters in cityid)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

m1_Indemnity

m1_Prepaid
age -.0100251 .005729 -1.75 0.080 -.0212538 .0012035

male .5095747 .1910496 2.67 0.008 .1351244 .884025
_cons .2633838 .2698797 0.98 0.329 -.2655708 .7923384

m1_Uninsure
age -.0051925 .0104374 -0.50 0.619 -.0256495 .0152645

male .4748547 .3774021 1.26 0.208 -.2648399 1.214549
_cons -1.756843 .4916613 -3.57 0.000 -2.720481 -.7932048

m2_Indemnity

m2_Prepaid
age -.0101521 .0057164 -1.78 0.076 -.0213559 .0010518

male .5144003 .1921385 2.68 0.007 .1378158 .8909848
_cons .2678043 .2682193 1.00 0.318 -.2578959 .7935045

. test [m1_Prepaid = m2_Prepaid], cons

( 1) [m1_Prepaid]age - [m2_Prepaid]age = 0
( 2) [m1_Prepaid]male - [m2_Prepaid]male = 0
( 3) [m1_Prepaid]_cons - [m2_Prepaid]_cons = 0

chi2( 3) = 0.79
Prob > chi2 = 0.8529

suest provides some descriptive information about the clustering on cityid. Like any other
estimation command, suest informs us that the standard errors are adjusted for clustering. The
Hausman-type test obtained from the test command uses a simultaneous (co)variance of m1 and m2
appropriately adjusted for clustering. In this example, we still do not have reason to conclude that
the multinomial logit model in this application is misspecified, that is, that IIA is violated.

The multinomial logistic regression model is a special case of the conditional logistic regression
model; see [R] clogit. Like the multinomial logistic regression model, the conditional logistic regression
model also makes the IIA assumption. Consider an example, introduced in [R] asclogit, in which
the demand for American, Japanese, and European cars is modeled in terms of the number of local
dealers of the respective brands and of some individual attributes incorporated in interaction with
the nationality of cars. We want to perform a Hausman-type test for IIA comparing the decision
between all nationalities with the decision between non-American cars. The following code fragment
demonstrates how to conduct a Hausman test for IIA via suest in this case.

. clogit choice japan europe maleJap maleEur incJap incEur dealer, group(id)

. estimates store allcars

. clogit choice japan maleJap incJap dealer if car!=1 , group(id)
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. estimates store foreign

. suest allcars foreign

. test [allcars_choice=foreign_choice], common

Testing proportionality

The applications of suest that we have discussed so far concern Hausman-type tests for mis-
specification. To test such a hypothesis, we compared two estimators that have the same probability
limit if the hypothesis holds true, but otherwise have different limits. We may also want to compare
the coefficients of models (estimators) for other substantive reasons. Although we most often want
to test whether coefficients differ between models or estimators, we may occasionally want to test
other constraints (see Hausman and Ruud [1987]).

Example 2

In this example, using simulated labor market data for siblings, we consider two dependent
variables, income (inc) and whether a person was promoted in the last year (promo). We apply
familiar economic arguments regarding human capital, according to which employees have a higher
income and a higher probability of being promoted, by having more human capital. Human capital is
acquired through formal education (edu) and on-the-job training experience (exp). We study whether
income and promotion are “two sides of the same coin”, that is, whether they reflect a common latent
variable, “human capital”. Accordingly, we want to compare the effects of different aspects of human
capital on different outcome variables.

We estimate fairly simple labor market equations. The income model is estimated with regress,
and the estimation results are stored under the name Inc.

. use http://www.stata-press.com/data/r12/income

. regress inc edu exp male

Source SS df MS Number of obs = 277
F( 3, 273) = 42.34

Model 2058.44672 3 686.148908 Prob > F = 0.0000
Residual 4424.05183 273 16.2053181 R-squared = 0.3175

Adj R-squared = 0.3100
Total 6482.49855 276 23.4873136 Root MSE = 4.0256

inc Coef. Std. Err. t P>|t| [95% Conf. Interval]

edu 2.213707 .243247 9.10 0.000 1.734828 2.692585
exp 1.47293 .231044 6.38 0.000 1.018076 1.927785

male .5381153 .4949466 1.09 0.278 -.436282 1.512513
_cons 1.255497 .3115808 4.03 0.000 .642091 1.868904

. est store Inc

Being sibling data, the observations are clustered on family of origin, famid. In the estimation
of the regression parameters, we did not specify a vce(cluster famid) option to adjust standard
errors for clustering on family (famid). Thus the standard errors reported by regress are potentially
flawed. This problem will, however, be corrected by specifying a vce(cluster clustvar) option
with suest.

Next we estimate the promotion equation with probit and again store the results under an
appropriate name.
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. probit promo edu exp male, nolog

Probit regression Number of obs = 277
LR chi2(3) = 49.76
Prob > chi2 = 0.0000

Log likelihood = -158.43888 Pseudo R2 = 0.1357

promo Coef. Std. Err. z P>|z| [95% Conf. Interval]

edu .4593002 .0898537 5.11 0.000 .2831901 .6354102
exp .3593023 .0805774 4.46 0.000 .2013735 .5172312

male .2079983 .1656413 1.26 0.209 -.1166527 .5326494
_cons -.464622 .1088166 -4.27 0.000 -.6778985 -.2513454

. est store Promo

The coefficients in the income and promotion equations definitely seem to be different. However,
because the scales of the two variables are different, we would not expect the coefficients to be equal.
The correct hypothesis here is that the proportionality of the coefficients of the two models, apart from
the constant, are equal. This formulation would still reflect that the relative effects of the different
aspects of human capital do not differ between the dependent variables. We can obtain a nonlinear
Wald test for the hypothesis of proportionality by using the testnl command on the combined
estimation results of the two estimators. Thus we first have to form the combined estimation results.
At this point, we specify the vce(cluster famid) option to adjust for the clustering of observations
on famid.

. suest Inc Promo, vce(cluster famid)

Simultaneous results for Inc, Promo

Number of obs = 277

(Std. Err. adjusted for 135 clusters in famid)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Inc_mean
edu 2.213707 .2483907 8.91 0.000 1.72687 2.700543
exp 1.47293 .1890583 7.79 0.000 1.102383 1.843478

male .5381153 .4979227 1.08 0.280 -.4377952 1.514026
_cons 1.255497 .3374977 3.72 0.000 .594014 1.916981

Inc_lnvar
_cons 2.785339 .079597 34.99 0.000 2.629332 2.941347

Promo_promo
edu .4593002 .0886982 5.18 0.000 .2854549 .6331454
exp .3593023 .079772 4.50 0.000 .2029522 .5156525

male .2079983 .1691053 1.23 0.219 -.1234419 .5394386
_cons -.464622 .1042169 -4.46 0.000 -.6688833 -.2603607
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The standard errors reported by suest are identical to those reported by the respective estimation
commands when invoked with the vce(cluster famid) option. We are now ready to test for
proportionality:

H0 :
βIncome

edu

βPromotion
edu

=
βIncome

exp

βPromotion
exp

=
βIncome

male

βPromotion
male

It is straightforward to translate this into syntax suitable for testnl, recalling that the coefficient of
variable v in equation eq is denoted by [eq]v.

. testnl [Inc_mean]edu/[Promo_promo]edu =
> [Inc_mean]exp/[Promo_promo]exp =
> [Inc_mean]male/[Promo_promo]male

(1) [Inc_mean]edu/[Promo_promo]edu = [Inc_mean]exp/[Promo_promo]exp
(2) [Inc_mean]edu/[Promo_promo]edu = [Inc_mean]male/[Promo_promo]male

chi2(2) = 0.61
Prob > chi2 = 0.7385

From the evidence, we fail to reject the hypotheses that the coefficients of the income and promotion
equations are proportional. Thus it is not unreasonable to assume that income and promotion can be
explained by the same latent variable, “labor market success”.

A disadvantage of the nonlinear Wald test is that it is not invariant with respect to representation:
a Wald test for a mathematically equivalent formulation of the nonlinear constraint usually leads to
a different test result. An equivalent formulation of the proportionality hypothesis is

H0: βIncome
edu βPromotion

exp = βPromotion
edu βIncome

exp and

βIncome
edu βPromotion

male = βPromotion
edu βIncome

male

This formulation is “more linear” in the coefficients. The asymptotic χ2 distribution of the nonlinear
Wald statistic can be expected to be more accurate for this representation.

. testnl ([Inc_mean]edu*[Promo_promo]exp = [Inc_mean]exp*[Promo_promo]edu)
> ([Inc_mean]edu*[Promo_promo]male = [Inc_mean]male*[Promo_promo]edu)

(1) [Inc_mean]edu*[Promo_promo]exp = [Inc_mean]exp*[Promo_promo]edu
(2) [Inc_mean]edu*[Promo_promo]male = [Inc_mean]male*[Promo_promo]edu

chi2(2) = 0.46
Prob > chi2 = 0.7936

Here the two representations lead to similar test statistics and p-values. As before, we fail to reject
the hypothesis of proportionality of the coefficients of the two models.

Testing cross-model hypotheses

Example 3

In this example, we demonstrate how some cross-model hypotheses can be tested using the
facilities already available in most estimation commands. This demonstration will explain the intricate
relationship between the cluster adjustment of the robust estimator of variance and the suest command.
It will also be made clear that a new facility is required to perform more general cross-model testing.
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We want to test whether the effect of x1 on the binary variable y1 is the same as the effect of x2

on the binary y2; see Clogg, Petkova, and Haritou (1995). In this setting, x1 may equal x2, and y1

may equal y2. We assume that logistic regression models can be used to model the responses, and
for simplicity, we ignore further predictor variables in these models. If the two logit models are fit on
independent samples so that the estimators are (stochastically) independent, a Wald test for b[x1]
= b[x2] rejects the null hypothesis if

b̂(x1)− b̂(x2)[
σ̂2
{
b̂(x1)

}
+ σ̂2

{
b̂(x2)

}]1/2

is larger than the appropriate χ2
1 threshold. If the models are fit on the same sample (or on dependent

samples), so that the estimators are stochastically dependent, the above test that ignores the covariance
between the estimators is not appropriate.

It is instructive to see how this problem can be tackled by “stacking” data. In the stacked format,
we doubled the number of observations. The dependent variable is y1 in the first half of the data and
is y2 in the second half of the data. The predictor variable z1 is set to x1 in the first half of the
expanded data and to 0 in the rest. Similarly, z2 is 0 in the first half and x2 in the second half. The
following diagram illustrates the transformation, in the terminology of the reshape command, from
wide to long format.


id y1 y2 x1 x2

1 y11 y21 x11 x21

2 y12 y22 x12 x22

3 y13 y23 x13 x23

 =⇒



id y z1 z2 model

1 y11 x11 0 1
2 y12 x12 0 1
3 y13 x13 0 1
1 y21 0 x21 2
2 y22 0 x22 2
3 y23 0 x23 2


The observations in the long format data organization are clustered on the original subjects and

are identified with the identifier id. The clustering on id has to be accounted for when fitting a
simultaneous model. The simplest way to deal with clustering is to use the cluster adjustment of the
robust or sandwich estimator; see [P] robust. The data manipulation can be accomplished easily with
the stack command; see [D] stack. Subsequently, we fit a simultaneous logit model and perform a
Wald test for the hypothesis that the coefficients of z1 and z2 are the same. A full setup to obtain
the cross-model Wald test could then be as follows:

. generate zero = 0 // a variable that is always 0

. generate one = 1 // a variable that is always 1

. generate two = 2 // a variable that is always 2

. stack id y1 x1 zero one id y2 zero x2 two, into(id y z1 z2 model)

. generate model2 = (model==2)

. logit y model2 z1 z2, vce(cluster id)

. test _b[z1] = _b[z2]

The coefficient of z1 represents the effect of x1 on y1, and similarly, z2 for the effect of x2
on y2. The variable model2 is a dummy for the “second model”, which is included to allow the
intercept in the second model to differ from that in the first model. The estimates of the coefficient
of z1 and its standard error in the combined model are the same as the estimates of the coefficient
of z1 and its standard error if we fit the model on the unstacked data.

. logit y1 x1, vce(robust)
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The vce(cluster clustvar) option specified with the logit command for the stacked data ensures
that the covariances of b[z1] and b[z2] are indeed estimated. This estimation ensures that the
Wald test for the equality of the coefficients is correct. If we had not specified the vce(cluster
clustvar) option, the (co)variance matrix of the coefficients would have been block-diagonal; that is,
the covariances of b[z1] and b[z2] would have been 0. Then test would have effectively used
the invalid formula for the Wald test for two independent samples.

In this example, the two logit models were fit on the same data. The same setup would apply,
without modification, when the two logit models were fit on overlapping data that resulted, for
instance, if the y or x variables were missing in some observations.

The suest command allows us to obtain the above Wald test more efficiently by avoiding the
data manipulation, obviating the need to fit a model with twice the number of coefficients. The test
statistic produced by the above code fragment is identical to that obtained via suest on the original
(unstacked) data:

. logit y1 x1

. estimates store M1

. logit y2 x2

. estimates store M2

. suest M1 M2

. test [M1]x1=[M2]x2

The stacking method can be applied not only to the testing of cross-model hypotheses for logit
models but also to any estimation command that supports the vce(cluster clustvar) option. The
stacking approach clearly generalizes to stacking more than two logit or other models, testing more
general linear hypotheses, and testing nonlinear cross-model hypotheses (see [R] testnl). In all these
cases, suest would yield identical statistical results but at smaller costs in terms of data management,
computer storage, and computer time.

Is suest nothing but a convenience command? No, there are two disadvantages to the stacking
method, both of which are resolved via suest. First, if the models include ancillary parameters
(in a regression model, the residual variance; in an ordinal response model, the cutpoints; and in
lognormal survival-time regression, the time scale parameter), these parameters are constrained to be
equal between the stacked models. In suest, this constraint is relaxed. Second, the stacking method
does not generalize to compare different statistical models, such as a probit model and a regression
model. As demonstrated in the previous section, suest can deal with this situation.
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Saved results
suest saves the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(rank) rank of e(V)

Macros
e(cmd) suest
e(eqnames#) original names of equations of model #
e(names) list of model names
e(wtype) weight type
e(wexp) weight expression
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V

Matrices
e(b) stacked coefficient vector of the models
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
suest is implemented as an ado-file.

The estimation of the simultaneous (co)variance of a series of k estimators is a nonstandard
application of the sandwich estimator, as implemented by the command [P] robust. You may want
to read this manual entry before reading further.

The starting point is that we have fit k different models on the same data—partially overlapping
or nonoverlapping data are special cases. We want to derive the simultaneous distribution of these k
estimators, for instance, to test a cross-estimator hypothesis H0. As in the framework of Hausman
testing, H0 will often be of the form that different estimators have the same probability limit under
some hypothesis, while the estimators have different limits if the hypothesis is violated.

We consider (vector) estimators β̂i to be defined as “the” solution of the estimation equations Gi,

Gi(bi) =
∑
j

wijuij(bi) = 0, i = 1, . . . , k

We refer to the uij as the “scores”. Specifying some weights wij = 0 trivially accommodates
for partially overlapping or even disjointed data. Under “suitable regularity conditions” (see White
[1982; 1996] for details), the β̂i are asymptotically normally distributed, with the variance estimated
consistently by the sandwich estimator

Vi = Var(β̂i) = D−1
i

∑
j

wijuiju′ij D−1
i
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where Di is the Jacobian of Gi evaluated at β̂i. In the context of maximum likelihood estimation,
Di can be estimated consistently by (minus) the Hessian of the log likelihood or by the Fisher
information matrix. If the model is also well specified, the sandwiched term (

∑
j wijuiju

′
ij) converges

in probability to Di, so Vi may be consistently estimated by D−1
i .

To derive the simultaneous distribution of the estimators, we consider the “stacked” estimation
equation,

G(β̂) =
{

G1(β̂1)′ G1(β̂2)′ . . . Gk(β̂k)′
}′

= 0

Under “suitable regularity conditions” (see White [1996] for details), β̂ is asymptotically jointly
normally distributed. The Jacobian and scores of the simultaneous equation are easily expressed in
the Jacobian and scores of the separate equations. The Jacobian of G,

D(β̂) =
dG(β)
dβ

∣∣∣∣
β=β̂

is block diagonal with blocks D1, . . . , Dk. The inverse of D(β̂) is again block diagonal, with the
inverses of Di on the diagonal. The scores u of G are simply obtained as the concatenated scores
of the separate equations:

uj = (u′1j u′2j . . . u′kj)
′

Out-of-sample (that is, where wij = 0) values of the score variables are defined as 0 (thus we drop the
i subscript from the common weight variable). The sandwich estimator for the asymptotic variance
of β̂ reads

V = Var(β̂) = D(β̂)−1

∑
j

wjuju′j

 D(β̂)−1

Taking a “partitioned” look at this expression, we see that V (β̂i) is estimated by

D−1
i

∑
j

wjuiju′ij

D−1
i

which is, yet again, the familiar sandwich estimator for β̂i based on the separate estimation equation
Gi. Thus considering several estimators simultaneously in this way does not affect the estimators
of the asymptotic variances of these estimators. However, as a bonus of stacking, we obtained a
sandwich-type estimate of the covariance Vih of estimators β̂i and β̂h,

Vih = Cov(β̂i, β̂h) = D−1
i

∑
j

wjuiju′ih

 D−1
h

which is also obtained by White (1982).

This estimator for the covariance of estimators is an application of the cluster modification of the
sandwich estimator proposed by Rogers (1993). Consider the stacked data format as discussed in the
logit example, and assume that Stata would be able to estimate a “stacked model” in which different
models apply to different observations, for example, a probit model for the first half, a regression
model for the second half, and a one-to-one cluster relation between the first and second half. If there
are no common parameters to both models, the score statistics of parameters for the stacked models
are zero in the half of the data in which they do not occur. In Rogers’ method, we have to sum the
score statistics over the observations within a cluster. This step boils down to concatenating the score
statistics at the level of the cluster.
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We compare the sandwich estimator of the (co)variance V12 of two estimators with the estimator
of variance Ṽ12 applied in the classic Hausman test. Hausman (1978) showed that if β̂1 is consistent
under H0 and β̂2 is efficient under H0, then asymptotically

Cov(β̂1, β̂2) = Var(β̂2)

and so var(β̂1 − β̂2) is consistently estimated by V1 − V2.
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Also see
[R] estimates — Save and manipulate estimation results

[R] hausman — Hausman specification test

[R] lincom — Linear combinations of estimators

[R] nlcom — Nonlinear combinations of estimators

[R] test — Test linear hypotheses after estimation

[R] testnl — Test nonlinear hypotheses after estimation

[P] robust — Robust variance estimates



Title

summarize — Summary statistics

Syntax
summarize

[
varlist

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Main

detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s option
format use variable’s display format
separator(#) draw separator line after every # variables; default is separator(5)

display options control spacing and base and empty cells

varlist may contain factor variables; see [U] 11.4.3 Factor variables.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
aweights, fweights, and iweights are allowed. However, iweights may not be used with the detail

option; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Summary statistics

Description
summarize calculates and displays a variety of univariate summary statistics. If no varlist is

specified, summary statistics are calculated for all the variables in the dataset.

Also see [R] ci for calculating the standard error and confidence intervals of the mean.

Options

� � �
Main �

detail produces additional statistics, including skewness, kurtosis, the four smallest and largest
values, and various percentiles.

meanonly, which is allowed only when detail is not specified, suppresses the display of results
and calculation of the variance. Ado-file writers will find this useful for fast calls.

format requests that the summary statistics be displayed using the display formats associated with
the variables rather than the default g display format; see [U] 12.5 Formats: Controlling how
data are displayed.

separator(#) specifies how often to insert separation lines into the output. The default is sepa-
rator(5), meaning that a line is drawn after every five variables. separator(10) would draw
a line after every 10 variables. separator(0) suppresses the separation line.

2085
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display options: vsquish, noemptycells, baselevels, allbaselevels; see [R] estimation op-
tions.

Remarks

summarize can produce two different sets of summary statistics. Without the detail option,
the number of nonmissing observations, the mean and standard deviation, and the minimum and
maximum values are presented. With detail, the same information is presented along with the
variance, skewness, and kurtosis; the four smallest and four largest values; and the 1st, 5th, 10th,
25th, 50th (median), 75th, 90th, 95th, and 99th percentiles.

Example 1: summarize with the separator() option

We have data containing information on various automobiles, among which is the variable mpg,
the mileage rating. We can obtain a quick summary of the mpg variable by typing

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. summarize mpg

Variable Obs Mean Std. Dev. Min Max

mpg 74 21.2973 5.785503 12 41

We see that we have 74 observations. The mean of mpg is 21.3 miles per gallon, and the standard
deviation is 5.79. The minimum is 12, and the maximum is 41.

If we had not specified the variable (or variables) we wanted to summarize, we would have obtained
summary statistics on all the variables in the dataset:

. summarize, separator(4)

Variable Obs Mean Std. Dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906

mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5

headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23

weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233

turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425

gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

There are only 69 observations on rep78, so some of the observations are missing. There are no
observations on make because it is a string variable.
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The idea of the mean is quite old (Plackett 1958), but its extension to a scheme of moment-based
measures was not done until the end of the 19th century. Between 1893 and 1905, Pearson
discussed and named the standard deviation, skewness, and kurtosis, but he was not the first
to use any of these. Thiele (1889), in contrast, had earlier firmly grasped the notion that the
mr provide a systematic basis for discussing distributions. However, even earlier anticipations
can also be found. For example, Euler in 1778 used m2 and m3 in passing in a treatment of
estimation (Hald 1998, 87), but seemingly did not build on that.

Similarly, the idea of the median is quite old. The history of the interquartile range is tangled
up with that of the probable error, a long-popular measure. Extending this in various ways to a
more general approach based on quantiles (to use a later term) occurred to several people in the
nineteenth century. Galton (1875) is a nice example, particularly because he seems so close to
the key idea of the quantiles as a function, which took another century to reemerge strongly.

Thorvald Nicolai Thiele (1838–1910) was a Danish scientist who worked in astronomy, math-
ematics, actuarial science, and statistics. He made many pioneering contributions to statistics,
several of which were overlooked until recently. Thiele advocated graphical analysis of residuals
checking for trends, symmetry of distributions, and changes of sign, and he even warned against
overinterpreting such graphs.� �

Example 2: summarize with the detail option

The detail option provides all the information of a normal summarize and more. The format
of the output also differs, as shown here:

. summarize mpg, detail

Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12

10% 14 14 Obs 74
25% 18 14 Sum of Wgt. 74

50% 20 Mean 21.2973
Largest Std. Dev. 5.785503

75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

As in the previous example, we see that the mean of mpg is 21.3 miles per gallon and that the standard
deviation is 5.79. We also see the various percentiles. The median of mpg (the 50th percentile) is 20
miles per gallon. The 25th percentile is 18, and the 75th percentile is 25.

When we performed summarize, we learned that the minimum and maximum were 12 and 41,
respectively. We now see that the four smallest values in our dataset are 12, 12, 14, and 14. The four
largest values are 34, 35, 35, and 41. The skewness of the distribution is 0.95, and the kurtosis is
3.98. (A normal distribution would have a skewness of 0 and a kurtosis of 3.)

Skewness is a measure of the lack of symmetry of a distribution. If the distribution is symmetric,
the coefficient of skewness is 0. If the coefficient is negative, the median is usually greater than
the mean and the distribution is said to be skewed left. If the coefficient is positive, the median is
usually less than the mean and the distribution is said to be skewed right. Kurtosis (from the Greek
kyrtosis, meaning curvature) is a measure of peakedness of a distribution. The smaller the coefficient
of kurtosis, the flatter the distribution. The normal distribution has a coefficient of kurtosis of 3 and
provides a convenient benchmark.
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Example 3: summarize with the by prefix

summarize can usefully be combined with the by varlist: prefix. In our dataset, we have a
variable, foreign, that distinguishes foreign and domestic cars. We can obtain summaries of mpg
and weight within each subgroup by typing

. by foreign: summarize mpg weight

-> foreign = Domestic

Variable Obs Mean Std. Dev. Min Max

mpg 52 19.82692 4.743297 12 34
weight 52 3317.115 695.3637 1800 4840

-> foreign = Foreign

Variable Obs Mean Std. Dev. Min Max

mpg 22 24.77273 6.611187 14 41
weight 22 2315.909 433.0035 1760 3420

Domestic cars in our dataset average 19.8 miles per gallon, whereas foreign cars average 24.8.

Because by varlist: can be combined with summarize, it can also be combined with summarize,
detail:

. by foreign: summarize mpg, detail

-> foreign = Domestic

Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12

10% 14 14 Obs 52
25% 16.5 14 Sum of Wgt. 52

50% 19 Mean 19.82692
Largest Std. Dev. 4.743297

75% 22 28
90% 26 29 Variance 22.49887
95% 29 30 Skewness .7712432
99% 34 34 Kurtosis 3.441459

-> foreign = Foreign

Mileage (mpg)

Percentiles Smallest
1% 14 14
5% 17 17

10% 17 17 Obs 22
25% 21 18 Sum of Wgt. 22

50% 24.5 Mean 24.77273
Largest Std. Dev. 6.611187

75% 28 31
90% 35 35 Variance 43.70779
95% 35 35 Skewness .657329
99% 41 41 Kurtosis 3.10734
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Technical note
summarize respects display formats if we specify the format option. When we type summarize

price weight, we obtain

. summarize price weight

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
weight 74 3019.459 777.1936 1760 4840

The display is accurate but is not as aesthetically pleasing as we may wish, particularly if we plan to
use the output directly in published work. By placing formats on the variables, we can control how
the table appears:

. format price weight %9.2fc

. summarize price weight, format

Variable Obs Mean Std. Dev. Min Max

price 74 6,165.26 2,949.50 3,291.00 15,906.00
weight 74 3,019.46 777.19 1,760.00 4,840.00

If you specify a weight (see [U] 11.1.6 weight), each observation is multiplied by the value of the
weighting expression before the summary statistics are calculated so that the weighting expression is
interpreted as the discrete density of each observation.

Example 4: summarize with factor variables

You can also use summarize to obtain summary statistics for factor variables. For example, if
you type

. summarize i.rep78

Variable Obs Mean Std. Dev. Min Max

rep78
2 69 .115942 .3225009 0 1
3 69 .4347826 .4993602 0 1
4 69 .2608696 .4423259 0 1
5 69 .1594203 .3687494 0 1

you obtain the sample proportions for four of the five levels of the rep78 variable. For example,
11.6% of the 69 cars with nonmissing values of rep78 fall into repair category two. When you use
factor-variable notation, the base category is suppressed by default. If you type

. summarize bn.rep78

Variable Obs Mean Std. Dev. Min Max

rep78
1 69 .0289855 .1689948 0 1
2 69 .115942 .3225009 0 1
3 69 .4347826 .4993602 0 1
4 69 .2608696 .4423259 0 1
5 69 .1594203 .3687494 0 1

the notation bn.rep78 indicates that Stata should not suppress the base category so that we see the
proportions for all five levels.
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We could have used tabulate oneway rep78 to obtain the sample proportions along with the
cumulative proportions. Alternatively, we could have used proportions rep78 to obtain the sample
proportions along with the standard errors of the proportions instead of the standard deviations of the
proportions.

Example 5: summarize with weights

We have 1980 census data on each of the 50 states. Included in our variables is medage, the
median age of the population of each state. If we type summarize medage, we obtain unweighted
statistics:

. use http://www.stata-press.com/data/r12/census
(1980 Census data by state)

. summarize medage

Variable Obs Mean Std. Dev. Min Max

medage 50 29.54 1.693445 24.2 34.7

Also among our variables is pop, the population in each state. Typing summarize medage [w=pop]
produces population-weighted statistics:

. summarize medage [w=pop]
(analytic weights assumed)

Variable Obs Weight Mean Std. Dev. Min Max

medage 50 225907472 30.11047 1.66933 24.2 34.7

The number listed under Weight is the sum of the weighting variable, pop, indicating that there
are roughly 226 million people in the United States. The pop-weighted mean of medage is 30.11
(compared with 29.54 for the unweighted statistic), and the weighted standard deviation is 1.67
(compared with 1.69).

Example 6: summarize with weights and the detail option

We can obtain detailed summaries of weighted data as well. When we do this, all the statistics
are weighted, including the percentiles.

. summarize medage [w=pop], detail
(analytic weights assumed)

Median age

Percentiles Smallest
1% 27.1 24.2
5% 27.7 26.1

10% 28.2 27.1 Obs 50
25% 29.2 27.4 Sum of Wgt. 225907472

50% 29.9 Mean 30.11047
Largest Std. Dev. 1.66933

75% 30.9 32
90% 32.1 32.1 Variance 2.786661
95% 32.2 32.2 Skewness .5281972
99% 34.7 34.7 Kurtosis 4.494223
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Technical note
If you are writing a program and need to access the mean of a variable, the meanonly option

provides for fast calls. For example, suppose that your program reads as follows:

program mean
summarize ‘1’, meanonly
display " mean = " r(mean)

end

The result of executing this is

. mean price
mean = 6165.2568

Saved results
summarize saves the following in r():

Scalars
r(N) number of observations r(p50) 50th percentile (detail only)
r(mean) mean r(p75) 75th percentile (detail only)
r(skewness) skewness (detail only) r(p90) 90th percentile (detail only)
r(min) minimum r(p95) 95th percentile (detail only)
r(max) maximum r(p99) 99th percentile (detail only)
r(sum w) sum of the weights r(Var) variance
r(p1) 1st percentile (detail only) r(kurtosis) kurtosis (detail only)
r(p5) 5th percentile (detail only) r(sum) sum of variable
r(p10) 10th percentile (detail only) r(sd) standard deviation
r(p25) 25th percentile (detail only)

Methods and formulas
Let x denote the variable on which we want to calculate summary statistics, and let xi, i = 1, . . . , n,

denote an individual observation on x. Let vi be the weight, and if no weight is specified, define
vi = 1 for all i.

Define V as the sum of the weight:

V =
n∑
i=1

vi

Define wi to be vi normalized to sum to n, wi = vi(n/V ).

The mean, x, is defined as

x =
1
n

n∑
i=1

wixi

The variance, s2, is defined as

s2 =
1

n− 1

n∑
i=1

wi(xi − x)2

The standard deviation, s, is defined as
√
s2.
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Define mr as the rth moment about the mean x:

mr =
1
n

n∑
i=1

wi(xi − x)r

The coefficient of skewness is then defined as m3m
−3/2
2 . The coefficient of kurtosis is defined as

m4m
−2
2 .

Let x(i) refer to the x in ascending order, and let w(i) refer to the corresponding weights of x(i).
The four smallest values are x(1), x(2), x(3), and x(4). The four largest values are x(n), x(n−1),
x(n−2), and x(n−3).

To obtain the pth percentile, which we will denote as x[p], let P = np/100. Let

W(i) =
i∑

j=1

w(j)

Find the first index i such that W(i) > P . The pth percentile is then

x[p] =


x(i−1) + x(i)

2
if W(i−1) = P

x(i) otherwise
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Also see
[R] ameans — Arithmetic, geometric, and harmonic means

[R] centile — Report centile and confidence interval

[R] mean — Estimate means

[R] proportion — Estimate proportions

[R] ratio — Estimate ratios

[R] table — Tables of summary statistics

[R] tabstat — Display table of summary statistics

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] total — Estimate totals

[D] codebook — Describe data contents

[D] describe — Describe data in memory or in file

[D] inspect — Display simple summary of data’s attributes

[ST] stsum — Summarize survival-time data

[SVY] svy estimation — Estimation commands for survey data

[XT] xtsum — Summarize xt data



Title

sunflower — Density-distribution sunflower plots

Syntax
sunflower yvar xvar

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

nograph do not show graph
notable do not show summary table; implied when by() is specified
marker options affect rendition of markers drawn at the plotted points

Bins/Petals

binwidth(#) width of the hexagonal bins
binar(#) aspect ratio of the hexagonal bins
bin options affect rendition of hexagonal bins
light(#) minimum observations for a light sunflower; default is light(3)

dark(#) minimum observations for a dark sunflower; default is dark(13)

xcenter(#) x-coordinate of the reference bin
ycenter(#) y-coordinate of the reference bin
petalweight(#) observations in a dark sunflower petal
petallength(#) length of sunflower petal as a percentage
petal options affect rendition of sunflower petals
flowersonly show petals only; do not render bins
nosinglepetal suppress single petals

Add plots

addplot(plot) add other plots to generated graph

Y axis, X axis, Titles, Legend, Overall, By

twoway options any options documented in [G-3] twoway options

2094
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bin options Description[
l|d
]
bstyle(areastyle) overall look of hexagonal bins[

l|d
]
bcolor(colorstyle) outline and fill color[

l|d
]
bfcolor(colorstyle) fill color[

l|d
]
blstyle(linestyle) overall look of outline[

l|d
]
blcolor(colorstyle) outline color[

l|d
]
blwidth(linewidthstyle) thickness of outline

petal options Description[
l|d
]
flstyle(linestyle) overall style of sunflower petals[

l|d
]
flcolor(colorstyle) color of sunflower petals[

l|d
]
flwidth(linewidthstyle) thickness of sunflower petals

All options are rightmost; see [G-4] concept: repeated options.
fweights are allowed; see [U] 11.1.6 weight.

Menu
Graphics > Smoothing and densities > Density-distribution sunflower plot

Description
sunflower draws density-distribution sunflower plots (Plummer and Dupont 2003). These plots

are useful for displaying bivariate data whose density is too great for conventional scatterplots to be
effective.

A sunflower is several line segments of equal length, called petals, that radiate from a central point.
There are two varieties of sunflowers: light and dark. Each petal of a light sunflower represents 1
observation. Each petal of a dark sunflower represents several observations. Dark and light sunflowers
represent high- and medium-density regions of the data, and marker symbols represent individual
observations in low-density regions.

The plane defined by the variables yvar and xvar is divided into contiguous hexagonal bins. The
number of observations contained within a bin determines how the bin will be represented.

• When there are fewer than light(#) observations in a bin, each point is plotted using the
usual marker symbols in a scatterplot.

• Bins with at least light(#) but fewer than dark(#) observations are represented by a light
sunflower.

• Bins with at least dark(#) observations are represented by a dark sunflower.

Options

� � �
Main �

nograph prevents the graph from being generated.



2096 sunflower — Density-distribution sunflower plots

notable prevents the summary table from being displayed. This option is implied when the by()
option is specified.

marker options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker options.

� � �
Bins/Petals �

binwidth(#) specifies the horizontal width of the hexagonal bins in the same units as xvar. By
default,

binwidth = max(rbw, nbw)

where

rbw = range of xvar/40

nbw = range of xvar/max(1,nb)

and

nb = int(min(sqrt(n),10 * log10(n)))

where

n = the number of observations in the dataset

binar(#) specifies the aspect ratio for the hexagonal bins. The height of the bins is given by

binheight = binwidth× #× 2/
√

3

where binheight and binwidth are specified in the units of yvar and xvar, respectively. The default
is binar(r), where r results in the rendering of regular hexagons.

bin options affect how the hexagonal bins are rendered.

lbstyle(areastyle) and dbstyle(areastyle) specify the look of the light and dark hexagonal
bins, respectively. The options listed below allow you to change each attribute, but lbstyle()
and dbstyle() provide the starting points. See [G-4] areastyle for a list of available area styles.

lbcolor(colorstyle) and dbcolor(colorstyle) specify one color to be used both to outline the
shape and to fill the interior of the light and dark hexagonal bins, respectively. See [G-4] colorstyle
for a list of color choices.

lbfcolor(colorstyle) and dbfcolor(colorstyle) specify the color to be used to fill the interior of
the light and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.

lblstyle(linestyle) and dblstyle(linestyle) specify the overall style of the line used to outline
the area, which includes its pattern (solid, dashed, etc.), thickness, and color. The other options
listed below allow you to change the line’s attributes, but lblstyle() and dblstyle() are
the starting points. See [G-4] linestyle for a list of choices.

lblcolor(colorstyle) and dblcolor(colorstyle) specify the color to be used to outline the light
and dark hexagonal bins, respectively. See [G-4] colorstyle for a list of color choices.

lblwidth(linewidthstyle) and dblwidth(linewidthstyle) specify the thickness of the line to be
used to outline the light and dark hexagonal bins, respectively. See [G-4] linewidthstyle for a
list of choices.
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light(#) specifies the minimum number of observations needed for a bin to be represented by a
light sunflower. The default is light(3).

dark(#) specifies the minimum number of observations needed for a bin to be represented by a dark
sunflower. The default is dark(13).

xcenter(#) and ycenter(#) specify the center of the reference bin. The default values are the
median values of xvar and yvar, respectively. The centers of the other bins are implicitly defined
by the location of the reference bin together with the common bin width and height.

petalweight(#) specifies the number of observations represented by each petal of a dark sunflower.
The default value is chosen so that the maximum number of petals on a dark sunflower is 14.

petallength(#) specifies the length of petals in the sunflowers. The value specified is interpreted
as a percentage of half the bin width. The default is 100%.

petal options affect how the sunflower petals are rendered.

lflstyle(linestyle) and dflstyle(linestyle) specify the overall style of the light and dark
sunflower petals, respectively.

lflcolor(colorstyle) and dflcolor(colorstyle) specify the color of the light and dark sunflower
petals, respectively.

lflwidth(linewidthstyle) and dflwidth(linewidthstyle) specify the width of the light and dark
sunflower petals, respectively.

flowersonly suppresses rendering of the bins. This option is equivalent to specifying lbcolor(none)
and dbcolor(none).

nosinglepetal suppresses flowers from being drawn in light bins that contain only 1 observation
and dark bins that contain as many observations as the petal weight (see the petalweight()
option).

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall, By �

twoway options are any of the options documented in [G-3] twoway options. These include op-
tions for titling the graph (see [G-3] title options), options for saving the graph to disk (see
[G-3] saving option), and the by() option (see [G-3] by option).

Remarks
See Dupont (2009, 87–92) for a discussion of sunflower plots and how to create them using Stata.

Example 1

Using the auto dataset, we want to examine the relationship between weight and mpg. To do that,
we type
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sunflower mpg weight, binwid(500) petalw(2) dark(8)
Bin width = 500
Bin height = 8.38703
Bin aspect ratio = .0145268
Max obs in a bin = 15
Light = 3
Dark = 8
X-center = 3190
Y-center = 20
Petal weight = 2

flower petal No. of No. of estimated actual
type weight petals flowers obs. obs.

none 10 10
light 1 3 1 3 3
light 1 4 2 8 8
light 1 7 3 21 21
dark 2 4 1 8 8
dark 2 5 1 10 9
dark 2 8 1 16 15

76 74

1
0

2
0

3
0

4
0

M
ile

a
g
e
 (

m
p
g
)

1,000 2,000 3,000 4,000 5,000
Weight (lbs.)

Mileage (mpg) 1 petal = 1 obs.

1 petal = 2 obs.

The three darkly shaded sunflowers immediately catch our eyes, indicating a group of eight cars
that are heavy (nearly 4,000 pounds) and fuel inefficient and two groups of cars that get about 20
miles per gallon and weight in the neighborhood of 3,000 pounds, one with 10 cars and one with 8
cars. The lighter sunflowers with seven petals each indicate groups of seven cars that share similar
weight and fuel economy characteristics. To obtain the number of cars in each group, we counted
the number of petals in each flower and consulted the graph legend to see how many observations
each petal represents.
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Methods and formulas
sunflower is implemented as an ado-file.
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Title

sureg — Zellner’s seemingly unrelated regression

Syntax
Basic syntax

sureg (depvar1 varlist1) (depvar2 varlist2) . . . (depvarN varlistN)[
if
] [

in
] [

weight
]

Full syntax

sureg (
[
eqname1:

]
depvar1a

[
depvar1b . . . =

]
varlist1

[
, noconstant

]
)

(
[
eqname2:

]
depvar2a

[
depvar2b . . . =

]
varlist2

[
, noconstant

]
)

. . .

(
[
eqnameN:

]
depvarNa

[
depvarNb . . . =

]
varlistN

[
, noconstant

]
)[

if
] [

in
] [

weight
] [

, options
]

Explicit equation naming (eqname:) cannot be combined with multiple dependent variables in an
equation specification.

options Description

Model

isure iterate until estimates converge
constraints(constraints) apply specified linear constraints

df adj.

small report small-sample statistics
dfk use small-sample adjustment
dfk2 use alternate adjustment

Reporting

level(#) set confidence level; default is level(95)

corr perform Breusch–Pagan test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Optimization

optimization options control the optimization process; seldom used

noheader suppress header table from above coefficient table
notable suppress coefficient table
coeflegend display legend instead of statistics

2100
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varlist1, . . . , varlistN may contain factor variables; see [U] 11.4.3 Factor variables. You must have the same levels
of factor variables in all equations that have factor variables.

depvars and the varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.
noheader, notable, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Multiple-equation models > Seemingly unrelated regression

Description
sureg fits seemingly unrelated regression models (Zellner 1962; Zellner and Huang 1962; Zell-

ner 1963). The acronyms SURE and SUR are often used for the estimator.

Options

� � �
Model �

isure specifies that sureg iterate over the estimated disturbance covariance matrix and parameter
estimates until the parameter estimates converge. Under seemingly unrelated regression, this
iteration converges to the maximum likelihood results. If this option is not specified, sureg
produces two-step estimates.

constraints(constraints); see [R] estimation options.

� � �
df adj. �

small specifies that small-sample statistics be computed. It shifts the test statistics from chi-squared
and z statistics to F statistics and t statistics. Although the standard errors from each equation are
computed using the degrees of freedom for the equation, the degrees of freedom for the t statistics
are all taken to be those for the first equation.

dfk specifies the use of an alternate divisor in computing the covariance matrix for the equation
residuals. As an asymptotically justified estimator, sureg by default uses the number of sample
observations (n) as a divisor. When the dfk option is set, a small-sample adjustment is made and
the divisor is taken to be

√
(n− ki)(n− kj), where ki and kj are the numbers of parameters in

equations i and j, respectively.

dfk2 specifies the use of an alternate divisor in computing the covariance matrix for the equation
residuals. When the dfk2 option is set, the divisor is taken to be the mean of the residual degrees
of freedom from the individual equations.

� � �
Reporting �

level(#); see [R] estimation options.

corr displays the correlation matrix of the residuals between equations and performs a Breusch–Pagan
test for independent equations; that is, the disturbance covariance matrix is diagonal.
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nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Optimization �

optimization options control the iterative process that minimizes the sum of squared errors when
isure is specified. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimizer stops and presents the current results, even if the convergence tolerance has not been
reached. The default value of iterate() is the current value of set maxiter (see [R] maximize),
which is iterate(16000) if maxiter has not been changed.

trace adds to the iteration log a display of the current parameter vector

nolog suppresses the display of the iteration log.

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1e-6) is the default.

The following options are available with sureg but are not shown in the dialog box:

noheader suppresses display of the table reporting F statistics, R-squared, and root mean squared
error above the coefficient table.

notable suppresses display of the coefficient table.

coeflegend; see [R] estimation options.

Remarks
Seemingly unrelated regression models are so called because they appear to be joint estimates

from several regression models, each with its own error term. The regressions are related because the
(contemporaneous) errors associated with the dependent variables may be correlated. Chapter 5 of
Cameron and Trivedi (2010) contains a discussion of the seemingly unrelated regression model and
the feasible generalized least-squares estimator underlying it.

Example 1

When we fit models with the same set of right-hand-side variables, the seemingly unrelated
regression results (in terms of coefficients and standard errors) are the same as fitting the models
separately (using, say, regress). The same is true when the models are nested. Even in such cases,
sureg is useful when we want to perform joint tests. For instance, let us assume that we think

price = β0 + β1foreign + β2length + u1

weight = γ0 + γ1foreign + γ2length + u2

Because the models have the same set of explanatory variables, we could estimate the two equations
separately. Yet, we might still choose to estimate them with sureg because we want to perform the
joint test β1 = γ1 = 0.

We use the small and dfk options to obtain small-sample statistics comparable with regress or
mvreg.
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sureg (price foreign length) (weight foreign length), small dfk

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" F-Stat P

price 74 2 2474.593 0.3154 16.35 0.0000
weight 74 2 250.2515 0.8992 316.54 0.0000

Coef. Std. Err. t P>|t| [95% Conf. Interval]

price
foreign 2801.143 766.117 3.66 0.000 1286.674 4315.611
length 90.21239 15.83368 5.70 0.000 58.91219 121.5126
_cons -11621.35 3124.436 -3.72 0.000 -17797.77 -5444.93

weight
foreign -133.6775 77.47615 -1.73 0.087 -286.8332 19.4782
length 31.44455 1.601234 19.64 0.000 28.27921 34.60989
_cons -2850.25 315.9691 -9.02 0.000 -3474.861 -2225.639

These two equations have a common set of regressors, and we could have used a shorthand syntax
to specify the equations:

. sureg (price weight = foreign length), small dfk

Here the results presented by sureg are the same as if we had estimated the equations separately:

. regress price foreign length
(output omitted )

. regress weight foreign length
(output omitted )

There is, however, a difference. We have allowed u1 and u2 to be correlated and have estimated the
full variance–covariance matrix of the coefficients. sureg has estimated the correlations, but it does
not report them unless we specify the corr option. We did not remember to specify corr when we
fit the model, but we can redisplay the results:

. sureg, notable noheader corr

Correlation matrix of residuals:

price weight
price 1.0000

weight 0.5840 1.0000

Breusch-Pagan test of independence: chi2(1) = 25.237, Pr = 0.0000

The notable and noheader options prevented sureg from redisplaying the header and coefficient
tables. We find that, for the same cars, the correlation of the residuals in the price and weight
equations is 0.5840 and that we can reject the hypothesis that this correlation is zero.

We can test that the coefficients on foreign are jointly zero in both equations—as we set out to
do—by typing test foreign; see [R] test. When we type a variable without specifying the equation,
that variable is tested for zero in all equations in which it appears:
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. test foreign

( 1) [price]foreign = 0
( 2) [weight]foreign = 0

F( 2, 142) = 17.99
Prob > F = 0.0000

Example 2

When the models do not have the same set of explanatory variables and are not nested, sureg
may lead to more efficient estimates than running the models separately as well as allowing joint
tests. This time, let us assume that we believe

price = β0 + β1foreign + β2mpg + β3displ + u1

weight = γ0 + γ1foreign + γ2length + u2

To fit this model, we type

. sureg (price foreign mpg displ) (weight foreign length), corr

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

price 74 3 2165.321 0.4537 49.64 0.0000
weight 74 2 245.2916 0.8990 661.84 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

price
foreign 3058.25 685.7357 4.46 0.000 1714.233 4402.267

mpg -104.9591 58.47209 -1.80 0.073 -219.5623 9.644042
displacement 18.18098 4.286372 4.24 0.000 9.779842 26.58211

_cons 3904.336 1966.521 1.99 0.047 50.0263 7758.645

weight
foreign -147.3481 75.44314 -1.95 0.051 -295.2139 .517755
length 30.94905 1.539895 20.10 0.000 27.93091 33.96718
_cons -2753.064 303.9336 -9.06 0.000 -3348.763 -2157.365

Correlation matrix of residuals:

price weight
price 1.0000

weight 0.3285 1.0000

Breusch-Pagan test of independence: chi2(1) = 7.984, Pr = 0.0047
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In comparison, if we had fit the price model separately,

. regress price foreign mpg displ

Source SS df MS Number of obs = 74
F( 3, 70) = 20.13

Model 294104790 3 98034929.9 Prob > F = 0.0000
Residual 340960606 70 4870865.81 R-squared = 0.4631

Adj R-squared = 0.4401
Total 635065396 73 8699525.97 Root MSE = 2207

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

foreign 3545.484 712.7763 4.97 0.000 2123.897 4967.072
mpg -98.88559 63.17063 -1.57 0.122 -224.8754 27.10426

displacement 22.40416 4.634239 4.83 0.000 13.16146 31.64686
_cons 2796.91 2137.873 1.31 0.195 -1466.943 7060.763

The coefficients are slightly different, but the standard errors are uniformly larger. This would still be
true if we specified the dfk option to make a small-sample adjustment to the estimated covariance
of the disturbances.

Technical note
Constraints can be applied to SURE models using Stata’s standard syntax for constraints. For a

general discussion of constraints, see [R] constraint; for examples similar to seemingly unrelated
regression models, see [R] reg3.

� �
Arnold Zellner (1927–2010) was born in New York. He studied physics at Harvard and economics
at Berkeley, and then he taught economics at the Universities of Washington and Wisconsin
before settling in Chicago in 1966. Among his many major contributions to econometrics and
statistics are his work on seemingly unrelated regression, three-stage least squares, and Bayesian
econometrics.� �
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Saved results
sureg saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(mss #) model sum of squares for equation #
e(df m#) model degrees of freedom for equation #
e(rss #) residual sum of squares for equation #
e(df r) residual degrees of freedom
e(r2 #) R-squared for equation #
e(F #) F statistic for equation # (small only)
e(rmse #) root mean squared error for equation #
e(dfk2 adj) divisor used with VCE when dfk2 specified
e(ll) log likelihood
e(chi2 #) χ2 for equation #
e(p #) significance for equation #
e(cons #) 1 if equation # has a constant, 0 otherwise
e(chi2 bp) Breusch–Pagan χ2

e(df bp) degrees of freedom for Breusch–Pagan χ2 test
e(cons #) 1 when equation # has a constant; 0, otherwise
e(rank) rank of e(V)
e(ic) number of iterations

Macros
e(cmd) sureg
e(cmdline) command as typed
e(method) sure or isure
e(depvar) names of dependent variables
e(exog) names of exogenous variables
e(eqnames) names of equations
e(wtype) weight type
e(wexp) weight expression
e(corr) correlation structure
e(small) small
e(dfk) alternate divisor (dfk or dfk2 only)
e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
sureg is implemented as an ado-file.

sureg uses the asymptotically efficient, feasible, generalized least-squares algorithm described in
Greene (2012, 292–304). The computing formulas are given on page 293–294.

The R-squared reported is the percent of variance explained by the predictors. It may be used for
descriptive purposes, but R-squared is not a well-defined concept when GLS is used.
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sureg will refuse to compute the estimators if the same equation is named more than once or the
covariance matrix of the residuals is singular.

The Breusch and Pagan (1980) χ2 statistic—a Lagrange multiplier statistic—is given by

λ = T

M∑
m=1

m−1∑
n=1

r2
mn

where rmn is the estimated correlation between the residuals of the M equations and T is the number
of observations. It is distributed as χ2 with M(M − 1)/2 degrees of freedom.

References
Breusch, T. S., and A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model specification in

econometrics. Review of Economic Studies 47: 239–253.

Cameron, A. C., and P. K. Trivedi. 2010. Microeconometrics Using Stata. Rev. ed. College Station, TX: Stata Press.

Greene, W. H. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

McDowell, A. W. 2004. From the help desk: Seemingly unrelated regression with unbalanced equations. Stata Journal
4: 442–448.

Rossi, P. E. 1989. The ET interview: Professor Arnold Zellner. Econometric Theory 5: 287–317.

Weesie, J. 1999. sg121: Seemingly unrelated estimation and the cluster-adjusted sandwich estimator. Stata Technical
Bulletin 52: 34–47. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 231–248. College Station, TX: Stata
Press.

Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias.
Journal of the American Statistical Association 57: 348–368.

. 1963. Estimators for seemingly unrelated regression equations: Some exact finite sample results. Journal of the
American Statistical Association 58: 977–992.

Zellner, A., and D. S. Huang. 1962. Further properties of efficient estimators for seemingly unrelated regression
equations. International Economic Review 3: 300–313.

Also see
[R] sureg postestimation — Postestimation tools for sureg

[R] mvreg — Multivariate regression

[R] nlsur — Estimation of nonlinear systems of equations

[R] reg3 — Three-stage estimation for systems of simultaneous equations

[R] regress — Linear regression

[TS] dfactor — Dynamic-factor models
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sureg postestimation — Postestimation tools for sureg

Description
The following postestimation commands are available after sureg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, equation(eqno
[
,eqno

]
) statistic

]
statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
residuals residuals
difference difference between the linear predictions of two equations
stddp standard error of the difference in linear predictions

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.
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Options for predict

� � �
Main �

equation(eqno
[
,eqno

]
) specifies to which equation(s) you are referring.

equation() is filled in with one eqno for the xb, stdp, and residuals options. equation(#1)
would mean that the calculation is to be made for the first equation, equation(#2) would mean
the second, and so on. You could also refer to the equations by their names. equation(income)
would refer to the equation named income and equation(hours) to the equation named hours.

If you do not specify equation(), the results are the same as if you specified equation(#1).

difference and stddp refer to between-equation concepts. To use these options, you must
specify two equations, for example, equation(#1,#2) or equation(income,hours). When
two equations must be specified, equation() is required.

xb, the default, calculates the linear prediction (fitted values)—the prediction of xjb for the specified
equation.

stdp calculates the standard error of the prediction for the specified equation. It can be thought of as
the standard error of the predicted expected value or mean for the observation’s covariate pattern.
The standard error of the prediction is also referred to as the standard error of the fitted value.

residuals calculates the residuals.

difference calculates the difference between the linear predictions of two equations in the system.
With equation(#1,#2), difference computes the prediction of equation(#1) minus the
prediction of equation(#2).

stddp is allowed only after you have previously fit a multiple-equation model. The standard error of
the difference in linear predictions (x1jb− x2jb) between equations 1 and 2 is calculated.

For more information on using predict after multiple-equation estimation commands, see [R] predict.

Remarks
For an example of cross-equation testing of parameters using the test command, see example 1

in [R] sureg.

Example 1

In example 1 of [R] sureg, we fit a seemingly unrelated regressions model of price and weight.
Here we obtain the fitted values.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sureg (price foreign length) (weight foreign length), small dfk
(output omitted )

. predict phat, equation(price)
(option xb assumed; fitted values)

. predict what, equation(weight)
(option xb assumed; fitted values)
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. summarize price phat weight what

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
phat 74 6165.257 1656.407 1639.872 9398.138

weight 74 3019.459 777.1936 1760 4840
what 74 3019.459 736.9666 1481.199 4476.331

Just as in single-equation OLS regression, in a SURE model the sample mean of the fitted values
for an equation equals the sample mean of the dependent variable.

Example 2

Suppose that for whatever reason we were interested in the difference between the predicted values
of price and weight. predict has an option to compute this difference in one step:

. predict diff, equation(price, weight) difference

diff is the same as phat - what:

. generate mydiff = phat - what

. summarize diff mydiff

Variable Obs Mean Std. Dev. Min Max

diff 74 3145.797 1233.26 -132.2275 5505.914
mydiff 74 3145.797 1233.26 -132.2275 5505.914

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] sureg — Zellner’s seemingly unrelated regression

[U] 20 Estimation and postestimation commands
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swilk — Shapiro–Wilk and Shapiro–Francia tests for normality

Syntax

Shapiro–Wilk normality test

swilk varlist
[

if
] [

in
] [

, swilk options
]

Shapiro–Francia normality test

sfrancia varlist
[

if
] [

in
][
, sfrancia options

]
swilk options Description

Main

generate(newvar) create newvar containing W test coefficients
lnnormal test for three-parameter lognormality
noties do not use average ranks for tied values

sfrancia options Description

Main

boxcox use the Box–Cox transformation for W ′; the default is to use the
log transformation

noties do not use average ranks for tied values

by is allowed with swilk and sfrancia; see [D] by.

Menu
swilk

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Wilk normality test

sfrancia

Statistics > Summaries, tables, and tests > Distributional plots and tests > Shapiro-Francia normality test

Description
swilk performs the Shapiro–Wilk W test for normality, and sfrancia performs the

Shapiro–Francia W ′ test for normality. swilk can be used with 4 ≤ n ≤ 2000 observations,
and sfrancia can be used with 5 ≤ n ≤ 5000 observations; see [R] sktest for a test allowing more
observations. See [MV] mvtest normality for multivariate tests of normality.
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Options for swilk

� � �
Main �

generate(newvar) creates new variable newvar containing the W test coefficients.

lnnormal specifies that the test be for three-parameter lognormality, meaning that ln(X−k) is tested
for normality, where k is calculated from the data as the value that makes the skewness coefficient
zero. When simply testing ln(X) for normality, do not specify this option. See [R] lnskew0 for
estimation of k.

noties suppresses use of averaged ranks for tied values when calculating the W test coefficients.

Options for sfrancia

� � �
Main �

boxcox specifies that the Box–Cox transformation of Royston (1983) for calculating W ′ test
coefficients be used instead of the default log transformation (Royston 1993a). Under the Box–Cox
transformation, the normal approximation to the sampling distribution of W ′, used by sfrancia,
is valid for 5 ≤ n ≤ 1000. Under the log transformation, it is valid for 10 ≤ n ≤ 5000.

noties suppresses use of averaged ranks for tied values when calculating the W ′ test coefficients.

Remarks

Example 1

Using our automobile dataset, we will test whether the variables mpg and trunk are normally
distributed:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. swilk mpg trunk

Shapiro-Wilk W test for normal data

Variable Obs W V z Prob>z

mpg 74 0.94821 3.335 2.627 0.00430
trunk 74 0.97921 1.339 0.637 0.26215

. sfrancia mpg trunk

Shapiro-Francia W’ test for normal data

Variable Obs W’ V’ z Prob>z

mpg 74 0.94872 3.650 2.510 0.00604
trunk 74 0.98446 1.106 0.195 0.42271

We can reject the hypothesis that mpg is normally distributed, but we cannot reject that trunk is
normally distributed.

The values reported under W and W ′ are the Shapiro–Wilk and Shapiro–Francia test statistics.
The tests also report V and V ′, which are more appealing indexes for departure from normality.
The median values of V and V ′ are 1 for samples from normal populations. Large values indicate
nonnormality. The 95% critical values of V (V ′), which depend on the sample size, are between 1.2
and 2.4 (2.0 and 2.8); see Royston (1991b). There is no more information in V (V ′) than in W
(W ′)—one is just the transform of the other.
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Example 2

We have data on a variable called studytime, which we suspect is distributed lognormally:

. use http://www.stata-press.com/data/r12/cancer
(Patient Survival in Drug Trial)

. generate lnstudytime = ln(studytime)

. swilk lnstudytime

Shapiro-Wilk W test for normal data

Variable Obs W V z Prob>z

lnstudytime 48 0.92731 3.311 2.547 0.00543

We can reject the lognormal assumption. We do not specify the lnnormal option when testing for
lognormality. The lnnormal option is for three-parameter lognormality.

Example 3

Having discovered that ln(studytime) is not distributed normally, we now test that
ln(studytime − k) is normally distributed, where k is chosen so that the resulting skewness is
zero. We obtain the estimate for k from lnskew0; see [R] lnskew0:

. lnskew0 lnstudytimek = studytime, level(95)

Transform k [95% Conf. Interval] Skewness

ln(studytim-k) -11.01181 -infinity -.9477328 -.0000173

. swilk lnstudytimek, lnnormal

Shapiro-Wilk W test for 3-parameter lognormal data

Variable Obs W V z Prob>z

lnstudytimek 48 0.97064 1.337 1.261 0.10363

We cannot reject the hypothesis that ln(studytime + 11.01181) is distributed normally. We do
specify the lnnormal option when using an estimated value of k.

Saved results
swilk and sfrancia save the following in r():

Scalars
r(N) number of observations r(W) W or W ′

r(p) significance r(V) V or V ′

r(z) z statistic

Methods and formulas
swilk and sfrancia are implemented as ado-files.

The Shapiro–Wilk test is based on Shapiro and Wilk (1965) with a new approximation accurate
for 4 ≤ n ≤ 2000 (Royston 1992). The calculations made by swilk are based on Royston (1982,
1992, 1993b).
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The Shapiro–Francia test (Shapiro and Francia 1972; Royston 1983; Royston 1993a) is an
approximate test that is similar to the Shapiro–Wilk test for very large samples.

� �
Samuel Sanford Shapiro (1930– ) earned degrees in statistics and engineering from City College
of New York, Columbia, and Rutgers. After employment in the U.S. Army and industry, he
joined the faculty at Florida International University in 1972. Shapiro has coauthored various
texts in statistics and published several papers on distributional testing and other statistical topics.� �

Acknowledgment
swilk and sfrancia were written by Patrick Royston of the MRC Clinical Trials Unit, London.

References
Genest, C., and G. Brackstone. 2010. A conversation with Martin Bradbury Wilk. Statistical Science 25: 258–273.

Gould, W. W. 1992. sg3.7: Final summary of tests of normality. Stata Technical Bulletin 5: 10–11. Reprinted in Stata
Technical Bulletin Reprints, vol. 1, pp. 114–115. College Station, TX: Stata Press.

Royston, P. 1982. An extension of Shapiro and Wilks’s W test for normality to large samples. Applied Statistics 31:
115–124.

. 1983. A simple method for evaluating the Shapiro–Francia W’ test of non-normality. Statistician 32: 297–300.

. 1991a. sg3.2: Shapiro–Wilk and Shapiro–Francia tests. Stata Technical Bulletin 3: 19. Reprinted in Stata
Technical Bulletin Reprints, vol. 1, p. 105. College Station, TX: Stata Press.

. 1991b. Estimating departure from normality. Statistics in Medicine 10: 1283–1293.

. 1992. Approximating the Shapiro–Wilk W-test for non-normality. Statistics and Computing 2: 117–119.

. 1993a. A pocket-calculator algorithm for the Shapiro–Francia test for non-normality: An application to medicine.
Statistics in Medicine 12: 181–184.

. 1993b. A toolkit for testing for non-normality in complete and censored samples. Statistician 42: 37–43.

Shapiro, S. S., and R. S. Francia. 1972. An approximate analysis of variance test for normality. Journal of the
American Statistical Association 67: 215–216.

Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:
591–611.

Also see
[R] lnskew0 — Find zero-skewness log or Box–Cox transform

[R] lv — Letter-value displays

[R] sktest — Skewness and kurtosis test for normality

[MV] mvtest normality — Multivariate normality tests

http://www.stata.com/products/stb/journals/stb5.pdf
http://www.stata.com/products/stb/journals/stb3.pdf


Title

symmetry — Symmetry and marginal homogeneity tests

Syntax
Symmetry and marginal homogeneity tests

symmetry casevar controlvar
[

if
] [

in
] [

weight
] [

, options
]

Immediate form of symmetry and marginal homogeneity tests

symmi #11 #12 [...] \ #21 #22 [...] [\...]
[

if
] [

in
] [

, options
]

options Description

Main

notable suppress output of contingency table
contrib report contribution of each off-diagonal cell pair
exact perform exact test of table symmetry
mh perform two marginal homogeneity tests
trend perform a test for linear trend in the (log) relative risk (RR)
cc use continuity correction when calculating test for linear trend

fweights are allowed; see [U] 11.1.6 weight.

Menu
symmetry

Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test

symmi

Statistics > Epidemiology and related > Other > Symmetry and marginal homogeneity test calculator

Description
symmetry performs asymptotic symmetry and marginal homogeneity tests, as well as an exact

symmetry test on K ×K tables where there is a 1-to-1 matching of cases and controls (nonindepen-
dence). This testing is used to analyze matched-pair case–control data with multiple discrete levels
of the exposure (outcome) variable. In genetics, the test is known as the transmission/disequilibrium
test (TDT) and is used to test the association between transmitted and nontransmitted parental marker
alleles to an affected child (Spieldman, McGinnis, and Ewens 1993). For 2× 2 tables, the asymptotic
test statistics reduce to the McNemar test statistic, and the exact symmetry test produces an exact
McNemar test; see [ST] epitab. For many exposure variables, symmetry can optionally perform a
test for linear trend in the log relative risk.

symmetry expects the data to be in the wide format; that is, each observation contains the matched
case and control values in variables casevar and controlvar. Variables can be numeric or string.

symmi is the immediate form of symmetry. The symmi command uses the values specified on
the command line; rows are separated by ‘\’, and options are the same as for symmetry. See
[U] 19 Immediate commands for a general introduction to immediate commands.

2115
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Options

� � �
Main �

notable suppresses the output of the contingency table. By default, symmetry displays the n× n
contingency table at the top of the output.

contrib reports the contribution of each off-diagonal cell pair to the overall symmetry χ2.

exact performs an exact test of table symmetry. This option is recommended for sparse tables.
CAUTION: The exact test requires substantial amounts of time and memory for large tables.

mh performs two marginal homogeneity tests that do not require the inversion of the variance–covariance
matrix.

By default, symmetry produces the Stuart–Maxwell test statistic, which requires the inversion of the
nondiagonal variance–covariance matrix, V. When the table is sparse, the matrix may not be of full
rank, and then the command substitutes a generalized inverse V∗ for V−1. mh calculates optional
marginal homogeneity statistics that do not require the inversion of the variance–covariance matrix.
These tests may be preferred in certain situations. See Methods and formulas and Bickeböller and
Clerget-Darpoux (1995) for details on these test statistics.

trend performs a test for linear trend in the (log) relative risk (RR). This option is allowed only for
numeric exposure (outcome) variables, and its use should be restricted to measurements on the
ordinal or the interval scales.

cc specifies that the continuity correction be used when calculating the test for linear trend. This
correction should be specified only when the levels of the exposure variable are equally spaced.

Remarks
symmetry and symmi may be used to analyze 1-to-1 matched case–control data with multiple

discrete levels of the exposure (outcome) variable.

Example 1

Consider a survey of 344 individuals (BMDP 1990, 267–270) who were asked in October 1986
whether they agreed with President Reagan’s handling of foreign affairs. In January 1987, after the
Iran-Contra affair became public, these same individuals were surveyed again and asked the same
question. We would like to know if public opinion changed over this period.

We first describe the dataset and list a few observations.

. use http://www.stata-press.com/data/r12/iran

. describe

Contains data from http://www.stata-press.com/data/r12/iran.dta
obs: 344

vars: 2 29 Jan 2011 02:37
size: 688

storage display value
variable name type format label variable label

before byte %8.0g vlab Public Opinion before IC
after byte %8.0g vlab Public Opinion after IC

Sorted by:
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. list in 1/5

before after

1. agree agree
2. agree disagree
3. agree unsure
4. disagree agree
5. disagree disagree

Each observation corresponds to one of the 344 individuals. The data are in wide form so that
each observation has a before and an after measurement. We now perform the test without options.

. symmetry before after

Public
Opinion Public Opinion after IC
before IC agree disagree unsure Total

agree 47 56 38 141
disagree 28 61 31 120

unsure 26 47 10 83

Total 101 164 79 344

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart-Maxwell) 14.78 2 0.0006

The test first tabulates the data in a K×K table and then performs Bowker’s (1948) test for table
symmetry and the Stuart–Maxwell (Stuart 1955; Maxwell 1970) test for marginal homogeneity.

Both the symmetry test and the marginal homogeneity test are highly significant, thus indicating
a shift in public opinion.

An exact test of symmetry is provided for use on sparse tables. This test is computationally
intensive, so it should not be used on large tables. Because we are working on a fast computer, we
will run the symmetry test again and this time include the exact option. We will suppress the output
of the contingency table by specifying notable and include the contrib option so that we may
further examine the cells responsible for the significant result.

. symmetry before after, contrib exact mh notable

Contribution
to symmetry

Cells chi-squared

n1_2 & n2_1 9.3333
n1_3 & n3_1 2.2500
n2_3 & n3_2 3.2821

chi2 df Prob>chi2

Symmetry (asymptotic) 14.87 3 0.0019
Marginal homogeneity (Stuart-Maxwell) 14.78 2 0.0006
Marginal homogeneity (Bickenboller) 13.53 2 0.0012
Marginal homogeneity (no diagonals) 15.25 2 0.0005

Symmetry (exact significance probability) 0.0018
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The largest contribution to the symmetry χ2 is due to cells n12 and n21. These correspond to
changes between the agree and disagree categories. Of the 344 individuals, 56 (16.3%) changed from
the agree to the disagree response, whereas only 28 (8.1%) changed in the opposite direction.

For these data, the results from the exact test are similar to those from the asymptotic test.

Example 2

Breslow and Day (1980, 163) reprinted data from Mack et al. (1976) from a case–control study
of the effect of exogenous estrogen on the risk of endometrial cancer. The data consist of 59 elderly
women diagnosed with endometrial cancer and 59 disease-free control subjects living in the same
community as the cases. Cases and controls were matched on age, marital status, and time living
in the community. The data collected included information on the daily dose of conjugated estrogen
therapy. Breslow and Day analyzed these data by creating four levels of the dose variable. Here are
the data as entered into a Stata dataset:

. use http://www.stata-press.com/data/r12/bd163

. list, noobs divider

case control count

0 0 6
0 0.1-0.299 2
0 0.3-0.625 3
0 0.626+ 1

0.1-0.299 0 9

0.1-0.299 0.1-0.299 4
0.1-0.299 0.3-0.625 2
0.1-0.299 0.626+ 1
0.3-0.625 0 9
0.3-0.625 0.1-0.299 2

0.3-0.625 0.3-0.625 3
0.3-0.625 0.626+ 1

0.626+ 0 12
0.626+ 0.1-0.299 1
0.626+ 0.3-0.625 2

0.626+ 0.626+ 1

This dataset is in a different format from that of the previous example. Instead of each observation
representing one matched pair, each observation represents possibly multiple pairs indicated by the
count variable. For instance, the first observation corresponds to six matched pairs where neither
the case nor the control was on estrogen, the second observation corresponds to two matched pairs
where the case was not on estrogen and the control was on 0.1 to 0.299 mg/day, etc.

To use symmetry to analyze this dataset, we must specify fweight to indicate that in our data
there are observations corresponding to more than one matched pair.
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. symmetry case control [fweight=count]

control
case 0 0.1-0.299 0.3-0.625 0.626+ Total

0 6 2 3 1 12
0.1-0.299 9 4 2 1 16
0.3-0.625 9 2 3 1 15

0.626+ 12 1 2 1 16

Total 36 9 10 4 59

chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart-Maxwell) 16.96 3 0.0007

Both the test of symmetry and the test of marginal homogeneity are highly significant, thus leading
us to reject the null hypothesis that there is no effect of exposure to estrogen on the risk of endometrial
cancer.

Breslow and Day perform a test for trend assuming that the estrogen exposure levels were equally
spaced by recoding the exposure levels as 1, 2, 3, and 4.

We can easily reproduce their results by recoding our data in this way and by specifying the
trend option. Two new numeric variables were created, ca and co, corresponding to the variables
case and control, respectively. Below we list some of the data and our results from symmetry:

. encode case, gen(ca)

. encode control, gen(co)

. label values ca

. label values co

. list in 1/4

case control count ca co

1. 0 0 6 1 1
2. 0 0.1-0.299 2 1 2
3. 0 0.3-0.625 3 1 3
4. 0 0.626+ 1 1 4

. symmetry ca co [fw=count], notable trend cc

chi2 df Prob>chi2

Symmetry (asymptotic) 17.10 6 0.0089
Marginal homogeneity (Stuart-Maxwell) 16.96 3 0.0007

Linear trend in the (log) RR 14.43 1 0.0001

We requested the continuity correction by specifying cc. Doing so is appropriate because our coded
exposure levels are equally spaced.

The test for trend was highly significant, indicating an increased risk of endometrial cancer with
increased dosage of conjugated estrogen.

You must be cautious: the way in which you code the exposure variable affects the linear trend
statistic. If instead of coding the levels as 1, 2, 3, and 4, we had instead used 0, 0.2, 0.46, and 0.7
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(roughly the midpoint in the range of each level), we would have obtained a χ2 statistic of 11.19 for
these data.

Saved results
symmetry saves the following in r():
Scalars

r(N pair) number of matched pairs
r(chi2) asymptotic symmetry χ2

r(df) asymptotic symmetry degrees of freedom
r(p) asymptotic symmetry p-value
r(chi2 sm) MH (Stuart–Maxwell) χ2

r(df sm) MH (Stuart–Maxwell) degrees of freedom
r(p sm) MH (Stuart–Maxwell) p-value
r(chi2 b) MH (Bickenböller) χ2

r(df b) MH (Bickenböller) degrees of freedom
r(p b) MH (Bickenböller) p-value
r(chi2 nd) MH (no diagonals) χ2

r(df nd) MH (no diagonals) degrees of freedom
r(p nd) MH (no diagonals) p-value
r(chi2 t) χ2 for linear trend
r(p trend) p-value for linear trend
r(p exact) exact symmetry p-value

Methods and formulas
symmetry and symmi are implemented as ado-files.

Methods and formulas are presented under the following headings:
Asymptotic tests
Exact symmetry test

Asymptotic tests

Consider a square table with K exposure categories, that is, K rows and K columns. Let nij be
the count corresponding to row i and column j of the table, Nij = nij +nji, for i, j = 1, 2, . . . ,K,
and ni., and let n.j be the marginal totals for row i and column j, respectively. Asymptotic tests for
symmetry and marginal homogeneity for this K ×K table are calculated as follows:

The null hypothesis of complete symmetry pij = pji, i 6= j, is tested by calculating the test
statistic (Bowker 1948)

Tcs =
∑
i<j

(nij − nji)2

nij + nji

which is asymptotically distributed as χ2 with K(K − 1)/2 − R degrees of freedom, where R is
the number of off-diagonal cells with Nij = 0.

The null hypothesis of marginal homogeneity, pi. = p.i, is tested by calculating the Stuart–Maxwell
test statistic (Stuart 1955; Maxwell 1970),

Tsm = d′V−1d

where d is a column vector with elements equal to the differences di = ni.−n.i for i = 1, 2, . . . ,K,
and V is the variance–covariance matrix with elements
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vii = ni. + n.i − 2nii

vij = −(nij + nji), i 6= j

Tsm is asymptotically χ2 with K − 1 degrees of freedom.

This test statistic properly accounts for the dependence between the table’s rows and columns.
When the matrix V is not of full rank, a generalized inverse V∗ is substituted for V−1.

The Bickeböller and Clerget-Darpoux (1995) marginal homogeneity test statistic is calculated by

Tmh =
∑
i

(ni. − n.i)2

ni. + n.i

This statistic is asymptotically distributed, under the assumption of marginal independence, as χ2

with K − 1 degrees of freedom.

The marginal homogeneity (no diagonals) test statistic T 0
mh is calculated in the same way as Tmh,

except that the diagonal elements do not enter into the calculation of the marginal totals. Unlike the
previous test statistic, T 0

mh reduces to a McNemar test statistic for 2 × 2 tables. The test statistic
{(K − 1)/2}T 0

mh is asymptotically distributed as χ2 with K− 1 degrees of freedom (Cleves, Olson,
and Jacobs 1997; Spieldman and Ewens 1996).

Breslow and Day’s test statistic for linear trend in the (log) of RR is{∑
i<j(nij − nji)(Xj −Xi)− cc

}2

∑
i<j(nij + nji)(Xj −Xi)2

where the Xj are the doses associated with the various levels of exposure and cc is the continuity
correction; it is asymptotically distributed as χ2 with 1 degree of freedom.

The continuity correction option is applicable only when the levels of the exposure variable are
equally spaced.

Exact symmetry test

The exact test is based on a permutation algorithm applied to the null distribution. The distribution
of the off-diagonal elements nij , i 6= j, conditional on the sum of the complementary off-diagonal
cells, Nij = nij + nji, can be written as the product of K(K − 1)/2 binomial random variables,

P (n) =
∏
i<j

(
Nij
nij

)
πij

nij (1− πij)nij

where n is a vector with elements nij and πij = E(nij/Nij |Nij). Under the null hypothesis of
complete symmetry, πij = πji = 1/2, and thus the permutation distribution is given by

P0(n) =
∏
i<j

(
Nij
nij

)(
1
2

)Nij



2122 symmetry — Symmetry and marginal homogeneity tests

The exact significance test is performed by evaluating

Pcs =
∑
n∈p

P0(n)

where p = {n : P0(n) < P0(n∗)} and n∗ is the observed contingency table data vector. The
algorithm evaluates pcs exactly. For information about permutation tests, see Good (2005, 2006).
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Title

table — Tables of summary statistics

Syntax
table rowvar

[
colvar

[
supercolvar

] ] [
if
] [

in
] [

weight
] [

, options
]

options Description

Main

contents(clist) contents of table cells; select up to five statistics; default is
contents(freq)

by(superrowvarlist) superrow variables

Options

cellwidth(#) cell width
csepwidth(#) column-separation width
stubwidth(#) stub width
scsepwidth(#) supercolumn-separation width
center center-align table cells; default is right-align
left left-align table cells; default is right-align
cw perform casewise deletion
row add row totals
col add column totals
scol add supercolumn totals
concise suppress rows with all missing entries
missing show missing statistics with period
replace replace current data with table statistics
name(string) name new variables with prefix string
format(% fmt) display format for numbers in cells; default is format(%9.0g)

by is allowed; see [D] by.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
pweights may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with
semean, sebinomial, or sepoisson. aweights may not be used with sebinomial or sepoisson.

where the elements of clist may be

freq frequency n varname same as count
mean varname mean of varname max varname maximum
sd varname standard deviation min varname minimum
semean varname standard error of the mean median varname median

(sd/sqrt(n)) p1 varname 1st percentile
sebinomial varname standard error of the mean, binomial p2 varname 2nd percentile

distribution (sqrt(p(1-p)/n)) . . . 3rd–49th percentiles
sepoisson varname standard error of the mean, Poisson p50 varname 50th percentile (median)

distribution (sqrt(mean)) . . . 51st–97th percentiles
sum varname sum p98 varname 98th percentile
rawsum varname sums ignoring optionally specified weight p99 varname 99th percentile
count varname count of nonmissing observations iqr varname interquartile range
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Rows, columns, supercolumns, and superrows are thus defined as

row 1 .
row 2 .

supercol 1 supercol 2
col 1 col 2 col 1 col 2

row 1 . . . .
row 2 . . . .

col 1 col 2

row 1 . .
row 2 . .

supercol 1 supercol 2
col 1 col 2 col 1 col 2

superrow 1:
row 1 . . . .
row 2 . . . .

superrow 2:
row 1 . . . .
row 2 . . . .

Menu
Statistics > Summaries, tables, and tests > Tables > Table of summary statistics (table)

Description

table calculates and displays tables of statistics.

Options

� � �
Main �

contents(clist) specifies the contents of the table’s cells; if not specified, contents(freq) is used
by default. contents(freq) produces a table of frequencies. contents(mean mpg) produces
a table of the means of variable mpg. contents(freq mean mpg sd mpg) produces a table of
frequencies together with the mean and standard deviation of variable mpg. Up to five statistics
may be specified.

by(superrowvarlist) specifies that numeric or string variables be treated as superrows. Up to four
variables may be specified in superrowvarlist. The by() option may be specified with the by
prefix.

� � �
Options �

cellwidth(#) specifies the width of the cell in units of digit widths; 10 means the space occupied by
10 digits, which is 0123456789. The default cellwidth() is not a fixed number, but a number
chosen by table to spread the table out while presenting a reasonable number of columns across
the page.
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csepwidth(#) specifies the separation between columns in units of digit widths. The default is not
a fixed number, but a number chosen by table according to what it thinks looks best.

stubwidth(#) specifies the width, in units of digit widths, to be allocated to the left stub of the
table. The default is not a fixed number, but a number chosen by table according to what it
thinks looks best.

scsepwidth(#) specifies the separation between supercolumns in units of digit widths. The default
is not a fixed number, but a number chosen by table to present the results best.

center specifies that results be centered in the table’s cells. The default is to right-align results.
For centering to work well, you typically need to specify a display format as well. center
format(%9.2f) is popular.

left specifies that column labels be left-aligned. The default is to right-align column labels to
distinguish them from supercolumn labels, which are left-aligned.

cw specifies casewise deletion. If cw is not specified, all observations possible are used to calculate
each of the specified statistics. cw is relevant only when you request a table containing statistics
on multiple variables. For instance, contents(mean mpg mean weight) would produce a table
reporting the means of variables mpg and weight. Consider an observation in which mpg is known
but weight is missing. By default, that observation will be used in the calculation of the mean of
mpg. If you specify cw, the observation will be excluded in the calculation of the means of both
mpg and weight.

row specifies that a row be added to the table reflecting the total across the rows.

col specifies that a column be added to the table reflecting the total across columns.

scol specifies that a supercolumn be added to the table reflecting the total across supercolumns.

concise specifies that rows with all missing entries not be displayed.

missing specifies that missing statistics be shown in the table as periods (Stata’s missing-value
indicator). The default is that missing entries be left blank.

replace specifies that the data in memory be replaced with data containing 1 observation per cell
(row, column, supercolumn, and superrow) and with variables containing the statistics designated
in contents().

This option is rarely specified. If you do not specify this option, the data in memory remain
unchanged.

If you do specify this option, the first statistic will be named table1, the second table2, and so
on. For instance, if contents(mean mpg sd mpg) was specified, the means of mpg would be in
variable table1 and the standard deviations in table2.

name(string) is relevant only if you specify replace. name() allows changing the default stub
name that replace uses to name the new variables associated with the statistics. If you specify
name(stat), the first statistic will be placed in variable stat1, the second in stat2, and so on.

format(% fmt) specifies the display format for presenting numbers in the table’s cells. format(%9.0g)
is the default; format(%9.2f) and format(%9.2fc) are popular alternatives. The width of the
format you specify does not matter, except that % fmt must be valid. The width of the cells is
chosen by table to present the results best. The cellwidth() option allows you to override
table’s choice.
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Limits

Up to four variables may be specified in the by(), so with the three row, column, and supercolumn
variables, seven-way tables may be displayed.

Up to five statistics may be displayed in each cell of the table.

The sum of the number of rows, columns, supercolumns, and superrows is called the number of
margins. A table may contain up to 3,000 margins. Thus a one-way table may contain 3,000 rows. A
two-way table could contain 2,998 rows and two columns, 2,997 rows and three columns, . . ., 1,500
rows and 1,500 columns, . . ., two rows and 2,998 columns. A three-way table is similarly limited
by the sum of the number of rows, columns, and supercolumns. A r × c × d table is feasible if
r + c + d ≤ 3,000. The limit is set in terms of the sum of the rows, columns, supercolumns, and
superrows, and not, as you might expect, in terms of their product.

Remarks
Remarks are presented under the following headings:

One-way tables
Two-way tables
Three-way tables
Four-way and higher-dimensional tables

One-way tables

Example 1

From the automobile dataset, here is a simple one-way table:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. table rep78, contents(mean mpg)

Repair
Record
1978 mean(mpg)

1 21
2 19.125
3 19.4333
4 21.6667
5 27.3636

We are not limited to including only one statistic:

. table rep78, c(n mpg mean mpg sd mpg median mpg)

Repair
Record
1978 N(mpg) mean(mpg) sd(mpg) med(mpg)

1 2 21 4.24264 21
2 8 19.125 3.758324 18
3 30 19.4333 4.141325 19
4 18 21.6667 4.93487 22.5
5 11 27.3636 8.732385 30
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We abbreviated contents() as c(). The format() option will allow us to better format the numbers
in the table:

. table rep78, c(n mpg mean mpg sd mpg median mpg) format(%9.2f)

Repair
Record
1978 N(mpg) mean(mpg) sd(mpg) med(mpg)

1 2 21.00 4.24 21.00
2 8 19.12 3.76 18.00
3 30 19.43 4.14 19.00
4 18 21.67 4.93 22.50
5 11 27.36 8.73 30.00

The center option will center the results under the headings:

. table rep78, c(n mpg mean mpg sd mpg median mpg) format(%9.2f) center

Repair
Record
1978 N(mpg) mean(mpg) sd(mpg) med(mpg)

1 2 21.00 4.24 21.00
2 8 19.12 3.76 18.00
3 30 19.43 4.14 19.00
4 18 21.67 4.93 22.50
5 11 27.36 8.73 30.00

Two-way tables

Example 2

In example 1, when we typed ‘table rep78, . . .’, we obtained a one-way table. If we were to
type ‘table rep78 foreign, . . .’, we would obtain a two-way table:

. table rep78 foreign, c(mean mpg)

Repair
Record Car type
1978 Domestic Foreign

1 21
2 19.125
3 19 23.3333
4 18.4444 24.8889
5 32 26.3333

Note the missing cells. Certain combinations of repair record and car type do not exist in our dataset.

As with one-way tables, we can specify a display format for the cells and center the numbers
within the cells if we wish.
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. table rep78 foreign, c(mean mpg) format(%9.2f) center

Repair
Record Car type
1978 Domestic Foreign

1 21.00
2 19.12
3 19.00 23.33
4 18.44 24.89
5 32.00 26.33

We can obtain row totals by specifying the row option and obtain column totals by specifying the
col option. We specify both below:

. table rep78 foreign, c(mean mpg) format(%9.2f) center row col

Repair
Record Car type
1978 Domestic Foreign Total

1 21.00 21.00
2 19.12 19.12
3 19.00 23.33 19.43
4 18.44 24.89 21.67
5 32.00 26.33 27.36

Total 19.54 25.29 21.29

table can display multiple statistics within cells, but once we move beyond one-way tables, the
table becomes busy:

. table foreign rep78, c(mean mpg n mpg) format(%9.2f) center

Repair Record 1978
Car type 1 2 3 4 5

Domestic 21.00 19.12 19.00 18.44 32.00
2 8 27 9 2

Foreign 23.33 24.89 26.33
3 9 9

This two-way table with two statistics per cell works well here. That was, in part, helped along by our
interchanging the rows and columns. We turned the table around by typing table foreign rep78
rather than table rep78 foreign.
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Another way to display two-way tables is to specify a row and superrow rather than a row and
column. We do that below and display three statistics per cell:

. table foreign, by(rep78) c(mean mpg sd mpg n mpg) format(%9.2f) center

Repair
Record
1978 and
Car type mean(mpg) sd(mpg) N(mpg)

1
Domestic 21.00 4.24 2
Foreign

2
Domestic 19.12 3.76 8
Foreign

3
Domestic 19.00 4.09 27
Foreign 23.33 2.52 3

4
Domestic 18.44 4.59 9
Foreign 24.89 2.71 9

5
Domestic 32.00 2.83 2
Foreign 26.33 9.37 9

Three-way tables

Example 3

We have data on the prevalence of byssinosis, a form of pneumoconiosis to which workers exposed
to cotton dust are susceptible. The dataset is on 5,419 workers in a large cotton mill. We know
whether each worker smokes, his or her race, and the dustiness of the work area. The categorical
variables are

smokes Smoker or nonsmoker in the last five years.
race White or other.
workplace 1 (most dusty), 2 (less dusty), 3 (least dusty).

Moreover, this dataset includes a frequency-weight variable pop. Here is a three-way table showing
the fraction of workers with byssinosis:

. use http://www.stata-press.com/data/r12/byssin
(Byssinosis incidence)

. table workplace smokes race [fw=pop], c(mean prob)

Dustiness Race and Smokes
of other white
workplace no yes no yes

least .0107527 .0101523 .0081549 .0162774
less .02 .0081633 .0136612 .0143149
most .0820896 .1679105 .0833333 .2295082
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This table would look better if we showed the fraction to four digits:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f)

Dustiness Race and Smokes
of other white
workplace no yes no yes

least 0.0108 0.0102 0.0082 0.0163
less 0.0200 0.0082 0.0137 0.0143
most 0.0821 0.1679 0.0833 0.2295

In this table, the rows are the dustiness of the workplace, the columns are whether the worker smokes,
and the supercolumns are the worker’s race.

Now we request that the table include the supercolumn totals by specifying the sctotal option,
which we can abbreviate as sc:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) sc

Dustiness Race and Smokes
of other white Total
workplace no yes no yes no yes

least 0.0108 0.0102 0.0082 0.0163 0.0090 0.0145
less 0.0200 0.0082 0.0137 0.0143 0.0159 0.0123
most 0.0821 0.1679 0.0833 0.2295 0.0826 0.1929

The supercolumn total is the total over race and is divided into its columns based on smokes. Here
is the table with the column rather than the supercolumn totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) col

Dustiness Race and Smokes
of other white
workplace no yes Total no yes Total

least 0.0108 0.0102 0.0104 0.0082 0.0163 0.0129
less 0.0200 0.0082 0.0135 0.0137 0.0143 0.0140
most 0.0821 0.1679 0.1393 0.0833 0.2295 0.1835

Here is the table with both column and supercolumn totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.4f) sc col

Dustin
ess of Race and Smokes
workpl other white Total
ace no yes Total no yes Total no yes Total

least 0.0108 0.0102 0.0104 0.0082 0.0163 0.0129 0.0090 0.0145 0.0122
less 0.0200 0.0082 0.0135 0.0137 0.0143 0.0140 0.0159 0.0123 0.0138
most 0.0821 0.1679 0.1393 0.0833 0.2295 0.1835 0.0826 0.1929 0.1570

table is struggling to keep this table from becoming too wide—notice how it divided the words in
the title in the top-left stub. Here, if the table had more columns, or, if we demanded more digits,
table would be forced to segment the table and present it in pieces, which it would do:
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. table workplace smokes race [fw=pop], c(mean prob) format(%9.6f) sc col

Dustiness Race and Smokes
of other white
workplace no yes Total no yes Total

least 0.010753 0.010152 0.010417 0.008155 0.016277 0.012949
less 0.020000 0.008163 0.013483 0.013661 0.014315 0.014035
most 0.082090 0.167910 0.139303 0.083333 0.229508 0.183521

Dustiness Race and Smokes
of Total
workplace no yes Total

least 0.008990 0.014471 0.012174
less 0.015901 0.012262 0.013846
most 0.082569 0.192905 0.156951

Here three digits is probably enough, so here is the table including all the row, column, and supercolumn
totals:

. table workplace smokes race [fw=pop], c(mean prob) format(%9.3f)
> sc col row

Dustiness Race and Smokes
of other white Total
workplace no yes Total no yes Total no yes Total

least 0.011 0.010 0.010 0.008 0.016 0.013 0.009 0.014 0.012
less 0.020 0.008 0.013 0.014 0.014 0.014 0.016 0.012 0.014
most 0.082 0.168 0.139 0.083 0.230 0.184 0.083 0.193 0.157

Total 0.025 0.048 0.038 0.014 0.035 0.026 0.018 0.039 0.030

We can show multiple statistics:

. table workplace smokes race [fw=pop], c(mean prob n prob) format(%9.3f)
> sc col row

Dustiness Race and Smokes
of other white Total
workplace no yes Total no yes Total no yes Total

least 0.011 0.010 0.010 0.008 0.016 0.013 0.009 0.014 0.012
465 591 1,056 981 1,413 2,394 1,446 2,004 3,450

less 0.020 0.008 0.013 0.014 0.014 0.014 0.016 0.012 0.014
200 245 445 366 489 855 566 734 1,300

most 0.082 0.168 0.139 0.083 0.230 0.184 0.083 0.193 0.157
134 268 402 84 183 267 218 451 669

Total 0.025 0.048 0.038 0.014 0.035 0.026 0.018 0.039 0.030
799 1,104 1,903 1,431 2,085 3,516 2,230 3,189 5,419
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Four-way and higher-dimensional tables

Example 4

Let’s pretend that our byssinosis dataset also recorded each worker’s sex (it does not, and we have
made up this extra information). We obtain a four-way table just as we would a three-way table, but
we specify the fourth variable as a superrow by including it in the by() option:

. use http://www.stata-press.com/data/r12/byssin1
(Byssinosis incidence)

. table workplace smokes race [fw=pop], by(sex) c(mean prob) format(%9.3f)
> sc col row

Sex and
Dustiness Race and Smokes
of other white Total
workplace no yes Total no yes Total no yes Total

Female
least 0.006 0.009 0.008 0.009 0.021 0.016 0.009 0.018 0.014
less 0.020 0.008 0.010 0.015 0.015 0.015 0.016 0.012 0.014
most 0.057 0.154 0.141 0.057 0.154 0.141

Total 0.017 0.051 0.043 0.011 0.020 0.016 0.012 0.032 0.024

Male
least 0.013 0.011 0.012 0.006 0.007 0.006 0.009 0.008 0.009
less 0.020 0.000 0.019 0.000 0.013 0.011 0.016 0.013 0.014
most 0.091 0.244 0.136 0.083 0.230 0.184 0.087 0.232 0.167

Total 0.029 0.041 0.033 0.020 0.056 0.043 0.025 0.052 0.039

If our dataset also included work group and we wanted a five-way table, we could include both
the sex and work-group variables in the by() option. You may include up to four variables in by(),
and so produce up to 7-way tables.

Methods and formulas
table is implemented as an ado-file. The contents of cells are calculated by collapse and are

displayed by tabdisp; see [D] collapse and [P] tabdisp.

Also see
[R] summarize — Summary statistics

[R] tabstat — Display table of summary statistics

[R] tabulate oneway — One-way tables of frequencies

[R] tabulate twoway — Two-way tables of frequencies

[D] collapse — Make dataset of summary statistics

[P] tabdisp — Display tables



Title

tabstat — Display table of summary statistics

Syntax
tabstat varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

by(varname) group statistics by variable
statistics(statname

[
. . .
]
) report specified statistics

Options

labelwidth(#) width for by() variable labels; default is labelwidth(16)

varwidth(#) variable width; default is varwidth(12)

columns(variables) display variables in table columns; the default
columns(statistics) display statistics in table columns
format

[
(% fmt)

]
display format for statistics; default format is %9.0g

casewise perform casewise deletion of observations
nototal do not report overall statistics; use with by()

missing report statistics for missing values of by() variable
noseparator do not use separator line between by() categories
longstub make left table stub wider
save save summary statistics in r()

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Tables > Table of summary statistics (tabstat)

Description
tabstat displays summary statistics for a series of numeric variables in one table, possibly broken

down on (conditioned by) another variable.

Without the by() option, tabstat is a useful alternative to summarize (see [R] summarize)
because it allows you to specify the list of statistics to be displayed.

With the by() option, tabstat resembles tabulate used with its summarize() option in that
both report statistics of varlist for the different values of varname. tabstat allows more flexibility
in terms of the statistics presented and the format of the table.

tabstat is sensitive to the linesize (see set linesize in [R] log); it widens the table if
possible and wraps if necessary.
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Options

� � �
Main �

by(varname) specifies that the statistics be displayed separately for each unique value of varname;
varname may be numeric or string. For instance, tabstat height would present the overall mean
of height. tabstat height, by(sex) would present the mean height of males, and of females,
and the overall mean height. Do not confuse the by() option with the by prefix (see [D] by); both
may be specified.

statistics(statname
[
. . .
]
) specifies the statistics to be displayed; the default is equivalent to

specifying statistics(mean). (stats() is a synonym for statistics().) Multiple statistics
may be specified and are separated by white space, such as statistics(mean sd). Available
statistics are

statname Definition statname Definition
mean mean p1 1st percentile
count count of nonmissing observations p5 5th percentile
n same as count p10 10th percentile
sum sum p25 25th percentile
max maximum median median (same as p50)
min minimum p50 50th percentile (same as median)
range range = max− min p75 75th percentile
sd standard deviation p90 90th percentile
variance variance p95 95th percentile
cv coefficient of variation (sd/mean) p99 99th percentile
semean standard error of mean (sd/

√
n) iqr interquartile range = p75− p25

skewness skewness q equivalent to specifying p25 p50 p75

kurtosis kurtosis

� � �
Options �

labelwidth(#) specifies the maximum width to be used within the stub to display the labels of the
by() variable. The default is labelwidth(16). 8 ≤ # ≤ 32.

varwidth(#) specifies the maximum width to be used within the stub to display the names of the vari-
ables. The default is varwidth(12). varwidth() is effective only with columns(statistics).
Setting varwidth() implies longstub. 8 ≤ # ≤ 16.

columns(variables | statistics) specifies whether to display variables or statistics in the columns
of the table. columns(variables) is the default when more than one variable is specified.

format and format(% fmt) specify how the statistics are to be formatted. The default is to use a
%9.0g format.

format specifies that each variable’s statistics be formatted with the variable’s display format; see
[D] format.
format(% fmt) specifies the format to be used for all statistics. The maximum width of the specified
format should not exceed nine characters.

casewise specifies casewise deletion of observations. Statistics are to be computed for the sample
that is not missing for any of the variables in varlist. The default is to use all the nonmissing
values for each variable.

nototal is for use with by(); it specifies that the overall statistics not be reported.



tabstat — Display table of summary statistics 2135

missing specifies that missing values of the by() variable be treated just like any other value and
that statistics should be displayed for them. The default is not to report the statistics for the by()==
missing group. If the by() variable is a string variable, by()=="" is considered to mean missing.

noseparator specifies that a separator line between the by() categories not be displayed.

longstub specifies that the left stub of the table be made wider so that it can include names of the
statistics or variables in addition to the categories of by(varname). The default is to describe the
statistics or variables in a header. longstub is ignored if by(varname) is not specified.

save specifies that the summary statistics be returned in r(). The overall (unconditional) statistics
are returned in matrix r(StatTotal) (rows are statistics, columns are variables). The conditional
statistics are returned in the matrices r(Stat1), r(Stat2), . . . , and the names of the corresponding
variables are returned in the macros r(name1), r(name2), . . . .

Remarks
This command is probably most easily understood by going through a series of examples.

Example 1

We have data on the price, weight, mileage rating, and repair record of 22 foreign and 52 domestic
1978 automobiles. We want to summarize these variables for the different origins of the automobiles.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. tabstat price weight mpg rep78, by(foreign)

Summary statistics: mean
by categories of: foreign (Car type)

foreign price weight mpg rep78

Domestic 6072.423 3317.115 19.82692 3.020833
Foreign 6384.682 2315.909 24.77273 4.285714

Total 6165.257 3019.459 21.2973 3.405797

More summary statistics can be requested via the statistics() option. The group totals can be
suppressed with the nototal option.

. tabstat price weight mpg rep78, by(foreign) stat(mean sd min max) nototal

Summary statistics: mean, sd, min, max
by categories of: foreign (Car type)

foreign price weight mpg rep78

Domestic 6072.423 3317.115 19.82692 3.020833
3097.104 695.3637 4.743297 .837666

3291 1800 12 1
15906 4840 34 5

Foreign 6384.682 2315.909 24.77273 4.285714
2621.915 433.0035 6.611187 .7171372

3748 1760 14 3
12990 3420 41 5
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Although the header of the table describes the statistics running vertically in the “cells”, the table
may become hard to read, especially with many variables or statistics. The longstub option specifies
that a column be added describing the contents of the cells. The format option can be issued to
specify that tabstat display the statistics by using the display format of the variables rather than
the overall default %9.0g.

. tabstat price weight mpg rep78, by(foreign) stat(mean sd min max) long format

foreign stats price weight mpg rep78

Domestic mean 6,072.4 3,317.1 19.8269 3.02083
sd 3,097.1 695.364 4.7433 .837666

min 3,291 1,800 12 1
max 15,906 4,840 34 5

Foreign mean 6,384.7 2,315.9 24.7727 4.28571
sd 2,621.9 433.003 6.61119 .717137

min 3,748 1,760 14 3
max 12,990 3,420 41 5

Total mean 6,165.3 3,019.5 21.2973 3.4058
sd 2,949.5 777.194 5.7855 .989932

min 3,291 1,760 12 1
max 15,906 4,840 41 5

We can specify a layout of the table in which the statistics run horizontally and the variables run
vertically by specifying the col(statistics) option.

. tabstat price weight mpg rep78, by(foreign) stat(min mean max) col(stat) long

foreign variable min mean max

Domestic price 3291 6072.423 15906
weight 1800 3317.115 4840

mpg 12 19.82692 34
rep78 1 3.020833 5

Foreign price 3748 6384.682 12990
weight 1760 2315.909 3420

mpg 14 24.77273 41
rep78 3 4.285714 5

Total price 3291 6165.257 15906
weight 1760 3019.459 4840

mpg 12 21.2973 41
rep78 1 3.405797 5

Finally, tabstat can also be used to enhance summarize so we can specify the statistics to
be displayed. For instance, we can display the number of observations, the mean, the coefficient of
variation, and the 25%, 50%, and 75% quantiles for a list of variables.

. tabstat price weight mpg rep78, stat(n mean cv q) col(stat)

variable N mean cv p25 p50 p75

price 74 6165.257 .478406 4195 5006.5 6342
weight 74 3019.459 .2573949 2240 3190 3600

mpg 74 21.2973 .2716543 18 20 25
rep78 69 3.405797 .290661 3 3 4
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Because we did not specify the by() option, these statistics were not displayed for the subgroups
of the data formed by the categories of the by() variable.

Methods and formulas
tabstat is implemented as an ado-file.

Acknowledgments
The tabstat command was written by Jeroen Weesie and Vincent Buskens of Utrecht University

in The Netherlands.

Also see
[R] summarize — Summary statistics

[R] table — Tables of summary statistics

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[D] collapse — Make dataset of summary statistics



Title

tabulate oneway — One-way tables of frequencies

Syntax

One-way tables

tabulate varname
[

if
] [

in
] [

weight
] [

, tabulate1 options
]

One-way table for each variable—a convenience tool

tab1 varlist
[

if
] [

in
] [

weight
] [

, tab1 options
]

tabulate1 options Description

Main

subpop(varname) exclude observations for which varname = 0
missing treat missing values like other values
nofreq do not display frequencies
nolabel display numeric codes rather than value labels
plot produce a bar chart of the relative frequencies
sort display the table in descending order of frequency

Advanced

generate(stubname) create indicator variables for stubname
matcell(matname) save frequencies in matname; programmer’s option
matrow(matname) save unique values of varname in matname; programmer’s option

tab1 options Description

Main

subpop(varname) exclude observations for which varname = 0
missing treat missing values like other values
nofreq do not display frequencies
nolabel display numeric codes rather than value labels
plot produce a bar chart of the relative frequencies
sort display the table in descending order of frequency

by is allowed with tabulate and tab1; see [D] by.
fweights, aweights, and iweights are allowed by tabulate. fweights are allowed by tab1. See

[U] 11.1.6 weight.
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Menu
tabulate oneway

Statistics > Summaries, tables, and tests > Tables > One-way tables

tabulate ..., generate()

Data > Create or change data > Other variable-creation commands > Create indicator variables

tab1

Statistics > Summaries, tables, and tests > Tables > Multiple one-way tables

Description
tabulate produces one-way tables of frequency counts.

For information about two-way tables of frequency counts along with various measures of association,
including the common Pearson χ2, the likelihood-ratio χ2, Cramér’s V , Fisher’s exact test, Goodman
and Kruskal’s gamma, and Kendall’s τb, see [R] tabulate twoway.

tab1 produces a one-way tabulation for each variable specified in varlist.

Also see [R] table and [R] tabstat if you want one-, two-, or n-way tables of frequencies and a
wide variety of summary statistics. See [R] tabulate, summarize() for a description of tabulate with
the summarize() option; it produces tables (breakdowns) of means and standard deviations. table
is better than tabulate, summarize(), but tabulate, summarize() is faster. See [ST] epitab
for 2× 2 tables with statistics of interest to epidemiologists.

Options

� � �
Main �

subpop(varname) excludes observations for which varname = 0 in tabulating frequencies. The
mathematical results of tabulate . . ., subpop(myvar) are the same as tabulate . . . if myvar
!=0, but the table may be presented differently. The identities of the rows and columns will be
determined from all the data, including the myvar = 0 group, so there may be entries in the table
with frequency 0.

Consider tabulating answer, a variable that takes on values 1, 2, and 3, but consider tabulating
it just for the male==1 subpopulation. Assume that answer is never 2 in this group. tabulate
answer if male==1 produces a table with two rows: one for answer 1 and one for answer 3.
There will be no row for answer 2 because answer 2 was never observed. tabulate answer,
subpop(male) produces a table with three rows. The row for answer 2 will be shown as having
0 frequency.

missing requests that missing values be treated like other values in calculations of counts, percentages,
and other statistics.

nofreq suppresses the printing of the frequencies.

nolabel causes the numeric codes to be displayed rather than the value labels.

plot produces a bar chart of the relative frequencies in a one-way table. (Also see [R] histogram.)

sort puts the table in descending order of frequency (and ascending order of the variable within
equal values of frequency).
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� � �
Advanced �

generate(stubname) creates a set of indicator variables (stubname1, stubname2, . . . ) reflecting the
observed values of the tabulated variable. The generate() option may not be used with the by
prefix.

matcell(matname) saves the reported frequencies in matname. This option is for use by programmers.

matrow(matname) saves the numeric values of the r × 1 row stub in matname. This option is for
use by programmers. matrow() may not be specified if the row variable is a string.

Limits

One-way tables may have a maximum of 12,000 rows (Stata/MP and Stata/SE), 3,000 rows
(Stata/IC), or 500 rows (Small Stata).

Remarks
Remarks are presented under the following headings:

tabulate
tab1

For each value of a specified variable, tabulate reports the number of observations with that
value. The number of times a value occurs is called its frequency.

tabulate

Example 1

We have data summarizing the speed limit and the accident rate per million vehicle miles along
various Minnesota highways in 1973. The variable containing the speed limit is called spdlimit. If
we summarize the variable, we obtain its mean and standard deviation:

. use http://www.stata-press.com/data/r12/hiway
(Minnesota Highway Data, 1973)

. summarize spdlimit

Variable Obs Mean Std. Dev. Min Max

spdlimit 39 55 5.848977 40 70

The average speed limit is 55 miles per hour. We can learn more about this variable by tabulating it:

. tabulate spdlimit

Speed limit Freq. Percent Cum.

40 1 2.56 2.56
45 3 7.69 10.26
50 7 17.95 28.21
55 15 38.46 66.67
60 11 28.21 94.87
65 1 2.56 97.44
70 1 2.56 100.00

Total 39 100.00
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We see that one highway has a speed limit of 40 miles per hour, three have speed limits of 45, 7
of 50, and so on. The column labeled Percent shows the percentage of highways in the dataset
that have the indicated speed limit. For instance, 38.46% of highways in our dataset have a speed
limit of 55 miles per hour. The final column shows the cumulative percentage. We see that 66.67%
of highways in our dataset have a speed limit of 55 miles per hour or less.

Example 2

The plot option places a sideways histogram alongside the table:

. tabulate spdlimit, plot

Speed limit Freq.

40 1 *
45 3 ***
50 7 *******
55 15 ***************
60 11 ***********
65 1 *
70 1 *

Total 39

Of course, graph can produce better-looking histograms; see [R] histogram.

Example 3

tabulate labels tables using variable and value labels if they exist. To demonstrate how this
works, let’s add a new variable to our dataset that categorizes spdlimit into three categories. We
will call this new variable spdcat:

. generate spdcat=recode(spdlimit,50,60,70)

The recode() function divides spdlimit into 50 miles per hour or below, 51–60, and above 60;
see [D] functions. We specified the breakpoints in the arguments (spdlimit,50,60,70). The first
argument is the variable to be recoded. The second argument is the first breakpoint, the third argument
is the second breakpoint, and so on. We can specify as many breakpoints as we wish.

recode() used our arguments not only as the breakpoints but also to label the results. If spdlimit
is less than or equal to 50, spdcat is set to 50; if spdlimit is between 51 and 60, spdcat is 60;
otherwise, spdcat is arbitrarily set to 70. (See [U] 25 Working with categorical data and factor
variables.)

Because we just created the variable spdcat, it is not yet labeled. When we make a table using
this variable, tabulate uses the variable’s name to label it:

. tabulate spdcat

spdcat Freq. Percent Cum.

50 11 28.21 28.21
60 26 66.67 94.87
70 2 5.13 100.00

Total 39 100.00
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Even through the table is not well labeled, recode()’s coding scheme provides us with clues as to
the table’s meaning. The first line of the table corresponds to 50 miles per hour and below, the next
to 51 through 60 miles per hour, and the last to above 60 miles per hour.

We can improve this table by labeling the values and variables:

. label define scat 50 "40 to 50" 60 "55 to 60" 70 "Above 60"

. label values spdcat scat

. label variable spdcat "Speed Limit Category"

We define a value label called scat that attaches labels to the numbers 50, 60, and 70 using the
label define command; see [U] 12.6.3 Value labels. We label the value 50 as ‘40 to 50’, because
we looked back at our original tabulation in the first example and saw that the speed limit was never
less than 40. Similarly, we could have labeled the last category ‘65 to 70’ because the speed limit
is never greater than 70 miles per hour.

Next we requested that Stata label the values of the new variable spdcat using the value label
scat. Finally, we labeled our variable Speed Limit Category. We are now ready to tabulate the
result:

. tabulate spdcat

Speed Limit
Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 2 5.13 100.00

Total 39 100.00

Example 4

If we have missing values in our dataset, tabulate ignores them unless we explicitly indicate
otherwise. We have no missing data in our example, so let’s add some:

. replace spdcat=. in 39
(1 real change made, 1 to missing)

We changed the first observation on spdcat to missing. Let’s now tabulate the result:

. tabulate spdcat

Speed Limit
Category Freq. Percent Cum.

40 to 50 11 28.95 28.95
55 to 60 26 68.42 97.37
Above 60 1 2.63 100.00

Total 38 100.00

Comparing this output with that in the previous example, we see that the total frequency count is now
one less than it was—38 rather than 39. Also, the ‘Above 60’ category now has only one observation
where it used to have two, so we evidently changed a road with a high speed limit.

We want tabulate to treat missing values just as it treats numbers, so we specify the missing
option:
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. tabulate spdcat, missing

Speed Limit
Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 1 2.56 97.44

. 1 2.56 100.00

Total 39 100.00

We now see our missing value—the last category, labeled ‘.’, shows a frequency count of 1. The
table sum is once again 39.

Let’s put our dataset back as it was originally:

. replace spdcat=70 in 39
(1 real change made)

Technical note
tabulate also can automatically create indicator variables from categorical variables. We will

briefly review that capability here, but see [U] 25 Working with categorical data and factor variables
for a complete description. Let’s begin by describing our highway dataset:

. describe

Contains data from http://www.stata-press.com/data/r12/hiway.dta
obs: 39 Minnesota Highway Data, 1973

vars: 2 16 Nov 2010 12:39
size: 351

storage display value
variable name type format label variable label

spdlimit byte %8.0g Speed limit
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed Limit Category

Sorted by:
Note: dataset has changed since last saved

Our dataset contains three variables. We will type tabulate spdcat, generate(spd), describe
our data, and then explain what happened.

. tabulate spdcat, generate(spd)

Speed Limit
Category Freq. Percent Cum.

40 to 50 11 28.21 28.21
55 to 60 26 66.67 94.87
Above 60 2 5.13 100.00

Total 39 100.00
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. describe

Contains data from http://www.stata-press.com/data/r12/hiway.dta
obs: 39 Minnesota Highway Data, 1973

vars: 6 16 Nov 2010 12:39
size: 468

storage display value
variable name type format label variable label

spdlimit byte %8.0g Speed limit
rate float %9.0g rcat Accident rate per million

vehicle miles
spdcat float %9.0g scat Speed Limit Category
spd1 byte %8.0g spdcat==40 to 50
spd2 byte %8.0g spdcat==55 to 60
spd3 byte %8.0g spdcat==Above 60

Sorted by:
Note: dataset has changed since last saved

When we typed tabulate with the generate() option, Stata responded by producing a one-way
frequency table, so it appeared that the option did nothing. Yet when we describe our dataset, we
find that we now have six variables instead of the original three. The new variables are named spd1,
spd2, and spd3.

When we specify the generate() option, we are telling Stata to not only produce the table but
also create a set of indicator variables that correspond to that table. Stata adds a numeric suffix to
the name we specify in the parentheses. spd1 refers to the first line of the table, spd2 to the second
line, and so on. Also Stata labels the variables so that we know what they mean. spd1 is an indicator
variable that is true (takes on the value 1) when spdcat is between 40 and 50; otherwise, it is zero.
(There is an exception: if spdcat is missing, so are the spd1, spd2, and spd3 variables. This did
not happen in our dataset.)

We want to prove our claim. Because we have not yet introduced two-way tabulations, we will
use the summarize statement:

. summarize spdlimit if spd1==1

Variable Obs Mean Std. Dev. Min Max

spdlimit 11 47.72727 3.437758 40 50

. summarize spdlimit if spd2==1

Variable Obs Mean Std. Dev. Min Max

spdlimit 26 57.11538 2.519157 55 60

. summarize spdlimit if spd3==1

Variable Obs Mean Std. Dev. Min Max

spdlimit 2 67.5 3.535534 65 70

Notice the indicated minimum and maximum in each of the tables above. When we restrict the
sample to spd1, spdlimit is between 40 and 50; when we restrict the sample to spd2, spdlimit
is between 55 and 60; when we restrict the sample to spd3, spdlimit is between 65 and 70.

Thus tabulate provides an easy way to create indicator (sometimes called dummy) variables.
For an overview of indicator and categorical variables, see [U] 25 Working with categorical data
and factor variables.
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tab1
tab1 is a convenience tool. Typing

. tab1 myvar thisvar thatvar, plot

is equivalent to typing

. tabulate myvar, plot

. tabulate thisvar, plot

. tabulate thatvar, plot

Saved results
tabulate and tab1 save the following in r():

Scalars
r(N) number of observations r(r) number of rows

Methods and formulas
tab1 is implemented as an ado-file.

References
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Title

tabulate twoway — Two-way tables of frequencies

Syntax
Two-way tables

tabulate varname1 varname2

[
if
] [

in
] [

weight
] [

, options
]

Two-way tables for all possible combinations—a convenience tool

tab2 varlist
[

if
] [

in
] [

weight
] [

, options
]

Immediate form of two-way tabulations

tabi #11 #12

[
. . .
]
\ #21 #22

[
. . .
] [

\ . . .
] [

, options
]

options Description

Main

chi2 report Pearson’s χ2

exact
[
(#)
]

report Fisher’s exact test
gamma report Goodman and Kruskal’s gamma
lrchi2 report likelihood-ratio χ2

taub report Kendall’s τb
V report Cramér’s V
cchi2 report Pearson’s χ2 in each cell
column report relative frequency within its column of each cell
row report relative frequency within its row of each cell
clrchi2 report likelihood-ratio χ2 in each cell
cell report the relative frequency of each cell
expected report expected frequency in each cell
nofreq do not display frequencies
missing treat missing values like other values
wrap do not wrap wide tables[
no
]
key report/suppress cell contents key

nolabel display numeric codes rather than value labels
nolog do not display enumeration log for Fisher’s exact test
∗firstonly show only tables that include the first variable in varlist

Advanced

matcell(matname) save frequencies in matname; programmer’s option
matrow(matname) save unique values of varname1 in matname; programmer’s option
matcol(matname) save unique values of varname2 in matname; programmer’s option
‡replace replace current data with given cell frequencies

all equivalent to specifying chi2 lrchi2 V gamma taub

2146
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∗firstonly is available only for tab2.
‡replace is available only for tabi.
by is allowed with tabulate and tab2; see [D] by.
fweights, aweights, and iweights are allowed by tabulate. fweights are allowed by tab2.

See [U] 11.1.6 weight.
all does not appear in the dialog box.

Menu
tabulate

Statistics > Summaries, tables, and tests > Tables > Two-way tables with measures of association

tab2

Statistics > Summaries, tables, and tests > Tables > All possible two-way tabulations

tabi

Statistics > Summaries, tables, and tests > Tables > Table calculator

Description

tabulate produces two-way tables of frequency counts, along with various measures of association,
including the common Pearson’s χ2, the likelihood-ratio χ2, Cramér’s V , Fisher’s exact test, Goodman
and Kruskal’s gamma, and Kendall’s τb.

Line size is respected. That is, if you resize the Results window before running tabulate,
the resulting two-way tabulation will take advantage of the available horizontal space. Stata for
Unix(console) users can instead use the set linesize command to take advantage of this feature.

tab2 produces all possible two-way tabulations of the variables specified in varlist.

tabi displays the r× c table, using the values specified; rows are separated by ‘\’. If no options
are specified, it is as if exact were specified for 2× 2 tables and chi2 were specified otherwise. See
[U] 19 Immediate commands for a general description of immediate commands. See Tables with
immediate data below for examples using tabi.

See [R] tabulate oneway if you want one-way tables of frequencies. See [R] table and [R] tabstat
if you want one-, two-, or n-way tables of frequencies and a wide variety of summary statistics.
See [R] tabulate, summarize() for a description of tabulate with the summarize() option; it
produces tables (breakdowns) of means and standard deviations. table is better than tabulate,
summarize(), but tabulate, summarize() is faster. See [ST] epitab for 2×2 tables with statistics
of interest to epidemiologists.

Options

� � �
Main �

chi2 calculates and displays Pearson’s χ2 for the hypothesis that the rows and columns in a two-way
table are independent. chi2 may not be specified if aweights or iweights are specified.
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exact
[
(#)
]

displays the significance calculated by Fisher’s exact test and may be applied to r× c as
well as to 2× 2 tables. For 2× 2 tables, both one- and two-sided probabilities are displayed. For
r×c tables, one-sided probabilities are displayed. The optional positive integer # is a multiplier on
the amount of memory that the command is permitted to consume. The default is 1. This option
should not be necessary for reasonable r × c tables. If the command terminates with error 910,
try exact(2). The maximum row or column dimension allowed when computing Fisher’s exact
test is the maximum row or column dimension for tabulate (see help limits).

gamma displays Goodman and Kruskal’s gamma along with its asymptotic standard error. gamma is
appropriate only when both variables are ordinal. gamma may not be specified if aweights or
iweights are specified.

lrchi2 displays the likelihood-ratio χ2 statistic. lrchi2 may not be specified if aweights or
iweights are specified.

taub displays Kendall’s τb along with its asymptotic standard error. taub is appropriate only when
both variables are ordinal. taub may not be specified if aweights or iweights are specified.

V (note capitalization) displays Cramér’s V . V may not be specified if aweights or iweights are
specified.

cchi2 displays each cell’s contribution to Pearson’s chi-squared in a two-way table.

column displays the relative frequency of each cell within its column in a two-way table.

row displays the relative frequency of each cell within its row in a two-way table.

clrchi2 displays each cell’s contribution to the likelihood-ratio chi-squared in a two-way table.

cell displays the relative frequency of each cell in a two-way table.

expected displays the expected frequency of each cell in a two-way table.

nofreq suppresses the printing of the frequencies.

missing requests that missing values be treated like other values in calculations of counts, percentages,
and other statistics.

wrap requests that Stata take no action on wide, two-way tables to make them readable. Unless wrap
is specified, wide tables are broken into pieces to enhance readability.[

no
]
key suppresses or forces the display of a key above two-way tables. The default is to display the

key if more than one cell statistic is requested, and otherwise to omit it. key forces the display
of the key. nokey suppresses its display.

nolabel causes the numeric codes to be displayed rather than the value labels.

nolog suppresses the display of the log for Fisher’s exact test. Using Fisher’s exact test requires
counting all tables that have a probability exceeding that of the observed table given the observed
row and column totals. The log counts down each stage of the network computations, starting from
the number of columns and counting down to 1, displaying the number of nodes in the network
at each stage. A log is not displayed for 2× 2 tables.

firstonly, available only with tab2, restricts the output to only those tables that include the first
variable in varlist. Use this option to interact one variable with a set of others.

� � �
Advanced �

matcell(matname) saves the reported frequencies in matname. This option is for use by programmers.

matrow(matname) saves the numeric values of the r × 1 row stub in matname. This option is for
use by programmers. matrow() may not be specified if the row variable is a string.
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matcol(matname) saves the numeric values of the 1 × c column stub in matname. This option is
for use by programmers. matcol() may not be specified if the column variable is a string.

replace indicates that the immediate data specified as arguments to the tabi command be left as
the current data in place of whatever data were there.

The following option is available with tabulate but is not shown in the dialog box:

all is equivalent to specifying chi2 lrchi2 V gamma taub. Note the omission of exact. When
all is specified, no may be placed in front of the other options. all noV requests all association
measures except Cramér’s V (and Fisher’s exact). all exact requests all association measures,
including Fisher’s exact test. all may not be specified if aweights or iweights are specified.

Limits
Two-way tables may have a maximum of 1,200 rows and 80 columns (Stata/MP and Stata/SE),

300 rows and 20 columns (Stata/IC), or 160 rows and 20 columns (Small Stata). If larger tables are
needed, see [R] table.

Remarks
Remarks are presented under the following headings:

tabulate
Measures of association
N-way tables
Weighted data
Tables with immediate data
tab2

For each value of a specified variable (or a set of values for a pair of variables), tabulate
reports the number of observations with that value. The number of times a value occurs is called its
frequency.

tabulate

Example 1

tabulate will make two-way tables if we specify two variables following the word tabulate.
In our highway dataset, we have a variable called rate that divides the accident rate into three
categories: below 4, 4–7, and above 7 per million vehicle miles. Let’s make a table of the speed
limit category and the accident-rate category:

. use http://www.stata-press.com/data/r12/hiway2
(Minnesota Highway Data, 1973)

. tabulate spdcat rate

Speed Accident rate per million
Limit vehicle miles

Category Below 4 4-7 Above 7 Total

40 to 50 3 5 3 11
55 to 60 19 6 1 26
Above 60 2 0 0 2

Total 24 11 4 39
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The table indicates that three stretches of highway have an accident rate below 4 and a speed limit of
40 to 50 miles per hour. The table also shows the row and column sums (called the marginals). The
number of highways with a speed limit of 40 to 50 miles per hour is 11, which is the same result
we obtained in our previous one-way tabulations.

Stata can present this basic table in several ways—16, to be precise—and we will show just a
few below. It might be easier to read the table if we included the row percentages. For instance, of
11 highways in the lowest speed limit category, three are also in the lowest accident-rate category.
Three-elevenths amounts to some 27.3%. We can ask Stata to fill in this information for us by using
the row option:

. tabulate spdcat rate, row

Key

frequency
row percentage

Speed Accident rate per million
Limit vehicle miles

Category Below 4 4-7 Above 7 Total

40 to 50 3 5 3 11
27.27 45.45 27.27 100.00

55 to 60 19 6 1 26
73.08 23.08 3.85 100.00

Above 60 2 0 0 2
100.00 0.00 0.00 100.00

Total 24 11 4 39
61.54 28.21 10.26 100.00

The number listed below each frequency is the percentage of cases that each cell represents out of
its row. That is easy to remember because we see 100% listed in the “Total” column. The bottom
row is also informative. We see that 61.54% of all the highways in our dataset fall into the lowest
accident-rate category, that 28.21% are in the middle category, and that 10.26% are in the highest.

tabulate can calculate column percentages and cell percentages, as well. It does so when we
specify the column or cell options, respectively. We can even specify them together. Below is a
table that includes everything:
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. tabulate spdcat rate, row column cell

Key

frequency
row percentage
column percentage
cell percentage

Speed Accident rate per million
Limit vehicle miles

Category Below 4 4-7 Above 7 Total

40 to 50 3 5 3 11
27.27 45.45 27.27 100.00
12.50 45.45 75.00 28.21
7.69 12.82 7.69 28.21

55 to 60 19 6 1 26
73.08 23.08 3.85 100.00
79.17 54.55 25.00 66.67
48.72 15.38 2.56 66.67

Above 60 2 0 0 2
100.00 0.00 0.00 100.00

8.33 0.00 0.00 5.13
5.13 0.00 0.00 5.13

Total 24 11 4 39
61.54 28.21 10.26 100.00

100.00 100.00 100.00 100.00
61.54 28.21 10.26 100.00

The number at the top of each cell is the frequency count. The second number is the
row percentage—they sum to 100% going across the table. The third number is the column
percentage—they sum to 100% going down the table. The bottom number is the cell percentage—they
sum to 100% going down all the columns and across all the rows. For instance, highways with a
speed limit above 60 miles per hour and in the lowest accident rate category account for 100% of
highways with a speed limit above 60 miles per hour; 8.33% of highways in the lowest accident-rate
category; and 5.13% of all our data.

A fourth option, nofreq, tells Stata not to print the frequency counts. To construct a table consisting
of only row percentages, we type

. tabulate spdcat rate, row nofreq

Speed Accident rate per million
Limit vehicle miles

Category Below 4 4-7 Above 7 Total

40 to 50 27.27 45.45 27.27 100.00
55 to 60 73.08 23.08 3.85 100.00
Above 60 100.00 0.00 0.00 100.00

Total 61.54 28.21 10.26 100.00
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Measures of association

Example 2

tabulate will calculate the Pearson χ2 test for the independence of the rows and columns if we
specify the chi2 option. Suppose that we have 1980 census data on 956 cities in the United States
and wish to compare the age distribution across regions of the country. Assume that agecat is the
median age in each city and that region denotes the region of the country in which the city is
located.

. use http://www.stata-press.com/data/r12/citytemp2
(City Temperature Data)

. tabulate region agecat, chi2

Census agecat
Region 19-29 30-34 35+ Total

NE 46 83 37 166
N Cntrl 162 92 30 284

South 139 68 43 250
West 160 73 23 256

Total 507 316 133 956

Pearson chi2(6) = 61.2877 Pr = 0.000

We obtain the standard two-way table and, at the bottom, a summary of the χ2 test. Stata informs us
that the χ2 associated with this table has 6 degrees of freedom and is 61.29. The observed differences
are significant.

The table is, perhaps, easier to understand if we suppress the frequencies and print just the row
percentages:

. tabulate region agecat, row nofreq chi2

Census agecat
Region 19-29 30-34 35+ Total

NE 27.71 50.00 22.29 100.00
N Cntrl 57.04 32.39 10.56 100.00

South 55.60 27.20 17.20 100.00
West 62.50 28.52 8.98 100.00

Total 53.03 33.05 13.91 100.00

Pearson chi2(6) = 61.2877 Pr = 0.000

Example 3

We have data on dose level and outcome for a set of patients and wish to evaluate the association
between the two variables. We can obtain all the association measures by specifying the all and
exact options:
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. use http://www.stata-press.com/data/r12/dose

. tabulate dose function, all exact

Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 9
stage 1: enumerations = 0

Function
Dosage < 1 hr 1 to 4 4+ Total

1/day 20 10 2 32
2/day 16 12 4 32
3/day 10 16 6 32

Total 46 38 12 96

Pearson chi2(4) = 6.7780 Pr = 0.148
likelihood-ratio chi2(4) = 6.9844 Pr = 0.137

Cramer’s V = 0.1879
gamma = 0.3689 ASE = 0.129

Kendall’s tau-b = 0.2378 ASE = 0.086
Fisher’s exact = 0.145

We find evidence of association but not enough to be truly convincing.

If we had not also specified the exact option, we would not have obtained Fisher’s exact test.
Stata can calculate this statistic both for 2× 2 tables and for r× c. For 2× 2 tables, the calculation
is almost instant. On more general tables, however, the calculation can take longer.

We carefully constructed our example so that all would be meaningful. Kendall’s τb and Goodman
and Kruskal’s gamma are relevant only when both dimensions of the table can be ordered, say, from
low to high or from worst to best. The other statistics, however, are always applicable.

Technical note
Be careful when attempting to compute the p-value for Fisher’s exact test because the number of

tables that contribute to the p-value can be extremely large and a solution may not be feasible. The
errors that are indicative of this situation are errors 910, exceeded memory limitations, and 1401,
integer overflow due to large row-margin frequencies. If execution terminates because of memory
limitations, use exact(2) to permit the algorithm to consume twice the memory, exact(3) for three
times the memory, etc. The default memory usage should be sufficient for reasonable tables.

N-way tables

If you need more than two-way tables, your best alternative to is use table, not tabulate; see
[R] table.

The technical note below shows you how to use tabulate to create a sequence of two-way tables
that together form, in effect, a three-way table, but using table is easy and produces prettier results:
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. use http://www.stata-press.com/data/r12/birthcat
(City data)

. table birthcat region agecat, c(freq)

agecat and Census Region
19-29 30-34

birthcat NE N Cntrl South West NE N Cntrl South West

29-136 11 23 11 11 34 27 10 8
137-195 31 97 65 46 48 58 45 42
196-529 4 38 59 91 1 3 12 21

agecat and Census Region
35+

birthcat NE N Cntrl South West

29-136 34 26 27 18
137-195 3 4 7 4
196-529 4

Technical note

We can make n-way tables by combining the by varlist: prefix with tabulate. Continuing with
the dataset of 956 cities, say that we want to make a table of age category by birth-rate category by
region of the country. The birth-rate category variable is named birthcat in our dataset. To make
separate tables for each age category, we would type

. by agecat, sort: tabulate birthcat region

-> agecat = 19-29

Census Region
birthcat NE N Cntrl South West Total

29-136 11 23 11 11 56
137-195 31 97 65 46 239
196-529 4 38 59 91 192

Total 46 158 135 148 487

-> agecat = 30-34

Census Region
birthcat NE N Cntrl South West Total

29-136 34 27 10 8 79
137-195 48 58 45 42 193
196-529 1 3 12 21 37

Total 83 88 67 71 309
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-> agecat = 35+

Census Region
birthcat NE N Cntrl South West Total

29-136 34 26 27 18 105
137-195 3 4 7 4 18
196-529 0 0 4 0 4

Total 37 30 38 22 127

Weighted data

Example 4

tabulate can process weighted as well as unweighted data. As with all Stata commands, we
indicate the weight by specifying the [weight] modifier; see [U] 11.1.6 weight.

Continuing with our dataset of 956 cities, we also have a variable called pop, the population of
each city. We can make a table of region by age category, weighted by population, by typing

. tabulate region agecat [freq=pop]

Census agecat
Region 19-29 30-34 35+ Total

NE 4,721,387 10,421,387 5,323,610 20,466,384
N Cntrl 16,901,550 8,964,756 4,015,593 29,881,899

South 13,894,254 7,686,531 4,141,863 25,722,648
West 16,698,276 7,755,255 2,375,118 26,828,649

Total 52,215,467 34,827,929 15,856,184 102899580

If we specify the cell, column, or row options, they will also be appropriately weighted. Below we
repeat the table, suppressing the counts and substituting row percentages:

. tabulate region agecat [freq=pop], nofreq row

Census agecat
Region 19-29 30-34 35+ Total

NE 23.07 50.92 26.01 100.00
N Cntrl 56.56 30.00 13.44 100.00

South 54.02 29.88 16.10 100.00
West 62.24 28.91 8.85 100.00

Total 50.74 33.85 15.41 100.00
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Tables with immediate data

Example 5

tabi ignores the dataset in memory and uses as the table the values that we specify on the
command line:

. tabi 30 18 \ 38 14

col
row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100

Fisher’s exact = 0.289
1-sided Fisher’s exact = 0.179

We may specify any of the options of tabulate and are not limited to 2× 2 tables:

. tabi 30 18 38 \ 13 7 22, chi2 exact

Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 3
stage 1: enumerations = 0

col
row 1 2 3 Total

1 30 18 38 86
2 13 7 22 42

Total 43 25 60 128

Pearson chi2(2) = 0.7967 Pr = 0.671
Fisher’s exact = 0.707

. tabi 30 13 \ 18 7 \ 38 22, all exact col

Key

frequency
column percentage

Enumerating sample-space combinations:
stage 3: enumerations = 1
stage 2: enumerations = 3
stage 1: enumerations = 0

col
row 1 2 Total

1 30 13 43
34.88 30.95 33.59

2 18 7 25
20.93 16.67 19.53

3 38 22 60
44.19 52.38 46.88

Total 86 42 128
100.00 100.00 100.00
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Pearson chi2(2) = 0.7967 Pr = 0.671
likelihood-ratio chi2(2) = 0.7985 Pr = 0.671

Cramer’s V = 0.0789
gamma = 0.1204 ASE = 0.160

Kendall’s tau-b = 0.0630 ASE = 0.084
Fisher’s exact = 0.707

For 2 × 2 tables, both one- and two-sided Fisher’s exact probabilities are displayed; this is true of
both tabulate and tabi. See Cumulative incidence data and Case–control data in [ST] epitab for
more discussion on the relationship between one- and two-sided probabilities.

Technical note
tabi, as with all immediate commands, leaves any data in memory undisturbed. With the replace

option, however, the data in memory are replaced by the data from the table:

. tabi 30 18 \ 38 14, replace

col
row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100

Fisher’s exact = 0.289
1-sided Fisher’s exact = 0.179

. list

row col pop

1. 1 1 30
2. 1 2 18
3. 2 1 38
4. 2 2 14

With this dataset, you could re-create the above table by typing

. tabulate row col [freq=pop], exact

col
row 1 2 Total

1 30 18 48
2 38 14 52

Total 68 32 100

Fisher’s exact = 0.289
1-sided Fisher’s exact = 0.179
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tab2
tab2 is a convenience tool. Typing

. tab2 myvar thisvar thatvar, chi2

is equivalent to typing

. tabulate myvar thisvar, chi2

. tabulate myvar thatvar, chi2

. tabulate thisvar thatvar, chi2

Saved results
tabulate, tab2, and tabi save the following in r():
Scalars

r(N) number of observations r(p exact) Fisher’s exact p
r(r) number of rows r(chi2 lr) likelihood-ratio χ2

r(c) number of columns r(p lr) significance of likelihood-ratio χ2

r(chi2) Pearson’s χ2 r(CramersV) Cramér’s V
r(p) significance of Pearson’s χ2 r(ase gam) ASE of gamma
r(gamma) gamma r(ase taub) ASE of τb
r(p1 exact) one-sided Fisher’s exact p r(taub) τb

r(p1 exact) is defined only for 2×2 tables. Also, the matrow(), matcol(), and matcell() options allow you to
obtain the row values, column values, and frequencies, respectively.

Methods and formulas
tab2 and tabi are implemented as ado-files.

Let nij , i = 1, . . . , I and j = 1, . . . , J , be the number of observations in the ith row and jth
column. If the data are not weighted, nij is just a count. If the data are weighted, nij is the sum of
the weights of all data corresponding to the (i, j) cell.

Define the row and column marginals as

ni· =
J∑
j=1

nij n·j =
I∑
i=1

nij

and let n =
∑
i

∑
j nij be the overall sum. Also, define the concordance and discordance as

Aij =
∑
k>i

∑
l>j

nkl +
∑
k<i

∑
l<j

nkl Dij =
∑
k>i

∑
l<j

nkl +
∑
k<i

∑
l>j

nkl

along with twice the number of concordancesP =
∑
i

∑
j nijAij and twice the number of discordances

Q =
∑
i

∑
j nijDij .

The Pearson χ2 statistic with (I − 1)(J − 1) degrees of freedom (so called because it is based
on Pearson (1900); see Conover [1999, 240] and Fienberg [1980, 9]) is defined as

X2 =
∑
i

∑
j

(nij −mij)2

mij

where mij = ni·n·j/n.
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The likelihood-ratio χ2 statistic with (I − 1)(J − 1) degrees of freedom (Fienberg 1980, 40) is
defined as

G2 = 2
∑
i

∑
j

nij ln(nij/mij)

Cramér’s V (Cramér 1946) is a measure of association designed so that the attainable upper bound
is 1. For 2× 2 tables, −1 ≤ V ≤ 1, and otherwise, 0 ≤ V ≤ 1.

V =

{
(n11n22 − n12n21)/(n1·n2·n·1n·2)1/2 for 2× 2{

(X2/n)/min(I − 1, J − 1)
}1/2

otherwise

Gamma (Goodman and Kruskal 1954, 1959, 1963, 1972; also see Agresti [2010,186–188])
ignores tied pairs and is based only on the number of concordant and discordant pairs of observations,
−1 ≤ γ ≤ 1,

γ = (P −Q)/(P +Q)

with asymptotic variance

16
∑
i

∑
j

nij(QAij − PDij)2/(P +Q)4

Kendall’s τb (Kendall 1945; also see Agresti 2010, 188–189), −1 ≤ τb ≤ 1, is similar to gamma,
except that it uses a correction for ties,

τb = (P −Q)/(wrwc)1/2

with asymptotic variance∑
i

∑
j nij(2wrwcdij + τbvij)2 − n3τ2

b (wr + wc)2

(wrwc)4

where
wr =n2 −

∑
i

n2
i·

wc =n2 −
∑
j

n2
·j

dij =Aij −Dij

vij =ni·wc + n·jwr

Fisher’s exact test (Fisher 1935; Finney 1948; see Zelterman and Louis [1992, 293–301] for
the 2 × 2 case) yields the probability of observing a table that gives at least as much evidence of
association as the one actually observed under the assumption of no association. Holding row and
column marginals fixed, the hypergeometric probability P of every possible table A is computed,
and the

P =
∑
T∈A

Pr(T )
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where A is the set of all tables with the same marginals as the observed table, T ∗, such that
Pr(T ) ≤ Pr(T ∗). For 2× 2 tables, the one-sided probability is calculated by further restricting A to
tables in the same tail as T ∗. The first algorithm extending this calculation to r× c tables was Pagano
and Halvorsen (1981); the one implemented here is the FEXACT algorithm by Mehta and Patel (1986).
This is a search-tree clipping method originally published by Mehta and Patel (1983) with further
refinements by Joe (1988) and Clarkson, Fan, and Joe (1993). Fisher’s exact test is a permutation
test. For more information on permutation tests, see Good (2005 and 2006) and Pesarin (2001).
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Title

tabulate, summarize() — One- and two-way tables of summary statistics

Syntax
tabulate varname1

[
varname2

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Main

summarize(varname3) report summary statistics for varname3[
no
]
means include or suppress means[

no
]
standard include or suppress standard deviations[

no
]
freq include or suppress frequencies[

no
]
obs include or suppress number of observations

nolabel show numeric codes, not labels
wrap do not break wide tables
missing treat missing values of varname1 and varname2 as categories

by is allowed; see [D] by.
aweights and fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Tables > One/two-way table of summary statistics

Description
tabulate, summarize() produces one- and two-way tables (breakdowns) of means and standard

deviations. See [R] tabulate oneway and [R] tabulate twoway for one- and two-way frequency tables.
See [R] table for a more flexible command that produces one-, two-, and n-way tables of frequencies
and a wide variety of summary statistics. table is better, but tabulate, summarize() is faster.
Also see [R] tabstat for yet another alternative.

Options

� � �
Main �

summarize(varname3) identifies the name of the variable for which summary statistics are to be
reported. If you do not specify this option, a table of frequencies is produced; see [R] tabulate
oneway and [R] tabulate twoway. The description here concerns tabulate when this option is
specified.
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[no]means includes or suppresses only the means from the table.

The summarize() table normally includes the mean, standard deviation, frequency, and, if the
data are weighted, number of observations. Individual elements of the table may be included or
suppressed by the [no]means, [no]standard, [no]freq, and [no]obs options. For example, typing

. tabulate category, summarize(myvar) means standard

produces a summary table by category containing only the means and standard deviations of
myvar. You could also achieve the same result by typing

. tabulate category, summarize(myvar) nofreq

[no]standard includes or suppresses only the standard deviations from the table; see [no]means
option above.

[no]freq includes or suppresses only the frequencies from the table; see [no]means option above.

[no]obs includes or suppresses only the reported number of observations from the table. If the data
are not weighted, the number of observations is identical to the frequency, and by default only the
frequency is reported. If the data are weighted, the frequency refers to the sum of the weights.
See [no]means option above.

nolabel causes the numeric codes to be displayed rather than the label values.

wrap requests that no action be taken on wide tables to make them readable. Unless wrap is specified,
wide tables are broken into pieces to enhance readability.

missing requests that missing values of varname1 and varname2 be treated as categories rather than
as observations to be omitted from the analysis.

Remarks
tabulate with the summarize() option produces one- and two-way tables of summary statistics.

When combined with the by prefix, it can produce n-way tables as well.

Remarks are presented under the following headings:

One-way tables
Two-way tables

One-way tables

Example 1

We have data on 74 automobiles. Included in our dataset are the variables foreign, which marks
domestic and foreign cars, and mpg, the car’s mileage rating. Typing tabulate foreign displays a
breakdown of the number of observations we have by the values of the foreign variable.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. tabulate foreign

Car type Freq. Percent Cum.

Domestic 52 70.27 70.27
Foreign 22 29.73 100.00

Total 74 100.00
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We discover that we have 52 domestic cars and 22 foreign cars in our dataset. If we add the
summarize(varname) option, however, tabulate produces a table of summary statistics for varname:

. tabulate foreign, summarize(mpg)

Summary of Mileage (mpg)
Car type Mean Std. Dev. Freq.

Domestic 19.826923 4.7432972 52
Foreign 24.772727 6.6111869 22

Total 21.297297 5.7855032 74

We also discover that the average gas mileage for domestic cars is about 20 mpg and the average
foreign is almost 25 mpg. Overall, the average is 21 mpg in our dataset.

Technical note
We might now wonder if the difference in gas mileage between foreign and domestic cars is

statistically significant. We can use the oneway command to find out; see [R] oneway. To obtain an
analysis-of-variance table of mpg on foreign, we type

. oneway mpg foreign

Analysis of Variance
Source SS df MS F Prob > F

Between groups 378.153515 1 378.153515 13.18 0.0005
Within groups 2065.30594 72 28.6848048

Total 2443.45946 73 33.4720474

Bartlett’s test for equal variances: chi2(1) = 3.4818 Prob>chi2 = 0.062

The F statistic is 13.18, and the difference between foreign and domestic cars’ mileage ratings is
significant at the 0.05% level.

There are several ways that we could have statistically compared mileage ratings—see, for instance,
[R] anova, [R] oneway, [R] regress, and [R] ttest—but oneway seemed the most convenient.

Two-way tables

Example 2

tabulate, summarize can be used to obtain two-way as well as one-way breakdowns. For
instance, we obtained summary statistics on mpg decomposed by foreign by typing tabulate
foreign, summarize(mpg). We can specify up to two variables before the comma:
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. generate wgtcat = autocode(weight,4,1760,4840)

. tabulate wgtcat foreign, summarize(mpg)

Means, Standard Deviations and Frequencies of Mileage (mpg)

Car type
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3.0937725 5.9829619 5.2295149

7 16 23

3300 21.75 19.6 21.238095
2.4083189 3.4351128 2.7550819

16 5 21

4070 17.26087 14 17.125
1.8639497 0 1.9406969

23 1 24

4840 14.666667 . 14.666667
3.32666 . 3.32666

6 0 6

Total 19.826923 24.772727 21.297297
4.7432972 6.6111869 5.7855032

52 22 74

In addition to the means, standard deviations, and frequencies for each weight–mileage cell, also
reported are the summary statistics by weight, by mileage, and overall. For instance, the last row
of the table reveals that the average mileage of domestic cars is 19.83 and that of foreign cars is
24.77—domestic cars yield poorer mileage than foreign cars. But we now see that domestic cars
yield better gas mileage within weight class—the reason domestic cars yield poorer gas mileage is
because they are, on average, heavier.

Example 3

If we do not specify the statistics to be included in a table, tabulate reports the mean, standard
deviation, and frequency. We can specify the statistics that we want to see using the means, standard,
and freq options:

. tabulate wgtcat foreign, summarize(mpg) means

Means of Mileage (mpg)

Car type
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3300 21.75 19.6 21.238095
4070 17.26087 14 17.125
4840 14.666667 . 14.666667

Total 19.826923 24.772727 21.297297

When we specify one or more of the means, standard, and freq options, only those statistics
are displayed. Thus we could obtain a table containing just the means and standard deviations by
typing means standard after the summarize(mpg) option. We can also suppress selected statistics
by placing no in front of the option name. Another way of obtaining only the means and standard
deviations is to add the nofreq option:
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. tabulate wgtcat foreign, summarize(mpg) nofreq

Means and Standard Deviations of Mileage (mpg)

Car type
wgtcat Domestic Foreign Total

2530 28.285714 27.0625 27.434783
3.0937725 5.9829619 5.2295149

3300 21.75 19.6 21.238095
2.4083189 3.4351128 2.7550819

4070 17.26087 14 17.125
1.8639497 0 1.9406969

4840 14.666667 . 14.666667
3.32666 . 3.32666

Total 19.826923 24.772727 21.297297
4.7432972 6.6111869 5.7855032

Also see
[R] table — Tables of summary statistics

[R] tabstat — Display table of summary statistics

[R] tabulate oneway — One-way tables of frequencies

[R] tabulate twoway — Two-way tables of frequencies

[D] collapse — Make dataset of summary statistics

[SVY] svy: tabulate oneway — One-way tables for survey data

[SVY] svy: tabulate twoway — Two-way tables for survey data

[U] 12.6 Dataset, variable, and value labels
[U] 25 Working with categorical data and factor variables



Title

test — Test linear hypotheses after estimation

Syntax
Basic syntax

test coeflist (Syntax 1 )

test exp=exp
[
=. . .

]
(Syntax 2 )

test [eqno]
[
: coeflist

]
(Syntax 3 )

test [eqno=eqno
[
=. . .

]
]
[
: coeflist

]
(Syntax 4 )

testparm varlist
[
, equal equation(eqno)

]
Full syntax

test (spec)
[
(spec) . . .

] [
, test options

]
test options Description

Options

mtest
[
(opt)

]
test each condition separately

coef report estimated constrained coefficients
accumulate test hypothesis jointly with previously tested hypotheses
notest suppress the output
common test only variables common to all the equations
constant include the constant in coefficients to be tested
nosvyadjust compute unadjusted Wald tests for survey results
minimum perform test with the constant, drop terms until the test

becomes nonsingular, and test without the constant on the
remaining terms; highly technical

matvlc(matname) save the variance–covariance matrix; programmer’s option

coeflist and varlist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and
[U] 11.4.4 Time-series varlists.

matvlc(matname) does not appear in the dialog box.

Syntax 1 tests that coefficients are 0.

Syntax 2 tests that linear expressions are equal.

Syntax 3 tests that coefficients in eqno are 0.

Syntax 4 tests equality of coefficients between equations.
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spec is one of
coeflist
exp=exp

[
=exp

]
[eqno]

[
: coeflist

]
[eqno1=eqno2

[
=. . .

]
]
[
: coeflist

]
coeflist is

coef
[
coef . . .

]
[eqno]coef

[
[eqno]coef . . .

]
[eqno] b[coef]

[
[eqno] b[coef]. . .

]
exp is a linear expression containing

coef
b[coef]
b[eqno:coef]

[eqno]coef
[eqno] b[coef]

eqno is
# #
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an
interaction indicator, or an interaction involving continuous variables. Level indicators identify one
level of a factor variable and interaction indicators identify one combination of levels of an interaction;
see [U] 11.4.3 Factor variables. coef may contain time-series operators; see [U] 11.4.4 Time-series
varlists.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Although not shown in the syntax diagram, parentheses around spec are required only with multiple
specifications. Also, the diagram does not show that test may be called without arguments to
redisplay the results from the last test.

anova and manova (see [R] anova and [MV] manova) allow the test syntax above plus more
(see [R] anova postestimation for test after anova; see [MV] manova postestimation for test
after manova).

Menu
test

Statistics > Postestimation > Tests > Test linear hypotheses

testparm

Statistics > Postestimation > Tests > Test parameters
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Description
test performs Wald tests of simple and composite linear hypotheses about the parameters of the

most recently fit model.

test supports svy estimators (see [SVY] svy estimation), carrying out an adjusted Wald test by
default in such cases. test can be used with svy estimation results, see [SVY] svy postestimation.

testparm provides a useful alternative to test that permits varlist rather than a list of coefficients
(which is often nothing more than a list of variables), allowing the use of standard Stata notation,
including ‘-’ and ‘*’, which are given the expression interpretation by test.

test and testparm perform Wald tests. For likelihood-ratio tests, see [R] lrtest. For Wald-type
tests of nonlinear hypotheses, see [R] testnl. To display estimates for one-dimensional linear or
nonlinear expressions of coefficients, see [R] lincom and [R] nlcom.

See [R] anova postestimation for additional test syntax allowed after anova.

See [MV] manova postestimation for additional test syntax allowed after manova.

Options for testparm
equal tests that the variables appearing in varlist, which also appear in the previously fit model, are

equal to each other rather than jointly equal to zero.

equation(eqno) is relevant only for multiple-equation models, such as mvreg, mlogit, and heckman.
It specifies the equation for which the all-zero or all-equal hypothesis is tested. equation(#1)
specifies that the test be conducted regarding the first equation #1. equation(price) specifies
that the test concern the equation named price.

Options for test

� � �
Options �

mtest
[
(opt)

]
specifies that tests be performed for each condition separately. opt specifies the method

for adjusting p-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method
holm Holm’s method
sidak Šidák’s method

noadjust no adjustment is to be made

Specifying mtest without an argument is equivalent to mtest(noadjust).

coef specifies that the constrained coefficients be displayed.

accumulate allows a hypothesis to be tested jointly with the previously tested hypotheses.

notest suppresses the output. This option is useful when you are interested only in the joint test of
several hypotheses, specified in a subsequent call of test, accumulate.

common specifies that when you use the [eqno1=eqno2

[
=. . .

]
] form of spec, the variables common

to the equations eqno1, eqno2, etc., be tested. The default action is to complain if the equations
have variables not in common.

constant specifies that cons be included in the list of coefficients to be tested when using the
[eqno1=eqno2

[
=. . .

]
] or [eqno] forms of spec. The default is not to include cons.
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nosvyadjust is for use with svy estimation commands; see [SVY] svy estimation. It specifies that
the Wald test be carried out without the default adjustment for the design degrees of freedom. That
is, the test is carried out as W/k ∼ F (k, d) rather than as (d−k+1)W/(kd) ∼ F (k, d−k+1),
where k = the dimension of the test and d = the total number of sampled PSUs minus the total
number of strata.

minimum is a highly technical option. It first performs the test with the constant added. If this test
is singular, coefficients are dropped until the test becomes nonsingular. Then the test without the
constant is performed with the remaining terms.

The following option is available with test but is not shown in the dialog box:

matvlc(matname), a programmer’s option, saves the variance–covariance matrix of the linear
combinations involved in the suite of tests. For the test of the linear constraints Lb = c, matname
contains LVL′, where V is the estimated variance–covariance matrix of b.

Remarks
Remarks are presented under the following headings:

Introductory examples
Special syntaxes after multiple-equation estimation
Constrained coefficients
Multiple testing

Introductory examples

test performs F or χ2 tests of linear restrictions applied to the most recently fit model (for
example, regress or svy: regress in the linear regression case; logit, stcox, svy: logit, . . .
in the single-equation maximum-likelihood case; and mlogit, mvreg, streg, . . . in the multiple-
equation maximum-likelihood case). test may be used after any estimation command, although for
maximum likelihood techniques, test produces a Wald test that depends only on the estimate of the
covariance matrix—you may prefer to use the more computationally expensive likelihood-ratio test;
see [U] 20 Estimation and postestimation commands and [R] lrtest.

There are several variations on the syntax for test. The second syntax,

test exp=exp
[
=. . .

]
is allowed after any form of estimation. After fitting a model of depvar on x1, x2, and x3, typing
test x1+x2=x3 tests the restriction that the coefficients on x1 and x2 sum to the coefficient on x3.
The expressions can be arbitrarily complicated; for instance, typing test x1+2*(x2+x3)=x2+3*x3
is the same as typing test x1+x2=x3.

As a convenient shorthand, test also allows you to specify equality for multiple expressions; for
example, test x1+x2 = x3+x4 = x5+x6 tests that the three specified pairwise sums of coefficients
are equal.

test understands that when you type x1, you are referring to the coefficient on x1.
You could also more explicitly type test b[x1]+ b[x2]= b[x3]; or you could test
coef[x1]+ coef[x2]= coef[x3], or test [#1]x1+[#1]x2=[#1]x3, or many other things be-

cause there is more than one way to refer to an estimated coefficient; see [U] 13.5 Accessing coefficients
and standard errors. The shorthand involves less typing. On the other hand, you must be more explicit
after estimation of multiple-equation models because there may be more than one coefficient associated
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with an independent variable. You might type, for instance, test [#2]x1+[#2]x2=[#2]x3 to test
the constraint in equation 2 or, more readably, test [ford]x1+[ford]x2=[ford]x3, meaning that
Stata will test the constraint on the equation corresponding to ford, which might be equation 2. ford
would be an equation name after, say, sureg, or, after mlogit, ford would be one of the outcomes.
For mlogit, you could also type test [2]x1+[2]x2=[2]x3—note the lack of the #—meaning not
equation 2, but the equation corresponding to the numeric outcome 2. You can even test constraints
across equations: test [ford]x1+[ford]x2=[buick]x3.

The syntax

test coeflist

is available after all estimation commands and is a convenient way to test that multiple coefficients
are zero following estimation. A coeflist can simply be a list of variable names,

test varname
[

varname . . .
]

and it is most often specified that way. After you have fit a model of depvar on x1, x2, and x3,
typing test x1 x3 tests that the coefficients on x1 and x3 are jointly zero. After multiple-equation
estimation, this would test that the coefficients on x1 and x3 are zero in all equations that contain
them. You can also be more explicit and type, for instance, test [ford]x1 [ford]x3 to test that
the coefficients on x1 and x3 are zero in the equation for ford.

In the multiple-equation case, there are more alternatives. You could also test that the coefficients
on x1 and x3 are zero in the equation for ford by typing test [ford]: x1 x3. You could test that
all coefficients except the coefficient on the constant are zero in the equation for ford by typing test
[ford]. You could test that the coefficients on x1 and x3 in the equation for ford are equal to the
corresponding coefficients in the equation corresponding to buick by typing test[ford=buick]:
x1 x3. You could test that all the corresponding coefficients except the constant in three equations
are equal by typing test [ford=buick=volvo].

testparm is much like the first syntax of test. Its usefulness will be demonstrated below.

The examples below use regress, but what is said applies equally after any single-equation
estimation command (such as logistic). It also applies after multiple-equation estimation commands
as long as references to coefficients are qualified with an equation name or number in square brackets
placed before them. The convenient syntaxes for dealing with tests of many coefficients in multiple-
equation models are demonstrated in Special syntaxes after multiple-equation estimation below.

Example 1

We have 1980 census data on the 50 states recording the birth rate in each state (brate), the
median age (medage), and the region of the country in which each state is located.

The region variable is 1 if the state is in the Northeast, 2 if the state is in the North Central, 3
if the state is in the South, and 4 if the state is in the West. We estimate the following regression:
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. use http://www.stata-press.com/data/r12/census3
(1980 Census data by state)

. regress brate medage c.medage#c.medage i.region

Source SS df MS Number of obs = 50
F( 5, 44) = 100.63

Model 38803.4208 5 7760.68416 Prob > F = 0.0000
Residual 3393.39921 44 77.1227094 R-squared = 0.9196

Adj R-squared = 0.9104
Total 42196.82 49 861.159592 Root MSE = 8.782

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

medage -109.0958 13.52452 -8.07 0.000 -136.3527 -81.83892

c.medage#
c.medage 1.635209 .2290536 7.14 0.000 1.173582 2.096836

region
2 15.00283 4.252067 3.53 0.001 6.433353 23.57231
3 7.366445 3.953335 1.86 0.069 -.6009775 15.33387
4 21.39679 4.650601 4.60 0.000 12.02412 30.76946

_cons 1947.611 199.8405 9.75 0.000 1544.859 2350.363

test can now be used to perform a variety of statistical tests. Specify the coeflegend option
with your estimation command to see a legend of the coefficients and how to specify them; see
[R] estimation options. We can test the hypothesis that the coefficient on 3.region is zero by typing

. test 3.region=0

( 1) 3.region = 0

F( 1, 44) = 3.47
Prob > F = 0.0691

The F statistic with 1 numerator and 44 denominator degrees of freedom is 3.47. The significance
level of the test is 6.91%—we can reject the hypothesis at the 10% level but not at the 5% level.

This result from test is identical to one presented in the output from regress, which indicates
that the t statistic on the 3.region coefficient is 1.863 and that its significance level is 0.069. The
t statistic presented in the output can be used to test the hypothesis that the corresponding coefficient
is zero, although it states the test in slightly different terms. The F distribution with 1 numerator
degree of freedom is, however, identical to the t2 distribution. We note that 1.8632 ≈ 3.47 and that
the significance levels in each test agree, although one extra digit is presented by the test command.

Technical note
After all estimation commands, including those that use the maximum likelihood method, the

test that one variable is zero is identical to that reported by the command’s output. The tests are
performed in the same way—using the estimated covariance matrix—and are known as Wald tests.
If the estimation command reports significance levels and confidence intervals using z rather than
t statistics, test reports results using the χ2 rather than the F statistic.
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Example 2
If that were all test could do, it would be useless. We can use test, however, to perform other

tests. For instance, we can test the hypothesis that the coefficient on 2.region is 21 by typing
. test 2.region=21

( 1) 2.region = 21

F( 1, 44) = 1.99
Prob > F = 0.1654

We find that we cannot reject that hypothesis, or at least we cannot reject it at any significance level
below 16.5%.

Example 3
The previous test is useful, but we could almost as easily perform it by hand using the results

presented in the regression output if we were well read on our statistics. We could type
. display Ftail(1,44,((_coef[2.region]-21)/4.252068)^2)
.16544873

So, now let’s test something a bit more difficult: whether the coefficient on 2.region is the same
as the coefficient on 4.region:

. test 2.region=4.region

( 1) 2.region - 4.region = 0

F( 1, 44) = 2.84
Prob > F = 0.0989

We find that we cannot reject the equality hypothesis at the 5% level, but we can at the 10% level.

Example 4
When we tested the equality of the 2.region and 4.region coefficients, Stata rearranged our

algebra. When Stata displayed its interpretation of the specified test, it indicated that we were testing
whether 2.region minus 4.region is zero. The rearrangement is innocuous and, in fact, allows
Stata to perform much more complicated algebra, for instance,

. test 2*(2.region-3*(3.region-4.region))=3.region+2.region+6*(4.region-3.region)

( 1) 2.region - 3.region = 0

F( 1, 44) = 5.06
Prob > F = 0.0295

Although we requested what appeared to be a lengthy hypothesis, once Stata simplified the algebra,
it realized that all we wanted to do was test whether the coefficient on 2.region is the same as the
coefficient on 3.region.

Technical note
Stata’s ability to simplify and test complex hypotheses is limited to linear hypotheses. If you

attempt to test a nonlinear hypothesis, you will be told that it is not possible:
. test 2.region/3.region=2.region+3.region
not possible with test
r(131);

To test a nonlinear hypothesis, see [R] testnl.
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Example 5

The real power of test is demonstrated when we test joint hypotheses. Perhaps we wish to test
whether the region variables, taken as a whole, are significant by testing whether the coefficients on
2.region, 3.region, and 4.region are simultaneously zero. test allows us to specify multiple
conditions to be tested, each embedded within parentheses.

. test (2.region=0) (3.region=0) (4.region=0)

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

test displays the set of conditions and reports an F statistic of 8.85. test also reports the degrees
of freedom of the test to be 3, the “dimension” of the hypothesis, and the residual degrees of freedom,
44. The significance level of the test is close to 0, so we can strongly reject the hypothesis of no
difference between the regions.

An alternative method to specify simultaneous hypotheses uses the convenient shorthand of
conditions with multiple equality operators.

. test 2.region=3.region=4.region=0

( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0
( 3) 2.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Technical note
Another method to test simultaneous hypotheses is to specify a test for each constraint and

accumulate it with the previous constraints:

. test 2.region=0

( 1) 2.region = 0

F( 1, 44) = 12.45
Prob > F = 0.0010

. test 3.region=0, accumulate

( 1) 2.region = 0
( 2) 3.region = 0

F( 2, 44) = 6.42
Prob > F = 0.0036

. test 4.region=0, accumulate

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

We tested the hypothesis that the coefficient on 2.region was zero by typing test 2.region=0.
We then tested whether the coefficient on 3.region was also zero by typing test 3.region=0,
accumulate. The accumulate option told Stata that this was not the start of a new test but a
continuation of a previous one. Stata responded by showing us the two equations and reporting an
F statistic of 6.42. The significance level associated with those two coefficients being zero is 0.36%.
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When we added the last constraint test 4.region=0, accumulate, we discovered that the three
region variables are significant. If all we wanted was the overall significance and we did not want to
bother seeing the interim results, we could have used the notest option:

. test 2.region=0, notest

( 1) 2.region = 0

. test 3.region=0, accumulate notest

( 1) 2.region = 0
( 2) 3.region = 0

. test 4.region=0, accumulate

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Example 6

Because tests that coefficients are zero are so common in applied statistics, the test command
has a more convenient syntax to accommodate this case:

. test 2.region 3.region 4.region

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Example 7

We will now show how to use testparm. In its first syntax, test accepts a list of variable names
but not a varlist.

. test i(2/4).region
i not found
r(111);

In the varlist, i(2/4).region means all the level variables from 2.region through 4.region,
yet we received an error. test does not actually understand varlists, but testparm does. In fact, it
understands only varlists.

. testparm i(2/4).region

( 1) 2.region = 0
( 2) 3.region = 0
( 3) 4.region = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Another way to test all the region variables is to type testparm i.region.

That testparm accepts varlists has other advantages that do not involve factor variables. Suppose
that we have a dataset that has dummy variables reg2, reg3, and reg4, rather than the categorical
variable region.
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. use http://www.stata-press.com/data/r12/census4
(birth rate, median age)

. regress brate medage c.medage#c.medage reg2 reg3 reg4
(output omitted )

. test reg2-reg4
- not found
r(111);

In a varlist, reg2-reg4 means variables reg2 and reg4 and all the variables between, yet we received
an error. test is confused because the - has two meanings: it means subtraction in an expression
and “through” in a varlist. Similarly, ‘*’ means “any set of characters” in a varlist and multiplication
in an expression. testparm avoids this confusion—it allows only a varlist.

. testparm reg2-reg4

( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

testparm has another advantage. We have five variables in our dataset that start with the characters
reg: region, reg1, reg2, reg3, and reg4. reg* thus means those five variables:

. describe reg*

storage display value
variable name type format label variable label

region int %8.0g region Census Region
reg1 byte %9.0g region==NE
reg2 byte %9.0g region==N Cntrl
reg3 byte %9.0g region==South
reg4 byte %9.0g region==West

We cannot type test reg* because, in an expression, ‘*’ means multiplication, but here is what
would happen if we attempted to test all the variables that begin with reg:

. test region reg1 reg2 reg3 reg4
region not found
r(111);

The variable region was not included in our model, so it was not found. However, with testparm,

. testparm reg*

( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

That is, testparm took reg* to mean all variables that start with reg that were in our model.

Technical note
Actually, reg* means what it always does—all variables in our dataset that begin with reg—in

this case, region reg1 reg2 reg3 reg4. testparm just ignores any variables you specify that are
not in the model.
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Example 8

We just used test (testparm, actually, but it does not matter) to test the hypothesis that reg2,
reg3, and reg4 are jointly zero. We can review the results of our last test by typing test without
arguments:

. test

( 1) reg2 = 0
( 2) reg3 = 0
( 3) reg4 = 0

F( 3, 44) = 8.85
Prob > F = 0.0001

Technical note
test does not care how we build joint hypotheses; we may freely mix different forms of syntax.

(We can even start with testparm, but we cannot use it thereafter because it does not have an
accumulate option.)

Say that we type test reg2 reg3 reg4 to test that the coefficients on our region dummies
are jointly zero. We could then add a fourth constraint, say, that medage = 100, by typing test
medage=100, accumulate. Or, if we had introduced the medage constraint first (our first test
command had been test medage=100), we could then add the region dummy test by typing test
reg2 reg3 reg4, accumulate or test (reg2=0) (reg3=0) (reg4=0), accumulate.

Remember that all previous tests are cleared when we do not specify the accumulate option. No
matter what tests we performed in the past, if we type test medage c.medage#c.medage, omitting
the accumulate option, we would test that medage and c.medage#c.medage are jointly zero.

Example 9

Let’s return to our census3.dta dataset and test the hypothesis that all the included regions have
the same coefficient—that the Northeast is significantly different from the rest of the nation:

. use http://www.stata-press.com/data/r12/census3
(1980 Census data by state)

. regress brate medage c.medage#c.medage i.region
(output omitted )

. test 2.region=3.region=4.region

( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009

We find that they are not all the same. The syntax 2.region=3.region=4.region with multiple
= operators is just a convenient shorthand for typing that the first expression equals the second
expression and that the first expression equals the third expression,

. test (2.region=3.region) (2.region=4.region)

We performed the test for equality of the three regions by imposing two constraints: region 2 has
the same coefficient as region 3, and region 2 has the same coefficient as region 4. Alternatively, we
could have tested that the coefficients on regions 2 and 3 are the same and that the coefficients on
regions 3 and 4 are the same. We would obtain the same results in either case.

To test for equality of the three regions, we might, likely by mistake, type equality constraints for
all pairs of regions:
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. test (2.region=3.region) (2.region=4.region) (3.region=4.region)

( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0
( 3) 3.region - 4.region = 0

Constraint 3 dropped

F( 2, 44) = 8.23
Prob > F = 0.0009

Equality of regions 2 and 3 and of regions 2 and 4, however, implies equality of regions 3 and 4.
test recognized that the last constraint is implied by the other constraints and hence dropped it.

Technical note
Generally, Stata uses = for assignment, as in gen newvar = exp, and == as the operator for testing

equality in expressions. For your convenience, test allows both = and == to be used.

Example 10
The test for the equality of the regions is also possible with the testparm command. When we

include the equal option, testparm tests that the coefficients of all the variables specified are equal:
. testparm i(2/4).region, equal

( 1) - 2.region + 3.region = 0
( 2) - 2.region + 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009

We can also obtain the equality test by accumulating single equality tests.
. test 2.region=3.region, notest

( 1) 2.region - 3.region = 0

. test 2.region=4.region, accum

( 1) 2.region - 3.region = 0
( 2) 2.region - 4.region = 0

F( 2, 44) = 8.23
Prob > F = 0.0009

Technical note
If we specify a set of inconsistent constraints, test will tell us by dropping the constraint or

constraints that led to the inconsistency. For instance, let’s test that the coefficients on region 2 and
region 4 are the same, add the test that the coefficient on region 2 is 20, and finally add the test that
the coefficient on region 4 is 21:

. test (2.region=4.region) (2.region=20) (4.region=21)

( 1) 2.region - 4.region = 0
( 2) 2.region = 20
( 3) 4.region = 21

Constraint 2 dropped

F( 2, 44) = 1.82
Prob > F = 0.1737

test informed us that it was dropping constraint 2. All three equations cannot be simultaneously
true, so test drops whatever it takes to get back to something that makes sense.
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Special syntaxes after multiple-equation estimation
Everything said above about tests after single-equation estimation applies to tests after multiple-

equation estimation, as long as you remember to specify the equation name. To demonstrate, let’s
estimate a seemingly unrelated regression by using sureg; see [R] sureg.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. sureg (price foreign mpg displ) (weight foreign length)

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

price 74 3 2165.321 0.4537 49.64 0.0000
weight 74 2 245.2916 0.8990 661.84 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

price
foreign 3058.25 685.7357 4.46 0.000 1714.233 4402.267

mpg -104.9591 58.47209 -1.80 0.073 -219.5623 9.644042
displacement 18.18098 4.286372 4.24 0.000 9.779842 26.58211

_cons 3904.336 1966.521 1.99 0.047 50.0263 7758.645

weight
foreign -147.3481 75.44314 -1.95 0.051 -295.2139 .517755
length 30.94905 1.539895 20.10 0.000 27.93091 33.96718
_cons -2753.064 303.9336 -9.06 0.000 -3348.763 -2157.365

To test the significance of foreign in the price equation, we could type
. test [price]foreign

( 1) [price]foreign = 0

chi2( 1) = 19.89
Prob > chi2 = 0.0000

which is the same result reported by sureg: 4.4602 ≈ 19.89. To test foreign in both equations, we
could type

. test [price]foreign [weight]foreign

( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

or
. test foreign

( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

This last syntax—typing the variable name by itself—tests the coefficients in all equations in which
they appear. The variable length appears in only the weight equation, so typing

. test length

( 1) [weight]length = 0

chi2( 1) = 403.94
Prob > chi2 = 0.0000
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yields the same result as typing test [weight]length. We may also specify a linear expression
rather than a list of coefficients:

. test mpg=displ

( 1) [price]mpg - [price]displ = 0

chi2( 1) = 4.85
Prob > chi2 = 0.0277

or

. test [price]mpg = [price]displ

( 1) [price]mpg - [price]displ = 0

chi2( 1) = 4.85
Prob > chi2 = 0.0277

A variation on this syntax can be used to test cross-equation constraints:

. test [price]foreign = [weight]foreign

( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

Typing an equation name in square brackets by itself tests all the coefficients except the intercept
in that equation:

. test [price]

( 1) [price]foreign = 0
( 2) [price]mpg = 0
( 3) [price]displacement = 0

chi2( 3) = 49.64
Prob > chi2 = 0.0000

Typing an equation name in square brackets, a colon, and a list of variable names tests those variables
in the specified equation:

. test [price]: foreign displ

( 1) [price]foreign = 0
( 2) [price]displacement = 0

chi2( 2) = 25.19
Prob > chi2 = 0.0000

test [eqname1=eqname2] tests that all the coefficients in the two equations are equal. We cannot
use that syntax here because there are different variables in the model:

. test [price=weight]
variables differ between equations
(to test equality of coefficients in common, specify option -common-)
r(111);

The common option specifies a test of the equality coefficients common to the equations price
and weight,

. test [price=weight], common

( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000
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By default, test does not include the constant, the coefficient of the constant variable cons, in
the test. The cons option specifies that the constant be included.

. test [price=weight], common cons

( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2( 2) = 51.23
Prob > chi2 = 0.0000

We can also use a modification of this syntax with the model if we also type a colon and the names
of the variables we want to test:

. test [price=weight]: foreign

( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

We have only one variable in common between the two equations, but if there had been more, we
could have listed them.

Finally, a simultaneous test of multiple constraints may be specified just as after single-equation
estimation.

. test ([price]: foreign) ([weight]: foreign)

( 1) [price]foreign = 0
( 2) [weight]foreign = 0

chi2( 2) = 31.61
Prob > chi2 = 0.0000

test can also test for equality of coefficients across more than two equations. For instance, test
[eq1=eq2=eq3] specifies a test that the coefficients in the three equations eq1, eq2, and eq3 are
equal. This requires that the same variables be included in the three equations. If some variables are
entered only in some of the equations, you can type test [eq1=eq2=eq3], common to test that the
coefficients of the variables common to all three equations are equal. Alternatively, you can explicitly
list the variables for which equality of coefficients across the equations is to be tested. For instance,
test [eq1=eq2=eq3]: time money tests that the coefficients of the variables time and money do
not differ between the equations.

Technical note

test [eq1=eq2=eq3], common tests the equality of the coefficients common to all equations,
but it does not test the equality of all common coefficients. Consider the case where

eq1 contains the variables var1 var2 var3
eq2 contains the variables var1 var2 var4
eq3 contains the variables var1 var3 var4

Obviously, only var1 is common to all three equations. Thus test [eq1=eq2=eq3], common
tests that the coefficients of var1 do not vary across the equations, so it is equivalent to test
[eq1=eq2=eq3]: var1. To perform a test of the coefficients of variables common to two equations,
you could explicitly list the constraints to be tested,

. test ([eq1=eq2=eq3]:var1) ([eq1=eq2]:var2) ([eq1=eq3]:var3) ([eq2=eq3]:var4)
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or use test with the accumulate option, and maybe also with the notest option, to form the
appropriate joint hypothesis:

. test [eq1=eq2], common notest

. test [eq1=eq3], common accumulate notest

. test [eq2=eq3], common accumulate

Constrained coefficients
If the test indicates that the data do not allow you to conclude that the constraints are not satisfied,

you may want to inspect the constrained coefficients. The coef option specified that the constrained
results, estimated by GLS, are shown.

. test [price=weight], common coef

( 1) [price]foreign - [weight]foreign = 0

chi2( 1) = 23.07
Prob > chi2 = 0.0000

Constrained coefficients

Coef. Std. Err. z P>|z| [95% Conf. Interval]

price
foreign -216.4015 74.06083 -2.92 0.003 -361.558 -71.2449

mpg -121.5717 58.36972 -2.08 0.037 -235.9742 -7.169116
displacement 7.632566 3.681114 2.07 0.038 .4177148 14.84742

_cons 7312.856 1834.034 3.99 0.000 3718.215 10907.5

weight
foreign -216.4015 74.06083 -2.92 0.003 -361.558 -71.2449
length 30.34875 1.534815 19.77 0.000 27.34057 33.35693
_cons -2619.719 302.6632 -8.66 0.000 -3212.928 -2026.51

The constrained coefficient of foreign is −216.40 with standard error 74.06 in equations price
and weight. The other coefficients and their standard errors are affected by imposing the equality
constraint of the two coefficients of foreign because the unconstrained estimates of these two
coefficients were correlated with the estimates of the other coefficients.

Technical note

The two-step constrained coefficients bc displayed by test, coef are asymptotically equivalent to
the one-stage constrained estimates that are computed by specifying the constraints during estimation
using the constraint() option of estimation commands (Gourieroux and Monfort 1995, chap. 10).
Generally, one-step constrained estimates have better small-sample properties. For inspection and
interpretation, however, two-step constrained estimates are a convenient alternative. Moreover, some
estimation commands (for example, stcox, many xt estimators) do not have a constraint() option.
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Multiple testing

When performing the test of a joint hypothesis, you might want to inspect the underlying 1-degree-
of-freedom hypotheses. Which constraint “is to blame”? test displays the univariate as well as the
simultaneous test if the mtest option is specified. For example,

. test [price=weight], common cons mtest

( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2 df p

(1) 23.07 1 0.0000 #
(2) 11.17 1 0.0008 #

all 51.23 2 0.0000

# unadjusted p-values

Both coefficients seem to contribute to the highly significant result. The 1-degree-of-freedom test
shown here is identical to those if test had been invoked to test just this simple hypotheses. There is,
of course, a real risk in inspecting these simple hypotheses. Especially in high-dimensional hypotheses,
you may easily find one hypothesis that happens to be significant. Multiple testing procedures are
designed to provide some safeguard against this risk. p-values of the univariate hypotheses are modified
so that the probability of falsely rejecting one of the null hypotheses is bounded. test provides the
methods based on Bonferroni, Šidák, and Holm.

. test [price=weight], common cons mtest(b)

( 1) [price]foreign - [weight]foreign = 0
( 2) [price]_cons - [weight]_cons = 0

chi2 df p

(1) 23.07 1 0.0000 #
(2) 11.17 1 0.0017 #

all 51.23 2 0.0000

# Bonferroni-adjusted p-values

Saved results
test and testparm save the following in r():

Scalars
r(p) two-sided p-value r(chi2) χ2

r(F) F statistic r(ss) sum of squares (test)
r(df) test constraints degrees of freedom r(rss) residual sum of squares
r(df r) residual degrees of freedom r(drop) 1 if constraints were dropped, 0
r(dropped i) index of ith constraint dropped otherwise

Macros
r(mtmethod) method of adjustment for multiple

testing
Matrices

r(mtest) multiple test results

r(ss) and r(rss) are defined only when test is used for testing effects after anova.
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Methods and formulas
test and testparm are implemented as ado-files.

test and testparm perform Wald tests. Let the estimated coefficient vector be b and the estimated
variance–covariance matrix be V. Let Rb = r denote the set of q linear hypotheses to be tested
jointly.

The Wald test statistic is (Judge et al. 1985, 20–28)

W = (Rb− r)′(RVR′)−1(Rb− r)

If the estimation command reports its significance levels using Z statistics, a chi-squared distribution
with q degrees of freedom,

W ∼ χ2
q

is used for computation of the significance level of the hypothesis test.

If the estimation command reports its significance levels using t statistics with d degrees of freedom,
an F statistic,

F =
1
q
W

is computed, and an F distribution with q numerator degrees of freedom and d denominator degrees
of freedom computes the significance level of the hypothesis test.

The two-step constrained estimates bc displayed by test with the coef option are the GLS estimates
of the unconstrained estimates b subject to the specified constraints Rb = c (Gourieroux and Monfort
1995, chap. 10),

bc = b−R′(RVR′)−1R(Rb− r)

with variance–covariance matrix

Vc = V −VR′(RVR′)−1RV

If test displays a Wald test for joint (simultaneous) hypotheses, it can also display all 1-degree-of-
freedom tests, with p-values adjusted for multiple testing. Let p1, p2, . . . , pk be the unadjusted p-values
of these 1-degree-of-freedom tests. The Bonferroni-adjusted p-values are defined as pbi = min(1, kpi).
The Šidák-adjusted p-values are psi = 1− (1− pi)k. Holm’s method for adjusting p-values is defined
as phi = min(1, kipi), where ki is the number of p-values at least as large as pi. Note that phi < pbi ,
reflecting that Holm’s method is strictly less conservative than the widely used Bonferroni method.

If test is used after a svy command, it carries out an adjusted Wald test—this adjustment should
not be confused with the adjustment for multiple testing. Both adjustments may actually be combined.
Specifically, the survey adjustment uses an approximate F statistic (d−k+1)W/(kd), where W is the
Wald test statistic, k is the dimension of the hypothesis test, and d = the total number of sampled PSUs
minus the total number of strata. Under the null hypothesis, (d−k+1)F/(kd) ∼ F (k, d−k+1), where
F (k, d−k+ 1) is an F distribution with k numerator degrees of freedom and d−k+ 1 denominator
degrees of freedom. If nosvyadjust is specified, the p-value is computed using W/k ∼ F (k, d).

See Korn and Graubard (1990) for a detailed description of the Bonferroni adjustment technique
and for a discussion of the relative merits of it and of the adjusted and unadjusted Wald tests.
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testnl — Test nonlinear hypotheses after estimation

Syntax

testnl exp = exp
[
= exp . . .

] [
, options

]
testnl (exp = exp

[
= exp . . .

]
)
[
(exp = exp

[
= exp . . .

]
) . . .

] [
, options

]
options Description

mtest
[
(opt)

]
test each condition separately

nosvyadjust carry out the Wald test as W/k ∼ F (k, d); for use with svy

estimation commands
iterate(#) use maximum # of iterations to find the optimal step size

The second syntax means that if more than one expression is specified, each must be surrounded by
parentheses.

exp is a possibly nonlinear expression containing
b[coef]
b[eqno:coef]

[eqno]coef
[eqno] b[coef]

eqno is
##
name

coef identifies a coefficient in the model. coef is typically a variable name, a level indicator, an
interaction indicator, or an interaction involving continuous variables. Level indicators identify one
level of a factor variable and interaction indicators identify one combination of levels of an interaction;
see [U] 11.4.3 Factor variables. coef may contain time-series operators; see [U] 11.4.4 Time-series
varlists.

Distinguish between [ ], which are to be typed, and
[ ]

, which indicate optional arguments.

Menu
Statistics > Postestimation > Tests > Test nonlinear hypotheses

Description

testnl tests (linear or nonlinear) hypotheses about the estimated parameters from the most recently
fit model.

2186
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testnl produces Wald-type tests of smooth nonlinear (or linear) hypotheses about the estimated
parameters from the most recently fit model. The p-values are based on the delta method, an
approximation appropriate in large samples.

testnl can be used with svy estimation results; see [SVY] svy postestimation.

The format (exp1=exp2=exp3. . . ) for a simultaneous-equality hypothesis is just a convenient
shorthand for a list (exp1=exp2) (exp1=exp3), etc.

testnl may also be used to test linear hypotheses. test is faster if you want to test only
linear hypotheses; see [R] test. testnl is the only option for testing linear and nonlinear hypotheses
simultaneously.

Options
mtest

[
(opt)

]
specifies that tests be performed for each condition separately. opt specifies the method

for adjusting p-values for multiple testing. Valid values for opt are

bonferroni Bonferroni’s method
holm Holm’s method

sidak Šidák’s method
noadjust no adjustment is to be made

Specifying mtest without an argument is equivalent to specifying mtest(noadjust).

nosvyadjust is for use with svy estimation commands; see [SVY] svy estimation. It specifies that
the Wald test be carried out without the default adjustment for the design degrees of freedom. That
is, the test is carried out as W/k ∼ F (k, d) rather than as (d−k+ 1)W/(kd) ∼ F (k, d−k+ 1),
where k = the dimension of the test and d = the total number of sampled PSUs minus the total
number of strata.

iterate(#) specifies the maximum number of iterations used to find the optimal step size in the
calculation of numerical derivatives of the test expressions. By default, the maximum number of
iterations is 100, but convergence is usually achieved after only a few iterations. You should rarely
have to use this option.

Remarks
Remarks are presented under the following headings:

Introduction
Using testnl to perform linear tests
Specifying constraints
Dropped constraints
Output
Multiple constraints
Manipulability

Introduction

Example 1

We have just estimated the parameters of an earnings model on cross-sectional time-series data
using one of Stata’s more sophisticated estimators:
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. use http://www.stata-press.com/data/r12/earnings
(NLS Women 14-24 in 1968)

. xtgee ln_w grade age c.age#c.age, corr(exchangeable) nolog

GEE population-averaged model Number of obs = 1326
Group variable: idcode Number of groups = 269
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.9
Correlation: exchangeable max = 9

Wald chi2(3) = 327.33
Scale parameter: .0976738 Prob > chi2 = 0.0000

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade .0749686 .0066111 11.34 0.000 .062011 .0879261
age .1080806 .0235861 4.58 0.000 .0618526 .1543086

c.age#c.age -.0016253 .0004739 -3.43 0.001 -.0025541 -.0006966

_cons -.8788933 .2830899 -3.10 0.002 -1.433739 -.3240473

An implication of this model is that peak earnings occur at age - b[age]/(2* b[c.age#c.age]),
which here is equal to 33.2. Say that we have a theory that peak earnings should occur at age 16 +
1/ b[grade].

. testnl -_b[age]/(2*_b[c.age#c.age]) = 16 + 1/_b[grade]

(1) -_b[age]/(2*_b[c.age#c.age]) = 16 + 1/_b[grade]

chi2(1) = 1.71
Prob > chi2 = 0.1914

These data do not reject our theory.

Using testnl to perform linear tests

testnl may be used to test linear constraints, but test is faster; see [R] test. You could type

. testnl _b[x4] = _b[x1]

but it would take less computer time if you typed

. test _b[x4] = _b[x1]

Specifying constraints

The constraints to be tested can be formulated in many different ways. You could type

. testnl _b[mpg]*_b[weight] = 1

or

. testnl _b[mpg] = 1/_b[weight]



testnl — Test nonlinear hypotheses after estimation 2189

or you could express the constraint any other way you wished. (To say that testnl allows constraints
to be specified in different ways does not mean that the test itself does not depend on the formulation.
This point is briefly discussed later.) In formulating the constraints, you must, however, exercise one
caution: users of test often refer to the coefficient on a variable by specifying the variable name.
For example,

. test mpg = 0

More formally, they should type

. test _b[mpg] = 0

but test allows the b[] surrounding the variable name to be omitted. testnl does not allow this
shorthand. Typing

. testnl mpg=0

specifies the constraint that the value of variable mpg in the first observation is zero. If you make this
mistake, sometimes testnl will catch it:

. testnl mpg=0
equation (1) contains reference to X rather than _b[X]
r(198);

In other cases, testnl may not catch the mistake; then the constraint will be dropped because it
does not make sense:

. testnl mpg=0
Constraint (1) dropped

(There are reasons other than this for constraints being dropped.) The worst case, however, is

. testnl _b[weight]*mpg = 1

when what you mean is not that b[weight] equals the reciprocal of the value of mpg in the first
observation, but rather that

. testnl _b[weight]*_b[mpg] = 1

Sometimes this mistake will be caught by the “contains reference to X rather than b[X]” error, and
sometimes it will not. Be careful.

testnl, like test, can be used after any Stata estimation command, including the survey
estimators. When you use it after a multiple-equation command, such as mlogit or heckman, you
refer to coefficients by using Stata’s standard syntax: [eqname] b[varname].

Stata’s single-equation estimation output looks like this:

Coef . . .

weight 12.27 . . . <- coefficient is _b[weight]
mpg 3.21 . . .
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Stata’s multiple-equation output looks like this:

Coef . . .

cat1 . . .
weight 12.27 . . . <- coefficient is [cat1]_b[weight]

mpg 3.21 . . .

8 . . .
weight 5.83 . . . <- coefficient is [8]_b[weight]

mpg 7.43 . . .

Dropped constraints

testnl automatically drops constraints when

• They are nonbinding, for example, b[mpg]= b[mpg]. More subtle cases include

_b[mpg]*_b[weight] = 4
_b[weight] = 2
_b[mpg] = 2

In this example, the third constraint is nonbinding because it is implied by the first two.

• They are contradictory, for example, b[mpg]=2 and b[mpg]=3. More subtle cases include

_b[mpg]*_b[weight] = 4
_b[weight] = 2
_b[mpg] = 3

The third constraint contradicts the first two.

Output

testnl reports the constraints being tested followed by an F or a χ2 test:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress price mpg weight c.weight#c.weight foreign
(output omitted )

. testnl (39*_b[mpg]^2 = _b[foreign]) (_b[mpg]/_b[weight] = 4)

(1) 39*_b[mpg]^2 = _b[foreign]

(2) _b[mpg]/_b[weight] = 4

F(2, 69) = 0.08
Prob > F = 0.9195

. logit foreign price weight mpg
(output omitted )

. testnl (45*_b[mpg]^2 = _b[price]) (_b[mpg]/_b[weight] = 4)

(1) 45*_b[mpg]^2 = _b[price]

(2) _b[mpg]/_b[weight] = 4

chi2(2) = 2.44
Prob > chi2 = 0.2946
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Multiple constraints

Example 2

We illustrate the simultaneous test of a series of constraints using simulated data on labor-market
promotion in a given year. We fit a probit model with separate effects for education, experience, and
experience-squared for men and women.

. use http://www.stata-press.com/data/r12/promotion

. probit promo male male#c.(yedu yexp yexp2), nolog

Probit regression Number of obs = 775
LR chi2(7) = 424.42
Prob > chi2 = 0.0000

Log likelihood = -245.42768 Pseudo R2 = 0.4637

promo Coef. Std. Err. z P>|z| [95% Conf. Interval]

male .6489974 .203739 3.19 0.001 .2496763 1.048318

male#c.yedu
0 .9730237 .1056136 9.21 0.000 .7660248 1.180023
1 1.390517 .1527288 9.10 0.000 1.091174 1.68986

male#c.yexp
0 .4559544 .0901169 5.06 0.000 .2793285 .6325803
1 1.422539 .1544255 9.21 0.000 1.11987 1.725207

male#c.yexp2
0 -.1027149 .0573059 -1.79 0.073 -.2150325 .0096026
1 -.3749457 .1160113 -3.23 0.001 -.6023236 -.1475677

_cons .9872018 .1148215 8.60 0.000 .7621559 1.212248

Note: 1 failure and 2 successes completely determined.

The effects of human capital seem to differ between men and women. A formal test confirms this.

. test (yedu#0.male = yedu#1.male) (yexp#0.male = yexp#1.male)
> (yexp2#0.male = yexp2#1.male)

( 1) [promo]0b.male#c.yedu - [promo]1.male#c.yedu = 0
( 2) [promo]0b.male#c.yexp - [promo]1.male#c.yexp = 0
( 3) [promo]0b.male#c.yexp2 - [promo]1.male#c.yexp2 = 0

chi2( 3) = 35.43
Prob > chi2 = 0.0000

How do we interpret this gender difference? It has repeatedly been stressed (see, for example, Long
[1997, 47–50]; Allison [1999]) that comparison of groups in binary response models, and similarly
in other latent-variable models, is hampered by an identification problem: with β the regression
coefficients for the latent variable and σ the standard deviation of the latent residual, only the β/σ
are identified. In fact, in terms of the latent regression, the probit coefficients should be interpreted
as β/σ, not as the β. If we cannot claim convincingly that the residual standard deviation σ does
not vary between the sexes, equality of the regression coefficients β implies that the coefficients of
the probit model for men and women are proportional but not necessarily equal. This is a nonlinear
hypothesis in terms of the probit coefficients, not a linear one.
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. testnl _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
> = _b[yexp2#1.male]/_b[yexp2#0.male]

(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2(2) = 9.21
Prob > chi2 = 0.0100

We conclude that we find fairly strong evidence against the proportionality of the coefficients, and
hence we have to conclude that success in the labor market is produced in different ways by men
and women. (But remember, these were simulated data.)

Example 3

The syntax for specifying the equality of multiple expressions is just a convenient shorthand for
specifying a series of constraints, namely, that the first expression equals the second expression,
the first expression also equals the third expression, etc. The Wald test performed and the output
of testnl are the same whether we use the shorthand or we specify the series of constraints. The
lengthy specification as a series of constraints can be simplified using the continuation symbols ///.

. testnl (_b[yedu#1.male]/_b[yedu#0.male] = ///
_b[yexp#1.male]/_b[yexp#0.male]) ///

(_b[yedu#1.male]/_b[yedu#0.male] = ///
_b[yexp2#1.male]/_b[yexp2#0.male])

(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2(2) = 9.21
Prob > chi2 = 0.0100

Having established differences between men and women, we would like to do multiple testing
between the ratios. Because we did not specify hypotheses in advance, we prefer to adjust the p-values
of tests using, here, Bonferroni’s method.

. testnl _b[yedu#1.male]/_b[yedu#0.male] = ///
_b[yexp#1.male]/_b[yexp#0.male] = ///
_b[yexp2#1.male]/_b[yexp2#0.male], mtest(b)

(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]
(2) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp2#1.male]/_b[yexp2#0.male]

chi2 df p

(1) 6.89 1 0.0173 #
(2) 0.93 1 0.6713 #

all 9.21 2 0.0100

# Bonferroni-adjusted p-values

Manipulability

Although testnl allows you to specify constraints in different ways that are mathematically
equivalent, as noted above, this does not mean that the tests are the same. This difference is known as
the manipulability of the Wald test for nonlinear hypotheses; also see [R] boxcox. The test might even
be significant for one formulation but not significant for another formulation that is mathematically
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equivalent. Trying out different specifications to find a formulation with the desired p-value is totally
inappropriate, though it may actually be fun to try. There is no variance under representation because
the nonlinear Wald test is actually a standard Wald test for a linearization of the constraint, which
depends on the particular specification. We note that the likelihood-ratio test is not manipulable in
this sense.

From a statistical point of view, it is best to choose a specification of the constraints that is as linear
is possible. Doing so usually improves the accuracy of the approximation of the null-distribution
of the test by a χ2 or an F distribution. The example above used the nonlinear Wald test to test
whether the coefficients of human capital variables for men were proportional to those of women. A
specification of proportionality of coefficients in terms of ratios of coefficients is fairly nonlinear if
the coefficients in the denominator are close to 0. A more linear version of the test results from a
bilinear formulation. Thus instead of

. testnl _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]

(1) _b[yedu#1.male]/_b[yedu#0.male] = _b[yexp#1.male]/_b[yexp#0.male]

chi2(1) = 6.89
Prob > chi2 = 0.0087

perhaps

. testnl _b[yedu#1.male]*_b[yexp#0.male] = _b[yedu#0.male]*_b[yexp#1.male]

(1) _b[yedu#1.male]*_b[yexp#0.male] = _b[yedu#0.male]*_b[yexp#1.male]

chi2(1) = 13.95
Prob > chi2 = 0.0002

is better, and in fact it has been suggested that the latter version of the test is more reliable. This
assertion is confirmed by performing simulations and is in line with theoretical results of Phillips and
Park (1988). There is strong evidence against the proportionality of human capital effects between
men and women, implying for this example that differences in the residual variances between the
sexes can be ruled out as the explanation of the sex differences in the analysis of labor market
participation.

Saved results
testnl saves the following in r():

Scalars
r(df) degrees of freedom
r(df r) residual degrees of freedom
r(chi2) χ2

r(p) significance
r(F) F statistic

Macros
r(mtmethod) method specified in mtest()

Matrices
r(G) derivatives of R(b) with respect to b; see Methods and formulas below
r(R) R(b)−q; see Methods and formulas below
r(mtest) multiple test results
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Methods and formulas
testnl is implemented as an ado-file.

After fitting a model, define b as the resulting 1 × k parameter vector and V as the k × k
covariance matrix. The (linear or nonlinear) hypothesis is given by R(b) = q, where R is a function
returning a j × 1 vector. The Wald test formula is (Greene 2012, 528)

W =
{
R(b)− q

}′(
GVG′

)−1{
R(b)− q

}
where G is the derivative matrix of R(b) with respect to b. W is distributed as χ2 if V is an
asymptotic covariance matrix. F = W/j is distributed as F for linear regression.

The adjustment methods for multiple testing are described in [R] test. The adjustment for survey
design effects is described in [SVY] svy postestimation.
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Also see
[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] lincom — Linear combinations of estimators

[R] lrtest — Likelihood-ratio test after estimation

[R] nlcom — Nonlinear combinations of estimators

[R] test — Test linear hypotheses after estimation

[U] 13.5 Accessing coefficients and standard errors
[U] 20 Estimation and postestimation commands

http://www.stata.com/products/stb/journals/stb29.pdf
http://www.stata.com/bookstore/ea.html
http://www.stata.com/bookstore/regmod.html


Title

tetrachoric — Tetrachoric correlations for binary variables

Syntax
tetrachoric varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

Main

stats(statlist) list of statistics; select up to 4 statistics; default is stats(rho)

edwards use the noniterative Edwards and Edwards estimator; default is the
maximum likelihood estimator

print(#) significance level for displaying coefficients
star(#) significance level for displaying with a star
bonferroni use Bonferroni-adjusted significance level
sidak use Šidák-adjusted significance level
pw calculate all the pairwise correlation coefficients by using all available

data (pairwise deletion)
zeroadjust adjust frequencies when one cell has a zero count
matrix display output in matrix form
notable suppress display of correlations
posdef modify correlation matrix to be positive semidefinite

statlist Description

rho tetrachoric correlation coefficient
se standard error of rho
obs number of observations
p exact two-sided significance level

by is allowed; see [D] by.
fweights are allowed; see [U] 11.1.6 weight.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Tetrachoric correlations

Description
tetrachoric computes estimates of the tetrachoric correlation coefficients of the binary variables

in varlist. All these variables should be 0, 1, or missing values.

Tetrachoric correlations assume a latent bivariate normal distribution (X1,X2) for each pair of
variables (v1,v2), with a threshold model for the manifest variables, vi = 1 if and only if Xi > 0.
The means and variances of the latent variables are not identified, but the correlation, r, of X1 and
X2 can be estimated from the joint distribution of v1 and v2 and is called the tetrachoric correlation
coefficients.
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tetrachoric computes pairwise estimates of the tetrachoric correlations by the (iterative) maximum
likelihood estimator obtained from bivariate probit without explanatory variables (see [R] biprobit)
by using the Edwards and Edwards (1984) noniterative estimator as the initial value.

The pairwise correlation matrix is returned as r(Rho) and can be used to perform a factor analysis
or a principal component analysis of binary variables by using the factormat or pcamat commands;
see [MV] factor and [MV] pca.

Options

� � �
Main �

stats(statlist) specifies the statistics to be displayed in the matrix of output. stats(rho) is the
default. Up to four statistics may be specified. stats(rho se p obs) would display the tetrachoric
correlation coefficient, its standard error, the significance level, and the number of observations. If
varlist contains only two variables, all statistics are shown in tabular form. stats(), print(),
and star() have no effect unless the matrix option is also specified.

edwards specifies that the noniterative Edwards and Edwards estimator be used. The default is the
maximum likelihood estimator. If you analyze many binary variables, you may want to use the fast
noniterative estimator proposed by Edwards and Edwards (1984). However, if you have skewed
variables, the approximation does not perform well.

print(#) specifies the maximum significance level of correlation coefficients to be printed. Correlation
coefficients with larger significance levels are left blank in the matrix. Typing tetrachoric . . . ,
print(.10) would list only those correlation coefficients that are significant at the 10% level or
lower.

star(#) specifies the maximum significance level of correlation coefficients to be marked with a
star. Typing tetrachoric . . . , star(.05) would “star” all correlation coefficients significant at
the 5% level or lower.

bonferroni makes the Bonferroni adjustment to calculated significance levels. This option af-
fects printed significance levels and the print() and star() options. Thus tetrachoric . . . ,
print(.05) bonferroni prints coefficients with Bonferroni-adjusted significance levels of 0.05
or less.

sidak makes the Šidák adjustment to calculated significance levels. This option affects printed
significance levels and the print() and star() options. Thus tetrachoric . . . , print(.05)
sidak prints coefficients with Šidák-adjusted significance levels of 0.05 or less.

pw specifies that the tetrachoric correlation be calculated by using all available data. By default,
tetrachoric uses casewise deletion, where observations are ignored if any of the specified
variables in varlist are missing.

zeroadjust specifies that when one of the cells has a zero count, a frequency adjustment be applied
in such a way as to increase the zero to one-half and maintain row and column totals.

matrix forces tetrachoric to display the statistics as a matrix, even if varlist contains only two
variables. matrix is implied if more than two variables are specified.

notable suppresses the output.

posdef modifies the correlation matrix so that it is positive semidefinite, that is, a proper correlation
matrix. The modified result is the correlation matrix associated with the least-squares approximation
of the tetrachoric correlation matrix by a positive-semidefinite matrix. If the correlation matrix is
modified, the standard errors and significance levels are not displayed and are returned in r().
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Remarks
Remarks are presented under the following headings:

Association in 2-by-2 tables
Factor analysis of dichotomous variables
Tetrachoric correlations with simulated data

Association in 2-by-2 tables

Although a wide variety of measures of association in cross tabulations have been proposed, such
measures are essentially equivalent (monotonically related) in the special case of 2× 2 tables—there
is only 1 degree of freedom for nonindependence. Still, some measures have more desirable properties
than others. Here we compare two measures: the standard Pearson correlation coefficient and the
tetrachoric correlation coefficient. Given asymmetric row or column margins, Pearson correlations are
limited to a range smaller than −1 to 1, although tetrachoric correlations can still span the range
from −1 to 1. To illustrate, consider the following set of tables for two binary variables, X and Z:

Z = 0 Z = 1
X = 0 20− a 10 + a 30
X = 1 a 10− a 10

20 20 40

For a equal to 0, 1, 2, 5, 8, 9, and 10, the Pearson and tetrachoric correlations for the above table are

a 0 1 2 5 8 9 10

Pearson 0.577 0.462 0.346 0 −0.346 −0.462 −0.577

Tetrachoric 1.000 0.792 0.607 0 −0.607 −0.792 −1.000

The restricted range for the Pearson correlation is especially unfortunate when you try to analyze
the association between binary variables by using models developed for continuous data, such as
factor analysis and principal component analysis.

The tetrachoric correlation of two variables (Y1, Y2) can be thought of as the Pearson correlation
of two latent bivariate normal distributed variables (Y ∗1 , Y

∗
2 ) with threshold measurement models

Yi = (Y ∗i > ci) for unknown cutpoints ci. Or equivalently, Yi = (Y ∗∗i > 0) where the latent bivariate
normal (Y ∗∗1 , Y ∗∗2 ) are shifted versions of (Y ∗1 , Y

∗
2 ) so that the cutpoints are zero. Obviously, you

must judge whether assuming underlying latent variables is meaningful for the data. If this assumption
is justified, tetrachoric correlations have two advantages. First, you have an intuitive understanding of
the size of correlations that are substantively interesting in your field of research, and this intuition is
based on correlations that range from −1 to 1. Second, because the tetrachoric correlation for binary
variables estimates the Pearson correlation of the latent continuous variables (assumed multivariate-
normal distributed), you can use the tetrachoric correlations to analyze multivariate relationships
between the dichotomous variables. When doing so, remember that you must interpret the model in
terms of the underlying continuous variables.
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Example 1

To illustrate tetrachoric correlations, we examine three binary variables from the familyvalues
dataset (described in example 2).

. use http://www.stata-press.com/data/r12/familyvalues
(Attitudes on gender, relationships and family)

. tabulate RS075 RS076

fam att: fam att: trad
women in division of labor

charge bad 0 1 Total

0 1,564 979 2,543
1 119 632 751

Total 1,683 1,611 3,294

. correlate RS074 RS075 RS076
(obs=3291)

RS074 RS075 RS076

RS074 1.0000
RS075 0.0396 1.0000
RS076 0.1595 0.3830 1.0000

. tetrachoric RS074 RS075 RS076

(obs=3291)

RS074 RS075 RS076

RS074 1.0000
RS075 0.0689 1.0000
RS076 0.2480 0.6427 1.0000

As usual, the tetrachoric correlation coefficients are larger (in absolute value) and more dispersed
than the Pearson correlations.

Factor analysis of dichotomous variables

Example 2

Factor analysis is a popular model for measuring latent continuous traits. The standard estimators
are appropriate only for continuous unimodal data. Because of the skewness implied by Bernoulli-
distributed variables (especially when the probability is distributed unevenly), a factor analysis of a
Pearson correlation matrix can be rather misleading when used in this context. A factor analysis of
a matrix of tetrachoric correlations is more appropriate under these conditions (Uebersax 2000). We
illustrate this with data on gender, relationship, and family attitudes of spouses using the Households
in The Netherlands survey 1995 (Weesie et al. 1995). For attitude variables, it seems reasonable to
assume that agreement or disagreement is just a coarse measurement of more nuanced underlying
attitudes.
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To demonstrate, we examine a few of the variables from the familyvalues dataset.

. use http://www.stata-press.com/data/r12/familyvalues
(Attitudes on gender, relationships and family)

. describe RS056-RS063

storage display value
variable name type format label variable label

RS056 byte %9.0g fam att: should be together
RS057 byte %9.0g fam att: should fight for relat
RS058 byte %9.0g fam att: should avoid conflict
RS059 byte %9.0g fam att: woman better nurturer
RS060 byte %9.0g fam att: both spouses money goo
RS061 byte %9.0g fam att: woman techn school goo
RS062 byte %9.0g fam att: man natural breadwinne
RS063 byte %9.0g fam att: common leisure good

. summarize RS056-RS063

Variable Obs Mean Std. Dev. Min Max

RS056 3298 .5630685 .4960816 0 1
RS057 3296 .5400485 .4984692 0 1
RS058 3283 .6387451 .4804374 0 1
RS059 3308 .654474 .4756114 0 1
RS060 3302 .3906723 .487975 0 1

RS061 3293 .7102946 .4536945 0 1
RS062 3307 .5857272 .4926705 0 1
RS063 3298 .5379018 .498637 0 1

. correlate RS056-RS063
(obs=3221)

RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.1350 1.0000
RS058 0.2377 0.0258 1.0000
RS059 0.1816 0.0097 0.2550 1.0000
RS060 -0.1020 -0.0538 -0.0424 0.0126 1.0000
RS061 -0.1137 0.0610 -0.1375 -0.2076 0.0706 1.0000
RS062 0.2014 0.0285 0.2273 0.4098 -0.0793 -0.2873 1.0000
RS063 0.2057 0.1460 0.1049 0.0911 0.0179 -0.0233 0.0975

RS063

RS063 1.0000
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Skewness in these data is relatively modest. For comparison, here are the tetrachoric correlations:

. tetrachoric RS056-RS063

(obs=3221)

RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.2114 1.0000
RS058 0.3716 0.0416 1.0000
RS059 0.2887 0.0158 0.4007 1.0000
RS060 -0.1620 -0.0856 -0.0688 0.0208 1.0000
RS061 -0.1905 0.1011 -0.2382 -0.3664 0.1200 1.0000
RS062 0.3135 0.0452 0.3563 0.6109 -0.1267 -0.4845 1.0000
RS063 0.3187 0.2278 0.1677 0.1467 0.0286 -0.0388 0.1538

RS063

RS063 1.0000

Again we see that the tetrachoric correlations are generally larger in absolute value than the
Pearson correlations. The bivariate probit and Edwards and Edwards estimators (the edwards option)
implemented in tetrachoric may return a correlation matrix that is not positive semidefinite—a
mathematical property of any real correlation matrix. Positive definiteness is required by commands for
analyses of correlation matrices, such as factormat and pcamat; see [MV] factor and [MV] pca. The
posdef option of tetrachoric tests for positive definiteness and projects the estimated correlation
matrix to a positive-semidefinite matrix if needed.

. tetrachoric RS056-RS063, notable posdef

. matrix C = r(Rho)

This time, we suppressed the display of the correlations with the notable option and requested
that the correlation matrix be positive semidefinite with the posdef option. Had the correlation matrix
not been positive definite, tetrachoric would have displayed a warning message and then adjusted
the matrix to be positive semidefinite. We placed the resulting tetrachoric correlation matrix into a
matrix, C, so that we can perform a factor analysis upon it.

tetrachoric with the posdef option asserted that C was positive definite because no warning
message was displayed. We can verify this by using a familiar characterization of symmetric positive-
definite matrices: all eigenvalues are real and positive.

. matrix symeigen eigenvectors eigenvalues = C

. matrix list eigenvalues

eigenvalues[1,8]
e1 e2 e3 e4 e5 e6 e7

r1 2.5974789 1.3544664 1.0532476 .77980391 .73462018 .57984565 .54754512

e8
r1 .35299228

We can proceed with a factor analysis on the matrix C. We use factormat and select iterated
principal factors as the estimation method; see [MV] factor.
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. factormat C, n(3221) ipf factor(2)
(obs=3221)

Factor analysis/correlation Number of obs = 3221
Method: iterated principal factors Retained factors = 2
Rotation: (unrotated) Number of params = 15

Factor Eigenvalue Difference Proportion Cumulative

Factor1 2.06855 1.40178 0.7562 0.7562
Factor2 0.66677 0.47180 0.2438 1.0000
Factor3 0.19497 0.06432 0.0713 1.0713
Factor4 0.13065 0.10967 0.0478 1.1191
Factor5 0.02098 0.10085 0.0077 1.1267
Factor6 -0.07987 0.01037 -0.0292 1.0975
Factor7 -0.09024 0.08626 -0.0330 1.0645
Factor8 -0.17650 . -0.0645 1.0000

LR test: independent vs. saturated: chi2(28) = 4620.01 Prob>chi2 = 0.0000

Factor loadings (pattern matrix) and unique variances

Variable Factor1 Factor2 Uniqueness

RS056 0.5528 0.4120 0.5247
RS057 0.1124 0.4214 0.8098
RS058 0.5333 0.0718 0.7105
RS059 0.6961 -0.1704 0.4865
RS060 -0.1339 -0.0596 0.9785
RS061 -0.5126 0.2851 0.6560
RS062 0.7855 -0.2165 0.3361
RS063 0.2895 0.3919 0.7626

Example 3

We noted in example 2 that the matrix of estimates of the tetrachoric correlation coefficients need
not be positive definite. Here is an example:

. use http://www.stata-press.com/data/r12/familyvalues
(Attitudes on gender, relationships and family)

. tetrachoric RS056-RS063 in 1/20, posdef

(obs=18)

matrix with tetrachoric correlations is not positive semidefinite;
it has 2 negative eigenvalues
maxdiff(corr,adj-corr) = 0.2346
(adj-corr: tetrachoric correlations adjusted to be positive semidefinite)

adj-corr RS056 RS057 RS058 RS059 RS060 RS061 RS062

RS056 1.0000
RS057 0.5284 1.0000
RS058 0.3012 0.2548 1.0000
RS059 0.3251 0.2791 0.0550 1.0000
RS060 -0.5197 -0.4222 -0.7163 0.0552 1.0000
RS061 0.3448 0.4815 -0.0958 -0.1857 -0.0980 1.0000
RS062 0.1066 -0.0375 0.0072 0.3909 -0.2333 -0.7654 1.0000
RS063 0.3830 0.4939 0.4336 0.0075 -0.8937 -0.0337 0.4934

adj-corr RS063

RS063 1.0000
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. mata
mata (type end to exit)

: C2 = st_matrix("r(Rho)")

: eigenvecs = .

: eigenvals = .

: symeigensystem(C2, eigenvecs, eigenvals)

: eigenvals
1 2 3 4

1 3.156592567 2.065279398 1.324911199 .7554904485

5 6 7 8

1 .4845368741 .2131895139 2.02944e-16 -1.11650e-16

: end

The estimated tetrachoric correlation matrix is rank-2 deficient. With this C2 matrix, we can only
use models of correlation that allow for singular cases.

Tetrachoric correlations with simulated data

Example 4

We use drawnorm (see [D] drawnorm) to generate a sample of 1,000 observations from a bivariate
normal distribution with means −1 and 1, unit variances, and correlation 0.4.

. clear

. set seed 11000

. matrix m = (1, -1)

. matrix V = (1, 0.4 \ 0.4, 1)

. drawnorm c1 c2, n(1000) means(m) cov(V)
(obs 1000)

Now consider the measurement model assumed by the tetrachoric correlations. We observe only
whether c1 and c2 are greater than zero,

. generate d1 = (c1 > 0)

. generate d2 = (c2 > 0)

. tabulate d1 d2

d2
d1 0 1 Total

0 176 6 182
1 656 162 818

Total 832 168 1,000

We want to estimate the correlation of c1 and c2 from the binary variables d1 and d2. Pearson’s
correlation of the binary variables d1 and d2 is 0.170—a seriously biased estimate of the underlying
correlation ρ = 0.4.
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. correlate d1 d2
(obs=1000)

d1 d2

d1 1.0000
d2 0.1704 1.0000

The tetrachoric correlation coefficient of d1 and d2 estimates the Pearson correlation of the latent
continuous variables, c1 and c2.

. tetrachoric d1 d2

Number of obs = 1000
Tetrachoric rho = 0.4790

Std error = 0.0700

Test of Ho: d1 and d2 are independent
2-sided exact P = 0.0000

The estimate of the tetrachoric correlation of d1 and d2, 0.4790, is much closer to the underlying
correlation, 0.4, between c1 and c2.

Saved results
tetrachoric saves the following in r():

Scalars
r(rho) tetrachoric correlation coefficient between variables 1 and 2
r(N) number of observations
r(nneg) number of negative eigenvalues (posdef only)
r(se rho) standard error of r(rho)
r(p) exact two-sided significance level

Macros
r(method) estimator used

Matrices
r(Rho) tetrachoric correlation matrix
r(Se Rho) standard errors of r(Rho)
r(Nobs) number of observations used in computing correlation
r(P) exact two-sided significance level matrix

Methods and formulas
tetrachoric is implemented as an ado-file.

tetrachoric provides two estimators for the tetrachoric correlation ρ of two binary variables with
the frequencies nij , i, j = 0, 1. tetrachoric defaults to the slower (iterative) maximum likelihood
estimator obtained from bivariate probit without explanatory variables (see [R] biprobit) by using
the Edwards and Edwards noniterative estimator as the initial value. A fast (noniterative) estimator is
also available by specifying the edwards option (Edwards and Edwards 1984; Digby 1983)

ρ̂ =
α− 1
α+ 1
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where

α =
(
n00n11

n01n10

)π/4
(π = 3.14 . . .)

if all nij > 0. If n00 = 0 or n11 = 0, ρ̂ = −1; if n01 = 0 or n10 = 0, ρ̂ = 1.

The asymptotic variance of the Edwards and Edwards estimator of the tetrachoric correlation is
easily obtained by the delta method,

avar(ρ̂) =
(

πα

2(1 + α)2

)2( 1
n00

+
1
n01

+
1
n10

+
1
n11

)
provided all nij > 0, otherwise it is left undefined (missing). The Edwards and Edwards estimator

is fast, but may be inaccurate if the margins are very skewed.

tetrachoric reports exact p-values for statistical independence, computed by the exact option
of [R] tabulate twoway.
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Also see
[MV] factor — Factor analysis

[MV] pca — Principal component analysis

[R] tabulate twoway — Two-way tables of frequencies

[R] biprobit — Bivariate probit regression

[R] correlate — Correlations (covariances) of variables or coefficients

[R] spearman — Spearman’s and Kendall’s correlations

http://ourworld.compuserve.com/homepages/jsuebersax/irt.htm
http://ourworld.compuserve.com/homepages/jsuebersax/irt.htm


Title

tnbreg — Truncated negative binomial regression

Syntax

tnbreg depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(# | varname) truncation point; default value is ll(0), zero truncation
dispersion(mean) parameterization of dispersion; the default
dispersion(constant) constant dispersion for all observations
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

nolrtest suppress likelihood-ratio test
irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Count outcomes > Truncated negative binomial regression
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Description
tnbreg estimates the parameters of a truncated negative binomial model by maximum likelihood.

The dependent variable depvar is regressed on indepvars, where depvar is a positive count variable
whose values are all above the truncation point.

Options

� � �
Model �

noconstant; see [R] estimation options.

ll(# | varname) specifies the truncation point, which is a nonnegative integer. The default is zero
truncation, ll(0).

dispersion(mean | constant) specifies the parameterization of the model. dispersion(mean),
the default, yields a model with dispersion equal to 1+α exp(xjβ+offsetj); that is, the dispersion
is a function of the expected mean: exp(xjβ+ offsetj). dispersion(constant) has dispersion
equal to 1 + δ; that is, it is a constant for all observations.

exposure(varnamee), offset(varnameo), constraints(constraints), collinear; see [R] esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

nolrtest suppresses fitting the Poisson model. Without this option, a comparison Poisson model is
fit, and the likelihood is used in a likelihood-ratio test of the null hypothesis that the dispersion
parameter is zero.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with tnbreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Grogger and Carson (1991) showed that overdispersion causes inconsistent estimation of the

mean in the truncated Poisson model. To solve this problem, they proposed using the truncated
negative binomial model as an alternative. If data are truncated but do not exhibit overdispersion,
the truncated Poisson model is more appropriate; see [R] tpoisson. For an introduction to negative
binomial regression, see Cameron and Trivedi (2005, 2010) and Long and Freese (2006). For an
introduction to truncated negative binomial models, see Cameron and Trivedi (1998) and Long (1997,
chap. 8).

tnbreg fits the mean-dispersion and the constant-dispersion parameterizations of truncated negative
binomial models. These parameterizations extend those implemented in nbreg; see [R] nbreg.

Example 1

We illustrate the truncated negative binomial model using the 1997 MedPar dataset (Hilbe 1999).
The data are from 1,495 patients in Arizona who were assigned to a diagnostic-related group (DRG)
of patients having a ventilator. Length of stay (los), the dependent variable, is a positive integer; it
cannot have zero values. The data are truncated because there are no observations on individuals who
stayed for zero days.

The objective of this example is to determine whether the length of stay was related to the binary
variables: died, hmo, type1, type2, and type3.

The died variable was recorded as a 0 unless the patient died, in which case, it was recorded
as a 1. The other variables also adopted this encoding. The hmo variable was set to 1 if the patient
belonged to a health maintenance organization (HMO).

The type1–type3 variables indicated the type of admission used for the patient. The type1
variable indicated an emergency admit. The type2 variable indicated an urgent admit—that is, the
first available bed. The type3 variable indicated an elective admission. Because type1–type3 were
mutually exclusive, only two of the three could be used in the truncated negative binomial regression
shown below.

. use http://www.stata-press.com/data/r12/medpar

. tnbreg los died hmo type2-type3, vce(cluster provnum) nolog

Truncated negative binomial regression
Truncation point: 0 Number of obs = 1495
Dispersion = mean Wald chi2(4) = 36.01
Log likelihood = -4737.535 Prob > chi2 = 0.0000

(Std. Err. adjusted for 54 clusters in provnum)

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

died -.2521884 .061533 -4.10 0.000 -.3727908 -.1315859
hmo -.0754173 .0533132 -1.41 0.157 -.1799091 .0290746

type2 .2685095 .0666474 4.03 0.000 .137883 .3991359
type3 .7668101 .2183505 3.51 0.000 .338851 1.194769
_cons 2.224028 .034727 64.04 0.000 2.155964 2.292091

/lnalpha -.630108 .0764019 -.779853 -.480363

alpha .5325343 .0406866 .4584734 .6185588
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Because observations within the same hospital (provnum) are likely to be correlated, we specified
the vce(cluster provnum) option. The results show that whether the patient died in the hospital
and the type of admission have significant effects on the patient’s length of stay.

Example 2

To illustrate truncated negative binomial regression with more complex data than the previous
example, similar data were created from 100 hospitals. Each hospital had its own way of tracking
patient data. In particular, hospitals only recorded data from patients with a minimum length of stay,
denoted by the variable minstay.

Definitions for minimum length of stay varied among hospitals, typically, from 5 to 18 days. The
objective of this example is the same as before: to determine whether the length of stay, recorded in
los, was related to the binary variables: died, hmo, type1, type2, and type3.

The binary variables encode the same information as in example 1 above. The minstay variable
was used to allow for varying truncation points.

. use http://www.stata-press.com/data/r12/medproviders

. tnbreg los died hmo type2-type3, ll(minstay) vce(cluster hospital) nolog

Truncated negative binomial regression
Truncation points: minstay Number of obs = 2144
Dispersion = mean Wald chi2(4) = 15.22
Log likelihood = -7864.0928 Prob > chi2 = 0.0043

(Std. Err. adjusted for 100 clusters in hospital)

Robust
los Coef. Std. Err. z P>|z| [95% Conf. Interval]

died .078104 .0303603 2.57 0.010 .0185988 .1376091
hmo -.0731132 .0368899 -1.98 0.047 -.1454162 -.0008103

type2 .0294132 .0390165 0.75 0.451 -.0470578 .1058843
type3 .0626349 .0540124 1.16 0.246 -.0432275 .1684972
_cons 3.014964 .0291045 103.59 0.000 2.95792 3.072008

/lnalpha -.9965124 .0829428 -1.159077 -.8339475

alpha .3691647 .0306196 .3137756 .4343314

In this analysis, two variables have a statistically significant relationship with length of stay.
On average, patients who died in the hospital had longer lengths of stay (p = 0.01). Because the
coefficient for HMO is negative, that is, bHMO = −0.073, on average, patients who were insured by an
HMO had shorter lengths of stay (p = 0.047). The type of admission was not statistically significant
(p > 0.05).
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Saved results
tnbreg saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k aux) number of auxiliary parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(alpha) value of alpha
e(N clust) number of clusters
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p) significance
e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) tnbreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(llopt) contents of ll(), or 0 if not specified
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(dispers) mean or constant
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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Methods and formulas
tnbreg is implemented as an ado-file.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model

Mean-dispersion model

A negative binomial distribution can be regarded as a gamma mixture of Poisson random variables.
The number of times an event occurs, yj , is distributed as Poisson(νjµj). That is, its conditional
likelihood is

f(yj | νj) =
(νjµj)yje−νjµj

Γ(yj + 1)

where µj = exp(xjβ+ offsetj) and νj is an unobserved parameter with a Gamma(1/α, α) density:

g(ν) =
ν(1−α)/αe−ν/α

α1/αΓ(1/α)

This gamma distribution has a mean of 1 and a variance of α, where α is our ancillary parameter.

The unconditional likelihood for the jth observation is therefore

f(yj) =
∫ ∞

0

f(yj | ν)g(ν) dν =
Γ(m+ yj)

Γ(yj + 1)Γ(m)
pmj (1− pj)yj

where pj = 1/(1 +αµj) and m = 1/α. Solutions for α are handled by searching for lnα because α
must be greater than zero. The conditional probability of observing yj events given that yj is greater
than the truncation point τj is

Pr(Y = yj | yj > τj ,xj) =
f(yj)

Pr(Y > τj |xj)

The log likelihood (with weights wj and offsets) is given by

m = 1/α pj = 1/(1 + αµj) µj = exp(xjβ+ offsetj)

lnL =
n∑
j=1

wj

[
ln{Γ(m+ yj)} − ln{Γ(yj + 1)}

− ln{Γ(m)}+m ln(pj) + yj ln(1− pj)− ln{Pr(Y > τj | pj ,m)}
]
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Constant-dispersion model

The constant-dispersion model assumes that yj is conditionally distributed as Poisson(µ∗j ), where
µ∗j ∼ Gamma(µj/δ, δ) for some dispersion parameter δ [by contrast, the mean-dispersion model
assumes that µ∗j ∼ Gamma(1/α, αµj)]. The log likelihood is given by

mj = µj/δ p = 1/(1 + δ)

lnL =
n∑
j=1

wj

[
ln{Γ(mj + yj)} − ln{Γ(yj + 1)}

− ln{Γ(mj)}+mj ln(p) + yj ln(1− p)− ln{Pr(Y > τj | p,mj)}
]

with everything else defined as shown above in the calculations for the mean-dispersion model.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

tnbreg also supports estimation with survey data. For details on variance–covariance estimates
with survey data, see [SVY] variance estimation.
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Also see
[R] tnbreg postestimation — Postestimation tools for tnbreg

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] tpoisson — Truncated Poisson regression

[R] zinb — Zero-inflated negative binomial regression

[R] zip — Zero-inflated Poisson regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands



Title

tnbreg postestimation — Postestimation tools for tnbreg

Description
The following postestimation commands are available after tnbreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvardisp

} [
if
] [

in
]
, scores

statistic Description

Main

n number of events; the default
ir incidence rate
cm conditional mean, E(yj | yj > τj)
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
cpr(n) conditional probability Pr(yj = n | yj > τj)
cpr(a,b) conditional probability Pr(a ≤ yj ≤ b | yj > τj)
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(xjβ) if neither offset()
nor exposure() was specified when the model was fit; exp(xjβ + offsetj) if offset() was
specified; or exp(xjβ)× exposurej if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. This is equivalent to specifying both the n and the nooffset options.

cm calculates the conditional mean,

E(yj | yj > τj) =
E(yj)

Pr(yj > τj)

where τj is the truncation point found in e(llopt).

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.
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pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

cpr(n) calculates the conditional probability Pr(yj = n | yj > τj), where τj is the truncation point
found in e(llopt). n is an integer greater than the truncation point that may be specified as a
number or a variable.

cpr(a,b) calculates the conditional probability Pr(a ≤ yj ≤ b | yj > τj), where τj is the truncation
point found in e(llopt). The syntax for this option is analogous to that used for pr(a,b) except
that a must be greater than the truncation point.

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified
when the model was fit; xjβ + offsetj if offset() was specified; or xjβ + ln(exposurej) if
exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂( lnα) for dispersion(mean).

The second new variable will contain ∂lnL/∂( lnδ) for dispersion(constant).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

In the following formulas, we use the same notation as in [R] tnbreg.

Methods and formulas are presented under the following headings:

Mean-dispersion model
Constant-dispersion model

Mean-dispersion model

The equation-level scores are given by

score(xβ)j = pj(yj − µj)−
p

(m+1)
j µj

Pr(Y > τj | pj ,m)

score(ω)j =−m
{
α(µj − yj)

1 + αµj
− ln(1 + αµj) + ψ(yj +m)− ψ(m)

}
−

pmj
Pr(Y > τj | pj ,m)

{m ln(pj) + µjpj}

where ωj = lnαj , ψ(z) is the digamma function, and τj is the truncation point found in e(llopt).
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Constant-dispersion model

The equation-level scores are given by

score(xβ)j = mj

{
ψ(yj +mj)− ψ(mj) + ln(p) +

pmj ln(p)
Pr(Y > τj | p,mj)

}
score(ω)j = yj − (yj +mj)(1− p)− score(xβ)j −

µjp

Pr(Y > τj | p,mj)

where ωj = lnδj and τj is the truncation point found in e(llopt).

Also see
[R] tnbreg — Truncated negative binomial regression

[U] 20 Estimation and postestimation commands



Title

tobit — Tobit regression

Syntax
tobit depvar

[
indepvars

] [
if
] [

in
] [

weight
]
, ll

[
(#)

]
ul
[
(#)

] [
options

]
options Description

Model

noconstant suppress constant term
∗ll
[
(#)

]
left-censoring limit

∗ul
[
(#)

]
right-censoring limit

offset(varname) include varname in model with coefficient constrained to 1

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗You must specify at least one of ll
[
(#)
]

or ul
[
(#)
]

.
indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, nestreg, rolling, statsby, stepwise, and svy are allowed; see

[U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, pweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Censored regression > Tobit regression

Description
tobit fits a model of depvar on indepvars where the censoring values are fixed.
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Options

� � �
Model �

noconstant; see [R] estimation options.

ll
[
(#)
]

and ul
[
(#)
]

indicate the lower and upper limits for censoring, respectively. You may specify
one or both. Observations with depvar≤ ll() are left-censored; observations with depvar≥ ul()
are right-censored; and remaining observations are not censored. You do not have to specify the
censoring values at all. It is enough to type ll, ul, or both. When you do not specify a censoring
value, tobit assumes that the lower limit is the minimum observed in the data (if ll is specified)
and the upper limit is the maximum (if ul is specified).

offset(varname); see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: iterate(#),
[
no
]
log, trace, tolerance(#), ltolerance(#),

nrtolerance(#), and nonrtolerance; see [R] maximize. These options are seldom used.

Unlike most maximum likelihood commands, tobit defaults to nolog—it suppresses the iteration
log.

The following option is available with tobit but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Tobit estimation was originally developed by Tobin (1958). A consumer durable was purchased if

a consumer’s desire was high enough, where desire was measured by the dollar amount spent by the
purchaser. If no purchase was made, the measure of desire was censored at zero.

Example 1

We will demonstrate tobit with an artificial example, which in the process will allow us to
emphasize the assumptions underlying the estimation. We have a dataset containing the mileage
ratings and weights of 74 cars. There are no censored variables in this dataset, but we are going to
create one. Before that, however, the relationship between mileage and weight in our complete data is
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. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. generate wgt = weight/1000

. regress mpg wgt

Source SS df MS Number of obs = 74
F( 1, 72) = 134.62

Model 1591.99024 1 1591.99024 Prob > F = 0.0000
Residual 851.469221 72 11.8259614 R-squared = 0.6515

Adj R-squared = 0.6467
Total 2443.45946 73 33.4720474 Root MSE = 3.4389

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

wgt -6.008687 .5178782 -11.60 0.000 -7.041058 -4.976316
_cons 39.44028 1.614003 24.44 0.000 36.22283 42.65774

(We divided weight by 1,000 simply to make discussing the resulting coefficients easier. We find
that each additional 1,000 pounds of weight reduces mileage by 6 mpg.)

mpg in our data ranges from 12 to 41. Let us now pretend that our data were censored in the sense
that we could not observe a mileage rating below 17 mpg. If the true mpg is 17 or less, all we know
is that the mpg is less than or equal to 17:

. replace mpg=17 if mpg<=17
(14 real changes made)

. tobit mpg wgt, ll

Tobit regression Number of obs = 74
LR chi2(1) = 72.85
Prob > chi2 = 0.0000

Log likelihood = -164.25438 Pseudo R2 = 0.1815

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

wgt -6.87305 .7002559 -9.82 0.000 -8.268658 -5.477442
_cons 41.49856 2.05838 20.16 0.000 37.39621 45.6009

/sigma 3.845701 .3663309 3.115605 4.575797

Obs. summary: 18 left-censored observations at mpg<=17
56 uncensored observations
0 right-censored observations

The replace before estimation was not really necessary—we remapped all the mileage ratings below
17 to 17 merely to reassure you that tobit was not somehow using uncensored data. We typed ll
after tobit to inform tobit that the data were left-censored. tobit found the minimum of mpg in
our data and assumed that was the censoring point. We could also have dispensed with replace and
typed ll(17), informing tobit that all values of the dependent variable 17 and below are really
censored at 17. In either case, at the bottom of the table, we are informed that there are, as a result,
18 left-censored observations.

On these data, our estimate is now a reduction of 6.9 mpg per 1,000 extra pounds of weight as
opposed to 6.0. The parameter reported as /sigma is the estimated standard error of the regression;
the resulting 3.8 is comparable with the estimated root mean squared error reported by regress of
3.4.



2220 tobit — Tobit regression

Technical note
You would never want to throw away information by purposefully censoring variables. The regress

estimates are in every way preferable to those of tobit. Our example is designed solely to illustrate
the relationship between tobit and regress. If you have uncensored data, use regress. If your
data are censored, you have no choice but to use tobit.

Example 2

tobit can also fit models that are censored from above. This time, let’s assume that we do not
observe the actual mileage rating of cars yielding 24 mpg or better—we know only that it is at least
24. (Also assume that we have undone the change to mpg we made in the previous example.)

. use http://www.stata-press.com/data/r12/auto, clear
(1978 Automobile Data)

. generate wgt = weight/1000

. regress mpg wgt
(output omitted )

. tobit mpg wgt, ul(24)

Tobit regression Number of obs = 74
LR chi2(1) = 90.72
Prob > chi2 = 0.0000

Log likelihood = -129.8279 Pseudo R2 = 0.2589

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

wgt -5.080645 .43493 -11.68 0.000 -5.947459 -4.213831
_cons 36.08037 1.432056 25.19 0.000 33.22628 38.93445

/sigma 2.385357 .2444604 1.898148 2.872566

Obs. summary: 0 left-censored observations
51 uncensored observations
23 right-censored observations at mpg>=24

Example 3

tobit can also fit models that are censored from both sides (the so-called two-limit tobit):

. tobit mpg wgt, ll(17) ul(24)

Tobit regression Number of obs = 74
LR chi2(1) = 77.60
Prob > chi2 = 0.0000

Log likelihood = -104.25976 Pseudo R2 = 0.2712

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

wgt -5.764448 .7245417 -7.96 0.000 -7.208457 -4.320438
_cons 38.07469 2.255917 16.88 0.000 33.57865 42.57072

/sigma 2.886337 .3952143 2.098676 3.673998

Obs. summary: 18 left-censored observations at mpg<=17
33 uncensored observations
23 right-censored observations at mpg>=24
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Saved results
tobit saves the following in e():

Scalars
e(N) number of observations
e(N unc) number of uncensored observations
e(N lc) number of left-censored observations
e(N rc) number of right-censored observations
e(llopt) contents of ll(), if specified
e(ulopt) contents of ul(), if specified
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(r2 p) pseudo-R-squared
e(chi2) χ2

e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(F) F statistic
e(p) significance
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) tobit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(predict) program used to implement predict
e(footnote) program and arguments to display footnote
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

� �
James Tobin (1918–2002) was an American economist who after education and research at Harvard
moved to Yale, where he was on the faculty from 1950 to 1988. He made many outstanding
contributions to economics and was awarded the Nobel Prize in 1981 “for his analysis of financial
markets and their relations to expenditure decisions, employment, production and prices”. He
trained in the U.S. Navy with the writer in Herman Wouk, who later fashioned a character after
Tobin in the novel The Caine Mutiny (1951): “A mandarin-like midshipman named Tobit, with
a domed forehead, measured quiet speech, and a mind like a sponge, was ahead of the field by
a spacious percentage.”� �
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Methods and formulas
tobit is implemented as an ado-file.

See Methods and formulas in [R] intreg.

See Tobin (1958) for the original derivation of the tobit model. An introductory description
of the tobit model can be found in, for instance, Wooldridge (2009, 587–595), Davidson and
MacKinnon (2004, 484–486), Long (1997, 196–210), and Maddala and Lahiri (2006, 333–336).
Cameron and Trivedi (2010, chap. 16) discuss the tobit model using Stata examples.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

tobit also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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Also see
[R] tobit postestimation — Postestimation tools for tobit

[R] intreg — Interval regression

[R] heckman — Heckman selection model

[R] ivtobit — Tobit model with continuous endogenous regressors

[R] regress — Linear regression

[R] truncreg — Truncated regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtintreg — Random-effects interval-data regression models

[XT] xttobit — Random-effects tobit models

[U] 20 Estimation and postestimation commands



Title

tobit postestimation — Postestimation tools for tobit

Description
The following postestimation commands are available after tobit:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
hausman Hausman’s specification test
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
linktest link test for model specification
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarsigma

} [
if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the linear prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by
predict so that they ignore the offset variable; the linear prediction is treated as xjb rather than
as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂σ.

Remarks
Following Cong (2000), write the tobit model as

y∗i =

{
yi, if a < yi < b
a, if yi ≤ a
b, if yi ≥ b

yi is a latent variable; instead, we observe y∗i , which is bounded between a and b if yi is outside
those bounds.

There are four types of marginal effects that may be of interest in the tobit model, depending on
the application:

1. The β coefficients themselves measure how the unobserved variable yi changes with respect
to changes in the regressors.

2. The marginal effects of the truncated expected value E(y∗i |a < y∗i < b) measure the changes
in yi with respect to changes in the regressors among the subpopulation for which yi is not
at a boundary.

3. The marginal effects of the censored expected value E(y∗i ) describe how the observed
variable y∗i changes with respect to the regressors.

4. The marginal effects of Pr(a < y∗i < b) describe how the probability of being uncensored
changes with respect to the regressors.

In the next example, we show how to obtain each of these.

Example 1

In example 3 of [R] tobit, we fit a two-limit tobit model of mpg on wgt.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. generate wgt = weight/1000
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. tobit mpg wgt, ll(17) ul(24)

Tobit regression Number of obs = 74
LR chi2(1) = 77.60
Prob > chi2 = 0.0000

Log likelihood = -104.25976 Pseudo R2 = 0.2712

mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

wgt -5.764448 .7245417 -7.96 0.000 -7.208457 -4.320438
_cons 38.07469 2.255917 16.88 0.000 33.57865 42.57072

/sigma 2.886337 .3952143 2.098676 3.673998

Obs. summary: 18 left-censored observations at mpg<=17
33 uncensored observations
23 right-censored observations at mpg>=24

tobit reports the β coefficients for the latent regression model. The marginal effect of xk on y is
simply the corresponding βk, because E(y|x) is linear in x. Thus a 1,000-pound increase in a car’s
weight (which is a 1-unit increase in wgt) would lower fuel economy by 5.8 mpg.

To estimate the means of the marginal effects on the expected value of the censored outcome,
conditional on weight being each of three values (2,000; 3,000; and 4,000 pounds), we type

. margins, dydx(wgt) predict(ystar(17,24)) at(wgt=(2 3 4))

Conditional marginal effects Number of obs = 74
Model VCE : OIM

Expression : E(mpg*|17<mpg<24), predict(ystar(17,24))
dy/dx w.r.t. : wgt

1._at : wgt = 2

2._at : wgt = 3

3._at : wgt = 4

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

wgt
_at
1 -1.0861 .311273 -3.49 0.000 -1.696184 -.4760162
2 -4.45315 .4772541 -9.33 0.000 -5.388551 -3.51775
3 -1.412822 .3289702 -4.29 0.000 -2.057591 -.768052

The E(y∗|x) is nonlinear in x, so the marginal effect for a continuous covariate is not the same
as the change in y∗ induced by a one-unit change in x. Recall that the marginal effect at a point
is the slope of the tangent line at that point. In our example, we estimate the mean of the marginal
effects for different values of wgt. The estimated mean of the marginal effects is −1.1 mpg for a
2,000 pound car; −4.5 mpg for a 3,000 pound car; and −1.4 mpg for a 4,000 pound car.
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To estimate the means of the marginal effects on the expected value of the truncated outcome at
the same levels of wgt, we type

. margins, dydx(wgt) predict(e(17,24)) at(wgt=(2 3 4))

Conditional marginal effects Number of obs = 74
Model VCE : OIM

Expression : E(mpg|17<mpg<24), predict(e(17,24))
dy/dx w.r.t. : wgt

1._at : wgt = 2

2._at : wgt = 3

3._at : wgt = 4

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

wgt
_at
1 -1.166572 .0827549 -14.10 0.000 -1.328768 -1.004375
2 -2.308842 .4273727 -5.40 0.000 -3.146477 -1.471207
3 -1.288896 .0889259 -14.49 0.000 -1.463188 -1.114604

The mean of the marginal effects of a change in wgt on yi (which is bounded between 17 and 24)
is about −1.2 mpg for a 2,000 pound car; −2.3 mpg for a 3,000 pound car; and −1.3 for a 4,000
pound car.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] tobit — Tobit regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/products/stb/journals/stb56.pdf
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total — Estimate totals

Syntax
total varlist

[
if
] [

in
] [

weight
] [

, options
]

options Description

if/in/over

over(varlist
[
, nolabel

]
) group over subpopulations defined by varlist; optionally,

suppress group labels

SE/Cluster

vce(vcetype) vcetype may be analytic, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)

noheader suppress table header
nolegend suppress table legend
display options control column formats and line width

coeflegend display legend instead of statistics

bootstrap, jackknife, mi estimate, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, pweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Summaries, tables, and tests > Summary and descriptive statistics > Totals

Description
total produces estimates of totals, along with standard errors.

Options

� � �
if/in/over �

over(varlist
[
, nolabel

]
) specifies that estimates be computed for multiple subpopulations, which

are identified by the different values of the variables in varlist.
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When this option is supplied with one variable name, such as over(varname), the value labels of
varname are used to identify the subpopulations. If varname does not have labeled values (or there
are unlabeled values), the values themselves are used, provided that they are nonnegative integers.
Noninteger values, negative values, and labels that are not valid Stata names are substituted with
a default identifier.

When over() is supplied with multiple variable names, each subpopulation is assigned a unique
default identifier.

nolabel specifies that value labels attached to the variables identifying the subpopulations be
ignored.

� � �
SE/Cluster �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that allow for intragroup correlation, and that use bootstrap or jackknife
methods; see [R] vce option.

vce(analytic), the default, uses the analytically derived variance estimator associated with the
sample total.

� � �
Reporting �

level(#); see [R] estimation options.

noheader prevents the table header from being displayed. This option implies nolegend.

nolegend prevents the table legend identifying the subpopulations from being displayed.

display options: cformat(% fmt) and nolstretch; see [R] estimation options.

The following option is available with total but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks

Example 1

Suppose that we collected data on incidence of heart attacks. The variable heartatk indicates
whether a person ever had a heart attack (1 means yes; 0 means no). We can then estimate the total
number of persons who have had heart attacks for each sex in the population represented by the data
we collected.

. use http://www.stata-press.com/data/r12/total

. total heartatk [pw=swgt], over(sex)

Total estimation Number of obs = 4946

Male: sex = Male
Female: sex = Female

Over Total Std. Err. [95% Conf. Interval]

heartatk
Male 944559 104372.3 739943 1149175

Female 581590 82855.59 419156.3 744023.7
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Saved results
total saves the following in e():

Scalars
e(N) number of observations
e(N over) number of subpopulations
e(N clust) number of clusters
e(k eq) number of equations in e(b)
e(df r) sample degrees of freedom
e(rank) rank of e(V)

Macros
e(cmd) total
e(cmdline) command as typed
e(varlist) varlist
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(cluster) name of cluster variable
e(over) varlist from over()
e(over labels) labels from over() variables
e(over namelist) names from e(over labels)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(properties) b V
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) vector of total estimates
e(V) (co)variance estimates
e( N) vector of numbers of nonmissing observations
e(error) error code corresponding to e(b)

Functions
e(sample) marks estimation sample

Methods and formulas
total is implemented as an ado-file.

Methods and formulas are presented under the following headings:

The total estimator
Survey data
The survey total estimator
The poststratified total estimator
Subpopulation estimation

The total estimator

Let y denote the variable on which to calculate the total and yj , j = 1, . . . , n, denote an individual
observation on y. Let wj be the frequency weight (or iweight), and if no weight is specified, define
wj = 1 for all j. See the next section for pweighted data. The sum of the weights is an estimate
of the population size:

N̂ =
n∑
j=1

wj
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If the population values of y are denoted by Yj , j = 1, . . . , N , the associated population total is

Y =
N∑
j=1

Yj = Ny

where y is the population mean. The total is estimated as

Ŷ = N̂y

The variance estimator for the total is

V̂ (Ŷ ) = N̂2V̂ (y)

where V̂ (y) is the variance estimator for the mean; see [R] mean. The standard error of the total is
the square root of the variance.

If x, xj , x, and X̂ are similarly defined for another variable (observed jointly with y), the
covariance estimator between X̂ and Ŷ is

Ĉov(X̂, Ŷ ) = N̂2Ĉov(x, y)

where Ĉov(x, y) is the covariance estimator between two means; see [R] mean.

Survey data

See [SVY] variance estimation and [SVY] poststratification for discussions that provide background
information for the following formulas.

The survey total estimator

Let Yj be a survey item for the jth individual in the population, where j = 1, . . . ,M and M is
the size of the population. The associated population total for the item of interest is

Y =
M∑
j=1

Yj

Let yj be the survey item for the jth sampled individual from the population, where j = 1, . . . ,m
and m is the number of observations in the sample.

The estimator Ŷ for the population total Y is

Ŷ =
m∑
j=1

wjyj

where wj is a sampling weight. The estimator for the number of individuals in the population is

M̂ =
m∑
j=1

wj

The score variable for the total estimator is the variable itself,

zj(Ŷ ) = yj
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The poststratified total estimator

Let Pk denote the set of sampled observations that belong to poststratum k, and define IPk(j)
to indicate if the jth observation is a member of poststratum k, where k = 1, . . . , LP and LP is
the number of poststrata. Also, let Mk denote the population size for poststratum k. Pk and Mk are
identified by specifying the poststrata() and postweight() options on svyset; see [SVY] svyset.

The estimator for the poststratified total is

Ŷ P =
LP∑
k=1

Mk

M̂k

Ŷk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)wjyj

where

M̂k =
m∑
j=1

IPk(j)wj

The score variable for the poststratified total is

zj(Ŷ P ) =
LP∑
k=1

IPk(j)
Mk

M̂k

(
yj −

Ŷk

M̂k

)

Subpopulation estimation

Let S denote the set of sampled observations that belong to the subpopulation of interest, and
define IS(j) to indicate if the jth observation falls within the subpopulation.

The estimator for the subpopulation total is

Ŷ S =
m∑
j=1

IS(j)wjyj

and its score variable is
zj(Ŷ S) = IS(j) yj

The estimator for the poststratified subpopulation total is

Ŷ PS =
LP∑
k=1

Mk

M̂k

Ŷ Sk =
LP∑
k=1

Mk

M̂k

m∑
j=1

IPk(j)IS(j)wjyj

and its score variable is

zj(Ŷ PS) =
LP∑
k=1

IPk(j)
Mk

M̂k

{
IS(j) yj −

Ŷ Sk

M̂k

}
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Also see
[R] total postestimation — Postestimation tools for total

[R] mean — Estimate means

[R] proportion — Estimate proportions

[R] ratio — Estimate ratios

[MI] estimation — Estimation commands for use with mi estimate

[SVY] direct standardization — Direct standardization of means, proportions, and ratios

[SVY] poststratification — Poststratification for survey data

[SVY] subpopulation estimation — Subpopulation estimation for survey data

[SVY] svy estimation — Estimation commands for survey data

[SVY] variance estimation — Variance estimation for survey data

[U] 20 Estimation and postestimation commands



Title

total postestimation — Postestimation tools for total

Description
The following postestimation commands are available after total:

Command Description

estat VCE
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Remarks

Example 1

Continuing with our data on incidence of heart attacks from example 1 in [R] total, we want to
test whether there are twice as many heart attacks among men than women in the population.

. use http://www.stata-press.com/data/r12/total

. total heartatk [pw=swgt], over(sex)

(output omitted )
. test _b[Male] = 2*_b[Female]

( 1) [heartatk]Male - 2 [heartatk]Female = 0

F( 1, 4945) = 1.25
Prob > F = 0.2643

Thus we do not reject our hypothesis that the total number of heart attacks for men is twice that for
women in the population.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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Also see
[R] total — Estimate totals

[U] 20 Estimation and postestimation commands



Title

tpoisson — Truncated Poisson regression

Syntax
tpoisson depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(# | varname) truncation point; default value is ll(0), zero truncation
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Count outcomes > Truncated Poisson regression
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Description
tpoisson estimates the parameters of a truncated Poisson model by maximum likelihood. The

dependent variable depvar is regressed on indepvars, where depvar is a positive count variable whose
values are all above the truncation point.

Options� � �
Model �

noconstant; see [R] estimation options.

ll(# | varname) specifies the truncation point, which is a nonnegative integer. The default is zero
truncation, ll(0).

exposure(varnamee), offset(varnameo), constraints(constraints), collinear; see [R] esti-
mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated. irr may be specified at estimation or when replaying
previously estimated results.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with tpoisson but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
Truncated Poisson regression is used to model the number of occurrences of an event when that

number is restricted to be above the truncation point. If the dependent variable is not truncated,
standard Poisson regression may be more appropriate; see [R] poisson. Truncated Poisson regression
was first proposed by Grogger and Carson (1991). For an introduction to Poisson regression, see
Cameron and Trivedi (2005, 2010) and Long and Freese (2006). For an introduction to truncated
Poisson models, see Cameron and Trivedi (1998) and Long (1997, chap. 8).
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Suppose that the patients admitted to a hospital for a given condition form a random sample from
a population of interest and that each admitted patient stays at least one day. You are interested in
modeling the length of stay of patients in days. The sample is truncated at zero because you only
have data on individuals who stayed at least one day. tpoisson accounts for the truncated sample,
whereas poisson does not.

Truncation is not the same as censoring. Right-censored Poisson regression was implemented in
Stata by Raciborski (2011).

Example 1

Consider the Simonoff (2003) dataset of running shoes for a sample of runners who registered
an online running log. A running-shoe marketing executive is interested in knowing how the number
of running shoes purchased relates to other factors such as gender, marital status, age, education,
income, typical number of runs per week, average miles run per week, and the preferred type of
running. These data are naturally truncated at zero. A truncated Poisson model is fit to the number
of shoes owned on runs per week, miles run per week, gender, age, and marital status.

No options are needed because zero truncation is the default for tpoisson.

. use http://www.stata-press.com/data/r12/runshoes

. tpoisson shoes rpweek mpweek male age married

Iteration 0: log likelihood = -88.328151
Iteration 1: log likelihood = -86.272639
Iteration 2: log likelihood = -86.257999
Iteration 3: log likelihood = -86.257994

Truncated Poisson regression Number of obs = 60
Truncation point: 0 LR chi2(5) = 22.75

Prob > chi2 = 0.0004
Log likelihood = -86.257994 Pseudo R2 = 0.1165

shoes Coef. Std. Err. z P>|z| [95% Conf. Interval]

rpweek .1575811 .1097893 1.44 0.151 -.057602 .3727641
mpweek .0210673 .0091113 2.31 0.021 .0032094 .0389252

male .0446134 .2444626 0.18 0.855 -.4345246 .5237513
age .0185565 .0137786 1.35 0.178 -.008449 .045562

married -.1283912 .2785044 -0.46 0.645 -.6742498 .4174674
_cons -1.205844 .6619774 -1.82 0.069 -2.503296 .0916078

Using the zero-truncated Poisson regression with these data, only the coefficient on average miles
per week is statistically significant at the 5% level.

Example 2

Semiconductor manufacturing requires that silicon wafers be coated with a layer of metal oxide.
The depth of this layer is strictly controlled. In this example, a critical oxide layer is designed for
300± 20 angstroms (Å).

After the oxide layer is coated onto a wafer, the wafer enters a photolithography step in which the
lines representing the electrical connections are printed on the oxide and later etched and filled with
metal. The widths of these lines are measured. In this example, they are controlled to 90±5 micrometers
(µm).
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After these and other steps, each wafer is electrically tested at probe. If too many failures are
discovered, the wafer is rejected and sent for engineering analysis. In this example, the maximum
number of probe failures tolerated for this product is 10.

A major failure at probe has been encountered—88 wafers had more than 10 failures each. The
88 wafers that failed were tested using 4 probe machines. The engineer suspects that the failures
were a result of faulty probe machines, poor depth control, or poor line widths. The line widths and
depths in these data are the actual measurement minus its specification target, 300 Å for the oxide
depths and 90 µm for the line widths.

The following table tabulates the average failure rate for each probe using Stata’s mean command;
see [R] mean.

. use http://www.stata-press.com/data/r12/probe

. mean failures, over(probe) nolegend

Mean estimation Number of obs = 88

Over Mean Std. Err. [95% Conf. Interval]

failures
1 15.875 1.186293 13.51711 18.23289
2 14.95833 .5912379 13.78318 16.13348
3 16.47059 .9279866 14.62611 18.31506
4 23.09677 .9451117 21.21826 24.97529

The 95% confidence intervals in this table suggest that there are about 5–11 additional failures
per wafer on probe 4. These are unadjusted for varying line widths and oxide depths. Possibly, probe
4 received the wafers with larger line widths or extreme oxide depths.

Truncated Poisson regression more clearly identifies the root causes for the increased failures by
estimating the differences between probes adjusted for the line widths and oxide depths. It also allows
us to determine whether the deviations from specifications in line widths or oxide depths might be
contributing to the problem.

. tpoisson failures i.probe depth width, ll(10) nolog

Truncated Poisson regression Number of obs = 88
Truncation point: 10 LR chi2(5) = 73.70

Prob > chi2 = 0.0000
Log likelihood = -239.35746 Pseudo R2 = 0.1334

failures Coef. Std. Err. z P>|z| [95% Conf. Interval]

probe
2 -.1113037 .1019786 -1.09 0.275 -.3111781 .0885707
3 .0114339 .1036032 0.11 0.912 -.1916245 .2144924
4 .4254115 .0841277 5.06 0.000 .2605242 .5902989

depth -.0005034 .0033375 -0.15 0.880 -.0070447 .006038
width .0330225 .015573 2.12 0.034 .0025001 .063545
_cons 2.714025 .0752617 36.06 0.000 2.566515 2.861536

The coefficients listed for the probes are testing the null hypothesis: H0 : probei = probe1, where i
equals 2, 3, and 4. Because the only coefficient that is statistically significant is the one for testing for
H0 : probe4 = probe1, p < 0.001, and because the p-values for the other probes are not statistically
significant, that is, p ≥ 0.275, the implication is that there is a difference between probe 4 and the
other machines. Because the coefficient for this test is positive, 0.425, the conclusion is that the
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average failure rate for probe 4, after adjusting for line widths and oxide depths, is higher than the
other probes. Possibly, probe 4 needs calibration or the head used with this machine is defective.

Line-width control is statistically significant, p = 0.034, but variation in oxide depths is not causing
the increased failure rate. The engineer concluded that the sudden increase in failures is the result of
two problems. First, probe 4 is malfunctioning, and second, there is a possible lithography or etching
problem.

Saved results
tpoisson saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(chi2) χ2

e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) tpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(llopt) contents of ll(), or 0 if not specified
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
tpoisson is implemented as an ado-file.

The conditional probability of observing yj events given that yj > τj , where τj is the truncation
point, is given by

Pr(Y = yj | yj > τj ,xj) =
exp(−λ)λyj

yj !Pr(Y > τj |xj)

The log likelihood (with weights wj and offsets) is given by

ξj = xjβ+ offsetj

f(yj) =
exp{− exp(ξj)} exp(ξjyj)

yj !Pr(Y > τj | ξj)

lnL =
n∑
j=1

wj [− exp(ξj) + ξjyj − ln(yj !)− ln {Pr(Y > τj | ξj)}]

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

tpoisson also supports estimation with survey data. For details on variance–covariance estimates
with survey data, see [SVY] variance estimation.
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tpoisson postestimation — Postestimation tools for tpoisson

Description
The following postestimation commands are available after tpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

statistic Description

Main

n number of events; the default
ir incidence rate
cm conditional mean, E(yj | yj > τj)
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
cpr(n) conditional probability Pr(yj = n | yj > τj)
cpr(a,b) conditional probability Pr(a ≤ yj ≤ b | yj > τj)
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to xjβ

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is exp(xjβ) if neither offset()
nor exposure() was specified when the model was fit; exp(xjβ + offsetj) if offset() was
specified; or exp(xjβ)× exposurej if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. This is equivalent to specifying both the n and the nooffset options.

cm calculates the conditional mean,

E(yj | yj > τj) =
E(yj)

Pr(yj > τj)

where τj is the truncation point found in e(llopt).

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.
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pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

cpr(n) calculates the conditional probability Pr(yj = n | yj > τj), where τj is the truncation point
found in e(llopt). n is an integer greater than the truncation point that may be specified as a
number or a variable.

cpr(a,b) calculates the conditional probability Pr(a ≤ yj ≤ b | yj > τj), where τj is the truncation
point found in e(llopt). The syntax for this option is analogous to that used for pr(a,b) except
that a must be greater than the truncation point.

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified
when the model was fit; xjβ + offsetj if offset() was specified; or xjβ + ln(exposurej) if
exposure() was specified; see nooffset below.

stdp calculates the standard error of the linear prediction.

score calculates the equation-level score, ∂lnL/∂(xjβ).

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

In the following formula, we use the same notation as in [R] tpoisson.

The equation-level scores are given by

score(xβ)j = yj − eξj −
e−e

ξj
eξj

Pr(Y > τj | ξj)

where τj is the truncation point found in e(llopt).

Also see
[R] tpoisson — Truncated Poisson regression

[U] 20 Estimation and postestimation commands
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translate — Print and translate logs

Syntax

Print log and SMCL files

print filename
[
, like(ext) name(windowname) override options

]
Translate log files to SMCL files and vice versa

translate filenamein filenameout

[
, translator(tname) name(windowname)

override options replace
]

View translator parameter settings

translator query
[
tname

]
Change translator parameter settings

translator set
[
tname setopt setval

]
Return translator parameter settings to default values

translator reset tname

List current mappings from one extension to another

transmap query
[
.ext

]
Specify that files with one extension be treated the same as files with another extension

transmap define .extnew .extold

filename in print, in addition to being a filename to be printed, may be specified as @Results to
mean the Results window and @Viewer to mean the Viewer window.

filenamein in translate may be specified just as filename in print.

tname in translator specifies the name of a translator; see the translator() option under Options
for translate.

Description

print prints log, SMCL, and text files. Although there is considerable flexibility in how print
(and translate, which print uses) can be set to work, they have already been set up and should
just work:

. print mylog.smcl

. print mylog.log
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Unix users may discover that they need to do a bit of setup before print works; see Printing files,
Unix below. International Unix users may also wish to modify the default paper size. All users can
tailor print and translate to their needs.

print may also be used to print the current contents of the Results window or the Viewer. For
instance, the current contents of the Results window could be printed by typing

. print @Results

translate translates log and SMCL files from one format to another, the other typically being
suitable for printing. translate can also translate SMCL logs (logs created by typing, say, log using
mylog) to plain text:

. translate mylog.smcl mylog.log

You can use translate to recover a log when you have forgotten to start one. You may type

. translate @Results mylog.txt

to capture as plain text what is currently shown in the Results window.

This entry provides a general overview of print and translate and covers in detail the printing
and translation of text (nongraphic) files.

translator query, translator set, and translator reset show, change, and restore the
default values of the settings for each translator.

transmap define and transmap query create and show mappings from one file extension to
another for use with print and translate.

For example, print myfile.txt knows to use a translator appropriate for printing text files
because of the .txt extension. However, it does not know what to do with .xyz files. If you have
.xyz files and always wish to treat them as .txt files, you can type transmap define .xyz .txt.

Options for print
like(ext) specifies how the file should be translated to a form suitable for printing. The default is to

determine the translation method from the extension of filename. Thus mylog.smcl is translated
according to the rule for translating smcl files, myfile.txt is translated according to the rule for
translating txt files, and so on. (These rules are, in fact, translate’s smcl2prn and txt2prn
translators, but put that aside for the moment.)

Rules for the following extensions are predefined:

.txt assume input file contains plain text

.log assume input file contains Stata log text

.smcl assume input file contains SMCL

To print a file that has an extension different from those listed above, you can define a new
extension, but you do not have to do that. Assume that you wish to print the file read.me, which
you know to contain plain text. If you were just to type print read.me, you would be told that
Stata cannot translate .me files. (You would actually be told that the translator for me2prn was
not found.) You could type print read.me, like(txt) to tell print to print read.me like a
.txt file.

On the other hand, you could type

. transmap define .me .txt
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to tell Stata that .me files are always to be treated like .txt files. If you did that, Stata would
remember the new rule, even in future sessions.

When you specify the like() option, you override the recorded rules. So, if you were to type
print mylog.smcl, like(txt), the file would be printed as plain text (meaning that all the
SMCL commands would show).

name(windowname) specifies which window to print when printing a Viewer. The default is for
Stata to print the topmost Viewer [Unix(GUI) users: See the second technical note in Printing files,
Unix]. The name() option is ignored when printing the Results window.

The window name is located inside parentheses in the window title. For example, if the title for
a Viewer window is Viewer (#1) [help print], the name for the window is #1.

override options refers to translate’s options for overriding default values. print uses translate
to translate the file into a format suitable for sending to the printer, and thus translate’s
override options may also be used with print. The settings available vary between each translator
(for example, smcl2ps will have different settings than smcl2txt) and may also differ across
operating systems (for example, Windows may have different printing options than Mac OS X).
To find out what you can override when printing .smcl files, type

. translator query smcl2prn
(output omitted )

In the omitted output, you might learn that there is an rmargin # tunable value, which specifies
the right margin in inches. You could specify the override option rmargin(#) to temporarily
override the default value, or you could type translator set smcl2prn rmargin # beforehand
to permanently reset the value.

Alternatively, on some computers with some translators, you might discover that nothing can be
set.

Options for translate

translator(tname) specifies the name of the translator to be used to translate the file. The available
translators are

tname Input Output

smcl2ps SMCL PostScript
log2ps Stata text log PostScript
txt2ps generic text file PostScript
Viewer2ps Viewer window PostScript
Results2ps Results window PostScript
smcl2prn SMCL default printer format
log2prn Stata text log default printer format
txt2prn generic text log default printer format
Results2prn Results window default printer format
Viewer2prn Viewer window default printer format
smcl2txt SMCL generic text file
smcl2log SMCL Stata text log
Results2txt Results window generic text file
Viewer2txt Viewer window generic text file
smcl2pdf SMCL PDF
log2pdf Stata text log PDF
txt2pdf generic text log PDF
Results2pdf Results window PDF
Viewer2pdf Viewer window PDF
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If translator() is not specified, translate determines which translator to use from extensions
of the filenames specified. Typing translate myfile.smcl myfile.ps would use the smcl2ps
translator. Typing translate myfile.smcl myfile.ps, translate(smcl2prn)would override
the default and use the smcl2prn translator.

Actually, when you type translate a.b c.d, translate looks up .b in the transmap extension-
synonym table. If .b is not found, the translator b2d is used. If .b is found in the table, the
mapped extension is used (call it b′), and then the translator b′2d is used. For example,

Command Translator used
. translate myfile.smcl myfile.ps smcl2ps

. translate myfile.odd myfile.ps odd2ps, which does not exist, so error

. transmap define .odd .txt

. translate myfile.odd myfile.ps txt2ps

You can list the mappings that translate uses by typing transmap query.

name(windowname) specifies which window to translate when translating a Viewer. The default is for
Stata to translate the topmost Viewer. The name() option is ignored when translating the Results
window.

The window name is located inside parentheses in the window title. For example, if the title for
a Viewer window is Viewer (#1) [help print], the name for the window is #1.

override options override any of the default options of the specified or implied translator. To find
out what you can override for, say, log2ps, type

. translator query log2ps
(output omitted )

In the omitted output, you might learn that there is an rmargin # tunable value, which, for
log2ps, specifies the right margin in inches. You could specify the override option rmargin(#)
to temporarily override the default value or type translator set log2ps rmargin # beforehand
to permanently reset the value.

replace specifies that filenameout be replaced if it already exists.

Remarks
Remarks are presented under the following headings:

Printing files
Printing files, Mac and Windows
Printing files, Unix
Translating files from one format to another

Printing files

Printing should be easy; just type

. print mylog.smcl

. print mylog.log

You can use print to print SMCL files, plain text files, and even the contents of the Results and
Viewer windows:

. print @Results
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. print @Viewer

. print @Viewer, name(#2)

For information about printing and translating graph files, see [G-2] graph print and see [G-2] graph
export.

Printing files, Mac and Windows

When you type print, you are using the same facility that you would be using if you had selected
Print from the File menu. If you try to print a file that Stata does not know about, Stata will complain:

. print read.me
translator me2prn not found
(perhaps you need to specify the like() option)
r(111);

Then you could type

. print read.me, like(txt)

to indicate that you wanted read.me sent to the printer in the same fashion as if the file were named
readme.txt, or you could type

. transmap define .me .txt

. print read.me

Here you are telling Stata once and for all that you want files ending in .me to be treated in the
same way as files ending in .txt. Stata will remember this mapping, even across sessions. To clear
the .me mapping, type

. transmap define .me

To see all the mappings, type

. transmap query

To print to a file, use the translate command, not print:

. translate mylog.smcl mylog.prn

translate prints to a file by using the Windows print driver when the new filename ends in .prn.
Under Mac, the prn translators are the same as the pdf translators. We suggest that you simply use
the .pdf file extension when printing to a file.

Printing files, Unix

Stata assumes that you have a PostScript printer attached to your Unix computer and that the Unix
command lpr(1) can be used to send PostScript files to it, but you can change this. On your Unix
system, typing

mycomputer$ lpr < filename

may not be sufficient to print PostScript files. For instance, perhaps on your system you would need
to type

mycomputer$ lpr -Plexmark < filename

or

mycomputer$ lpr -Plexmark filename
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or something else. To set the print command to be lpr -Plexmark filename and to state that the
printer expects to receive PostScript files, type

. printer define prn ps "lpr -Plexmark @"

To set the print command to lpr -Plexmark < filename and to state that the printer expects to receive
plain text files, type

. printer define prn txt "lpr -Plexmark < @"

That is, just type the command necessary to send files to your printer and include an @ sign where
the filename should be substituted. Two file formats are available: ps and txt. The default setting,
as shipped from the factory, is

. printer define prn ps "lpr < @"

We will return to the printer command in the technical note that follows because it has some other
capabilities you should know about.

In any case, after you redefine the default printer, the following should just work:

. print mylog.smcl

. print mylog.log

If you try to print a file that Stata does not know about, it will complain:

. print read.me
translator me2prn not found
r(111);

Here you could type

. print read.me, like(txt)

to indicate that you wanted read.me sent to the printer in the same fashion as if the file were named
readme.txt, or you could type

. transmap define .me .txt

. print read.me

Here you are telling Stata once and for all that you want files ending in .me to be treated in the
same way as files ending in .txt. Stata will remember this setting for .me, even across sessions.

If you want to clear the .me setting, type

. transmap define .me

If you want to see all your settings, type

. transmap query

Technical note

The syntax of the printer command is

printer define printername
[ {

ps | txt
}
"Unix command with @"

]
printer query

[
printername

]
You may define multiple printers. By default, print uses the printer named prn, but print has the
syntax

print filename
[
, like(ext) printer(printername) override options

]
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so, if you define multiple printers, you may route your output to them.

For instance, if you have a second printer on your system, you might type
. printer define lexmark ps "lpr -Plexmark < @"

After doing that, you could type
. print myfile.smcl, printer(lexmark)

Any printers that you set will be remembered even across sessions. You can delete printers:
. printer define lexmark

You can list all the defined printers by typing printer query, and you can list the definition of a
particular printer, say, prn, by typing printer query prn.

The default printer prn we have predefined for you is
. printer define prn ps "lpr < @"

meaning that we assume that it is a PostScript printer and that the Unix command lpr(1), without
options, is sufficient to cause files to print. Feel free to change the default definition. If you change
it, the change will be remembered across sessions.

Technical note
Unix(GUI) users should note that X-Windows does not have the concept of a window z-order, which

prevents Stata from determining which window is the topmost window. Instead, Stata determines
which window is topmost based on which window has the focus. However, some window managers
will set the focus to a window without bringing the window to the top. What Stata considers the
topmost window may not appear topmost visually. For this reason, you should always use the name()
option to ensure that the correct window is printed.

Technical note
When you select the Results window to print from the Print menu or toolbar button, the result is

the same as if you were to issue the print command. When you select a Viewer window to print
from the Print menu or toolbar button, the result is the same as if you were to issue the print
command with a name() option.

The translation to PostScript format is done by translate and, in particular, is performed by
the translators smcl2ps, log2ps, and txt2ps. There are many tunable parameters in each of these
translators. You can display the current values of these tunable parameters for, say, smcl2ps by
typing

. translator query smcl2ps
(output omitted )

and you can set any of the tunable parameters (for instance, setting smcl2ps’s rmargin value to 1)
by typing

. translator set smcl2ps rmargin 1
(output omitted )

Any settings you make will be remembered across sessions. You can reset smcl2ps to be as it was
when Stata was shipped by typing

. translator reset smcl2ps
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Translating files from one format to another

If you have a SMCL log, which you might have created by previously typing log using mylog,
you can translate it to an text log by typing

. translate myfile.smcl myfile.log

and you can translate it to a PostScript file by typing

. translate myfile.smcl myfile.ps

translate translates files from one format to another, and, in fact, print uses translate to
produce a file suitable for sending to the printer.

When you type

. translate a.b c.d

translate looks for the predefined translator b2d and uses that to perform the translation. If there
is a transmap synonym for b, however, the mapped value b′ is used: b′2d.

Only certain translators exist, and they are listed under the description of the translate() option
in Options for translate above, or you can type

. translator query

for a complete (and perhaps more up-to-date) list.

Anyway, translate forms the name b2d or b′2d, and if the translator does not exist, translate
issues an error message. With the translator() option, you can specify exactly which translator
to use, and then it does not matter how your files are named.

The only other thing to know is that some translators have tunable parameters that affect how they
perform their translation. You can type

. translator query translator_name

to find out what those parameters are. Some translators have no tunable parameters, and some have
many:
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. translator query smcl2ps

header on
headertext

logo on
user

projecttext
cmdnumber on

fontsize 9 lmargin 1.00
pagesize letter rmargin 1.00

pagewidth 8.50 tmargin 1.00
pageheight 11.00 bmargin 1.00

scheme monochrome

cust1_result_color 0 0 0 cust2_result_color 0 0 0
cust1_standard_color 0 0 0 cust2_standard_color 0 0 0

cust1_error_color 0 0 0 cust2_error_color 255 0 0
cust1_input_color 0 0 0 cust2_input_color 0 0 0
cust1_link_color 0 0 0 cust2_link_color 0 0 255

cust1_hilite_color 0 0 0 cust2_hilite_color 0 0 0
cust1_result_bold on cust2_result_bold on

cust1_standard_bold off cust2_standard_bold off
cust1_error_bold on cust2_error_bold on
cust1_input_bold off cust2_input_bold off
cust1_link_bold off cust2_link_bold off

cust1_hilite_bold on cust2_hilite_bold on
cust1_link_underline on cust2_link_underline on

cust1_hilite_underline off cust2_hilite_underline off

You can temporarily override any setting by specifying the setopt(setval) option on the translate
(or print) command. For instance, you can type

. translate . . . , . . . cmdnumber(off)

or you can reset the value permanently by typing

. translator set smcl2ps setopt setval

For instance,

. translator set smcl2ps cmdnumber off

If you reset a value, Stata will remember the change, even in future sessions.

Mac and Windows users: The smcl2ps (and the other *2ps translators) are not used by print,
even when you have a PostScript printer attached to your computer. Instead, the Mac or Windows print
driver is used. Resetting smcl2ps values will not affect printing; instead, you change the defaults
in the Printers Control Panel in Windows and by selecting Page Setup... from the File menu in
Mac. You can, however, translate files yourself using the smcl2ps translator and the other *2ps
translators.

Saved results
transmap query .ext saves in macro r(suffix) the mapped extension (without the leading

period) or saves ext if the ext is not mapped.

translator query translatorname saves setval in macro r(setopt) for every setopt, setval pair.
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printer query printername (Unix only) saves in macro r(suffix) the “filetype” of the input
that the printer expects (currently “ps” or “txt”) and, in macro r(command), the command to send
output to the printer.

Methods and formulas
print is implemented as an ado-file.

Also see
[R] log — Echo copy of session to file

[G-2] graph export — Export current graph

[G-2] graph print — Print a graph

[G-2] graph set — Set graphics options

[P] smcl — Stata Markup and Control Language

[U] 15 Saving and printing output—log files
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treatreg — Treatment-effects model

Syntax

Basic syntax

treatreg depvar
[

indepvars
]
, treat(depvart = indepvarst)

[
twostep

]
Full syntax for maximum likelihood estimates only

treatreg depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

treat(depvart = indepvarst
[
, noconstant

]
)
[

treatreg ml options
]

Full syntax for two-step consistent estimates only

treatreg depvar
[

indepvars
] [

if
] [

in
]
,

treat(depvart = indepvarst
[
, noconstant

]
) twostep

[
treatreg ts options

]
treatreg ml options Description

Model
∗treat() equation for treatment effects
noconstant suppress constant term
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
noskip perform likelihood-ratio test
hazard(newvar) create newvar containing hazard from treatment equation
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗treat(depvart = indepvarst
[
, noconstant

]
) is required.

2257
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treatreg ts options Description

Model
∗treat() equation for treatment effects
∗twostep produce two-step consistent estimate
noconstant suppress constant term

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)

first report first-step probit estimates
hazard(newvar) create newvar containing hazard from treatment equation
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

coeflegend display legend instead of statistics

∗treat(depvart = indepvarst
[
, noconstant

]
) and twostep are required.

indepvars and indepvarst may contain factor variables; see [U] 11.4.3 Factor variables.
depvar, indepvars, depvart, and indepvarst may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
twostep, vce(), first, noskip, hazard(), and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, aweights, fweights, and iweights are allowed with maximum likelihood estimation;

see [U] 11.1.6 weight. No weights are allowed if twostep is specified.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
treatreg for maximum likelihood estimates

Statistics > Sample-selection models > Treatment-effects model (ML)

treatreg for two-step consistent estimates

Statistics > Sample-selection models > Treatment-effects model (two-step)

Description
treatreg fits a treatment-effects model by using either a two-step consistent estimator or full

maximum likelihood. The treatment-effects model considers the effect of an endogenously chosen
binary treatment on another endogenous continuous variable, conditional on two sets of independent
variables.



treatreg — Treatment-effects model 2259

Options for maximum likelihood estimates

� � �
Model �

treat(depvart = indepvarst
[
, noconstant

]
) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

noconstant, constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test that all the parameters in the regression equation
are zero (except the constant). For many models, this option can substantially increase estimation
time.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with treatreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Options for two-step consistent estimates

� � �
Model �

treat(depvart = indepvarst
[
, noconstant

]
) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

twostep specifies that two-step consistent estimates of the parameters, standard errors, and covariance
matrix be produced, instead of the default maximum likelihood estimates.

noconstant; see [R] estimation options.
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� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory and that use bootstrap or jackknife methods; see [R] vce option.

vce(conventional), the default, uses the conventionally derived variance estimator for the
two-step estimator of the treatment-effects model.

� � �
Reporting �

level(#); see [R] estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before
estimation.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with treatreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The treatment-effects model estimates the effect of an endogenous binary treatment, zj , on a

continuous, fully observed variable yj , conditional on the independent variables xj and wj . The
primary interest is in the regression function

yj = xjβ+ δzj + εj

where zj is an endogenous dummy variable indicating whether the treatment is assigned or not. The
binary decision to obtain the treatment zj is modeled as the outcome of an unobserved latent variable,
z∗j . It is assumed that z∗j is a linear function of the exogenous covariates wj and a random component
uj . Specifically,

z∗j = wjγ+ uj

and the observed decision is

zj =
{

1, if z∗j > 0
0, otherwise

where ε and u are bivariate normal with mean zero and covariance matrix[
σ2 ρσ
ρσ 1

]
There are many variations of this model in the literature. Maddala (1983) derives the maximum

likelihood and two-step estimators of the version implemented here and also gives a brief review of
several empirical applications of this model. Barnow, Cain, and Goldberger (1981) provide another
useful derivation of this model. Barnow, Cain, and Goldberger (1981) concentrate on deriving the
conditions for which the self-selection bias of the simple OLS estimator of the treatment effect, δ, is
nonzero and of a specific sign.
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Example 1

We will illustrate treatreg with part of the Mroz dataset distributed with Berndt (1996). This
dataset contains 753 observations on women’s labor supply. Our subsample is of 250 observations,
with 150 market laborers and 100 nonmarket laborers.

. use http://www.stata-press.com/data/r12/labor

. describe

Contains data from http://www.stata-press.com/data/r12/labor.dta
obs: 250

vars: 15 18 Apr 2011 05:01
size: 15,000

storage display value
variable name type format label variable label

lfp float %9.0g 1 if woman worked in 1975
whrs float %9.0g wife’s hours of work
kl6 float %9.0g # of children younger than 6
k618 float %9.0g # of children between 6 and 18
wa float %9.0g wife’s age
we float %9.0g wife’s education attainment
ww float %9.0g wife’s wage
hhrs float %9.0g husband’s hours worked in 1975
ha float %9.0g husband’s age
he float %9.0g husband’s educational attainment
hw float %9.0g husband’s wage
faminc float %9.0g family income
wmed float %9.0g wife’s mother’s educational

attainment
wfed float %9.0g wife’s father’s educational

attainment
cit float %9.0g 1 if live in large city

Sorted by:

. summarize

Variable Obs Mean Std. Dev. Min Max

lfp 250 .6 .4908807 0 1
whrs 250 799.84 915.6035 0 4950
kl6 250 .236 .5112234 0 3

k618 250 1.364 1.370774 0 8
wa 250 42.92 8.426483 30 60

we 250 12.352 2.164912 5 17
ww 250 2.27523 2.59775 0 14.631

hhrs 250 2234.832 600.6702 768 5010
ha 250 45.024 8.171322 30 60
he 250 12.536 3.106009 3 17

hw 250 7.494435 4.636192 1.0898 40.509
faminc 250 23062.54 12923.98 3305 91044

wmed 250 9.136 3.536031 0 17
wfed 250 8.608 3.751082 0 17
cit 250 .624 .4853517 0 1

We will assume that the wife went to college if her educational attainment is more than 12 years.
Let wc be the dummy variable indicating whether the individual went to college. With this definition,
our sample contains the following distribution of college education:
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. generate wc = 0

. replace wc = 1 if we > 12
(69 real changes made)

. tab wc

wc Freq. Percent Cum.

0 181 72.40 72.40
1 69 27.60 100.00

Total 250 100.00

We will model the wife’s wage as a function of her age, whether the family was living in a big city,
and whether she went to college. An ordinary least-squares estimation produces the following results:

. regress ww wa cit wc

Source SS df MS Number of obs = 250
F( 3, 246) = 4.82

Model 93.2398568 3 31.0799523 Prob > F = 0.0028
Residual 1587.08776 246 6.45157627 R-squared = 0.0555

Adj R-squared = 0.0440
Total 1680.32762 249 6.74830369 Root MSE = 2.54

ww Coef. Std. Err. t P>|t| [95% Conf. Interval]

wa -.0104985 .0192667 -0.54 0.586 -.0484472 .0274502
cit .1278922 .3389058 0.38 0.706 -.5396351 .7954195
wc 1.332192 .3644344 3.66 0.000 .6143819 2.050001

_cons 2.278337 .8432385 2.70 0.007 .6174488 3.939225

Is 1.332 a consistent estimate of the marginal effect of a college education on wages? If individuals
choose whether to attend college and the error term of the model that gives rise to this choice is
correlated with the error term in the wage equation, then the answer is no. (See Barnow, Cain, and
Goldberger [1981] for a good discussion of the existence and sign of selectivity bias.) We might
suspect that individuals with higher abilities, either innate or due to the circumstances of their birth,
would be more likely to go to college and to earn higher wages. Such ability is, of course, unobserved.
Furthermore, if the error term in our model for going to college is correlated with ability, and the error
term in our wage equation is correlated with ability, the two terms should be positively correlated.
These conditions make the problem of signing the selectivity bias equivalent to an omitted-variable
problem. In the case at hand, because we would expect the correlation between the omitted variable
and a college education to be positive, we suspect that OLS is biased upward.

To account for the bias, we fit the treatment-effects model. We model the wife’s college decision
as a function of her mother’s and her father’s educational attainment. Thus we are interested in fitting
the model

ww = β0 + β1wa + β2cit + δwc + ε

wc∗ = γ0 + γ1wmed + γ2wfed + u

where

wc =
{

1, wc∗ > 0, that is, wife went to college
0, otherwise

and where ε and u have a bivariate normal distribution with zero mean and covariance matrix[
σ2 ρσ
ρσ 1

]



treatreg — Treatment-effects model 2263

The following output gives the maximum likelihood estimates of the parameters of this model:

. treatreg ww wa cit, treat(wc=wmed wfed)

Iteration 0: log likelihood = -707.07237
Iteration 1: log likelihood = -707.07215
Iteration 2: log likelihood = -707.07215

Treatment-effects model -- MLE Number of obs = 250
Wald chi2(3) = 4.11

Log likelihood = -707.07215 Prob > chi2 = 0.2501

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ww
wa -.0110424 .0199652 -0.55 0.580 -.0501735 .0280887

cit .127636 .3361938 0.38 0.704 -.5312917 .7865638
wc 1.271327 .7412951 1.72 0.086 -.1815842 2.724239

_cons 2.318638 .9397573 2.47 0.014 .4767478 4.160529

wc
wmed .1198055 .0320056 3.74 0.000 .0570757 .1825352
wfed .0961886 .0290868 3.31 0.001 .0391795 .1531977

_cons -2.631876 .3309128 -7.95 0.000 -3.280453 -1.983299

/athrho .0178668 .1899898 0.09 0.925 -.3545063 .3902399
/lnsigma .9241584 .0447455 20.65 0.000 .8364588 1.011858

rho .0178649 .1899291 -.3403659 .371567
sigma 2.519747 .1127473 2.308179 2.750707

lambda .0450149 .4786442 -.8931105 .9831404

LR test of indep. eqns. (rho = 0): chi2(1) = 0.01 Prob > chi2 = 0.9251

In the input, we specified that the continuous dependent variable, ww (wife’s wage), is a linear
function of cit and wa. Note the syntax for the treatment variable. The treatment wc is not included
in the first variable list; it is specified in the treat() option. In this example, wmed and wfed are
specified as the exogenous covariates in the treatment equation.

The output has the form of many two-equation estimators in Stata. We note that our conjecture
that the OLS estimate was biased upward is verified. But it is perhaps more interesting that the size
of the bias is negligible, and the likelihood-ratio test at the bottom of the output indicates that we
cannot reject the null hypothesis that the two error terms are uncorrelated. This result might be due
to several specification errors. We ignored the selectivity bias due to the endogeneity of entering the
labor market. We have also written both the wage equation and the college-education equation in
linear form, ignoring any higher power terms or interactions.

The results for the two ancillary parameters require explanation. For numerical stability during
optimization, treatreg does not directly estimate ρ or σ. Instead, treatreg estimates the inverse
hyperbolic tangent of ρ,

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
and lnσ. Also, treatreg reports λ = ρσ, along with an estimate of the standard error of the estimate
and confidence interval.
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Example 2

Stata also produces a two-step estimator of the model with the twostep option. Maximum
likelihood estimation of the parameters can be time consuming with large datasets, and the two-step
estimates may provide a good alternative in such cases. Continuing with the women’s wage model,
we can obtain the two-step estimates with consistent covariance estimates by typing

. treatreg ww wa cit, treat(wc=wmed wfed) twostep

Treatment-effects model -- two-step estimates Number of obs = 250

Wald chi2(3) = 3.67
Prob > chi2 = 0.2998

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ww
wa -.0111623 .020152 -0.55 0.580 -.0506594 .0283348

cit .1276102 .33619 0.38 0.704 -.53131 .7865305
wc 1.257995 .8007428 1.57 0.116 -.3114319 2.827422

_cons 2.327482 .9610271 2.42 0.015 .4439031 4.21106

wc
wmed .1198888 .0319862 3.75 0.000 .0571971 .1825806
wfed .0960764 .0290583 3.31 0.001 .0391233 .1530295

_cons -2.631496 .3308389 -7.95 0.000 -3.279928 -1.983063

hazard
lambda .0548738 .5283928 0.10 0.917 -.9807571 1.090505

rho 0.02178
sigma 2.5198211

The reported lambda (λ) is the parameter estimate on the hazard from the augmented regression,
which is derived in Maddala (1983) and presented in Methods and formulas below.

Technical note
The difference in expected earnings between participants and nonparticipants is

E (yj | zj = 1)− E (yj | zj = 0) = δ + ρσ

[
φ(wjγ)

Φ(wjγ)
{

1− Φ(wjγ)
}]

where φ is the standard normal density and Φ is the standard normal cumulative distribution function.
If the correlation between the error terms, ρ, is zero, the problem reduces to one estimable by OLS
and the difference is simply δ. Because ρ is positive in the example, least squares overestimates the
treatment effect, δ.
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Saved results
treatreg (maximum likelihood) saves the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(N clust) number of clusters
e(lambda) λ

e(selambda) standard error of λ
e(sigma) estimate of sigma
e(chi2) χ2

e(chi2 c) χ2 for comparison test
e(p c) p-value for comparison test
e(p) significance
e(rho) ρ

e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) treatreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 ct) Wald or LR; type of model χ2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(method) ml
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample
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treatreg (two-step) saves the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(lambda) λ

e(selambda) standard error of λ
e(sigma) estimate of sigma
e(chi2) χ2

e(p) significance
e(rho) ρ

e(rank) rank of e(V)

Macros
e(cmd) treatreg
e(cmdline) command as typed
e(depvar) name of dependent variable
e(title) title in estimation output
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(hazard) variable specified in hazard()
e(method) ml or twostep
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
treatreg is implemented as an ado-file. Maddala (1983, 117–122) derives both the maximum

likelihood and the two-step estimator implemented here. Greene (2012, 890–894) also provides an
introduction to the treatment-effects model.

The primary regression equation of interest is
yj = xjβ+ δzj + εj

where zj is a binary decision variable that is assumed to stem from an unobservable latent variable:

z∗j = wjγ+ uj

The decision to obtain the treatment is made according to the rule

zj =
{

1, if z∗j > 0
0, otherwise
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where ε and u are bivariate normal with mean zero and covariance matrix[
σ2 ρσ
ρσ 1

]
The likelihood function for this model is given in Maddala (1983, 122). Greene (2000, 180)

discusses the standard method of reducing a bivariate normal to a function of a univariate normal
and the correlation ρ. The following is the log likelihood for observation j,

lnLj =


lnΦ

{
wjγ+ (yj − xjβ− δ)ρ/σ√

1− ρ2

}
− 1

2

(
yj − xjβ− δ

σ

)2

− ln(
√

2πσ), zj = 1

lnΦ

{
−wjγ− (yj − xjβ)ρ/σ√

1− ρ2

}
− 1

2

(
yj − xjβ

σ

)2

− ln(
√

2πσ), zj = 0

where Φ(·) is the cumulative distribution function of the standard normal distribution.

In the maximum likelihood estimation, σ and ρ are not directly estimated. Rather lnσ and atanh ρ
are directly estimated, where

atanh ρ =
1
2

ln
(

1 + ρ

1− ρ

)
The standard error of λ = ρσ is approximated through the delta method, which is given by

Var(λ) ≈ D Var
{

(atanh ρ lnσ)
}

D′

where D is the Jacobian of λ with respect to atanh ρ and lnσ.

With maximum likelihood estimation, this command supports the Huber/White/sandwich estimator
of the variance and its clustered version using vce(robust) and vce(cluster clustvar), respectively.
See [P] robust, particularly Maximum likelihood estimators and Methods and formulas.

The maximum likelihood version of treatreg also supports estimation with survey data. For
details on VCEs with survey data, see [SVY] variance estimation.

Maddala (1983, 120–122) also derives the two-step estimator. In the first stage, probit estimates
are obtained of the treatment equation

Pr(zj = 1 | wj) = Φ(wjγ)

From these estimates, the hazard, hj , for each observation j is computed as

hj =


φ(wj γ̂)

/
Φ(wj γ̂), zj = 1

−φ(wj γ̂)
/{

1− Φ(wj γ̂)
}
, zj = 0

where φ is the standard normal density function. If

dj = hj(hj + γ̂wj)
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then
E (yj | zj) = xjβ+ δzj + ρσhj

Var (yj | zj) = σ2
(
1− ρ2dj

)
The two-step parameter estimates of β and δ are obtained by augmenting the regression equation

with the hazard h. Thus the regressors become [ x z h ], and the additional parameter estimate βh is
obtained on the variable containing the hazard. A consistent estimate of the regression disturbance
variance is obtained using the residuals from the augmented regression and the parameter estimate
on the hazard

σ̂ 2 =
e′e + β2

h

∑N
j=1 dj

N

The two-step estimate of ρ is then

ρ̂ =
βh
σ̂

To understand how the consistent estimates of the coefficient covariance matrix based on the
augmented regression are derived, let A = [ x z h ] and D be a square diagonal matrix of size N
with (1− ρ̂ 2dj) on the diagonal elements. The conventional VCE is

Vtwostep = σ̂ 2(A′A)−1(A′DA + Q)(A′A)−1

where
Q = ρ̂ 2(A′DA)Vp(A′DA)

and Vp is the variance–covariance estimate from the probit estimation of the treatment equation.
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Also see
[R] treatreg postestimation — Postestimation tools for treatreg

[R] heckman — Heckman selection model

[R] probit — Probit regression

[R] regress — Linear regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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treatreg postestimation — Postestimation tools for treatreg

Description
The following postestimation commands are available after treatreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat1 AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest2 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest1 seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 estat ic and suest are not appropriate after treatreg, twostep.
2 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict
After ML or twostep

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic
]

After ML

predict
[

type
] {

stub* | newvarreg newvartreat newvarathrho newvarlnsigma

}
[

if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the prediction
stdf standard error of the forecast
yctrt E(yj | treatment = 1)
ycntrt E(yj | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
stdptrt standard error of the linear prediction for treatment equation

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

stdf is not allowed with svy estimation results.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, xjb.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for one observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

yctrt calculates the expected value of the dependent variable conditional on the presence of the
treatment: E(yj | treatment = 1).

ycntrt calculates the expected value of the dependent variable conditional on the absence of the
treatment: E(yj | treatment = 0).

ptrt calculates the probability of the presence of the treatment:
Pr(treatment = 1) = Pr(wjγ+ uj > 0).
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xbtrt calculates the linear prediction for the treatment equation.

stdptrt calculates the standard error of the linear prediction for the treatment equation.

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain ∂ lnL/∂(xjβ).

The second new variable will contain ∂ lnL/∂(wjγ).

The third new variable will contain ∂ lnL/∂ atanh ρ.

The fourth new variable will contain ∂ lnL/∂ lnσ.

Remarks

Example 1

The default statistic produced by predict after treatreg is the expected value of the dependent
variable from the underlying distribution of the regression model. For example 1 in [R] treatreg, this
model is

ww = β0 + β1wa + β2cit + δwc + ε

Several other interesting aspects of the treatment-effects model can be explored with predict.
We continue with our wage model, the wife’s expected wage, conditional on attending college, can
be obtained with the yctrt option. The wife’s expected wages, conditional on not attending college,
can be obtained with the ycntrt option. Thus the difference in expected wages between participants
and nonparticipants is the difference between yctrt and ycntrt. For the case at hand, we have the
following calculation:

. predict wwctrt, yctrt

. predict wwcntrt, ycntrt

. generate diff = wwctrt - wwcntrt

. summarize diff

Variable Obs Mean Std. Dev. Min Max

diff 250 1.356912 .0134202 1.34558 1.420173

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] treatreg — Treatment-effects model

[U] 20 Estimation and postestimation commands
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truncreg — Truncated regression

Syntax
truncreg depvar

[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
ll(varname | #) lower limit for left-truncation
ul(varname | #) upper limit for right-truncation
offset(varname) include varname in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

noskip perform likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
bootstrap, by, jackknife, mi estimate, rolling, statsby, and svy are allowed; see

[U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce(), noskip, and weights are not allowed with the svy prefix; see [SVY] svy.
aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Truncated regression
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Description
truncreg fits a regression model of depvar on indepvars from a sample drawn from a restricted

part of the population. Under the normality assumption for the whole population, the error terms in
the truncated regression model have a truncated normal distribution, which is a normal distribution
that has been scaled upward so that the distribution integrates to one over the restricted range.

Options

� � �
Model �

noconstant; see [R] estimation options.

ll(varname | #) and ul(varname | #) indicate the lower and upper limits for truncation, respectively.
You may specify one or both. Observations with depvar≤ ll() are left-truncated, observations
with depvar≥ ul() are right-truncated, and the remaining observations are not truncated. See
[R] tobit for a more detailed description.

offset(varname), constraints(constraints), collinear; see [R] estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

noskip specifies that a full maximum-likelihood model with only a constant for the regression equation
be fit. This model is not displayed but is used as the base model to compute a likelihood-ratio test
for the model test statistic displayed in the estimation header. By default, the overall model test
statistic is an asymptotically equivalent Wald test of all the parameters in the regression equation
being zero (except the constant). For many models, this option can substantially increase estimation
time.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used, but you may use the ltol(#) option to relax the convergence criterion; the default
is 1e-6 during specification searches.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with truncreg but is not shown in the dialog box:

coeflegend; see [R] estimation options.
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Remarks
Truncated regression fits a model of a dependent variable on independent variables from a restricted

part of a population. Truncation is essentially a characteristic of the distribution from which the sample
data are drawn. If x has a normal distribution with mean µ and standard deviation σ, the density of
the truncated normal distribution is

f (x | a < x < b) =
f(x)

Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)
=

1
σφ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)
where φ and Φ are the density and distribution functions of the standard normal distribution.

Compared with the mean of the untruncated variable, the mean of the truncated variable is greater
if the truncation is from below, and the mean of the truncated variable is smaller if the truncation is
from above. Moreover, truncation reduces the variance compared with the variance in the untruncated
distribution.

Example 1

We will demonstrate truncreg with part of the Mroz dataset distributed with Berndt (1996). This
dataset contains 753 observations on women’s labor supply. Our subsample is of 250 observations,
with 150 market laborers and 100 nonmarket laborers.

. use http://www.stata-press.com/data/r12/laborsub

. describe

Contains data from http://www.stata-press.com/data/r12/laborsub.dta
obs: 250

vars: 6 25 Sep 2010 18:36
size: 1,750

storage display value
variable name type format label variable label

lfp byte %9.0g 1 if woman worked in 1975
whrs int %9.0g Wife’s hours of work
kl6 byte %9.0g # of children younger than 6
k618 byte %9.0g # of children between 6 and 18
wa byte %9.0g Wife’s age
we byte %9.0g Wife’s educational attainment

Sorted by:

. summarize, sep(0)

Variable Obs Mean Std. Dev. Min Max

lfp 250 .6 .4908807 0 1
whrs 250 799.84 915.6035 0 4950
kl6 250 .236 .5112234 0 3

k618 250 1.364 1.370774 0 8
wa 250 42.92 8.426483 30 60
we 250 12.352 2.164912 5 17

We first perform ordinary least-squares estimation on the market laborers.
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. regress whrs kl6 k618 wa we if whrs > 0

Source SS df MS Number of obs = 150
F( 4, 145) = 2.80

Model 7326995.15 4 1831748.79 Prob > F = 0.0281
Residual 94793104.2 145 653745.546 R-squared = 0.0717

Adj R-squared = 0.0461
Total 102120099 149 685369.794 Root MSE = 808.55

whrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

kl6 -421.4822 167.9734 -2.51 0.013 -753.4748 -89.48953
k618 -104.4571 54.18616 -1.93 0.056 -211.5538 2.639668

wa -4.784917 9.690502 -0.49 0.622 -23.9378 14.36797
we 9.353195 31.23793 0.30 0.765 -52.38731 71.0937

_cons 1629.817 615.1301 2.65 0.009 414.0371 2845.597

Now we use truncreg to perform truncated regression with truncation from below zero.

. truncreg whrs kl6 k618 wa we, ll(0)
(note: 100 obs. truncated)

Fitting full model:

Iteration 0: log likelihood = -1205.6992
Iteration 1: log likelihood = -1200.9873
Iteration 2: log likelihood = -1200.9159
Iteration 3: log likelihood = -1200.9157
Iteration 4: log likelihood = -1200.9157

Truncated regression
Limit: lower = 0 Number of obs = 150

upper = +inf Wald chi2(4) = 10.05
Log likelihood = -1200.9157 Prob > chi2 = 0.0395

whrs Coef. Std. Err. z P>|z| [95% Conf. Interval]

kl6 -803.0042 321.3614 -2.50 0.012 -1432.861 -173.1474
k618 -172.875 88.72898 -1.95 0.051 -346.7806 1.030579

wa -8.821123 14.36848 -0.61 0.539 -36.98283 19.34059
we 16.52873 46.50375 0.36 0.722 -74.61695 107.6744

_cons 1586.26 912.355 1.74 0.082 -201.9233 3374.442

/sigma 983.7262 94.44303 10.42 0.000 798.6213 1168.831
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If we assume that our data were censored, the tobit model is

. tobit whrs kl6 k618 wa we, ll(0)

Tobit regression Number of obs = 250
LR chi2(4) = 23.03
Prob > chi2 = 0.0001

Log likelihood = -1367.0903 Pseudo R2 = 0.0084

whrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

kl6 -827.7657 214.7407 -3.85 0.000 -1250.731 -404.8008
k618 -140.0192 74.22303 -1.89 0.060 -286.2129 6.174547

wa -24.97919 13.25639 -1.88 0.061 -51.08969 1.131317
we 103.6896 41.82393 2.48 0.014 21.31093 186.0683

_cons 589.0001 841.5467 0.70 0.485 -1068.556 2246.556

/sigma 1309.909 82.73335 1146.953 1472.865

Obs. summary: 100 left-censored observations at whrs<=0
150 uncensored observations

0 right-censored observations

Technical note
Whether truncated regression is more appropriate than the ordinary least-squares estimation depends

on the purpose of that estimation. If we are interested in the mean of wife’s working hours conditional
on the subsample of market laborers, least-squares estimation is appropriate. However if we are
interested in the mean of wife’s working hours regardless of market or nonmarket labor status,
least-squares estimates could be seriously misleading.

Truncation and censoring are different concepts. A sample has been censored if no observations
have been systematically excluded but some of the information contained in them has been suppressed.
In a truncated distribution, only the part of the distribution above (or below, or between) the truncation
points is relevant to our computations. We need to scale it up by the probability that an observation
falls in the range that interests us to make the distribution integrate to one. The censored distribution
used by tobit, however, is a mixture of discrete and continuous distributions. Instead of rescaling
over the observable range, we simply assign the full probability from the censored regions to the
censoring points. The truncated regression model is sometimes less well behaved than the tobit model.
Davidson and MacKinnon (1993) provide an example where truncation results in more inconsistency
than censoring.
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Saved results
truncreg saves the following in e():

Scalars
e(N) number of observations
e(N bf) number of obs. before truncation
e(chi2) model χ2

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(N clust) number of clusters
e(sigma) estimate of sigma
e(p) significance
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) truncreg
e(cmdline) command as typed
e(llopt) contents of ll(), if specified
e(ulopt) contents of ul(), if specified
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance
e(means) means of independent variables
e(dummy) indicator for dummy variables

Functions
e(sample) marks estimation sample

Methods and formulas
truncreg is implemented as an ado-file. Greene (2012, 833–839) and Davidson and MacKin-

non (1993, 534–537) provide introductions to the truncated regression model.
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Let y = Xβ+ ε be the model. y represents continuous outcomes either observed or not observed.
Our model assumes that ε ∼ N(0, σ2I).

Let a be the lower limit and b be the upper limit. The log likelihood is

lnL = −n
2

log(2πσ2)− 1
2σ2

n∑
j=1

(yj − xjβ)2 −
n∑
j=1

log
{

Φ
(
b− xjβ

σ

)
− Φ

(
a− xjβ

σ

)}

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

truncreg also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.
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[R] truncreg postestimation — Postestimation tools for truncreg

[R] regress — Linear regression

[R] tobit — Tobit regression

[MI] estimation — Estimation commands for use with mi estimate

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Title

truncreg postestimation — Postestimation tools for truncreg

Description
The following postestimation commands are available after truncreg:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear combinations

of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear combinations

of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).
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Syntax for predict

predict
[

type
]

newvar
[

if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarlnsigma

} [
if
] [

in
]
, scores

statistic Description

Main

xb linear prediction; the default
stdp standard error of the prediction
stdf standard error of the forecast
pr(a,b) Pr(a < yj < b)
e(a,b) E(yj | a < yj < b)
ystar(a,b) E(y∗j ), y∗j = max{a,min(yj , b)}

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.

stdf is not allowed with svy estimation results.

where a and b may be numbers or variables; a missing (a ≥ .) means −∞, and b missing (b ≥ .)
means +∞; see [U] 12.2.1 Missing values.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the forecast, which is the standard error of the point prediction
for 1 observation. It is commonly referred to as the standard error of the future or forecast value.
By construction, the standard errors produced by stdf are always larger than those produced by
stdp; see Methods and formulas in [R] regress postestimation.

pr(a,b) calculates Pr(a < xjb + uj < b), the probability that yj |xj would be observed in the
interval (a, b).

a and b may be specified as numbers or variable names; lb and ub are variable names;
pr(20,30) calculates Pr(20 < xjb + uj < 30);
pr(lb,ub) calculates Pr(lb < xjb + uj < ub); and
pr(20,ub) calculates Pr(20 < xjb + uj < ub).

a missing (a ≥ .) means −∞; pr(.,30) calculates Pr(−∞ < xjb + uj < 30);
pr(lb,30) calculates Pr(−∞ < xjb + uj < 30) in observations for which lb ≥ .
and calculates Pr(lb < xjb + uj < 30) elsewhere.
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b missing (b ≥ .) means +∞; pr(20,.) calculates Pr(+∞ > xjb + uj > 20);
pr(20,ub) calculates Pr(+∞ > xjb + uj > 20) in observations for which ub ≥ .
and calculates Pr(20 < xjb + uj < ub) elsewhere.

e(a,b) calculates E(xjb + uj | a < xjb + uj < b), the expected value of yj |xj conditional on
yj |xj being in the interval (a, b), meaning that yj |xj is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(y∗j ), where y∗j = a if xjb + uj ≤ a, y∗j = b if xjb + uj ≥ b, and
y∗j = xjb+uj otherwise, meaning that y∗j is censored. a and b are specified as they are for pr().

nooffset is relevant only if you specified offset(varname). It modifies the calculations made by
predict so that they ignore the offset variable; the linear prediction is treated as xjb rather than
as xjb + offsetj .

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂σ.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] truncreg — Truncated regression

[U] 20 Estimation and postestimation commands



Title

ttest — Mean-comparison tests

Syntax

One-sample mean-comparison test

ttest varname == #
[

if
] [

in
] [

, level(#)
]

Two-sample mean-comparison test (unpaired)

ttest varname1 == varname2

[
if
] [

in
]
, unpaired

[
unequal welch level(#)

]
Two-sample mean-comparison test (paired)

ttest varname1 == varname2

[
if
] [

in
] [

, level(#)
]

Two-group mean-comparison test

ttest varname
[

if
] [

in
]
, by(groupvar)

[
options1

]
Immediate form of one-sample mean-comparison test

ttesti #obs #mean #sd #val

[
, level(#)

]
Immediate form of two-sample mean-comparison test

ttesti #obs1 #mean1 #sd1 #obs2 #mean2 #sd2

[
, options2

]
options1 Description

Main
∗by(groupvar) variable defining the groups
unequal unpaired data have unequal variances
welch use Welch’s approximation
level(#) set confidence level; default is level(95)

∗by(groupvar) is required.

options2 Description

Main

unequal unpaired data have unequal variances
welch use Welch’s approximation
level(#) set confidence level; default is level(95)

by is allowed with test; see [D] by.
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Menu
one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample mean-comparison test

two-sample, unpaired

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample mean-comparison test

two-sample, paired

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Mean-comparison test, paired data

two-group

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-group mean-comparison test

immediate command: one-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > One-sample mean-comparison calculator

immediate command: two-sample

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Two-sample mean-comparison calculator

Description
ttest performs t tests on the equality of means. In the first form, ttest tests that varname has

a mean of #. In the second form, ttest tests that varname1 and varname2 have the same mean,
assuming unpaired data. In the third form, ttest tests that varname1 and varname2 have the same
mean, assuming paired data. In the fourth form, ttest tests that varname has the same mean within
the two groups defined by groupvar.

ttesti is the immediate form of ttest; see [U] 19 Immediate commands.

For the equivalent of a two-sample t test with sampling weights (pweights), use the svy: mean
command with the over() option, and then use lincom; see [R] mean and [SVY] svy postestimation.

Options

� � �
Main �

by(groupvar) specifies the groupvar that defines the two groups that ttest will use to test the
hypothesis that their means are equal. Specifying by(groupvar) implies an unpaired (two sample)
t test. Do not confuse the by() option with the by prefix; you can specify both.

unpaired specifies that the data be treated as unpaired. The unpaired option is used when the two
sets of values to be compared are in different variables.

unequal specifies that the unpaired data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s formula
(1947) rather than from Satterthwaite’s approximation formula (1946), which is the default when
unequal is specified. Specifying welch implies unequal.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.
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Remarks

Example 1: One-sample mean-comparison test

In the first form, ttest tests whether the mean of the sample is equal to a known constant under
the assumption of unknown variance. Assume that we have a sample of 74 automobiles. We know
each automobile’s average mileage rating and wish to test whether the overall average for the sample
is 20 miles per gallon.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. ttest mpg==20

One-sample t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg 74 21.2973 .6725511 5.785503 19.9569 22.63769

mean = mean(mpg) t = 1.9289
Ho: mean = 20 degrees of freedom = 73

Ha: mean < 20 Ha: mean != 20 Ha: mean > 20
Pr(T < t) = 0.9712 Pr(|T| > |t|) = 0.0576 Pr(T > t) = 0.0288

The test indicates that the underlying mean is not 20 with a significance level of 5.8%.

Example 2: Two-sample mean-comparison test

We are testing the effectiveness of a new fuel additive. We run an experiment with 12 cars. We
run the cars without and with the fuel treatment. The results of the experiment are as follows:

Without With Without With
treatment treatment treatment treatment

20 24 18 17
23 25 24 28
21 21 20 24
25 22 24 27
18 23 23 21
17 18 19 23

By creating two variables called mpg1 and mpg2 representing mileage without and with the treatment,
respectively, we can test the equality of means by typing

. use http://www.stata-press.com/data/r12/fuel

. ttest mpg1==mpg2

Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

diff 12 -1.75 .7797144 2.70101 -3.46614 -.0338602

mean(diff) = mean(mpg1 - mpg2) t = -2.2444
Ho: mean(diff) = 0 degrees of freedom = 11

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0
Pr(T < t) = 0.0232 Pr(|T| > |t|) = 0.0463 Pr(T > t) = 0.9768
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We find that the means are statistically different from each other at any level greater than 4.6%.

Example 3: Group mean-comparison test
Let’s pretend that the preceding data were collected by running 24 cars: 12 cars with the additive

and 12 without. Although we might be tempted to enter the data in the same way, we should resist
(see the technical note below). Instead, we enter the data as 24 observations on mpg with an additional
variable, treated, taking on 1 if the car received the fuel treatment and 0 otherwise:

. use http://www.stata-press.com/data/r12/fuel3

. ttest mpg, by(treated)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 12 21 .7881701 2.730301 19.26525 22.73475
1 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.291568 .7915684

diff = mean(0) - mean(1) t = -1.4280
Ho: diff = 0 degrees of freedom = 22

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0837 Pr(|T| > |t|) = 0.1673 Pr(T > t) = 0.9163

This time we do not find a statistically significant difference.

If we were not willing to assume that the variances were equal and wanted to use Welch’s formula,
we could type

. ttest mpg, by(treated) welch

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 12 21 .7881701 2.730301 19.26525 22.73475
1 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.28369 .7836902

diff = mean(0) - mean(1) t = -1.4280
Ho: diff = 0 Welch’s degrees of freedom = 23.2465

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0833 Pr(|T| > |t|) = 0.1666 Pr(T > t) = 0.9167

Technical note
In two-group randomized designs, subjects will sometimes refuse the assigned treatment but still

be measured for an outcome. In this case, take care to specify the group properly. You might be
tempted to let varname contain missing where the subject refused and thus let ttest drop such
observations from the analysis. Zelen (1979) argues that it would be better to specify that the subject
belongs to the group in which he or she was randomized, even though such inclusion will dilute the
measured effect.
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Technical note
There is a second, inferior way to organize the data in the preceding example. Remember, we ran

a test on 24 cars, 12 without the additive and 12 with. Nevertheless, we could have entered the data
in the same way as we did when we had 12 cars, each run without and with the additive, by creating
two variables—mpg1 and mpg2.

This method is inferior because it suggests a connection that is not there. For the 12-car experiment,
there was most certainly a connection—it was the same car. In the 24-car experiment, however, it is
arbitrary which mpg results appear next to which. Nevertheless, if our data are organized like this,
ttest can accommodate us.

. use http://www.stata-press.com/data/r12/fuel

. ttest mpg1==mpg2, unpaired

Two-sample t test with equal variances

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

mpg1 12 21 .7881701 2.730301 19.26525 22.73475
mpg2 12 22.75 .9384465 3.250874 20.68449 24.81551

combined 24 21.875 .6264476 3.068954 20.57909 23.17091

diff -1.75 1.225518 -4.291568 .7915684

diff = mean(mpg1) - mean(mpg2) t = -1.4280
Ho: diff = 0 degrees of freedom = 22

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0837 Pr(|T| > |t|) = 0.1673 Pr(T > t) = 0.9163

Example 4

ttest can be used to test the equality of a pair of means; see [R] oneway for testing the equality
of more than two means.

Suppose that we have data on the 50 states. The dataset contains the median age of the population
(medage) and the region of the country (region) for each state. Region 1 refers to the Northeast,
region 2 to the North Central, region 3 to the South, and region 4 to the West. Using oneway, we
can test the equality of all four means.

. use http://www.stata-press.com/data/r12/census
(1980 Census data by state)

. oneway medage region

Analysis of Variance
Source SS df MS F Prob > F

Between groups 46.3961903 3 15.4653968 7.56 0.0003
Within groups 94.1237947 46 2.04616945

Total 140.519985 49 2.8677548

Bartlett’s test for equal variances: chi2(3) = 10.5757 Prob>chi2 = 0.014

We find that the means are different, but we are interested only in testing whether the means for the
Northeast (region==1) and West (region==4) are different. We could use oneway,
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. oneway medage region if region==1 | region==4

Analysis of Variance
Source SS df MS F Prob > F

Between groups 46.241247 1 46.241247 20.02 0.0002
Within groups 46.1969169 20 2.30984584

Total 92.4381638 21 4.40181733

Bartlett’s test for equal variances: chi2(1) = 2.4679 Prob>chi2 = 0.116

or we could use ttest:

. ttest medage if region==1 | region==4, by(region)

Two-sample t test with equal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

NE 9 31.23333 .3411581 1.023474 30.44662 32.02005
West 13 28.28462 .4923577 1.775221 27.21186 29.35737

combined 22 29.49091 .4473059 2.098051 28.56069 30.42113

diff 2.948718 .6590372 1.57399 4.323445

diff = mean(NE) - mean(West) t = 4.4743
Ho: diff = 0 degrees of freedom = 20

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9999 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.0001

The significance levels of both tests are the same.

Immediate form

Example 5

ttesti is like ttest, except that we specify summary statistics rather than variables as arguments.
For instance, we are reading an article that reports the mean number of sunspots per month as 62.6
with a standard deviation of 15.8. There are 24 months of data. We wish to test whether the mean
is 75:

. ttesti 24 62.6 15.8 75

One-sample t test

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x 24 62.6 3.225161 15.8 55.92825 69.27175

mean = mean(x) t = -3.8448
Ho: mean = 75 degrees of freedom = 23

Ha: mean < 75 Ha: mean != 75 Ha: mean > 75
Pr(T < t) = 0.0004 Pr(|T| > |t|) = 0.0008 Pr(T > t) = 0.9996
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Example 6

There is no immediate form of ttest with paired data because the test is also a function of the
covariance, a number unlikely to be reported in any published source. For nonpaired data, however,
we might type

. ttesti 20 20 5 32 15 4

Two-sample t test with equal variances

Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x 20 20 1.118034 5 17.65993 22.34007
y 32 15 .7071068 4 13.55785 16.44215

combined 52 16.92308 .6943785 5.007235 15.52905 18.3171

diff 5 1.256135 2.476979 7.523021

diff = mean(x) - mean(y) t = 3.9805
Ho: diff = 0 degrees of freedom = 50

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9999 Pr(|T| > |t|) = 0.0002 Pr(T > t) = 0.0001

If we had typed ttesti 20 20 5 32 15 4, unequal, the test would have assumed unequal variances.

Saved results
ttest and ttesti save the following in r():

Scalars
r(N 1) sample size n1 r(sd 1) standard deviation for first variable
r(N 2) sample size n2 r(sd 2) standard deviation for second variable
r(p l) lower one-sided p-value r(sd) combined standard deviation
r(p u) upper one-sided p-value r(mu 1) x̄1 mean for population 1
r(p) two-sided p-value r(mu 2) x̄2 mean for population 2
r(se) estimate of standard error r(df t) degrees of freedom
r(t) t statistic

Methods and formulas
ttest and ttesti are implemented as ado-files.

See, for instance, Hoel (1984, 140–161) or Dixon and Massey (1983, 121–130) for an introduction
and explanation of the calculation of these tests. Acock (2010, 155–166) and Hamilton (2009, 157–162)
describe t tests using applications in Stata.

The test for µ = µ0 for unknown σ is given by

t =
(x− µ0)

√
n

s

The statistic is distributed as Student’s t with n−1 degrees of freedom (Gosset [Student, pseud.] 1908).
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The test for µx = µy when σx and σy are unknown but σx = σy is given by

t =
x− y{

(nx−1)s2x+(ny−1)s2y
nx+ny−2

}1/2(
1
nx

+ 1
ny

)1/2

The result is distributed as Student’s t with nx + ny − 2 degrees of freedom.

You could perform ttest (without the unequal option) in a regression setting given that regression
assumes a homoskedastic error model. To compare with the ttest command, denote the underlying
observations on x and y by xj , j = 1, . . . , nx, and yj , j = 1, . . . , ny . In a regression framework,
typing ttest without the unequal option is equivalent to

1. creating a new variable zj that represents the stacked observations on x and y (so that zj = xj
for j = 1, . . . , nx and znx+j = yj for j = 1, . . . , ny)

2. and then estimating the equation zj = β0 + β1dj + εj , where dj = 0 for j = 1, . . . , nx and
dj = 1 for j = nx + 1, . . . , nx + ny (that is, dj = 0 when the z observations represent x, and
dj = 1 when the z observations represent y).

The estimated value of β1, b1, will equal y−x, and the reported t statistic will be the same t statistic
as given by the formula above.

The test for µx = µy when σx and σy are unknown and σx 6= σy is given by

t =
x− y(

s2
x/nx + s2

y/ny

)1/2

The result is distributed as Student’s t with ν degrees of freedom, where ν is given by (with
Satterthwaite’s [1946] formula) (

s2
x/nx + s2

y/ny

)2

(
s2x/nx

)2

nx−1 +

(
s2y/ny

)2

ny−1

With Welch’s formula (1947), the number of degrees of freedom is given by

−2 +

(
s2
x/nx + s2

y/ny

)2

(
s2x/nx

)2

nx+1 +

(
s2y/ny

)2

ny+1

The test for µx = µy for matched observations (also known as paired observations, correlated
pairs, or permanent components) is given by

t =
d
√
n

sd

where d represents the mean of xi − yi and sd represents the standard deviation. The test statistic t
is distributed as Student’s t with n− 1 degrees of freedom.
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You can also use ttest without the unpaired option in a regression setting because a paired
comparison includes the assumption of constant variance. The ttest with an unequal variance
assumption does not lend itself to an easy representation in regression settings and is not discussed
here. (xj − yj) = β0 + εj .

� �
William Sealy Gosset (1876–1937) was born in Canterbury, England. He studied chemistry and
mathematics at Oxford and worked as a chemist with the brewers Guinness in Dublin. Gosset
became interested in statistical problems, which he discussed with Karl Pearson and later with
Fisher and Neyman. He published several important papers under the pseudonym “Student”, and
he lent that name to the t test he invented.� �
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Title

update — Update Stata

Syntax

Report on update level of currently installed Stata

update

Set update source

update from location

Compare update level of currently installed Stata with that of source

update query
[
, from(location)

]
Perform update if necessary

update all
[
, from(location) detail force exit

]
Set automatic updates (Mac and Windows only)

set update query
{
on | off

}
set update interval #

set update prompt
{
on | off

}
Menu

Help > Check for Updates

Description
The update command reports on the current update level and installs official updates to Stata. Official

updates are updates to Stata as it was originally shipped from StataCorp, not the additions to
Stata published in, for instance, the Stata Journal (SJ). Those additions are installed using the net
command and updated using the adoupdate command; see [R] net and [R] adoupdate.

update without arguments reports on the update level of the currently installed Stata.

update from sets an update source, where location is a directory name or URL. If you are on the
Internet, type update from http://www.stata.com.

update query compares the update level of the currently installed Stata with that available from the
update source and displays a report.

update all updates all necessary files. This is what you should type to check for and install updates.

set update query determines if update query is to be automatically performed when Stata is
launched. Only Mac and Windows platforms can be set for automatic updating.
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set update interval # sets the number of days to elapse before performing the next automatic
update query. The default # is 7. The interval starts from the last time an update query was
performed (automatically or manually). Only Mac and Windows platforms can be set for automatic
updating.

set update prompt determines whether a dialog is to be displayed before performing an automatic
update query. The dialog allows you to perform an update query now, perform one the next
time Stata is launched, perform one after the next interval has passed, or disable automatic update
query. Only Mac and Windows platforms can be set for automatic updating.

Options
from(location) specifies the location of the update source. You can specify the from() option on

the individual update commands or use the update from command. Which you do makes no
difference. You typically do not need to use this option.

detail specifies to display verbose output during the update process.

force specifies to force downloading of all files even if, based on the date comparison, Stata does
not think it is necessary. There is seldom a reason to specify this option.

exit instructs Stata to exit when the update has successfully completed. There is seldom a reason
to specify this option.

Remarks
update updates the official components of Stata from the official source: http://www.stata.com.

If you are connected to the Internet, the easy thing to do is to type

. update all

and follow the instructions. If Stata is up to date, update all will do nothing. Otherwise, it will
download whatever is necessary and install the files. If you just want to know what updates are
available, type

. update query

update query will check if any updates are available and report that information. If updates are
available, it will recommend that you type update all.

If you want to report the current update level, type

. update

update will report the update level of the Stata installation. update will also show you the date that
updates were last checked and if any updates were available at that time.
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Saved results
update without a subcommand, update from, and update query save the following in r():

Scalars
r(inst exe) date of executable installed (*)
r(avbl exe) date of executable available over web (*) (**)
r(inst ado) date of ado-files installed (*)
r(avbl ado) date of ado-files available over web (*) (**)
r(inst utilities) date of utilities installed (*)
r(avbl utilities) date of utilities available over web (*) (**)
r(inst docs) date of documentation installed (*)
r(avbl docs) date of documentation available over web (*) (**)

Macros
r(name exe) name of the Stata executable
r(dir exe) directory in which executable is stored
r(dir ado) directory in which ado-files are stored
r(dir utilities) directory in which utilities are stored
r(dir docs) directory in which PDF documentation is stored

Notes:

* Dates are stored as integers counting the number of days since January 1, 1960; see [D] datetime.

** These dates are not saved by update without a subcommand because update by itself reports information
solely about the local computer and does not check what is available on the web.

Also see
[R] adoupdate — Update user-written ado-files

[R] net — Install and manage user-written additions from the Internet

[R] ssc — Install and uninstall packages from SSC

[P] sysdir — Query and set system directories

[U] 28 Using the Internet to keep up to date
[GSM] 19 Updating and extending Stata—Internet functionality
[GSU] 19 Updating and extending Stata—Internet functionality
[GSW] 19 Updating and extending Stata—Internet functionality



Title

vce option — Variance estimators

Syntax

estimation cmd . . .
[
, vce(vcetype) . . .

]
vcetype Description

Likelihood based

oim observed information matrix (OIM)
opg outer product of the gradient (OPG) vectors

Sandwich estimators

robust Huber/White/sandwich estimator
cluster clustvar clustered sandwich estimator

Replication based

bootstrap
[
, bootstrap options

]
bootstrap estimation

jackknife
[
, jackknife options

]
jackknife estimation

Description

This entry describes the vce() option, which is common to most estimation commands. vce()
specifies how to estimate the variance–covariance matrix (VCE) corresponding to the parameter
estimates. The standard errors reported in the table of parameter estimates are the square root of the
variances (diagonal elements) of the VCE.

Options

� � �
SE/Robust �

vce(oim) is usually the default for models fit using maximum likelihood. vce(oim) uses the observed
information matrix (OIM); see [R] ml.

vce(opg) uses the sum of the outer product of the gradient (OPG) vectors; see [R] ml. This is the
default VCE when the technique(bhhh) option is specified; see [R] maximize.

vce(robust) uses the robust or sandwich estimator of variance. This estimator is robust to some
types of misspecification so long as the observations are independent; see [U] 20.20 Obtaining
robust variance estimates.

If the command allows pweights and you specify them, vce(robust) is implied; see
[U] 20.22.3 Sampling weights.
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vce(cluster clustvar) specifies that the standard errors allow for intragroup correlation, relaxing the
usual requirement that the observations be independent. That is, the observations are independent
across groups (clusters) but not necessarily within groups. clustvar specifies to which group each
observation belongs, for example, vce(cluster personid) in data with repeated observations
on individuals. vce(cluster clustvar) affects the standard errors and variance–covariance matrix
of the estimators but not the estimated coefficients; see [U] 20.20 Obtaining robust variance
estimates.

vce(bootstrap
[
, bootstrap options

]
) uses a bootstrap; see [R] bootstrap. After estimation with

vce(bootstrap), see [R] bootstrap postestimation to obtain percentile-based or bias-corrected
confidence intervals.

vce(jackknife
[
, jackknife options

]
) uses the delete-one jackknife; see [R] jackknife.

Remarks
Remarks are presented under the following headings:

Prefix commands
Passing options in vce()

Prefix commands

Specifying vce(bootstrap) or vce(jackknife) is often equivalent to using the corresponding
prefix command. Here is an example using jackknife with regress.

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg turn trunk, vce(jackknife)
(running regress on estimation sample)

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Linear regression Number of obs = 74
Replications = 74
F( 2, 73) = 66.26
Prob > F = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Jackknife
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

turn -.7610113 .150726 -5.05 0.000 -1.061408 -.4606147
trunk -.3161825 .1282326 -2.47 0.016 -.5717498 -.0606152
_cons 55.82001 5.031107 11.09 0.000 45.79303 65.84699
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. jackknife: regress mpg turn trunk
(running regress on estimation sample)

Jackknife replications (74)
1 2 3 4 5

.................................................. 50

........................

Linear regression Number of obs = 74
Replications = 74
F( 2, 73) = 66.26
Prob > F = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Jackknife
mpg Coef. Std. Err. t P>|t| [95% Conf. Interval]

turn -.7610113 .150726 -5.05 0.000 -1.061408 -.4606147
trunk -.3161825 .1282326 -2.47 0.016 -.5717498 -.0606152
_cons 55.82001 5.031107 11.09 0.000 45.79303 65.84699

Here it does not matter whether we specify the vce(jackknife) option or instead use the jackknife
prefix.

However, vce(jackknife) should be used in place of the jackknife prefix whenever available
because they are not always equivalent. For example, to use the jackknife prefix with clogit
properly, you must tell jackknife to omit whole groups rather than individual observations. Specifying
vce(jackknife) does this automatically.

. use http://www.stata-press.com/data/r12/clogitid

. jackknife, cluster(id): clogit y x1 x2, group(id)
(output omitted )

This extra information is automatically communicated to jackknife by clogit when the vce()
option is specified.

. clogit y x1 x2, group(id) vce(jackknife)
(running clogit on estimation sample)

Jackknife replications (66)
1 2 3 4 5

.................................................. 50

................

Conditional (fixed-effects) logistic regression Number of obs = 369
Replications = 66
F( 2, 65) = 4.58
Prob > F = 0.0137

Log likelihood = -123.41386 Pseudo R2 = 0.0355

(Replications based on 66 clusters in id)

Jackknife
y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 .653363 .3010608 2.17 0.034 .052103 1.254623
x2 .0659169 .0487858 1.35 0.181 -.0315151 .1633489
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Passing options in vce()

If you wish to specify more options to the bootstrap or jackknife estimation, you can include them
within the vce() option. Below we request 300 bootstrap replications and save the replications in
bsreg.dta:

. use http://www.stata-press.com/data/r12/auto
(1978 Automobile Data)

. regress mpg turn trunk, vce(bootstrap, nodots seed(123) rep(300) saving(bsreg))

Linear regression Number of obs = 74
Replications = 300
Wald chi2(2) = 127.28
Prob > chi2 = 0.0000
R-squared = 0.5521
Adj R-squared = 0.5395
Root MSE = 3.9260

Observed Bootstrap Normal-based
mpg Coef. Std. Err. z P>|z| [95% Conf. Interval]

turn -.7610113 .1361786 -5.59 0.000 -1.027916 -.4941062
trunk -.3161825 .1145728 -2.76 0.006 -.540741 -.0916239
_cons 55.82001 4.69971 11.88 0.000 46.60875 65.03127

. bstat using bsreg

Bootstrap results Number of obs = 74
Replications = 300

command: regress mpg turn trunk

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

turn -.7610113 .1361786 -5.59 0.000 -1.027916 -.4941062
trunk -.3161825 .1145728 -2.76 0.006 -.540741 -.0916239
_cons 55.82001 4.69971 11.88 0.000 46.60875 65.03127

Methods and formulas
By default, Stata’s maximum likelihood estimators display standard errors based on variance

estimates given by the inverse of the negative Hessian (second derivative) matrix. If vce(robust),
vce(cluster clustvar), or pweights is specified, standard errors are based on the robust variance
estimator (see [U] 20.20 Obtaining robust variance estimates); likelihood-ratio tests are not appropriate
here (see [SVY] survey), and the model χ2 is from a Wald test. If vce(opg) is specified, the standard
errors are based on the outer product of the gradients; this option has no effect on likelihood-ratio
tests, though it does affect Wald tests.

If vce(bootstrap) or vce(jackknife) is specified, the standard errors are based on the chosen
replication method; here the model χ2 or F statistic is from a Wald test using the respective replication-
based covariance matrix. The t distribution is used in the coefficient table when the vce(jackknife)
option is specified. vce(bootstrap) and vce(jackknife) are also available with some commands
that are not maximum likelihood estimators.
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Also see
[R] bootstrap — Bootstrap sampling and estimation

[R] jackknife — Jackknife estimation

[XT] vce options — Variance estimators

[U] 20 Estimation and postestimation commands



Title

view — View files and logs

Syntax

Display file in Viewer

view
[
file

] [
"
]
filename

[
"
] [

, asis adopath
]

Bring up browser pointed to specified URL

view browse
[
"
]
url
[
"
]

Display help results in Viewer

view help
[

topic or command name
]

Display search results in Viewer

view search keywords

Display news results in Viewer

view news

Display net results in Viewer

view net
[

netcmd
]

Display ado-results in Viewer

view ado
[

adocmd
]

Display update results in Viewer

view update
[

updatecmd
]

Programmer’s analog to view file and view browse

view view d

Programmer’s analog to view help

view help d

Programmer’s analog to view search

view search d

2299



2300 view — View files and logs

Programmer’s analog to view net

view net d

Programmer’s analog to view ado

view ado d

Programmer’s analog to view update

view update d

Menu
File > View...

Description

view displays file contents in the Viewer.

view file displays the specified file. file is optional, so if you had a SMCL session log created
by typing log using mylog, you could view it by typing view mylog.smcl. view file can
properly display .smcl files (logs and the like), .sthlp files, and text files. view file’s asis
option specifies that the file be displayed as plain text, regardless of the filename’s extension.

view browse opens your browser pointed to url. Typing
view browse http://www.stata.com would bring up your browser pointed to the
http://www.stata.com website.

view help does the same as the help command—see [R] help—but displays the result in the Viewer.
For example, to review the help for Stata’s print command, you could type view help print.

view search does the same as the search command—see [R] search—but displays the result in
the Viewer. For instance, to search the online help for information on robust regression, you could
type view search robust regression.

view news does the same as the news command—see [R] news—but displays the results in the
Viewer. (news displays the latest news from http://www.stata.com.)

view net does the same as the net command—see [R] net—but displays the result in the Viewer.
For instance, typing view net search hausman test would search the Internet for additions to
Stata related to the Hausman test. Typing view net from http://www.stata.com would go to
the Stata download site at http://www.stata.com.

view ado does the same as the ado command—see [R] net—but displays the result in the Viewer.
For instance, typing view ado dir would show a list of files you have installed.

view update does the same as the update command—see [R] update—but displays the result in
the Viewer. Typing view update would show the dates of what you have installed, and from there
you could click to compare those dates with the latest updates available. Typing view update
query would skip the first step and show the comparison.

The view * d commands are more useful in programming contexts than they are interactively.

view view d displays a dialog box from which you may type the name of a file or a URL to be
displayed in the Viewer.

http://www.stata.com
http://www.stata.com
http://www.stata.com
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view help d displays a help dialog box from which you may obtain interactive help on any Stata
command.

view search d displays a search dialog box from which you may obtain interactive help based on
keywords.

view net d displays a search dialog box from which you may search the Internet for additions to
Stata (which you could then install).

view ado d displays a dialog box from which you may search the user-written routines you have
previously installed.

view update d displays an update dialog box in which you may type the source from which updates
are to be obtained.

Options

asis, allowed with view file, specifies that the file be displayed as text, regardless of the filename’s
extension. view file’s default action is to display files ending in .smcl and .sthlp as SMCL;
see [P] smcl.

adopath, allowed with view file, specifies that Stata search the S ADO path for filename and
display it, if found.

Remarks
Most users access the Viewer by selecting File > View... and proceeding from there. The view

command allows you to skip that step. Some common interactive uses of view are

. view mysession.smcl

. view mysession.log

. view help print

. view help regress

. view news

. view browse http://www.stata.com

. view net search hausman test

. view net

. view ado

. view update query

Also, programmers find view useful for creating special effects.
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Also see
[R] help — Display online help

[R] net — Install and manage user-written additions from the Internet

[R] news — Report Stata news

[R] search — Search Stata documentation

[R] update — Update Stata

[D] type — Display contents of a file

[GSM] 3 Using the Viewer
[GSU] 3 Using the Viewer
[GSW] 3 Using the Viewer



Title

vwls — Variance-weighted least squares

Syntax
vwls depvar indepvars

[
if
] [

in
] [

weight
] [

, options
]

options Description

Model

noconstant suppress constant term
sd(varname) variable containing estimate of conditional standard deviation

Reporting

level(#) set confidence level; default is level(95)

display options control column formats, row spacing, line width, and display of
omitted variables and base and empty cells

coeflegend display legend instead of statistics

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Menu
Statistics > Linear models and related > Other > Variance-weighted least squares

Description
vwls estimates a linear regression using variance-weighted least squares. It differs from ordinary

least-squares (OLS) regression in that it does not assume homogeneity of variance, but requires that
the conditional variance of depvar be estimated prior to the regression. The estimated variance need
not be constant across observations. vwls treats the estimated variance as if it were the true variance
when it computes the standard errors of the coefficients.

You must supply an estimate of the conditional standard deviation of depvar to vwls by using
the sd(varname) option, or you must have grouped data with the groups defined by the indepvars
variables. In the latter case, vwls treats all indepvars as categorical variables, computes the mean
and standard deviation of depvar separately for each subgroup, and computes the regression of the
subgroup means on indepvars.

regress with analytic weights can be used to produce another kind of “variance-weighted least
squares”; see Remarks for an explanation of the difference.
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Options

� � �
Model �

noconstant; see [R] estimation options.

sd(varname) is an estimate of the conditional standard deviation of depvar (that is, it can vary
observation by observation). All values of varname must be > 0. If you specify sd(), you cannot
use fweights.

If sd() is not given, the data will be grouped by indepvars. Here indepvars are treated as categorical
variables, and the means and standard deviations of depvar for each subgroup are calculated and
used for the regression. Any subgroup for which the standard deviation is zero is dropped.

� � �
Reporting �

level(#); see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.

The following option is available with vwls but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
The vwls command is intended for use with two special—and different—types of data. The first

contains data that consist of measurements from physical science experiments in which all error is
due solely to measurement errors and the sizes of the measurement errors are known.

You can also use variance-weighted least-squares linear regression for certain problems in categorical
data analysis, such as when all the independent variables are categorical and the outcome variable is
either continuous or a quantity that can sensibly be averaged. If each of the subgroups defined by
the categorical variables contains a reasonable number of subjects, then the variance of the outcome
variable can be estimated independently within each subgroup. For the purposes of estimation, vwls
treats each subgroup as one observation, with the dependent variable being the subgroup mean of the
outcome variable.

The vwls command fits the model
yi = xiβ+ εi

where the errors εi are independent normal random variables with the distribution εi ∼ N(0, νi).
The independent variables xi are assumed to be known without error.

As described above, vwls assumes that you already have estimates s2
i for the variances νi. The

error variance is not estimated in the regression. The estimates s2
i are used to compute the standard

errors of the coefficients; see Methods and formulas below.

In contrast, weighted OLS regression assumes that the errors have the distribution εi ∼ N(0, σ2/wi),
where the wi are known weights and σ2 is an unknown parameter that is estimated in the regression.
This is the difference from variance-weighted least squares: in weighted OLS, the magnitude of the
error variance is estimated in the regression using all the data.
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Example 1

An artificial, but informative, example illustrates the difference between variance-weighted least
squares and weighted OLS.

We measure the quantities xi and yi and estimate that the standard deviation of yi is si. We enter
the data into Stata:

. use http://www.stata-press.com/data/r12/vwlsxmpl

. list

x y s

1. 1 1.2 .5
2. 2 1.9 .5
3. 3 3.2 1
4. 4 4.3 1
5. 5 4.9 1

6. 6 6.0 2
7. 7 7.2 2
8. 8 7.9 2

Because we want observations with smaller variance to carry larger weight in the regression, we
compute an OLS regression with analytic weights proportional to the inverse of the squared standard
deviations:

. regress y x [aweight=s^(-2)]
(sum of wgt is 1.1750e+01)

Source SS df MS Number of obs = 8
F( 1, 6) = 702.26

Model 22.6310183 1 22.6310183 Prob > F = 0.0000
Residual .193355117 6 .032225853 R-squared = 0.9915

Adj R-squared = 0.9901
Total 22.8243734 7 3.26062477 Root MSE = .17952

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .9824683 .0370739 26.50 0.000 .8917517 1.073185
_cons .1138554 .1120078 1.02 0.349 -.1602179 .3879288

If we compute a variance-weighted least-squares regression by using vwls, we get the same results
for the coefficient estimates but very different standard errors:

. vwls y x, sd(s)

Variance-weighted least-squares regression Number of obs = 8
Goodness-of-fit chi2(6) = 0.28 Model chi2(1) = 33.24
Prob > chi2 = 0.9996 Prob > chi2 = 0.0000

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x .9824683 .170409 5.77 0.000 .6484728 1.316464
_cons .1138554 .51484 0.22 0.825 -.8952124 1.122923
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Although the values of yi were nicely linear with xi, the vwls regression used the large estimates
for the standard deviations to compute large standard errors for the coefficients. For weighted OLS
regression, however, the scale of the analytic weights has no effect on the standard errors of the
coefficients—only the relative proportions of the analytic weights affect the regression.

If we are sure of the sizes of our error estimates for yi, using vwls is valid. However, if we can
estimate only the relative proportions of error among the yi, then vwls is not appropriate.

Example 2

Let’s now consider an example of the use of vwls with categorical data. Suppose that we have
blood pressure data for n = 400 subjects, categorized by gender and race (black or white). Here is
a description of the data:

. use http://www.stata-press.com/data/r12/bp

. table gender race, c(mean bp sd bp freq) row col format(%8.1f)

Race
Gender White Black Total

Female 117.1 118.5 117.8
10.3 11.6 10.9
100 100 200

Male 122.1 125.8 124.0
10.6 15.5 13.3
100 100 200

Total 119.6 122.2 120.9
10.7 14.1 12.6
200 200 400

Performing a variance-weighted regression using vwls gives

. vwls bp gender race

Variance-weighted least-squares regression Number of obs = 400
Goodness-of-fit chi2(1) = 0.88 Model chi2(2) = 27.11
Prob > chi2 = 0.3486 Prob > chi2 = 0.0000

bp Coef. Std. Err. z P>|z| [95% Conf. Interval]

gender 5.876522 1.170241 5.02 0.000 3.582892 8.170151
race 2.372818 1.191683 1.99 0.046 .0371631 4.708473

_cons 116.6486 .9296297 125.48 0.000 114.8266 118.4707
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By comparison, an OLS regression gives the following result:
. regress bp gender race

Source SS df MS Number of obs = 400
F( 2, 397) = 15.24

Model 4485.66639 2 2242.83319 Prob > F = 0.0000
Residual 58442.7305 397 147.210908 R-squared = 0.0713

Adj R-squared = 0.0666
Total 62928.3969 399 157.71528 Root MSE = 12.133

bp Coef. Std. Err. t P>|t| [95% Conf. Interval]

gender 6.1775 1.213305 5.09 0.000 3.792194 8.562806
race 2.5875 1.213305 2.13 0.034 .2021938 4.972806

_cons 116.4862 1.050753 110.86 0.000 114.4205 118.552

Note the larger value for the race coefficient (and smaller p-value) in the OLS regression. The
assumption of homogeneity of variance in OLS means that the mean for black men pulls the regression
line higher than in the vwls regression, which takes into account the larger variance for black men
and reduces its effect on the regression.

Saved results
vwls saves the following in e():
Scalars

e(N) number of observations
e(df m) model degrees of freedom
e(chi2) model χ2

e(df gf) goodness-of-fit degrees of freedom
e(chi2 gf) goodness-of-fit χ2

e(rank) rank of e(V)

Macros
e(cmd) vwls
e(cmdline) command as typed
e(depvar) name of dependent variable
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

Methods and formulas
vwls is implemented as an ado-file.

Let y = (y1, y2, . . . , yn)′ be the vector of observations of the dependent variable, where n is
the number of observations. When sd() is specified, let s1, s2, . . . , sn be the standard deviations
supplied by sd(). For categorical data, when sd() is not given, the means and standard deviations
of y for each subgroup are computed, and n becomes the number of subgroups, y is the vector of
subgroup means, and si are the standard deviations for the subgroups.
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Let V = diag(s2
1, s

2
2, . . . , s

2
n) denote the estimate of the variance of y. Then the estimated

regression coefficients are
b = (X′V−1X)−1X′V−1y

and their estimated covariance matrix is

Ĉov(b) = (X′V−1X)−1

A statistic for the goodness of fit of the model is

Q = (y −Xb)′V−1(y −Xb)

where Q has a χ2 distribution with n − k degrees of freedom (k is the number of independent
variables plus the constant, if any).
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[R] vwls postestimation — Postestimation tools for vwls

[R] regress — Linear regression
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Title

vwls postestimation — Postestimation tools for vwls

Description
The following postestimation commands are available after vwls:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat VCE and estimation sample summary
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
linktest link test for model specification
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

See the corresponding entries in the Base Reference Manual for details.

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, xb stdp
]

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted
only for the estimation sample.

Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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Methods and formulas
All postestimation commands listed above are implemented as ado-files.

Also see
[R] vwls — Variance-weighted least squares

[U] 20 Estimation and postestimation commands



Title

which — Display location and version for an ado-file

Syntax
which fname

[
.ftype

] [
, all

]
Description

which looks for fname.ftype along the S ADO path. If Stata finds the file, which displays the full
path and filename, along with, if the file is text, all lines in the file that begin with “*!” in the first
column. If Stata cannot find the file, which issues the message “file not found along ado-path” and
sets the return code to 111. ftype must be a file type for which Stata usually looks along the ado-path
to find. Allowable ftypes are

.ado, .class, .dlg, .idlg, .sthlp, .ihlp, .hlp, .key, .maint, .mata, .mlib, .mo, .mnu,

.plugin, .scheme, .stbcal, and .style

If ftype is omitted, which assumes .ado. When searching for .ado files, if Stata cannot find the
file, Stata then checks to see if fname is a built-in Stata command, allowing for valid abbreviations.
If it is, the message “built-in command” is displayed; if not, the message “command not found as
either built-in or ado-file” is displayed and the return code is set to 111.

For information about internal version control, see [P] version.

Option
all forces which to report the location of all files matching the fname.ftype found along the search

path. The default is to report just the first one found.

Remarks
If you write programs, you know that you make changes to the programs over time. If you are like

us, you also end up with multiple versions of the program stored on your disk, perhaps in different
directories. You may even have given copies of your programs to other Stata users, and you may not
remember which version of a program you or your friends are using. The which command helps
you solve this problem.

Example 1

The which command displays the path for filename.ado and any lines in the code that begin
with “*!”. For example, we might want information about the test command, described in [R] test,
which is an ado-file written by StataCorp. Here is what happens when we type which test:

. which test
C:\Program Files\Stata12\ado\base\t\test.ado
*! version 2.2.1 18feb2011
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which displays the path for the test.ado file and also a line beginning with “*!” that indicates the
version of the file. This is how we, at StataCorp, do version control—see [U] 18.11.1 Version for an
explanation of our version control numbers.

We do not need to be so formal. which will display anything typed after lines that begin with
‘*!’. For instance, we might write myprog.ado:

. which myprog

.\myprog.ado
*! first written 1/03/2011
*! bug fix on 1/05/2011 (no variance case)
*! updated 1/24/2011 to include noconstant option
*! still suspicious if variable takes on only two values

It does not matter where in the program the lines beginning with *! are—which will list them (in
particular, our “still suspicious” comment was buried about 50 lines down in the code). All that is
important is that the *! marker appear in the first two columns of a line.

Example 2

If we type which command, where command is a built-in command rather than an ado-file, Stata
responds with

. which summarize
built-in command: summarize

If command was neither a built-in command nor an ado-file, Stata would respond with

. which junk
command junk not found as either built-in or ado-file
r(111);

Also see
[P] findfile — Find file in path

[P] version — Version control

[U] 17 Ado-files
[U] 18.11.1 Version



Title

xi — Interaction expansion

Syntax
xi
[
, prefix(string) noomit

]
term(s)

xi
[
, prefix(string) noomit

]
: any stata command varlist with terms . . .

where a term has the form

i.varname or I.varname
i.varname1*i.varname2 I.varname1*I.varname2

i.varname1*varname3 I.varname1*varname3

i.varname1|varname3 I.varname1|varname3

varname, varname1, and varname2 denote numeric or string categorical variables. varname3 denotes
a continuous, numeric variable.

Menu
Data > Create or change data > Other variable-creation commands > Interaction expansion� �

Most commands in Stata now allow factor variables; see [U] 11.4.3 Factor variables. To determine
if a command allows factor variables, see the information printed below the options table for the
command. If the command allows factor variables, it will say something like “indepvars may
contain factor variables”.

We recommend that you use factor variables instead of xi if a command allows factor variables.

We include [R] xi in our documentation so that readers can consult it when using a Stata command
that does not allow factor variables.� �

Description
xi expands terms containing categorical variables into indicator (also called dummy) variable sets

by creating new variables and, in the second syntax (xi: any stata command ), executes the specified
command with the expanded terms. The dummy variables created are

i.varname creates dummies for categorical variable varname
i.varname1*i.varname2 creates dummies for categorical variables varname1

and varname2:
all interactions and main effects

i.varname1*varname3 creates dummies for categorical variable varname1

and continuous variable varname3:
all interactions and main effects

i.varname1|varname3 creates dummies for categorical variable varname1

and continuous variable varname3:
all interactions and main effect of varname3,
but no main effect of varname1
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Options

prefix(string) allows you to choose a prefix other than I for the newly created interaction variables.
The prefix cannot be longer than four characters. By default, xi will create interaction variables
starting with I. When you use xi, it drops all previously created interaction variables starting
with the prefix specified in the prefix(string) option or with I by default. Therefore, if you
want to keep the variables with a certain prefix, specify a different prefix in the prefix(string)
option.

noomit prevents xi from omitting groups. This option provides a way to generate an indicator
variable for every category having one or more variables, which is useful when combined with
the noconstant option of an estimation command.

Remarks
Remarks are presented under the following headings:

Background
Indicator variables for simple effects
Controlling the omitted dummy
Categorical variable interactions
Interactions with continuous variables
Using xi: Interpreting output
How xi names variables
xi as a command rather than a command prefix
Warnings

xi provides a convenient way to include dummy or indicator variables when fitting a model (say,
with regress or logistic). For instance, assume that the categorical variable agegrp contains 1
for ages 20–24, 2 for ages 25–39, 3 for ages 40–44, etc. Typing

. xi: logistic outcome weight i.agegrp bp

estimates a logistic regression of outcome on weight, dummies for each agegrp category, and bp.
That is, xi searches out and expands terms starting with “i.” or “I.” but ignores the other variables.
xi will expand both numeric and string categorical variables, so if you had a string variable race
containing “white”, “black”, and “other”, typing

. xi: logistic outcome weight bp i.agegrp i.race

would include indicator variables for the race group as well.

The i. indicator variables xi expands may appear anywhere in the varlist, so

. xi: logistic outcome i.agegrp weight i.race bp

would fit the same model.

You can also create interactions of categorical variables; typing

xi: logistic outcome weight bp i.agegrp*i.race

fits a model with indicator variables for all agegrp and race combinations, including the agegrp and
race main-effect terms (that is, the terms that are created when you just type i.agegrp i.race).

You can interact dummy variables with continuous variables; typing

xi: logistic outcome bp i.agegrp*weight i.race
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fits a model with indicator variables for all agegrp categories interacted with weight, plus the
main-effect terms weight and i.agegrp.

You can get the interaction terms without the agegrp main effect (but with the weight main
effect) by typing

xi: logistic outcome bp i.agegrp|weight i.race

You can also include multiple interactions:

xi: logistic outcome bp i.agegrp*weight i.agegrp*i.race

We will now back up and describe the construction of dummy variables in more detail.

Background

The terms continuous, categorical, and indicator or dummy variables are used below. Continuous
variables measure something—such as height or weight—and at least conceptually can take on any
real number over some range. Categorical variables, on the other hand, take on a finite number of
values, each denoting membership in a subclass—for example, excellent, good, and poor, which
might be coded 0, 1, 2, or 1, 2, 3, or even “Excellent”, “Good”, and “Poor”. An indicator or
dummy variable—the terms are used interchangeably—is a special type of two-valued categorical
variable that contains values 0, denoting false, and 1, denoting true. The information contained in
any k-valued categorical variable can be equally well represented by k indicator variables. Instead
of one variable recording values representing excellent, good, and poor, you can have three indicator
variables, indicating the truth or falseness of “result is excellent”, “result is good”, and “result is
poor”.

xi provides a convenient way to convert categorical variables to dummy or indicator variables
when you fit a model (say, with regress or logistic).

Example 1

For instance, assume that the categorical variable agegrp contains 1 for ages 20–24, 2 for ages
25–39, and 3 for ages 40–44. (There is no one over 44 in our data.) As it stands, agegrp would be
a poor candidate for inclusion in a model even if we thought age affected the outcome. The reason
is that the coding would restrict the effect of being in the second age group to be twice the effect of
being in the first, and, similarly, the effect of being in the third to be three times the first. That is, if
we fit the model,

y = β0 + β1 agegrp +Xβ2

the effect of being in the first age group is β1, the second 2β1, and the third 3β1. If the coding 1, 2,
and 3 is arbitrary, we could just as well have coded the age groups 1, 4, and 9, making the effects
β1, 4β1, and 9β1.

The solution is to convert the categorical variable agegrp to a set of indicator variables, a1, a2,
and a3, where ai is 1 if the individual is a member of the ith age group and 0 otherwise. We can
then fit the model

y = β0 + β11a1 + β12a2 + β13a3 +Xβ2

The effect of being in age group 1 is now β11; 2, β12; and 3, β13; and these results are independent
of our (arbitrary) coding. The only difficulty at this point is that the model is unidentified in the sense
that there are an infinite number of (β0, β11, β12, β13) that fit the data equally well.
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To see this, pretend that (β0, β11, β12, β13) = (1, 1, 3, 4). The predicted values of y for the various
age groups are

y =

{ 1 + 1 +Xβ2 = 2 +Xβ2 (age group 1)
1 + 3 +Xβ2 = 4 +Xβ2 (age group 2)
1 + 4 +Xβ2 = 5 +Xβ2 (age group 3)

Now pretend that (β0, β11, β12, β13) = (2, 0, 2, 3). The predicted values of y are

y =

{ 2 + 0 +Xβ2 = 2 +Xβ2 (age group 1)
2 + 2 +Xβ2 = 4 +Xβ2 (age group 2)
2 + 3 +Xβ2 = 5 +Xβ2 (age group 3)

These two sets of predictions are indistinguishable: for age group 1, y = 2 + Xβ2 regardless of
the coefficient vector used, and similarly for age groups 2 and 3. This arises because we have three
equations and four unknowns. Any solution is as good as any other, and, for our purposes, we merely
need to choose one of them. The popular selection method is to set the coefficient on the first indicator
variable to 0 (as we have done in our second coefficient vector). This is equivalent to fitting the model

y = β0 + β12a2 + β13a3 +Xβ2

How we select a particular coefficient vector (identifies the model) does not matter. It does, however,
affect the interpretation of the coefficients.

For instance, we could just as well choose to omit the second group. In our artificial example,
this would yield (β0, β11, β12, β13) = (4,−2, 0, 1) instead of (2, 0, 2, 3). These coefficient vectors
are the same in the sense that

y =

{ 2 + 0 +Xβ2 = 2 +Xβ2 = 4− 2 +Xβ2 (age group 1)
2 + 2 +Xβ2 = 4 +Xβ2 = 4 + 0 +Xβ2 (age group 2)
2 + 3 +Xβ2 = 5 +Xβ2 = 4 + 1 +Xβ2 (age group 3)

But what does it mean that β13 can just as well be 3 or 1? We obtain β13 = 3 when we set β11 = 0,
so β13 = β13 − β11 and β13 measures the difference between age groups 3 and 1.

In the second case, we obtain β13 = 1 when we set β12 = 0, so β13−β12 = 1 and β13 measures
the difference between age groups 3 and 2. There is no inconsistency. According to our β12 = 0
model, the difference between age groups 3 and 1 is β13 − β11 = 1− (−2) = 3, the same result we
got in the β11 = 0 model.

Example 2

The issue of interpretation is important because it can affect the way we discuss results. Imagine
that we are studying recovery after a coronary bypass operation. Assume that the age groups are
children under 13 (we have two of them), young adults under 25 (we have a handful of them), adults
under 46 (of which we have even more), mature adults under 56, older adults under 65, and elderly
adults. We follow the prescription of omitting the first group, so all our results are reported relative
to children under 13. While there is nothing statistically wrong with this, readers will be suspicious
when we make statements like “compared with young children, older and elder adults . . . ”. Moreover,
we will probably have to end each statement with “although results are not statistically significant”
because we have only two children in our comparison group. Of course, even with results reported in
this way, we can do reasonable comparisons (say, with mature adults), but we will have to do extra
work to perform the appropriate linear hypothesis test using Stata’s test command.
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Here it would be better to force the omitted group to be more reasonable, such as mature adults.
There is, however, a generic rule for automatic comparison group selection that, although less popular,
tends to work better than the omit-the-first-group rule. That rule is to omit the most prevalent group.
The most prevalent is usually a reasonable baseline.

In any case, the prescription for categorical variables is

1. Convert each k-valued categorical variable to k indicator variables.

2. Drop one of the k indicator variables; any one will do, but dropping the first is popular,
dropping the most prevalent is probably better in terms of having the computer guess at a
reasonable interpretation, and dropping a specified one often eases interpretation the most.

3. Fit the model on the remaining k − 1 indicator variables.

xi automates this procedure.

We will now consider each of xi’s features in detail.

Indicator variables for simple effects

When you type i.varname, xi internally tabulates varname (which may be a string or a numeric
variable) and creates indicator (dummy) variables for each observed value, omitting the indicator for
the smallest value. For instance, say that agegrp takes on the values 1, 2, 3, and 4. Typing

xi: logistic outcome i.agegrp

creates indicator variables named Iagegrp 2, Iagegrp 3, and Iagegrp 4. (xi chooses the
names and tries to make them readable; xi guarantees that the names are unique.) The expanded
logistic model is

. logistic outcome _Iagegrp_2 _Iagegrp_3 _Iagegrp_4

Afterward, you can drop the new variables xi leaves behind by typing ‘drop I*’ (note the
capitalization).

xi provides the following features when you type i.varname:

• varname may be string or numeric.

• Dummy variables are created automatically.

• By default, the dummy-variable set is identified by dropping the dummy corresponding to
the smallest value of the variable (how to specify otherwise is discussed below).

• The new dummy variables are left in your dataset. By default, the names of the new dummy
variables start with I; therefore, you can drop them by typing ‘drop I*’. You do not
have to do this; each time you use xi, any automatically generated dummies with the same
prefix as the one specified in the prefix(string) option, or I by default, are dropped and
new ones are created.

• The new dummy variables have variable labels so that you can determine what they correspond
to by typing ‘describe’.

• xi may be used with any Stata command (not just logistic).
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Controlling the omitted dummy

By default, i.varname omits the dummy corresponding to the smallest value of varname; for
a string variable, this is interpreted as dropping the first in an alphabetical, case-sensitive sort. xi
provides two alternatives to dropping the first: xi will drop the dummy corresponding to the most
prevalent value of varname, or xi will let you choose the particular dummy to be dropped.

To change xi’s behavior to dropping the most prevalent dummy, type

. char _dta[omit] prevalent

although whether you type “prevalent” or “yes” or anything else does not matter. Setting this
characteristic affects the expansion of all categorical variables in the dataset. If you resave your
dataset, the prevalent preference will be remembered. If you want to change the behavior back to the
default drop-the-first rule, type

. char _dta[omit]

to clear the characteristic.

Once you set dta[omit], i.varname omits the dummy corresponding to the most prevalent
value of varname. Thus the coefficients on the dummies have the interpretation of change from the
most prevalent group. For example,

. char _dta[omit] prevalent

. xi: regress y i.agegrp

might create Iagegrp 1 through Iagegrp 4, resulting in Iagegrp 2 being omitted if agegrp =
2 is most common (as opposed to the default dropping of Iagegrp 1). The model is then

y = b0 + b1 Iagegrp 1 + b3 Iagegrp 3 + b4 Iagegrp 4 + u

Then
Predicted y for agegrp 1 = b0 + b1 Predicted y for agegrp 3 = b0 + b3
Predicted y for agegrp 2 = b0 Predicted y for agegrp 4 = b0 + b4

Thus the model’s reported t or Z statistics are for a test of whether each group is different from the
most prevalent group.

Perhaps you wish to omit the dummy for agegrp 3 instead. You do this by setting the variable’s
omit characteristic:

. char agegrp[omit] 3

This overrides dta[omit] if you have set it. Now when you type

. xi: regress y i.agegrp

Iagegrp 3 will be omitted, and you will fit the model

y = b′0 + b′1 Iagegrp 1 + b′2 Iagegrp 2 + b′4 Iagegrp 4 + u

Later if you want to return to the default omission, type

. char agegrp[omit]

to clear the characteristic.

In summary, i.varname omits the first group by default, but if you define

. char _dta[omit] prevalent
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the default behavior changes to dropping the most prevalent group. Either way, if you define a
characteristic of the form

. char varname[omit] #

or, if varname is a string,
. char varname[omit] string-literal

the specified value will be omitted.

Examples: . char agegrp[omit] 1
. char race[omit] White (for race, a string variable)
. char agegrp[omit] (to restore default for agegrp)

Categorical variable interactions

i.varname1*i.varname2 creates the dummy variables associated with the interaction of the cate-
gorical variables varname1 and varname2. The identification rules—which categories are omitted—are
the same as those for i.varname. For instance, assume that agegrp takes on four values and race
takes on three values. Typing

. xi: regress y i.agegrp*i.race

results in

model : dummies for:
y = a+b2 Iagegrp 2 + b3 Iagegrp 3 + b4 Iagegrp 4 (agegrp)

+c2 Irace 2 + c3 Irace 3 (race)
+d22 IageXrac 2 2 + d23 IageXrac 2 3

+d32 IageXrac 3 2 + d33 IageXrac 3 3 (agegrp*race)
+d42 IageXrac 4 2 + d43 IageXrac 4 3

+u

That is, typing
. xi: regress y i.agegrp*i.race

is the same as typing
. xi: regress y i.agegrp i.race i.agegrp*i.race

Although there are many other ways the interaction could have been parameterized, this method has
the advantage that you can test the joint significance of the interactions by typing

. testparm _IageXrac*

When you perform the estimation step, whether you specify i.agegrp*i.race or i.race*i.agegrp
makes no difference (other than in the names given to the interaction terms; in the first case, the
names will begin with IageXrac; in the second, IracXage). Thus

. xi: regress y i.race*i.agegrp

fits the same model.

You may also include multiple interactions simultaneously:
. xi: regress y i.agegrp*i.race i.agegrp*i.sex
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The model fit is

model : dummies for:
y = a+b2 Iagegrp 2 + b3 Iagegrp 3 + b4 Iagegrp 4 (agegrp)

+c2 Irace 2 + c3 Irace 3 (race)
+d22 IageXrac 2 2 + d23 IageXrac 2 3

+d32 IageXrac 3 2 + d33 IageXrac 3 3 (agegrp*race)
+d42 IageXrac 4 2 + d43 IageXrac 4 3

+e2 Isex 2 (sex)
+f22 IageXsex 2 2 + f23 IageXsex 2 3 + f24 IageXsex 2 4 (agegrp*sex)
+u

The agegrp dummies are (correctly) included only once.

Interactions with continuous variables
i.varname1*varname2 (as distinguished from i.varname1*i.varname2—note the second i.)

specifies an interaction of a categorical variable with a continuous variable. For instance,
. xi: regress y i.agegr*wgt

results in the model

y = a+b2 Iagegrp 2 + b3 Iagegrp 3 + b4 Iagegrp 4 (agegrp dummies)
+c wgt (continuous wgt effect)
+d2 IageXwgt 2 + d3 IageXwgt 3 + d4 IageXwgt 4 (agegrp*wgt interactions)
+u

A variation on this notation, using | rather than *, omits the agegrp dummies. Typing
. xi: regress y i.agegrp|wgt

fits the model

y = a′ +c′ wgt (continuous wgt effect)
+d′2 IageXwgt 2 + d′3 IageXwgt 3 + d′4 IageXwgt 4 (agegrp*wgt interactions)
+u′

The predicted values of y are

agegrp*wgt model agegrp|wgt model

y = a+ c wgt a′ + c′ wgt if agegrp = 1
a+ c wgt + b2 + d2 wgt a′ + c′wgt + d′2 wgt if agegrp = 2
a+ c wgt + b3 + d3 wgt a′ + c′wgt + d′3 wgt if agegrp = 3
a+ c wgt + b4 + d4 wgt a′ + c′wgt + d′4 wgt if agegrp = 4

That is, typing
. xi: regress y i.agegrp*wgt
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is equivalent to typing

. xi: regress y i.agegrp i.agegrp|wgt

In either case, you do not need to specify separately the continuous variable wgt; it is included
automatically.

Using xi: Interpreting output

. xi: regress mpg i.rep78
i.rep78 _Irep78_1-5 (naturally coded; _Irep78_1 omitted)

(output from regress appears )

Interpretation: i.rep78 expanded to the dummies Irep78 1, Irep78 2, . . . , Irep78 5. The
numbers on the end are “natural” in the sense that Irep78 1 corresponds to rep78 = 1, Irep78 2
to rep78 = 2, and so on. Finally, the dummy for rep78 = 1 was omitted.

. xi: regress mpg i.make
i.make _Imake_1-74 (_Imake_1 for make==AMC Concord omitted)

(output from regress appears )

Interpretation: i.make expanded to Imake 1, Imake 2, . . . , Imake 74. The coding is not
natural because make is a string variable. Imake 1 corresponds to one make, Imake 2 to another,
and so on. You can find out the coding by typing describe. Imake 1 for the AMC Concord was
omitted.

How xi names variables

By default, xi assigns to the dummy variables it creates names having the form

Istub groupid

You may subsequently refer to the entire set of variables by typing ‘Istub*’. For example,

name = I + stub + + groupid Entire set
Iagegrp 1 I agegrp 1 Iagegrp*
Iagegrp 2 I agegrp 2 Iagegrp*
IageXwgt 1 I ageXwgt 1 IageXwgt*
IageXrac 1 2 I ageXrac 1 2 IageXrac*
IageXrac 2 1 I ageXrac 2 1 IageXrac*

If you specify a prefix in the prefix(string) option, say, S, then xi will name the variables
starting with the prefix

Sstub groupid
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xi as a command rather than a command prefix

xi can be used as a command prefix or as a command by itself. In the latter form, xi merely
creates the indicator and interaction variables. Typing

. xi: regress y i.agegrp*wgt
i.agegrp _Iagegrp_1-4 (naturally coded; _Iagegrp_1 omitted)
i.agegrp*wgt _IageXwgt_1-4 (coded as above)

(output from regress appears )

is equivalent to typing

. xi i.agegrp*wgt
i.agegrp _Iagegrp_1-4 (naturally coded; _Iagegrp_1 omitted)
i.agegrp*wgt _IageXwgt_1-4 (coded as above)

. regress y _Iagegrp* _IageXwgt*
(output from regress appears )

Warnings

1. xi creates new variables in your dataset; most are bytes, but interactions with continuous
variables will have the storage type of the underlying continuous variable. You may get
the message “insufficient memory”. If so, you will need to increase the amount of memory
allocated to Stata’s data areas; see [U] 6 Managing memory.

2. When using xi with an estimation command, you may get the message “matsize too small”.
If so, see [R] matsize.

Saved results
xi saves the following characteristics:

dta[ xi Vars Prefix ] prefix names
dta[ xi Vars To Drop ] variables created

Methods and formulas
xi is implemented as an ado-file.
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Also see
[U] 11.1.10 Prefix commands
[U] 20 Estimation and postestimation commands



Title

zinb — Zero-inflated negative binomial regression

Syntax
zinb depvar

[
indepvars

] [
if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) equation that determines whether the count is zero
noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables
probit use probit model to characterize excess zeros; default is logit

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
vuong perform Vuong test
zip perform ZIP likelihood-ratio test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗inflate(varlist
[
, offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), vuong, zip, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Count outcomes > Zero-inflated negative binomial regression

Description
zinb estimates a zero-inflated negative binomial (ZINB) regression of depvar on indepvars, where

depvar is a nonnegative count variable.

Options

� � �
Model �

inflate(varlist
[
, offset(varname)

]
| cons) specifies the equation that determines whether the

observed count is zero. Conceptually, omitting inflate() would be equivalent to fitting the model
with nbreg.

inflate(varlist
[
, offset(varname)

]
) specifies the variables in the equation. You may optionally

include an offset for this varlist.

inflate( cons) specifies that the equation determining whether the count is zero contains only
an intercept. To run a zero-inflated model of depvar with only an intercept in both equations, type
zinb depvar, inflate( cons).

noconstant, exposure(varnamee), offset(varnameo), constraints(constraints), collinear;
see [R] estimation options.

probit requests that a probit, instead of logit, model be used to characterize the excess zeros in the
data.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eβi rather than βi.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

vuong specifies that the Vuong (1989) test of ZINB versus negative binomial be reported. This test
statistic has a standard normal distribution with large positive values favoring the ZINB model and
large negative values favoring the negative binomial model.

zip requests that a likelihood-ratio test comparing the ZINB model with the zero-inflated Poisson
model be included in the output.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with zinb but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
See Long (1997, 242–247) and Greene (2012, 821–826) for a discussion of zero-modified count

models. For information about the test developed by Vuong (1989), see Greene (2012, 823–824) and
Long (1997). Greene (1994) applied the test to zero-inflated Poisson and negative binomial models,
and there is a description of that work in Greene (2012).

Negative binomial regression fits models of the number of occurrences (counts) of an event. You
could use nbreg for this (see [R] nbreg), but in some count-data models, you might want to account
for the prevalence of zero counts in the data.

For instance, you could count how many fish each visitor to a park catches. Many visitors may
catch zero, because they do not fish (as opposed to being unsuccessful). You may be able to model
whether a person fishes depending on several covariates related to fishing activity and model how
many fish a person catches depending on several covariates having to do with the success of catching
fish (type of lure/bait, time of day, temperature, season, etc.). This is the type of data for which the
zinb command is useful.

The zero-inflated (or zero-altered) negative binomial model allows overdispersion through the
splitting process that models the outcomes as zero or nonzero.

Example 1

We have data on the number of fish caught by visitors to a national park. Some of the visitors do
not fish, but we do not have the data on whether a person fished; we have data merely on how many
fish were caught, together with several covariates. Because our data have a preponderance of zeros
(142 of 250), we use the zinb command to model the outcome.

. use http://www.stata-press.com/data/r12/fish

. zinb count persons livebait, inf(child camper) vuong

Fitting constant-only model:

Iteration 0: log likelihood = -519.33992
(output omitted )

Iteration 8: log likelihood = -442.66299

Fitting full model:

Iteration 0: log likelihood = -442.66299 (not concave)
(output omitted )

Iteration 8: log likelihood = -401.54776
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Zero-inflated negative binomial regression Number of obs = 250
Nonzero obs = 108
Zero obs = 142

Inflation model = logit LR chi2(2) = 82.23
Log likelihood = -401.5478 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

count
persons .9742984 .1034938 9.41 0.000 .7714543 1.177142

livebait 1.557523 .4124424 3.78 0.000 .7491503 2.365895
_cons -2.730064 .476953 -5.72 0.000 -3.664874 -1.795253

inflate
child 3.185999 .7468551 4.27 0.000 1.72219 4.649808

camper -2.020951 .872054 -2.32 0.020 -3.730146 -.3117567
_cons -2.695385 .8929071 -3.02 0.003 -4.44545 -.9453189

/lnalpha .5110429 .1816816 2.81 0.005 .1549535 .8671323

alpha 1.667029 .3028685 1.167604 2.380076

Vuong test of zinb vs. standard negative binomial: z = 5.59 Pr>z = 0.0000

In general, Vuong test statistics that are significantly positive favor the zero-inflated models, whereas
those that are significantly negative favor the non–zero-inflated models. Thus, in the above model,
the zero inflation is significant.

Saved results
zinb saves the following in e():

Scalars
e(N) number of observations
e(N zero) number of zero observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k aux) number of auxiliary parameters
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(df c) degrees of freedom for comparison test
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(chi2 cp) χ2 for test of α = 0
e(vuong) Vuong test statistic
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) zinb
e(cmdline) command as typed
e(depvar) name of dependent variable
e(inflate) logit or probit
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset
e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model χ2 test
e(chi2 cpt) Wald or LR; type of model χ2 test corresponding to e(chi2 cp)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
zinb is implemented as an ado-file.

Several models in the literature are (correctly) described as zero inflated. The zinb command
maximizes the log likelihood lnL, defined by
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m = 1/α

pj = 1/(1 + αµj)

ξβj = xjβ+ offsetβj
ξγj = zjγ+ offsetγj
µj = exp(ξβj )

lnL =
∑
j∈S

wj ln
[
F (ξγj ) +

{
1− F (ξγj )

}
pmj
]

+
∑
j 6∈S

wj

[
ln
{

1− F (ξγj )
}

+ lnΓ(m+ yj)− lnΓ(yj + 1)

− lnΓ(m) +m lnpj + yj ln(1− pj)
]

where wj are the weights, F is the inverse of the logit link (or the inverse of the probit link if
probit was specified), and S is the set of observations for which the outcome yj = 0.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

zinb also supports estimation with survey data. For details on VCEs with survey data, see
[SVY] variance estimation.

References
Greene, W. H. 1994. Accounting for excess zeros and sample selection in Poisson and negative binomial regression

models. Working paper EC-94-10, Department of Economics, Stern School of Business, New York University.
http://ideas.repec.org/p/ste/nystbu/94-10.html.

. 2012. Econometric Analysis. 7th ed. Upper Saddle River, NJ: Prentice Hall.

Long, J. S. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.
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Press.
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Also see
[R] zinb postestimation — Postestimation tools for zinb

[R] zip — Zero-inflated Poisson regression

[R] nbreg — Negative binomial regression

[R] poisson — Poisson regression

[R] tnbreg — Truncated negative binomial regression

[R] tpoisson — Truncated Poisson regression

[SVY] svy estimation — Estimation commands for survey data

[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models

[U] 20 Estimation and postestimation commands



Title

zinb postestimation — Postestimation tools for zinb

Description
The following postestimation commands are available after zinb:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarinflate newvarlnalpha

} [
if
] [

in
]
, scores

statistic Description

Main

n number of events; the default
ir incidence rate
pr probability of a degenerate zero
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is (1 − pj) exp(xjβ) if neither
offset() nor exposure() was specified when the model was fit, where pj is the predicted
probability of a zero outcome; (1 − pj) exp{(xjβ) + offsetj} if offset() was specified; or
(1− pj){exp(xjβ)× exposurej} if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. This is equivalent to specifying both the n and the nooffset options.

pr calculates the probability Pr(yj = 0), where this zero was obtained from the degenerate distribution
F (zjγ). If offset() was specified within the inflate() option, then F (zjγ + offsetγj ) is
calculated.

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable. Note that pr is not equivalent to pr(0).

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified;
xjβ+ offsetj if offset() was specified; or xjβ+ ln(exposurej) if exposure() was specified;
see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

The third new variable will contain ∂lnL/∂ lnα.

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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The probabilities calculated using the pr(n) option are the probability Pr(yi = n). These are
calculated using

Pr(0|xi) = ωi + (1− ωi) p2(0|xi)

Pr(n|xi) = (1− ωi) p2(n|xi) for n = 1, 2, . . .

where ωi is the probability of obtaining an observation from the degenerate distribution whose mass
is concentrated at zero, and p2(n|xi) is the probability of yi = n from the nondegenerate, negative
binomial distribution. ωi can be obtained from the pr option.

See Cameron and Trivedi (1998, sec. 4.7) for further details.

Reference
Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: Cambridge University

Press.

Also see
[R] zinb — Zero-inflated negative binomial regression

[U] 20 Estimation and postestimation commands

http://www.stata.com/bookstore/racd.html


Title

zip — Zero-inflated Poisson regression

Syntax

zip depvar
[

indepvars
] [

if
] [

in
] [

weight
]
,

inflate(varlist
[
, offset(varname)

]
| cons)

[
options

]
options Description

Model
∗inflate( ) equation that determines whether the count is zero
noconstant suppress constant term
exposure(varnamee) include ln(varnamee) in model with coefficient constrained to 1
offset(varnameo) include varnameo in model with coefficient constrained to 1
constraints(constraints) apply specified linear constraints
collinear keep collinear variables
probit use probit model to characterize excess zeros; default is logit

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)

irr report incidence-rate ratios
vuong perform Vuong test
nocnsreport do not display constraints
display options control column formats, row spacing, line width, and display of

omitted variables and base and empty cells

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗inflate(varlist
[
, offset(varname)

]
| cons) is required.

indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
vce(), vuong, and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Menu
Statistics > Count outcomes > Zero-inflated Poisson regression

Description
zip estimates a zero-inflated Poisson (ZIP) regression of depvar on indepvars, where depvar is a

nonnegative count variable.

Options

� � �
Model �

inflate(varlist
[
, offset(varname)

]
| cons) specifies the equation that determines whether the

observed count is zero. Conceptually, omitting inflate() would be equivalent to fitting the model
with poisson; see [R] poisson.

inflate(varlist
[
, offset(varname)

]
) specifies the variables in the equation. You may optionally

include an offset for this varlist.

inflate( cons) specifies that the equation determining whether the count is zero contains only
an intercept. To run a zero-inflated model of depvar with only an intercept in both equations, type
zip depvar, inflate( cons).

noconstant, exposure(varnamee), offset(varnameo), constraints(constraints), collinear;
see [R] estimation options.

probit requests that a probit, instead of logit, model be used to characterize the excess zeros in the
data.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory, that are robust to some kinds of misspecification, that allow for intragroup
correlation, and that use bootstrap or jackknife methods; see [R] vce option.

� � �
Reporting �

level(#); see [R] estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, eb rather than b.
Standard errors and confidence intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be specified at estimation or when
replaying previously estimated results.

vuong specifies that the Vuong (1989) test of ZIP versus Poisson be reported. This test statistic has a
standard normal distribution with large positive values favoring the ZIP model and large negative
values favoring the Poisson model.

nocnsreport; see [R] estimation options.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels,
cformat(% fmt), pformat(% fmt), sformat(% fmt), and nolstretch; see [R] estimation options.
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] maximize. These options are
seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following option is available with zip but is not shown in the dialog box:

coeflegend; see [R] estimation options.

Remarks
See Long (1997, 242–247) and Greene (2012, 821–826) for a discussion of zero-modified count

models. For information about the test developed by Vuong (1989), see Greene (2012, 823–824) and
Long (1997). Greene (1994) applied the test to ZIP and ZINB models, as described in Greene (2012,
824).

Poisson regression fits models of the number of occurrences (counts) of an event. You could use
poisson for this (see [R] poisson), but in some count-data models, you might want to account for
the prevalence of zero counts in the data.

For instance, you might count how many fish each visitor to a park catches. Many visitors may
catch zero, because they do not fish (as opposed to being unsuccessful). You may be able to model
whether a person fishes depending on several covariates related to fishing activity and model how
many fish a person catches depending on several covariates having to do with the success of catching
fish (type of lure/bait, time of day, temperature, season, etc.). This is the type of data for which the
zip command is useful.

The zero-inflated (or zero-altered) Poisson model allows overdispersion through the splitting process
that models the outcomes as zero or nonzero.

Example 1

We have data on the number of fish caught by visitors to a national park. Some of the visitors do
not fish, but we do not have the data on whether a person fished; we merely have data on how many
fish were caught together with several covariates. Because our data have a preponderance of zeros
(142 of 250), we use the zip command to model the outcome.

. use http://www.stata-press.com/data/r12/fish

. zip count persons livebait, inf(child camper) vuong

Fitting constant-only model:

Iteration 0: log likelihood = -1347.807
Iteration 1: log likelihood = -1305.3245

(output omitted )
Iteration 4: log likelihood = -1103.9425

Fitting full model:

Iteration 0: log likelihood = -1103.9425
Iteration 1: log likelihood = -896.2346

(output omitted )
Iteration 5: log likelihood = -850.70142
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Zero-inflated Poisson regression Number of obs = 250
Nonzero obs = 108
Zero obs = 142

Inflation model = logit LR chi2(2) = 506.48
Log likelihood = -850.7014 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

count
persons .8068853 .0453288 17.80 0.000 .7180424 .8957281

livebait 1.757289 .2446082 7.18 0.000 1.277866 2.236713
_cons -2.178472 .2860289 -7.62 0.000 -2.739078 -1.617865

inflate
child 1.602571 .2797719 5.73 0.000 1.054228 2.150913

camper -1.015698 .365259 -2.78 0.005 -1.731593 -.2998038
_cons -.4922872 .3114562 -1.58 0.114 -1.10273 .1181558

Vuong test of zip vs. standard Poisson: z = 3.95 Pr>z = 0.0000

In general, Vuong test statistics that are significantly positive favor the zero-inflated models, while
those that are significantly negative favor the non–zero-inflated models. Thus, in the above model,
the zero inflation is significant.

Saved results
zip saves the following in e():

Scalars
e(N) number of observations
e(N zero) number of zero observations
e(k) number of parameters
e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test
e(k dv) number of dependent variables
e(df m) model degrees of freedom
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(ll c) log likelihood, comparison model
e(df c) degrees of freedom for comparison test
e(N clust) number of clusters
e(chi2) χ2

e(p) significance of model test
e(vuong) Vuong test statistic
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) zip
e(cmdline) command as typed
e(depvar) name of dependent variable
e(inflate) logit or probit
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset
e(offset2) offset for inflate()
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. Err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators
e(V modelbased) model-based variance

Functions
e(sample) marks estimation sample

Methods and formulas
zip is implemented as an ado-file.

Several models in the literature are (correctly) described as zero inflated. The zip command
maximizes the log-likelihood lnL, defined by

ξβj = xjβ+ offsetβj
ξγj = zjγ+ offsetγj

lnL =
∑
j∈S

wj ln
[
F (ξγj ) +

{
1− F (ξγj )

}
exp(−λj)

]
+

∑
j 6∈S

wj

[
ln
{

1− F (ξγj )
}
− λj + ξβj yj − ln(yj !)

]
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where wj are the weights, F is the inverse of the logit link (or the inverse of the probit link if
probit was specified), and S is the set of observations for which the outcome yj = 0.

This command supports the Huber/White/sandwich estimator of the variance and its clustered
version using vce(robust) and vce(cluster clustvar), respectively. See [P] robust, particularly
Maximum likelihood estimators and Methods and formulas.

zip also supports estimation with survey data. For details on VCEs with survey data, see [SVY] vari-
ance estimation.
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zip postestimation — Postestimation tools for zip

Description
The following postestimation commands are available after zip:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates
estat AIC, BIC, VCE, and estimation sample summary
estat (svy) postestimation statistics for survey data
estimates cataloging estimation results
lincom point estimates, standard errors, testing, and inference for linear

combinations of coefficients
lrtest1 likelihood-ratio test
margins marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot graph the results from margins (profile plots, interaction plots, etc.)
nlcom point estimates, standard errors, testing, and inference for nonlinear

combinations of coefficients
predict predictions, residuals, influence statistics, and other diagnostic measures
predictnl point estimates, standard errors, testing, and inference for generalized predictions
pwcompare pairwise comparisons of estimates
suest seemingly unrelated estimation
test Wald tests of simple and composite linear hypotheses
testnl Wald tests of nonlinear hypotheses

1 lrtest is not appropriate with svy estimation results.

See the corresponding entries in the Base Reference Manual for details, but see [SVY] estat for
details about estat (svy).

Syntax for predict
predict

[
type

]
newvar

[
if
] [

in
] [

, statistic nooffset
]

predict
[

type
] {

stub* | newvarreg newvarinflate

} [
if
] [

in
]
, scores

statistic Description

Main

n number of events; the default
ir incidence rate
pr probability of a degenerate zero
pr(n) probability Pr(yj = n)
pr(a,b) probability Pr(a ≤ yj ≤ b)
xb linear prediction
stdp standard error of the linear prediction

These statistics are available both in and out of sample; type predict . . . if e(sample) . . . if wanted only for
the estimation sample.
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Menu
Statistics > Postestimation > Predictions, residuals, etc.

Options for predict

� � �
Main �

n, the default, calculates the predicted number of events, which is (1 − pj) exp(xjβ) if neither
offset() nor exposure() was specified when the model was fit, where pj is the predicted
probability of a zero outcome; (1 − pj) exp{(xjβ) + offsetj} if offset() was specified; or
(1− pj){exp(xjβ)× exposurej} if exposure() was specified.

ir calculates the incidence rate exp(xjβ), which is the predicted number of events when exposure
is 1. This is equivalent to specifying both the n and the nooffset options.

pr calculates the probability Pr(yj = 0), where this zero was obtained from the degenerate distribution
F (zjγ). If offset() was specified within the inflate() option, then F (zjγ + offsetγj ) is
calculated.

pr(n) calculates the probability Pr(yj = n), where n is a nonnegative integer that may be specified
as a number or a variable. Note that pr is not equivalent to pr(0).

pr(a,b) calculates the probability Pr(a ≤ yj ≤ b), where a and b are nonnegative integers that may
be specified as numbers or variables;

b missing (b ≥ .) means +∞;
pr(20,.) calculates Pr(yj ≥ 20);
pr(20,b) calculates Pr(yj ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ yj ≤ b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction, which is xjβ if neither offset() nor exposure() was specified;
xjβ+ offsetj if offset() was specified; or xjβ+ ln(exposurej) if exposure() was specified;
see nooffset below.

stdp calculates the standard error of the linear prediction.

nooffset is relevant only if you specified offset() or exposure() when you fit the model. It
modifies the calculations made by predict so that they ignore the offset or exposure variable; the
linear prediction is treated as xjβ rather than as xjβ+offsetj or xjβ+ ln(exposurej). Specifying
predict . . . , nooffset is equivalent to specifying predict . . . , ir.

scores calculates equation-level score variables.

The first new variable will contain ∂lnL/∂(xjβ).

The second new variable will contain ∂lnL/∂(zjγ).

Methods and formulas
All postestimation commands listed above are implemented as ado-files.
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The probabilities calculated using the pr(n) option are the probability Pr(yi = n). These are
calculated using

Pr(0|xi) = ωi + (1− ωi) exp(−λi)

Pr(n|xi) = (1− ωi)
λni exp(−λi)

n!
for n = 1, 2, . . .

where ωi is the probability of obtaining an observation from the degenerate distribution whose mass
is concentrated at zero. ωi can be obtained from the pr option.

See Cameron and Trivedi (1998, sec. 4.7) for further details.

Reference
Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: Cambridge University

Press.

Also see
[R] zip — Zero-inflated Poisson regression
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Ängquist, L., [R] bootstrap, [R] permute
Angrist, J. D., [R] ivregress, [R] ivregress

postestimation, [R] qreg, [R] regress
Anscombe, F. J., [R] binreg postestimation, [R] glm,

[R] glm postestimation
Arbuthnott, J., [R] signrank
Archer, K. J., [R] logistic, [R] logistic postestimation,

[R] logit, [R] logit postestimation

Arellano, M., [R] gmm
Arminger, G., [R] suest
Armitage, P., [R] ameans, [R] expoisson, [R] pkcross,

[R] sdtest
Armstrong, R. D., [R] qreg
Arthur, M., [R] symmetry
Atkinson, A. C., [R] boxcox, [R] nl
Azen, S. P., [R] anova

B
Babiker, A., [R] sampsi
Babin, B. J., [R] rologit
Baker, R. J., [R] glm
Baker, R. M., [R] ivregress postestimation
Bakker, A., [R] mean
Balaam, L. N., [R] pkcross
Baltagi, B. H., [R] hausman
Bamber, D., [R] rocfit, [R] rocregplot, [R] roctab
Bancroft, T. A., [R] stepwise
Barnard, G. A., [R] spearman, [R] ttest
Barnett, A. G., [R] glm
Barnow, B. S., [R] treatreg
Barrison, I. G., [R] binreg
Bartlett, M. S., [R] oneway
Bartus, T., [R] margins
Basmann, R. L., [R] ivregress, [R] ivregress

postestimation
Bassett, G., Jr., [R] qreg
Basu, A., [R] glm
Baum, C. F., [R] gmm, [R] heckman, [R] heckprob,

[R] ivregress, [R] ivregress postestimation,
[R] margins, [R] net, [R] net search, [R] regress
postestimation, [R] regress postestimation time
series, [R] ssc

Bayart, D., [R] qc
Beale, E. M. L., [R] stepwise, [R] test
Beaton, A. E., [R] rreg
Becketti, S., [R] fracpoly, [R] runtest, [R] spearman
Beggs, S., [R] rologit
Belanger, A. J., [R] sktest
Belsley, D. A., [R] estat, [R] regress postestimation
Bendel, R. B., [R] stepwise
Benedetti, J. K., [R] tetrachoric
Beniger, J. R., [R] cumul
Bera, A. K., [R] sktest
Beran, R. J., [R] regress postestimation time series
Berk, K. N., [R] stepwise
Berk, R. A., [R] rreg
Berkson, J., [R] logit, [R] probit
Bern, P. H., [R] nestreg
Bernasco, W., [R] tetrachoric
Berndt, E. K., [R] glm
Berndt, E. R., [R] treatreg, [R] truncreg
Bernstein, I. H., [R] alpha
Berry, G., [R] ameans, [R] expoisson, [R] sdtest
Bewley, R., [R] reg3
Beyer, W. H., [R] qc



2344 Author index
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[R] ivtobit, [R] margins, [R] regress, [R] regress
postestimation, [R] regress postestimation time
series, [R] tobit

Working, H., [R] roccomp, [R] rocfit, [R] roctab
Wright, J. H., [R] ivregress, [R] ivregress

postestimation
Wright, J. T., [R] binreg
Wright, P. G., [R] ivregress
Wu, C. F. J., [R] qreg
Wu, D.-M., [R] ivregress postestimation

X

Xie, Y., [R] logit, [R] probit
Xu, J., [R] cloglog, [R] logistic, [R] logit, [R] mlogit,

[R] ologit, [R] oprobit, [R] probit

Y

Yates, J. F., [R] brier
Yee, T. W., [R] slogit
Yellott, J. I., Jr., [R] rologit
Yen, W. M., [R] alpha
Yogo, M., [R] ivregress, [R] ivregress postestimation

Z

Zabell, S., [R] kwallis
Zavoina, W., [R] ologit
Zelen, M., [R] ttest
Zellner, A., [R] frontier, [R] nlsur, [R] reg3, [R] sureg
Zelterman, D., [R] tabulate twoway
Zheng, X., [R] gllamm
Zimmerman, F., [R] regress
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Zubkoff, M., [R] alpha, [R] lincom, [R] mlogit,
[R] mprobit, [R] mprobit postestimation,
[R] predictnl, [R] slogit

Zucchini, W., [R] rocreg
Zwiers, F. W., [R] brier
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A
about command, [R] about
absorption in regression, [R] areg
acprplot command, [R] regress postestimation
added-variable plots, [R] regress postestimation
adjusted

margins, [R] margins, [R] marginsplot
means, [R] contrast, [R] margins, [R] marginsplot
partial residual plot, [R] regress postestimation

ado, view subcommand, [R] view
ado command, [R] net
ado d, view subcommand, [R] view
ado describe command, [R] net
ado dir command, [R] net
ado-files,

editing, [R] doedit
installing, [R] net, [R] sj, [R] ssc
location of, [R] which
official, [R] update
searching for, [R] search, [R] ssc
updating user-written, [R] adoupdate

adosize, set subcommand, [R] set
ado uninstall command, [R] net
adoupdate command, [R] adoupdate
agreement, interrater, [R] kappa
AIC, [R] BIC note, [R] estat, [R] estimates stats,

[R] glm
Akaike information criterion, see AIC
all, update subcommand, [R] update
alpha coefficient, Cronbach’s, [R] alpha
alpha command, [R] alpha
alternative-specific

conditional logit (McFadden’s choice) model,
[R] asclogit

multinomial probit regression, [R] asmprobit
rank-ordered probit regression, [R] asroprobit

alternatives, estat subcommand, [R] asclogit
postestimation, [R] asmprobit postestimation,
[R] asroprobit postestimation

ameans command, [R] ameans
analysis of covariance, see ANCOVA
analysis of variance, see ANOVA
analysis-of-variance test of normality, [R] swilk
ANCOVA, [R] anova
ANOVA, [R] anova, [R] contrast, [R] loneway,

[R] oneway
Kruskal–Wallis, [R] kwallis

ANOVA, continued
plots, [R] marginsplot
repeated measures, [R] anova

anova command, [R] anova, [R] anova postestimation
ARCH effects, testing for, [R] regress postestimation

time series
archlm, estat subcommand, [R] regress

postestimation time series
areg command, [R] areg, [R] areg postestimation
asclogit command, [R] asclogit, [R] asclogit

postestimation
asmprobit command, [R] asmprobit, [R] asmprobit

postestimation
asroprobit command, [R] asroprobit, [R] asroprobit

postestimation
association, measures of, [R] tabulate twoway
asymmetry, see skewness
AUC, [R] logistic postestimation, also see pk

(pharmacokinetic data), also see ROC analysis
augmented

component-plus-residual plot, [R] regress
postestimation

partial residual plot, [R] regress postestimation
autocorrelation, [R] regress postestimation time series,

also see HAC variance estimate
autoregressive conditional heteroskedasticity, testing for,

[R] regress postestimation time series
autotabgraphs, set subcommand, [R] set
average

marginal effects, [R] margins, [R] marginsplot
partial effects (APEs), [R] margins, [R] marginsplot
predictions, [R] margins, [R] marginsplot

averages, see means
avplot and avplots commands, [R] regress

postestimation

B

Bartlett’s test for equal variances, [R] oneway
base, fvset subcommand, [R] fvset
Bayesian information criterion, see BIC
bcskew0 command, [R] lnskew0
Berndt–Hall–Hall–Hausman algorithm, [R] ml
beta coefficients, [R] regress
BFGS algorithm, [R] ml
bgodfrey, estat subcommand, [R] regress

postestimation time series
BHHH algorithm, [R] ml
bias corrected and accelerated, [R] bootstrap

postestimation, [R] bstat
BIC, [R] BIC note, [R] estat, [R] estimates stats,

[R] glm
binary outcome model, see outcomes, binary
binomial

distribution, confidence intervals, [R] ci
family regression, [R] binreg
probability test, [R] bitest
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binreg command, [R] binreg, [R] binreg
postestimation

bioequivalence tests, [R] pk, [R] pkequiv
biopharmaceutical data, see pk (pharmacokinetic data)
biprobit command, [R] biprobit, [R] biprobit

postestimation
bitest and bitesti commands, [R] bitest
bivariate probit regression, [R] biprobit
biweight regression estimates, [R] rreg
blogit command, [R] glogit, [R] glogit postestimation
Bonferroni’s multiple-comparison adjustment, see

multiple comparisons, Bonferroni’s method
bootstrap

sampling and estimation, [R] bootstrap,
[R] bsample, [R] bstat, [R] qreg, [R] rocreg,
[R] simulate

standard errors, [R] vce option
bootstrap prefix command, [R] bootstrap,

[R] bootstrap postestimation
bootstrap, estat subcommand, [R] bootstrap

postestimation
Boston College archive, see SSC archive
Box–Cox

power transformations, [R] lnskew0
regression, [R] boxcox

boxcox command, [R] boxcox, [R] boxcox
postestimation

Box’s conservative epsilon, [R] anova
bprobit command, [R] glogit, [R] glogit

postestimation
Breusch–Godfrey test, [R] regress postestimation time

series
Breusch–Pagan test of independence, [R] mvreg,

[R] sureg
Breusch–Pagan/Cook–Weisberg test for

heteroskedasticity, [R] regress postestimation
brier command, [R] brier
Brier score decomposition, [R] brier
browse, view subcommand, [R] view
Broyden–Fletcher–Goldfarb–Shanno algorithm, [R] ml
bsample command, [R] bsample
bsqreg command, [R] qreg, [R] qreg postestimation
bstat command, [R] bstat

C

c(cformat) c-class value, [R] set cformat
c(pformat) c-class value, [R] set cformat
c(seed) c-class value, [R] set emptycells, [R] set seed
c(sformat) c-class value, [R] set cformat
c(showbaselevels) c-class value, [R] set

showbaselevels
c(showemptycells) c-class value, [R] set

showbaselevels
c(showomitted) c-class value, [R] set showbaselevels
calculator, [R] display
case–control data, [R] clogit, [R] logistic, [R] rocreg,

[R] symmetry

categorical, also see factor variables
contrasts after anova, [R] contrast
covariates, [R] anova
data, agreement, measures for, [R] kappa
graphs, [R] grmeanby, [R] spikeplot
outcomes, see outcomes, categorical, also see

outcomes, binary, also see outcomes, ordinal
regression, also see outcomes subentry

absorbing one categorical variable, [R] areg
tabulations, [R] table, [R] tabstat, [R] tabulate

oneway, [R] tabulate twoway, [R] tabulate,
summarize()

variable creation, [R] tabulate oneway, [R] xi
cchart command, [R] qc
cd, net subcommand, [R] net
censored-normal regression, see interval regression
centile command, [R] centile
centiles, see percentiles, displaying
central tendency, measures of, see means, see medians
cformat, set subcommand, [R] set, [R] set cformat
check, ml subcommand, [R] ml
checksum, set subcommand, [R] set
chelp command, [R] help
chi-squared

hypothesis test, [R] hausman, [R] lrtest, [R] sdtest,
[R] tabulate twoway, [R] test, [R] testnl

probability plot, [R] diagnostic plots
quantile plot, [R] diagnostic plots
test of independence, [R] tabulate twoway

choice models, [R] asclogit, [R] asmprobit,
[R] asroprobit, [R] clogit, [R] cloglog,
[R] exlogistic, [R] glm, [R] glogit, [R] heckprob,
[R] hetprob, [R] ivprobit, [R] logistic, [R] logit,
[R] mlogit, [R] mprobit, [R] nlogit, [R] ologit,
[R] oprobit, [R] probit, [R] rologit, [R] scobit,
[R] slogit, [R] suest

Chow test, [R] anova, [R] contrast, [R] lrtest
ci and cii commands, [R] ci
classification

data, see ROC analysis
interrater agreement, [R] kappa
table, [R] logistic postestimation

classification, estat subcommand, [R] logistic
postestimation

clear,
estimates subcommand, [R] estimates store
fvset subcommand, [R] fvset
ml subcommand, [R] ml

clearing estimation results, [R] estimates store
clogit command, [R] bootstrap, [R] clogit, [R] clogit

postestimation, [R] exlogistic, [R] rologit
cloglog command, [R] cloglog, [R] cloglog

postestimation
close,

cmdlog subcommand, [R] log
log subcommand, [R] log
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cluster estimator of variance, [R] vce option
alternative-specific

conditional logit model, [R] asclogit
multinomial probit regression, [R] asmprobit
rank-ordered probit regression, [R] asroprobit

complementary log-log regression, [R] cloglog
generalized linear models, [R] glm

for binomial family, [R] binreg
generalized methods of moments, [R] gmm
heckman selection model, [R] heckman
instrumental-variables regression, [R] ivregress
interval regression, [R] intreg
linear regression, [R] regress

constrained, [R] cnsreg
truncated, [R] truncreg
with dummy-variable set, [R] areg

logistic regression, [R] logistic, [R] logit, also see
logit regression subentry
conditional, [R] clogit
multinomial, [R] mlogit
ordered, [R] ologit
rank-ordered, [R] rologit
skewed, [R] scobit
stereotype, [R] slogit

logit regression, [R] logit, also see logistic regression
subentry
for grouped data, [R] glogit
nested, [R] nlogit

maximum likelihood estimation, [R] ml
multinomial

logistic regression, [R] mlogit
probit regression, [R] mprobit

negative binomial regression
truncated, [R] nbreg
zero-inflated, [R] zinb

nonlinear
least-squares estimation, [R] nl
systems of equations, [R] nlsur

Poisson regression, [R] poisson
truncated, [R] tpoisson
zero-inflated, [R] zip

probit model
heteroskedastic, [R] hetprob

probit regression, [R] probit
bivariate, [R] biprobit
for grouped data, [R] glogit
heteroskedastic, [R] hetprob
multinomial, [R] mprobit
ordered, [R] oprobit
with endogenous regressors, [R] ivprobit
with sample selection, [R] heckprob

summary statistics,
mean, [R] mean
proportion, [R] proportion
ratio, [R] ratio
total, [R] total

cluster estimator of variance, continued
tobit model, [R] tobit

with endogenous regressors, [R] ivtobit
treatment-effects model, [R] treatreg
truncated

negative binomial regression, [R] tnbreg
Poisson regression, [R] tpoisson
regression, [R] truncreg

with endogenous regressors,
instrumental-variables regression, [R] ivregress
probit model, [R] ivprobit
tobit model, [R] ivtobit

zero-inflated
negative binomial regression, [R] zinb
Poisson regression, [R] zip

cluster sampling, [R] bootstrap, [R] bsample,
[R] jackknife

cmdlog

close command, [R] log
command, [R] log
off command, [R] log
on command, [R] log
using command, [R] log

cnsreg command, [R] cnsreg, [R] cnsreg
postestimation

coefficient
alpha, [R] alpha
of variation, [R] tabstat

coefficients (from estimation),
cataloging, [R] estimates
linear combinations of, see linear combinations of

estimators
nonlinear combinations of, see nonlinear

combinations of estimators
testing equality of, [R] test, [R] testnl

collinearity,
display of omitted variables, [R] set showbaselevels
handling by regress, [R] regress
retaining collinear variables, [R] estimation options,

[R] orthog
variance inflation factors, [R] regress postestimation

command line, launching dialog box from, [R] db
commands, reviewing, [R] #review
comparative scatterplot, [R] dotplot
complementary log-log regression, [R] cloglog, [R] glm
completely determined outcomes, [R] logit
component-plus-residual plot, [R] regress

postestimation
conditional

logistic regression, [R] asclogit, [R] clogit,
[R] rologit, [R] slogit

marginal effects, [R] margins, [R] marginsplot
margins, [R] margins, [R] marginsplot

confidence interval, set default, [R] level
confidence intervals

for bootstrap statistics, [R] bootstrap
postestimation, [R] rocreg, [R] rocreg
postestimation
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confidence intervals, continued
for combinations of coefficients,

linear, [R] lincom
nonlinear, [R] nlcom

for counts, [R] ci
for incidence-rate ratios, [R] glm, [R] nbreg,

[R] poisson, [R] tnbreg, [R] tpoisson, [R] zinb,
[R] zip; [R] nlcom

for intragroup correlations, [R] loneway
for means, [R] ci; [R] ameans, [R] mean, [R] ttest
for medians and percentiles, [R] centile
for odds ratios, [R] glm, [R] logistic, [R] logit,

[R] ologit; [R] nlcom
for proportions, [R] ci, [R] proportion
for ratios, [R] ratio
for relative-risk ratios, [R] mlogit, [R] nlcom
for standardized mortality ratios, [R] dstdize
for totals, [R] total

conjoint analysis, [R] rologit
conren, set subcommand, [R] set
console, controlling scrolling of output, [R] more
constrained estimation, [R] constraint, [R] estimation

options
alternative-specific

conditional logistic model, [R] asclogit
multinomial probit regression, [R] asmprobit
rank-ordered probit regression, [R] asroprobit

complementary log-log regression, [R] cloglog
generalized linear models, [R] glm

for binomial family, [R] binreg
generalized negative binomial regression, [R] nbreg
heckman selection model, [R] heckman
interval regression, [R] intreg
linear regression, [R] cnsreg

seemingly unrelated, [R] sureg
stochastic frontier, [R] frontier
three-stage least squares, [R] reg3
truncated, [R] truncreg

logistic regression, [R] logistic, [R] logit, also see
logit regression subentry
conditional, [R] clogit
multinomial, [R] mlogit
ordered, [R] ologit
skewed, [R] scobit
stereotype, [R] slogit

logit regression, [R] logit, also see logistic regression
subentry
for grouped data, [R] glogit
nested, [R] nlogit

maximum likelihood estimation, [R] ml
multinomial

logistic regression, [R] mlogit
probit regression, [R] mprobit

negative binomial regression, [R] nbreg
truncated, [R] tnbreg
zero-inflated, [R] zinb

constrained estimation, continued
Poisson regression, [R] poisson

truncated, [R] tpoisson
zero-inflated, [R] zip

probit regression, [R] probit
bivariate, [R] biprobit
for grouped data, [R] glogit
heteroskedastic, [R] hetprob
multinomial, [R] mprobit
ordered, [R] oprobit
with endogenous regressors, [R] ivprobit
with sample selection, [R] heckprob

tobit model with endogenous regressors, [R] ivtobit
treatment-effects model, [R] treatreg
truncated

negative binomial regression, [R] tnbreg
Poisson regression, [R] tpoisson
regression, [R] truncreg

with endogenous regressors
probit regression, [R] ivprobit
tobit model, [R] ivtobit

zero-inflated
negative binomial regression, [R] zinb
Poisson regression, [R] zip

constraint command, [R] constraint
contingency tables, [R] roctab, [R] symmetry,

[R] table, [R] tabulate twoway
contrast command, [R] anova postestimation,

[R] contrast, [R] contrast postestimation,
[R] margins, contrast

contrasts, [R] contrast, [R] margins, contrast,
[R] marginsplot

control charts, [R] qc
convergence criteria, [R] maximize
Cook–Weisberg test for heteroskedasticity, [R] regress

postestimation
Cook’s D, [R] glm postestimation, [R] regress

postestimation
copy, ssc subcommand, [R] ssc
copycolor, set subcommand, [R] set
copyright

boost, [R] copyright boost
freetype, [R] copyright freetype
icu, [R] copyright icu
JagPDF, [R] copyright jagpdf
lapack, [R] copyright lapack
libpng, [R] copyright libpng
scintilla, [R] copyright scintilla
ttf2pt1, [R] copyright ttf2pt1
zlib, [R] copyright zlib

copyright command, [R] copyright
correlate command, [R] correlate
correlated errors, see robust, Huber/White/sandwich

estimator of variance, also see autocorrelation
correlation, [R] correlate

binary variables, [R] tetrachoric
continuous variables, [R] correlate
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correlation, continued
interitem, [R] alpha
intracluster, [R] loneway
Kendall’s rank, [R] spearman
matrices, [R] correlate, [R] estat
pairwise, [R] correlate
partial and semipartial, [R] pcorr
serial, [R] runtest
Spearman’s rank, [R] spearman
tetrachoric, [R] tetrachoric

correlation, estat subcommand, [R] asmprobit
postestimation, [R] asroprobit postestimation

cost frontier model, [R] frontier
count data,

confidence intervals for counts, [R] ci
estimation, [R] expoisson, [R] glm, [R] gmm,

[R] nbreg, [R] poisson, [R] tnbreg, [R] tpoisson,
[R] zinb, [R] zip

graphs, [R] histogram, [R] kdensity, [R] spikeplot
interrater agreement, [R] kappa
summary statistics of, [R] table, [R] tabstat,

[R] tabulate oneway, [R] tabulate twoway,
[R] tabulate, summarize()

symmetry and marginal homogeneity tests,
[R] symmetry

count, ml subcommand, [R] ml
covariance

matrix of estimators, [R] estat, [R] estimates store
of variables or coefficients, [R] correlate

covariance, analysis of, [R] anova
covariance, estat subcommand, [R] asmprobit

postestimation, [R] asroprobit postestimation
covariate patterns, [R] logistic postestimation, [R] logit

postestimation, [R] probit postestimation
COVRATIO, [R] regress postestimation
cprplot command, [R] regress postestimation
Cramér’s V , [R] tabulate twoway
Cronbach’s alpha, [R] alpha
crossover designs, [R] pk, [R] pkcross, [R] pkshape
cross-tabulations, see tables
cumul command, [R] cumul
cumulative distribution, empirical, [R] cumul
cumulative incidence data, [R] poisson
cusum command, [R] cusum

D
data manipulation, [R] fvrevar, [R] fvset
data,

autocorrelated, see autocorrelation
case–control, see case–control data
categorical, see categorical data, agreement,

measures for
matched case–control, see matched case–control data
range of, see range of data
ranking, see ranking data
sampling, see sampling
summarizing, see summarizing data

data, continued
survival-time, see survival analysis
time-series, see time-series analysis

Davidon–Fletcher–Powell algorithm, [R] ml
db command, [R] db
default settings of system parameters, [R] query,

[R] set defaults
define, transmap subcommand, [R] translate
delta beta influence statistic, [R] clogit postestimation,

[R] logistic postestimation, [R] logit
postestimation

delta chi-squared influence statistic, [R] clogit
postestimation, [R] logistic postestimation,
[R] logit postestimation

delta deviance influence statistic, [R] clogit
postestimation, [R] logistic postestimation,
[R] logit postestimation

delta method, [R] margins, [R] nlcom, [R] predictnl,
[R] testnl

density-distribution sunflower plot, [R] sunflower
density estimation, kernel, [R] kdensity
derivatives, numeric, [R] dydx, [R] testnl
describe,

ado subcommand, [R] net
estimates subcommand, [R] estimates describe
net subcommand, [R] net
ssc subcommand, [R] ssc

descriptive statistics, [R] summarize
CIs for means, proportions, and counts, [R] ci
correlations, [R] correlate, [R] pcorr,

[R] tetrachoric
displays, [R] grmeanby, [R] lv
estimation, [R] mean, [R] proportion, [R] ratio,

[R] total
means, [R] ameans, [R] summarize
percentiles, [R] centile
pharmacokinetic data,

make dataset of, [R] pkcollapse
summarize, [R] pksumm

tables, [R] table, [R] tabstat, [R] tabulate oneway,
[R] tabulate twoway, [R] tabulate, summarize()

design, fvset subcommand, [R] fvset
design effects, [R] loneway
deviance residual, [R] binreg postestimation,

[R] fracpoly postestimation, [R] glm
postestimation, [R] logistic postestimation,
[R] logit postestimation, [R] probit
postestimation

dfbeta command, [R] regress postestimation
DFBETAs, [R] regress postestimation
DFITS, [R] regress postestimation
DFP algorithm, [R] ml
diagnostic plots, [R] diagnostic plots, [R] logistic

postestimation, [R] regress postestimation
diagnostics, regression, [R] regress postestimation
dialog box, [R] db
dichotomous outcome model, see outcomes, binary
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difference of estimated coefficients, see linear
combinations of estimators

difficult option, [R] maximize
dir,

ado subcommand, [R] net
estimates subcommand, [R] estimates store

direct standardization, [R] dstdize, [R] mean,
[R] proportion, [R] ratio

dispersion, measures of, see percentiles, displaying, see
range of data, see standard deviations, displaying,
see variance, displaying

display
settings, [R] set showbaselevels
width and length, [R] log

display command, as a calculator, [R] display
display, ml subcommand, [R] ml
displaying, also see printing, logs (output)

previously typed lines, [R] #review
saved results, [R] saved results

distributions,
examining, [R] ameans, [R] centile, [R] kdensity,

[R] mean, [R] pksumm, [R] summarize,
[R] total

income, [R] inequality
plots, [R] cumul, [R] cusum, [R] diagnostic plots,

[R] dotplot, [R] histogram, [R] kdensity,
[R] ladder, [R] lv, [R] spikeplot, [R] stem

standard population, [R] dstdize
testing equality of, [R] ksmirnov, [R] kwallis,

[R] ranksum, [R] signrank
testing for normality, [R] sktest, [R] swilk
transformations

to achieve normality, [R] boxcox, [R] ladder
to achieve zero skewness, [R] lnskew0

do command, [R] do
dockable, set subcommand, [R] set
dockingguides, set subcommand, [R] set
documentation, keyword search on, [R] search
doedit command, [R] doedit
do-files, [R] do

editing, [R] doedit
domain sampling, [R] alpha
dose–response models, [R] binreg, [R] glm, [R] logistic
dotplot command, [R] dotplot
doublebuffer, set subcommand, [R] set
dp, set subcommand, [R] set
drop, estimates subcommand, [R] estimates store
dstdize command, [R] dstdize
dummy variables, see indicator variables
Duncan’s multiple-comparison adjustment, see multiple

comparisons, Duncan’s method
Dunnett’s multiple-comparison adjustment, see multiple

comparisons, Dunnett’s method
Durbin–Watson statistic, [R] regress postestimation

time series
durbinalt, estat subcommand, [R] regress

postestimation time series

Durbin’s alternative test, [R] regress postestimation
time series

dwatson, estat subcommand, [R] regress
postestimation time series

dydx command, [R] dydx

E

e() scalars, macros, matrices, functions, [R] saved
results

e(sample), resetting, [R] estimates save
e-class command, [R] saved results
editing

ado-files and do-files, [R] doedit
files while in Stata, [R] doedit

eform option, [R] eform option
eivreg command, [R] eivreg, [R] eivreg

postestimation
empirical cumulative distribution function, [R] cumul
emptycells, set subcommand, [R] set, [R] set

emptycells
ending a Stata session, [R] exit
endless loop, see loop, endless
endogeneity test, [R] ivregress postestimation
endogenous

covariates, [R] gmm, [R] ivprobit, [R] ivregress,
[R] ivtobit, [R] reg3

treatment, [R] treatreg
endogenous, estat subcommand, [R] ivregress

postestimation
Engle’s LM test, [R] regress postestimation time series
eolchar, set subcommand, [R] set
Epanechnikov kernel density function, [R] kdensity
epidemiology and related,

Brier score decomposition, [R] brier
interrater agreement, [R] kappa
pharmacokinetic data, see pk (pharmacokinetic data)
ROC analysis, see ROC analysis
standardization, [R] dstdize
symmetry and marginal homogeneity tests,

[R] symmetry
tables, [R] tabulate twoway

equality tests of
binomial proportions, [R] bitest
coefficients, [R] pwcompare, [R] test, [R] testnl
distributions, [R] ksmirnov, [R] kwallis,

[R] ranksum, [R] signrank
margins, [R] margins, [R] pwcompare
means, [R] contrast, [R] pwmean, [R] sampsi,

[R] ttest
medians, [R] ranksum
proportions, [R] bitest, [R] prtest, [R] sampsi
ROC areas, [R] roccomp, [R] rocreg
variances, [R] sdtest

equivalence tests, [R] pk, [R] pkequiv
ereturn list command, [R] saved results
error-bar charts, [R] serrbar
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error messages and return codes, [R] error messages
searching, [R] search

errors-in-variables regression, [R] eivreg
esample, estimates subcommand, [R] estimates save
estat

alternatives command, [R] asclogit
postestimation, [R] asmprobit postestimation,
[R] asroprobit postestimation

archlm command, [R] regress postestimation time
series

bgodfrey command, [R] regress postestimation
time series

bootstrap command, [R] bootstrap postestimation
classification command, [R] logistic

postestimation
correlation command, [R] asmprobit

postestimation, [R] asroprobit postestimation
covariance command, [R] asmprobit

postestimation, [R] asroprobit postestimation
durbinalt command, [R] regress postestimation

time series
dwatson command, [R] regress postestimation time

series
endogenous command, [R] ivregress

postestimation
facweights command, [R] asmprobit

postestimation, [R] asroprobit postestimation
firststage command, [R] ivregress

postestimation
gof command, [R] logistic postestimation,

[R] poisson postestimation
hettest command, [R] regress postestimation
ic command, [R] estat
imtest command, [R] regress postestimation
mfx command, [R] asclogit postestimation,

[R] asmprobit postestimation, [R] asroprobit
postestimation

nproc command, [R] rocreg postestimation
overid command, [R] gmm postestimation,

[R] ivregress postestimation
ovtest command, [R] regress postestimation
predict command, [R] exlogistic postestimation
se command, [R] exlogistic postestimation,

[R] expoisson postestimation
summarize command, [R] estat
szroeter command, [R] regress postestimation
vce command, [R] estat
vif command, [R] regress postestimation

estimates

clear command, [R] estimates store
command, [R] suest

introduction, [R] estimates
describe command, [R] estimates describe
dir command, [R] estimates store
drop command, [R] estimates store
esample command, [R] estimates save
for command, [R] estimates for
notes command, [R] estimates notes

estimates, continued
query command, [R] estimates store
replay command, [R] estimates replay
restore command, [R] estimates store
save command, [R] estimates save
stats command, [R] estimates stats
store command, [R] estimates store
table command, [R] estimates table
title command, [R] estimates title
use command, [R] estimates save

estimation
options, [R] estimation options
results,

clearing, [R] estimates store
storing and restoring, [R] estimates store
tables of, [R] estimates table

sample, summarizing, [R] estat
estimators,

covariance matrix of, [R] correlate, [R] estat
linear combinations of, [R] lincom
nonlinear combinations of, [R] nlcom

exact statistics,
binary confidence intervals, [R] ci, [R] exlogistic,

[R] roctab
centiles, [R] centile
indirect standardization, [R] dstdize
one-way anova, [R] loneway
regression, [R] exlogistic, [R] expoisson
test,

binomial probability, [R] bitest
equality of distributions, [R] ksmirnov
equality of medians, [R] ranksum
Fisher’s, [R] tabulate twoway
symmetry and marginal homogeneity,

[R] symmetry
tetrachoric correlations, [R] tetrachoric

exit command, [R] exit
exiting Stata, see exit command
exlogistic command, [R] exlogistic, [R] exlogistic

postestimation
exogeneity test, see endogeneity test
exploded logit model, [R] rologit
expoisson command, [R] expoisson, [R] expoisson

postestimation
exponentiated coefficients, [R] eform option

F
factor

analysis, [R] alpha
variables, [R] fvrevar, [R] fvset

factor-variable settings, [R] fvset
factorial design, [R] anova
facweights, estat subcommand, [R] asmprobit

postestimation, [R] asroprobit postestimation
failure-time models, also see survival analysis
FAQs, search, [R] search
fastscroll, set subcommand, [R] set
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feasible generalized least squares, see FGLS
fences, [R] lv
FGLS (feasible generalized least squares), [R] reg3
files, downloading, [R] adoupdate, [R] net, [R] sj,

[R] ssc, [R] update
findit command, [R] search
firststage, estat subcommand, [R] ivregress

postestimation
Fisher’s exact test, [R] tabulate twoway
fixed-effects models, [R] anova, [R] areg, [R] asclogit,

[R] clogit
flexible functional form, [R] boxcox, [R] fracpoly,

[R] mfp
floatresults, set subcommand, [R] set
floatwindows, set subcommand, [R] set
footnote, ml subcommand, [R] ml
for, estimates subcommand, [R] estimates for
forecast, standard error of, [R] regress postestimation
format settings, [R] set cformat
fracgen command, [R] fracpoly
fracplot command, [R] fracpoly postestimation
fracpoly prefix command, [R] fracpoly, [R] fracpoly

postestimation
fracpred command, [R] fracpoly postestimation
fraction defective, [R] qc
fractional polynomial regression, [R] fracpoly

multivariable, [R] mfp
frequencies,

graphical representation, [R] histogram,
[R] kdensity

table of, [R] table, [R] tabstat, [R] tabulate
oneway, [R] tabulate twoway, [R] tabulate,
summarize()

from,
net subcommand, [R] net
update subcommand, [R] update

from() option, [R] maximize
frontier command, [R] frontier, [R] frontier

postestimation
frontier models, [R] frontier
functions,

combinations of estimators, [R] lincom, [R] nlcom
cumulative distribution, [R] cumul
derivatives and integrals of, [R] dydx
estimable, [R] margins
evaluator program, [R] gmm, [R] nl, [R] nlsur
fractional polynomial, [R] fracpoly, [R] mfp
index, [R] logistic postestimation, [R] logit

postestimation, [R] probit postestimation
kernel, [R] kdensity, [R] lpoly
link, [R] glm
maximizing likelihood, [R] maximize, [R] ml
obtaining help for, [R] help
orthogonalization, [R] orthog
piecewise cubic and piecewise linear, [R] mkspline
prediction, [R] predict, [R] predictnl
production and cost, [R] frontier
variance, [R] glm

fvrevar command, [R] fvrevar
fvset

base command, [R] fvset
clear command, [R] fvset
design command, [R] fvset
report command, [R] fvset

G
generalized

least squares, see FGLS
linear latent and mixed models, see GLLAMM
linear models, see GLM
method of moments, see gmm command
negative binomial regression, [R] nbreg

get, net subcommand, [R] net
gladder command, [R] ladder
GLLAMM, [R] gllamm
gllamm command, [R] gllamm
GLM, [R] binreg, [R] glm
glm command, [R] glm, [R] glm postestimation
glogit command, [R] glogit, [R] glogit postestimation
gmm command, [R] gmm, [R] gmm postestimation
gnbreg command, [R] nbreg, [R] nbreg

postestimation
gof, estat subcommand, [R] logistic postestimation,

[R] poisson postestimation
Goodman and Kruskal’s gamma, [R] tabulate twoway
goodness-of-fit tests, [R] brier, [R] diagnostic plots,

[R] ksmirnov, [R] logistic postestimation,
[R] poisson postestimation, [R] regress
postestimation, also see deviance residual, also
see normal distribution and normality, test for

gprobit command, [R] glogit, [R] glogit
postestimation

gradient option, [R] maximize
graph, ml subcommand, [R] ml
graphics, set subcommand, [R] set
graphs,

added-variable plot, [R] regress postestimation
adjusted partial residual plot, [R] regress

postestimation
augmented component-plus-residual plot, [R] regress

postestimation
augmented partial residual plot, [R] regress

postestimation
binary variable cumulative sum, [R] cusum
component-plus-residual, [R] regress postestimation
cumulative distribution, [R] cumul
density, [R] kdensity
density-distribution sunflower, [R] sunflower
derivatives, [R] dydx, [R] testnl
diagnostic, [R] diagnostic plots
dotplot, [R] dotplot
error-bar charts, [R] serrbar
fractional polynomial, [R] fracpoly postestimation
histograms, [R] histogram, [R] kdensity
integrals, [R] dydx
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graphs, continued
interaction plots, [R] marginsplot
ladder-of-power histograms, [R] ladder
letter-value display, [R] lv
leverage-versus-(squared)-residual, [R] regress

postestimation
logistic diagnostic, [R] logistic postestimation
lowess smoothing, [R] lowess
margins plots, [R] marginsplot
means and medians, [R] grmeanby
normal probability, [R] diagnostic plots
partial-regression leverage, [R] regress

postestimation
partial residual, [R] regress postestimation
profile plots, [R] marginsplot
quality control, [R] qc
quantile, [R] diagnostic plots
quantile–normal, [R] diagnostic plots
quantile–quantile, [R] diagnostic plots
regression diagnostic, [R] regress postestimation
residual versus fitted, [R] regress postestimation
residual versus predictor, [R] regress postestimation
ROC curve, [R] logistic postestimation,

[R] roccomp, [R] rocfit postestimation,
[R] rocregplot, [R] roctab

rootograms, [R] spikeplot
smoothing, [R] kdensity, [R] lowess, [R] lpoly
spike plot, [R] spikeplot
stem-and-leaf, [R] stem
sunflower, [R] sunflower
symmetry, [R] diagnostic plots
time-versus-concentration curve, [R] pk,

[R] pkexamine
Greenhouse–Geisser epsilon, [R] anova
grmeanby command, [R] grmeanby
group-data regression, [R] glogit, [R] intreg

H
HAC variance estimate, [R] binreg, [R] glm, [R] gmm,

[R] ivregress, [R] nl
Hansen’s J statistic, [R] gmm, [R] gmm

postestimation, [R] ivregress
harmonic mean, [R] ameans
hat matrix, see projection matrix, diagonal elements of
hausman command, [R] hausman
Hausman specification test, [R] hausman
health ratios, [R] binreg
heckman command, [R] heckman, [R] heckman

postestimation
Heckman selection model, [R] heckman, [R] heckprob
heckprob command, [R] heckprob, [R] heckprob

postestimation
Helmert contrasts, [R] contrast
help command, [R] help
help file search, [R] hsearch
help system, searching, [R] hsearch
help, view subcommand, [R] view

help d, view subcommand, [R] view
hessian option, [R] maximize
heteroskedastic probit regression, [R] hetprob
heteroskedasticity, also see HAC variance estimate

conditional, [R] regress postestimation time series
robust variances, see robust, Huber/White/sandwich

estimator of variance
test for, [R] hetprob, [R] regress postestimation,

[R] regress postestimation time series
hetprob command, [R] hetprob, [R] hetprob

postestimation
hettest, estat subcommand, [R] regress

postestimation
hierarchical

regression, [R] nestreg, [R] stepwise
samples, [R] anova, [R] gllamm, [R] loneway;

[R] areg
histogram command, [R] histogram
histograms, [R] histogram

dotplots, [R] dotplot
kernel density estimator, [R] kdensity
ladder-of-powers, [R] ladder
of categorical variables, [R] histogram
rootograms, [R] spikeplot
stem-and-leaf, [R] stem

Holm’s multiple-comparison adjustment, see multiple
comparisons, Holm’s method

homogeneity of variances, [R] oneway, [R] sdtest
homoskedasticity tests, [R] regress postestimation
Hosmer and Lemeshow

delta chi-squared influence statistic, see delta chi-
squared influence statistic

delta deviance influence statistic, see delta deviance
influence statistic

goodness-of-fit test, [R] logistic postestimation
hot, ssc subcommand, [R] ssc
hsearch command, [R] hsearch
httpproxy, set subcommand, [R] netio, [R] set
httpproxyauth, set subcommand, [R] netio, [R] set
httpproxyhost, set subcommand, [R] netio, [R] set
httpproxyport, set subcommand, [R] netio, [R] set
httpproxypw, set subcommand, [R] netio, [R] set
httpproxyuser, set subcommand, [R] netio, [R] set
Huber weighting, [R] rreg
Huber/White/sandwich estimator of variance, see robust,

Huber/White/sandwich estimator of variance
Huynh–Feldt epsilon, [R] anova
hypertext help, [R] help
hypothesis tests, see tests

I
ic, estat subcommand, [R] estat
IIA,

assumption, [R] clogit, [R] nlogit
relaxing assumption, [R] asclogit, [R] asmprobit,

[R] asroprobit
test for, [R] hausman, [R] suest
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immediate commands, [R] bitest, [R] ci, [R] prtest,
[R] sampsi, [R] sdtest, [R] symmetry,
[R] tabulate twoway, [R] ttest

imtest, estat subcommand, [R] regress
postestimation

incidence-rate ratio, [R] poisson, [R] zip
differences, [R] lincom, [R] nlcom

include bitmap, set subcommand, [R] set
income distributions, [R] inequality
independence of irrelevant alternatives, see IIA
independence tests, see tests
index of probit and logit, [R] logit postestimation,

[R] predict, [R] probit postestimation
index search, [R] search
indicator variables, [R] tabulate oneway, [R] xi, also

see factor variables
indirect standardization, [R] dstdize
inequality measures, [R] inequality
influence statistics, see delta beta influence statistic,

see delta chi-squared influence statistic, see delta
deviance influence statistic, see DFBETAs

information
criteria, see AIC, see BIC
matrix, [R] correlate, [R] maximize
matrix test, [R] regress postestimation

init, ml subcommand, [R] ml
inner fence, [R] lv
install,

net subcommand, [R] net
ssc subcommand, [R] ssc

installation
of official updates, [R] update
of SJ and STB, [R] net, [R] sj
of user-written commands (updating), [R] adoupdate

instrumental-variables regression, [R] gmm,
[R] ivprobit, [R] ivregress, [R] ivtobit, [R] nlsur

integ command, [R] dydx
integrals, numeric, [R] dydx
interaction, [R] anova, [R] contrast, [R] fvrevar,

[R] margins, [R] margins, contrast,
[R] margins, pwcompare, [R] marginsplot,
[R] pwcompare, [R] set emptycells, [R] xi

interaction expansion, [R] xi
interaction plots, [R] marginsplot
internal consistency, test for, [R] alpha
Internet,

commands to control connections to, [R] netio
installation of updates from, [R] adoupdate, [R] net,

[R] sj, [R] update
search, [R] net search

interquantile range, [R] qreg
interquartile range, [R] lv

reporting, [R] table, [R] tabstat
interrater agreement, [R] kappa
interval regression, [R] intreg
intracluster correlation, [R] loneway
intreg command, [R] intreg, [R] intreg

postestimation

IQR, see interquartile range
iqreg command, [R] qreg, [R] qreg postestimation
IRLS, [R] glm, [R] reg3
istdize command, [R] dstdize
iterate() option, [R] maximize
iterated least squares, [R] reg3, [R] sureg
iterations, controlling the maximum number,

[R] maximize
ivprobit command, [R] ivprobit, [R] ivprobit

postestimation
ivregress command, [R] ivregress, [R] ivregress

postestimation
ivtobit command, [R] ivtobit, [R] ivtobit

postestimation

J

jackknife
estimation, [R] jackknife
standard errors, [R] vce option

jackknife prefix command, [R] jackknife,
[R] jackknife postestimation

jackknifed residuals, [R] predict, [R] regress
postestimation

K

kap command, [R] kappa
kappa command, [R] kappa
kapwgt command, [R] kappa
kdensity command, [R] kdensity
Kendall’s tau, [R] spearman, [R] tabulate twoway
kernel density estimator, [R] kdensity
kernel-weighted local polynomial estimator, [R] lpoly
Kish design effects, [R] loneway
Kolmogorov–Smirnov test, [R] ksmirnov
KR-20, [R] alpha
Kruskal–Wallis test, [R] kwallis
ksmirnov command, [R] ksmirnov
ktau command, [R] spearman
Kuder–Richardson Formula 20, [R] alpha
kurtosis, [R] lv, [R] pksumm, [R] regress

postestimation, [R] sktest, [R] summarize,
[R] tabstat

kwallis command, [R] kwallis

L

L-R plots, [R] regress postestimation
L1-norm models, [R] qreg
LAD regression, [R] qreg
ladder command, [R] ladder
ladder of powers, [R] ladder
Lagrange-multiplier test, [R] regress postestimation

time series
Latin-square designs, [R] anova, [R] pkshape
LAV regression, [R] qreg
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least absolute
deviations, [R] qreg
residuals, [R] qreg
value regression, [R] qreg

least squared deviations, see linear regression
least squares, see linear regression

generalized, see FGLS
least-squares means, [R] margins, [R] marginsplot
letter values, [R] lv
level, set subcommand, [R] level, [R] set
Levene’s robust test statistic, [R] sdtest
leverage, [R] logistic postestimation, [R] predict,

[R] regress postestimation
obtaining with weighted data, [R] predict

leverage-versus-(squared)-residual plot, [R] regress
postestimation

license, [R] about
likelihood, see maximum likelihood estimation
likelihood-ratio

chi-squared of association, [R] tabulate twoway
test, [R] lrtest

Likert summative scales, [R] alpha
limited dependent variables, [R] asclogit,

[R] asmprobit, [R] asroprobit, [R] binreg,
[R] biprobit, [R] brier, [R] clogit, [R] cloglog,
[R] cusum, [R] exlogistic, [R] expoisson,
[R] glm, [R] glogit, [R] heckprob, [R] hetprob,
[R] ivprobit, [R] logistic, [R] logit, [R] mlogit,
[R] mprobit, [R] nbreg, [R] nlogit, [R] ologit,
[R] oprobit, [R] poisson, [R] probit, [R] rocfit,
[R] rocreg, [R] rologit, [R] scobit, [R] slogit,
[R] tnbreg, [R] tpoisson, [R] zinb, [R] zip

limits, [R] matsize
lincom command, [R] lincom
linear

combinations of estimators, [R] lincom
hypothesis test after estimation, [R] contrast,

[R] lrtest, [R] margins, [R] pwcompare, [R] test
regression, [R] anova, [R] areg, [R] binreg,

[R] cnsreg, [R] eivreg, [R] frontier,
[R] glm, [R] gmm, [R] heckman, [R] intreg,
[R] ivregress, [R] ivtobit, [R] mvreg, [R] qreg,
[R] reg3, [R] regress, [R] rreg, [R] sureg,
[R] tobit, [R] vwls

splines, [R] mkspline
linegap, set subcommand, [R] set
linesize, set subcommand, [R] log, [R] set
link function, [R] glm
link, net subcommand, [R] net
linktest command, [R] linktest
list,

ereturn subcommand, [R] saved results
return subcommand, [R] saved results
sreturn subcommand, [R] saved results

lnskew0 command, [R] lnskew0
local linear, [R] lpoly
local polynomial, [R] lpoly
locally weighted smoothing, [R] lowess

location, measures of, [R] lv, [R] summarize, [R] table
locksplitters, set subcommand, [R] set
log

close command, [R] log
command, [R] log, [R] view
off command, [R] log
on command, [R] log
query command, [R] log
using command, [R] log

log files, printing, [R] translate, also see log command
log-linear model, [R] glm, [R] poisson, [R] zip
log or nolog option, [R] maximize
log transformations, [R] boxcox, [R] lnskew0
logistic and logit regression, [R] logistic, [R] logit

complementary log-log, [R] cloglog
conditional, [R] asclogit, [R] clogit, [R] rologit
exact, [R] exlogistic
fixed-effects, [R] asclogit, [R] clogit
generalized linear model, [R] glm
multinomial, [R] asclogit, [R] clogit, [R] mlogit
nested, [R] nlogit
ordered, [R] ologit
polytomous, [R] mlogit
rank-ordered, [R] rologit
skewed, [R] scobit
stereotype, [R] slogit
with grouped data, [R] glogit

logistic command, [R] logistic, [R] logistic
postestimation

logit command, [R] logit, [R] logit postestimation
logit regression, see logistic and logit regression
lognormal distribution, [R] ameans
logtype, set subcommand, [R] log, [R] set
loneway command, [R] loneway
loop, endless, see endless loop
Lorenz curve, [R] inequality
lowess, see locally weighted smoothing
lowess command, [R] lowess
lpoly command, [R] lpoly
lroc command, [R] logistic postestimation
lrtest command, [R] lrtest
lsens command, [R] logistic postestimation
lstat command, see estat classification

command
lstretch, set subcommand, [R] set
ltolerance() option, [R] maximize
lv command, [R] lv
lvr2plot command, [R] regress postestimation

M

MAD regression, [R] qreg
main effects, [R] anova
man command, [R] help
Mann–Whitney two-sample statistics, [R] ranksum
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marginal
effects, [R] margins, [R] marginsplot
homogeneity, test of, [R] symmetry
means, [R] contrast, [R] margins, [R] margins,

contrast, [R] margins, pwcompare,
[R] marginsplot, [R] pwcompare

margins command, [R] margins, [R] margins
postestimation, [R] margins, contrast,
[R] margins, pwcompare, [R] marginsplot

marginsplot command, [R] marginsplot
matacache, set subcommand, [R] set
matafavor, set subcommand, [R] set
matalibs, set subcommand, [R] set
matalnum, set subcommand, [R] set
matamofirst, set subcommand, [R] set
mataoptimize, set subcommand, [R] set
matastrict, set subcommand, [R] set
matched case–control data, [R] asclogit, [R] clogit,

[R] symmetry
matched-pairs tests, [R] signrank, [R] ttest
matsize, set subcommand, [R] matsize, [R] set
max memory, set subcommand, [R] set
maxdb, set subcommand, [R] db, [R] set
maximization technique explained, [R] maximize,

[R] ml
maximize, ml subcommand, [R] ml
maximum

likelihood estimation, [R] maximize, [R] ml
number of variables in a model, [R] matsize

maximums and minimums, reporting, [R] lv,
[R] summarize, [R] table

maxiter, set subcommand, [R] maximize, [R] set
maxvar, set subcommand, [R] set
McFadden’s choice model, [R] asclogit
McNemar’s chi-squared test, [R] clogit
mean command, [R] mean, [R] mean postestimation
means,

arithmetic, geometric, and harmonic, [R] ameans
confidence interval and standard error, [R] ci
displaying, [R] ameans, [R] summarize, [R] table,

[R] tabstat, [R] tabulate, summarize()
estimating, [R] mean
graphing, [R] grmeanby
marginal, [R] margins
pairwise comparisons of, [R] pwmean
pharmacokinetic data, [R] pksumm
robust, [R] rreg
sample size and power for, [R] sampsi
testing equality of, see equality tests of means

measurement error, [R] alpha, [R] vwls
measures of

association, [R] tabulate twoway
central tendency, see means, see medians
dispersion, see percentiles, displaying, see range

of data, see standard deviations, displaying, see
variance, displaying,

inequality, [R] inequality
location, [R] lv, [R] summarize

median command, [R] ranksum
median regression, [R] qreg
median test, [R] ranksum
medians,

displaying, [R] centile, [R] lv, [R] summarize,
[R] table, [R] tabstat

graphing, [R] grmeanby
testing equality of, see equality tests of medians

memory, matsize, see matsize, set subcommand
messages and return codes, see error messages and

return codes
meta-analysis, [R] meta
mfp prefix command, [R] mfp, [R] mfp postestimation
mfx, estat subcommand, [R] asclogit postestimation,

[R] asmprobit postestimation, [R] asroprobit
postestimation

midsummaries, [R] lv
mild outliers, [R] lv
Mills’ ratio, [R] heckman, [R] heckman

postestimation
min memory, set subcommand, [R] set
minimum

absolute deviations, [R] qreg
squared deviations, [R] areg, [R] cnsreg, [R] nl,

[R] regress, [R] regress postestimation
minimums and maximums, see maximums and

minimums, reporting
missing values, [R] misstable
misstable

nested command, [R] misstable
patterns command, [R] misstable
summarize command, [R] misstable
tree command, [R] misstable

mixed designs, [R] anova
mkspline command, [R] mkspline
ml

check command, [R] ml
clear command, [R] ml
count command, [R] ml
display command, [R] ml
footnote command, [R] ml
graph command, [R] ml
init command, [R] ml
maximize command, [R] ml
model command, [R] ml
plot command, [R] ml
query command, [R] ml
report command, [R] ml
score command, [R] ml
search command, [R] ml
trace command, [R] ml

mleval command, [R] ml
mlmatbysum command, [R] ml
mlmatsum command, [R] ml
mlogit command, [R] mlogit, [R] mlogit

postestimation
mlsum command, [R] ml
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mlvecsum command, [R] ml
MNP, see outcomes, multinomial
model, ml subcommand, [R] ml
model specification test, see specification test
model,

maximum number of variables in, [R] matsize
sensitivity, [R] regress postestimation, [R] rreg

modulus transformations, [R] boxcox
monotone missing values, [R] misstable
Monte Carlo simulations, [R] permute, [R] simulate
more command and parameter, [R] more
more condition, [R] query
more, set subcommand, [R] more, [R] set
mprobit command, [R] mprobit, [R] mprobit

postestimation
multilevel models, [R] gllamm
multinomial outcome model, see outcomes, multinomial
multiple comparisons, [R] contrast, [R] margins,

[R] pwcompare, [R] pwmean; [R] anova
postestimation, [R] correlate, [R] mvreg,
[R] oneway, [R] regress postestimation,
[R] roccomp, [R] spearman, [R] test, [R] testnl,
[R] tetrachoric

Bonferroni’s method, [R] contrast, [R] margins,
[R] pwcompare, [R] pwmean; [R] anova
postestimation, [R] correlate, [R] oneway,
[R] regress postestimation, [R] roccomp,
[R] spearman, [R] test, [R] testnl,
[R] tetrachoric

Duncan’s method, [R] pwcompare, [R] pwmean
Dunnett’s method, [R] pwcompare, [R] pwmean
Holm’s method, [R] anova postestimation,

[R] regress postestimation, [R] test, [R] testnl
multiple-range method, see Dunnett’s method

subentry
Scheffé’s method, [R] contrast, [R] margins,

[R] pwcompare, [R] pwmean; [R] oneway
Šidák’s method, [R] contrast, [R] margins,

[R] pwcompare, [R] pwmean; [R] anova
postestimation, [R] correlate, [R] oneway,
[R] regress postestimation, [R] roccomp,
[R] spearman, [R] test, [R] testnl,
[R] tetrachoric

Studentized-range method, see Tukey’s method
subentry

Student–Newman–Keuls’ method, [R] pwcompare,
[R] pwmean

Tukey’s method, [R] pwcompare, [R] pwmean
multiple regression, see linear regression
multiple-range multiple-comparison adjustment, see

multiple comparisons, Dunnett’s method
multivariable fractional polynomial regression, [R] mfp
multivariate analysis,

bivariate probit, [R] biprobit
regression, [R] mvreg
three-stage least squares, [R] reg3
Zellner’s seemingly unrelated, [R] nlsur, [R] sureg

mvreg command, [R] mvreg, [R] mvreg postestimation

N
natural splines, [R] mkspline
nbreg command, [R] nbreg, [R] nbreg postestimation
needle plot, [R] spikeplot
negative binomial regression, [R] nbreg

generalized linear models, [R] glm
truncated, [R] tnbreg
zero-inflated, [R] zinb

nested
designs, [R] anova
effects, [R] anova
logit, [R] nlogit
model statistics, [R] nestreg
regression, [R] nestreg

nested, misstable subcommand, [R] misstable
nestreg prefix command, [R] nestreg
net

cd command, [R] net
describe command, [R] net
from command, [R] net
get command, [R] net
install command, [R] net
link command, [R] net
query command, [R] net
search command, [R] net search
set ado command, [R] net
set other command, [R] net
sj command, [R] net
stb command, [R] net

net, view subcommand, [R] view
net d, view subcommand, [R] view
new, ssc subcommand, [R] ssc
Newey–West standard errors, [R] glm
news command, [R] news
news, view subcommand, [R] view
Newton–Raphson algorithm, [R] ml
niceness, set subcommand, [R] set
nl command, [R] nl, [R] nl postestimation
nlcom command, [R] nlcom
nlogit command, [R] nlogit, [R] nlogit

postestimation
nlogitgen command, [R] nlogit
nlogittree command, [R] nlogit
nlsur command, [R] nlsur, [R] nlsur postestimation
nolog or log option, [R] maximize
nonconformities, quality control, [R] qc
nonconstant variance, see robust, Huber/White/sandwich

estimator of variance
nonlinear

combinations of estimators, [R] nlcom
hypothesis test after estimation, [R] lrtest,

[R] margins, [R] margins, contrast,
[R] margins, pwcompare, [R] nlcom,
[R] predictnl, [R] testnl

least squares, [R] nl
regression, [R] boxcox, [R] nl, [R] nlsur
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nonparametric analysis,
hypothesis tests,

association, [R] spearman
cusum, [R] cusum
equality of distributions, [R] ksmirnov,

[R] kwallis, [R] ranksum, [R] signrank
medians, [R] ranksum
proportions, [R] bitest, [R] prtest
random order, [R] runtest
trend, [R] nptrend

percentiles, [R] centile
quantile regression, [R] qreg
ROC analysis, [R] roc

estimation, [R] rocreg
graphs, [R] rocregplot
test equality of areas, [R] roccomp
without covariates, [R] roctab

smoothing, [R] kdensity, [R] lowess, [R] lpoly,
[R] smooth

tables, [R] tabulate twoway
nonrtolerance option, [R] maximize
normal distribution and normality,

examining distributions for, [R] diagnostic plots,
[R] lv

probability and quantile plots, [R] diagnostic plots
test for, [R] sktest, [R] swilk
transformations to achieve, [R] boxcox, [R] ladder,

[R] lnskew0
notes, estimates subcommand, [R] estimates notes
notes on estimation results, [R] estimates notes
notifyuser, set subcommand, [R] set
nproc, estat subcommand, [R] rocreg postestimation
nptrend command, [R] nptrend
NR algorithm, [R] ml
nrtolerance() option, [R] maximize
N-way analysis of variance, [R] anova

O

obs, set subcommand, [R] set
observed information matrix, see OIM
odbcmgr, set subcommand, [R] set
odds ratio, [R] asclogit, [R] binreg, [R] clogit,

[R] cloglog, [R] eform option, [R] exlogistic
postestimation, [R] glm, [R] glogit, [R] logistic,
[R] logit, [R] mlogit, [R] scobit

differences, [R] lincom, [R] nlcom
off,

cmdlog subcommand, [R] log
log subcommand, [R] log

OIM, [R] ml, [R] vce option
ologit command, [R] ologit, [R] ologit postestimation
OLS regression, see linear regression
omitted variables test, [R] regress postestimation
on,

cmdlog subcommand, [R] log
log subcommand, [R] log

one-way analysis of variance, [R] kwallis, [R] loneway,
[R] oneway

oneway command, [R] oneway
online help, [R] help, [R] hsearch, [R] search
OPG, [R] ml, [R] vce option
oprobit command, [R] oprobit, [R] oprobit

postestimation
order statistics, [R] lv
ordered

logit, [R] ologit
probit, [R] oprobit

ordinal outcome model, see outcomes, ordinal
ordinary least squares, see linear regression
orthog command, [R] orthog
orthogonal polynomial, [R] contrast, [R] margins,

contrast
orthogonal polynomials, [R] orthog
orthpoly command, [R] orthog
outcomes,

binary,
complementary log-log, [R] cloglog
glm for binomial family, [R] binreg, [R] glm
grouped data, [R] glogit
logistic, [R] exlogistic, [R] logistic, [R] logit,

[R] scobit
probit, [R] biprobit, [R] heckprob, [R] hetprob,

[R] ivprobit, [R] probit
ROC analysis, [R] rocfit, [R] rocreg

categorical,
logistic, [R] asclogit, [R] clogit, [R] mlogit,

[R] nlogit, [R] slogit
probit, [R] asmprobit, [R] mprobit

count,
negative binomial, [R] nbreg, [R] tnbreg,

[R] zinb
Poisson, [R] expoisson, [R] poisson,

[R] tpoisson, [R] zip
multinomial, see categorical subentry, see ordinal

subentry, see rank subentry
ordinal,

logistic, [R] ologit
probit, [R] oprobit

polytomous, see categorical subentry, see ordinal
subentry, see rank subentry

rank,
logistic, [R] rologit
probit, [R] asroprobit

outer fence, [R] lv
outer product of the gradient, see OPG
outliers, [R] lv, [R] qreg, [R] regress postestimation,

[R] rreg
out-of-sample predictions, [R] predict, [R] predictnl
output, set subcommand, [R] set
output,

coefficient table,
automatically widen, [R] set
display settings, [R] set showbaselevels
format settings, [R] set cformat
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output, continued
controlling the scrolling of, [R] more
printing, [R] translate
recording, [R] log

outside values, [R] lv
overid, estat subcommand, [R] gmm postestimation,

[R] ivregress postestimation
overidentifying restrictions test, [R] gmm

postestimation, [R] ivregress postestimation
ovtest, estat subcommand, [R] regress

postestimation

P
pagesize, set subcommand, [R] more, [R] set
paging of screen output, controlling, [R] more
pairwise comparisons, [R] margins, pwcompare,

[R] marginsplot, [R] pwcompare, [R] pwmean
pairwise correlation, [R] correlate
parameters, system, see system parameters
partial

correlation, [R] pcorr
effects, [R] margins, [R] marginsplot
regression leverage plot, [R] regress postestimation
regression plot, [R] regress postestimation
residual plot, [R] regress postestimation

Parzen kernel density function, [R] kdensity
pattern of missing values, [R] misstable
patterns, misstable subcommand, [R] misstable
pausing until key is pressed, [R] more
pchart command, [R] qc
pchi command, [R] diagnostic plots
pcorr command, [R] pcorr
PDF files, [R] translate
Pearson goodness-of-fit test, [R] logistic postestimation,

[R] poisson postestimation
Pearson product-moment correlation coefficient,

[R] correlate
Pearson residual, [R] binreg postestimation, [R] glm

postestimation, [R] logistic postestimation,
[R] logit postestimation

percentiles, displaying, [R] centile, [R] lv,
[R] summarize, [R] table, [R] tabstat

permutation tests, [R] permute
permute prefix command, [R] permute
pformat, set subcommand, [R] set, [R] set cformat
pharmaceutical statistics, [R] pk, [R] pksumm
pharmacokinetic data, see pk (pharmacokinetic data)
piecewise

cubic functions, [R] mkspline
linear functions, [R] mkspline

pinnable, set subcommand, [R] set
pk (pharmacokinetic data), [R] pk, [R] pkcollapse,

[R] pkcross, [R] pkequiv, [R] pkexamine,
[R] pkshape, [R] pksumm

pkcollapse command, [R] pkcollapse
pkcross command, [R] pkcross
pkequiv command, [R] pkequiv

pkexamine command, [R] pkexamine
.pkg filename suffix, [R] net
pkshape command, [R] pkshape
pksumm command, [R] pksumm
Plackett–Luce model, [R] rologit
playsnd, set subcommand, [R] set
plot, ml subcommand, [R] ml
pnorm command, [R] diagnostic plots
poisson command, [R] nbreg, [R] poisson,

[R] poisson postestimation
Poisson distribution,

confidence intervals, [R] ci
regression, see Poisson regression

Poisson regression, [R] nbreg, [R] poisson
generalized linear model, [R] glm
truncated, [R] tpoisson
zero-inflated, [R] zip

polynomials,
fractional, [R] fracpoly, [R] mfp
orthogonal, [R] orthog
smoothing, see local polynomial

polytomous outcome model, see outcomes, polytomous
populations,

diagnostic plots, [R] diagnostic plots
examining, [R] histogram, [R] lv, [R] stem,

[R] summarize, [R] table
standard, [R] dstdize
testing equality of, see distributions, testing equality

of
testing for normality, [R] sktest, [R] swilk

postestimation command, [R] contrast, [R] estat,
[R] estimates, [R] hausman, [R] lincom,
[R] linktest, [R] lrtest, [R] margins,
[R] margins, contrast, [R] margins,
pwcompare, [R] marginsplot, [R] nlcom,
[R] predict, [R] predictnl, [R] pwcompare,
[R] suest, [R] test, [R] testnl

poverty indices, [R] inequality
power of a test, [R] sampsi
power transformations, [R] boxcox, [R] lnskew0
P–P plot, [R] diagnostic plots
predict command, [R] predict, [R] regress

postestimation
predict, estat subcommand, [R] exlogistic

postestimation
prediction, standard error of, [R] glm, [R] predict,

[R] regress postestimation
predictions, [R] predict, [R] predictnl
predictnl command, [R] predictnl
prefix command, [R] bootstrap, [R] fracpoly,

[R] jackknife, [R] mfp, [R] nestreg,
[R] permute, [R] simulate, [R] stepwise, [R] xi

Pregibon delta beta influence statistic, see delta beta
influence statistic

preprocessor commands, [R] #review
prevalence studies, see case–control data
print command, [R] translate
printcolor, set subcommand, [R] set
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printing, logs (output), [R] translate
probit command, [R] probit, [R] probit

postestimation
probit regression, [R] probit

alternative-specific multinomial probit,
[R] asmprobit

alternative-specific rank-ordered, [R] asroprobit
bivariate, [R] biprobit
generalized linear model, [R] glm
heteroskedastic, [R] hetprob
multinomial, [R] mprobit
ordered, [R] oprobit
two-equation, [R] biprobit
with endogenous regressors, [R] ivprobit
with grouped data, [R] glogit
with sample selection, [R] heckprob

processors, set subcommand, [R] set
product-moment correlation, [R] correlate

between ranks, [R] spearman
production frontier models, [R] frontier
profile plots, [R] marginsplot
programs, user-written, see ado-files
projection matrix, diagonal elements of, [R] logistic

postestimation, [R] logit postestimation,
[R] probit postestimation, [R] regress
postestimation, [R] rreg

proportion command, [R] proportion,
[R] proportion postestimation

proportional
hazards models, see survival analysis
odds model, [R] ologit, [R] slogit
sampling, [R] bootstrap

proportions,
confidence intervals for, [R] ci
estimating, [R] proportion
sample size and power for, [R] sampsi
testing equality of, [R] bitest, [R] prtest

prtest command, [R] prtest
prtesti command, [R] prtest
pseudo R-squared, [R] maximize
pseudosigmas, [R] lv
pwcompare command, [R] pwcompare,

[R] pwcompare postestimation
pwcorr command, [R] correlate
pwmean command, [R] pwmean, [R] pwmean

postestimation

Q
qc charts, see quality control charts
qchi command, [R] diagnostic plots
qladder command, [R] ladder
qnorm command, [R] diagnostic plots
Q–Q plot, [R] diagnostic plots
qqplot command, [R] diagnostic plots
qreg command, [R] qreg

qreg command, [R] qreg, [R] qreg postestimation
qtolerance() option, [R] maximize

qualitative dependent variables, [R] asclogit,
[R] asmprobit, [R] asroprobit, [R] binreg,
[R] biprobit, [R] brier, [R] clogit, [R] cloglog,
[R] cusum, [R] exlogistic, [R] glm, [R] glogit,
[R] heckprob, [R] hetprob, [R] ivprobit,
[R] logistic, [R] logit, [R] mlogit, [R] mprobit,
[R] nlogit, [R] ologit, [R] oprobit, [R] probit,
[R] rocfit, [R] rocreg, [R] rologit, [R] scobit,
[R] slogit

quality control charts, [R] qc, [R] serrbar
quantile command, [R] diagnostic plots
quantile–normal plots, [R] diagnostic plots
quantile plots, [R] diagnostic plots
quantile–quantile plots, [R] diagnostic plots
quantile regression, [R] qreg
quantiles, see percentiles, displaying
query,

estimates subcommand, [R] estimates store
log subcommand, [R] log
ml subcommand, [R] ml
net subcommand, [R] net
translator subcommand, [R] translate
transmap subcommand, [R] translate
update subcommand, [R] update

query command, [R] query
quitting Stata, see exit command

R
r() saved results, [R] saved results
Ramsey test, [R] regress postestimation
random

order, test for, [R] runtest
sample, [R] bootstrap

random-effects models, [R] anova, [R] loneway
range chart, [R] qc
range of data, [R] lv, [R] stem, [R] summarize,

[R] table, [R] tabstat
rank correlation, [R] spearman
rank-order statistics, [R] signrank, [R] spearman
ranking data, [R] rologit
rank-ordered logistic regression, see outcomes, rank
ranksum command, [R] ranksum
rate ratio, see incidence-rate ratio
ratio command, [R] ratio, [R] ratio postestimation
ratios, estimating, [R] ratio
rc (return codes), see error messages and return codes
rchart command, [R] qc
receiver operating characteristic (ROC) analysis, see

ROC analysis
reexpression, [R] boxcox, [R] ladder, [R] lnskew0
reg3 command, [R] reg3, [R] reg3 postestimation
regress command, [R] regress, [R] regress

postestimation, [R] regress postestimation time
series
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regression
diagnostics, [R] predict; [R] ladder, [R] logistic

postestimation, [R] regress postestimation,
[R] regress postestimation time series

function, estimating, [R] lpoly
regression,

constrained, [R] cnsreg
creating orthogonal polynomials for, [R] orthog
dummy variables, with, [R] anova, [R] areg, [R] xi
fixed-effects, [R] areg
fractional polynomial, [R] fracpoly, [R] mfp
graphing, [R] logistic, [R] regress postestimation
grouped data, [R] intreg
increasing number of variables allowed, [R] matsize
instrumental variables, [R] gmm, [R] ivprobit,

[R] ivregress, [R] ivtobit, [R] nlsur
linear, see linear regression
system, [R] mvreg, [R] reg3, [R] sureg
truncated, [R] truncreg

reliability, [R] alpha, [R] eivreg, [R] loneway
reliability theory, see survival analysis
repeated measures ANOVA, [R] anova
repeating and editing commands, [R] #review
replay, estimates subcommand, [R] estimates

replay
report, fvset subcommand, [R] fvset
report, ml subcommand, [R] ml
RESET test, [R] regress postestimation
reset, translator subcommand, [R] translate
residual-versus-fitted plot, [R] regress postestimation
residual-versus-predictor plot, [R] regress

postestimation
residuals, [R] logistic, [R] predict, [R] regress

postestimation, [R] rreg
resistant smoothers, [R] smooth
restore, estimates subcommand, [R] estimates

store
restricted cubic splines, [R] mkspline
results,

saved, [R] saved results
saving, [R] estimates save

return codes, see error messages and return codes
return list command, [R] saved results
reventries, set subcommand, [R] set
#review command, [R] #review
revkeyboard, set subcommand, [R] set
risk ratio, [R] binreg
rmsg, set subcommand, [R] set
robust regression, [R] regress, [R] rreg, also see robust,

Huber/White/sandwich estimator of variance
robust test for equality of variance, [R] sdtest
robust, Huber/White/sandwich estimator of variance,

[R] vce option
alternative-specific

conditional logit model, [R] asclogit
multinomial probit regression, [R] asmprobit
rank-ordered probit regression, [R] asroprobit

complementary log-log regression, [R] cloglog

robust, Huber/White/sandwich estimator of variance,
continued

generalized linear models, [R] glm
for binomial family, [R] binreg

generalized method of moments, [R] gmm
heckman selection model, [R] heckman
instrumental-variables regression, [R] ivregress
interval regression, [R] intreg
linear regression, [R] regress

constrained, [R] cnsreg
truncated, [R] truncreg
with dummy-variable set, [R] areg

logistic regression, [R] logistic, [R] logit, also see
logit regression subentry
conditional, [R] clogit
multinomial, [R] mlogit
ordered, [R] ologit
rank-ordered, [R] rologit
skewed, [R] scobit
stereotype, [R] slogit

logit regression, [R] logistic, [R] logit, also see
logistic regression subentry
for grouped data, [R] glogit
nested, [R] nlogit

maximum likelihood estimation, [R] ml
multinomial

logistic regression, [R] mlogit
probit regression, [R] mprobit

negative binomial regression, [R] nbreg
truncated, [R] tnbreg
zero-inflated, [R] zinb

nonlinear
least-squares estimation, [R] nl
systems of equations, [R] nlsur

Poisson regression, [R] poisson
truncated, [R] tpoisson
zero-inflated, [R] zip

probit regression, [R] probit
bivariate, [R] biprobit
for grouped data, [R] glogit
heteroskedastic, [R] hetprob
multinomial, [R] mprobit
ordered, [R] oprobit
with endogenous regressors, [R] ivprobit
with sample selection, [R] heckprob

summary statistics,
mean, [R] mean
proportion, [R] proportion
ratio, [R] ratio
total, [R] total

tobit model, [R] tobit
with endogenous regressors, [R] ivtobit

treatment-effects model, [R] treatreg
truncated

negative binomial regression, [R] tnbreg
Poisson regression, [R] tpoisson
regression, [R] truncreg
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robust, Huber/White/sandwich estimator of variance,
continued

with endogenous regressors,
instrumental-variables regression, [R] ivregress
probit regression, [R] ivprobit
tobit regression, [R] ivtobit

zero-inflated
negative binomial regression, [R] zinb
Poisson regression, [R] zip

robust, other methods of, [R] qreg, [R] rreg,
[R] smooth

robvar command, [R] sdtest
ROC analysis, [R] roc

area under ROC curve, [R] logistic postestimation
nonparametric analysis without covariates,

[R] roctab
parametric analysis without covariates, [R] rocfit
regression models, [R] rocreg
ROC curves after rocfit, [R] rocfit postestimation
ROC curves after rocreg, [R] rocregplot
test equality of ROC areas, [R] roccomp

roccomp command, [R] roc, [R] roccomp
rocfit command, [R] rocfit, [R] rocfit postestimation
rocgold command, [R] roc, [R] roccomp
rocplot command, [R] rocfit postestimation
rocreg command, [R] rocreg, [R] rocreg

postestimation, [R] rocregplot
rocregplot command, [R] rocregplot
roctab command, [R] roc, [R] roctab
roh, [R] loneway
rologit command, [R] rologit, [R] rologit

postestimation
rootograms, [R] spikeplot
rreg command, [R] rreg, [R] rreg postestimation
run command, [R] do
runiform() function, [R] set seed
runtest command, [R] runtest
rvfplot command, [R] regress postestimation
rvpplot command, [R] regress postestimation

S
s() saved results, [R] saved results
S macros, [R] saved results
sample, random, see random sample
sample size, [R] sampsi
sampling, [R] bootstrap, [R] bsample, also see cluster

sampling
sampsi command, [R] sampsi
sandwich/Huber/White estimator of variance, see robust,

Huber/White/sandwich estimator of variance
save, estimates subcommand, [R] estimates save
saved results, [R] saved results
saving results, [R] estimates save
Scheffé’s multiple-comparison adjustment, see multiple

comparisons, Scheffé’s method
scheme, set subcommand, [R] set
Schwarz information criterion, see BIC

s-class command, [R] saved results
scobit command, [R] scobit, [R] scobit

postestimation
score, ml subcommand, [R] ml
scores, [R] predict
scrollbufsize, set subcommand, [R] set
scrolling of output, controlling, [R] more
sdtest command, [R] sdtest
sdtesti command, [R] sdtest
se, estat subcommand, [R] exlogistic postestimation,

[R] expoisson postestimation
search

help, [R] hsearch
Internet, [R] net search

search,
ml subcommand, [R] ml
net subcommand, [R] net
view subcommand, [R] view

search command, [R] search
search d, view subcommand, [R] view
searchdefault, set subcommand, [R] search, [R] set
seed, set subcommand, [R] set, [R] set seed
seemingly unrelated

estimation, [R] suest
regression, [R] nlsur, [R] reg3, [R] sureg

segmentsize, set subcommand, [R] set
selection models, [R] heckman, [R] heckprob
sensitivity, [R] logistic postestimation, also see ROC

analysis
model, [R] regress postestimation, [R] rreg

serial correlation, see autocorrelation
serial independence, test for, [R] runtest
serrbar command, [R] serrbar
session, recording, [R] log
set

adosize command, [R] set
autotabgraphs command, [R] set
cformat command, [R] set, [R] set cformat
checksum command, [R] set
command, [R] query, [R] set
conren command, [R] set
copycolor command, [R] set
dockable command, [R] set
dockingguides command, [R] set
doublebuffer command, [R] set
dp command, [R] set
emptycells command, [R] set, [R] set emptycells
eolchar command, [R] set
fastscroll command, [R] set
floatresults command, [R] set
floatwindows command, [R] set
graphics command, [R] set
httpproxy command, [R] netio, [R] set
httpproxyauth command, [R] netio, [R] set
httpproxyhost command, [R] netio, [R] set
httpproxyport command, [R] netio, [R] set
httpproxypw command, [R] netio, [R] set
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set, continued
httpproxyuser command, [R] netio, [R] set
include bitmap command, [R] set
level command, [R] level, [R] set
linegap command, [R] set
linesize command, [R] log, [R] set
locksplitters command, [R] set
logtype command, [R] log, [R] set
lstretch command, [R] set
matacache command, [R] set
matafavor command, [R] set
matalibs command, [R] set
matalnum command, [R] set
matamofirst command, [R] set
mataoptimize command, [R] set
matastrict command, [R] set
matsize command, [R] matsize, [R] set
max memory command, [R] set
maxdb command, [R] db, [R] set
maxiter command, [R] maximize, [R] set
maxvar command, [R] set
min memory command, [R] set
more command, [R] more, [R] set
niceness command, [R] set
notifyuser command, [R] set
obs command, [R] set
odbcmgr command, [R] set
output command, [R] set
pagesize command, [R] more, [R] set
pformat command, [R] set, [R] set cformat
pinnable command, [R] set
playsnd command, [R] set
printcolor command, [R] set
processors command, [R] set
reventries command, [R] set
revkeyboard command, [R] set
rmsg command, [R] set
scheme command, [R] set
scrollbufsize command, [R] set
searchdefault command, [R] search, [R] set
seed command, [R] set, [R] set seed
segmentsize command, [R] set
sformat command, [R] set, [R] set cformat
showbaselevels command, [R] set, [R] set

showbaselevels
showemptycells command, [R] set, [R] set

showbaselevels
showomitted command, [R] set, [R] set

showbaselevels
smoothfonts command, [R] set
timeout1 command, [R] netio, [R] set
timeout2 command, [R] netio, [R] set
trace command, [R] set
tracedepth command, [R] set
traceexpand command, [R] set
tracehilite command, [R] set

set, continued
traceindent command, [R] set
tracenumber command, [R] set
tracesep command, [R] set
type command, [R] set
update interval command, [R] set, [R] update
update prompt command, [R] set, [R] update
update query command, [R] set, [R] update
varabbrev command, [R] set
varkeyboard command, [R] set

set ado, net subcommand, [R] net
set other, net subcommand, [R] net
set, translator subcommand, [R] translate
set defaults command, [R] set defaults
settings

display, [R] set showbaselevels
format, [R] set cformat

sformat, set subcommand, [R] set, [R] set cformat
sfrancia command, [R] swilk
Shapiro–Francia test for normality, [R] swilk
Shapiro–Wilk test for normality, [R] swilk
shewhart command, [R] qc
showbaselevels, set subcommand, [R] set, [R] set

showbaselevels
showemptycells, set subcommand, [R] set, [R] set

showbaselevels
shownrtolerance option, [R] maximize
showomitted, set subcommand, [R] set, [R] set

showbaselevels
showstep option, [R] maximize
showtolerance option, [R] maximize
Šidák’s multiple-comparison adjustment, see multiple

comparisons, Šidák’s method
significance levels, [R] level, [R] query
signrank command, [R] signrank
signtest command, [R] signrank
simulate prefix command, [R] simulate
simulations, Monte Carlo, [R] simulate; [R] permute
simultaneous

quantile regression, [R] qreg
systems, [R] reg3

SJ, see Stata Journal and Stata Technical Bulletin
sj, net subcommand, [R] net
skewed logistic regression, [R] scobit
skewness, [R] summarize; [R] lnskew0, [R] lv,

[R] pksumm, [R] sktest, [R] tabstat
sktest command, [R] sktest
slogit command, [R] slogit, [R] slogit postestimation
smooth command, [R] smooth
smoothfonts, set subcommand, [R] set
smoothing, [R] lpoly, [R] smooth

graphs, [R] kdensity, [R] lowess
Spearman–Brown prophecy formula, [R] alpha
spearman command, [R] spearman
Spearman’s rho, [R] spearman
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specification test, [R] gmm postestimation,
[R] hausman, [R] ivregress postestimation,
[R] linktest, [R] lnskew0, [R] regress
postestimation, [R] suest

specificity, [R] logistic postestimation, also see ROC
analysis

Spiegelhalter’s Z statistic, [R] brier
spike plot, [R] spikeplot
spikeplot command, [R] spikeplot
splines

linear, [R] mkspline
restricted cubic, [R] mkspline

split-plot designs, [R] anova
spread, [R] lv
sqreg command, [R] qreg, [R] qreg postestimation
sreturn list command, [R] saved results
ssc

copy command, [R] ssc
describe command, [R] ssc
hot command, [R] ssc
install command, [R] ssc
new command, [R] ssc
type command, [R] ssc
uninstall command, [R] ssc

SSC archive, [R] ssc
standard deviations,

displaying, [R] lv, [R] summarize, [R] table,
[R] tabstat, [R] tabulate, summarize()

testing equality of, [R] sdtest
standard errors,

for general predictions, [R] predictnl
forecast, [R] predict, [R] regress postestimation
mean, [R] ci, [R] mean
prediction, [R] glm, [R] predict, [R] regress

postestimation
residuals, [R] predict, [R] regress postestimation
robust, see robust, Huber/White/sandwich estimator

of variance
standardized

means, [R] mean
proportions, [R] proportion
rates, [R] dstdize
ratios, [R] ratio
residuals, [R] binreg postestimation, [R] glm

postestimation, [R] logistic postestimation,
[R] logit postestimation, [R] predict, [R] regress
postestimation

standardized margins, [R] margins
Stata Journal and Stata Technical Bulletin

installation of, [R] net, [R] sj
keyword search of, [R] search

stata.key file, [R] search
Statistical Software Components (SSC) archive, [R] ssc
stats, estimates subcommand, [R] estimates stats
STB, see Stata Journal and Stata Technical Bulletin
stb, net subcommand, [R] net
stcox, fractional polynomials, [R] fracpoly, [R] mfp
stem command, [R] stem

stem-and-leaf displays, [R] stem
stepwise estimation, [R] stepwise
stepwise prefix command, [R] stepwise
stereotype logistic regression, [R] slogit
stochastic frontier models, [R] frontier
store, estimates subcommand, [R] estimates store
storing and restoring estimation results, [R] estimates

store
strata,

graphs, [R] dotplot
models, [R] asclogit, [R] asmprobit, [R] asroprobit,

[R] clogit, [R] exlogistic, [R] expoisson,
[R] rocreg, [R] rologit

resampling, [R] bootstrap, [R] bsample, [R] bstat,
[R] permute

standardization, [R] dstdize
summary statistics, [R] mean, [R] proportion,

[R] ratio, [R] total
Studentized residuals, [R] predict, [R] regress

postestimation
Studentized-range multiple-comparison adjustment, see

multiple comparisons, Tukey’s method
Student–Newman–Keuls’ multiple-comparison

adjustment, see multiple comparisons, Student–
Newman–Keuls’ method

Student’s t distribution
confidence interval for mean, [R] ci, [R] mean
testing equality of means, [R] ttest

suest command, [R] suest
summarize,

estat subcommand, [R] estat
misstable subcommand, [R] misstable

summarize command, [R] summarize; [R] tabulate,
summarize()

summarizing data, [R] summarize, [R] tabstat; [R] lv,
[R] table, [R] tabulate oneway, [R] tabulate
twoway, [R] tabulate, summarize()

summary statistics, see descriptive statistics, displays
summative (Likert) scales, [R] alpha
sums, over observations, [R] summarize
sunflower command, [R] sunflower
sunflower plots, [R] sunflower
sureg command, [R] sureg, [R] sureg postestimation
survey sampling, see cluster sampling
survival analysis, [R] cloglog, [R] exlogistic,

[R] expoisson, [R] gllamm, [R] glm, [R] intreg,
[R] logistic, [R] logit, [R] poisson, [R] tobit

survival-time data, see survival analysis
SVAR, postestimation, [R] regress postestimation time

series
swilk command, [R] swilk
symbolic forms, [R] anova
symmetry command, [R] symmetry
symmetry plots, [R] diagnostic plots
symmetry, test of, [R] symmetry
symmi command, [R] symmetry
symplot command, [R] diagnostic plots
syntax diagrams explained, [R] intro
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system
estimators, [R] gmm, [R] ivregress, [R] nlsur,

[R] reg3, [R] sureg
parameters, [R] query, [R] set, [R] set defaults

system1 command, [R] gmm
szroeter, estat subcommand, [R] regress

postestimation
Szroeter’s test for heteroskedasticity, [R] regress

postestimation

T

t distribution
confidence interval for mean, [R] ci, [R] mean
testing equality of means, [R] ttest

tab1 command, [R] tabulate oneway
tab2 command, [R] tabulate twoway
tabi command, [R] tabulate twoway
table command, [R] table
table, estimates subcommand, [R] estimates table
tables,

coefficient,
display in exponentiated form, [R] eform option
display settings, [R] estimation options, [R] set

showbaselevels
format settings, [R] set cformat
maximum likelihood display options, [R] ml
system parameter settings, [R] set

contingency, [R] table, [R] tabulate twoway
estimation results, [R] estimates table
frequency, [R] tabulate oneway, [R] tabulate

twoway; [R] table, [R] tabstat, [R] tabulate,
summarize()

missing values, [R] misstable
summary statistics, [R] table, [R] tabstat,

[R] tabulate, summarize()
tabstat command, [R] tabstat
tabulate command, [R] tabulate oneway,

[R] tabulate twoway
summarize(), [R] tabulate, summarize()

tau, [R] spearman
TDT test, [R] symmetry
technique() option, [R] maximize
test command, [R] anova postestimation, [R] test
testnl command, [R] testnl
testparm command, [R] test
tests,

ARCH effect, [R] regress postestimation time
series

association, [R] correlate, [R] spearman,
[R] tabulate twoway

autoregressive conditional heteroskedasticity,
[R] regress postestimation time series

binomial probability, [R] bitest
bioequivalence, see bioequivalence tests
Breusch–Godfrey, see Breusch–Godfrey test
Breusch–Pagan, [R] mvreg, [R] sureg

tests, continued
chi-squared hypothesis, see chi-squared hypothesis

test
Chow, see Chow test
cusum, [R] cusum
Durbin’s alternative, see Durbin’s alternative test
endogeneity, [R] ivregress postestimation
Engle’s LM, see Engle’s LM test
equality of

coefficients, [R] pwcompare, [R] test, [R] testnl
distributions, see distributions, testing equality of
margins, [R] margins, [R] pwcompare
means, [R] contrast, [R] pwmean, [R] sampsi,

[R] ttest
medians, [R] ranksum
proportions, [R] bitest, [R] prtest, [R] sampsi
ROC areas, [R] roccomp, [R] rocreg
variances, [R] sdtest

equivalence, [R] pk, [R] pkequiv
exogeneity, see endogeneity subentry
Fisher’s exact, see Fisher’s exact test
goodness-of-fit, see goodness-of-fit tests
Hausman specification, see Hausman specification

test
heteroskedasticity, [R] regress postestimation,

[R] sdtest
independence, [R] correlate, [R] spearman,

[R] tabulate twoway, also see Breusch–Pagan
subentry

independence of irrelevant alternatives, see IIA
information matrix, see information matrix test
internal consistency, [R] alpha
interrater agreement, [R] kappa
Kolmogorov–Smirnov, see Kolmogorov–Smirnov test
Kruskal–Wallis, see Kruskal–Wallis test
kurtosis, [R] regress postestimation, [R] sktest
likelihood-ratio, [R] lrtest
linear hypotheses after estimation, see linear

hypothesis test after estimation
marginal homogeneity, [R] symmetry
margins, [R] margins, [R] pwcompare
model coefficients, [R] lrtest, [R] test, [R] testnl
model specification, see specification test
nonlinear hypotheses after estimation, see nonlinear

hypothesis test after estimation
normality, see normal distribution and normality
omitted variables, see omitted variables test
overidentifying restrictions, see overidentifying

restrictions test
permutation, [R] permute
Ramsey, see Ramsey test
random order, [R] runtest
RESET, see RESET test
serial correlation, [R] regress postestimation time

series
serial independence, [R] runtest
Shapiro–Francia, see Shapiro–Francia test for

normality
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tests, continued
Shapiro–Wilk, see Shapiro–Wilk test for normality
skewness, [R] regress postestimation, [R] sktest
symmetry, [R] symmetry
Szroeter’s, see Szroeter’s test for heteroskedasticity
TDT, [R] symmetry
trend, [R] nptrend, [R] symmetry
variance-comparison, [R] sdtest
weak instruments, [R] ivregress postestimation

tetrachoric command, [R] tetrachoric
three-stage least squares, [R] reg3
time-series analysis, [R] regress postestimation time

series
time-versus-concentration curve, [R] pk
timeout1, set subcommand, [R] netio, [R] set
timeout2, set subcommand, [R] netio, [R] set
title, estimates subcommand, [R] estimates title
tnbreg command, [R] tnbreg, [R] tnbreg

postestimation
tobit command, [R] tobit, [R] tobit postestimation
tobit regression, [R] ivtobit, [R] tobit, also see intreg

command, also see truncreg command
.toc filename suffix, [R] net
tolerance() option, [R] maximize
total command, [R] total, [R] total postestimation
totals, estimation, [R] total
tpoisson command, [R] tpoisson, [R] tpoisson

postestimation
trace, ml subcommand, [R] ml
trace option, [R] maximize
trace, set subcommand, [R] set
tracedepth, set subcommand, [R] set
traceexpand, set subcommand, [R] set
tracehilite, set subcommand, [R] set
traceindent, set subcommand, [R] set
tracenumber, set subcommand, [R] set
tracesep, set subcommand, [R] set
tracing iterative maximization process, [R] maximize
transformations

to achieve normality, [R] boxcox, [R] ladder
to achieve zero skewness, [R] lnskew0

transformations,
log, [R] lnskew0
modulus, [R] boxcox
power, [R] boxcox, [R] lnskew0

translate command, [R] translate
translate logs, [R] translate
translator

query command, [R] translate
reset command, [R] translate
set command, [R] translate

transmap

define command, [R] translate
query command, [R] translate

transmission-disequilibrium test, [R] symmetry
treatment effects, [R] treatreg

treatreg command, [R] treatreg, [R] treatreg
postestimation

tree, misstable subcommand, [R] misstable
trend, test for, [R] nptrend, [R] symmetry
truncated

negative binomial regression, [R] tnbreg
Poisson regression, [R] tpoisson
regression, [R] truncreg

truncreg command, [R] truncreg, [R] truncreg
postestimation

ttest and ttesti commands, [R] ttest
Tukey’s multiple-comparison adjustment, see multiple

comparisons, Tukey’s method
tuning constant, [R] rreg
two-stage least squares, [R] gmm, [R] ivregress,

[R] nlsur, [R] regress
two-way

analysis of variance, [R] anova
scatterplots, [R] lowess

type,
set subcommand, [R] set
ssc subcommand, [R] ssc

U
U statistic, [R] ranksum
uniformly distributed random-number function, [R] set

seed
uninstall,

net subcommand, [R] net
ssc subcommand, [R] ssc

unique values, counting, [R] table, [R] tabulate oneway
univariate

distributions, displaying, [R] cumul, [R] diagnostic
plots, [R] histogram, [R] ladder, [R] lv,
[R] stem

kernel density estimation, [R] kdensity
update

all command, [R] update
command, [R] update
from command, [R] update
query command, [R] update

update interval, set subcommand, [R] set,
[R] update

update prompt, set subcommand, [R] set,
[R] update

update query, set subcommand, [R] set, [R] update
update, view subcommand, [R] view
update d, view subcommand, [R] view
updates to Stata, [R] adoupdate, [R] net, [R] sj,

[R] update
use, estimates subcommand, [R] estimates save
user-written additions,

installing, [R] net, [R] ssc
searching for, [R] net search, [R] ssc

using,
cmdlog subcommand, [R] log
log subcommand, [R] log
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V
varabbrev, set subcommand, [R] set
variables,

categorical, see categorical data, agreement,
measures for

dummy, see indicator variables
factor, see factor variables
in model, maximum number, [R] matsize
orthogonalize, [R] orthog

variance
estimators, [R] vce option
inflation factors, [R] regress postestimation
stabilizing transformations, [R] boxcox

variance,
analysis of, [R] anova, [R] loneway, [R] oneway
displaying, [R] summarize, [R] table, [R] tabstat,

[R] tabulate, summarize(); [R] lv
Huber/White/sandwich estimator, see robust,

Huber/White/sandwich estimator of variance
nonconstant, see robust, Huber/White/sandwich

estimator of variance
testing equality of, [R] sdtest

variance-comparison test, [R] sdtest
variance–covariance matrix of estimators, [R] correlate,

[R] estat
variance-weighted least squares, [R] vwls
varkeyboard, set subcommand, [R] set
vce, estat subcommand, [R] estat
vce() option, [R] vce option
version of ado-file, [R] which
version of Stata, [R] about
view

ado command, [R] view
ado d command, [R] view
browse command, [R] view
command, [R] view
help command, [R] view
help d command, [R] view
net command, [R] view
net d command, [R] view
news command, [R] view
search command, [R] view
search d command, [R] view
update command, [R] view
update d command, [R] view
view d command, [R] view

view d, view subcommand, [R] view
viewing previously typed lines, [R] #review
vif, estat subcommand, [R] regress postestimation
vwls command, [R] vwls, [R] vwls postestimation

W
Wald tests, [R] contrast, [R] predictnl, [R] test,

[R] testnl
weak instrument test, [R] ivregress postestimation

weighted least squares, [R] regress
for grouped data, [R] glogit
generalized linear models, [R] glm
generalized method of moments estimation,

[R] gmm
instrumental-variables regression, [R] gmm,

[R] ivregress
nonlinear least-squares estimation, [R] nl
nonlinear systems of equations, [R] nlsur
variance, [R] vwls

Welsch distance, [R] regress postestimation
which command, [R] which
White/Huber/sandwich estimator of variance, see robust,

Huber/White/sandwich estimator of variance
White’s test for heteroskedasticity, [R] regress

postestimation
Wilcoxon

rank-sum test, [R] ranksum
signed-ranks test, [R] signrank

X
xchart command, [R] qc
xi prefix command, [R] xi

Z
Zellner’s seemingly unrelated regression, [R] sureg;

[R] reg3, [R] suest
zero-altered, see zero-inflated
zero-inflated

negative binomial regression, [R] zinb
Poisson regression, [R] zip

zero-skewness transform, [R] lnskew0
zinb command, [R] zinb, [R] zinb postestimation
zip command, [R] zip, [R] zip postestimation
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